

Element Reference Manual

Version 19.0 Issue 1

LUSAS
Forge House, 66 High Street, Kingston upon Thames, Surrey, KT1 1HN, United Kingdom

Tel: +44 (0)20 85411999
Fax +44 (0)20 85499399
Email: info@lusas.com
http://www.lusas.com
Distributors Worldwide
Copyright © 1982-2020 LUSAS
All Rights Reserved.

Table of Contents

Notation. 1
Introduction 6
Overview 6
Element selection 6
Element uses 6
Element Groups 11
Element Sub-Groups 11
Element Types and Availability 12
Element Index 17
Element Summary Tables 43
Chapter 1 : Bar Elements 63
2D Structural Bar Elements 64
3D Structural Bar Elements 69
Chapter 2 : Beam Elements 75
2D Engineering Grillage Thick Beam Element 76
2D Thick Beam Elements 81
2D Thick Beam Element with Quadrilateral Cross-Section 90
3D Thick Beam Elements 98
3D Thick Beam Elements with Quadrilateral Cross-Section 108
3D Thick Beam Elements with Torsional Warping 117
3D Thick Beam Elements with Quadrilateral Cross-Section and Torsional Warping 127
2D Kirchhoff Thin Beam Elements 137
2D Kirchhoff Thin Beam Element with Quadrilateral Cross-Section 144
3D Kirchhoff Thin Beam Elements 151
3D Kirchhoff Thin Beam Element with Quadrilateral Cross-Section 158
3D Semiloof Thin Beam Elements 165
3D Semiloof Thin Beam Element with Quadrilateral Cross-Section 172
2D Plane Strain Beam Elements 179
Chapter 3: 2D Continuum Elements 187
2D Plane Stress Continuum Elements 188
2D Plane Stress Continuum Element with Enhanced Strains 194
2D Plane Stress Continuum Crack Tip Elements 201
2D Plane Stress Explicit Dynamics Elements 207
2D Plane Strain Continuum Elements 212
2D Plane Strain Continuum Element with Enhanced Strains 219
2D Plane Strain Continuum Element for Large Strains. 226
2D Plane Strain Continuum Crack Tip Elements 231
2D Plane Strain Explicit Dynamics Elements 237
2D Plane Strain Two Phase Continuum Elements 242
2D Axisymmetric Solid Continuum Elements 248
2D Axisymmetric Solid Continuum Element with Enhanced Strains 255
2D Axisymmetric Solid Continuum Element for Large Strains 261
2D Axisymmetric Solid Continuum Crack Tip Elements 266
2D Axisymmetric Solid Explicit Dynamics Elements 272
2D Axisymmetric Solid Two Phase Continuum Elements 278
2D Axisymmetric Fourier Ring Elements 284
Chapter 4 : 3D Continuum Elements 289
3D Solid Continuum Elements. 290
3D Solid Continuum Element with Enhanced Strains. 297
3D Solid Continuum Crack Tip Elements 304
3D Solid Continuum Composite Elements (Tetrahedral) 311
3D Solid Continuum Composite Elements (Pentahedral and Hexahedral) 318
3D Solid Continuum Explicit Dynamics Elements 325
3D Solid Two Phase Continuum Elements 331
Chapter 5: Plate Elements. 339
2D Isoflex Thin Plate Flexure Elements 340
2D Isoflex Thick Plate Flexure Element 345
2D Mindlin Thick Plate Flexure Element 350
Chapter 6 : Shell Elements 355
2D Axisymmetric Thin Shell Element 356
2D Axisymmetric Thick Shell Elements 363
3D Flat Thin Shell Elements. 369
3D Flat Thin Nonlinear Shell Element 375
Semiloof Curved Thin Shell Elements 382
3D Thick Shell Elements 391
Chapter 7 : Membrane Elements 403
2D Axisymmetric Membrane Elements 404
3D Space Membrane Elements 409
Chapter 8 : Joint Elements 415
2D Joint Element for Bars, Plane Stress and Plane Strain 416
2D Joint Element for Engineering and Kirchhoff Beams 421
2D Joint Element for Grillage Beams and Plates 426
2D Joint Element for Axisymmetric Solids 431
2D Joint Element for Axisymmetric Shells 436
3D Joints for Bars, Solids and Space Membranes 441
3D Joints for Semiloof Shells 446
3D Joint Elements for Engineering, Kirchhoff and Semiloof Beams 451
3D Joint Element for Semiloof Beams 456
Chapter 9 : Thermal / Field Elements. 461
2D Bar Field Elements. 462
2D Axisymmetric Membrane Field Elements 466
3D Bar Field Elements 470
2D Link Field Element 474
3D Link Field Element 477
2D Axisymmetric Link Field Element 480
2D Axisymmetric Field Elements 483
2D Plane Field Elements 488
3D Solid Field Elements 493
3D Solid Composite Field Element (Tetrahedral) 498
3D Solid Composite Field Elements (Pentahedral and Hexahedral) 503
Chapter 10 : Hygro-Thermal Elements. 509
2D Plane Hygro-Thermal Elements 510
2D Axisymmetric Solid Hygro-Thermal Elements 514
3D Solid Hygro-Thermal Elements 518
Chapter 11 : Interface Elements. 523
2D Interface Element 524
2D Two Phase Interface Element. 528
3D Interface Element 532
3D Two Phase Interface Element 537
Chapter 12 : Non-Structural Mass Elements 541
2D Point Mass Element 542
3D Point Mass Element 545
3D Line Mass Elements. 548
2D Line Mass Elements. 551
Surface Mass Elements 554
Chapter 13 : Rigid Slideline Elements 557
Rigid Slideline Surface 2D Elements 558
Rigid Slideline Surface 3D Elements 561
Chapter 14 : Phreatic Elements 565
Phreatic Surface 2D Elements 566
Phreatic Surface 3D Elements 569
Appendix A : Element and Pressure Loads. 573
ELDS Element Loads 573
ENVT/TDET Environmental Boundary Conditions 576
FLD Face loading applied to thermal bars 577
Face Loads On 2D Continuum Elements 577
Face Loads On 3D Continuum Elements 578
UDL Loads on Shells 581
Appendix B : Element Restrictions 583
Mid-side Node Centrality 583
Excessive Element Curvature 583
Excessive Aspect Ratios 583
Excessive Warping 584
Appendix C : Local Element Axes. 585
Standard Joint Element 585
Standard Line Element. 585
Standard Surface Element 585
Appendix D : Sign Conventions. 587
Standard Bar Element 587
Standard Beam Element 587
Grillage Elements 588
2D Engineering Beam Elements 589
3D Engineering Beam Elements 591
Standard Beam Eccentricities 592
Standard 2D Continuum Element. 593
Standard 3D Continuum Element 593
Standard Plate Element 593
Thin Shell Element 594
Thin Shell Eccentricity 595
Thick Shell Element 595
Thick Shell Eccentricity 596
Standard Membrane Element 596
Standard Field Element 597
Standard Joint Element 597
Appendix E: Thick Shell Notation 599
Thick Shell Nodal Rotation 599
Appendix F : Newton Coates Integration. 603
Newton-Cotes Integration Points 603
Appendix G : Shear Area and Torsional Constant. 605
Shear Areas 605
Torsional Constant 605
Appendix H: Principal Stress Output. 609
Output Notation for Principal Stresses 609
Appendix I: Mass Lumping. 611
Mass Lumping in LUSAS 611
Appendix J: Moments of Inertia 613
Moments of Inertia Definitions 613
Appendix K : Results Tables 615
Key to Element Results Tables 615
Key to Slideline Results Components 623
Transforming Results Directions 624
2D Structural Bars BAR2, BAR3 625
3D Structural Bars BRS2, BRS3 626
2D Engineering Grillage Thick Beam GRIL 627
2D Thick Beam Elements BMI2, BMI3, BMI2X, BMI3X 628
3D Thick Beam Elements BMI21, BMI22, BMI31, BMI33, BMX21, BMX22, BMX31, BMX33 629
3D Thick Beam Elements with Torsional Warping BMI21W, BMI22W, BMI31W, BMI33W, BMX21W, BMX22W, BMX31W, BMX33W 630
2D Kirchhoff Thin Beams BM3, BMX3 631
3D Kirchhoff Thin Beams BS3, BS4, BSX4 632
3D Semiloof Thin Beams BSL3, BSL4, BXL4 633
Plane Strain Beam Elements BMI2N, BMI3N 634
2D Continuum (Plane Stress) TPM3/6, QPM4/8, QPM4M, TPK6, QPK8 635
2D Continuum Plane Stress (Explicit Dynamics) TPM3E, QPM4E 636
2D Continuum (Plane Strain) TPN3/6, QPN4/8, TNK6, QNK8, QPN4M 637
2D Continuum (Plane Strain) QPN4L 638
2D Plane Strain Two Phase Continuum TPN6P, QPN8P 639
2D Continuum Plane Strain (Explicit Dynamics) TPN3E, QPN4E 640
2D Continuum Axisymmetric Solid (Explicit Dynamics) TAX3E, QAX4E 641
2D Axisymmetric Solid Two Phase Continuum TAX6P, QAX8P 642
2D Continuum Axisymmetric Solid Fourier TAX3/6F, QAX4/8F 643
Axisymmetric Solid TAX3/6, QAX4/8, QAX4M, TXK6, QXK8 644
Axisymmetric Solid Large Strain QAX4L 645
3D Solid Continuum TH4/10, TH10S, PN6/12/15, PN6L/12L, HX8/16/20, HX8M, HX8L/16L, TH10K, PN15K, HX20K 646
3D Solid Continuum Two Phase TH10P, PN12P, PN15P, HX16P, HX20P 647
3D Solid Continuum Explicit Dynamics TH4E, PN6E, HX8E 648
Isoflex Thin Plates TF3, QF4 649
Isoflex Thick Plates QSC4 650
Mindlin Thick Plates TTF6, QTF8. 651
2D Axisymmetric Membranes BXM2, BXM3 652
3D Space Membranes TSM3, SMI4 653
2D Thin Axisymmetric Shells BXS3 654
2D Thick Axisymmetric Shells BXSI2, BXSI3 655
3D Flat Thin Shells TS3, QSI4 656
3D Flat Thin Nonlinear Shell TSR6 657
Semiloof Shells TSL6, QSL8 658
3D Thick Shells TTS3, TTS6, QTS4, QTS8 659
2D Joints (for Bars, Plane Stress and Plane Strain) JNT3 660
2D Joints (for Engineering and Kirchhoff Beams) JPH3. 661
2D Joints (for Grillage Beams and Plates) JF3 662
2D Joints (for Axisymmetric Solids) JAX3 663
2D Joints (for Axisymmetric Shells) JXS3 664
3D Joints (for general 3 dof connection) JNT4, JL43 665
3D Joints (for general 6 dof connection) JSH4, JL46 666
3D Joints (for Semiloof Element Mid-side Nodes) JSL4 667
Thermal Bars BFD2/3, BFS2/3, BFX2/3 668
Thermal Links LFD2, LFS2, LFX2 668
Plane and Axisymmetric Field TFD3/6, QFD4/8, TXF3/6, QXF4/8 668
Solid Field TF4/10, PF6/12/15, HF8/16/20, TF10S, PF6C/12C, HF8C/16C 668
Plane and Axisymmetric Hygro-Thermal THT3/6, QHT4/8, TXHT3/6, QXHT4/8 669
Solid Hygro-Thermal THT4/10, PHT6/12/16, HHT8/16/20 670
2D Interface Element IPN4, IPN6, IAX4, IAX6 671
2D Two Phase Interface Elements IPN6P, IPN8P 672
3D Interface Element IS6 IS8 IS12 IS16 673
3D Two Phase Interface Element IS12P, IS16P 674
Appendix L : Joint Element Compatibility. 675
Joint Element Compatibility and Notes 675
Index 679

Notation.

A Cross sectional area
Ap Plastic area
As, Asy, Asz Effective shear area
$\mathbf{A}_{1} \ldots \mathbf{A}_{\mathrm{n}}$ Nodal cross sectional areas
ar Mass Rayleigh damping constant
α Coefficient of thermal expansion
α Softening parameter
$\alpha \mathbf{x}, \alpha \mathbf{y}, \alpha \mathbf{z}, \alpha \mathbf{x y}, \alpha \mathbf{x z}$, Orthotropic thermal expansion coefficients $\alpha y z$
$\alpha \mathbf{x}, \alpha \mathbf{y}, \alpha \mathbf{z}$ Angular accelerations
br Stiffness Rayleigh damping parameter
β Shear retention factor/parameter
β Principal stresses direction
C Specific heat capacity
$\mathbf{C i}$ (i)th hardening stiffness
\mathbf{C}_{0} Neo-Hookean rubber model constant
$\mathbf{C}_{1}, \mathbf{C}_{2}$ Mooney-Rivlin rubber model constants
c Cohesion
co Initial cohesion
Dij Rigidity coefficients
du, dq Relative displacement, rotation
E Modulus of elasticity (Young's modulus)
Ep Elasto-plastic modulus$\mathbf{E x}, \mathbf{E y}, \mathbf{E z}$ Orthotropic moduli of elasticityep Strain at peak compressive strengthey, ez Eccentricity$\varepsilon \mathbf{x}, \varepsilon \mathbf{y}, \varepsilon \mathbf{z}$ Direct strains (local or global)
Es Maximum shear strain
عe Von Mises equivalent strain
عc Creep strains
عр Equivalent plastic strain
$\mathbf{F x}, \mathbf{F y}, \mathbf{F z}$ Forces (local or global)
Fyld Yield force
F Deformation gradient
fc' Compressive strength of concrete
ft' Tensile strength of concrete
$\psi \mathbf{x}, \psi \mathbf{y}, \psi \mathbf{z}$ Flexural (bending) strain resultants
$\psi \mathbf{x y}, \psi \mathbf{x z}, \psi \mathbf{y z}$ Torsional strain resultants
G Shear modulus
Gf Fracture energy
Gxy, Gxz, Gyz Orthotropic shear moduli
$\gamma \mathbf{x}, \gamma \mathbf{y}, \gamma \mathbf{z}$ Membrane strain resultants
$\gamma \mathbf{x}, \gamma \mathbf{y}, \gamma \mathbf{z}$ Field gradients (local or global)
H Enthalpy
Hi1 Isotropic hardening parameter
Hk1 Kinematic hardening parameter
hc Convective heat transfer coefficient
hf Heat fractionhr Radiative heat transfer coefficient
$\theta \mathbf{x}, \theta \mathbf{y}, \theta \mathbf{z}$ Rotations (local or global)
θ_{1}, θ_{2} Loof node rotations (local)
$\theta \alpha, \theta \beta$ Nodal rotations for thick shells
$\theta \lambda$ Angle defining principal directions of λ_{1}, λ_{2}
Iy, Iz 1st moments of inertia
Iyy, Izz 2nd moments of inertia
Iyz Product moment of inertia
J Volume ratio (determinant of F)
K Spring stiffness
Kc Contact stiffness
Kl Lift-off stiffness
Ko Original gap conductance
Kt Torsional constant
k Thermal conductivity
$\mathbf{k x}, \mathbf{k y}, \mathbf{k z}$ Orthotropic thermal conductivities
kr Bulk modulus
κ Hardening stiffness
Li Limit of (i)th hardening stiffness
$\lambda_{1}, \lambda_{2}, \lambda_{3}$ Principal stretches
M Mass
$\mathbf{M x}, \mathbf{M y}, \mathbf{M z}$ Concentrated moments (local or global)
$\mathbf{M x}, \mathbf{M y}, \mathbf{M z}, \mathbf{M}_{\theta}$ Flexural moments (local or global)
Mxy, Mxz, Myz Torsional moments (local or global)
$\mathbf{M}_{1}, \mathbf{M}_{2}$ Concentrated loof moments (local or global)
$\mathbf{m}_{\mathrm{x}}, \mathbf{m}_{\mathrm{y}}, \mathbf{m}_{\mathrm{z}}$ Mass in element local directions
μ Coulomb friction coefficient
$\mu \mathbf{r i}$, ari Ogden rubber model constants
$\mathbf{N x}, \mathbf{N y}, \mathbf{N z}, \mathbf{N} \theta$ Membrane resultants (local or global)
$\mathbf{N x}, \mathbf{N y}, \mathbf{N x y}$ Stress resultants
Nmax, Nmin Principal stress resultants
Ns Maximum shear stress resultant
Ne Von Mises equivalent stress resultant
v Poisson's ratio
vxy, vxz, vyz Orthotropic Poisson's ratio
Px, Py, Pz Concentrated loads (global)
ρ Mass density
Q Field loading
qa Field face loading flux/unit area
qv Field volume loading flux/unit volume
$\mathbf{q x}, \mathbf{q y}, \mathbf{q z}$ Field fluxes (local or global)\mathbf{Q}_{H} Rate of internal heat generation per unit volume Rate of internalmass (liquid+vapour) generation per unit volume Heat flux\mathbf{Q}_{w} Rate of internal heat generation per unit volume Rate of internalmass (liquid+vapour) generation per unit volume Heat flux\mathbf{q}_{H} Rate of internal heat generation per unit volume Rate of internalmass (liquid+vapour) generation per unit volume Heat flux
qs Stress potential parameters
\mathbf{q}_{w} Mass (liquid+vapour) flux Relative humidity Initial relativehumidity
RH Mass (liquid+vapour) flux Relative humidity Initial relativehumidity
$\mathbf{R H}_{0}$ Mass (liquid+vapour) flux Relative humidity Initial relativehumidity
Sp Plastic shear area
σy Yield stress
$\sigma y o$ Initial uniaxial yield stress
$\sigma \mathbf{x}, \sigma \mathbf{y}, \sigma \mathbf{z}$ Direct stresses (local or global)
σ max, σ min Principal stresses$\sigma \mathbf{x y}, \sigma \mathbf{x z}, \sigma \mathbf{y z}$ Shear stresses (local or global)os Maximum shear stress
σ Von Mises equivalent stress
T Temperature
T, To Final, initial temperatures
$\mathbf{t}_{1} \ldots \mathbf{t}_{\mathrm{n}}$ Nodal thicknesses
U, V, W Displacements (global)
Φ Field variable
Фе External environmental temperature
ϕ Frictional angle
ϕ o Initial frictional angle
ϕ Body force potential
$\mathbf{V x}, \mathbf{V y}, \mathbf{V z}$ Nodal velocities (global)
V11, V12 ... V33 Left stretch tensor components
$\mathbf{W x}, \mathbf{W y}, \mathbf{W z}$ Uniformly distributed intensities
$\mathbf{X , Y , \mathbf { Z }}$ Nodal coordinates (global)
Xcbf, Ycbf, Zcbf Constant body forces (global)
Xo, Yo, Zo Offsets of finite element model coordinate system from point about which global angular acceleration and velocities are applied
$\mathbf{y}_{1}, \mathbf{z}_{1} \ldots \mathbf{y}_{4}, \mathbf{z}_{4}$ Cross sectional coordinates (local)
$\mathbf{Z y p}, \mathbf{Z z p}$ Torsional plastic moduli
Zyyp, Zzzp Flexural plastic moduli
ω Frequency of vibration
$\Omega \mathbf{x}, \Omega \mathbf{y}, \Omega \mathbf{z}$ Angular velocities (global)

Introduction.

Overview

The LUSAS Element Reference Manual describes the elements currently available in LUSAS Solver. It has been designed to be used in conjunction with the Solver Reference Manual and provides input/output information which is specific to each element type.
If you require:

- General theoretical information - refer to Theory Manual Volume 1
- Element related theoretical / formulation information - refer to Theory Manual Volume 2

Element selection

Details of typical element uses are provided and, to assist you with choosing an element for a particular modelling task, three alternative selection methods are available for selecting by:
\square Element type - listing just element group, sub-group and element name
\square Element index - showing element name, geometry, nodal freedoms and element availability
\square Element summary - showing element names, material property, loading, nonlinear, integration, and mass modelling capabilities
Of these three methods, the element summary tables provide the most detail to enable correct element selection for a particular modelling task.

Element uses

The following brief descriptions of each element group are provided to assist you with element selection for a particular modelling task.
Additional more detailed and element-specific recommendations on use can be found by viewing the Recommendations on Use section provided within each element's listing. For an example see 3D Isoparametric Thick Beam Elements

Bar Elements

Bar elements are used to model plane and space truss structures, cables in cable-stayed structures, and stiffening reinforcement.

- LUSAS incorporates 2 and 3-dimensional bar elements which may either be straight or curved.
- Bar elements model axial force only.

Beam Elements

Beam elements are used to model plane frames, space frame structures, and cables in cable-stayed structures.

- LUSAS incorporates a variety of thin and thick beams in both 2 and 3-dimensions. In addition, specialised beam elements for modelling grillage or eccentrically ribbed plate structures are available.
- LUSAS beam elements may be either straight or curved and may model axial force, bending and torsional behaviour.

2D Continuum Elements

2D continuum elements are used to model solid structures whose behaviour may reasonably be assumed to be 2-dimensional.

- 2D continuum elements may be applied to plane stress, plane strain and axisymmetric solid problems.
- Triangular and quadrilateral elements are available.
- Fourier elements, which allow non-axisymmetric loading to be applied to axisymmetric models, are considered a special case of the 2 D continuum elements since the mesh is defined entirely in the xy-plane, but the resulting displacements, strains and stresses are fully three-dimensional.
- Special crack tip elements are available to model the singularities encountered at crack opening
- Explicit elements are available to model high speed dynamics problems efficiently.

3D Continuum Elements

3D continuum elements are used to model fully3-dimensional structures.

- Tetrahedral, pentahedral and hexahedral solid elements are available to model full 3-dimensional stress fields.

Element Reference Manual

- Composites elements are available to model laminates.
- Special crack tip elements are available to model the singularities encountered at crack opening

Plate Elements

Plate elements are used to model flat structures whose deformation can be assumed to be predominantly flexural

- LUSAS incorporates both thin and thick plate elements.

- Triangular and quadrilateral flexural plate elements are available.

Shell Elements

Shell elements are used to model 3-dimensional structures whose behaviour is dependent upon both flexural and membrane effects.

- LUSAS incorporates both flat and curved shell elements.
- Triangular and quadrilateral elements are available
- Both thin and thick shell elements are available.

Membrane Elements

Membrane elements are used to model 2 and 3-dimensional structures whose behaviour is dominated by in-plane membrane effects.

- LUSAS incorporates both axisymmetric and space (3-

-

dimensional) membrane elements.

- Membrane elements incorporate in-plane (membrane) behaviour only (they include no bending behaviour).

Joint Elements

Joint elements are used to model flexible joints between other LUSAS elements.

- LUSAS incorporates a variety of joint elements which are
 designed to match the nodal freedoms of their associated elements.
- Joint elements may also be used to model point masses, elastoplastic hinges, or smooth and frictional element contacts.

Non-Structural Mass Elements

Non-Structural Mass elements are used to model translational mass at a point, along an edge or on a surface.

- Non-Structural Mass elements must be used with other structural

elements.

Thermal / Field Elements

Thermal / Field elements are used to model quasi-harmonic equation problems such as thermal conduction or potential distribution.

- LUSAS incorporates bar, plane, axisymmetric solid and 3-

dimensional solid field elements.
- Thermal link elements are also available.

Hygro-Thermal Elements

Hygro-thermal elements are used in hygro-thermal transient analyses, i.e. to model heat and moisture flow in porous media. The elements are generally used for problems involving the heat of hydration of concrete,
 and are normally used in a hygro-thermal-structural coupled analysis.

- LUSAS incorporates plane, axisymmetric solid and 3dimensional solid hygro-thermal elements
- Thermal link elements can also be used in a hygro-thermal analysis.

Interface Elements

Mohr-Coulomb interface elements are used to model the contact behaviour between two bodies.
Delamination interface elements model delamination and crack

propagation in composites. They are positioned at places of potential delamination between continuum elements

Rigid Elements

Rigid elements are used to define the shape of a rigid surface which is not part of the analysis model.

Phreatic Surface Elements

Phreatic surface elements are used to define the shape of a phreatic surface. They may be used with 2D and 3D continuum and two-phase elements.

Element Groups

The LUSAS Element Library is arranged into the following element groups:

Bars

\square Beams

- 2D Continuum elements
\square 3D Continuum elements
\square Plates
\square Shells
\square Membranes
- Joints

Non-structural mass elements
\square Thermal/Field elements
[Hygro-thermal elements
\square Interface elements
\square Rigid elements
\square Phreatic surface elements

Element Sub-Groups

Each element group is also sub-divided into element sub-groups according to the type of element formulation as shown in the following table. For example, the Beam element group contains the element sub-groups: Engineering beams, Thick beams, Kirchhoff beams and Semiloof beams.
Within each sub-group elements vary according to the geometry, the number of nodes, and the properties required by each element. The individual elements are referred to by their LUSAS name, for example: BMI21 or QTS4 .

Note

The dimensional classification of LUSAS elements is on the basis of the number of dimensions required for input of the nodal coordinates. For example, an engineering grillage element, (GRIL) requires X, Y coordinates and is hence classed as being 2-dimensional (despite having an out of plane displacement freedom).

Element Types and Availability

Element Group	Element Subgroup	Element Name and Software Product Version Availability		
		LT	Standard (S)	Plus (+)
Bars	Structural bars	$\begin{array}{\|l\|} \hline \text { BAR2, } \\ \hline \text { BRS2 } \\ \hline \end{array}$	BAR3, BRS3	
Beams	Engineering beams	GRIL		
	Plain strain beams		BMI2N, BMI3N	
	Thick beams	$\begin{array}{\|l} \mathrm{BMI} 2, \\ \mathrm{BMI} 21 \\ \hline \end{array}$		$\begin{aligned} & \begin{array}{l} \text { BMI3, BMI2X } \\ \text { BMI3X, BMI22 } \\ \text { BMI31, BMI33, } \\ \text { BMX21 } \\ \text { BMX22, } \\ \text { BMX31, BMX33 } \end{array} \end{aligned}$
	Thick crosssection beams			$\begin{aligned} & \text { BMI3, BMI2X, } \\ & \text { BMI3X, BMI22, } \\ & \text { BMI31, BMI33, } \\ & \begin{array}{l} \text { BMX22 } \end{array}, \text { BMX22, } \\ & \hline \text { BMX31, BMX33 } \end{aligned}$
	Warping beams			
	Thin (Kirchhoff) beams		BM3, BMX3	BS3, BS4, BSX4
	Semiloof beams			BSL3, BSL4, BXL4
2D Continuum	Plane stress continuum		$\begin{aligned} & \text { TPM3, TPM6, } \\ & \text { QPM4, QPM8, } \\ & \text { QPM4M, TPK6, } \\ & \text { QPK8 } \end{aligned}$	TPM3E, OPM4E
	Plane strain continuum		$\begin{aligned} & \text { TPN3, TPN6, QPN4, } \\ & \text { QPN8, } \end{aligned}$	TPN3E, QPN4E

Element Group	Element Subgroup	Element Name and Software Product Version Availability		
		LT	Standard (S)	Plus (+)
			$\begin{aligned} & \text { QPN4L, TNK6, } \\ & \text { QNK8 } \end{aligned}$	
	Plain strain two phase		TPN6P, OPN8P	
	Axisymmetric solid continuum		$\begin{aligned} & \text { TAX3, TAX6, QAX4, } \\ & \text { QAX8, QAX4M, } \\ & \text { QAX4L, TXK6, } \\ & \text { QXK8, TAX3F, } \\ & \begin{array}{l} \text { TAX6F, }, ~ Q A X 4 F, ~ \\ \text { QAX8F } \end{array} \end{aligned}$	TAX3E, OAX4E
	Axisymmetric solid two-phase			TAX6P, QAX8P
	Fourier ring			$\begin{aligned} & \text { TAX3F, TAX6F } \\ & \text { QAX4F }, \underline{\text { QAX8F }} \end{aligned}$
3D Continuum	Solid continuum		$\begin{aligned} & \text { TH4 }, ~ P N 6, ~ H X 8, ~ \\ & \underline{H X 8} \end{aligned}$	$\begin{aligned} & \text { TH10, PN12, PN15, } \\ & \begin{array}{l} \text { HX16, }, \text { HX20, } \\ \text { TH10S }, \text { PN6L } \\ \text { PN12L, HX8L, } \\ \text { HX16L, TH4E }, \\ \text { PN6E, HX8E } \end{array} \end{aligned}$
	Solid continuum crack tip			$\begin{aligned} & \text { TH10K, PN15K, } \\ & \text { HX20K } \end{aligned}$
	Solid continuum two phase			TH10P,$~$ PN1512P HX20P,
Plates	Isoflex plates Mindlin plates		$\begin{aligned} & \text { TF3, QF4, QSC4 } \\ & \text { TTF6, QTF } 8 \end{aligned}$	
Shells	Axisymmetric thin shells		BXS3	
	Axisymmetric thick shells		BXSI2, ${ }^{\text {BXSI3 }}$	
	Flat thin shells		TS3, QSI4	TSR6,

Element Group	Element Subgroup	Element Name and Software Product Version Availability		
		LT	Standard (S)	Plus (+)
	Semiloof shells			TSL6, OSL8
	Thick shells		TTS3, QTS4	TTS6, QTS8
Membranes	Axisymmetric membranes		BXM2, BXM3	
	Space membranes		TSM3, SMI4	
Joints	2D joints		$\frac{\mathrm{JNT} 3}{\mathrm{JAX3}}, \underline{\mathrm{JPH} 3}, \underline{\mathrm{JF} 3},$	
	3D joints		$\begin{aligned} & \mathrm{JNT4}, \mathrm{JL43}, ~ \mathrm{JSH} 4, \\ & \mathrm{JL46} \end{aligned}$	JSL4
Field	Thermal bars		$\begin{aligned} & \frac{\mathrm{BFD} 2}{}, \underline{\mathrm{BFD} 3}, \text { BFX2, } \\ & \text { BFX3 }, ~ B F S 2, ~ B F S 3 \end{aligned}$	
	Thermal links		LFD2, LFX2, LFS2	
	Plane field		$\begin{aligned} & \text { TFD3 } \\ & \text { QFD8 } \\ & \text { TFD6, }, ~ \text { QFD4, } \end{aligned}$	
	Axisymmetric field		$\frac{\text { TXF3 }}{\text { QXF }}, ~ \text { TXF6 }, ~ \text { QXF4, }$	
	Solid field		$\begin{aligned} & \text { TF4, TF10, PF6, } \\ & \text { PF12, PF15, HF8 } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { HF16, HF20, PF6C, } \\ \text { PF12C, } \\ \text { HF8C, TF10S } \end{array} \end{aligned}$
Hygro-Thermal	Plane hygrothermal			$\begin{aligned} & \text { THT3, THT6, } \\ & \text { QHT4, QHT8 } \end{aligned}$
	Axisymmetric hygro-thermal			TXHT3, TXHT6,
	Solid hygrothermal			THT4, THT10, PHT6, PHT12, PHT15, HHT8, HHT16, ${ }^{\text {HHT20 }}$
Interface	2D Interface			$\begin{aligned} & \text { IPN4, IPN6, IPM4, } \\ & \text { IPM6, IAX4, IAX } \end{aligned}$
	2D Two-phase interface			IPN6P, IAX6P

Element Group	Element Subgroup	Element Name and Software Product Version Availability		
		LT	Standard (S)	Plus (+)
	3D Interface			IS6, IS8, IS12, IS16
	3D Two-phase interface			IS12P, IS16P
Mass	Point Mass			PM2, PM3
	Line Mass			LM2, LM3, LMS3, LMS4
	Surface Mass			$\frac{\text { TM3 }}{\text { OM8 }},$
Rigid Surface	2D Rigid			R2D2
	3D Rigid			R3D3, R3D4
Phreatic Surface	2D		PHS2	
	3D		PHS3, PHS4	

For details of the compatibility of joint elements with other elements see Appendix L : $\underline{\mathbf{J o i n t}}$ Element Compatibility

Element Index

The following element index tables provide a diagrammatic index for each element with a description of the element, the nodal freedoms, and the software product version in which it is available.
The tables are listed in the following order:
\square Bar elements
\square Beam elements

- 2D Continuum elements
\square 3D Continuum elements
\square Plate elements
\square Shell elements
\square Membrane elements
\square Joint elements
Thermal / Field elements
\square Hygro-Thermal elements
\square Interface elements
\square Non-Structural Mass elements
\square Rigid elements
\square Phreatic elements

Bar Elements

Name	Geometry	Title	Freedoms	Product Version
$\underline{\text { BAR2 }}$		BAR element in 2D	U, V	LT
BAR3		BAR element in 2D	U, V	

Beam Elements

Name	Geometry	Title	Freedoms	Product Version
GRIL		ENGINEERING grillage thick beam element in 2D	$\mathrm{W}, \mathrm{qx}, \mathrm{qy}$	
$\underline{\text { BMI2 }}$		LT		
$\underline{\text { BMI3 }}$		THICK beam element in 2D (co-rotational)	$\mathrm{U}, \mathrm{V}, \mathrm{qz}$	
$\underline{\text { BMI3X }}$		THICK beam element in 2D with quadrilateral cross-section (co-rotational)	$\mathrm{U}, \mathrm{V}, \mathrm{qz}$	

BMI21		THICK linear thick beam element in 3D	$\left\lvert\, \begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz} \end{aligned}\right.$	LT
BMI21W		THICK linear thick beam element with torsional warping in 3D	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz}, \alpha \end{aligned}$	Plus
BMX21		THICK linear thick beam element in 3D with quadrilateral cross-section	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz} \end{aligned}$	Standard
BMX21W		THICK linear thick beam element with torsional warping in 3D with quadrilateral crosssection	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz}, \alpha \end{aligned}$	Plus
BMI31		THICK quadratic thick beam element in 3D	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz} \end{aligned}$	Plus
BMI31W		THICK quadratic thick beam element with torsional warping in 3D	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz}, \alpha \end{aligned}$	Plus

BMX31		THICK quadratic thick beam element in 3D with quadrilateral cross-section	$\left\lvert\, \begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz} \end{aligned}\right.$	Plus
BMX31W		THICK quadratic thick beam element with torsional warping in 3D with quadrilateral crosssection	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz}, \alpha \end{aligned}$	Plus
BMI22		THICK twisted linear thick beam element in 3D	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz} \end{aligned}$	Plus
BMI22W		THICK twisted linear thick beam element with torsional warping in 3D	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz}, \alpha \end{aligned}$	Plus
BMX22		THICK twisted linear thick beam element in 3D with quadrilateral cross-section	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz} \end{aligned}$	Plus
BMX22W		THICK twisted linear thick beam element with torsional warping in 3D with quadrilateral cross-section	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz}, \alpha \end{aligned}$	Plus

BMI33		THICK twisted quadratic thick beam element in 3D	$\left\lvert\, \begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz} \end{aligned}\right.$	Plus
BMI33W		THICK twisted quadratic thick beam element with torsional warping in 3D	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz}, \alpha \end{aligned}$	Plus
BMX33		THICK twisted quadratic beam element in 3D with quadrilateral cross-section	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz} \end{aligned}$	Plus
BMX33W		THICK twisted quadratic beam element with torsional warping in 3D with quadrilateral crosssection	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz}, \alpha \end{aligned}$	Plus
BM3		KIRCHHOFF thin beam element in 2D	end nodes: U, V, qz mid-node: dU	Standard
BMX3		KIRCHHOFF thin beam element in 2D with quadrilateral cross-section	$\begin{aligned} & \text { end nodes: } \\ & \text { U, V, qz } \\ & \text { mid-node: } \\ & \text { dU } \end{aligned}$	Standard
BS3		KIRCHHOFF thin beam element in 3D	end nodes: U, V, W, qx, qy, qz mid-node: dU, dqx	Plus

BS4		KIRCHHOFF thin beam element in 3D	end nodes: U, V, W, qx, qy, qz mid-node: dU, dqx	Plus
BSX4		KIRCHHOFF thin beam element in 3D with quadrilateral cross-section	end nodes: U, V, W, qx, qy, qz mid-node: dU, dqx	Plus
BSL3		SEMILOOF thin beam element in 3D for use with TSL6	$\begin{aligned} & \text { end nodes: } \\ & \text { U, V, W, qx, } \\ & \text { qy, qz } \\ & \text { mid-node: } \\ & \text { U, V, W, q1, } \\ & \text { q2 } \\ & \hline \end{aligned}$	Plus
BSL4		SEMILOOF thin beam element in 3D for use with QSL8	$\begin{aligned} & \text { end nodes: } \\ & \text { U, V, W, qx, } \\ & \text { qy, qz } \\ & \text { mid-node: } \\ & \text { U, V, W, q1, } \\ & \text { q2 } \\ & \hline \end{aligned}$	Plus
BXL4		SEMILOOF thin beam element in 3D with quadrilateral crosssection	$\begin{aligned} & \text { end nodes: } \\ & \text { U, V, W, qx, } \\ & \text { qy, qz } \\ & \text { mid-node: } \\ & \text { U, V, W, q1, } \\ & \text { q2 } \\ & \hline \end{aligned}$	Plus
BMI2N	$\underbrace{1} \rightarrow$	Plane strain beam (co-rotational)	U, V, qz,	Standard
BMI3N		Plane strain beam (co-rotational)	U, V, qz,	Standard

2D Continuum Elements

Name	Geometry	Title	Freedoms	Product Version

TPM3		PLANE STRESS continuum element in 2D	U, V	Standard
TPM6		PLANE STRESS continuum element in 2D	U, V	Standard
QPM4		PLANE STRESS continuum element in 2D	U, V	Standard
QPM8		PLANE STRESS continuum element in 2D	U, V	Standard
QPM4M		PLANE STRESS continuum element in 2D with enhanced strains	U, V	Standard
TPK6		PLANE STRESS continuum crack tip element in 2D	U, V	Standard
QPK8		PLANE STRESS continuum crack tip element in 2D	U, V	Standard
TPM3E		PLANE STRESS explicit dynamics element in 2D	U, V	Plus
QPM4E	\square_{1}^{4}	PLANE STRESS explicit dynamics element in 2D	U, V	Plus
TPN3	\qquad	PLANE STRAIN continuum element in 2D	U, V	Standard

TPN6		PLANE STRAIN continuum element in 2D	U, V	Standard
QPN4	\square	PLANE STRAIN continuum element in 2D	U, V	Standard
QPN8		PLANE STRAIN continuum element in 2D	U, V	Standard
QPN4M	\square	PLANE STRAIN continuum element in 2D with enhanced strains	U, V	Standard
QPN4L		PLANE STRAIN continuum element in 2D for large strains	U, V	Standard
TNK6		PLANE STRAIN continuum crack tip element in 2D	U, V	Standard
ONK8		PLANE STRAIN continuum crack tip element in 2D	U, V	Standard
TPN3E		PLANE STRAIN explicit dynamics element in 2D	U, V	Plus
QPN4E		PLANE STRAIN explicit dynamics element in 2D	U, V	Plus
TPN6P		PLANE STRAIN continuum two phase element in 2D	U, V P: corner nodes U, V: Midside nodes	Standard

QPN8P	5	PLANE STRAIN continuum two phase element in 2D	U, V P: corner nodes U, V: Midside nodes	Standard
TAX3		AXISYMMETRIC solid continuum element in 2D	U, V	Standard
TAX6		AXISYMMETRIC solid continuum element in 2D	U, V	Standard
QAX4	\square	AXISYMMETRIC solid continuum element in 2D	U, V	Standard
QAX8	5	AXISYMMETRIC solid continuum element in 2D	U, V	Standard
QAX4M		AXISYMMETRIC solid continuum element in 2D with enhanced strains	U, V	Standard
QAX4L	\square	AXISYMMETRIC solid continuum element in 2D for large strains	U, V	Standard
TXK6		AXISYMMETRIC solid continuum crack tip element in 2D	U, V	Standard
QXK8		AXISYMMETRIC solid continuum crack tip element in 2D	U, V	Standard
TAX3E		AXISYMMETRIC solid explicit dynamics element in 2D	U, V	Plus

QAX4E		AXISYMMETRIC solid explicit dynamics element in 2D	U, V	Plus
TAX6P		AXISYMMETRIC solid two phase continuum element in 2D	$\begin{aligned} & \mathrm{U}, \mathrm{~V} \mathrm{P:} \\ & \text { corner nodes } \\ & \mathrm{U}, \\ & \mathrm{~V}: \text { Midside } \\ & \text { nodes } \end{aligned}$	Plus
QAX8P		AXISYMMETRIC solid two phase continuum element in 2D	$\begin{aligned} & \mathrm{U}, \mathrm{~V} \mathrm{P:} \\ & \text { corner nodes } \\ & \mathrm{U}, \\ & \text { V: Midside } \\ & \text { nodes } \end{aligned}$	Plus
TAX3F		AXISYMMETRIC Fourier ring element in 2D	U, V, W	Plus
TAX6F		AXISYMMETRIC Fourier ring element in 2D	U, V, W	Plus
QAX4F		AXISYMMETRIC Fourier ring element in 2D	U, V, W	Plus
QAX8F		AXISYMMETRIC Fourier ring element in 2D	U, V, W	Plus

3D Continuum Elements

Name	Geometry	Title	Freedo ms	Product Version
TH4		SOLID CONTINUUM element in 3D	U, V, W	Standard

TH10		\|SOLID CONTINUUM element in 3D	\|U, V, W	Plus
PN6		SOLID CONTINUUM element in 3D	U, V, W	Standard
PN12		SOLID CONTINUUM element in 3D	U, V, W	Plus
PN15		SOLID CONTINUUM element in 3D	U, V, W	Plus
HX8		SOLID CONTINUUM element in 3D	U, V, W	Standard
HX16		SOLID CONTINUUM element in 3D	U, V, W	Plus
HX20		SOLID CONTINUUM element in 3D	U, V, W	Plus
HX8M		SOLID CONTINUUM element in 3D with enhanced strains	U, V, W	Standard
TH10S	$\sqrt[20]{10}$	SOLID CONTINUUM composite element in 3D	U, V, W	Plus
PN6L		SOLID CONTINUUM composite element in 3D	U, V, W	Plus

PN12L		SOLID CONTINUUM composite element in 3D	\|U, V, W	Plus
HX8L		SOLID CONTINUUM composite element in 3D	U, V, W	Plus
HX16L		SOLID CONTINUUM composite element in 3D	U, V, W	Plus
TH10K	里	SOLID CONTINUUM crack tip element in 3D	U, V, W	Plus
PN15K		SOLID CONTINUUM crack tip element in 3D	U, V, W	Plus
HX20K		SOLID CONTINUUM crack tip element in 3D	U, V, W	Plus
TH4E		SOLID CONTINUUM explicit dynamics element in 3D	U, V, W	Plus
PN6E		SOLID CONTINUUM explicit dynamics element in 3D	U, V, W	Plus
HX8E		SOLID CONTINUUM explicit dynamics element in 3D	U, V, W	Plus
TH10P	$\sqrt[s]{5}$	SOLID CONTINUUM two phase element in 3D	U, V, W	Plus

Plate Elements

Name	Geometry	Title	Freedoms	Product Version
TF3		ISOFLEX thin plate flexure element in 2D	W, qx, qy	Standard
$\underline{\text { QF4 }}$	ISOFLEX thin plate flexure element in 2D	W, qx, qy	Standard	
$\underline{\text { TTF6 }}$	ISOFLEX thick plate flexure element in 2D	W, qx, qy	Standard	
QTF8		MINDLIN thick plate flexure element in 2D	W, qx, qy	Standard

Shell Elements

Name	Geometry	Title	Freedoms	Product Version
BXS3		AXISYMMETRIC thin shell element in 2D	end nodes: U, V, qz	Standard
BXSI2		AXISYMMETRIC thick shell element in 2D	end nodes: $\mathrm{U}, \mathrm{V}, \mathrm{qz}$	Standard
BXSI3		AXISYMMETRIC thick shell element in 2D	$\begin{aligned} & \text { end nodes: } \\ & \text { U, V, qz } \\ & \text { mid-node: } \\ & \text { dU } \end{aligned}$	Standard
TS3		FLAT thin shell element in 3D	U, V, W, qx, qy, qz	Standard
QSI4		FLAT thin shell element in 3D	U, V, W, qx, qy, qz	Standard
TSR6		FLAT thin nonlinear shell element in 3D	$\begin{aligned} & \text { corner nodes: } \\ & \text { U, V, W } \\ & \text { mid-side nodes: q1 } \end{aligned}$	Plus
TSL6		SEMILOOF curved thin shell element in 3D	corner nodes: U, V, W mid-side nodes: U, V, W, q1, q2	Plus
QSL8		SEMILOOF curved thin shell element in 3D	corner nodes: U, V, W mid-side nodes: $\mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{q} 1, \mathrm{q} 2$	Plus

TTS3	THICK SHELL flat element in 3D	U, V, W, qa, qbor $\mathrm{U}, \mathrm{V}, \mathrm{qx}, \mathrm{qy}, \mathrm{qz}$	Standard	
TTS6	THICK SHELL curved element in 3D	$\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{qa}, \mathrm{qbor}$ $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{qx}, \mathrm{qy}, \mathrm{qz}$	Plus	
$\mathbf{\text { QTS4 }}$		THICK SHELL flat element in 3D	$\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{qa}, \mathrm{qbor}$ $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{qx}, \mathrm{qy}, \mathrm{qz}$	Standard
$\mathbf{\text { QTS8 }}$		THICK SHELL curved element in 3D	$\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{qa}, \mathrm{qbor}$ $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{qx}, \mathrm{qy}, \mathrm{qz}$	Plus

Membrane Elements

Name	Geometry	Title	Freedom s	Product Version
$\underline{\text { BXM2 }}$		AXISYMMETRIC membrane element in 2D		
$\underline{\text { BXM3 }}$		V	Standard	
$\underline{\text { TSM3 }}$		SPACE membrane element in 3D	$\mathrm{U}, \mathrm{V}, \mathrm{W}$	Standard
in 2D				

Joint Elements

Name	Geometry	Title	Freedoms	Product

				Version
JNT3		JOINT ELEMENT in 2D for bars, plane stress and plane strain	U, V	Standard
JPH3		JOINT ELEMENT in 2D for engineering and Kirchhoff beams	U, V, qz	Standard
JF3		JOINT ELEMENT in 2D for grillage beams and plates	W, qx, qy	Standard
JAX3		JOINT ELEMENT in 2D for axisymmetric solids	U, V	Standard
JXS3		JOINT ELEMENT in 2D for axisymmetric shells	U, V, qz	Standard
JNT4		JOINT ELEMENT in 3D for bars, solids and space membranes	U, V, W	Standard
JL43		JOINT ELEMENT in 3D for corner nodes of semiloof elements	U, V, W	Standard
$\begin{aligned} & \mathrm{JSH} 4 \\ & \underline{\mathrm{JL} 46} \end{aligned}$		JOINT ELEMENT in 3D for engineering and Kirchhoff beams and the end/corner nodes of semiloof elements	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz} \end{aligned}$	Standard
JSL4		JOINT ELEMENT in 3D for mid-side nodes of semiloof elements	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{q} 1, \\ & \mathrm{q} 2 \end{aligned}$	Plus

Thermal / Field Elements

Name	Geometry	Title	Freedoms	Product Version
BFD2		THERMAL BAR element in 2D	F	Standard
BFD3		THERMAL BAR element in 2D	F	Standard
BFX2		Axisymmetric THERMAL MEMBRANE element in 2D	F	Standard
BFX3		Axisymmetric THERMAL MEMBRANE element in 2D	F	Standard
BFS2		THERMAL BAR element in 3D	F	Standard
BFS3		THERMAL BAR element in 3D	F	Standard
LFD2		THERMAL LINK element in 2D	F	Standard
LFX2		Axisymmetric THERMAL LINK element in 2D	F	Standard
LFS2		THERMAL LINK element in 3D	F	Standard
TFD3		PLANE FIELD element in 2D	F	Standard
TFD6		PLANE FIELD element in 2D	F	Standard

QFD4	PLANE FIELD element in 2D	Standard		
QFD8	PLANE FIELD element in 2D	F	Standard	
TF4	SOLID FIELD element in 3D	F	Standard	
PF12	SF10	SOLID FIELD element in 3D	F	Standard
PF15	SF8	SOLD element in 3D	Flus	
HF16		POLID FIELD element in 3D	F	

TF10S		SOLID FIELD composite element in 3D	F	Plus
PF6C		SOLID FIELD composite element in 3D	F	Plus
PF12C		SOLID FIELD composite element in 3D	F	Plus
HF8C		SOLID FIELD composite element in 3D	F	Plus
HF16C		SOLID FIELD composite element in 3D	F	Plus
TXF3		AXISYMMETRIC FIELD element in 2D	F	Standard
TXF6		AXISYMMETRIC FIELD element in 2D	F	Standard
QXF4		AXISYMMETRIC FIELD element in 2D	F	Standard
QXF8		AXISYMMETRIC FIELD element in 2D	F	Standard

Hygro-Thermal Elements

Name	Geometry	Title	Freedo ms	Product Version

THT3		PLANE HYGRO-THERMAL element in 2D	T, Pc	Plus
THT6		PLANE HYGRO-THERMAL element in 2D	T, Pc	Plus
OHT4		PLANE HYGRO-THERMAL element in 2D	T, Pc	Plus
QHT8		PLANE HYGRO-THERMAL element in 2D	T, Pc	Plus
TXHT3		AXISYMMETRIC HYGRO-THERMAL element in 2D	T, Pc	Plus
TXHT6		AXISYMMETRIC HYGRO-THERMAL element in 2D	T, Pc	Plus
QXHT4		AXISYMMETRIC HYGRO-THERMAL element in 2D	T, Pc	Plus
OXHT8		AXISYMMETRIC HYGRO-THERMAL element in 2D	T, Pc	Plus
THT4		SOLID HYGRO-THERMAL element in 3D	T, Pc	Plus
THT10		SOLID HYGRO-THERMAL element in 3D	T, Pc	Plus

PHT6		SOLID HYGRO-THERMAL element in 3D	T, Pc	Plus
PHT12		$\begin{aligned} & \text { SOLID HYGRO-THERMAL element in } \\ & \text { 3D } \end{aligned}$	T, Pc	Plus
PHT15		SOLID HYGRO-THERMAL element in 3D	T, Pc	Plus
HHT8		SOLID HYGRO-THERMAL element in 3D	T, Pc	Plus
HHT16		SOLID HYGRO-THERMAL element in 3D	T, Pc	Plus
HHT20		SOLID HYGRO-THERMAL element in 3D	T, Pc	Plus

Interface Elements

Name	Geometry	Title	Freedoms	Product Version
IPN4		PLANE STRAIN INTERFACE ELEMENT in 2D (Initial gap allowed for Mohr-Coulomb variant)	U, V	Plus
IPM4		PLANE STRESS INTERFACE ELEMENT in 2D (Initial gap allowed for Mohr-Coulomb variant)	U, V	Plus

| IAX4 |
| :--- | :--- | :--- | :--- | :--- | :--- |

| IS16 | INTERFACE ELEMENT in 3D
 (Initial gap allowed for Mohr-
 Coulomb variant) | U, V, W | Plus | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| IS12P | TWO PHASE INTERFACE
 ELEMENT in 3D | U, V, W, P
 corner nodes;
 $\mathrm{U}, \mathrm{V}, \mathrm{W}$ midside
 nodes | Plus | |
| IS16P | | | U, V, W, P
 corner nodes;
 U,V, W midside
 nodes | Plus |

Non-Structural Mass Elements

Name	Geometry	Title	$\left\lvert\, \begin{aligned} & \text { Freedo } \\ & \mathrm{ms} \end{aligned}\right.$	Product Version
PM2		NON-STRUCTURAL MASS ELEMENT in 2D to model mass at a point	U, V	Plus
PM3	$\overbrace{0}^{2 \underbrace{4 x}_{y}}$	NON-STRUCTURAL MASS ELEMENT in 3D to model mass at a point	U, V, W	Plus
LMS3		NON-STRUCTURAL MASS ELEMENT in 3D to model mass along an edge	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \\ & \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz} \end{aligned}$	Plus
LMS4		NON-STRUCTURAL MASS ELEMENT in 3D to model mass along an edge	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \\ & \mathrm{~W}, \mathrm{qX}, \\ & \mathrm{qy}, \mathrm{qz} \end{aligned}$	Plus
LM2		NON-STRUCTURAL MASS ELEMENT in 2D to model mass along an edge	U, V	Plus
LM3		NON-STRUCTURAL MASS ELEMENT in 2D to model mass along an edge	U, v	Plus

Rigid Slideline Elements

Name	Geometry	Title	Freedo ms	Product Version
$\underline{\text { R2D2 }}$		RIGID SLIDELINE SURFACE ELEMENT in 2D for modelling non-deformable surfaces in a contact analysis	U, V	Plus
$\underline{\text { R3D3 }}$		RIGID SLIDELINE SURFACE ELEMENT in 3D for modelling non-deformable surfaces in a contact analysis	$\mathrm{U}, \mathrm{V}, \mathrm{W}$	Plus

Phreatic Elements

Name	Geometry	Title	lreedo ms	Product Version
PHS2		PHREATIC SURFACE ELEMENT in 2D for modelling phreatic surface.	U, V	Plus

Element Summary Tables

The following element summary tables list element facilities arranged by LUSAS element group:
\square Bar and Beam elements

- 2D Continuum elements
- 3D Continuum elements
\square Plate, Shell and Membrane elements
\square Joint elements
\square Thermal/Field elements
- Hygro-Thermal elements

Interface, Non-Structural Mass, Rigid, Interface and Phreatic elements

		Bars		Beams														
Bar and Elemen	Beam t Summary			\mid	$\sum_{i=1}^{N}$				Non				$\sum_{n}^{\infty} \mid$	\sum_{∞}^{∞}				+
Product version	$\begin{aligned} & \text { LT, Standard (S) } \\ & \text { or Plus (+) } \end{aligned}$	LT	LT	LT	LT	LT	S	+	+	+	+	+	S	S	+	+	+	+
Nodal	U, V	\checkmark																
	U, V, W		\checkmark															
(mid-side)	U, V, qz					\checkmark	\checkmark	\checkmark										
	U, V, qz (dU)												\checkmark	\checkmark				
	W, qx, qy			\checkmark														
	$\begin{aligned} & \text { U, V, W, qx, qy, } \\ & \text { qz (dU, dqx) } \end{aligned}$														\checkmark	\checkmark		
	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \text { qx, qy, } \\ & \text { qz (U, V, W,q1, } \\ & \text { q2) } \end{aligned}$																\checkmark	\checkmark
	U, V, W, qx, qy																	
	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \mathrm{qy}, \\ & \mathrm{qz} \end{aligned}$				\checkmark				\checkmark		\checkmark	\checkmark						
Material	Linear (Isotropic)	\checkmark																
	Linear (Orthotropic)																	
	Linear (Anisotropic)																	
	Linear (Rigidities)				\checkmark	\checkmark			\checkmark	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark	
	Matrix																	
	Joint																	
	Concrete Multi- crack							\checkmark			\checkmark	\checkmark						
	Stress Resultant				\checkmark	\checkmark			\checkmark	\checkmark			\checkmark		\checkmark		\checkmark	
	Tresca	\checkmark	\checkmark				\checkmark	\checkmark			\checkmark	\checkmark		\checkmark		\checkmark		\checkmark
	Drucker-Prager	\checkmark	\checkmark				\checkmark	\checkmark			\checkmark	\checkmark		\checkmark		\checkmark		\checkmark

	Mohr-Coulomb	\checkmark	\checkmark					\checkmark	\checkmark				\checkmark	\checkmark		\checkmark		\checkmark		\checkmark
	Optimised Implicit Von Mises	\checkmark	\checkmark					\checkmark	\checkmark				\checkmark	\checkmark		\checkmark		\checkmark		\checkmark
	$\begin{array}{\|l\|} \hline \text { Volumetric } \\ \text { Crushing/Foam } \\ \hline \end{array}$																			
	Stress Potential(Von Mises, Modified Von Mises)	\checkmark	\checkmark					\checkmark	\checkmark				\checkmark							
	Creep (General)	\checkmark	\checkmark					\checkmark	\checkmark				\checkmark							
	Creep (AASHTO)				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark								
	Creep (CEB-FIP)				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark								
	Creep (Chinese)				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark								
	Creep (Eurocode)				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark								
	Creep (IRC)				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark								
	Damage (Simo, Oliver)	\checkmark	\checkmark					\checkmark	\checkmark				\checkmark	\checkmark		\checkmark		\checkmark		\checkmark
	Viscoelastic	\checkmark																		
	Shrinkage (CEB-FIP_90, Eurocode_2, General, User)	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark								
	Rubber																			
	Generic Polymer																			
	Multi-linear	\checkmark	\checkmark																	
	Composite																			
	Field																			
Loading types	$\begin{array}{\|l} \hline \text { Prescribed Value } \\ \text { (PDSP,TPDSP) } \\ \hline \end{array}$	\checkmark		\checkmark																
	Concentrated Loads (CL)	\checkmark		\checkmark																
	$\begin{aligned} & \text { Element Load } \\ & \text { (ELDS) } \end{aligned}$			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark						
	$\begin{aligned} & \begin{array}{l} \text { Distributed Load } \\ \text { (UDL) } \end{array} \\ & \hline \end{aligned}$			\checkmark		\checkmark														
	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Distributed Load } \\ \text { (FLD) } \end{array} \\ \hline \end{array}$																			
	$\begin{aligned} & \text { Body Force } \\ & \text { (CBF) } \end{aligned}$	\checkmark		\checkmark																
	$\begin{aligned} & \text { Body Force } \\ & \text { (BFP,BFPE) } \end{aligned}$	\checkmark		\checkmark																
	Velocity (VELO)	\checkmark		\checkmark																
	$\begin{aligned} & \text { Acceleration } \\ & \text { (ACCE) } \end{aligned}$	\checkmark		\checkmark																

	Initial Stress/Strain (SSI,SSIE)	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark									
	Initial Stress/Strain (SSIG)	\checkmark	\checkmark		\checkmark														
	$\begin{array}{\|l} \hline \begin{array}{l} \text { Residual Stress } \\ \text { (SSR,SSRE) } \end{array} \\ \hline \end{array}$				\checkmark	\checkmark	\checkmark	\checkmark		\checkmark									
	$\begin{aligned} & \text { Residual Stress } \\ & \text { (SSRG) } \end{aligned}$	\checkmark	\checkmark		\checkmark														
	Target Stress/Strain (TSSIE,TSSIA)	\checkmark	\checkmark		\checkmark														
	Target Stress/Strain (TSSIG)	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark									
	Temperature (TEMP,TMPE)	\checkmark		\checkmark															
	Field Loads																		
	Temperature Dependent Loads																		
Nonlinear	Total Lagrangian	\checkmark		\checkmark															
	Updated Lagrangian							\checkmark						\checkmark	\checkmark	\checkmark	\checkmark		
	Eulerian																		
	Co-rotational	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark						
Integration schemes	Explicitly Integrated			\checkmark															
	Numerically Integrated	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark									
Mass modelling	Consistent Mass (default)	\checkmark		\checkmark															
	Lumped Mass	\checkmark		\checkmark															

2D Continuum Element Summary		2D Continuum																
		cosin	$\mid \sum_{i}^{2}$	\mid	倥\|		$\stackrel{7}{2}$	完					$\underset{d}{\sum}$	$\stackrel{y}{2}$	$\left\|\begin{array}{c} a \\ y y y \\ y \\ 0 \\ 0 \\ 0 \\ x \end{array}\right\|$			$\begin{array}{ll} 0 \\ 0 \end{array}$
Product Version	$\begin{aligned} & \text { LT, Standard (S) } \\ & \text { or Plus (+) } \end{aligned}$	S	S	S	+	S	S	S	S	+	+	S	S	S	S	+	+	+
Nodal freedoms	U, V	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark										
	U, V, W																	\checkmark
(corner)	U, V, (P)										\checkmark						\checkmark	
Material	Linear (Isotropic)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
	Linear (Orthotropic)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
	Linear (Anisotropic)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark *		$\checkmark *$		$\checkmark *$	\checkmark	**		$\checkmark *$		$\checkmark *$	
	Linear (Rigidities)	\checkmark	\checkmark	\checkmark		\checkmark	$\checkmark *$		$\checkmark *$		$\checkmark *$						$\checkmark *$	
	Matrix																	
	Joint																	
	Concrete Multi- crack	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	
	Concrete Multicrack(Transient)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark					\checkmark	\checkmark					
	Stress Resultant																	
	Tresca	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
	Optimised Implicit Von Mises	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
	Mohr-Coulomb	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
	Modified Mohr-Coulomb					\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
	Drucker-Prager	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
	Modified Cam-clay					\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	
	Volumetric Crushing/Foam					\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
	Stress Potential (Von Mises, Modified Von Mises)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	

	Interface (2D)	\checkmark																
	Creep (General)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
	Creep (AASHTO)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark		\checkmark			
	Creep (CEB-FIP)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark		\checkmark			
	Creep (Chinese)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark		\checkmark			
	Creep (Eurocode)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark		\checkmark			
	Creep (IRC)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark		\checkmark			
	Damage (Simo,	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
	Oliver)																	
	Viscoelastic					\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
	Shrinkage (CEB-	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
	FIP, Eurocode.																	
General, User)																		

	(TSSIE,TSSIA)																	
	Target Stress/Strain (TSSIG)	\checkmark		\checkmark	\checkmark	\checkmark												
	Temperature TEMP,TMPE)	\checkmark																
	Field Load																	
	Temp Dependent Load																	
	Overburden	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
	Phreatic Surface	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
	Total Lagrangian	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	
Nonlinear geometry	Updated Lagrangian	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	
	Eulerian	\checkmark																
	Co-rotational	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark							
	Explicitly Integrated																	
Integration																		
schemes	Numerically Integrated	\checkmark																
	Consistent Mass (default)	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
	Lumped Mass	\checkmark																

* Linear anisotropic and rigidities material properties for elements marked are supported in LUSAS Solver but not supported in LUSAS Modeller.

3D Continuum Element Summary		3D Continuum												
		$\|\vec{F}\|$			$\stackrel{\text { n }}{\substack{2}}$	$\left\|\begin{array}{c} \boldsymbol{\alpha} \\ \dot{y} \boldsymbol{y} \end{array}\right\|$	⿹弋工⿹勹巳u	$\sum_{i x}^{y}$	体	$\stackrel{5}{7}$				翟
Product Version	$\begin{aligned} & \text { LT, Standard (S) } \\ & \text { or Plus (+) } \end{aligned}$	S	＋	S	＋	S	＋	S	＋	＋	＋	＋	＋	＋
Nodal freedoms	U，V													
	U，V，W	\checkmark												
（corner）	U，V，W（P）													\checkmark
Material properties	Linear（Isotropic）	\checkmark												
	Linear（Orthotropic）	\checkmark												
	Linear（Anisotropic）	\checkmark		\checkmark										
	Linear（Rigidities）													
	Matrix													
	Joint													
	Concrete（Multi－crack）	\checkmark		\checkmark										
	Concrete（Multi－ crack）Transient	\checkmark												
	Stress Resultant													
	Tresca	\checkmark												
	Optimised Implicit Von Mises	\checkmark												
	Mohr－Coulomb	\checkmark												
	Modified Mohr－Coulomb	\checkmark					\checkmark							
	Drucker－Prager	\checkmark												
	Modified Cam－clay	\checkmark					\checkmark							
	Volumetric Crushing／Foam	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Stress Potential（Von Mises， Modified Von Mises	\checkmark												

	Hill, Hoffman)													
	Creep (General)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark	\checkmark
	Creep (AASHTO)	\checkmark												
	Creep (CEB-FIP)	\checkmark												
	Creep (Chinese)	\checkmark												
	Creep (Eurocode)	\checkmark												
	Creep (IRC)	\checkmark												
	Damage	\checkmark												
	Viscoelastic	\checkmark		\checkmark										
	Shrinkage (CEB-FIP, Eurocode, General, User)	\checkmark		\checkmark										
	Ko Initialisation	\checkmark					\checkmark							
	Elasto-plastic interface	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark					\checkmark
	Rubber (Ogden, Mooney-Rivlin, Neo- Hookean, Hencky							\checkmark						
	Generic Polymer	\checkmark		\checkmark										
	Resin Cure Model								-	\checkmark	\checkmark	\checkmark		
	Composite (Composite Solid)								-	\checkmark	\checkmark	\checkmark		
	Composite (Composite Shell)													
	Field													
Loading types	Prescribed Value (PDSP,TPDSP)	\checkmark												
	Concentrated Loads (CL)	\checkmark												
	Element Loads													
	$\begin{aligned} & \begin{array}{l} \text { Distributed Load } \\ \text { (UDL) } \end{array} \\ & \hline \end{aligned}$													
	$\begin{aligned} & \begin{array}{l} \text { Distributed Load } \\ \text { (FLD) } \end{array} \\ & \hline \end{aligned}$	\checkmark												
	Body Force (CBF,BFP,BFPE)	\checkmark												
	Velocity (VELO)	\checkmark												
	Acceleration (ACCE)	\checkmark												
	$\begin{aligned} & \text { Initial Stress/Strain } \\ & \text { (SSI,SSIE) } \\ & \hline \end{aligned}$	\checkmark												
	$\begin{aligned} & \begin{array}{l} \text { Initial Stress/Strain } \\ \text { (SSIG) } \end{array} \\ & \hline \end{aligned}$	\checkmark		\checkmark										
	$\begin{aligned} & \text { Residual Stress } \\ & \text { (SSR,SSRE) } \\ & \hline \end{aligned}$	\checkmark												

	Residual Stress (SSRG)	\checkmark												
	Target Stress/Strain (TSSIE,TSSIA)	\checkmark												
	$\begin{aligned} & \text { Target Stress/Strain } \\ & \text { (TSSIG) } \end{aligned}$	\checkmark	-	\checkmark										
	Temperature (TEMP,TMPE)	\checkmark												
	Field Load													
	Temp Dependent Load													
	Overburden	\checkmark		\checkmark										
	Phreatic Surface	\checkmark		\checkmark										
Nonlinear geometry	Total Lagrangian	\checkmark					\checkmark							
	Updated Lagrangian	\checkmark					\checkmark							
	Eulerian	\checkmark				\checkmark	\checkmark							
	Co-rotational	\checkmark		\checkmark										
Integration schemes	Explicitly Integrated													
	Numerically Integrated	\checkmark												
Mass modelling	Consistent Mass (default)	\checkmark		\checkmark										
	Lumped Mass	\checkmark												

Plate, Shell and Membrane Element Summary		Plates			Shells									$\begin{gathered} \text { Membrane } \\ \mathrm{s} \end{gathered}$	
			$\begin{aligned} & U \\ & U N \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	敛\|		$\left\|\begin{array}{l} \underset{N}{2} \\ \hat{n} \\ \tilde{n}_{n}^{n} \end{array}\right\|$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{-2} \\ & \underset{\sim}{2} \end{aligned}$		$\left.\begin{array}{\|c} \boldsymbol{N} \\ \hat{N} \end{array} \right\rvert\,$	$\left\|\begin{array}{c} 6 \\ 0 \\ 0 \\ \mid \end{array}\right\|$	$\stackrel{7}{6}$	-	\sum_{n}^{∞}	帱
Product Version	$\begin{aligned} & \text { LT, Standard (S) } \\ & \text { or Plus (+) } \end{aligned}$	S	S	S	S	S	S	+	+	S	+	S	+	S	S
Nodal	U, V													\checkmark	
Freedoms	U, V, W														\checkmark
(mid-side)	W, qx, qy		\checkmark	\checkmark											
	W, qx, qy (dq)	\checkmark													
	U, V, W, qx, qy														
	U, V, qz					\checkmark									
	U, V, qz (dU)				\checkmark										
	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \mathrm{qy}, \\ & \mathrm{qz} \end{aligned}$						\checkmark								
	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}(\mathrm{U}, \mathrm{~V}, \mathrm{~W}, \\ & \mathrm{q} 1, \mathrm{q} 2) \end{aligned}$								\checkmark						
	U, V, W (q1,)							\checkmark							
	$\mathrm{U}, \mathrm{V}, \mathrm{W}, ~ q a, ~ q b$ $(\mathrm{U}, \mathrm{V}, \mathrm{W}, ~ q x, ~ q y$, $\mathrm{qz})$									\checkmark	\checkmark	\checkmark	\checkmark		
Material properties	Linear (Isotropic)	\checkmark													
	Linear (Orthotropic)	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark						
	Linear (Anisotropic)	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark						
	Linear (Rigidities)	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark						\checkmark
	Matrix														
	Joint														
	Concrete (Multicrack)							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
	Stress Resultant				\checkmark			\checkmark	\checkmark						
	Tresca				\checkmark	\checkmark		\checkmark							
	Optimised Implicit Von Mises				\checkmark	\checkmark		\checkmark							
	Mohr-Coulomb				\checkmark	\checkmark		\checkmark							

	Drucker-Prager					\checkmark	\checkmark		\checkmark							
	Volumetric Crushing/Foam															
	Stress Potential (Von-Mises, Modified Von Mises)					\checkmark	\checkmark		\checkmark							
	Stress Potential(Hill, Hoffman)					\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
	Creep (General)					\checkmark	\checkmark		\checkmark							
	Creep (AASHTO)					\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
	$\begin{aligned} & \text { Creep } \\ & \text { (CEB_FIP_90) } \\ & \hline \end{aligned}$					\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
	Creep (Chinese)					\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
	Creep (Eurocode)					\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
	Creep (IRC)					\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
	Damage					\checkmark	\checkmark		\checkmark							
	Viscoelastic															
	Shrinkage (CEB- FIP_90, Eurocode_2, General, User)					\checkmark										
	Ko Initialisation				.	.	\cdot	.	\cdot		
	Rubber (Ogden, Mooney-Rivlin, Neo-Hookean, Hencky)														\checkmark	
	Generic Polymer															
	Composite (Composite Shell)									\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
	Field															
Loading types	Prescribed Value (PDSP,TPDSP)	\checkmark			\checkmark											
	Concentrated Loads (CL)	\checkmark	\checkmark		\checkmark											
	$\begin{aligned} & \text { Element Load } \\ & \text { (ELDS) } \end{aligned}$					\checkmark	\checkmark									
	Distributed Load (UDL)	\checkmark	\checkmark		\checkmark											
	$\begin{aligned} & \text { Distributed Load } \\ & \text { (FLD) } \end{aligned}$					\checkmark	\checkmark								\checkmark	
	Body Force (CBF,BFP,BFPE)	\checkmark			\checkmark											

	Velocity (VELO)	\checkmark													
	$\begin{aligned} & \text { Acceleration } \\ & \text { (ACCE) } \end{aligned}$	\checkmark													
	$\begin{aligned} & \text { Initial } \\ & \text { Stress/Strain } \\ & \text { (SSI,SSIE) } \\ & \hline \end{aligned}$	\checkmark						\checkmark	\checkmark						
	Initial Stress/Strain (SSIG)				\checkmark	\checkmark		\checkmark							
	$\begin{aligned} & \hline \text { Residual Stress } \\ & \text { (SSR,SSRE) } \\ & \hline \end{aligned}$							\checkmark							
	$\begin{aligned} & \text { Residual Stress } \\ & \text { (SSRG) } \end{aligned}$				\checkmark	\checkmark		\checkmark							
	Target Stress/Strain (TSSIE,TSSIA)	\checkmark						\checkmark	\checkmark						
	Target Stress/Strain (TSSIG)				\checkmark	\checkmark		\checkmark							
	Temperature (TEMP,TMPE)	\checkmark													
	Field Load														
	Temp Dependent Loads														
	Overburden									\checkmark	\checkmark	\checkmark	\checkmark		
	Phreatic surface			\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark		
Nonlinear geometry	Total Lagrangian				\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	Updated Lagrangian				\checkmark				\checkmark						
	Eulerian														
	Co-rotational							\checkmark							
Integration schemes	Explicitly Integrated														
	Numerically Integrated	\checkmark													
Mass modelling	Consistent Mass (default)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark							
	Lumped Mass	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark						

		Joints							
Joint Element Summary									
		気	気	⿹ㅗㅅ	$\underset{y}{x}$	－	$$	$\stackrel{7}{7}$	－ت
Product version	LT，Standard（S）or Plus（＋）	S	S	S	S	S	S	S	＋
Nodal freedoms	U，V	\checkmark			\checkmark				
	U，V，W						\checkmark		
	U，V，qz		\checkmark			\checkmark			
	W，qx，qy			\checkmark					
	U，V，W，qx，qy								
	U，V，W，qx，qy，qz							\checkmark	
	U，V，W，q1，q2								\checkmark
Material properties	Linear								
	Matrix（Stiffness，Mass， Damping）＊	\checkmark							
	Joint（Stiffness，General）	\checkmark							
	Joint（Dynamic，General）	\checkmark							
	Joint（Elasto－Plastic）	\checkmark							
	Joint（Nonlinear Contact）	\checkmark							
	Joint（Nonlinear Friction）	\checkmark							
	Viscous damping	\checkmark							
	Lead－Rubber	\checkmark							
	Friction Pendulum	\checkmark							
	Multilinear elastic	\checkmark							
	Axial force dependent multilinear elastic	\checkmark							
	Concrete								
	Elasto－Plastic								
	Creep								
	Damage								
	Viscoelastic								
	Shrinkage								
	Volumetric Crushing／Foam								
	Rubber								
	Composite								

	Field								
Loading types	Prescribed value (PDSP,TPDSP)	\checkmark							
	Concentrated Load (CL)	\checkmark							
	Element Load								
	Distributed Load								
	Body Force(CBF)	\checkmark							
	Body Force (BFP,BFPE)								
	Velocities (VELO)	\checkmark							
	Acceleration (ACCE)	\checkmark							
	Initial Stress/Strain (SSI,SSIE)	\checkmark							
	Initial Stress/Strain (SSIG)								
	Residual Stress								
	Target Stress/Strain (TSSIE,TSSIA)	\checkmark							
	Target Stress/Strain (TSSIG)								
	Temperature (TEMP,TMPE)	\checkmark							
	Field Load								
	Temp Dependent Load								
Nonlinear	Total Lagrangian								
	Updated Lagrangian								
	Eulerian								
	Co-rotational								
Integration	Explicitly Integrated								
	Numerically Integrated	\checkmark							
Mass	Consistent Mass (default)								
	Lumped Mass	\checkmark							

* Supported in LUSAS Solver but not supported in LUSAS Modeller for all joints listed.

		Field																		
Thermal／Field Element Summary		Non	枵\|	$\begin{aligned} & \text { Nan } \\ & \\ & \end{aligned}$		$\left\|\begin{array}{c} \underset{y}{x} \\ \text { cin } \end{array}\right\|$	$\left\|\begin{array}{l} \underset{y}{2} \\ \underset{y}{c} \end{array}\right\|$			部	武\|	曷,	$\stackrel{i}{2}$	$\left\|\begin{array}{c} \infty \\ \underline{1} \\ \mathbf{1} \end{array}\right\|$		骎				$\left.\begin{array}{\|c\|} \infty \\ y_{1}^{2} \\ 0 \\ 0 \\ 0 \\ 1 \\ \end{array} \right\rvert\,$
Product version	$\begin{aligned} & \text { LT, Standard (S) } \\ & \text { or Plus (+) } \end{aligned}$	S	S	S	S	S	S	S	S	S	S	S	S	S	＋	＋	＋	＋	S	S
Freedoms	F	\checkmark																		
Material properties	Composite															\checkmark	\checkmark	\checkmark		
	Field（Isotropic）	\checkmark	\checkmark	\checkmark				\checkmark												
	Field（Isotropic Concrete）	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark		\checkmark							
	Field （Orthotropic）							\checkmark												
	Field（Orthotropic Concrete）							\checkmark												
	Field（Linear Conv／Rad）				\checkmark	\checkmark	\checkmark													
	Field（Arbitary Conv／Rad）				\checkmark	\checkmark	\checkmark													
Loading types	$\begin{aligned} & \text { Prescribed } \\ & \text { (TPDSP) } \end{aligned}$	\checkmark																		
	Rate of heat inflow， concentrated （RGN）	\checkmark	\checkmark	\checkmark				\checkmark												
	Face heat and water fluxes（FFL）	\checkmark	\checkmark	\checkmark				\checkmark												
	$\begin{aligned} & \text { Rate of heat } \\ & \text { inflow, per unit } \\ & \text { volume (RBC, } \\ & \text { RBV, RBVE) } \\ & \hline \end{aligned}$	\checkmark	\checkmark	\checkmark				\checkmark												
	Temperature （TEMP， TMPE）	\checkmark	\checkmark	\checkmark																
	$\begin{aligned} & \text { Environmental } \\ & \text { conditions (ENVT) } \end{aligned}$	\checkmark	\checkmark	\checkmark				\checkmark												
	$\begin{aligned} & \hline \text { Temp Dep Load } \\ & \text { (TDET/RIHG) } \end{aligned}$	\checkmark	\checkmark	\checkmark				\checkmark												

Schemes	Numerically Integrated	\checkmark						
Specific heat	Consistent (default)	\checkmark	\checkmark	\checkmark				\checkmark
	Lumped	\checkmark	\checkmark	\checkmark				\checkmark

| | | Hygro-Thermal | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Hygro-Thermal | | | | | | | |
| Element Summary | | | | | | | |

		Interface								Mass				Rigid Slideline		$\begin{gathered} \text { Phreati } \\ \text { c } \\ \hline \end{gathered}$	
Interface, Non- Structural Mass, Rigid Slideline and Phreatic Element Summary					$\left\|\begin{array}{c} \infty \\ \sqrt[n]{2} \\ \tilde{n} \\ \end{array}\right\|$	象			$\left\|\underset{\sum_{a}}{ }\right\|$	$\sum_{i=1}^{n}$			TM3/6, OM4/8	$\left\|\begin{array}{c} \underset{\sim}{\hat{N}} \end{array}\right\|$		$\left\|\begin{array}{c} \tilde{i} \\ \underset{i}{2} \end{array}\right\|$	
Product version	$\begin{aligned} & \text { LT, Standard (S) } \\ & \text { or Plus (+) } \end{aligned}$	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+
Nodal freedoms	U, V	\checkmark	\checkmark						\checkmark			\checkmark		\checkmark			
	U, V, P					\checkmark											
	U, V, W			\checkmark	\checkmark					\checkmark	\checkmark		\checkmark		\checkmark		
	U,V,W, P							\checkmark									
	U, V, qz																
	W, qx, qy																
	U, V, W, qx, qy																
	U, V, W, qx, qy, qz										\checkmark						
	U, V, W, q1, q2																
Material properties	Linear													\checkmark	\checkmark		
	Matrix																
	Joint																
	Mass								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
	Concrete																
	Elasto-Plastic																
	Creep																
	Damage																
	Shrinkage																
	Interface	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark									
	Rubber																
	Generic Polymer																
	Stress Potential																
	Composite																
	Field																
Loading types	Prescribed value (PDSP,TPDSP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark						\checkmark	\checkmark		
	Concentrated Loads	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark									

	(CL)															
	Element Load															
	Distributed Load															
	Body Force (CBF)							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
	Body Force (BFP,BFPE)															
	Velocity (VELO)	\checkmark	\checkmark	\checkmark	\checkmark								\checkmark	\checkmark		
	Acceleration (ACCE)	\checkmark	\checkmark	\checkmark	\checkmark								\checkmark	\checkmark		
	Initial Stress/Strain (SSI,SSIE)															
	Initial Stress/Strain SSIG)															
	Residual Stress															
	Target Stress/Strain (TSSIE,TSSIA)															
	Target Stress/Strain (TSSIG)															
	Temperature (TEMP,TMPE)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark									
	Field Load															
	Temp Dependent Load															
												$\checkmark *$	$\checkmark *$			

* Dependent upon the other surface (deformable surface) that the element is in contact with.

Chapter 1 : Bar Elements.

2D Structural Bar Elements

General

Element Group Bars

Element Structural Bars
Subgroup
Element Straight and curved isoparametric bar elements in 2D which can
Description accommodate varying cross sectional area.
Number Of 2 or 3 .
Nodes
Freedoms U, V at each node
Node X, Y at each node
Coordinates

Geometric Properties

A1 ... An Cross sectional area at each node.
SF1, MF1 Optional scale factor applied to the areas in the calculation of the stiffness and mass matrices

Material Properties

Linear Isotropic
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Stress resultant Not applicable
Tresca:
MATERIAL PROPERTIES NONLINEAR 61

Loading

Prescribed Value PDSP, TPDSP
Concentrated CL Loads
Element Loads Not applicable.
Distributed Loads Not applicable.
Body Forces CBF

BFP, BFPE \quad Body force potentials at nodes/for element. $0,0,0$, 0, Xcbf, Ycbf
Velocities. Vx, Vy at nodes.
Acceleration Ax, Ay at nodes.
Initial stresses/strains at nodes/for element. Fx, εx x, $\sigma x, \varepsilon x$
$\left.\begin{array}{rll} & \text { SSIG } & \text { Initial stresses/strains at Gauss points. F, } \varepsilon x, \sigma x, \\ & & \varepsilon x\end{array}\right)$

LUSAS Output

Solver Force (default): Fx
Strain: εx
Modeller \quad See Results Tables (Appendix K)

Local Axes

- Standard line element

Sign Convention

- Standard bar element

Formulation

Geometric Nonlinearity

$$
\begin{aligned}
\text { Total Lagrangian } & \text { For large displacements and small strains } \\
\text { Updated } & \text { Not applicable. } \\
\text { Lagrangian } &
\end{aligned}
$$

Eulerian Not applicable.
Co-rotational For large displacements and small strains.

Integration Schemes

Stiffness Default.
Fine (see
Options).
Mass Default.
Fine (see Options).

1-point (BAR2), 2-point (BAR3).
2-point (BAR2).

2-point (BAR2), 3-point (BAR3).
As default.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element.
55 Outputs strains as well as stresses
87 Total Lagrangian geometric nonlinearity.
105 Lumped mass matrix.
229 Co-rotational geometric nonlinearity.

Notes on Use

1. The bar formulation is based on the standard isoparametric approach. The variation of axial force is constant for BAR2, and linear for BAR3.
2. Since the 3-noded element has no bending stiffness mechanisms may occur when used as 'stand alone' elements if the central node is not constrained in some way.
3. When the BAR2 element is used with either varying cross-sectional area or temperature dependent material properties, the 2-point Gauss rule should be utilised. This provides an improved representation of the variation of the material properties along the length of the element.
4. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties
and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.

Restrictions

\square Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

- The 2-node elements are the most effective bar elements for modelling 'stand-aloneelements' such as members of trusses or bars connecting two discrete structures.
- They can be used to model cables in cable-stayed structures.
- Both the 2-noded and 3-noded elements are suitable for modelling reinforcement with continuum elements e.g. BAR3 may be used with QPM8 for analysis of reinforced concrete structures, or for modelling rock bolts surrounding an excavation

Theory

For additional information see the LUSAS Theory Manual

3D Structural Bar Elements

General

Element Name
TY, V

BRS3

Element Group
 Bars

Element Structural Bars
Subgroup
Element Straight and curved isoparametric bar elements in 3D which can
Description accommodate varying cross-sectional area.
Number Of
2 or 3.
Nodes
Freedoms U, V, W at each node
Node X, Y, Z at each node.
Coordinates
(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
Not applicable
STRESS POTENTIAL VON_MISES (Isotropic: von Mises, Modified von Mises)
CREEP PROPERTIES (Creep)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)
VISCO ELASTIC PROPERTIES
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER
MATERIAL PROPERTIES NONLINEAR 104

Loading

Prescribed Value PDSP, TPDSP Concentrated CL Loads Element Loads Not applicable

Distributed Loads Not applicable

Body Forces CBF

BFP, BFPE
Velocities VELO
Accelerations ACCE
Initial SSI, SSIE
Stress/Strains

Prescribed variable. U, V, W at each node.
Concentrated loads. Px, Py, Pz at each node.

Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega \mathrm{y}, \Omega_{\mathrm{z}}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha \mathrm{z}$
Body force potentials at nodes/for element. 0, 0, 0, 0, Xcbf, Ycbf, Zcbf
Velocities. Vx, Vy, Vz at nodes.
Acceleration Ax, Ay, Az at nodes.
Initial stresses/strains at nodes/for element. Fx, $\varepsilon x, \sigma x, \varepsilon x$

	SSIG	Initial stresses/strains at Gauss points. F, $\varepsilon x, \sigma x$,
		εx

LUSAS Output

Solver Force (default): Fx
Strain: Ex
Modeller See Results Tables (Appendix K)

Local Axes

- Standard line element

Sign Convention

- Standard bar element

Formulation

Geometric Nonlinearity

$$
\begin{aligned}
\text { Total Lagrangian } & \text { For large displacements and small strains } \\
\text { Updated } & \text { Not applicable. } \\
\text { Lagrangian } &
\end{aligned}
$$

Eulerian Not applicable.
Co-rotational For large displacements and small strains.

Integration Schemes

Stiffness Default.
Fine (see Options).
$\begin{array}{ll}\text { Mass } & \text { Default. } \\ & \text { Fine (see Options). }\end{array}$

1-point (BRS2), 2-point (BRS3). 2-point (BRS2). 2-point (BRS2), 3-point (BRS3). As default.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element.
55 Outputs strains as well as stresses
87 Total Lagrangian geometric nonlinearity.
105 Lumped mass matrix.
229 Co-rotational geometric nonlinearity.

Notes on Use

1. The bar formulation is based on the standard
2. Since the 3-noded element has no bending stiffness, mechanisms may occur, when used as 'stand alone' elements, if the central node is not constrained in some way.
3. When the BRS2 element is used with either varying cross-sectional area or temperature dependent material properties, the 2-point Gauss rule should be utilised. This provides an improved representation of the variation of the material properties along the length of the element.
4. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

- The 2-node elements are the most effective bar elements for modelling 'stand-aloneelements' such as members of trusses or bars connecting two discrete structures.
- They can be used to model cables in cable-stayed structures.
- Both the 2-noded and 3-noded elements are suitable for modelling reinforcement with continuum elements e.g. BRS3 may be used with HX20 for analysis of reinforced concrete structures, or for modelling rock bolts surrounding an excavation.

Chapter 2: Beam Elements.

2D Engineering Grillage Thick Beam Element

General

Element Name GRIL

Element Group Beams

Element Engineering Beams

Subgroup

Element A straight grillage element for which shear deformations are included.
Description
The geometric properties are constant along the length.
Number Of
2 with moment release end conditions
Nodes
End Releases
The element node numbers should be followed by: R restrained (default), F free defined in the order $\theta \mathrm{y}$ at node 1 and then $\theta \mathrm{y}$ at node 2 related to local element axes
Freedoms $\mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}$: at each node.
Node X, Y: at each node.
Coordinates

Geometric Properties

A, Iyy, Izz, Jxx, Asz, EFW for element
ASF1,SF2,SF3,SF4, SF5,SF6 Optional scale factors applied to the geometric MF1,MF2,MF3,MF4, MF5,MF6 properties in the calculation of the stiffness and mass matrices
A Cross sectional area
Iyy, Izz 2nd moments of area about local y, z axes (see Definition and Notes)
Jxx Torsional constant
Asz Effective shear area on local yz plane in local z

directions
EFW Equivalent plate width

Material Properties

Linear Isotropic:
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable.

Loading

Prescribed Value PDSP, TPDSP
Concentrated CL
Loads
Element Loads ELDS

Prescribed variable. W, $\theta \mathrm{x}, \theta \mathrm{y}$: at nodes.
Concentrated loads. Pz, Mx, My: at nodes (global).

Element loads

LTYPE, S1, Pz, Mx, My
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, $0, \mathrm{Wz}, \mathrm{Mx}, 0$

Distributed Loads	UDL	Uniformly distributed loads. Wz: Force/unit length in local directions for element (Local z and global Z are coincident).		
	FLD, FLDG	Not applicable. Constant body forces for element. Zcbf		
Body Forces	CBF	BFP, BFPE	\quad	Not applicable.
:---				
Velocities	VELO \quad	Velocities. Vz: at nodes.		
:---				
Acceleration Az: at nodes.				

Output

Solver Force (default): Fz, Mx, My: in local directions (see Notes). Element output is with respect to the beam centre line.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard line element

Sign Convention

\square 2D engineering grillage thick beam element. Positive external forces and moments acting on the element nodes are in the direction of the local element axes.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Explicitly integrated.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

Notes on Use

1. The element formulation is based on the standard grillage element formulation. The force variations along the element are linear shear force, constant torsion and quadratic bending moment.
2. The displacement variations along the element are linear torsional rotations and cubic transverse flexural displacements.
3. Internal forces and moments are output at intervals of $1 / 10$ th of the element length by specifying the Gauss point option from the Output button on the File > LUSAS datafile dialog.
4. The second moment of area about local z, (Izz), is only required when assembling the mass matrix.
5. Strains are not available for GRIL elements.
6. Though this element cannot model nonlinear behaviour it can be mixed with other elements in a nonlinear analysis.
7. For restrictions on the use of Wood-Armer with grillages refer to the LUSAS User Guide and Theory Manual.
8. The element has constant material properties along its length. For analyses utilising temperature dependent material properties, the temperature used is the average of the nodal values.
9. A moment release option permits modelling of internal hinges (torsional rotations cannot be released). See Number of Nodes section.
10. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.

Restrictions

The element does not model material or geometric nonlinear effects.

Recommendations on Use

The element can be used to model two dimensional grillage type structures. Linear, eigen, and dynamic analysis procedures can be used with GRIL elements.

2D Thick Beam Elements

Element Name BMI2
Element

Element 2D Thick Beams	Straight and curved isoparametric degenerate thick beam elements in 2D
for which shearing deformations are included. The elements can	
accommodate varying geometric properties along the length.	

Geometric Properties

A, Izz, Asy, ey for element

SF1,SF2,SF3,SF4, Optional scale factors applied to the geometric properties in the MF1,MF2,MF3,MF4 calculation of the stiffness and mass matrices
A Cross sectional area
Izz 2nd moment of area about local z-axis (see Definition)
Asy Effective shear area on local yz plane in local y directions
ey Eccentricity from beam xz-plane to nodal line (+ve in +ve local ydirection)
Note: For MATERIAL MODEL 29 additional geometric properties are appended to the previous 8 (BMI2) or 12 (BMI3) geometric properties (see Notes, Assumptions and Limitations).

Material Properties

		MATERIAL PROPERTIES (Elastic: Isotropic)
Matrix	Not applicable	
Joint	Not applicable	
Concrete	Not applicable	
Elasto-Plastic	Stress resultant	MATERIAL PROPERTIES NONLINEAR 29 (Elastic: Isotropic, Plastic: Resultant) (ifcode=1 or 2, see Assumptions and Limitations)
Creep	AASHTO	MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE (Chinese creep model to Chinese Code of Practice)
	Eurocode	MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)
	IRC	MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC code of Practice)

Damage Not applicable
Viscoelastic Not applicable

Rubber Not applicableGeneric Polymer Not applicableComposite Not applicable

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Loading

Prescribed Value PDSP, TPDSP
Concentrated CL
Loads
Element Loads ELDS
Prescribed variable. U, V, $\theta \mathrm{z}$: at nodes. Concentrated loads. Px, Py, Mz: at nodes (global).
Element loadson nodal line (load type number

LTYPE *10 defines the corresponding element load type on beam axis, see Notes)
LTYPE, S1, Px, Py, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, $0, \mathrm{Wx}, \mathrm{Wy}, 0$
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions
LTYPE, S1, Wx1, Wy1, 0, S2, Wx2, Wy2, 0
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions
LTYPE, S1, Wx, Wy, 0
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected loads in global directions

Distributed Loads	UDL	Uniformly distributed loads. Wx, Wy: forces/unit length for element in local directions.
		FLD
Body Forces	CBF	Not applicable. Constant body forces for element.
		BFP, BFPE
Velocities	VELO	Not applicable.

LUSAS Output

Solver Stress resultants (default): Fx, Fy, Mz: axial force, shear force and moment in local directions.
Strain: $\varepsilon x, \varepsilon y, \psi z$: Axial, shear and flexural strains in local directions. By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the beam centroidal
axes.
Modeller See Results Tables (Appendix K).

Local Axes

\square Standard line element

Sign Convention

- 2D engineering beam element

Formulation

Geometric Nonlinearity

Total Lagrangian	For large displacements and large rotations (see Notes)
Updated	Not applicable.
Lagrangian	
Eulerian	Not applicable.
Co-rotational	For large displacements and large rotations
P-Delta	Displacements and rotations should be small (see Notes)

Integration Schemes

Stiffness Default. 1-point (BMI2), 2-point (BMI3).
Fine. Same as default.
Mass Default. 2-point (BMI2), 3-point (BMI3).
Fine. Same as default.
Note: A 3-point Newton-Cotes integration rule is also available for BMI3 using OPTION 134. This may be more applicable for infinitesimal strain, elasto-plastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory Manual.

Mass Modelling

\square Consistent mass (default).

- Lumped mass.

Options

36 Follower loads

55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity. (see Notes)
102 Switch off load correction stiffness matrix due to centripetal acceleration
105 Lumped mass matrix.
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements
157 Material model 29 (non cross-section elements), see Notes.
229 Co-rotational geometric nonlinearity.
403 Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Assumptions and Limitations (on by default).
404 Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMI21, see Assumptions and Limitations (on by default).
405 Specify geometric properties along beam centroidal axes
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
418 Output stress resultants relative to beam centroidal axes for eccentric elements
421 P-Delta analysis, see Notes
432 Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis

Notes, Assumptions and Limitations

1. The element is formulated from the degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Plane cross-sections initially normal to the beam axis remain plane and undistorted (the shape of the cross-section remains unchanged) under deformation, but do not necessarily remain normal to the beam axis. Shearing deformations are included.
2. Input of geometric properties (OPTION 405) and loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axes. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line.
3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMI2, the axial force is constant, while the shear force and moment vary linearly along the length of the beam. For BMI3 the axial force, shear force and moment all vary linearly along the length.
4. When BMI2 is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic. Note that if OPTION 403 is used with eccentrically stacked elements, slippage can occur.
5. When BMI2 is used together with OPTION 404, loading that varies along the element length is accounted for in the force diagrams (i.e. for a beam under CBF or internal element loading). A post-processing technique has been introduced to obtain accurate quadratic bending moments for BMI3. For BMI2 (with OPTION 404) and BMI3, internal forces and moments are output at intervals of $1 / 10$ th of the element length by specifying the Gauss point option from the Output button of the LUSAS Datafile dialog.
6. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral. The rotations and translations remain in the local directions of the beam elements and support large deformations.
7. For nonlinear material model 29 the following geometric properties are appended to those already specified (see Geometric Properties).

- Ap, Zzzp, Sp at each node
- Ap Plastic area (=elastic area)
- Zzzp Plastic modulus for bending about z axes
- Sp Plastic area for shear $(\mathrm{Sp}=0)$.

Note that if eccentricity has been specified the plastic properties must be defined with reference to the nodal line and not the beam axes, i.e. the eccentricity is not used to automatically modify the plastic properties, they must be defined via modified geometry.
For nonlinear material model 29 the following ifcode parameters are applicable: ifcode $=1$ for circular hollow sections and ifcode $=2$ for solid rectangular sections.
8. Temperature dependent properties cannot be used with material model 29.
9. The rigidity matrix is evaluated explicitly from the geometric properties for both linear and nonlinear materials.
10. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.
11. OPTION 36 is only applicable for use with element load types ELDS and UDL. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
12. When a nonlinear material is used with this element the transverse shear stresses are excluded from the plasticity computations i.e. the transverse shear stresses are assumed to remain elastic. This means that if a nonlinear material is used in
applications where transverse shear tends to dominate the stress field the equivalent von Mises and maximum principal stresses can exceed the uniaxial yield stress.
13. When a step by step dynamic analysis is carried out using BMI elements with distributed loading, the "free body force diagrams" pertaining to applied loading, are not superimposed on the nodal values, to do so would lead to erroneous results until a steady state is reached. It should therefore be noted that different force diagrams will be obtained for BMI elements if static and dynamic analyses are directly compared.
14. OPTION 229 considers large displacements and large rotations using a co-rotational formulation. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework. Note that OPTION 87 has no effect when specified without OPTION 229.
15. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.
16. The P-Delta formulation is only applicable to lower order (2-noded) beams, higher order beams used in a P-Delta analysis will default to co-rotational GNL.
17. Partial fixities and rigid ends are defined via the ELEMENT TOPOLOGY data and follow on the same line after the end releases, for example:

The character K is used to identify that the partial fixity stiffnesses $\widehat{k}_{12} \widehat{k}_{13}$ are being explicitly defined, while the character N signifies that fixity factors, $n_{12} n_{1 a}$ are being defined. The fixity factors are used as follows:
$\hat{k}_{i j}=\frac{n_{i j}}{1-n_{i j}} \tilde{k}_{i j}$

The value of the factor $n_{i j j}$ ranges from zero for a pinned connection to 1.0 for a fully fixed connection.

The values r_{1} and r_{2} are the rigid end lengths at nodes 1 and 2 and λ is the rigidity factor $(1.0=$ fully rigid, the default $)$. The factors m 1 and m 2 dictate how much mass to include for the rigid ends, full mass $=1.0$ (default $\mathrm{m}_{1}=\mathrm{m}_{2}=0.0$).

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

- The element may be used for linear and nonlinear analysis of two dimensional beam, frame and arch structures.

2D Thick Beam Element with Quadrilateral Cross-Section

General

BMI3X

Geometric Properties

$\mathrm{y} 1, \mathrm{z} 1, \mathrm{y} 2, \mathrm{z} 2, \mathrm{y} 3, \mathrm{z} 3, \mathrm{y} 4, \mathrm{z} 4$: local cross section coordinate pairs at each node; followed by nt 12 , nt14: specifying the number of Newton-Cotes integration points in the direction defined by the local cross-section points 1-2 and 1-4 (zero indicates default values). See Notes. Multiple quadrilateral cross-sections can be used to build up complex beam cross-sections.

Note. The coordinates of the cross section are numbered clockwise about the local x-axis (the beam nodal line). That is, a right-hand screw rule in the direction of increasing x.

Material Properties

Linear Matrix Joint	Isotropic:	Not applicable
Not applicable		

	AASHTO	MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEBFIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE (Chinese creep model to Chinese Code of Practice)
	Eurocode	MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)
	IRC	MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC code of Practice)
Damage		DAMAGE PROPERTIES SIMO, OLIVER (Damage)
Viscoelastic Shrinkage	Not applicable	SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER
Rubber Generic Polymer Composite	Not applicable Not applicable Not applicable	
Loading		
Prescribed Value	PDSP, TPDSP	Prescribed variable. U, V, θ z: at end nodes. dU at mid-side node.
Concentrated Loads	CL	Concentrated loads. Px, Py, Mz: at end nodes (global). dPx: at mid-side node (local).
Element Loads	ELDS	Element loads on nodal line (load type number LTYPE *10 defines the corresponding element load type on beam axis).
		LTYPE, S1, Px, Py, Mz LTYPE=11: point loads and moments in local directions. LTYPE=12: point loads and moments in global directions.

TSSIG	Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA.
Temperatures TEMP, TMPE	Temperatures at nodes/for element T, 0, dT/dy, 0, To, 0, dTo/dy, 0 : in local directions.
Phreatic surface Face_Pressure	The fluid pressure is applied in the -y direction of the element y axis.
Field Loads Not applicable.	

LUSAS Output

Solver Stress resultants (default): Fx, Fy, Mz: axial force, shear forces and moment in local directions.
Continuum stresses: $\sigma x, \sigma x y$, in local directions.
Strain: $\varepsilon x, \varepsilon y, \psi z$: Axial, shear and flexural strains in local directions.
Continuum strains: $\varepsilon x, \varepsilon x y$ in local directions.
By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axes.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard line element

Sign Convention

\square Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian
For large displacements, small rotations and small strains (see Notes).
Updated
For large displacements, large rotations and small strains.

Eulerian Not applicable.
Co-rotational For large displacements and large rotations

P-Delta Displacements and rotations should be small (see Notes)

Integration Schemes

Stiffness	Default.	1-point (BMI2X), 2-point (BMI3X).
	Fine (see Options).	Same as default.
Mass	Default.	2-point (BMI2X), 3-point (BMI3X).
	Fine (see Options).	Same as default.

A 3-point Newton-Cotes integration rule is also available for BMI3X using OPTION 134. This may be more applicable for infinitesimal strain, elasto-plastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory Manual

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

36 Follower loads
55 Output strains as well as stresses
87 Total Lagrangian geometric nonlinearity (see Notes).
102 Switch off load correction stiffness matrix due to centripetal acceleration
105 Lumped mass matrix
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
139 Output yielded integration points only
229 Co-rotational geometric nonlinearity
403 Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Assumptions and Limitations (on by default).
404 Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMI2X, see Notes (on by default).
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
418 Output stress resultants relative to beam centroidal axes for eccentric elements
421 P-Delta analysis, see Notes
432 Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis

Notes on Use

1. The element is formulated from the degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Plane cross-sections initially normal to the beam axis remain plane and undistorted (the shape of the cross-section remains unchanged) under deformation, but do not necessarily remain normal to the beam axis. Shearing deformations are included.
2. Input of loads (OPTION 406) and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axis. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line. Fiber stress/strain results are output at the actual location.
3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMI2X, the axial force is constant, while the shear force and moment vary linearly along the length of the beam. For BMI3X the axial force, shear force and moment all vary linearly along the length.
4. When BMI2X is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic. Note that if OPTION 403 is used with eccentrically stacked elements, slippage can occur.
5. When BMI2X is used together with OPTION 404, loading that varies along the element length is accounted for in the force diagrams (i.e. for a beam under CBF or internal element loading). Internal forces and moments are output at intervals of $1 / 10$ th of the element length by specifying the Gauss point option from the Output button of the LUSAS Datafile dialog.
6. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral. The rotations and translations remain in the local directions of the beam elements and support large deformations
7. OPTION 36 is only applicable for use with element load types ELDS and UDL. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
8. OPTION 229 considers large displacements and large rotations using a co-rotational formulation. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework. Note that OPTION 87 has no effect when specified without OPTION 229.
9. The P-Delta formulation is only applicable to lower order (2-noded) beams, higher order beams used in a P-Delta analysis will default to co-rotational GNL.
10. The Smoothed Multi Crack Concrete Model (109) can be used with this element, however, due to the "plane sections remaining plane" hypothesis, crack widths cannot be computed.
11. Partial fixities and rigid ends are defined via the ELEMENT TOPOLOGY data and follow on the same line after the end releases, for example:

The character K is used to identify that the partial fixity stiffnesses $\hat{\mathrm{K}}_{12} \hat{\mathrm{k}}_{13}$ are being explicitly defined, while the character N signifies that fixity factors, $n_{12} n_{1 a}$ are being defined. The fixity factors are used as follows:
$\hat{k}_{i j}=\frac{n_{i j}}{1-n_{i j}} \tilde{k}_{i j}$

The value of the factor $n_{i j j}$ ranges from zero for a pinned connection to 1.0 for a fully fixed connection.

The values r_{1} and r_{2} are the rigid end lengths at nodes 1 and 2 and λ is the rigidity factor ($1.0=$ fully rigid, the default). The factors m 1 and m 2 dictate how much mass to include for the rigid ends, full mass $=1.0\left(\right.$ default $\left.\mathrm{m}_{1}=\mathrm{m}_{2}=0.0\right)$.

Restrictions

\square Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

The element may be used for linear and nonlinear analysis of two dimensional beam, frame and arch structures.

3D Thick Beam Elements

General

Element Name

BMI21

BMI31

BMI22

BMI33

Element Group

Beams

Element

Thick Beams

Subgroup

Element Description

Straight and curved isoparametric degenerate thick beam elements in 3D for which shearing deformations are included. The elements can accommodate varying geometric properties along the length. BMI22 and BMI33 can consider initial twist.
Number Of Nodes

Freedoms
End Releases

3 (BMI21), 4 (BMI22 and BMI31) and 6 (BMI33) with end release conditions.
The orientation node(s) (3rd node of BMI21, 3rd and 4th nodes of BMI22, 4th node of BMI31, 4th, 5th and 6th nodes of BMI33) are used to define the local xy-plane.
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at each active node.
The element node numbers should be followed by: R restrained (default), F free defined in the order $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$ at node 1 and then U, V, $\mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$ at node 2 and node 3 (only for BMI31 and BMI33) related to local element axes (see Notes, Assumptions and Limitations).

Partial fixity Partial fixity at each end node can be defined for all freedoms; this can take the form of a fixity reduction factor or an explicitly defined stiffness value. Partial fixities are defined with respect to the local element axes (see Notes, Assumptions and Limitations).
Rigid ends Rigid lengths r_{1} and r_{2} measured from each end node can be specified for these elements. If these lengths are non zero then any end release or partial fixity is applied at the inner point defining the rigid end. A rigidity factor ($1.0>\lambda>0.0$) can be specified to make the ends semi-rigid, and options to include/exclude the masses of the rigid ends are also provided (see Notes, Assumptions and Limitations).
Node
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

Geometric Properties

A, Iyy, Izz, Jxx, Asz, Asy, Iyz, ez, ey At each node SF1,SF2,SF3,SF4,SF5,SF6,SF7,SF8,SF9 Optional scale factors applied to the geometric MF1,MF2,MF3,MF4, properties in the calculation of the stiffness and MF5,MF6,MF7,MF8,MF9 mass matrices
A Cross sectional area.
Iyy, Izz 2nd moment of area about local y, z directions (see Definition).
Jxx Torsional constant.
Asz, Asy Effective shear areas on local yz plane in local z, y directions (see shear areas).
$\mathbf{I y}, \mathbf{I z}$ 1st moment of area about local y, z directions (see Definition).
Iyz Product moment of area about local y, z axes (see Definition).
ez Eccentricity from beam xy-plane to nodal line. (+ve in the +ve local z direction). (See Notes)
ey Eccentricity from beam xz-plane to nodal line. (+ve in the +ve local y direction). (See Notes)

Note: For MATERIAL MODEL 29 additional geometric properties are appended to the previous 22 (BMI21 and BMI22) or 33 (BMI31 and BMI33) geometric properties (see Assumptions and Limitations).

Material Properties

Linear Isotropic:
 Rigidities:
 MATERIAL PROPERTIES (Elastic: Isotropic) RIGIDITIES 6 (Rigidities: Beam)

Matrix Joint Concrete	Not applicable Not applicable Not applicable	
Elasto-Plastic	Stress resultant:	MATERIAL PROPERTIES NONLINEAR 29 (Elastic: Isotropic, Plastic: Resultant) (ifcode=1 or 2, see Assumptions and Limitations)
Creep	AASHTO	MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO Code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE (Chinese creep model to Chinese Code of Practice)
	Eurocode	MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)
	IRC	MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC Code of Practice)
Damage	Not applicable	
Viscoelastic Shrinkage	Not applicable	SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER
Rubber	Not applicable	
Generic Polymer	Not applicable	
Composite	Not applicable	

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL
Loads

Prescribed variable. $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at active nodes.
Concentrated loads in global directions. Px, $\mathrm{Py}, \mathrm{Pz}, \mathrm{Mx}, \mathrm{My}, \mathrm{Mz}$: at active nodes.

Element Loads ELDS

Distributed Loads UDL

FLD, FLDG
Body Forces CBF

BFP, BFPE

Velocities VELO
 Accelerations ACCE

Element loads on nodal line (load type number LTYPE * 10 defines the corresponding element load type on beam axis, see Assumptions and Limitations) (see Assumptions and Limitations)
LTYPE, S1, Px, Py, Pz, Mx, My, Mz LTYPE=11: point loads and moments in local directions. LTYPE=12: point loads and moments in global directions.
LTYPE, 0 , Wx, Wy, Wz, Mx, My, Mz LTYPE=21: uniformly distributed loads in local directions. LTYPE=22: uniformly distributed loads in global directions ($\mathrm{Mx}=0$). LTYPE=23: uniformly distributed projected loads in global directions.
LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1, S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions.
LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected loads in global directions.
Uniformly distributed loads. Wx, Wy, Wz, $\mathrm{Mx}, \mathrm{My}, \mathrm{Mz}$: local forces and moments / unit length for element (see Assumptions and Limitations).
Not applicable.
Constant body forces for Element. Xcbf,
Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha \mathrm{z}$
Body force potentials at nodes/for element.
$\varphi 1, \varphi 2, \varphi 3,0$, Xcbf, Ycbf, Zcbf
Velocities. Vx, Vy, Vz: at nodes.
Acceleration. Ax, Ay, Az: at nodes

Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. Fx, Fy, Fz, Mx, My, Mz: axial force, shear forces, torque and moments in local directions. $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, \psi z:$ axial shear and flexural strains in local directions.
	SSIG	Initial stresses/strains at Gauss points. These stresses/strains are specified in the same manner as SSI and SSIE.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. Resultants (for material model 29). Fx, Fy, Fz, Mx, My, Mz: axial force, shear forces, torque and moments in local directions.
	SSRG	Residual stresses at Gauss points. These stresses are specified in the same manner as SSR and SSRE.
Target Stress/Strains	TSSIE, TSSIA	Target stresses/strains at nodes/for element. Fx, Fy, Fz, Mx, My, Mz: axial force, shear forces, torque and moments in local directions. $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, \psi z:$ axial, shear and flexural strains in local directions.
	TSSIG	Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, 0 , $\mathrm{dT} / \mathrm{dy}, \mathrm{dT} / \mathrm{dz}, \mathrm{To}, 0, \mathrm{dTo} / \mathrm{dy}$, dTo/dz in local directions
Overburden	Not applicable.	
Phreatic Surface	Not applicable.	
Field Loads	Not applicable.	
Temp Dependent	Not applicable.	

LUSAS Output

Solver Stress resultants (default): Fx, Fy, Fz, Mx, My, Mz: axial force, shear forces, torque and moments in local directions.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, \psi z$: Axial, shear, torsional and flexural strains in local directions.

> By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axes.
> Modeller See $\underline{\text { Results Tables (Appendix K). }}$.

Local Axes

- Standard line element For each element/active node, the local xy-plane is defined by the local x-axis and the orientation node. The local y-axis is perpendicular to the local x -axis and positive on the side of the element where the orientation node lies. The local y and z-axes form a right-handed set with the local x-axis. See Local Element Axes for details

Sign Convention

- Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian	For large displacements and large rotations (see Notes)
Updated Lagrangian	Not applicable.
Eulerian	Not applicable.
Co-rotational	For large displacements and large rotations
P-Delta	Displacements and rotations should be small (see Notes)

Integration Schemes

Stiffness Default. 1-point (BMI21 and BMI22), 2-point (BMI31 and BMI33).
Fine. Same as default.
Mass Default. 2-point (BMI21 and BMI22), 3-point (BMI31 and BMI33).
Fine. Same as default.
Note: A 3-point Newton-Cotes integration rule is also available for BMI31 and BMI33 using OPTION 134. This may be more applicable for infinitesimal strain, elasto-plastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory Manual.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

36 Follower loads
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity (see Notes).
102 Switch off load correction stiffness matrix due to centripetal acceleration
105 Lumped mass matrix.
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements
157 Material model 29 (non cross-section elements), see Notes.
229 Co-rotational geometric nonlinearity.
403 Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Assumptions and Limitations (on by default).
404 Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMI21, see Assumptions and Limitations.
405 Specify geometric properties along beam centroidal axes (on by default).
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
418 Output stress resultants relative to beam centroidal axes for eccentric elements
421 P-Delta analysis, see Notes
432 Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis

Notes, Assumptions and Limitations

1. The element is formulated from the so-called degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Plane cross-sections initially normal to the beam axis remain plane and undistorted (the shape of the cross-section remains unchanged) under deformation, but do not necessarily remain normal to the beam axis; the shear centre and centroid of cross-section coincide. Shearing deformations are included. The basic kinematic assumptions correspond to the Timoshenko beam theory and do not allow for warping effects in torsion. Although warping effects can be considered approximately by using real torsional constants, inaccuracies are likely to occur when eccentricity is present.
2. Input of geometric properties (OPTION 405) and loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axes. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line.
3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMI21 and BMI22, the axial force and torsion are constant, while shear forces and moments vary linearly along the length of the beam. For BMI31 and BMI33 the axial force, shear forces, moments and torsion all vary linearly along the length.
4. When BMI21 is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic. Note that if OPTION 403 is used with eccentrically stacked elements, slippage can occur.
5. When BMI21 is used together with OPTION 404, loading that varies along the element length is accounted for in the force diagrams (i.e. for a beam under CBF or internal element loading). A post-processing technique has been introduced to obtain accurate quadratic bending moments for BMI31. For BMI21 (with OPTION 404) and BMI31, internal forces and moments are output at intervals of $1 / 10$ th of the element length by specifying the Gauss point option from the Output button of the LUSAS Datafile dialog.
6. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral. The rotations and translations remain in the local directions of the beam elements and support large deformations.
7. For nonlinear material model 29 the following geometric properties are appended to those already specified (see Geometric Properties).

- $\mathrm{A}^{\mathrm{p}}, \mathrm{Zyy}^{\mathrm{p}}, \mathrm{Zzz}^{\mathrm{p}}, \mathrm{Zy}^{\mathrm{p}}, \mathrm{Zz}^{\mathrm{p}}, \mathrm{S}^{\mathrm{p}}$ at each node
- $\quad A^{p}$ Plastic area (=elastic area)
- $\mathrm{Zyy}^{\mathrm{p}}$, Zzz $^{\mathrm{p}}$ Plastic moduli for bending about y, z axes
- $\mathrm{Zy}^{\mathrm{p}}, \mathrm{Zz}^{\mathrm{p}}$ Plastic moduli for torsion about y, z axes.
- $\quad S^{p}$ Plastic area for shear $\left(S^{p}=0\right)$.

Where the fully plastic torsional moment $=\sigma y\left(\mathrm{Zy}^{\mathrm{p}}+\mathrm{Zz}^{\mathrm{p}}\right)$.
Note that if eccentricity has been specified the plastic properties must be defined with reference to the nodal line and not the beam axes, i.e. the eccentricity is not used to automatically modify the plastic properties, they must be defined via modified geometry.

For nonlinear material model 29 the following ifcode parameters are applicable: ifcode $=\mathbf{1}$ for circular hollow sections and ifcode $=\mathbf{2}$ for solid rectangular sections
9. Temperature dependent properties cannot be used with material model 29.
10. The rigidity matrix is evaluated explicitly from the geometric properties for both linear and nonlinear materials.
11. OPTION 36 is only applicable for use with element load types ELDS and UDL. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
12. When a nonlinear material is used with this element the transverse shear stresses are excluded from the plasticity computations i.e. the transverse shear stresses are assumed to remain elastic. This means that if a nonlinear material is used in applications where transverse shear tends to dominate the stress field the equivalent von Mises and maximum principal stresses can exceed the uniaxial yield stress.
13. When a step by step dynamic analysis is carried out using BMI elements with distributed loading, the "free body force diagrams" pertaining to applied loading, are not superimposed on the nodal values, to do so would lead to erroneous results until a steady state is reached. It should therefore be noted that different force diagrams will be obtained for BMI elements if static and dynamic analyses are directly compared.
14. OPTION 87 considers large displacements and large rotations using a Total Lagrangian formulation; OPTION 229 considers large displacements and large rotations using a co-rotational formulation. In general the co-rotational formulation works better. When options 87 and 229 are true, a local Total Lagrangian formulation will be used together with a global co-rotational formulation.
15. OPTION 229 considers large displacements and large rotations using a co-rotational formulation. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework. Note that OPTION 87 has no effect when specified without OPTION 229.
16. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.
17. The P-Delta formulation is only applicable to lower order (2-noded) beams, higher order beams used in a P-Delta analysis will default to co-rotational GNL.
18. Partial fixities and rigid ends are defined via the ELEMENT TOPOLOGY data and follow on the same line after the end releases, for example:

The character K is used to identify that the partial fixity stiffnesses $\hat{\mathrm{k}}_{12} \hat{\mathrm{k}}_{13}$ are being explicitly defined, while the character N signifies that fixity factors, $n_{12} n_{1 a}$ are being defined. The fixity factors are used as follows:
$\hat{k}_{i j}=\frac{n_{i j}}{1-n_{i j}} \tilde{k}_{i j}$

The value of the factor $n_{i j}$ ranges from zero for a pinned connection to 1.0 for a fully fixed connection.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

- The elements may be used for linear and material nonlinear analysis of three dimensional beam, frame and arch structures, and can also be used to model cables in cable stayed structures. BMI21 and BMI22 may also be used as a stiffener for the QTS4 shell element; while BMI31 and BMI33 may be used as a stiffener for the QTS8 shell element, e.g. space frames.

3D Thick Beam Elements with Quadrilateral Cross-Section

General

Element Group
Beams
Element
Thick Beams
Subgroup
Element Description

Straight and curved isoparametric degenerate thick beam elements in 3D for which shearing deformations are included. The element has a quadrilateral cross section which may vary along the element length. BMX22 and BMX33 can consider initial twist.
Number Of Nodes 3 (BMX21), 4 (BMX22 and BMX31) and 6 (BMX33) with end release conditions.
The orientation node(s) (3rd node of BMX21, 3rd and 4th nodes of BMX22, 4th node of BMX31, 4th, 5th and 6th nodes of BMX33) are used to define the local xy-plane.
Freedoms
End Releases
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at each active node.
The element node numbers should be followed by: R restrained (default), F free defined in the order $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$ at node 1 and then U, V,

Partial fixity

Rigid ends

Node
Coordinates
$\mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$ at node 2 and node 3 (only for BMX31 and BMX33) related to local element axes (see Notes).
Partial fixity at each end node can be defined for all freedoms; this can take the form of a fixity reduction factor or an explicitly defined stiffness value. Partial fixities are defined with respect to the local element axes (see Notes, Assumptions and Limitations).
Rigid lengths r_{1} and r_{2} measured from each end node can be specified for these elements. If these lengths are non zero then any end release or partial fixity is applied at the inner point defining the rigid end. A rigidity factor $(1.0>\lambda>0.0)$ can be specified to make the ends semi-rigid, and options to include/exclude the masses of the rigid ends are also provided (see Notes, Assumptions and Limitations).
X, Y, Z: at each node.

Geometric Properties

$\mathrm{y} 1, \mathrm{z} 1, \mathrm{y} 2, \mathrm{z} 2, \mathrm{y} 3, \mathrm{z} 3, \mathrm{y} 4, \mathrm{z} 4$: local cross section coordinate pairs at each node; followed by nt 12 , nt14: number of Newton-Cotes integration points in the direction defined by the local crosssection points 1-2 and 1-4 (zero indicates default values). Multiple quadrilateral crosssections can be used to build up complex beam cross-sections.

Note. The corners of the quadrilateral are numbered clockwise about the local x -axis (the beam nodal line), that is, a right-hand screw rule in the direction of increasing x.

Material Properties

Linear Isotropic:
Matrix Not applicable
Joint Not applicable

Concrete

Elasto-Plastic Stress resultant:
Tresca:

Drucker-Prager:

MATERIAL PROPERTIES (Elastic: Isotropic)

MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi Crack Concrete) Not applicable.
MATERIAL PROPERTIES NONLINEAR 61
(Elastic: Isotropic, Plastic: Tresca, Hardening:
Isotropic Hardening Gradient, Isotropic Plastic
Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64

Loading
 Prescribed Value PDSP, TPDSP
 Concentrated CL
 Loads
 Element Loads ELDS

Distributed Loads UDL

Prescribed variable. $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at active nodes.
Concentrated loads in global directions. Px, $\mathrm{Py}, \mathrm{Pz}, \mathrm{Mx}, \mathrm{My}, \mathrm{Mz}$: at active nodes (global).
Element loads on nodal line (load type number LTYPE *10 defines the corresponding element load type on beam axis, see Assumptions and Limitations)
LTYPE, S1, Px, Py, Pz, Mx, My, Mz LTYPE=11: point loads and moments in local directions. LTYPE=12: point loads and moments in global directions.
LTYPE, 0 , Wx, Wy, Wz, Mx, My, Mz LTYPE=21: uniformly distributed loads in local directions. LTYPE=22: uniformly distributed loads in global directions ($\mathrm{Mx}=0$). LTYPE=23: uniformly distributed projected loads in global directions.
LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1, S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions.
LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected loads in global directions.
Uniformly distributed loads. Wx, Wy, Wz, Mx, My, Mz: local forces and moments / unit length for element in local directions. See Assumptions and Limitations.

LUSAS Output

Solver Stress resultants (default): Fx, Fy, Fz, Mx, My, Mz: axial force, shear forces, torque and moments in local directions.
Continuum stresses (OPTION 172): $\sigma x, \sigma x y, \sigma x z$: in local directions.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, \psi z$: Axial, shear, torsional and flexural strains in local directions.
Continuum strains (OPTION 172): $\varepsilon x, \varepsilon x y, \varepsilon x z: ~ i n ~ l o c a l ~ d i r e c t i o n s . ~$ By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axes.
Modeller See Results Tables (Appendix K).

Local Axes

Standard line element For each element/active node, the local xy-plane is defined by the local x-axis and the orientation node. The local y-axis is perpendicular to the local x -axis and positive on the side of the element where the orientation node lies. The local y and z-axes form a right-handed set with the local x-axis. See Local Element Axes for details

Sign Convention

\square Standard beam element
Formulation

Geometric Nonlinearity

Total Lagrangian
For large displacements and rotations (see Notes)
Updated
Not applicable.
Lagrangian
Eulerian
Not applicable.
Corotational For large displacements and rotations
P-Delta Displacements and rotations should be small (see Notes)

Integration Schemes

Stiffness Default. 1-point (BMX21 and BMX22), 2-point (BMX31 and BMX33).
Fine. Same as default.
Mass Default. 2-point (BMX21 and BMX22), 3-point (BMX31 and BMX33).

Fine. Same as default.
Note: A 3-point Newton-Cotes integration rule is also available for BMX31 and BMX33 using OPTION 134. This may be more applicable for infinitesimal strain, elasto-plastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory Manual.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

36 Follower loads

55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity (see Notes).
102 Switch off load correction stiffness matrix due to centripetal acceleration
105 Lumped mass matrix.
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
139 Output yielded integration points only.
172 Form the rigidity matrix by numerical cross section integration.
229 Co-rotational geometric nonlinearity.
403 Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Assumptions and Limitations (on by default).
404 Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMX21, see Notes (on by default).
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
418 Output stress resultants relative to beam centroidal axes for eccentric elements
421 P-Delta analysis, see Notes
432 Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis

Notes, Assumptions and Limitations

1. The element is formulated from the so-called degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Plane cross-sections initially normal to the beam axis remain plane and undistorted (the shape of the cross-section remains unchanged) under deformation, but do not necessarily remain normal to the beam axis; the shear centre and centroid of cross-section coincide. Shearing deformations are included.
2. Input of loads (OPTION 406) and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axis. CL is always input with respect to the nodal
line; displacements are output with respect to the nodal line. Fiber stress/strain results are output at the actual location.
3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMX21 and BMX22, the axial force and torsion are constant, while shear forces and moments vary linearly along the length of the beam. For BMX31 and BMX33 the axial force, shear forces, moments and torsion all vary linearly along the length.
4. When BMX21 is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic. Note that if OPTION 403 is used with eccentrically stacked elements, slippage can occur.
5. When BMX21 is used together with OPTION 404, loading that varies along the element length is accounted for in the force diagrams (i.e. for a beam under CBF or internal element loading). Internal forces and moments are output at intervals of $1 / 10$ th of the element length by specifying the Gauss point option from the Output button of the LUSAS Datafile dialog.
6. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral. The rotations and translations remain in the local directions of the beam elements and support large deformations.
7. Computation of the rigidity matrix by integration through the cross-section depth of the beam is necessary for all nonlinear material models. By default OPTION 172 is invoked automatically and a $5 * 5$ point Newton-Cotes integration rule is used. This allows the output of stresses at the numerical cross section integration points.
8. By default, the rigidity matrix is evaluated explicitly for linear materials. A 3*3 point Newton-Cotes integration rule may be invoked using OPTION 172. Numerical cross section integration enables top, middle and bottom stress output.
9. OPTION 36 is only applicable for use with element load types ELDS and UDL. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
10. For nonlinear material models, fibre integration is used across the cross-sectional area of the beam. Only axial deformation is considered in the plasticity computations, any torsional deformation is assumed to remain elastic.
11. OPTION 229 considers large displacements and large rotations using a co-rotational formulation. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework. Note that OPTION 87 has no effect when specified without OPTION 229.
12. The P-Delta formulation is only applicable to lower order (2-noded) beams, higher order beams used in a P-Delta analysis will default to co-rotational GNL.
13. The Smoothed Multi Crack Concrete Model (109) can be used with this element, however, due to the "plane sections remaining plane" hypothesis, crack widths cannot be computed.
14. The Partial fixities and rigid ends are defined via the ELEMENT TOPOLOGY data and follow on the same line after the end releases, for example:

The character K is used to identify that the partial fixity stiffnesses $\hat{k}_{12} \hat{k}_{15}$ are being explicitly defined, while the character N signifies that fixity factors, $n_{12} n_{15}$ are being defined. The fixity factors are used as follows:

$$
\hat{k}_{i j}=\frac{n_{i j}}{1-n_{i j}} \tilde{k}_{i j}
$$

The value of the factor $n_{i j}$ ranges from zero for a pinned connection to 1.0 for a fully fixed connection.

The values r_{1} and r_{2} are the rigid end lengths at nodes 1 and 2 and λ is the rigidity factor ($1.0=$ fully rigid, the default $)$. The factors m 1 and m 2 dictate how much mass to include for the rigid ends, full mass $=1.0$ (default $\mathrm{m}_{1}=\mathrm{m}_{2}=0.0$).

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature

BMX22 and BMX33 elements are not available for selection currently within LUSAS Modeller.

Recommendations on Use

- The elements may be used for linear and nonlinear analysis of three dimensional beam, frame and arch structures. BMX21 and BMX22 may also be used as a stiffener for the QTS4 shell element; while BMX31 and BMX33 may be used as a stiffener for the QTS8 shell element.

3D Thick Beam Elements with Torsional Warping

General

Element BMI21W
Name

BMI31W

BMI22W

BMI33W

Element Group
Element Subgroup

Element Description

Number Of Nodes

Freedoms
End Releases
-

Straight and curved isoparametric degenerate beam elements in 3D for which shearing deformations and torsional warping are included. The elements can accommodate varying geometric properties along the length.
BMI22W and BMI33W can consider initial twisting.
Beams
Isoparametric Degenerate Beams

3 (BMI21W), 4 (BMI22W and BMI31W) and 6 (BMI33W) with end release conditions.
The orientation node(s) (3rd node of BMI21W, 3rd and 4th nodes of BMI22W, 4th node of BMI31W, 4th, 5th and 6th nodes of BMI33W) are used to define the local xy-plane.
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}, \alpha$: at each active node.
The element node numbers should be followed by: R restrained (or continuous or unreleased) (default), F free (or discontinuous or released), C discontinuous and constrained, defined in the order $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}$,

	$\theta \mathrm{z}$ at node 1 and then $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$ at at node 2 and node 3 (only for BMI31W and BMI33W) related to local element axes (see Notes, Assumptions and Limitations).).
Partial fixity	Partial fixity at each end node can be defined for all freedoms; this can take the form of a fixity reduction factor or an explicitly defined stiffness value. Partial fixities are defined with respect to the local element axes (see Notes, Assumptions and Limitations).
Rigid ends	Rigid lengths r_{1} and r_{2} measured from each end node can be specified for these elements. If these lengths are non zero then any end release or partial fixity is applied at the inner point defining the rigid end. A rigidity factor ($1.0>\lambda>0.0$) can be specified to make the ends semi-rigid, and options to include/exclude the masses of the rigid ends are also provided (see Notes, Assumptions and Limitations).
Node	X, Y, Z: at each node.
Coordinates	

Geometric Properties

A, Iyy, Izz, Jxx, Asz, Asy, Iy, Iz, At each node
Iyz, Cw, Cwy, Cwz, Iyr, Izr, Irr,
Iwr (default) or A, Iyy, Izz, Jxx,
Asz, Asy, ez, ey, Iyz, Cw, zo, yo, Iyr,
Izr, Irr, Iwr (option 405)
SF1,SF2,SF3,SF4,SF5,SF6,SF7,SF8, Optional scale factors applied to the geometric
SF9, SF10,SF11,SF12,SF13, properties in the calculation of the stiffness and mass SF14,SF15,SF16 matrices
MF1,MF2,MF3,MF4,MF5,MF6,MF
7,MF8,
MF9,MF10,MF11,MF12,MF13,MF 14,MF15,MF16
A Cross sectional area.
Iyy, Izz 2nd moment of area about local y, z directions (see Definition).
Jxx Torsional constant.
Asz, Asy Effective shear areas on local yz plane in local z, y directions (see shear areas).
$\mathbf{I y}, \mathbf{I z}$ 1st moment of area about local y, z directions (see Definition).
Iyz Product moment of area about local y, z axes (see Definition).
Cw Warping constant (see Definition).
Cwy, Cwz 1st moment of warping about local y, z directions

$$
\left.\left.\begin{array}{rl}
& \begin{array}{l}
\text { (see Definition). } \\
\text { ez }
\end{array} \\
\text { ey } & \begin{array}{l}
\text { Eccentricity from beam xy-plane to nodal line. (+ve } \\
\text { in the +ve local z direction). (See Notes) }
\end{array} \\
\text { eccentricity from beam xz-plane to nodal line. (+ve } \\
\text { in the +ve local y direction). (See Notes) }
\end{array}\right\} \text { Zo } \begin{array}{l}
\text { z-coordinate of the shear center with respect to the } \\
\text { centroid (+ve in +ve local z-direction) }
\end{array}\right\} \begin{array}{ll}
\text { Yo } & \begin{array}{l}
\text { y-coordinate of the shear center with respect to the } \\
\text { centroid (+ve in +ve local y-direction) }
\end{array} \\
\text { Iyr, Izr, Irr, Iwr } & \text { Wagner constants. (See Notes) }
\end{array}
$$

Material Properties

Linear Isotropic: Rigidities:
Matrix Not applicable
Joint Not applicable
Concrete Not applicable Elasto-Plastic Stress resultant:

Creep AASHTO

CEB-FIP

Chinese

Eurocode

IRC

MATERIAL PROPERTIES (Elastic: Isotropic) RIGIDITIES 6 (Rigidities: Beam)

MATERIAL PROPERTIES NONLINEAR 29 (Elastic: Isotropic, Plastic: Resultant) (ifcode=1 or 2, see Assumptions and Limitations)

MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP
(Concrete creep model to CEB-FIP Model Code 1990)

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86 IRC
(Concrete creep model to Indian IRC code of

Damage	Pot applicable	Practice)
Viscoelastic		
Shrinkage	Not applicable	
Rubber	Not applicable	SHRINKAGE CEB_FIP_90, EUROCODE_2,
GENERAL, USER		
Generic Polymer		
Composite	Not applicable	Not applicable

LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected loads in global directions.

	DLDL, DLDG	Not applicable.
	DLEL,DLEG	Not applicable.
	PLDL, PLDG	Not applicable.
Distributed Loads	UDL	Uniformly distributed loads. Wx, Wy, Wz, Mx, My, Mz : local forces and moments / unit length for element (see Assumptions and Limitations).
	FLD, FLDG	Not applicable.
Body Forces	CBF	Constant body forces for Element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha_{\mathrm{z}}$
	BFP, BFPE	Body force potentials at nodes/for element. $\varphi 1, \varphi 2$, $\varphi 3,0$, Xcbf, Ycbf, Zcbf
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Acceleration. Ax, Ay, Az: at nodes
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. Fx, Fy, $\mathrm{Fz}, \mathrm{Mx}, \mathrm{My}, \mathrm{Mz}, 0,0$: axial force, shear forces, torque and moments in local directions. $\varepsilon x, \varepsilon y, \varepsilon z$, $\psi \mathrm{x}, \psi \mathrm{y}, \psi \mathrm{z}, 0,0$: axial, shear and flexural strains in local directions.
	SSIG	Initial stresses/strains at Gauss points. These stresses/strains are specified in the same manner as SSI and SSIE.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. Resultants (for material model 29). Fx, Fy, Fz, Mx, My, Mz: axial force, shear forces, torque and moments in local directions.
	SSRG	Residual stresses at Gauss points. These stresses are specified in the same manner as SSR and SSRE.
Target Stress/Strains	TSSIE, TSSIA	Target stresses/strains at nodes/for element. Fx, Fy, $\mathrm{Fz}, \mathrm{Mx}, \mathrm{My}, \mathrm{Mz}, 0,0$: axial force, shear forces, torque and moments in local directions. $\varepsilon x, \varepsilon y, \varepsilon z$, $\psi x, \psi y, \psi z, 0,0$: axial, shear and flexural strains in local directions.
	TSSIG	Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0, \mathrm{dT} / \mathrm{dy}$, $\mathrm{dT} / \mathrm{dz}, \mathrm{To}, 0, \mathrm{dTo} / \mathrm{dy}, \mathrm{dTo} / \mathrm{dz}$ in local directions

Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.
Loads

LUSAS Output

Solver Force (default): Fx, Fy, Fz, Mx, My, Mz, Fb, Mb: axial force, shear forces, torque, moments, bishear (or warping torsion) and bimoment in local directions.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, \psi z, \alpha, \alpha^{\prime}:$ axial, shear, torsional, flexural strains and torsional warping strains in local directions.
By default element output is with respect to the nodal line. Option 380 outputs stress/strain resultants with respect to the beam centreline.
Modeller See Results Tables (Appendix K).

Local Axes

I Standard line element For each element/active node, the local xy-plane is defined by the local x-axis and the orientation node. The local y-axis is perpendicular to the local x -axis and positive on the side of the element where the orientation node lies. The local y and z-axes form a right-handed set with the local x-axis. See Local Element Axes for details

Sign Convention

\square Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian Updated Not applicable.

Lagrangian

Eulerian Not applicable.
Co-rotational For large displacements, large rotations and small strains.
P-Delta Displacements and rotations should be small (see Notes)

Integration Schemes

Stiffness Default. 1-point (BMI21W and BMI22W), 2-point (BMI31W and BMI33W).
Fine. Same as default.
Mass Default. 2-point (BMI21W and BMI22W), 3-point (BMI31W and BMI33W).
Fine. Same as default.
Note: A 3-point Newton-Cotes integration rule is also available for BMI31W and BMI33W using option 134. This may be more applicable for infinitesimal strain, elastoplastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory Manual

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

36 Follower loads
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity (see Notes).
102 Switch off load correction stiffness matrix due to centripetal acceleration
105 Lumped mass matrix.
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements
157 Material model 29 (non cross-section elements), see Notes.
229 Co-rotational geometric nonlinearity.
380 Output stress/strain resultants relative to beam axes for eccentric elements.
403 Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Assumptions and Limitations.
404 Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMI21, see Assumptions and Limitations.
405 Specify geometric properties along beam centroidal axes
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
421 P-Delta analysis, see Notes
424 Include the Wagner effect in the large deformation formulation for beams
432 Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis

Notes, Assumptions and Limitations

1. The element is formulated from the so-called degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Shearing deformations and torsional warping are included.
2. By default input of geometric properties and loads, and output of element stress/strain resultants are with respect to the nodal line. Option 405 inputs geometric properties, option 406 inputs loads, and option 380 outputs stress/strain resultants with respect to the beam centreline. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line.
3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMI21W and BMI22W, the axial force, bishear, bimoment and torsion are constant, while the other shear forces and moments vary linearly along the length of the beam. For BMI31W and BMI33W the axial force, all shear forces, all moments and torsion vary linearly along the length
4. When BMI21W is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic.
5. When BMI21W is used together with OPTION 404, loading that varies along the element length is accounted for in the force diagrams (i.e. for a beam under CBF or internal element loading). Internal forces and moments are output at intervals of $1 / 10$ th of the element length by specifying the Gauss point option from the Output button of the LUSAS Datafile dialog.
6. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral as well as different warping conditions in adjacent elements. The rotations and translations remain in the local directions of the beam elements and support large deformations.
7. The rigidity matrix is evaluated explicitly from the geometric properties for both linear and nonlinear materials.
8. Option 36 is only applicable for use with element load types ELDS and UDL. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
9. For large deformation analyses the following geometric properties (Wagner constants) are required (see Geometric Properties) if Option $424=$ T: Iyr, Igr, Irr and Iwr at each node. If these constants are set to zero, the Wagner effect will be ignored, and the results may not be correct if twist rotations are not small.
10. When a step by step dynamic analysis is carried out using BMI elements with distributed loading, the "free body force diagrams" pertaining to applied loading, are not superimposed on the nodal values, to do so would lead to erroneous results until a steady state is reached. It should therefore be noted that different force diagrams will be obtained for BMI elements if static and dynamic analyses are directly compared.
11. OPTION 229 considers large displacements and large rotations using a co-rotational formulation. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework. Note that OPTION 87 has no effect when specified without OPTION 229.
12. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.
13. The P-Delta formulation is only applicable to lower order (2-noded) beams, higher order beams used in a P-Delta analysis will default to co-rotational GNL.
14. Partial fixities and rigid ends are defined via the ELEMENT TOPOLOGY data and follow on the same line after the end releases, for example:

1123 RFRRFRRRRRRRRR $N n_{12} n_{15}\left[\mathrm{r}_{1} \mathrm{r}_{2} \lambda \mathrm{~m}_{1} \mathrm{~m}_{2}\right]$

The character K is used to identify that the partial fixity stiffnesses $\hat{\mathrm{k}}_{12} \widehat{\mathrm{k}}_{15}$ are being explicitly defined, while the character N signifies that fixity factors, $n_{12} n_{15}$ are being defined. The fixity factors are used as follows:

$$
\hat{k}_{i j}=\frac{n_{i j}}{1-n_{i j}} \tilde{k}_{i j}
$$

The value of the factor $n_{i j j}$ ranges from zero for a pinned connection to 1.0 for a fully fixed connection.

The values r_{1} and r_{2} are the rigid end lengths at nodes 1 and 2 and λ is the rigidity factor ($1.0=$ fully rigid, the default). The factors m 1 and m 2 dictate how much mass to include for the rigid ends, full mass $=1.0$ (default $\mathrm{m}_{1}=\mathrm{m}_{2}=0.0$).

Restrictions

Ensure mid-side node centrality

Element Reference Manual

- Avoid excessive element curvature
\square Ensure correct warping condition at connections.

Recommendations on Use

- The elements may be used for linear and material nonlinear analysis of three dimensional beam, frame and arch structures. BMI21W and BMI22W may also be used as a stiffener for the QTS4 shell element; while BMI31W and BMI33W may be used as a stiffener for the QTS8 shell element.

3D Thick Beam Elements with Quadrilateral Cross-Section and Torsional Warping

General

Element Group

Beams
Element
Isoparametric Degenerate Beams Subgroup
Element Description

Number Of Nodes

Freedoms

End Releases
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at each active node.

Straight and curved isoparametric degenerate beam elements in 3D for which shearing deformations and torsional warping are included. The element has a quadrilateral cross section which may vary along the element length. BMX22W and BMX33W can consider initial twisting. 3(BMX21W), 4 (BMX22W and BMX31W) and 6(BMX33W) with end release conditions. The orientation node(s) (3rd node of BMX21W, 3rd and 4th nodes of BMX22W, 4th node of BMX31W, 4th, 5th and 6th nodes of BMX33W) are used to define the local xy-plane.

The element node numbers should be followed by: R restrained (default),

F free defined in the order $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$ at node 1 and then U, V, $\mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$ at node 2 and node 3 (only for BMX31 and BMX33) related to local element axes (see Notes).

The element node numbers should be followed by: R restrained (or continuous or unreleased) (default), F free (or discontinuous or released), C discontinuous and constrained, defined in the order $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}$, $\theta \mathrm{z}, \alpha$ and then $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}, \alpha$ at node 2 and node 3 (only for BMX31W and BMX33W) related to local element axes (see Notes).
Partial fixity at each end node can be defined for all freedoms; this can take the form of a fixity reduction factor or an explicitly defined stiffness value. Partial fixities are defined with respect to the local element axes (see Notes, Assumptions and Limitations).
Rigid ends
Rigid lengths r_{1} and r_{2} measured from each end node can be specified for these elements. If these lengths are non zero then any end release or partial fixity is applied at the inner point defining the rigid end. A rigidity factor $(1.0>\lambda>0.0)$ can be specified to make the ends semi-rigid, and options to include/exclude the masses of the rigid ends are also provided (see Notes, Assumptions and Limitations).
Node X, Y, Z: at each node.

Geometric Properties

$\mathrm{y} 1, \mathrm{z} 1, \mathrm{y} 2, \mathrm{z} 2, \mathrm{y} 3, \mathrm{z} 3, \mathrm{y} 4, \mathrm{z} 4$: local cross section coordinate pairs for a triangle at each node; followed by nt12, nt14: specifying the number of integration points nt12* nt14 (the value nt12* nt14 determines the integration rule no matter what the values nt 12 and nt14 are except when nt $12 *$ nt $14=7, \mathrm{nt} 12=1$ defines a cubic rule, while nt $12=7$ defines a quintic rule)
or
$y 1, z 1, y 2, z 2, y 3, z 3, y 4, z 4$: local cross section coordinate pairs for a quadrilateral at each node; followed by nt12, nt14: specifying the number of Newton-Cotes integration points in the direction defined by the local cross-section points 1-2 and 1-4 (zero indicates default values). Multiple quadrilateral cross-sections can be used to build up complex beam crosssections. Number of divisions for each coarse quadrilateral (default $=5$) can be specified for the computation of warping of cross-section
Note. The corners of the quadrilateral are numbered clockwise about the local x -axis (the beam nodal line), that is, a right-hand screw rule in the direction of increasing x.

Material Properties

Linear Matrix Joint	Isotropic: Not applicable Not applicable	MATERIAL PROPERTIES (Elastic: Isotropic)
Concrete		MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi Crack Concrete)
Elasto-Plastic	Stress resultant: Tresca:	Not applicable. MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker-Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	Mohr-Coulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Optimised Implicit Von Mises:	MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
	Volumetric Crushing:	Not applicable.
	Stress Potential	STRESS POTENTIAL VON_MISES (Isotropic: von Mises, Modified von Mises)
Creep		CREEP PROPERTIES (Creep)
	AASHTO	MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE (Chinese creep model to Chinese Code of Practice)
	Eurocode	MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)

IRC

Damage

Viscoelastic Not applicable Shrinkage

Rubber Not applicable

Generic Polymer Not applicable

Composite Not applicable

MATERIAL PROPERTIES NONLINEAR 86 IRC
(Concrete creep model to Indian IRC code of Practice)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL
Loads
Element Loads ELDS

Prescribed variable. $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at active nodes.
Concentrated loads in global directions. $\mathrm{Px}, \mathrm{Py}, \mathrm{Pz}$, $\mathrm{Mx}, \mathrm{My}, \mathrm{Mz}, \alpha$: at active nodes (global).
Element loads on nodal line (load type number LTYPE * 10 defines the corresponding element load type on beam axis, see Assumptions and Limitations)
LTYPE, S1, Px, Py, Pz, Mx, My, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, 0 , Wx, Wy, Wz, Mx, My, Mz
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions ($\mathrm{Mx}=0$).
LTYPE=23: uniformly distributed projected loads in global directions.
LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1, S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in

global directions.
LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected loads in global directions.
DLDL, DLDG Not applicable.
DLEL,DLEG Not applicable.
PLDL, PLDG Not applicable.
Distributed Loads UDL
FLD, FLDG Not applicable.
Body Forces CBF
BFP, BFPE
Velocities VELO
Accelerations
ACCE
SSI, SSIE
Stress/Strains
SSIG
SSRG
Target TSSIE, TSSIA
Stress/Strains
Uniformly distributed loads. Wx, Wy, Wz, Mx, My, Mz : local forces and moments / unit length for element in local directions. See Assumptions and Limitations.
Constant body forces for Element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha z_{z}$
Body force potentials at nodes/for element. $\varphi 1, \varphi 2$, $\varphi 3,0$, Xcbf, Ycbf, Zcbf
Velocities. Vx, Vy, Vz: at nodes.
Acceleration. Ax, Ay, Az: at nodes
Initial stresses/strains at nodes/for element.
Components: Fx, Fy, Fz, Mx, My, Mz, 0, 0, εx, $\varepsilon y, \varepsilon z, \psi x, \psi y, \psi z, 0,0,(\sigma x, \sigma x y, \sigma x z, \varepsilon x, \varepsilon x y$, $\varepsilon x z)$ Bracketed terms repeated for each fibre integration point.
Initial stresses/strains at Gauss points. These stresses/strains are specified in the same manner as SSI and SSIE.
Residual stresses at nodes/for element. Components: $0,0,0,0,0,0,0,0,0,0,0,0,(\sigma x, 0,0)$ Bracketed terms repeated for each fibre integration point.
Residual stresses at Gauss points. These stresses are specified in the same manner as SSR and SSRE.
Target stresses/strains at nodes/for
element.Components: Fx, Fy, Fz, Mx, My, Mz, 0, 0, $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, 0,0, \psi z,(\sigma x, \sigma x y, \sigma x z, \varepsilon x$,
$\varepsilon x y, \varepsilon x z)$ Bracketed terms repeated for each fibre integration point.
TSSIG Target stresses/strains at Gauss points. These

stresses/strains are specified in the same manner as TSSIE and TSSIA.

Temperatures TEMP, TMPE
Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.
Loads

Temperatures at nodes/for element. T, 0, dT/dy, $\mathrm{dT} / \mathrm{dz}, \mathrm{To}, 0, \mathrm{dTo} / \mathrm{dy}, \mathrm{dTo} / \mathrm{dz}$ in local directions

LUSAS Output

Solver Force (default): Fx, Fy, Fz, Mx, My, Mz, Fb and Mb: axial force, shear forces, torque, moments, bishear and bimoments in local directions. Continuum stresses (OPTION 172): $\sigma_{x}, \sigma_{x y}, \sigma_{x z}$ in local directions. Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, \psi z, \alpha, \alpha ':$ axial, shear, torsional, flexural strains and torsional warping strainsin local directions.
Continuum strains (OPTION 172): $\varepsilon x, \varepsilon x y, \varepsilon_{x}$: in local directions. By default element output is with respect to the nodal line. Option 380 outputs stress/strain resultants with respect to the beam centreline.
Modeller See Results Tables (Appendix K).

Local Axes

\square Standard line element For each element/active node, the local xy-plane is defined by the local x-axis and the orientation node. The local y-axis is perpendicular to the local x -axis and positive on the side of the element where the orientation node lies. The local y and z-axes form a right-handed set with the local x-axis. See Local Element Axes for details

Sign Convention

\square Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations (see Notes). Updated Not applicable.

Lagrangian

Eulerian Not applicable.
Co-rotational For large displacements and large rotations.
P-Delta Displacements and rotations should be small (see Notes)

Integration Schemes

Stiffness Default. 1-point (BMX21W and BMX22W), 2-point (BMX31W and BMX33W).
Fine. Same as default.
Mass Default. 2-point (BMX21W and BMX22W), 3-point (BMX31W and BMX33W).
Fine. Same as default.
Note: A 3-point Newton-Cotes integration rule is also available for BMX31W and BMX33W using option 134. This may be more applicable for infinitesimal strain, elastoplastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory manual.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

36 Follower loads
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity (see Notes)
102 Switch off load correction stiffness matrix due to centripetal acceleration
105 Lumped mass matrix.
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
139 Output yielded integration points only.
172 Form the rigidity matrix by numerical cross section integration.
229 Co-rotational geometric nonlinearity.
380 Output stress/strain resultants relative to beam axes for eccentric elements
403 Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Assumptions and Limitations (on by default).
404 Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMX21, see Notes (on by default).
405 Specify geometric properties along beam centroidal axes.
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes

418 Output stress resultants relative to beam centroidal axes for eccentric elements
421 P-Delta analysis, see Notes
432 Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis

Notes, Assumptions and Limitations

1. The element is formulated from the so-called degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Shearing deformations and torsional warping are included.
2. By default input of loads and output of element stress/strain resultants are with respect to the nodal line. Option 381 inputs loads, and option 380 outputs stress/strain resultants with respect to the beam centreline. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line.
3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMX21W and BMX22W, the axial force, torsion, bi-shear and bimoment are constant, while the other shear forces and moments vary linearly along the length of the beam. For BMX31W and BMX33W the axial force, all shear forces, all moments and the torsion vary linearly along the length.
4. When BMX21W is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic. Note that if OPTION 403 is used with eccentrically stacked elements, slippage can occur.
5. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral as well as different warping conditions in adjacent elements. The rotations and translations remain in the local directions of the beam elements and support large deformations.
6. Computation of the rigidity matrix by integration through the cross-section depth of the beam is necessary for all linear and nonlinear material models. By default OPTION 172 is invoked automatically and a $3 * 3$ and $5 * 5$ point Newton-Cotes integration rule is used respectively for linear and nonlinear materials for quadrilaterals; and a 7 point cubic rule is used for both linear and nonlinear materials for triangles. This allows the output of stresses at the numerical cross section integration points.
7. OPTION 36 is only applicable for use with element load types ELDS and UDL. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
8. For large deformation analyses the following geometric properties (Wagner constants) are required (see Geometric Properties) if Option $424=$ T: Iyr, Igr, Irr and Iwr at each node. If these constants are set to zero, the Wagner effect will be ignored, and the results may not be correct if twist rotations are not small.
9. When a step by step dynamic analysis is carried out using BMI elements with distributed loading, the "free body force diagrams" pertaining to applied loading, are not superimposed on the nodal values, to do so would lead to erroneous results until a steady state is reached. It should therefore be noted that different force diagrams will be obtained for BMI elements if static and dynamic analyses are directly compared.
10. OPTION 229 considers large displacements and large rotations using a co-rotational formulation. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework. Note that OPTION 87 has no effect when specified without OPTION 229.
11. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.
12. The P-Delta formulation is only applicable to lower order (2-noded) beams, higher order beams used in a P-Delta analysis will default to co-rotational GNL.
13. The Smoothed Multi Crack Concrete Model (109) can be used with this element, however, due to the "plane sections remaining plane" hypothesis, crack widths cannot be computed.
14. Partial fixities and rigid ends are defined via the ELEMENT TOPOLOGY data and follow on the same line after the end releases, for example:

The character K is used to identify that the partial fixity stiffnesses $\hat{k}_{12} \hat{k}_{15}$ are being explicitly defined, while the character N signifies that fixity factors, $n_{12} n_{15}$ are being defined. The fixity factors are used as follows:
$\hat{k}_{i j}=\frac{n_{i j}}{1-n_{i j}} \tilde{k}_{i j}$

The value of the factor $n_{i j j}$ ranges from zero for a pinned connection to 1.0 for a fully fixed connection.

The values r_{1} and r_{2} are the rigid end lengths at nodes 1 and 2 and λ is the rigidity factor ($1.0=$ fully rigid, the default). The factors m 1 and m 2 dictate how much mass to include for the rigid ends, full mass $=1.0\left(\right.$ default $\left.\mathrm{m}_{1}=\mathrm{m}_{2}=0.0\right)$.

Restrictions

Ensure mid-side node centrality
A Avoid excessive element curvature
BMX22 and BMX33 are not available for selection currently within LUSAS Modeller.

Recommendations on Use

- The elements may be used for linear and nonlinear analysis of three dimensional beam, frame and arch structures. BMX21W and BMX22W may also be used as a stiffener for the QTS4 shell element; while BMX31W and BMX33W may be used as a stiffener for the QTS8 shell element.

2D Kirchhoff Thin Beam Elements

General

Element Name

BM3

Beams
Kirchhoff Beams

Subgroup

Element
Element Description

Parabolically curved thin beam element in which shear deformations are excluded. The element can accommodate varying geometric properties along the length.
Number Of 3
Nodes
Freedoms
dU : (relative displacement) at mid-side node.
Coordinates
$\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$: at end nodes.
Node X, Y: at each node.

Geometric Properties

A, Izz, ey At each node

SF1,SF2,SF3 Optional scale factors applied to the geometric properties in the MF1,MF2,MF3 calculation of the stiffness and mass matrices

A Cross sectional area
Izz 2nd moment of area about local z-axis (see Definition).
ey Eccentricity from beam xz-plane to nodal line (+ve in +ve local ydirection)

For a beam with eccentricity \mathbf{e} from the nodal line then $\mathrm{Izz}=\mathrm{e}^{2} \mathrm{~A}+\mathrm{Ina}$ and $\mathrm{Iz}=\mathrm{eA}$ ($\mathrm{Ina}=\mathrm{I}$ about centroidal axis).

For MATERIAL MODEL 29 additional geometric properties are appended to the previous 9 geometric properties; see Notes.

Material Properties

Linear .. Isotropic:		MATERIAL PROPERTIES (Elastic: Isotropic) RIGIDITIES 3 (Rigidities:Beam)
	Rigidities:	
Matrix	Not applicable	
Joint	Not applicable	
Concrete	Not applicable	
Elasto-Plastic	Stress resultant:	MATERIAL PROPERTIES NONLINEAR 29 (Elastic: Isotropic, Plastic: Resultant) (ifcode=1 or 2, see Notes)
Creep	AASHTO	CREEP PROPERTIES (Creep)
		MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEBFIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE (Chinese creep model to Chinese Code of Practice)
	Eurocode	MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)
	IRC	MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC code of Practice)
Damage	Not applicable	
Viscoelastic	Not applicable	
Shrinkage		SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER
Rubber	Not applicable	
Generic Polymer	Not applicable	
Composite	Not applicable	

Loading

Prescribed Value PDSP, TPDSP Concentrated CL Loads
Element Loads ELDS

Distributed Loads UDL

FLD, FLDG
Body Forces CBF

BFP, BFPE

Velocities VELO
Accelerations ACCE
Initial SSI, SSIE
Stress/Strains

Prescribed variable. U, V, $\theta \mathrm{z}$: at end nodes.
Concentrated loads. Px, Py, Mz: at end nodes. dPx: in local x direction at mid-side node.
Element loads on nodal line (load type number LTYPE *10 defines the corresponding element load type on beam axis).
LTYPE, S1, Px, Py, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, $0, \mathrm{Wx}, \mathrm{Wy}, \mathrm{Mz}$
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions
LTYPE, S1, Wx1, Wy1, Mz1, S2, Wx2, Wy2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions
LTYPE, S1, Wx, Wy, Mz
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected loads in global directions
Uniformly distributed loads. Wx, Wy: force/unit length in local directions.
Not applicable.
Constant body forces for element. Xcbf, Ycbf, $\Omega \mathrm{x}$, $\Omega \mathrm{y}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{z}}$
Body force potentials at nodes/for element. $\varphi_{1}, \varphi_{2}, 0$, $0, \mathrm{Xcbf}, \mathrm{Ycbf}$
Velocities. Vx, Vy: at nodes.
Acceleration Ax, Ay: at nodes
Initial stresses/strains at nodes/for element. Fx, Mz,
0 : forces, moments in local directions. $\varepsilon x, \psi z, 0$: strains in local directions.
Initial stresses/strains at Gauss points $\mathrm{Fx}, \mathrm{Mz}, 0$:

Residual Stresses		forces, moments in local directions. $\varepsilon x, \psi z, 0$: strains in local directions.
	SSR, SSRE	Residual stresses at nodes/for element. Fx, Mz, 0: forces, moments in local directions.
	SSRG	Residual stresses at Gauss points $\mathrm{Fx}, \mathrm{Mz}, 0$: forces, moments in local directions.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0, \mathrm{dT} / \mathrm{dy}, 0$, To, 0 , dTo/dy, 0
Target Stress/Strains	$\begin{aligned} & \text { TSSIE, } \\ & \text { TSSIA } \end{aligned}$	Target stresses/strains at nodes/for element. Fx, Mz, 0 : forces, moments in local directions. $\varepsilon x, \psi z, 0$: strains in local directions.
	TSSIG	Target stresses/strains at Gauss points Fx, Mz, 0 : forces, moments in local directions. $\varepsilon x, \psi z, 0$: strains in local directions.
Overburden	Not applicable.	
Phreatic Surface	Not applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver Force (default): Fx, Fy, Mz: forces, moments in local directions (see Notes).
Strain: $\varepsilon x, \varepsilon y, \psi z$: axial, flexural strains in local directions.
By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axis.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard line element

Sign Convention

Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, small rotations and small strains.
Updated For large displacements, large rotations and small strains. Lagrangian

Eulerian Not applicable.
Co-rotational Not applicable.

Integration Schemes

Stiffness	Default.	2-point.
	Fine (see Options).	3-point.
Mass	Default.	2-point.
	Fine (see Options).	3-point.

A 3-point Newton-Cotes integration rule is also available using option 134. This may be more applicable for infinitesimal strain, elastoplastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory manual.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element.
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
105 Lumped mass matrix
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
157 Material model 29 (non cross-section elements), see Notes.
170 Suppress transfer of shape function arrays to disk.
405 Specify geometric properties along beam centroidal axes
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes.
418 Output stress resultants relative to beam centroidal axes for eccentric elements

Notes on Use

1. The element formulation is based on the constrained super-parametric approach. The variation of axial force along the beam is linear. The variation of displacement is quadratic in the local x-direction and cubic in the local y-direction. Shear force is constant.
2. Input of geometric properties (OPTION 405) and loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axis. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line
3. For nonlinear material model 29 the following geometric properties are appended to those already specified (see Geometric Properties).

- $\quad \mathrm{A}^{\mathrm{p}}, \mathrm{Zzz}^{\mathrm{p}}, \mathrm{S}^{\mathrm{p}}$ at each node (i.e. nodes $1,2,3$)
- $\quad \mathrm{A}^{\mathrm{p}}$ Plastic area (=elastic area)
- $\quad \mathrm{Zzz}{ }^{\mathrm{p}}$ Plastic modulus for bending about z axis
- $\quad S^{p}$ Plastic area for shear $\left(S^{p}=0\right)$

4. For nonlinear material model 29 the following ifcode parameters should be

- ifcode=1 for circular hollow sections.
- \quad ifcode $=2$ for solid rectangular sections.

5. Temperature dependent properties cannot be used with material model 29.
6. The element should not be coupled to the face of a two dimensional continuum element because of the midside node incompatibility.
7. The rigidity matrix for BM3 is evaluated explicitly from the material and geometric properties for both linear and nonlinear materials.
8. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command

Restrictions

Ensure mid-side node centrality
\square Avoid excessive element curvature

Recommendations on Use

The element may be used for linear and nonlinear analysis of two dimensional beam, frame and arch structures. The 2-noded straight beam (BMI2 is more effective for the linear analysis of structures containing straight members of constant cross-section, e.g. plane frames.

2D Kirchhoff Thin Beam Element with Quadrilateral CrossSection

General

Element Name

BMX3

Element Group
 Beams

Element
 Kirchhoff Beams

Subgroup
Element
Description
Parabolically curved thin beam elements in which shear deformations are excluded. The quadrilateral cross-section may be eccentric and can vary along the element length.
Number Of 3
Nodes
Freedoms
$\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$: at end nodes.
dU: (relative displacement) at mid-side node.
Node X, Y: at each node.
Coordinates

Geometric Properties

$\mathrm{y} 1, \mathrm{z} 1, \mathrm{y} 2, \mathrm{z} 2, \mathrm{y} 3, \mathrm{z} 3, \mathrm{y} 4, \mathrm{z4}$: local cross section coordinate pairs at each node; followed by nt 12 , nt14: specifying the number of Newton-Cotes integration points in the direction defined by the local cross-section points 1-2 and 1-4 (zero indicates default values). See Notes. Multiple quadrilateral cross-sections can be used to build up complex beam cross-sections.
Note. The coordinates of the cross section are numbered clockwise about the local x -axis (the beam nodal line). That is, a right-hand screw rule in the direction of increasing x.

Material Properties

Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Stress resultant:

Tresca:

DruckerPrager:

MohrCoulomb:

Optimised Implicit Von Mises:
Volumetric
Crushing: Stress Potential Creep

AASHTO

CEB-FIP

Chinese

Eurocode

MATERIAL PROPERTIES (Elastic: Isotropic)

MATERIAL PROPERTIES NONLINEAR 29 (Elastic: Isotropic, Plastic: Resultant) (ifcode=2, see Notes)
MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65
(Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
MATERIAL PROPERTIES NONLINEAR 75
(Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
Not applicable

STRESS POTENTIAL VON_MISES
(Isotropic: von Mises, Modified von Mises)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 CEBFIP
(Concrete creep model to CEB-FIP Model Code 1990)

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86 IRC

(Concrete creep model to Indian IRC code of Practice)
\section*{Damage}
Viscoelastic Not applicable Shrinkage
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable
DAMAGE PROPERTIES SIMO, OLIVER (Damage)
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL
Loads
Element Loads ELDS

Prescribed variable. $\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$: at end nodes. dU at mid-side node.
Concentrated loads. Px, Py, Mz: at end nodes (global). dPx: at mid-side node (local).
Element loads on nodal line (load type number LTYPE *10 defines the corresponding element load type on beam axis).
LTYPE, S1, Px, Py, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, 0, Wx, Wy, Mz
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions
LTYPE, S1, Wx1, Wy1, Mz1, S2, Wx2, Wy2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions
LTYPE, S1, Wx, Wy, Mz
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected loads in global directions

Distributed Loads UDL
 FLD, FLDG
 Body Forces CBF

BFP, BFPE

Velocities VELO
Accelerations ACCE
Initial SSI, SSIE
Stress/Strains

SSIG

Residual Stresses SSR, SSRE
SSRG

Uniformly distributed loads. Wx, Wy: force/unit length in local directions.
Not applicable.
Constant body forces for element. Xcbf, Ycbf, Ω_{x}, $\Omega \mathrm{y}, \Omega_{\mathrm{z}}, \alpha \mathrm{z}$

Body force potentials at nodes/for element. φ_{1}, φ_{2}, $0,0, \mathrm{Xcbf}, \mathrm{Ycbf}$
Velocities. Vx, Vy: at nodes.
Acceleration Ax, Ay: at nodes
Initial stresses/strains at nodes/for element. Resultants (for linear material models without numerical cross section integration and model 29, see Notes): Fx, Mz, 0: forces, moments in local
directions. $\mathcal{E x}, \psi \mathrm{z}, 0$: strains in local directions.
Initial stresses/strains at Gauss points.
(1) Resultants (for linear material models without numerical cross section integration and model 29, see Notes). Fx, Mz, 0: forces, moments in local
directions. $\varepsilon x, \psi z, 0$ strains in local directions.
(2) Components (for linear material models with numerical cross section integration and all nonlinear material models except 29): $\mathrm{Fx}, \mathrm{Mz}, 0, \varepsilon_{x}$, $\psi z, 0,(\sigma x, \varepsilon x)$. Bracketed terms repeated at each fibre integration point.
Not applicable.
Residual stresses at Gauss points.
(1) Resultants (material model 29): Fx, Mz, 0
(2) Components (all nonlinear material models except 29 , also linear material models with numerical cross section integration): $0,0,0,0,0,0$,
($\sigma x, \varepsilon x$) Bracketed term repeated for each fibre integration point.
Target TSSIE, TSSIA Stress/Strains

Target stresses/strains at nodes/for element. Resultants (for linear material models without numerical cross section integration and model 29, see Notes): Fx, Mz, 0: forces, moments in local directions. $\mathcal{E x}, \psi \mathrm{z}, 0$: strains in local directions.
TSSIG Target stresses/strains at Gauss points.
(1) Resultants (for linear material models without numerical cross section integration and model 29, see Notes). Fx, Mz, 0: forces, moments in local
directions. $\varepsilon \mathrm{x}, \psi \mathrm{z}, 0$ strains in local directions. (2) Components (for linear material models with numerical cross section integration and all nonlinear material models except 29): Fx, Mz, 0, \&x, $\psi z, 0,(\sigma x, \varepsilon x)$. Bracketed terms repeated at each fibre integration point.
Temperatures TEMP, TMPE Temperatures at nodes/for element T, $0, \mathrm{dT} / \mathrm{dy}, 0$, To, $0, \mathrm{dTo} / \mathrm{dy}, 0$: in local directions.
Overburden Not applicable.
Phreatic Surface Not
applicable.
Field Loads Not
applicable.
Temp Dependent Not
Loads applicable.

LUSAS Output

Solver Force (default): Fx, Mz, Fy: forces, moment in local directions (see Notes)
Continuum stresses (OPTION 172): σx : in local directions.
Strain: $\mathcal{E x}, \psi z, 0$: axial, flexural strains in local directions.
Continuum strains (OPTION 172): εx : in local directions.
By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axis.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard line element

Sign Convention

\square Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, small rotations and small strains.
Updated For large displacements, large rotations and small strains. Lagrangian

Eulerian Not applicable.
Co-rotational Not applicable.

Integration Schemes

Stiffness	Default.	2-point.
	Fine (see Options).	3-point.
Mass	Default.	2-point.
	Fine (see Options).	3-point.

A 3-point Newton-Cotes integration rule is also available using option 134. This may be more applicable for infinitesimal strain, elastoplastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory manual.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element.
32 Suppress stress output but not resultants
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses
87 Total Lagrangian geometric nonlinearity
105 Lumped mass matrix
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
157 Material model 29 (non cross-section elements), see Notes.
170 Suppress transfer of shape function arrays to disk.
172 Formulate rigidity matrix by integrating across the cross-section
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
418 Output stress resultants relative to beam centroidal axes for eccentric elements

Notes on Use

1. The element formulation is based on the constrained super-parametric approach. The variation of axial force along the beam is linear. The variation of displacement is quadratic in the local x-direction and cubic in the local y-direction. Shear force is constant.
2. Input of loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axis. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line. Fiber stress/strain results are output at the actual location
3. Initial strain resultants may be input for any material model.
4. The number of numerical cross-section integration points, nt 12 and nt14, may be specified but for improved performance the number of integration points corresponding to the y direction can be defined correctly (the beam bends about the local z -axis) and the integration rule in the other direction may be set to 1 .
5. For nonlinear material model 29 ifcode must be set to 2 for solid rectangular sections. Multiple quadrilateral cross-sections can be used to build up complex beam crosssections.
6. Temperature dependent properties cannot be used with material model 29.
7. The element should not be coupled to the face of a two dimensional continuum element because of the midside node incompatibility.
8. Computing the rigidity matrix by integration through the cross-section depth of the beam is necessary for all nonlinear material models (except 29). By default option 172 is invoked automatically and a 5 point Newton-Cotes integration rule is used.
9. By default, the rigidity matrix is evaluated explicitly for linear materials. A 3 point Newton-Cotes rule may be invoked using option 172. Numerical cross section integration enables top, middle and bottom stress output.

Restrictions

Ensure mid-side node centrality
\square Avoid excessive element curvature

Recommendations on Use

The element may be used for linear and nonlinear analysis of two dimensional beam, frame and arch structures. The 2-noded straight beam (BMI2) is more effective for linear analysis of structures containing straight members of constant cross-section, e.g. plane frames.

3D Kirchhoff Thin Beam Elements

General

Element Group Beams
Element Kirchhoff Beams
Subgroup
Element Description

Curved beam elements in 3D for which shearing deformations are
excluded. The elements can accommodate varying geometric properties along the length.
Number Of 3 (BS3).
Nodes 4 (BS4). The 4th node is used to define the local xy-plane.
Freedoms
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at end nodes (1 and 3)
$\mathrm{dU}, \mathrm{d} \theta \mathrm{x}$:(relative displacement/rotation) at mid-length node.
Node X, Y, Z: at each node.
Coordinates

Geometric Properties

A, Iyy, Izz, Jxx, Iy, Iz, Iyz, ez, ey At each node
SF1, SF2, SF3, SF4, SF5, SF6, SF7, Optional scale factors applied to the geometric
SF8, SF9, MF1, MF2, MF3, MF4, properties in the calculation of the stiffness and mass
MF5, MF6, MF7, MF8, MF9 matrices
A Cross sectional area
Iyy, Izz 2nd moment of area about local y, z directions (see Definition)
Jxx Torsional constant.
Iy, Iz 1st moment of area about local \mathbf{y}, \mathbf{z} directions (see Definition)
Iyz Product moment of area (see Definition)
ez Eccentricity from beam xy-plane to nodal line. (+ve in the + ve local z direction). (See Notes)
ey Eccentricity from beam xz-plane to nodal line. (+ve in the +ve local y direction). (See Notes)

For MATERIAL MODEL 29 additional geometric properties are appended to the previous 21 geometric properties (see Notes).

Material Properties

Linear	Isotropic: Rigidities:	MATERIAL PROPERTIES (Elastic: Isotropic) RIGIDITIES 6 (Rigidities: Beam)
Matrix	Not applicable	
Joint	Not applicable	
Concrete	Not applicable	
Elasto-Plastic	Stress resultant:	MATERIAL PROPERTIES NONLINEAR 29 (Elastic: Isotropic, Plastic: Resultant) (ifcode=1 or 2, see Notes)
Creep	AASHTO	CREEP PROPERTIES (Creep)
		MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEBFIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE (Chinese creep model to Chinese Code of Practice)
	Eurocode	MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)
	IRC	MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC code of Practice)
Damage	Not applicable	
Viscoelastic	Not applicable	
Shrinkage		SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER
Rubber	Not applicable	

Generic Polymer
 Not applicable

Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL
Loads
Element Loads ELDS

Distributed Loads UDL

FLD, FLDG
Body Forces CBF

BFP, BFPE

Prescribed variable. $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at end nodes (1 and 3). $\mathrm{dU}, \mathrm{d} \theta \mathrm{x}$: at mid-length node.
Concentrated loads. Px, Py, Pz, Mx, My, Mz: at end nodes. $\mathrm{dPx}, \mathrm{dMy}$: at mid-length node.
Element loads on nodal line (load type number LTYPE * 10 defines the corresponding element load type on beam axis)
LTYPE, S1, Px, Py, Pz, Mx, My, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, 0, Wx, Wy, Wz, Mx, My, Mz
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions.
LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1, S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions.
LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected loads in global directions.
Uniformly distributed loads. Wx, Wy, Wz: local forces/unit length.
Not applicable.
Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega \mathrm{x}, \Omega \mathrm{y}, \Omega_{\mathrm{z}}$

Body force potentials at nodes/for element. φ_{1}, φ_{2},
$\varphi_{3}, 0$, Xcbf, Ycbf, ZcbfVelocities. Vx, Vy, Vz: at nodes.Acceleration Ax, Ay, Az: at nodes
Initial stresses/strains at nodes/for element. Fx, My,$\mathrm{Mz}, \mathrm{Txz}, \mathrm{Txy}, 0$: axial force, moments and torquesin local directions. $\varepsilon x, \psi y, \psi z, \psi x z, \psi x y, 0:$ axial,flexural and torsional strains in local directions.
Total torque $=\mathrm{Txz}+\mathrm{Txy}$, total torsional strain $=$
$y x z+\psi x y$.
SSIG Not applicable.
Residual Stresses SSR, SSRE Not applicable.
SSRG
Target TSSIE, TSSIA Target stresses/strains at nodes/for element. Fx, My, Stress/Strains $\mathrm{Mz}, \mathrm{Txz}, \mathrm{Txy}, 0$: axial force, moments and torques in local directions. $\varepsilon x, \psi y, \psi z, \psi x z, \psi x y, 0$: axial, flexural and torsional strains in local directions.

$$
\text { Total torque }=\mathrm{Txz}+\mathrm{Txy} \text {, total torsional strain }=
$$

$$
y x z+\psi x y .
$$

Not applicable.
Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0 , dT/dy, dT/dz, To, 0, dTo/dy, dTo/dz
Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not
Loads applicable.

LUSAS Output

Solver Force (default): Fx, Fy, Fz, My, Mz, Txz, Txy: axial force, moments, torques and shear forces in local directions. (Total torque $=\mathrm{Txz}+\mathrm{Txy}$). Strain: $\varepsilon x, \psi y, \psi z, \psi x z, \psi x y, 0$: axial, flexural and torsional strains in
local directions.
By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axes.
Modeller See Results Tables (Appendix K).

Local Axes

For BS3 the local xy-plane is defined by the 3 element nodes. The local y-axis is perpendicular to the local x -axis and positive on the convex side of the element. The local y and z -axes form a right handed set with the local x -axis.
For BS4 the local xy-plane is defined by the 2 end nodes of the beam and the 4th node. The local y-axis is perpendicular to the local x-axis and positive on the side of the element where the 4th node lies. The local y and z -axes form a right handed set with the local x -axis. See Local Element Axes for more details.

Sign Convention

\square Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, small rotations and small strains.
Updated For large displacements, large rotations and small strains.
Lagrangian
Eulerian Not applicable.
Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 2-point.
Fine (see 3-point. Options).
Mass Default. 2-point.
Fine (see 3-point.
Options).
A 3-point Newton-Cotes integration rule is also available using option 134. This may be more applicable for infinitesimal strain, elastoplastic analyses of plane frames with straight
members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory manual.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element.
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
102 Switch off load correction stiffness matrix due to centripetal acceleration.
105 Lumped mass matrix.
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
157 Material model 29 (non cross-section elements), see Notes.
170 Suppress transfer of shape function arrays to disk.
405 Specify geometric properties along beam centroidal axes
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
418 Output stress resultants relative to beam centroidal axes for eccentric elements

Notes on Use

1. The element formulation is based on the Kirchhoff hypothesis for thin beams (i.e. the exclusion of shearing deformations).
2. The variation of axial force, moments and torsion along the length of the beam can be regarded as linear. Shear force variations are constant.
3. Input of geometric properties (OPTION 405) and loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axes. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line.
4. For nonlinear material model 29 the following geometric properties are appended to those already specified (see Geometric Properties).

- $A^{\mathrm{p}}, \mathrm{Zyy}^{\mathrm{p}}, \mathrm{Zzz}^{\mathrm{p}}, \mathrm{Zy}^{\mathrm{p}}, \mathrm{Zz}^{\mathrm{p}}, \mathrm{S}^{\mathrm{p}}$ at each node (i.e. nodes $1,2,3$).
- $\quad \mathrm{A}^{\mathrm{p}}$ Plastic area (=elastic area)
- $\quad \mathrm{Zyy}^{\mathrm{p}}$, Zzz $^{\mathrm{p}}$ Plastic moduli for bending about y, z axes
- $\mathrm{Zy}^{\mathrm{p}}, \mathrm{Zz}^{\mathrm{p}}$ Plastic moduli for torsion about y, z axes.
- $\quad S^{\mathrm{p}}$ Plastic area for shear $\left(\mathrm{S}^{\mathrm{p}}=0\right)$.

Where the fully plastic torsional moment $=\sigma y\left(\mathrm{Zy}^{\mathrm{p}}+\mathrm{Zz}^{\mathrm{p}}\right)$.
5. For nonlinear material model 29 the following ifcode parameters should be used

- \quad ifcode $=1$ for circular hollow sections.
- \quad ifcode $=2$ for solid rectangular sections.

6. Temperature dependent properties cannot be used with material model 29.
7. The element should not be coupled to the edges of either continuum or shell elements because of midside node incompatibility.
8. The rigidity matrix for BS3 and BS4 is evaluated explicitly from the geometric properties for both linear and nonlinear materials.
9. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

The elements may be used for linear and nonlinear analysis of three dimensional beam, frame and arch structures. The 2-noded straight beam (BMI21) is more effective for linear analysis of structures containing straight members of constant cross-section, e.g. space frames.

3D Kirchhoff Thin Beam Element with Quadrilateral CrossSection

General

BSX4

Element Group
 Element
 Subgroup
 Element Description

Beams

Kirchhoff Beams

Curved beam elements in 3D for which shearing deformations are excluded. The element has a quadrilateral cross section which may vary along the element length.
Number Of 4. The 4th node is used to define the local xy-plane.
Nodes
Freedoms

Node
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at the end nodes (1 and 3)
$\mathrm{dU}, \mathrm{d} \theta \mathrm{x}$: (relative displacement/rotation) at the mid-length node.
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.
Coordinates

Geometric Properties

$\mathrm{y} 1, \mathrm{z} 1, \mathrm{y} 2, \mathrm{z} 2, \mathrm{y} 3, \mathrm{z} 3, \mathrm{y} 4, \mathrm{z} 4$: local cross section coordinate pairs at each node; followed by nt12, nt 14 : specifying the number of Newton-Cotes integration points in the direction defined by the local cross-section points 1-2 and 1-4 (zero indicates default values). Multiple quadrilateral cross-sections can be used to build up complex beam cross-sections.

Note. The coordinates of the cross section are numbered clockwise about the local x -axis (the beam nodal line). That is, a right-hand screw rule in the direction of increasing x.

Material Properties

Linear Isotropic:Matrix Not applicableJoint Not applicable
Concrete Not applicableElasto-Plastic Stressresultant:Tresca:Drucker-Prager:
Mohr-Coulomb:OptimisedImplicit VonMises:
VolumetricCrushing:StressPotential
CreepAASHTO
CEB-FIP
Chinese

MATERIAL PROPERTIES (Elastic: Isotropic)

Not applicable.

MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
MATERIAL PROPERTIES NONLINEAR 75
(Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
Not applicable

STRESS POTENTIAL VON_MISES
(Isotropic: von Mises, Modified von Mises)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 CEBFIP
(Concrete creep model to CEB-FIP Model Code 1990)

MATERIAL PROPERTIES NONLINEAR 86
CHINESE
(Chinese creep model to Chinese Code of Practice)
Eurocode
IRC
Damage
Viscoelastic Not applicable
ShrinkageRubber Not applicable
Generic Polymer Not applicable
Composite Not applicable
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC code of Practice)
DAMAGE PROPERTIES SIMO, OLIVER(Damage)
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL Loads

Element Loads ELDS

Prescribed variable. $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at the end nodes. $\mathrm{dU}, \mathrm{d} \theta \mathrm{x}$: at the mid-length node.
Concentrated loads. Px, Py, Pz, Mx, My, Mz: at end nodes (global). dPx, dMx: at mid-length local node.
Element loads on nodal line (load type number LTYPE *10 defines the corresponding element load type on beam axis)
LTYPE, S1, Px, Py, Pz, Mx, My, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, 0 , Wx, Wy, Wz, Mx, My, Mz
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions.
LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1, S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2

Distributed Loads UDL
FLD, FLDG
Body Forces CBF

BFP, BFPE

Velocities VELO
Accelerations ACCE
Initial SSI, SSIE Stress/Strains

SSIG

Residual Stresses SSR, SSRE

SSRG

Target TSSIE, TSSIA Stress/Strains

LTYPE=31: distributed loads in local directions. LTYPE=32: distributed loads in global directions. LTYPE=33: distributed projected loads in global directions.
LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected loads in global directions.
Uniformly distributed loads. Wx, Wy, Wz: forces/unit length in local directions.
Not applicable
Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{x}}, \alpha \mathrm{y}, \alpha_{\mathrm{z}}$
Body force potentials at nodes/for element. φ_{1}, φ_{2},甲 3,0, Xcbf, Ycbf, Zcbf
Velocities. Vx, Vy, Vz: at nodes.
Acceleration Ax, Ay, Az: at nodes
Initial stresses/strains at nodes/for element.
Components: Fx, My, Mz, $0,0,0, \varepsilon x, \psi y, \psi z, 0$, $0,0,(\sigma x, \sigma x y, \sigma x z, \sigma y z, \varepsilon y z, \varepsilon x, \varepsilon x z, \varepsilon y z)$
Bracketed terms repeated for each fibre integration point.
Initial stresses/strains at Gauss points. These stresses/strains are specified in the same manner as SSI and SSIE.
Residual stresses at nodes/for element.
Components: $0,0,0,0,0,0,0,0,0,0,0,0,(\sigma x$, $\sigma x y, \sigma x z, \sigma y z$,$) Bracketed terms repeated for each$ fibre integration point.
Residual stresses at Gauss points. These stresses are specified in the same manner as SSR and SSRE.
Target stresses/strains at nodes/for element.
Components: $\mathrm{Fx}, \mathrm{My}, \mathrm{Mz}, 0,0,0, \varepsilon x, \psi y, \psi z, 0$, $0,0,0,0,0,0,0,0,0,0,0,0,0,0,(\sigma x, \sigma x y, \sigma x z$, $\sigma y z, \varepsilon y z, \varepsilon x, \varepsilon x z, \varepsilon y z)$ Bracketed terms repeated for each fibre integration point.
TSSIG
Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA.
Temperatures TEMP, TMPE Temperatures at nodes/for element. T, $0, \mathrm{dT} / \mathrm{dy}$,
$\mathrm{dT} / \mathrm{dz}, \mathrm{To}, 0, \mathrm{dTo} / \mathrm{dy}, \mathrm{dTo} / \mathrm{dz}$: in local directions.
Overburden Not applicable.
Phreatic Surface Not
applicable.
Field Loads Not applicable
Temp Dependent Not applicable
Loads

LUSAS Output

Solver Force (default): Fx, My, Mz, Txz, Txy, Fy, Fz: axial force, moments, torques and shear forces in local directions. (Total Torque $=\mathrm{Txz}+$ Txy).
Continuum stresses (OPTION 172): $\sigma x, \sigma x y, \sigma x z, \sigma y z:$ in local directions.
Strain: $\varepsilon x, \psi y, \psi z, \psi x z, \psi x y:$ axial, flexural and torsional strains in local directions.
Continuum strains (OPTION 172): $\varepsilon x, \varepsilon_{x y}, \varepsilon_{x z}, \varepsilon y z:$ in local directions.
By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axes.
Modeller See Results Tables (Appendix K).

Local Axes

Standard line element. The local xy-plane is defined by the 2 end nodes of the beam and the 4th node. The local y-axis is perpendicular to the x-axis and positive on the side of the element where the 4th node lies.
The local y and z -axes form a right-hand set with the local x -axis.

Sign Convention

- Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, small rotations and small strains.
Updated For large displacements, large rotations and small strains. Lagrangian

Eulerian Not applicable.
Co-rotational Not applicable.

Integration Schemes

Stiffness	Default.	2-point.
	Fine (see Options).	3-point.
Mass	Default.	2-point.
	Fine (see Options).	3-point.

A 3-point Newton-Cotes integration rule is also available using option 134. This may be more applicable for infinitesimal strain, elastoplastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory manual.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element.
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
102 Switch off load correction stiffness matrix due to centripetal acceleration.
105 Lumped mass matrix.
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
139 Output yielded integration points only.
170 Suppress transfer of shape function arrays to disk.
172 Form the rigidity matrix by numerical cross section integration.
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
418 Output stress resultants relative to beam centroidal axes for eccentric elements

Notes, Assumptions and Limitations

1. The element formulation is based on the Kirchhoff hypothesis for thin beams (i.e. the exclusion of shearing deformations)
2. The variation of axial force, moments and torsion along the length of the beam can be regarded as linear. Shear force is constant.
3. Input of loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axes. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line. Fiber stress/strain results are output at their actual location
4. Computation of the rigidity matrix by integration over the thickness is necessary for all nonlinear material models. For nonlinear models a 5×5 Newton-Cotes integration rule is used as default. For linear models a 3×3 rule is used as the default. This allows the output of stresses at the numerical cross section integration points.
5. The torsional constant is estimated from the computed values for Iyy and Izz, Jxx = Iyy + Izz.
6. For nonlinear material models, fibre integration is used across the cross-sectional area of the beam. Only axial deformation is considered in the plasticity computations, any torsional deformation is assumed to remain elastic.
7. The element should not be coupled to the face of a two dimensional continuum element because of the midside node incompatibility
8. Computing the rigidity matrix by integration through the cross-section depth of the beam is necessary for all nonlinear material models (except 29). By default OPTION 172 is invoked automatically and a $5 * 5$ point Newton-Cotes integration rule is used.
9. By default, the rigidity matrix is evaluated explicitly for linear materials. A $3 * 3$ point Newton-Cotes integration rule may be invoked using OPTION 172. Numerical cross section integration enables top, middle and bottom stress output.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

The elements may be used for linear and nonlinear analysis of three dimensional beam, frame and arch structures. The 2-noded straight beam (BMI21) is more effective for linear analysis of structures containing straight members of constant cross-section, e.g. space frames.

3D Semiloof Thin Beam Elements

General

Element Name
BSL3, BSL4

Element Group Beams

Element
Subgroup Description

Number Of Nodes
Freedoms

Element Curved beam elements in 3D which can be mixed with the semiloof shell elements TSL6 and QSL8. The elements can accommodate varying geometric properties. Shearing deformations are excluded. 3 or 4 . For BSL4 the 4th node is used to define the local xy-plane.
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at end nodes (1 and 3). $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta_{1}, \theta_{2}$: at mid-side node (node 2) (see Notes).
X, Y, Z: at each node.
Semiloof Beams

X,Y,Z: ateach node.

Geometric Properties

A, Iyy, Izz, Jxx, Iy, Iz, Iyz, ez, ey at nodes 1, 2 and 3
SF1,SF2,SF3,SF4,SF5,SF6,SF7,SF8,SF9 Optional scale factors applied to the MF1,MF2,MF3,MF4,MF5,MF6,MF7,MF8,MF9 geometric properties in the calculation of the stiffness and mass matrices
A Cross sectional area
Iyy, Izz 2 nd moments of area in local y, z axes (see Definition)
Jxx Torsional constant.
Iy, Iz 1st moment of area in local y, z axes (see Definition)
Iyz Product moment of area (see Definition).
ez Eccentricity from beam xy-plane to

For MATERIAL MODEL 29 additional geometric properties are appended to the 21 properties above; see Notes.

Material Properties

Linear	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
	Rigidities:	RIGIDITIES Rigidities 6 (Rigidities: Beam)
Matrix	Not applicable	
Joint	Not applicable	
Concrete	Not applicable	
Elasto-Plastic	Stress resultant:	MATERIAL PROPERTIES NONLINEAR 29 (Elastic: Isotropic, Plastic: Resultant) (ifcode=1 or 2, see Notes)
Creep	AASHTO	CREEP PROPERTIES (Creep)
		MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEB FIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE (Chinese creep model to Chinese Code of Practice)
	Eurocode	MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)
	IRC	MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC code of Practice)
Damage	Not applicable	
Viscoelastic	Not applicable	
Shrinkage		SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER
Rubber	Not applicable	

Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL Loads

Element Loads ELDS

Distributed Loads UDL

FLD, FLDG
Body Forces CBF

Prescribed variable. U, V, W, $\theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at end nodes. U, V, W, θ_{1}, θ_{2} : at mid-side node.
Concentrated loads. Px, Py, Pz, Mx, My, Mz: at end nodes (global). Px, Py, Pz, M1, M2: at mid-side node (M_{1} and M_{2} local).
Element loads on nodal line (load type number LTYPE *10 defines the corresponding element load type on beam axis)
LTYPE, S1, Px, Py, Pz, Mx, My, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, 0, Wx, Wy, Wz, Mx, My, Mz
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions.
LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1, S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions.
LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected loads in global directions.
Uniformly distributed loads. Wx, Wy, Wz: force/unit length in local directions for element.
Not applicable.
Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z},} \alpha_{\mathrm{x}}, \alpha \mathrm{y}, \alpha_{\mathrm{z}}$

BFP, BFPE Body force potentials at nodes/for element. φ_{1}, φ_{2}, $\varphi 3,0, \mathrm{Xcbf}, \mathrm{Ycbf}, \mathrm{Zcbf}$
Velocities. Vx, Vy, Vz: at nodes.
Accelerations. Ax, Ay, Az: at nodes.
Initial stresses/strains at nodes/for element. Fx, My, $\mathrm{Mz}, \mathrm{Txz}, \mathrm{Txy}, 0$ in local directions. $\varepsilon x, \psi y, \psi z$, $\psi \mathrm{xz}, \psi \mathrm{xy}, 0$: in local directions. (see Notes). Total torque $=\mathrm{Txz}+\mathrm{Txy}$
Not applicable.
Residual stresses at nodes/for element. Resultants (nonlinear model 29): Fx, My, Mz, Txz, Txy, 0: in local directions.
Not applicable.
Target stresses/strains at nodes/for element. Fx, My, $\mathrm{Mz}, \mathrm{Txz}, \mathrm{Txy}, 0$ in local directions. $\varepsilon x, \psi y, \psi z$, $\psi \mathrm{xz}, \psi \mathrm{xy}, 0$: in local directions. (see Notes). Total torque $=\mathrm{Txz}+\mathrm{Txy}$
Not applicable.
Temperatures TEMP, TMPE Temperatures at nodes/for element. T, $0, \mathrm{dT} / \mathrm{dy}$, $\mathrm{dT} / \mathrm{dz}, \mathrm{To}, 0, \mathrm{dTo} / \mathrm{dy}, \mathrm{dTo} / \mathrm{dz}$: in local directions.
Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Force (default): Fx, My, Mz, Txz, Txy, Fy, Fz: in local directions.
(Total torque $=T x z+T x y)$
Strain: $\varepsilon \mathrm{x}, \psi \mathrm{y}, \psi \mathrm{z}, \psi \mathrm{xz}, \psi \mathrm{xy}$: in local directions. (see Notes). Total torsional strain $=\psi x z+\psi x y$
By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axes.
Modeller See Results Tables (Appendix K).

Local Axes

Standard line element. For BSL3 the local xy-plane is defined by the 3 element nodes. The local y-axis is perpendicular to the local x-axis and positive on the convex side of the element. The local y and z -axes form a right-hand set with the local x -axis.
For BSL4 the local xy-plane is defined by the 2 end nodes of the beam and the 4th node. The local y-axis is perpendicular to the x-axis and positive on the side of the element where the 4th node lies. The local y and z -axes form a right-hand set with the local x -axis.

Sign Convention

\square Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, small rotations and small strains.
Updated Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 3-point torsion, 2-point bending.
Fine. As default.
Mass Default. 3-point.
Fine. As default.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity
102 Switch off load correction stiffness matrix due to centripetal acceleration.

105 Lumped mass matrix.
157 Material model 29 (non cross-section elements), see Notes.
170 Suppress transfer of shape function arrays to disk.
405 Specify geometric properties along beam centroidal axes
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
418 Output stress resultants relative to beam centroidal axes for eccentric elements

Notes on Use

1. The semiloof beam element is based on a Kirchhoff hypothesis for thin beams (i.e. the exclusion of shearing deformations).
2. The variation of axial force, moments and torsion can be regarded as linear along the length of the element. Shear forces are constant along the length of the element.
3. The loof rotations θ_{1} and θ_{2} refer to rotations about the element at the loof positions. A positive loof rotation is defined by a right-hand screw rule applied to a vector running in the local x -axis direction along the element edge.
4. Input of geometric properties (OPTION 405) and loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axes. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line.
5. For nonlinear material model 29 the following geometric properties are appended to those already specified (see Geometric Properties).

- $A^{\mathrm{p}}, \mathrm{Zyy}^{\mathrm{p}}, \mathrm{Zzz}^{\mathrm{p}}, \mathrm{Zy}^{\mathrm{p}}, \mathrm{Zz}^{\mathrm{p}}, \mathrm{S}^{\mathrm{p}}$ at each node (i.e. nodes $1,2,3$).
- $\quad A^{p}$ Plastic area (=elastic area)
- $\mathrm{Zyy}^{\mathrm{p}}$, Zzz $^{\mathrm{p}}$ Plastic moduli for bending about y, z axes
- $\mathrm{Zy}^{\mathrm{p}}, \mathrm{Zz}^{\mathrm{p}}$ Plastic moduli for torsion about y, z axes.
- $\quad S^{\mathrm{p}}$ Plastic area for shear $\left(\mathrm{S}^{\mathrm{p}}=0\right)$.

Where the fully plastic torsional moment $=\sigma y\left(\mathrm{Zy}^{\mathrm{p}}+\mathrm{Zz}^{\mathrm{p}}\right)$
6. For nonlinear material model 29 the following ifcode parameters should be

- ifcode $=1$ for circular hollow sections.
- \quad ifcode $=2$ for solid rectangular sections.

7. Semiloof beam elements should be used with semiloof shell elements. For beam only problems, BS3/BS4 elements should be used.
8. Temperature dependent properties cannot be used with material model 29.
9. Integration of the element stiffness matrix is performed using selective integration, with a 2-point Gauss rule for the axial and flexural strain energy, and a 3-point Gauss rule for the torsional strain energy. The selective integration technique is implemented in a similar manner to the method proposed by Hughes [H4], i.e. the straindisplacement matrix for the bending and axial strains is evaluated at the reduced rule quadrature points and then extrapolated to the sampling locations of the 3-point quadrature rule. The material response is then assessed at the 3-point Gauss rule.
10. The rigidity matrix for BSL3 and BSL4 is evaluated explicitly from the geometric properties for both linear and nonlinear materials.
11. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

- The primary use of this element is to provide a beam stiffener for the semiloof shell (QSL8) for analysing stiffened shell structures.
- The BS3 and BS4 elements are more effective for linear analysis of 3D frame structures with curved members and nonlinear analysis of three dimensional beam, frame and arch structures.
- The 2-noded straight beam (BMI21) is the most effective for linear analysis of structures containing straight members of constant cross-section, e.g. space frames.

3D Semiloof Thin Beam Element with Quadrilateral CrossSection

General

Geometric Properties

$\mathrm{y} 1, \mathrm{z} 1, \mathrm{y} 2, \mathrm{z} 2, \mathrm{y} 3, \mathrm{z} 3, \mathrm{y} 4, \mathrm{z} 4$: local cross section coordinate pairs at each node; followed by nt12, nt14: number of Newton-Cotes integration points in the direction defined by the local crosssection points 1-2 and 1-4 (zero indicates default values). Multiple quadrilateral crosssections can be used to build up complex beam cross-sections.

Note. The corners of the quadrilateral are numbered clockwise about the local x-axis (the beam nodal line), that is, a right-hand screw rule in the direction of increasing x.

Material Properties

Linear Isotropic:
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Stress resultant: Tresca:
DruckerPrager:
MohrCoulomb:
Optimised Implicit Von Mises:
Volumetric Crushing: Stress Potential
\section*{Creep}
AASHTO
CEB-FIP
Chinese
Eurocode
IRC
MATERIAL PROPERTIES (Elastic: Isotropic)
Not applicable.
MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65
(Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
Not applicable
STRESS POTENTIAL VON_MISES
(Isotropic: von Mises, Modified von Mises)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 CEBFIP
(Concrete creep model to CEB-FIP Model Code 1990)
MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC code of

Damage

Viscoelastic Not applicable Shrinkage

Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Practice)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL Loads

Element Loads ELDS

Prescribed variable. U, V, W, $\theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at end nodes. U, V, W, θ_{1}, θ_{2} at mid-side node.
Concentrated loads Px, Py, Pz, Mx, My, Mz at end nodes (global). Px, Py, Pz, M1, M2: at mid-side node (M_{1} and M_{2} local).
Element loads on nodal line (load type number LTYPE * 10 defines the corresponding element load type on beam axis)
LTYPE, S1, Px, Py, Pz, Mx, My, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, 0 , Wx, Wy, Wz, Mx, My, Mz
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions.
LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1, S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions.
LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected loads in global

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Force (default): Fx, My, Mz, Txz, Txy, Fy, Fz: in local directions. Total torque $=$ Txz+Txy.
Continuum stresses (Option 172): $\sigma x, \sigma x y, \sigma x z, \sigma y z:$ in local directions.
Strain/curvatures (default): $\varepsilon x, \psi y, \psi z, \psi x z, \psi x y, \gamma y z:$ in local directions (see Notes). Total torsional strain $=\psi x y+\psi y z$.
Continuum strains (Option 172): $\varepsilon x, \varepsilon_{x y}, \varepsilon x z, ~ \varepsilon y z: ~ i n ~ l o c a l ~ d i r e c t i o n s . ~$ By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axes.
Modeller See Results Tables (Appendix K).

Local Axes

\square Standard line element The local xy-plane is defined by the 2 end nodes of the beam and the 4th node. The local y-axis is perpendicular to the x-axis and positive on the side of the element where the 4th node lies. The local y and z-axes form a right-hand set with the local x -axis.

Sign Convention

\square Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, large rotations and small strains.
Updated Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational Not applicable.

Integration Schemes

Stiffness	Default.	2-point torsion, 2-point bending.
	Fine.	As default.
Mass	Default.	3-point.
	Fine.	As default.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

32 Suppress stress output (but not stress resultant).
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
102 Disable load correction stiffness matrix due to centripetal acceleration.
105 Lumped mass matrix
139 Output inelastic Gauss points only
170 Suppress transfer of shape function arrays to disk
172 Form the rigidity matrix by numerical cross section integration.
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
418 Output stress resultants relative to beam centroidal axes for eccentric elements

Notes, Assumptions and Limitations

1. The semiloof beam element formulation is based on a Kirchhoff hypothesis for thin beams (i.e. shearing deformations are excluded). The variation of axial force, bending and torsion along the length of the element may be considered as linear. Shear forces are constant.
2. Input of loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axes. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line. Fiber stress/strain results are output at their actual location.
3. The torsional constant is estimated from the computed values for Iyy and Izz, $\mathrm{Jxx}=$ Iyy + Izz.
4. For nonlinear material models, fibre integration is used across the cross-sectional area of the beam. Only axial deformation is considered in the plasticity computations, any torsional deformation is assumed to remain elastic.
5. Computing the rigidity matrix by integration through the cross-section depth of the beam is necessary for all nonlinear material models (except 29). By default option 172 is invoked automatically and a $5 * 5$ point Newton-Cotes integration rule is used.
6. By default, the rigidity matrix is evaluated explicitly for linear materials. A $3 * 3$ point Newton-Cotes integration rule may be invoked using option 172. Numerical cross section integration enables top, middle and bottom stress output.
7. Integration of the element stiffness matrix is performed using selective integration, with a 2-point Gauss rule for the axial and flexural strain energy, and a 3-point Gauss rule for the torsional strain energy. The selective integration technique is implemented in a similar manner to the method proposed by Hughes, i.e. the straindisplacement matrix for the bending and axial strains is evaluated at the reduced rule quadrature points and then extrapolated to the sampling locations of the 3-point quadrature rule. The material response is then assessed at the 3-point Gauss rule.

Restrictions

Ensure mid-side node centrality
\square Avoid excessive element curvature

Recommendations on Use

- The element's primary use is to provide a beam stiffener for the semiloof shell (QSL8) for analysing stiffened shell structures.
- The BSX4 element is more effective for linear analysis of 3D frame structures with curved members and nonlinear analysis of three dimensional beam, frame and arch structures.
- The 2-noded straight beam (BMS21) is the most effective for linear analysis of structures containing straight members of constant cross-section, e.g. space frames.

2D Plane Strain Beam Elements

General

Element Name BMI2N

BMI3N

Element Group Beams

Element
Plane Strain Beam
Subgroup
Element
Straight and curved isoparametric degenerate thick beam elements in 2D
Description for which shearing deformations are included. The element thickness may vary along its length.
Number Of 2 (BMI2N) 3 (BMI3N) Nodes
Freedoms
$\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$: at each node.
End Releases
The element node numbers should be followed by: R restrained (default) F free defined in the order $U, V, \theta z$ for node 1 and then $U, V, \theta z$ for the other end node (node 2 for BMI2N, node 3 for BMI3N). The releases relate to the local element axes (see Assumptions and Limitations).
Node X, Y: at each node.
Coordinates

Geometric Properties

$\mathbf{t 1}, \mathbf{t 2}, \mathbf{t 3}$ Thickness at each node.

Linear Isotropic:
MATERIAL PROPERTIES (Elastic: Isotropic)
Matrix Not applicable
Joint Not applicable
Concrete Not applicable

Elasto-Plastic Stress resultant Tresca:

Drucker-Prager:

Optimised Implicit Von Mises:

Volumetric Crushing:
Stress Potential

Creep

AASHTO

CEB-FIP

Chinese

Eurocode

IRC

Mohr-Coulomb: MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
Not applicable.
MATERIAL PROPERTIES NONLINEAR 61
(Elastic: Isotropic, Plastic: Tresca, Hardening:
Isotropic Hardening Gradient, Isotropic Plastic
Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)

MATERIAL PROPERTIES NONLINEAR 75
(Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
Not applicable.
STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises
Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP
(Concrete creep model to CEB-FIP Model Code 1990)

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86 IRC
(Concrete creep model to Indian IRC code of
Practice)
DAMAGE PROPERTIES SIMO, OLIVER(Damage)
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER
Loading
Prescribed Value PDSP, TPDSP
Concentrated CLLoadsElement Loads ELDS

Prescribed variable. U, V, $\theta \mathrm{z}$: at nodes. Concentrated loads. Px, Py, Mz: at nodes (global).

Element loadson nodal line (load type number

LTYPE * 10 defines the corresponding element load type on beam axis, see Notes)
LTYPE, S1, Px, Py, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, 0, Wx, Wy, 0
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions
LTYPE, S1, Wx1, Wy1, 0, S2, Wx2, Wy2, 0
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions
LTYPE, S1, Wx, Wy, 0
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.

Distributed Loads UDL

FLD
Body Forces CBF

BFP, BFPE

Velocities VELO
Accelerations ACCE
Initial SSI, SSIE
Stress/Strains

Residual Stresses SSR, SSRE,

SSRG

Target TSSIE, TSSIA Stress/Strains

TSSIG

Temperatures TEMP, TMPE
Phreatic surface Face_Pressure

Field Loads Not applicable.

LTYPE=43: trapezoidal projected loads in global directions
Uniformly distributed loads. Wx, Wy: forces/unit length for element in local directions.
Not applicable.
Constant body forces for element.
Xcbf, Ycbf, $\Omega \mathrm{x}, \Omega \mathrm{y}, \Omega \mathrm{z}, \alpha \mathrm{z}$
Body force potentials at nodes/for element. $\varphi 1$, $\varphi 2,0,0$, Xcbf, Ycbf
Velocities. Vx, Vy: at nodes.
Acceleration. Ax, Ay: at nodes.
Initial stresses/strains at nodes/for element.
Components: $N x, 0, M x, 0, S x y, \varepsilon x, 0, \gamma x, 0$,
$\varepsilon x y,(\sigma x, \sigma x y, \sigma z, \varepsilon x, \varepsilon x y, \varepsilon z)$ Bracketed terms repeated for each fibre integration point.
Initial stresses/strains at Gauss points. These stresses/strains are specified in the same manner as SSI and SSIE.
Residual stresses at nodes/for element.
Components: $0,0,0,0,0,0,0,0,0,0,(\sigma x$, $\sigma x y, \sigma z)$ Bracketed terms repeated for each fibre integration point.
Residual stresses at Gauss points for element..
Components: $0,0,0,0,0,0,0,0,0,0,(\sigma x$, $\sigma x y, \sigma z)$ Bracketed terms repeated for each fibre integration point.
Target stresses/strains at nodes/for element. Fx, Fy, Mz: axial force, shear force and moment
in local directions. $\varepsilon x, \varepsilon y, \psi z$: axial, shear and flexural strains in local directions.
Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA.
Temperatures at nodes/for elements. T, 0 , $\mathrm{dT} / \mathrm{dy}, 0, \mathrm{To}, 0, \mathrm{dTo} / \mathrm{dy}, 0$ in local directions. The fluid pressure is applied in the -y direction of the element y axis..

Temp Dependent Not applicable. Loads

LUSAS Output

Solver Force. Nx, Nz, Mx, Mz, Sxy: axial and normal forces, moments/unit width in local directions, shear force. NB. The plate/shell convention is used for the moment definition.

Strain. $\varepsilon x, \varepsilon z, \gamma x, \gamma z, \varepsilon x y$ axial, normal, flexural and shear strains.
Continuum stresses: $\sigma x, \sigma x y, \sigma z$ in local directions.
Strain: $\varepsilon x, \varepsilon x y, \varepsilon_{z}$ Axial, shear and normal strains in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

The local x -axis lies along the line of the element in the direction in which the nodes are numbered. The local y and z -axes form a right-hand set with the local x -axis such that the y -axis lies in the global XY-plane with the z -axis parallel to the global Z-axis.

Sign Convention

- Standard shell element. Axial and circumferential moments are positive for tension on element top fibre (the top fibre lies on the positive local y side of the element).

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, small rotations and small strains
Updated Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 1-point (BMI2N), 2-point (BMI3N).
Fine. Same as default.

```
Mass Default. 2-point (BMI2N), 3-point (BMI3N). Fine. Same as default.
```

Note: A 3-point Newton-Cotes integration rule is also available for BMI3N using OPTION 134. This may be more applicable for infinitesimal strain, elasto-plastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory Manual.

Mass Modelling

- Consistent mass (default).

Lumped mass.

Options

36 Follower loads
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
102 Switch off load correction stiffness matrix due to centripetal acceleration
105 Lumped mass matrix.
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements
139 Output yielded integration points only.
403 Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Assumptions and Limitations.
404 Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMI21, see Assumptions and Limitations.

Notes, Assumptions and Limitations

1. The element is formulated from the degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Plane cross-sections initially normal to the beam axis remain plane and undistorted (the shape of the cross-section remains unchanged) under deformation, but do not necessarily remain normal to the beam axis. Shearing deformations are included.
2. OPTION 36 is only applicable for use with element load types FLD, ELDS, UDL and phreatic surface pressure. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMI2N, the axial force is constant, while the shear force and moment vary linearly along the length of the beam. For BMI3N the axial force, shear force and moment all vary linearly along the length
4. When BMI2N is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic. As the plane strain beam can only be of rectangular cross section, a shear area based on 5/6 of the nodal thicknesses is assumed in this process.
5. When BMI2N is used together with OPTION 404, loading that varies along the element length is accounted for in the force diagrams (i.e. for a beam under CBF or internal element loading). A post-processing technique has been introduced to obtain accurate quadratic bending moments for BMI3N. For BMI2N (with OPTION 404) and BMI3, internal forces and moments are output at intervals of 1/10th of the element length by specifying the Gauss point option from the Output button of the LUSAS Datafile dialog.
6. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral. The rotations and translations remain in the local directions of the beam elements and support large deformations.
7. When a nonlinear material is used with this element the transverse shear stresses are excluded from the plasticity computations i.e. the transverse shear stresses are assumed to remain elastic. This means that if a nonlinear material is used in applications where transverse shear tends to dominate the stress field the equivalent von Mises and maximum principal stresses can exceed the uniaxial yield stress.
8. When a step by step dynamic analysis is carried out using BMI elements with distributed loading, the "free body force diagrams" pertaining to applied loading, are not superimposed on the nodal values, to do so would lead to erroneous results until a steady state is reached. It should therefore be noted that different force diagrams will be obtained for BMI elements if static and dynamic analyses are directly compared.
9. OPTION 87 considers large displacements and large rotations using a Total Lagrangian formulation; OPTION 229 considers large displacements and large rotations using a co-rotational formulation. In general the co-rotational formulation works better. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework.
10. End releases for these elements are currently not valid for use in step-by-step dynamic analyses.

Restrictions

\square Ensure mid-side node centrality
\square Avoid excessive element curvature

Recommendations on Use

- The element may be used for linear and nonlinear analysis of two dimensional long structures of box girder cross-sections such as tunnel linings and retaining walls for which the plane strain assumption is appropriate.

Chapter 3: 2D Continuum Elements.

2D Plane Stress Continuum Elements

General

Element Group

Element

 SubgroupElement Description

Number Of Nodes Freedoms Node
Coordinates

2D Continuum
Plane Stress Continuum

A family of 2D isoparametric elements with the higher order elements capable of modelling curved boundaries. The elements are numerically integrated.
$3,4,6$ or 8 , numbered anticlockwise.
U, V : at each node.
X, Y : at each node.

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Linear	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
	Orthotropic:	MATERIAL PROPERTIES ORTHOTROPIC (Elastic: Orthotropic Plane Stress)
	Anisotropic:	MATERIAL PROPERTIES ANISOTROPIC 3 (Elastic: Anisotropic Thin Plate)
	Rigidities.	RIGIDITIES 3 (Rigidities: Membrane/Thin Plate)
Matrix	Not applicable	
Joint	Not applicable	
Concrete		MATERIAL PROPERTIES NONLINEAR 105 (Elastic: Isotropic, Plastic: Transient Smoothed Multi-Crack Concrete)
		MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed MultiCrack Concrete)
Elasto-Plastic	Stress resultant:	Not applicable.
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker-Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	Mohr-Coulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Volumetric Crushing:	Not applicable
	Interface:	MATERIAL PROPERTIES NONLINEAR 27
	Stress Potential	STRESS POTENTIAL VON_MISES, HILL, HOFFMAN (Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
Creep		CREEP PROPERTIES (Creep)
	AASHTO	MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP(Concrete creep model to CEB-FIP Model Code1990)
Chinese
Damage
IRC
Viscoelastic Not applicable
Shrinkage
Eurocode
Ko Initialisation Not applicableRubber Not applicableGeneric Polymer IsotropicComposite Not applicable

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC code of Practice)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER
MATERIAL PROPERTIES NONLINEAR 89(Generic Polymer Model)

Loading

Prescribed Value PDSP, TPDSP Concentrated CL Loads Element Loads Not applicable.
Distributed Loads U
UDL
FLD
FLDG
Body Forces CBF

BFP, BFPE

Velocities VELO

Prescribed variable. U, V: at nodes.
Concentrated loads. Px, Py: at nodes.

Not applicable.
Face Loads. Px, Py: Local Face Axis Pressures At Nodes.
Global Face Loads. $\sigma x, \sigma y, \sigma z x y$ at nodes
Constant body forces for element. Xcbf, Ycbf, $\Omega \mathrm{x}$, $\Omega \mathrm{y}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{z}}$
Body force potentials at nodes/for element. 0, 0, 0, $\varphi 4$, Xcbf, Ycbf
Velocities. Vx, Vy: at nodes.

Accelerations ACCE
Initial SSI, SSIE
Stress/Strains
SSIG

Residual Stresses SSR, SSRE

SSRG

Target TSSIE, TSSIA Stress/Strains

TSSIG

Temperatures TEMP, TMPE
Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.
Loads

Accelerations. Ax, Ay: at nodes.
Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Initial stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.

Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma x y$: global stresses.
Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$: global stresses.

Target stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y$: global stresses. $\mathcal{E x}, \varepsilon y, \gamma x y$: global strains.
Target stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0$, 0,0

LUSAS Output

Solver
 Stress resultants: Nx, Ny, Nxy, Nmax, Nmin, β, Ns, Ne
 Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)

Strain: $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon \max , \varepsilon \min , \beta, \varepsilon s, \varepsilon e$
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacement, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness	Default.	1-point (TPM3), 3-point (TPM6), 2x2 (QPM4, QPM8)
	Fine (see Options).	3x3 (QPM8), 3-point (TPM3).
Mass	Default.	1-point (TPM3), 3-point (TPM6), 2x2 (QPM4, QPM8)
	Fine (see Options).	3x3 (QPM8), 3-point (TPM3).

Mass Modelling

C Consistent mass (default).

- Lumped mass.

Options

18 Invokes fine integration rule.
34 Output element stress resultants.
36 Follower loads (see Notes)
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.
139 Output yielded Gauss points only
167 Eulerian geometric nonlinearity.
229 Co-rotational geometric nonlinearity

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of stresses within an element can be regarded as constant for the lower order (corner node only) elements, and linear for the higher (mid-side node) elements.
2. All elements pass the patch test.
3. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the face loading (FLD).
4. Option 123 will not operate on a mesh with a mixture of clockwise and anti-clockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
5. If applying an initial stress/strain or thermal load that varies across an element, a higher order element (6 or 8 nodes) should be used. A limitation of the standard isoparametric approach when used for lower order elements (3 or 4 nodes) is that only constant stress/strain fields can be imposed correctly.

Restrictions

\square Ensure mid-side node centrality

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- The 8 -noded element with a $2 * 2$ Gauss rule is usually the most effective element, as the under-integration of the stiffness matrix prevents locking, which may occur either when the element is subjected to parasitic shear, or as the material reaches the incompressible limit (elasto-plasticity). The Gauss point stresses are also sampled at the most accurate locations for the element. However, the element does possess one spurious zero energy mode. This mode is very rarely activated in linear analysis, but it may occur in both materially and geometrically nonlinear analyses. Therefore, a careful examination of the solution should be performed, to check for spurious stress oscillations and peculiarities in the deformed configuration.
- The 8 -noded element with a $3 * 3$ Gauss rule may be used if a spurious mechanism is excited with the $2 * 2$ Gauss rule.
- The 4-noded element should not be used for analyses where in-plane bending effects are significant as the element tends to lock in parasitic shear [C1], e.g. if QPM4 elements are employed to model a cantilever subject to a point load, the solution obtained will be over-stiff.

2D Plane Stress Continuum Element with Enhanced Strains

General

Element Name
QPM4M

Element Group 2D Continuum

> Element

Plane Stress Continuum

Subgroup

Element
A 2D isoparametric element with an assumed strain field. This mixed
Description assumed strain element demonstrates a superior performance to QPM4 (see Notes). The elements are numerically integrated.
Number Of
4, numbered anticlockwise.
Nodes
Freedoms U, V: at each node.
Node X, Y: at each node.
Coordinates

Geometric Properties

> t1... tn Thickness at each node.

Material Properties

$$
\begin{array}{llc}
\text { Linear } & \text { Isotropic: } & \text { MATERIAL PROPERTIES (Elastic: Isotropic) } \\
& \text { Orthotropic: } & \text { MATERIAL PROPERTIES ORTHOTROPIC } \\
& & \text { (Elastic: Orthotropic Plane Stress) } \\
& \text { Anisotropic: } & \text { MATERIAL PROPERTIES ANISOTROPIC } 3 \\
& & \text { (Elastic: Anisotropic Thin Plate) }
\end{array}
$$

Matrix Not applicable Joint Not applicable Concrete

Elasto-Plastic Stress resultant: Tresca:

DruckerPrager:

MohrCoulomb:

Volumetric Crushing: Stress Potential

Creep

AASHTO

CEB-FIP

Chinese

EurocodeRigidities: RIGIDITIES 3 (Rigidities: Membrane/Thin Plate)

RIGIDITIES 3 (Rigidities: Membrane/Thin Plate)

MATERIAL PROPERTIES NONLINEAR 105
(Elastic: Isotropic, Plastic: Transient Smoothed Multi-Crack Concrete)
MATERIAL PROPERTIES NONLINEAR 109
(Elastic: Isotropic, Plastic: Smoothed Multi-Crack Concrete)
Not applicable
MATERIAL PROPERTIES NONLINEAR 61
(Elastic: Isotropic, Plastic: Tresca, Hardening:
Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64
(Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
Not applicable
STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 CEBFIP
(Concrete creep model to CEB-FIP Model Code 1990)

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)
IRC
MATERIAL PROPERTIES NONLINEAR 86 IRCDamage(Concrete creep model to Indian IRC code ofPractice)DAMAGE PROPERTIES SIMO, OLIVER(Damage)
Viscoelastic Not applicableShrinkage
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER
Ko Initialisation Not applicable
Rubber Ogden:Mooney-Rivlin:Neo-Hookean:MATERIAL PROPERTIES RUBBER OGDEN(Rubber: Ogden) (Rubber: Ogden)
MATERIAL PROPERTIES RUBBERMOONEY_RIVLIN (Rubber: Mooney-Rivlin)MATERIAL PROPERTIES RUBBERNEO_HOOKEAN (Rubber: Neo-Hookean)
Hencky:
Generic Polymer Isotropic
Composite Not applicable
Loading
Prescribed Value PDSP, TPDSPPrescribed variable. U, V: at nodes.
Concentrated CLLoadsElement Loads Not applicable.
Distributed Loads UDL

Not applicable.FLDFLD
Body Forces CBF
BFP, BFPE
Velocities VELO
Accelerations ACCE
Initial SSI, SSIEStress/Strains

Concentrated loads. Px, Py: at nodes.

Face loads. Px, Py: local face axis pressures at nodes.
Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodes
Constant body forces for element. Xcbf, Ycbf, $\Omega \mathrm{x}$, $\Omega \mathrm{y}, \Omega_{\mathrm{z}, ~} \alpha_{\mathrm{z}}$
Body force potentials at nodes/for element. $0,0,0$, $\varphi 4$, Xcbf, Ycbf
Velocities. Vx, Vy: at nodes.
Accelerations. Ax, Ay: at nodes.
Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.

SSIG

Residual Stresses SSR, SSRE

SSRG

Target TSSIE, TSSIA Stress/Strains

TSSIG

Temperatures TEMP, TMPE

Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Not applicable.
Temp Dependent Not applicable. Loads

Initial stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.

Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma x y$: global stresses.
Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$: global stresses.
Target stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Target stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0$, 0,0

Output

Solver	Stress resultants: Nx, Ny, Nxy, Nmax, Nmin, β, Ns, Ne
	Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)
	Strain: $\varepsilon x, \varepsilon y, \gamma \mathrm{xy}, \varepsilon \mathrm{max}, \varepsilon \mathrm{min}, \beta, \varepsilon \mathrm{s}, \varepsilon \mathrm{e}$
	Stretch (for rubber only): $\mathrm{V}_{11}, \mathrm{~V}_{22}, \mathrm{~V}_{12}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \theta \lambda$, det F. Where
	V_{ii} are components of the left stretch tensors, λ_{i} the principal stretches,
	$\theta \lambda$ the angle between the maximum principal stretch and the global X axis, and $\operatorname{det} \mathrm{F}$ the determinant of the deformation gradient or volume ratio.
Modeller	See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations (large strains with rubber).

Integration Schemes

Stiffness Default. 2x2
Fine. As default.
Mass Default. 2x2
Fine. As default.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

34 Output element stress resultants.
36 Follower loads.
39 Stress smoothing for rubber material models.
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering (see Notes).
139 Output yielded Gauss points only
167 Eulerian geometric nonlinearity.
225 Use alternative number of parameters for enhanced strain interpolation (see Notes).
229 Co-rotational geometric nonlinearity.

Notes on Use

1. The variation of stresses within an element can be regarded as linear.
2. The element passes the patch test and the large strain patch test for rubber.
3. The strain field for this element consists of two parts: the compatible strains derived from an assumed displacement field and the assumed enhanced strains (see LUSAS Theory Manual). The assumed enhanced strain field is defined using 5 or 4 parameters for linear and nonlinear applications respectively. Option 225 switches on the higher 5 parameter enhanced strain interpolation function for nonlinear analysis.
4. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility. The load does not have to be normal to the face and may also vary over the face.
5. To apply a non-conservative (follower) pressure load (load type FLD) with corotational geometric nonlinearity, Option 36 must be specified. Note that this load must be normal to the face and constant for all the nodes of the element face.
6. The converged stresses for rubber are Kirchoff stresses (see LUSAS Theory Manual).
7. When using the rubber material model, converged strain output is replaced by the left stretch tensor, the principal stretches and the angle defining these principal directions.
The value of $\operatorname{det} \mathrm{F}=\lambda_{1} \lambda_{2}$ (the Volume ratio) is only available for Gauss-point output. (Refer to the LUSAS Theory Manual for more details.)
8. For rubber, the iterative values of stress and strain are output in local co-rotated directions at the Gauss points only.
9. Option 123 will not operate on a mesh with a mixture of clockwise and anti-clockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
10. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
11. Convergence difficulties can sometimes arise when using enhanced strain elements with nonlinear materials, particularly if the material is elastic perfectly plastic or if a very shallow hardening curve is defined. In such cases it is recommended that the standard element formulation is used.
12. In analyses where significant in-plane bending is thermally induced it is recommended that a nonlinear solution is used. If a linear solution is required, then quadratic plane strain elements QPN8 are recommended.

Restrictions

- Avoid excessive aspect ratio

Rubber material models can only be applied in conjunction with the co-rotational formulation, Option 229.

Recommendations on Use

These elements exhibit an improved performance when compared with the parent element QPM4. The integration rules are the same as those given for QPM4, but the elements do not suffer from locking due to parasitic shear when the material approaches the incompressible limit. The elements are also free of any zero energy modes.

2D Plane Stress Continuum Crack Tip Elements

General

QPK8

Crack specified at Node 1

Element Group 2D Continuum

Element
Subgroup
Element
Description
A family of 2D isoparametric crack tip elements where the crack tip can be located at any corner node. The mid-side nodes are moved to the quarter points to produce a singularity at the crack tip. The strains vary as the square root of $1 / R$, where R is the distance from the crack tip. These elements are used at the crack tip only and should be mixed with the higher order plane strain continuum elements. The elements are

Number Of

> Nodes

End Releases

Freedoms
Node
Coordinates
numerically integrated. 6 or 8 numbered anticlockwise.
Plane Stress Continuum
U, V : at each node.
X, Y : at each node.

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Linear Isotropic:
MATERIAL PROPERTIES (Elastic: Isotropic)

	Orthotropic	MATERIAL PROPERTIES ORTHOTROPIC (Elastic: Orthotropic Plane Stress)
	Anisotropic:	MATERIAL PROPERTIES ANISOTROPIC 3 (Elastic: Anisotropic Thin Plate)
	Rigidities.	RIGIDITIES 3 (Rigidities: Membrane/Thin Plate)
Matrix	Not applicable	
Joint	Not applicable	
Concrete		MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi-Crack Concrete)
Elasto-Plastic	Stress resultant:	Not applicable.
	Interface:	MATERIAL PROPERTIES NONLINEAR 27
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker- Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	Mohr- Coulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Volumetric Crushing:	Not applicable.
	Stress Potential	```STRESS POTENTIAL VON_MISES, HILL, HOFFMAN (Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)```
Creep	AASHTO	CREEP PROPERTIES (Creep)
		MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEB FIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE (Chinese creep model to Chinese Code of Practice)
	Eurocode	MATERIAL PROPERTIES NONLINEAR 86

EUROCODE
(Concrete creep model to EUROCODE_2)

Damage

Viscoelastic Not applicable Shrinkage
Ko Initialisation Not applicable Rubber Not applicable Generic Polymer IsotropicComposite Not applicable

MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC code of Practice)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

MATERIAL PROPERTIES NONLINEAR 89 (Generic Polymer Model)

Loading

Prescribed Value PDSP, TPDSP Concentrated CL Loads Element Loads Not applicable.
Distributed Loads UDL Not applicable. FLD

FLDG
Body Forces CBF

BFP, BFPE

Velocities VELO
Accelerations ACCE
Initial SSI, SSIE Stress/Strains

SSIG

Residual Stresses SSR, SSRE nodes. $\Omega y, \Omega_{z}, \alpha z$ $\varphi 4$, Xcbf, Ycbf

Prescribed variable. U, V: at nodes.
Concentrated loads. Px, Py: at nodes.

Face loads. Px, Py: local face axis pressures at

Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodes
Constant body forces for element. Xcbf, Ycbf, Ω_{x},

Body force potentials at nodes/for element. $0,0,0$,

Velocities. Vx, Vy: at nodes.
Accelerations. Ax, Ay: at nodes.
Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y$: global stresses. $\mathcal{E x}, \varepsilon y, \gamma x y$: global strains.
Initial stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma x y$: global stresses.
SSRG Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$: global stresses.

Target TSSIE, TSSIA Stress/Strains

TSSIG
Target stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Target stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Temperatures TEMP, TMPE Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0$, 0,0
Overburden Applicable. Phreatic Surface Applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.
Loads

LUSAS Output

Solver Stress resultants: Nx, Ny, Nxy, Nmax, Nmin, $\beta, \mathrm{Ns}, \mathrm{Ne}$
Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)
Strain: $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon \max , \varepsilon \min , \beta, \varepsilon s, \varepsilon \mathrm{e}$
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

$$
\begin{aligned}
\text { Total Lagrangian } & \text { For large displacements and large rotations. } \\
\text { Updated } & \text { For large displacements and large rotations. } \\
\text { Lagrangian } & \\
\text { Eulerian } & \text { For large displacements, large rotations and moderately large strains. }
\end{aligned}
$$

Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness	Default.	6-point (TPK6), 3x3 (QPK8)
	Fine (see Options).	12-point (TPK6).
Mass	Default.	6-point (TPK6), 3x3 (QPK8)
	Fine (see Options).	12-point (TPK6).

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes finer integration rule.
34 Output element stress resultants.
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.
139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.
229 Co-rotational geometric nonlinearity.

Notes on Use

1. The element formulations are based on the standard isoparametric approach. Moving the mid-side nodes to the quarter points creates a singularity with theoretically infinite stress at the corner node.
2. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
3. Option 123 will not operate on a mesh with a mixture of clockwise and anti-clockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
4. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.

Restrictions

- Avoid excessive element curvature
- Avoid excessive aspect ratio

Recommendations on Use

The QPK8 and TPK6 elements are specifically designed for application to fracture mechanics problems and may used to model the singularities that occur at the crack tip. The mid-side nodes near the crack tip are shifted to the quarter point. This ensures a singularity is present at the crack tip and that the strains vary as 1 /square root of r where r is the distance from the crack tip. The triangular TPK6 element is more effective than the quadrilateral element.

2D Plane Stress Explicit Dynamics Elements

General

Element Name
TPM3E

Element Group
 2D Continuum

Element
Subgroup
Element
Description
A family of 2D isoparametric elements for explicit dynamic analyses. The

Number Of

End Releases
Freedoms

Coordinates
elements are numerically integrated.
3 or 4 numbered anticlockwise.
U, V : at each node.
Node X, Y: at each node.
Plane Stress Continuum

Geometric Properties

$$
\text { t1... } \mathbf{t n} \quad \text { Thickness at each node. }
$$

Material Properties

$$
\begin{array}{llc}
\text { Linear } & \text { Isotropic: } & \text { MATERIAL PROPERTIES (Elastic: Isotropic) } \\
& \text { Orthotropic: } & \text { MATERIAL PROPERTIES ORTHOTROPIC } \\
& & \text { (Elastic: Orthotropic Plane Stress) } \\
& \text { Anisotropic: } & \text { Not applicable } \\
& \text { Rigidities. } & \text { Not applicable }
\end{array}
$$

 Matrix Not applicable
 Joint Not applicable
 Concrete Not applicable
 Elasto-Plastic Stress Not applicable
 resultant:
 Tresca:
 Drucker-
 Prager:
 Mohr-
 Coulomb:
 Volumetric
 Crushing:
 Stress Potential STRESS POTENTIAL VON_MISES, HILL,
 HOFFMAN
 (Isotropic: von Mises, Modified von Mises
 Orthotropic: Hill, Hoffman)
 Creep Not applicable
 Damage Not applicable
 Viscoelastic Not applicable
 Shrinkage Not applicable
 Ko Initialisation Not applicable
 Rubber Not applicable
 Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value Concentrated Loads	PDSP, TPDSP CL	Prescribed variable. U, V: at each node. Concentrated loads. Px, Py: at each node.
Element Loads	Not applicable.	
Distributed Loads	UDL	Not applicable.
	FLD	$\frac{\text { Face loads. Px, Py: local face axis pressures at }}{\text { nodes. }}$
	FLDG	Not applicable.

Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, $\Omega \mathrm{x}$, $\Omega \mathrm{y}, \Omega_{\mathrm{z}, \alpha \mathrm{z}}$
	BFP, BFPE	Body force potentials at nodes/for element. $0,0,0$, $\varphi 4, \mathrm{Xcbf}, \mathrm{Ycbf}$
Velocities	VELO	Velocities. Vx, Vy: at nodes.
Accelerations	ACCE	Accelerations. Ax, Ay: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Residual Stresses	SSIG	Initial stresses/strains at Gauss points $\sigma x, \sigma y, \sigma x y$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
	SSR, SSRE	Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma x y$: global stresses.
	SSRG	Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$: global stresses.
Target	Not	
Stress/Strains	applicable.	
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0$, 0,0
Overburden	Not applicable.	
Phreatic Surface	Not applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver \quad Stress (default): $\sigma x, \sigma y, \sigma_{x y}, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)
Strain: $\varepsilon x, \varepsilon y, \gamma \mathrm{xy}, \varepsilon \max , \varepsilon \min , \beta, \varepsilon \mathrm{s}, \varepsilon \mathrm{e}$
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

$$
\begin{aligned}
\text { Total Lagrangian } & \text { Not applicable. } \\
\text { Updated } & \text { Not applicable. } \\
\text { Lagrangian } & \\
\text { Eulerian } & \text { For large displacements, large rotations and moderately large strains. } \\
\text { Co-rotational } & \text { For large displacements and large rotations. }
\end{aligned}
$$

Integration Schemes

Stiffness Default. 1-point (see Notes).
Fine. As default.
Mass Default. 1-point (see Notes).
Fine. As default.

Mass Modelling

Lumped mass only (see Notes).

Options

34 Output element stress resultants.
55 Output strains as well as stresses.
105 Lumped mass matrix (see Notes).
139 Output yielded Gauss points only.

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of stresses within an element can be regarded as constant.
2. The system parameter HGVISC is used to restrict element mechanisms due to underintegration. The default value is usually sufficient.
3. The bulk viscosity coefficients are used to restrict numerical oscillations due to the traversal of stress waves. The default bulk viscosity coefficients (BULKLF and BULKQF) may be altered as SYSTEM parameters.
4. These elements must be used with the dynamic central difference scheme and a lumped mass matrix.
5. These elements are not applicable. for static or eigenvalue analyses.
6. Automatic time step calculations are implemented.
7. As the element geometry is always updated in an explicit dynamic analysis, a nonlinear solution is obtained. When using explicit dynamics elements nonlinear control must be specified.
8. If creep properties are defined, explicit time integration must be specified.
9. Non-conservative loading is invoked when the FLD loading facility is applied.
10. Rayleigh damping coefficients are not supported by these elements.
11. Constraint equations are not available for use with these elements.
12. Nodes must be specified in an anticlockwise order. Option 123 is not applicable for this element. When using Modeller ensure surface normal is in the +ve z direction.

Restrictions

Avoid excessive aspect ratio

Recommendations on Use

Explicit dynamics elements may be used to define surface boundaries which will be active in a slideline analysis.

2D Plane Strain Continuum Elements

General

Element Group 2D Continuum

Element
 Plane Strain Continuum

Subgroup

Element
A family of 2D isoparametric elements with higher order models capable
Description of modelling curved boundaries. The elements are numerically integrated.
Number Of $3,4,6$, or 8 numbered anticlockwise.
Nodes
Freedoms
U, V : at each node.
Node X, Y: at each node.
Coordinates

Geometric Properties

Not applicable (a unit thickness is assumed).

Material Properties

Linear Isotropic:
Orthotropic:
Anisotropic:

Rigidities.
Matrix Not applicable
Joint Not applicable Concrete

Elasto-Plastic Stress resultant: Tresca:

DruckerPrager:

MohrCoulomb:

Modified
Mohr-
Coulomb:

Modified
Cam-clay
Optimised Implicit Von Mises:

Volumetric
Crushing:
Interface:
Stress
Potential

MATERIAL PROPERTIES (Elastic: Isotropic)
MATERIAL PROPERTIES ORTHOTROPIC PLANE STRAIN (Elastic: Orthotropic Plane Strain)
MATERIAL PROPERTIES ANISOTROPIC 4 (Not supported in LUSAS Modeller)
RIGIDITIES 4 (Not supported in LUSAS Modeller)

MATERIAL PROPERTIES NONLINEAR 105
(Elastic: Isotropic, Plastic: Transient Smoothed MultiCrack Concrete)
MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi-Crack Concrete)
Not applicable.
MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
MATERIAL PROPERTIES
MODIFIED MOHR_COULOMB (Elastic:
Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
MATERIAL PROPERTIES CAM_CLAY MODIFIED (Elastic: Isotropic, Plastic)
MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
MATERIAL PROPERTIES NONLINEAR 81 (Volumetric Crushing or Crushable Foam)
MATERIAL PROPERTIES NONLINEAR 27
STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises
Orthotropic: Hill, Hoffman)

Creep
AASHTO
CEB-FIP
Chinese
Eurocode
IRC
Damage
Viscoelastic
Shrinkage
Ko Initialisation Applicable
Rubber Not applicable
Generic Polymer IsotropicComposite Not applicable
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86
AASHTO
(Concrete creep model to AASHTO code of
Practice)
MATERIAL PROPERTIES NONLINEAR 86 CEB-
FIP(Concrete creep model to CEB-FIP Model Code1990)
MATERIAL PROPERTIES NONLINEAR 86 CHINESE(Chinese creep model to Chinese Code of Practice)
MATERIAL PROPERTIES NONLINEAR 86EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86 IRC
(Concrete creep model to Indian IRC code of
Practice)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)
VISCO ELASTIC PROPERTIES
SHRINKAGE CEB_FIP_90, EUROCODE_2,
GENERAL, USER
MATERIAL PROPERTIES NONLINEAR 89(Generic Polymer Model)

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V: at nodes.
Concentrated CL Loads Element Loads Not applicable.
Distributed Loads UDL Not applicable.
FLD Face Loads. Px, Py: local face axis pressures at nodes.
FLDG
Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodes

Body Forces CBF

BFP, BFPE

Velocities VELO
Accelerations ACCE
Initial SSI, SSIE
Stress/Strains

SSIG

Residual Stresses SSR, SSRE

SSRG

Target TSSIE, TSSIA Stress/Strains

TSSIG

Temperatures TEMP, TMPE

Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Not applicable.
Temp Dependent Not applicable. Loads

Constant body forces for element. Xcbf, Ycbf, 0,0 , $\Omega \mathrm{z}, \alpha \mathrm{z}$
Body force potentials at nodes/for element. 0, 0, 0, $\varphi 4$, Xcbf, Ycbf
Velocities. Vx, Vy: at nodes.
Acceleration Ax, Ay: at nodes.
Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.

Initial stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}$: global stresses. $\varepsilon x, \varepsilon y, \gamma \mathrm{xy}$: global strains.

Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma x y$, σ z: global stresses.
Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y, \sigma z$ global stresses.

Target stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.

Target stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}$: global stresses. $\varepsilon x, \varepsilon y, \gamma \mathrm{xy}$: global strains.
Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0$, 0,0

LUSAS Output

Solver
 Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)

Strain: $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \gamma \mathrm{xy}, \varepsilon z=0, \varepsilon \max , \varepsilon \min , \beta, \varepsilon s, \varepsilon \mathrm{e}$
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

$$
\begin{aligned}
\text { Total Lagrangian } & \text { For large displacements and large rotations. } \\
\text { Updated } & \text { For large displacements and large rotations. } \\
\text { Lagrangian } & \\
\text { Eulerian } & \text { For large displacements, large rotations and moderately large strains. } \\
\text { Co-rotational } & \text { For large displacements and large rotations. }
\end{aligned}
$$

Integration Schemes

Stiffness Default. 1-point (TPN3), 3-point (TPN6), 2x2 (QPN4, QPN8)
Fine (see Options). 3×3 (QPN8), 3-point (TPN3).
Mass Default. 1-point (TPN3), 3-point (TPN6), 2x2 (QPN4, QPN8) Fine (see Options). 3×3 (QPN8), 3-point (TPN3).

Mass Modelling

- Consistent mass (default).
\square Lumped mass.

Options

18 Invokes finer integration rule.
36 Follower loads.
54 Updated Lagrangian geometric nonlinearity
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.

139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.
229 Co-rotational geometric nonlinearity

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of stresses within an element can be regarded as constant for the lower order (corner node only) elements, and linear for the higher order (mid-side node) elements.
2. All elements pass the patch test.
3. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
4. Option 123 will not operate on a mesh with a mixture of clockwise and anti-clockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
5. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
6. If applying an initial stress/strain or thermal load that varies across an element, a higher order element (6 or 8 nodes) should be used. A limitation of the standard isoparametric approach when used for lower order elements (3 or 4 nodes) is that only constant stress/strain fields can be imposed correctly.

Restrictions

Ensure mid-side node centrality
I Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- The 8 -noded element with a $2 * 2$ Gauss rule is usually the most effective element, as the under-integration of the stiffness matrix prevents locking, which may occur either when the element is subjected to parasitic shear, or as the material reaches the incompressible limit (elasto-plasticity). The Gauss point stresses are also sampled at the most accurate locations for the element. However, the element does possess one spurious zero energy mode. This mode is very rarely activated in linear analysis, but it may occur in both materially and geometrically nonlinear analyses. Therefore, a careful examination of the solution should be performed, to check for spurious stress oscillations and peculiarities in the deformed configuration.
- The 8 -noded element with a $3 * 3$ Gauss rule may be used if a spurious mechanism is excited with the $2 * 2$ Gauss rule.
- The 4-noded element should not be used for analyses where in-plane bending effects are significant as the element tends to lock in parasitic shear, e.g. if QPN4 elements are employed to model a cantilever subject to a point load, the solution obtained will be over-stiff.

2D Plane Strain Continuum Element with Enhanced Strains

General

Element Name

QPN4M

Element Group 2D Continuum

Element
Plane Strain Continuum
Subgroup
Element
A 2D isoparametric element with an assumed strain field. This mixed
Description assumed strain element demonstrates a superior performance to QPN4 (see Notes). The element is numerically integrated.
Number Of
4, numbered anticlockwise.
Nodes
Freedoms
U, V : at each node.
Node X, Y: at each node.
Coordinates

Geometric Properties

Not applicable (a unit thickness is assumed).

Material Properties

Linear	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
	Orthotropic:	MATERIAL PROPERTIES ORTHOTROPIC
		PLANE STRAIN (Elastic: Orthotropic Plane Strain)
	Anisotropic:	MATERIAL PROPERTIES ANISOTROPIC 4 (Not
		supported in LUSAS Modeller)
Rigidities.	RIGIDITIES 4 (Not supported in LUSAS Modeller)	
Matrix	Not applicable	

JointConcrete	Not applicable	
		MATERIAL PROPERTIES NONLINEAR 105 (Elastic: Isotropic, Plastic: Transient Smoothed Multi Crack Concrete)
		MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi-Crack Concrete)
Elasto-Plastic	Stress resultant:	Not applicable.
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker- Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	Modified	MATERIAL PROPERTIES
	Mohr-	MODIFIED MOHR_COULOMB (Elastic:
	Coulomb:	Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
	Modified	MATERIAL PROPERTIES CAM_CLAY
	Cam-clay	MODIFIED (Elastic: Isotropic, Plastic)
	Optimised Implicit Von Mises:	MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
	Volumetric Crushing:	MATERIAL PROPERTIES NONLINEAR 81 (Volumetric Crushing or Crushable Foam)
	Stress	STRESS POTENTIAL VON_MISES, HILL,
	Potential	HOFFMAN (Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
Creep	AASHTO	MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEBFIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE

Accelerations ACCE
Initial SSI, SSIE
Stress/Strains

SSIG

Residual Stresses SSR, SSRE

SSRG

Target TSSIE TSSIA Stress/Strains

TSSIG

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0$,

0,0
Acceleration Ax, Ay: at nodes.
Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Initial stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}$: global stresses. $\varepsilon x, \varepsilon y, \gamma \mathrm{xy}$: global strains.
Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}$: global stresses.
Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y, \sigma z$ global stresses.
Target stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.

Target stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}$: global stresses. $\varepsilon x, \varepsilon y, \gamma \mathrm{xy}$: global strains.
Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.
Loads

LUSAS Output

Solver
Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)
Strain: $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z=0, \varepsilon$ max, ε min, $\beta, \varepsilon s, \varepsilon \mathrm{e}$
Stretch (for rubber only): $\mathrm{V}_{11}, \mathrm{~V}_{22}, \mathrm{~V}_{12}, \lambda_{1}, \lambda_{2}, \lambda_{3}=1, \theta \lambda$, det F. Where
$V_{i i}$ are components of the left stretch tensors, λ_{i} the principal stretches,
$\theta \lambda$ the angle between the maximum principal stretch and the global X axis, and det F the determinant of the deformation gradient or volume ratio.

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations (large strains with rubber).

Integration Schemes

Stiffness Default. 2x2

Fine. As default.
Mass Default. 2x2
Fine. As default.

Mass Modelling
 \square Consistent mass (default).
 \square Lumped mass.

Output

36 Follower loads.
39 Stress smoothing for rubber material models.
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.

139 Output yielded Gauss points only
167 Eulerian geometric nonlinearity.
225 Use alternative number of parameters for enhanced strain interpolation (see Notes).
229 Co-rotational geometric nonlinearity.

Notes on Use

1. The variation of stresses within an element can be regarded as linear.
2. The element passes the patch test and the large strain patch test for rubber.
3. The strain field for this element consists of two parts: the compatible strains derived from an assumed displacement field and the assumed enhanced strains; see LUSAS Theory Manual. The assumed enhanced strain field is defined using 5 or 4 parameters for linear and nonlinear applications respectively. Option 225 switches on the higher 5 parameter enhanced strain interpolation function for nonlinear analysis.
4. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility. The load does not have to be normal to the face and may also vary over the face.
5. To apply a non-conservative (follower) pressure load (load type FLD) with corotational geometric nonlinearity, Option 36 must be specified. Note that this load should be normal to the face and constant for all the nodes of the element face.
6. The converged stresses for rubber are Kirchhoff stresses (see LUSAS Theory Manual).
7. Option 39 is used to smooth the stress output. It is particularly useful when the rubber material model is applied and the element is under very high compression where oscillatory stresses may appear (checker-board pattern).
8. When using the rubber material model, converged strain output is replaced by the left stretch tensor, the principal stretches and the angle defining these principal directions.
The value of $\operatorname{det} \mathrm{F}=\lambda_{1} \lambda_{2}$ (the Volume ratio) is only available for Gauss-point output. (Refer to the LUSAS Theory Manual for more details.)
9. For rubber, the iterative values of stress and strain are output in local co-rotated directions at the Gauss points only.
10. Option 123 will not operate on a mesh with a mixture of clockwise and anti-clockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
11. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
12. Convergence difficulties can sometimes arise when using enhanced strain elements with nonlinear materials, particularly if the material is elastic-perfectly plastic or if a very shallow hardening curve is defined. In such cases it is recommended that the standard element formulation is used.
13. In analyses where significant in-plane bending is thermally induced it is recommended that a nonlinear solution is used. If a linear solution is required, then quadratic plane strain elements QPN8 are recommended.

Restrictions

Rubber material models can only be applied in conjunction with the co-rotational formulation, Option 229.
\square Avoid excessive aspect ratio

Recommendations on Use

These elements exhibit an improved performance when compared with the parent element QPN4. The integration rules are the same as the parent element. The elements do not suffer from locking due to parasitic shear or when the material approaches the incompressible limit. The elements are also free of any zero energy modes.

2D Plane Strain Continuum Element for Large Strains

General

Element Name

QPN4L

Element Group 2D Continuum
Element
Subgroup
Element
Description
A 2D isoparametric element incorporating an internal pressure variable.
This element should be used for analyses involving large strains. The element is numerically integrated
Number Of
4, numbered anticlockwise.
Nodes
Freedoms
Node X, Y: at each node.
Coordinates
Plane Strain Continuum
U, V : at each node.

Geometric Properties

Not applicable (a unit thickness is assumed).

Material Properties

Linear Not applicable

Matrix Not applicable
Joint Not applicable
Concrete Not applicable

Elasto-Plastic Implicit Optimised Von Mises
Stress

MATERIAL PROPERTIES NONLINEAR 75
(Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic)
STRESS POTENTIAL VON_MISES (Isotropic: von
Potential Mises)
Creep Not applicableDamage Not applicableViscoelastic Not applicableShrinkage Not applicableKo Initialisation Not applicableRubber Ogden

Mooney-
Rivlin
Neo-Hookean

Hencky
Generic Polymer Not applicable Composite Not applicable

MATERIAL PROPERTIES RUBBER OGDEN (Rubber: Ogden)
 MATERIAL PROPERTIES RUBBER MOONEY_RIVLIN (Rubber: Mooney-Rivlin)
 MATERIAL PROPERTIES RUBBER NEO_HOOKEAN (Rubber: Neo-Hookean)
 MATERIAL PROPERTIES RUBBER HENCKY (Rubber: Hencky)

Loading

Prescribed Value PDSP, TPDSP Concentrated CL Loads Element Loads Not applicable. Distributed Load UDL FLD

FLDG
Body Forces CBF

BFP, BFPE

Velocities VELO
Accelerations ACCE
Initial SSI, SSIE
Stress/Strains
SSIG
Residual Stresses SSR, SSRE

Prescribed variable. U, V: at nodes.
Concentrated loads. Px, Py: at nodes.

Not applicable.
Face loads. Px, Py: local face axis pressures at nodes.

Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodes
Constant body forces for element. Xcbf, Ycbf, 0,0, $\Omega \mathrm{z}, \alpha \mathrm{z}$
Body force potentials at nodes/for element. 0, 0, 0, $\varphi 4$, Xcbf, Ycbf
Velocities. Vx, Vy: at nodes.
Acceleration Ax, Ay: at nodes.
Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.

Initial stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$, σz : global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma x y$,
$\sigma \mathrm{z}$: global stresses.

Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Not applicable.
Temp Dependent Not applicable. Loads

Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y, \sigma z$ global stresses.
Target TSSIE, TSSIA Stress/Strains

TSSIG

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0$,
SSRG 0,0
Target stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Target stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}$: global stresses. $\varepsilon x, \varepsilon y, \gamma \mathrm{xy}$: global strains.
Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0$,

Overburden Applicable

LUSAS Output

Solver
 Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)

Principal stretches, $\lambda_{1}, \lambda_{2}, \lambda_{3}=1, \theta \lambda$, $\operatorname{det} F$. Where $V_{i i}$ are components of the left stretch tensors, λ_{i} the principal stretches, $\theta \lambda$ the angle between the maximum principal stretch and the global X axis, and $\operatorname{det} \mathrm{F}$ the determinant of the deformation gradient or volume ratio.
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

\square Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.
Updated Not applicable.
Lagrangian
Eulerian For large displacements and large strains.
Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness	Default.	2×2
	Fine.	As default.
Mass	Default.	2×2
	Fine.	As default.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

55 Output stretches as well as stresses.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of stresses within an element can be regarded as linear.
2. The element passes the large strain patch test for rubber.
3. Non-conservative loading is available with this element when using FLD loading.
4. The stresses output are Kirchhoff stresses (see LUSAS Theory Manual).
5. Stretch output consists of the principal stretches and the angle defining the principal directions. The value of det $\mathrm{F}=\lambda_{1} \lambda_{2}$ is also output. (Refer to the LUSAS Theory Manual.)
6. Option 123 will not operate on a mesh with a mixture of clockwise and anti-clockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
7. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
8. This element is based on a formulation that tackles the problem of volumetric locking in a different way to that used in QPN4M. It should be preferred to the QPN4M in cases where Eulerian description (with a current configuration taken as reference) is more appropriate than the co-rotational description (e.g. inflation problems).

Restrictions

- Avoid excessive aspect ratio
- Avoid non-uniform initial and thermal strains with coarse meshes.

2D Plane Strain Continuum Crack Tip Elements

General

TNK6

Crack specified at Node 1

QNK8

Crack specified at Node 1

Element Group 2D Continuum

Element Subgroup Element Description

Number Of
Nodes
Freedoms
Node

A family of 2D isoparametric crack tip elements where the crack tip can be located at any corner node. The mid-side nodes are moved to the quarter points to produce a singularity at the crack tip. The strains vary as the square root of $1 / R$, where R is the distance from the crack tip. These elements are used at the crack tip only and should be mixed with the higher order plane strain continuum elements. The elements are numerically integrated. 6 or 8 , numbered anticlockwise.

U, V: at each node.
X, Y : at each node.
Plane Strain Continuum

Coordinates

	Orthotropic:	MATERIAL PROPERTIES ORTHOTROPIC PLANE STRAIN (Elastic: Orthotropic Plane Strain)
	Anisotropic:	MATERIAL PROPERTIES ANISOTROPIC 4 (Not supported in LUSAS Modeller)
	Rigidities.	RIGIDITIES 4 (Not supported in LUSAS Modeller)
Matrix	Not applicable	
Joint	Not applicable	
Concrete		MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi-Crack Concrete)
Elasto-Plastic	Stress resultant:	Not applicable.
	Interface:	MATERIAL PROPERTIES NONLINEAR 27
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker-Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	Mohr-Coulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Modified MohrCoulomb:	MATERIAL PROPERTIES MODIFIED MOHR_COULOMB (Elastic: Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
	Modified Camclay	MATERIAL PROPERTIES CAM_CLAY MODIFIED (Elastic: Isotropic, Plastic)
	Optimised Implicit Von Mises:	MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
	Volumetric Crushing:	MATERIAL PROPERTIES NONLINEAR 81 (Volumetric Crushing or Crushable Foam)

Stress PotentialCreepAASHTO
CEB-FIPChineseEurocode
DamageIRC
Viscoelastic
Shrinkage
Ko Initialisation Applicable
Rubber Not applicable
Generic Polymer Isotropic
MATERIAL PROPERTIES NONLINEAR 89(Generic Polymer Model)
Composite Not applicable
LoadingPrescribed Value PDSP, TPDSPConcentrated CLLoadsElement Loads Not applicable.Distributed Loads UDLFLDFLDGBody Forces CBFBFP, BFPEVelocities VELOAccelerations ACCEInitial SSI, SSIE
Stress/StrainsSSIG
Residual Stresses SSR, SSRE
SSRGTarget TSSIE, TSSIAStress/Strains

Temperatures TEMP, TMPE

Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Not applicable.
Temp Dependent Not applicable. Loads

Prescribed variable. U, V: at nodes. Concentrated loads. Px, Py: at nodes.

Not applicable.
Face loads. Px, Py: local face axis pressures at nodes.

Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodes
Constant body forces for element. Xcbf, Ycbf, 0, 0 , $\Omega \mathrm{z}, \alpha \mathrm{z}$
Body force potentials at nodes/for element. 0, 0, 0, $\varphi 4, \mathrm{Xcbf}, \mathrm{Ycbf}$
Velocities. Vx, Vy: at nodes.
Acceleration Ax, Ay: at nodes.
Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.

Initial stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}$: global stresses. $\varepsilon x, \varepsilon y, \gamma \mathrm{xy}$: global strains.

Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma x y$, σ : global stresses.

Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y, \sigma z:$ global stresses.
Target stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.

Target stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0$, 0,0

LUSAS Output

Solver Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)

Strain: $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon \max , \varepsilon \min , \beta, \varepsilon s, \varepsilon e$
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness	Default.	6-point (TNK6), 3x3 (QNK8)
	Fine (see Options).	12-point (TNK6)
Mass	Default.	6-point (TNK6), 3x3 (QNK8)
	Fine (see Options).	12-point (TNK6)

Mass Modelling

Consistent mass (default).
\square Lumped mass.

Options

18 Invokes finer integration rule.

$$
\begin{aligned}
\mathbf{5 4} & \text { Updated Lagrangian geometric nonlinearity. } \\
\mathbf{5 5} & \text { Output strains as well as stresses. } \\
\mathbf{8 7} & \text { Total Lagrangian geometric nonlinearity. } \\
\mathbf{9 1} & \text { Invokes fine integration rule for mass matrix. } \\
\mathbf{1 0 5} & \text { Lumped mass matrix. } \\
\mathbf{1 2 3} & \text { Clockwise node numbering. } \\
\mathbf{1 3 9} & \text { Output yielded Gauss points only. } \\
\mathbf{1 6 7} & \text { Eulerian geometric nonlinearity. } \\
\mathbf{2 2 9} & \text { Co-rotational geometric nonlinearity. }
\end{aligned}
$$

Notes on Use

1. The element formulations are based on the standard isoparametric approach. Moving the mid-side nodes to the quarter points creates a singularity with theoretically infinite stress at the corner node.
2. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
3. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
4. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.

Restrictions

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

Elements QNK8 and TNK6 are specifically designed for application to fracture mechanics problems and may be used to model the singularities that occur at the crack tip. The mid-side nodes near the crack tip are shifted to the quarter point. This ensures a singularity is present at the crack tip and that the strains vary as 1 /square root of r where r is the distance from the crack tip.The triangular TNK6 element is more effective than the quadrilateral element.

2D Plane Strain Explicit Dynamics Elements

General

Element Name

TPN3E

Element Group

2D Continuum
Element
Subgroup
Element
Description
A family of 2D isoparametric elements for explicit dynamic analyses. The

Number Of
Nodes
Freedoms
Node
elements are numerically integrated.
3 or 4 numbered anticlockwise.
U, V : at each node.
X, Y : at each node.
Plane Strain Continuum

Geometric Properties

Not applicable (a unit thickness is assumed).

Material Properties

Linear Isotropic:
Orthotropic
MATERIAL PROPERTIES (Elastic: Isotropic)
MATERIAL PROPERTIES ORTHOTROPIC
PLANE STRAIN (Elastic: Orthotropic Plane Strain)
Anisotropic: Not applicable.
Rigidities. Not applicable.
Matrix Not applicable
Joint Not applicable
Concrete Not applicable

Elasto-Plastic	Stress resultant:	Not applicable.
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker- Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	MohrCoulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Modified	MATERIAL PROPERTIES
	Mohr-	MODIFIED MOHR_COULOMB (Elastic:
	Coulomb:	Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
	Optimised Implicit Von Mises:	MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
	Volumetric Crushing:	MATERIAL PROPERTIES NONLINEAR 81 (Volumetric Crushing or Crushable Foam)
	Stress	STRESS POTENTIAL VON_MISES, HILL,
	Potential	HOFFMAN (Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
Creep		CREEP PROPERTIES (Creep) (see Notes)
Damage		DAMAGE PROPERTIES SIMO, OLIVER (Damage)
Viscoelastic		VISCO ELASTIC PROPERTIES
Shrinkage	Not applicable	
Ko Initialisation	Not applicable	
Rubber	Not applicable	
Generic Polymer	Not applicable	
Composite	Not applicable	

Loading

Prescribed Value	PDSP, TPDSP
Concentrated	CL
Loads	
Element Loads	Not
	applicable.

Prescribed variable. U, V: at each node.
Concentrated loads. Px, Py: at each node.

Distributed Loads	UDL	Not applicable.
	FLD	Face loads. Px, Py: local face axis pressures at

LUSAS Output

Solver

Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)

Strain: $\varepsilon x, \varepsilon y, \gamma \mathrm{xy}, \varepsilon \max , \varepsilon \min , \beta, \varepsilon s, \varepsilon \mathrm{e}$

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.
Updated Not applicable.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default. 1-point (see Notes).
Fine. As default.
Mass Default. 1-point (see Notes).
Fine. As default.

Mass Modelling

L Lumped mass only (see Notes).

Options

55 Output strains as well as stresses.
105 Lumped mass matrix (see Notes).
139 Output yielded Gauss points only.

Notes on Use

1. The element formulations are based on the standard
2. The system parameter HGVISC is used to restrict element mechanisms due to underintegration. The default value is usually sufficient.
3. The bulk viscosity coefficients are used to restrict numerical oscillations due to the traversal of stress waves. The default bulk viscosity coefficients (BULKLF and BULKQF) may be altered as SYSTEM parameters.
4. These elements must be used with a dynamic central difference scheme and a lumped mass matrix in order to obtain the maximum efficiency from the numerical algorithms.
5. These elements are not applicable for static or eigenvalue analyses.
6. Automatic time step calculations are implemented.
7. As the element geometry is always updated in an explicit dynamic analysis, a nonlinear solution is obtained. When using explicit dynamics elements NONLINEAR CONTROL must be specified.
8. If CREEP PROPERTIES are defined, explicit time integration must be specified in VISCOUS CONTROL.
9. Non-conservative loading is invoked when the FLD loading facility is applied.
10. Rayleigh damping coefficients are not supported by these elements.
11. Constraint equations are not available for use with these elements.
12. Nodes must be specified in an anticlockwise order. Option 123 is not applicable for this element. When using Modeller ensure surface normal is in the +ve z direction.

Restrictions

\square Avoid excessive aspect ratio

Recommendations on Use

Explicit dynamics elements may be used to define surface boundaries which will be active in a slideline analysis.

2D Plane Strain Two Phase Continuum Elements

General

Element Name

TPN6P

QPN8P

Element Group 2D Continuum

Element
Plane Strain Continuum
Subgroup
Element
A family of 2D isoparametric elements with higher order models capable
Description of modelling curved boundaries. The elements are numerically integrated.
Number Of
6 or 8 numbered anticlockwise.
Nodes
Freedoms
Node
$\mathrm{U}, \mathrm{V}, \mathrm{P}$ at corner nodes. U, V at midside nodes.
X, Y : at each node.
Coordinates

Geometric Properties

Not applicable (a unit thickness is assumed).

Material Properties

Linear Isotropic:
MATERIAL PROPERTIES (Elastic: Isotropic)
Orthotropic:
Anisotropic:
MATERIAL PROPERTIES ORTHOTROPIC PLANE STRAIN (Elastic: Orthotropic Plane Strain)
MATERIAL PROPERTIES ANISOTROPIC 4 (Not supported in LUSAS Modeller)
Rigidities.
Matrix Not applicable
Joint Not applicable
Concrete
MATERIAL PROPERTIES NONLINEAR 109

Elasto-Plastic Stress resultant: Tresca:

DruckerPrager:

MohrCoulomb:

Modified MohrCoulomb:

Modified
Cam-clay
Optimised Implicit Von Mises:

Volumetric
Crushing:
Interface
Stress
Potential
(Elastic: Isotropic, Plastic: Smoothed Multi Crack Concrete)
Not applicable.
MATERIAL PROPERTIES NONLINEAR 61
(Elastic: Isotropic, Plastic: Tresca, Hardening:
Isotropic Hardening Gradient, Isotropic Plastic
Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64
(Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
MATERIAL PROPERTIES MODIFIED MOHR_COULOMB (Elastic: Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
MATERIAL PROPERTIES CAM_CLAY MODIFIED (Elastic: Isotropic, Plastic)
MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
MATERIAL PROPERTIES NONLINEAR 81 (Volumetric Crushing or Crushable Foam)
MATERIAL PROPERTIES NONLINEAR 27
STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)
VISCOELASTIC PROPERTIES
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Ko Initialisation Not applicable Rubber Not applicable Generic Polymer

MATERIAL PROPERTIES NONLINEAR 89
(Generic Polymer Model)

Loading

Prescribed Value PDSP, TPDSP
Concentrated CL Loads
Element Loads Not applicable. Distributed Loads UDL FLD

FLDG
Body Forces CBF

BFP, BFPE

Velocities VELO
Accelerations ACCE
Initial SSI, SSIE
Stress/Strains

SSIG

Residual Stresses SSR, SSRE

SSRG

Target TSSIE, TSSIA Stress/Strains

TSSIG

Temperatures TEMP, TMPE
Overburden Applicable.

Prescribed variable. U, V, P at corner nodes. U, V at midside nodes.
Concentrated loads. Px, Py, Q at corner nodes. Px, Py at midside nodes.

Not applicable.
Face Loads. Px, Py, Q: face pressures/flux per unit area at corner nodes relative to local face axes. Px, Py: face pressures at midside nodes relative to local face axes.
Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodes
Constant body forces for element. Xcbf, Ycbf, 0, 0 , $\Omega \mathrm{z}, \alpha \mathrm{z}, \mathrm{gx}, \mathrm{gy}$ (see Notes on Use)
Body force potentials at nodes/for element. 0, 0, 0, $\varphi 4, \mathrm{Xcbf}, \mathrm{Ycbf}, \mathrm{gx}, \mathrm{gy}$ (see Notes on Use)
Velocities. Vx, Vy: at nodes.
Acceleration Ax, Ay: at nodes.
Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma \mathrm{xy}, \sigma \mathrm{z}, \sigma \mathrm{p}$ global stresses. $\mathcal{\varepsilon}, \varepsilon \mathrm{y}, \gamma \mathrm{xy}$: global strains.

Initial stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}, \sigma \mathrm{p}:$ global stresses. $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \gamma \mathrm{xy}$: global strains.
Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}, \sigma \mathrm{p}$: global stresses.
Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y, \sigma z$, σ p global stresses.
Target stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma \mathrm{xy}, \sigma \mathrm{z}, \sigma \mathrm{p}$ global stresses. $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \gamma \mathrm{xy}$: global strains.

Target stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}, \sigma \mathrm{p}:$ global stresses. $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \gamma \mathrm{xy}$: global strains.
Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0$, 0,0
Phreatic Surface Applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.
Loads

LUSAS Output

Solver
 Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma p, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)

Strain: $\varepsilon x, \varepsilon y, \gamma \mathrm{xy}, \varepsilon z=0, \varepsilon \mathrm{v}, \varepsilon \max , \varepsilon \mathrm{min}, \beta, \varepsilon \mathrm{s}, \varepsilon \mathrm{e}$
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

\square Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness	Default.	3-point (TPN6P), 2x2 (QPN8P)
	Fine (see Options).	3x3 (QPN8P)
Mass	Default.	3-point (TPN6P), 2x2 (QPN8P)
	Fine (see Options).	3×3 (QPN8P)

Mass Modelling
\square Consistent mass (default).
\square Lumped mass.
Options
18 Invokes finer integration rule.
36 Follower loads.
54 Updated Lagrangian geometric nonlinearity
55 Output strains as well as stresses
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.
139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.
229 Co-rotational geometric nonlinearity.

Notes on Use

1. Two phase material parameters must be used with these elements for undrained and consolidation analysis.
2. The element formulations are based on the standard isoparametric approach. The variation of isoparametric stresses and pore pressures within an element can be considered linear.
3. All elements pass the patch test.
4. Option 123 will not operate on a mesh with a mixture of clockwise and anti-clockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
5. Non-conservative loading is available with these elements when using Updated Lagrangian, Eulerian or co-rotational (with OPTION 36) geometric nonlinear formulations together with the FLD loading facility.
6. The global components of gravity acting on the fluid phase are defined by $g x$ and gy under CBF and BFP loading.

Restrictions

Ensure mid-side node centrality
\square Avoid excessive element curvature
\square Avoid excessive aspect ratio

2D Axisymmetric Solid Continuum Elements

General

TAX3

QAX4

TAX6

QAX8

Element Group 2D Continuum

Element Axisymmetric Solid

Subgroup

Element
Description
A family of 2D isoparametric elements with higher order models capable of modelling curved boundaries. The formulations apply over a unit radian segment of the structure and the loading and boundary conditions are axisymmetric. By default, the Y -axis is taken as the axis of symmetry. The elements are numerically integrated.
Number Of
$3,4,6$, or 8 numbered anticlockwise.
Nodes
Freedoms U, V: at each node.
Node X, Y: at each node.
Coordinates

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear Isotropic:
Orthotropic:

Anisotropic:

Rigidities.
Matrix Not applicable Joint Not applicable Concrete

Llasto-Plastic
Stress resultant:
Interface:
Tresca:

Drucker-Prager:

Mohr-Coulomb:

Modified MohrCoulomb:

Modified Cam-
clay
Optimised Implicit Von
Mises:
Volumetric

MATERIAL PROPERTIES (Elastic: Isotropic) MATERIAL PROPERTIES ORTHOTROPIC AXISYMMETRIC (Elastic: orthotropic Axisymmetric)
MATERIAL PROPERTIES ANISOTROPIC 4 (Not supported in LUSAS Modeller)
Not applicable.

MATERIAL PROPERTIES NONLINEAR 105
(Elastic: Isotropic, Plastic: Transient Smoothed Multi-Crack Concrete)
MATERIAL PROPERTIES NONLINEAR 109
(Elastic: Isotropic, Plastic: Smoothed Multi-Crack Concrete)
Not applicable.
MATERIAL PROPERTIES NONLINEAR 27.
MATERIAL PROPERTIES NONLINEAR 61
(Elastic: Isotropic, Plastic: Tresca, Hardening:
Isotropic Hardening Gradient, Isotropic Plastic
Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64
(Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
MATERIAL PROPERTIES
MODIFIED MOHR_COULOMB (Elastic:
Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
MATERIAL PROPERTIES CAM CLAY MODIFIED (Elastic: Isotropic, Plastic)
MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
MATERIAL PROPERTIES NONLINEAR 81

	Crushing: Stress Potential	(Volumetric Crushing or Crushable Foam) STRESS POTENTIAL VON_MISES, HILL, HOFFMAN (Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
Creep		CREEP PROPERTIES (Creep)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEBFIP (Concrete creep model to CEB-FIP Model Code 1990)
	AASHTO	MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEBFIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE (Chinese creep model to Chinese Code of Practice)
	Eurocode	MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)
	IRC	MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC code of Practice)
Damage		DAMAGE PROPERTIES SIMO, OLIVER (Damage)
Viscoelastic		VISCO ELASTIC PROPERTIES
Shrinkage		SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER
Ko Initialisation	Applicable	
Rubber	Not applicable	
Generic Polymer	Isotropic	MATERIAL PROPERTIES NONLINEAR 89 (Generic Polymer Model)
Composite	Not applicable	

Loading

Prescribed Value PDSP, TPDSP Concentrated CL Loads
Element Loads Not applicable.
Distributed Loads UDL
FLD

FLDG
Body Forces CBF

BFP, BFPE

Velocities VELO
 Accelerations ACCE
 Initial SSI, SSIE
 Stress/Strains

SSIG

Residual Stresses SSR, SSRE

SSRG

Target TSSIE, TSSIA Stress/Strains

TSSIG

Temperatures TEMP, TMPE

Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Not applicable.
Temp Dependent Not applicable. Loads

Prescribed variable. U, V: at nodes.
Concentrated loads. Px, Py: force per unit radian at nodes.

Not available.
Face loads. Px, Py: local face pressures at nodes (force per unit area).

Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodes
Constant body forces for element. Xcbf, Ycbf, Ωx,
$\Omega \mathrm{y}$ (angular velocity must be applied about axis of symmetry), 0, 0 .
Body force potentials at nodes/for element. 0, 0, 0, $\varphi 4, \mathrm{Xcbf}, \mathrm{Ycbf}$
Velocities. Vx, Vy: at nodes.
Acceleration Ax, Ay: at nodes.
Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:$ global strains.

Initial stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}$: global stresses. $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \gamma \mathrm{xy}, \varepsilon \mathrm{z}$: global strains.
Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma x y$, σ z: global stresses.

Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y, \sigma z$: global stresses.
Target stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:$ global strains.

Target stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}$: global stresses. $\varepsilon x, \varepsilon y, \gamma \mathrm{xy}, \varepsilon z$: global strains.
Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0$, 0, 0

LUSAS Output

Solver
Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)
Strain: $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \gamma \mathrm{xy}, \varepsilon \mathrm{z}, \varepsilon \max , \varepsilon \mathrm{min}, \beta, \varepsilon \mathrm{s}, \varepsilon \mathrm{e}$
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 1-point (TAX3), 3-point (TAX6), 2x2 (QAX4, QAX8)
Fine (see Options). $\quad 3 \times 3$ (QAX8), 3-point (TAX3).
Mass Default. 1-point (TAX3), 3-point (TAX6), 2x2 (QAX4, QAX8)
Fine (see Options). 3×3 (QAX8), 3-point (TAX3).

Mass Modelling

\square Consistent mass (default).

- Lumped mass.

Options

18 Invokes finer integration rule.
$47 \quad$ X-axis taken as axis of symmetry
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.
139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of stresses within an element can be regarded as constant for the lower order (corner node only) elements, and linear for the higher order (mid-side node) elements.
2. All elements pass the patch test.
3. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
4. Option 123 will not operate on a mesh with a mixture of clockwise and anti-clockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
5. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
6. The maximum and minimum principal stress computations for axisymmetric elements do not include the $\sigma \mathrm{z}$ term as this is implicitly a principal stress in a biaxial stress field.
7. An initial stress/strain or thermal load that varies across an element should not be applied to this element. A limitation of the standard isoparametric approach when used for lower order elements is that only constant stress/strain fields can be imposed correctly.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature
- Avoid excessive aspect ratio

Recommendations on Use

- The 8 -noded element with a $2 * 2$ Gauss rule is usually the most effective element, as the under-integration of the stiffness matrix prevents locking, which may occur either when the element is subjected to parasitic shear, or as the material reaches the incompressible limit (elasto-plasticity). The Gauss point stresses are also sampled at the most accurate locations for the element. However, the element does possess one spurious zero energy mode. This mode is very rarely activated in linear analysis, but it may occur in both materially and geometrically nonlinear analyses. Therefore, a careful examination of the solution should be performed, to check for spurious stress oscillations and peculiarities in the deformed configuration.
- The 8 -noded element with a $3 * 3$ Gauss rule may be used if a spurious mechanism is excited with the $2 * 2$ Gauss rule.
- The 4-noded element should not be used for analyses where in-plane bending effects are significant as the element tends to lock in parasitic shear.

2D Axisymmetric Solid Continuum Element with Enhanced Strains

General

QAX4M

Element Group Element Subgroup
 Element

Description
A 2D isoparametric element with an assumed strain field. This mixed assumed strain element demonstrates a superior performance to QAX4 (see Notes). The formulations apply over a unit radian segment of the structure, and the loading and boundary conditions are axisymmetric. By default, the Y -axis is taken as the axis of symmetry. The element is numerically integrated.
4, numbered anticlockwise. Nodes Freedoms
Node
U, V : at each node.
X, Y : at each node.
2D Continuum
Axisymmetric Solid

Number Of

X, Y: at each node.
Coordinates

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear Isotropic:
 MATERIAL PROPERTIES (Elastic: Isotropic)
 Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC AXISYMMETRIC (Elastic: Orthotropic Axisymmetric)

	Anisotropic:	MATERIAL PROPERTIES ANISOTROPIC 4 (Not supported in LUSAS Modeller)
	Rigidities.	Not applicable
Matrix	Not applicable	
Joint	Not applicable	
Concrete		MATERIAL PROPERTIES NONLINEAR 105
		(Elastic: Isotropic, Plastic: Transient Smoothed Multi-
		Crack Concrete)
		MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi-Crack Concrete)
Elasto-Plastic	Stress resultant:	Not applicable.
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	DruckerPrager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	MohrCoulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Modified	MATERIAL PROPERTIES
	Mohr-	MODIFIED MOHR_COULOMB (Elastic:
	Coulomb:	Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
	Modified	MATERIAL PROPERTIES CAM_CLAY
	Cam-clay	MODIFIED (Elastic: Isotropic, Plastic)
	Optimised	MATERIAL PROPERTIES NONLINEAR 75
	Implicit Von	(Elastic: Isotropic, Plastic: Von Mises, Hardening:
	Mises:	Isotropic \& Kinematic)
	Volumetric	MATERIAL PROPERTIES NONLINEAR 81
	Crushing:	(Volumetric Crushing or Crushable Foam)
	Stress	STRESS POTENTIAL VON_MISES, HILL,
	Potential	HOFFMAN
		(Isotropic: von Mises, Modified von Mises
		Orthotropic: Hill, Hoffman)
Creep		CREEP PROPERTIES (Creep)
	AASHTO	MATERIAL PROPERTIES NONLINEAR 86
		AASHTO
		(Concrete creep model to AASHTO code of

IRC
Damage
Viscoelastic
Shrinkage
Ko Initialisation Applicable
Rubber Not applicableGeneric Polymer Isotropic
Chinese
Eurocode
MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP(Concrete creep model to CEB-FIP Model Code1990)
MATERIAL PROPERTIES NONLINEAR 86CHINESE(Chinese creep model to Chinese Code of Practice)
MATERIAL PROPERTIES NONLINEAR 86EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC code of Practice)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)
VISCO ELASTIC PROPERTIES GENERAL, USER
MATERIAL PROPERTIES NONLINEAR 89(Generic Polymer Model)

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V: at nodes.
Concentrated CLLoadsConcentrated loads. Px, Py: force per unit radian atnodes.
Element Loads Not applicable.
Distributed Loads UDL Not available.FLDFace loads. Px, Py: local face pressures at nodes(force per unit area).
FLDG
Body Forces CBF
Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodesConstant body forces for element. Xcbf, Ycbf, Ω x,$\Omega \mathrm{y}$ (angular velocity must be applied about axis ofsymmetry), 0,0.
BFP, BFPE Body force potentials at nodes/for element. 0, 0, 0,$\varphi 4$, Xcbf, Ycbf

Velocities VELO
Accelerations ACCE
Initial SSI, SSIE
Stress/Strains

SSIG

Residual Stresses SSR, SSRE

SSRG

Target TSSIE, TSSIA Stress/Strains

TSSIG

Temperatures TEMP, TMPE
Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.
Loads

Velocities. Vx, Vy: at nodes.
Acceleration Ax, Ay: at nodes.
Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma \mathrm{xy}, \sigma \mathrm{z}$: global stresses. $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \gamma \mathrm{xy}, \varepsilon \mathrm{z}:$ global strains.

Initial stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}$: global stresses. $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \gamma \mathrm{xy}, \varepsilon \mathrm{z}$: global strains.
Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}$: global stresses.
Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y, \sigma z$: global stresses.
Target stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:$ global strains.
Target stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}$: global stresses. $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \gamma \mathrm{xy}, \varepsilon \mathrm{z}$: global strains.
Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0$, 0,0

LUSAS Output

Solver

Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma \max , \sigma m i n, \beta, \sigma s, \sigma e$ (see description of principal stresses)
Strain: $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z, \varepsilon m a x, \varepsilon m i n, \beta, \varepsilon s, \varepsilon e$
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).
Sign ConventionStandard 2D continuum element
Formulation
Geometric Nonlinearity
Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
LagrangianCo-rotational Not applicable.
Integration Schemes
Stiffness Default. 2×2
Fine. As default.
Mass Default. 2x2
Fine. As default.
Mass Modelling
\square Consistent mass (default).
\square Lumped mass.
Options
$47 \quad$ X-axis taken as axis of symmetry
54 Updated Lagrangian geometric nonlinearity
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.
139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.Eulerian For large displacements, large rotations and moderately large strains.

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of stresses within an element can be regarded as linear.
2. All elements pass the patch test.
3. The strain field for this element consists of two parts: the compatible strains derived from an assumed displacement field and the assumed enhanced strains; see LUSAS Theory Manual. The assumed enhanced strain field is defined using 5 parameters for both linear and nonlinear applications.
4. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
5. Option 123 will not operate on a mesh with a mixture of clockwise and anti-clockwise elements, it will only work if every element is numbered clockwise. The best way to avoid a mixture is to check and appropriately reverse the surface definitions in the pre-processing stage of modelling.
6. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
7. The maximum and minimum principal stress computations for axisymmetric elements do not include the σz term as this is implicitly a principal stress in a biaxial stress field.
8. Convergence difficulties can sometimes arise when using enhanced strain elements with nonlinear materials, particularly if the material is elastic-perfectly plastic or if a very shallow hardening curve is defined. In such cases it is recommended that the standard element formulation is used.
9. This element exhibits an improved performance when compared with its parent element QAX4. The integration rules are the same as the parent element. The elements do not suffer from locking due to parasitic shear or when the material approaches the incompressible limit. The elements are also free of any zero energy modes.
10. In analyses where significant in-plane bending is thermally induced it is recommended that a nonlinear solution is used. If a linear solution is required, then quadratic plane strain elements QPN8 are recommended.

Restrictions

\square Avoid excessive aspect ratio

2D Axisymmetric Solid Continuum Element for Large Strains

General

Element Name

QAX4L

Element Group

2D Continuum
Axisymmetric Solid
Subgroup
Element
Description
A 2D isoparametric element incorporating an internal pressure variable.
This element should be used for analyses involving large strains. The
formulations apply over a unit radian segment of the structure and the
loading and boundary conditions are axisymmetric. By default, the Y-axis is taken as the axis of symmetry. The element is numerically integrated.
Number Of
4, numbered anticlockwise.
Nodes
Freedoms U, V: at each node.
Node X, Y: at each node.
Coordinates

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear Not applicable
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Implicit MATERIAL PROPERTIES NONLINEAR 75

Optimised
Von Mises
Stress
Potential
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Ko Initialisation Not applicable Rubber Ogden
Mooney-
Rivlin
Neo-Hookean
Hencky
Generic Polymer Not applicable
Composite Not applicable
(Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic)
STRESS POTENTIAL VON_MISES (Isotropic: von Mises)
\section*{MATERIAL PROPERTIES RUBBER OGDEN (Rubber: Ogden)

MATERIAL PROPERTIES RUBBER MOONEY_RIVLIN (Rubber: Mooney-Rivlin)

MATERIAL PROPERTIES RUBBER NEO_HOOKEAN (Rubber: Neo-Hookean)

MATERIAL PROPERTIES RUBBER HENCKY (Rubber: Hencky)}
\section*{Loading}
Prescribed Value PDSP, TPDSP
Concentrated CL
Loads
Element Loads Not applicable.
Distributed Loads U
FLD
FLDG
Body Forces CBF
BFP, BFPE
Velocities VELO
Accelerations ACCE
Initial SSI, SSIE
Stress/Strains
Prescribed variable. U, V: at nodes.
Concentrated loads. Px, Py: force per unit radian at nodes.
Not available.
Face loads. Px, Py: local face pressures at nodes (force per unit area).
Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodes
Constant body forces for element. Xcbf, Ycbf, Ω x, Ωy, (angular velocity must be applied about axis of symmetry), 0,0.
Body force potentials at nodes/for element. 0, 0, 0, $\varphi 4, \mathrm{Xcbf}, \mathrm{Ycbf}$
Velocities. Vx, Vy: at nodes.
Acceleration Ax, Ay: at nodes.
Initial stresses/strains at nodes/for element. σx, $\sigma y, \sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:$

global strains.
SSIG Initial stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y, \sigma z$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:$ global strains.

Residual Stresses SSR, SSRE

SSRG

Target TSSIE, TSSIA Stress/Strains

TSSIG

Temperatures TEMP, TMPE

Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.
Loads
Residual stresses at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses.
Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}$: global stresses.
Target stresses/strains at nodes/for element. σx, $\sigma y, \sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:$ global strains.
Target stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:$ global strains.
Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}$, $0,0,0$

LUSAS Output

Solver \quad Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)

Principal stretches, $\lambda_{1}, \lambda_{2}, \lambda_{3} 1, \theta \lambda$, det F. Where λ_{i} are the principal stretches, $\theta \lambda$ the angle between the maximum principal stretch and the global X axis, and $\operatorname{det} \mathrm{F}$ the determinant of the deformation gradient or volume ratio.
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.
Updated Not applicable.
Lagrangian
Eulerian For large displacements and large strains.
Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 2x2
Fine. As default.
Mass Default. 2x2
Fine. As default.

Mass Modelling

\square Consistent mass (default).

- Lumped mass.

Options

47 X-axis taken as axis of symmetry.
55 Output stretches as well as stresses.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix
123 Clockwise node numbering.

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of stresses within an element can be regarded as linear.
2. The element passes the large strain patch test for rubber.
3. Non-conservative loading is available with this element when using FLD loading.
4. The stresses output are Kirchhoff stresses (see LUSAS Theory Manual).
5. Stretch output consists of the principal stretches and the angle defining the principal directions. The value of $\operatorname{det} \mathrm{F}=\lambda_{1} \lambda_{2}$ is also output. (Refer to the LUSAS Theory Manual for more details.)
6. Option 123 will not operate on a mesh with a mixture of clockwise and anti-clockwise elements, it will only work if every element is numbered clockwise. The best way to avoid a mixture is to check and appropriately reverse the surface definitions in the pre-processing stage of modelling.
7. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
8. The maximum and minimum principal stress computations for axisymmetric elements do not include the σz term as this is implicitly a principal stress in a biaxial stress field.

Restrictions

Avoid excessive aspect ratio
Avoid non-uniform initial and thermal strains with coarse meshes

2D Axisymmetric Solid Continuum Crack Tip Elements

General

Element Name

TXK6

Crack specified at Node 1

QXK8

Crack specified at Node 1

Element Group

Element
Subgroup
Element
Description
A family of 2D isoparametric crack tip elements where the crack tip can be located at any node. The mid-side nodes are moved to the quarter points to produce a singularity at the crack tip. The strains vary as the square root of $1 / \mathrm{R}$, where R is the distance from the crack tip. These elements are used at the crack tip only and should be mixed with the higher order axisymmetric solid continuum elements. The formulations apply over a unit radian segment of the structure, and the loading and boundary conditions are axisymmetric. By default, the Y-axis is taken as the axis of symmetry. The elements are numerically integrated.
Number Of Nodes
Freedoms U, V: at each node.
Node X, Y : at each node.
2D Continuum
Axisymmetric Solid

6 or 8 numbered anticlockwise.

Coordinates

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear Isotropic:
Orthotropic:
MATERIAL PROPERTIES (Elastic: Isotropic)
MATERIAL PROPERTIES ORTHOTROPIC

AXISYMMETRIC (Elastic: Orthotropic Axisymmetric)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 4 (Not supported in LUSAS Modeller)
Rigidities. Not applicable.
Matrix Not applicable
Joint Not applicable Concrete

Elasto-Plastic

Stress resultant:
Interface:
Tresca:
Tresca.
MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi-Crack Concrete)
Not applicable.
MATERIAL PROPERTIES NONLINEAR 27
MATERIAL PROPERTIES NONLINEAR 61
(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
Drucker-Prager: MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
Mohr-Coulomb: MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
Modified Mohr- MATERIAL PROPERTIES
Coulomb:

Modified Cam-
clay
Optimised
Implicit Von
Mises:
Volumetric
Crushing:
Stress Potential

Creep
AASHTO

MODIFIED MOHR_COULOMB (Elastic: Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
MATERIAL PROPERTIES CAM_CLAY MODIFIED (Elastic: Isotropic, Plastic)
MATERIAL PROPERTIES NONLINEAR 75
(Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
MATERIAL PROPERTIES NONLINEAR 81 (Volumetric Crushing or Crushable Foam)
STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)

CEB-FIP

Damage

IRC
Eurocode
Chinese

Viscoelastic
Shrinkage
Shrinkage Applicable
Rubber Not applicable Generic Polymer Isotropic

Composite Not applicable

MATERIAL PROPERTIES NONLINEAR 86 CEBFIP
(Concrete creep model to CEB-FIP Model Code 1990)

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86 IRC
(Concrete creep model to Indian IRC code of Practice)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)
VISCO ELASTIC PROPERTIES
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

MATERIAL PROPERTIES NONLINEAR 89 (Generic Polymer Model)

Loading

Prescribed PDSP, TPDSP Prescribed variable. U, V: at nodes.
Value
Concentrated CL Concentrated loads. Px, Py: at nodes. Loads
Element Loads Not applicable.
Distributed UDL Not applicable.
Loads
FLD
FLDG
Body Forces CBF

BFP, BFPE Body force potentials at nodes/for element. $0,0,0, \varphi_{4}$,

		Xcbf, Ycbf
Velocities	VELO	Velocities. Vx, Vy: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma \mathrm{xy}, \sigma \mathrm{z}$: global stresses. $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \gamma \mathrm{xy}, \varepsilon z$: global strains.
	SSIG	Initial stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z: ~ g l o b a l ~ s t r a i n s . ~$
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}$: global stresses.
	SSRG	Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y, \sigma z:$ global stresses.
Target Stress/Strains	TSSIE, TSSIA	Target stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:$ global strains.
	TSSIG	Target stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}$: global stresses. $\varepsilon x, \varepsilon y, \gamma \mathrm{xy}, \varepsilon z$: global strains.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0,0,0$
Overburden	Applicable.	
Phreatic Surface	Applicable.	
Field Loads	Not applicable.	
Temp	Not applicable.	
Dependent Loads		

LUSAS Output

Solver \quad Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)

Strain: $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z, \varepsilon m a x, \varepsilon m i n, \beta, \varepsilon s, \varepsilon e$
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

$$
\begin{aligned}
\text { Total Lagrangian } & \text { For large displacements and large rotations. } \\
\text { Updated } & \text { For large displacements and large rotations. } \\
\text { Lagrangian } & \\
\text { Eulerian } & \text { For large displacements, large rotations and moderately large strains. } \\
\text { Co-rotational } & \text { Not applicable. }
\end{aligned}
$$

Integration Schemes

Stiffness	Default.	6-point (TXK6), 3x3 (QXK8)
	Fine (see Options).	12-point (TXK6).
Mass (QXK8)		
	Default.	6-point (TXK6), 3x3 (QX8)
	Fine (see Options).	12-point (TXK6).

Mass Modelling

\square Consistent mass (default).

- Lumped mass.

Options

18 Invokes finer integration rule.
$47 \quad \mathrm{X}$-axis taken as axis of symmetry.
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix
123 Clockwise node numbering.
139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.

Notes on Use

1. The element formulations are based on the standard isoparametric approach. Moving the mid-side nodes to the quarter points creates a singularity with theoretically infinite stress at the corner node.
2. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
3. Option 123 will not operate on a mesh with a mixture of clockwise and anti-clockwise elements, it will only work if every element is numbered clockwise. The best way to avoid a mixture is to check and appropriately reverse the surface definitions in the pre-processing stage of modelling.
4. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
5. The maximum and minimum principal stress computations for axisymmetric elements do not include the σz term as this is implicitly a principal stress in a biaxial stress field.

Restrictions

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

The QXK8 and TXK6 elements are specifically designed for application to fracture mechanics problems and may used to model the singularities that occur at the crack tip. The mid-side nodes near the crack tip are shifted to the quarter point. This ensures a singularity is present at the crack tip and that the strains vary as 1 /square root of r where r is the distance from the crack tip. The triangular TPK6 element is more effective than the quadrilateral element.

2D Axisymmetric Solid Explicit Dynamics Elements

General

Element Name
TAX3E

QAX4E

Element Group

2D Continuum
Element
Subgroup
Element
Description
Axisymmetric Solid Continuum
A family of 2D isoparametric elements for explicit dynamic analyses.
The formulations apply over a unit radian segment of structure and loading boundary conditions are axisymmetric. By default, the Y-axis is taken as the axis of symmetry. The elements are numerically integrated.
Number Of 3 or 4 numbered anticlockwise.
Nodes
Freedoms U, V: at each node.
Node X, Y : at each node.
Coordinates

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
	Orthotropic:	MATERIAL PROPERTIES ORTHOTROPIC
		AXISYMMETRIC (Elastic: Orthotropic
		Axisymmetric)
	Anisotropic:	Not applicable
Rigidities.	Not applicable	

Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Stress Not applicable
resultant:
Tresca:
Drucker-
Prager:
Mohr-
Coulomb:
Modified
Mohr-
Coulomb:
Optimised Implicit Von
Mises:
Volumetric
Crushing:
Stress
Potential
Creep
AASHTO
CEB-FIP
Chinese

MATERIAL PROPERTIES NONLINEAR 61
(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64
(Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
MATERIAL PROPERTIES MODIFIED MOHR_COULOMB (Elastic:
Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
MATERIAL PROPERTIES NONLINEAR 81
(Volumetric Crushing or Crushable Foam)
STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises
Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep) (See Notes)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 CEBFIP
(Concrete creep model to CEB-FIP Model Code 1990)

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)
Eurocode

IRC

Damage
Viscoelastic
Shrinkage
Not applicable

Ko Initialisation

Rubber
Applicable
Not applicable
Generic Polymer Not applicable
Composite Not applicable
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)MATERIAL PROPERTIES NONLINEAR 86 IRC(Concrete creep model to Indian IRC code ofPractice)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)

Loading

Prescribed Value Concentrated Loads	$\begin{aligned} & \text { PDSP, TPDSP } \\ & \text { CL } \end{aligned}$	Prescribed variable. U, V: at each node. Concentrated loads. Px, Py: at each node.
Element Loads	Not applicable.	
Distributed Loads	UDL	Not applicable.
	FLD	Face loads. Px, Py: local face axis pressures at nodes.
	FLDG	Not applicable.
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, Ω x, Ωy (angular velocity must be applied about axis of symmetry), 0,0.
	BFP, BFPE	Body force potentials at nodes/for element. $0,0,0$, $\varphi 4$, Xcbf, Ycbf
Velocities	VELO	Velocities. Vx, Vy at nodes.
Accelerations	ACCE	Acceleration. Ax, Ay at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z$: global strains.
	SSIG	Initial stress/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}$: global stress. $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \gamma \mathrm{xy}, \varepsilon \mathrm{z}$: global strains.

Prescribed ValueConcentratedCLNotapplicable.LoadsFLDG
Body ForcesVelocitiesVELOAccelerationsACCESSI, SSIE

Not applicable.
Face loads. Px, Py: local face axis pressures at nodes.
Not applicable.
Constant body forces for element. Xcbf, Ycbf, $\Omega \mathrm{x}$,
Ωy (angular velocity must be applied about axis of symmetry), 0,0.
Body force potentials at nodes/for element. $0,0,0$, $\varphi 4$, Xcbf, Ycbf
Velocities. Vx, Vy at nodes.
Acceleration. Ax, Ay at nodes.
Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z$: global strains.

Initial stress/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$, σz : global stress. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:$ global strains.
Residual Stresses SSR, SSRE
SSRG
Target Not
Stress/Strains applicable.
Temperatures TEMP, TMPETemperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0$,0,0

Residual stresses at nodes/for element $\sigma x, \sigma y, \sigma x y$, σ z: global stresses.

Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y, \sigma z$: global stresses.

$$
0,0
$$

Overburden Not applicable
Phreatic Surface
Not applicable.
Field Loads Not applicable.
Temp Dependent Not
Loads applicable.

LUSAS Output

Solver
 Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma \max , \sigma \min , \beta, \sigma \mathrm{~s}, \sigma \mathrm{e}$ (see description of principal stresses)

Strain: $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z, \varepsilon m a x, \varepsilon m i n, \beta, \varepsilon s, \varepsilon e$
Modeller See Results Tables (Appendix K)

Local Axes

Not applicable.

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.
Updated Not applicable.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains. Co-rotational Not applicable.

Integration Schemes

Stiffness	Default. Mass Fine.	1-point (see Notes)
	Default.	1-point (see Notes)
	Fine.	As default.

Mass Modelling

\square Lumped mass (see Notes).

Options

$47 \quad \mathrm{X}$-axis taken as axis of symmetry
55 Output strains as well as stresses.
105 Lumped mass matrix (see Notes).
139 Output yielded Gauss points only.

Notes on Use

1. The element formulations are based on the standard
2. The system parameter HGVISC is used to restrict element mechanisms due to underintegration. The default value is usually sufficient.
3. The bulk viscosity coefficients are used to restrict numerical oscillations due to the traversal of stress waves. The default bulk viscosity coefficients (BULKLF and BULKQF) may be altered as a SYSTEM parameter.
4. These elements must be used with a dynamic central difference scheme and a lumped mass matrix.
5. These elements are not applicable to static or eigenvalue analyses.
6. Automatic time step calculations are implemented.
7. As the element geometry is always updated in an explicit dynamic analysis, a nonlinear solution is obtained. When using explicit dynamics elements Nonlinear Control must be specified.

8. If CREEP PROPERITES are defined explicit time integration must be specified in VISCOUS CONTROL.

9. Non-conservative loading is invoked when the face loading (FLD) is applied.
10. Rayleigh damping coefficients are not supported by these elements.
11. Constraint equations are not available for use with these elements.
12. Nodes must be specified in an anticlockwise order. Option 123 is not applicable for this element. When using Modeller ensure surface normal is in the +ve z direction.
13. The maximum and minimum principal stress computations for axisymmetric elements do not include the σz term as this is implicitly a principal stress in a biaxial stress field.

Restrictions

\square Avoid excessive aspect ratio

Recommendations on Use

Explicit dynamics elements may be used to define surface boundaries which will be active in a slideline analysis.

2D Axisymmetric Solid Two Phase Continuum Elements

General

Element Group 2D Continuum

Element Axisymmetric Solid
Subgroup
Element Description

A family of 2D isoparametric elements with higher order models capable of modelling curved boundaries. The formulations apply over a unit radian segment of the structure and the loading and boundary conditions are axisymmetric. By default, the Y -axis is taken as the axis of symmetry. The elements are numerically integrated.
Number Of
6 or 8 numbered anticlockwise.
Nodes
Freedoms
Node
$\mathrm{U}, \mathrm{V}, \mathrm{P}$: at corner nodes. U, V : at midside nodes.
X, Y : at each node.

Coordinates

QAX8P

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
	Orthotropic:	MATERIAL PROPERTIES ORTHOTROPIC
		AXISYMMETRIC (Elastic: orthotropic,
		Axisymmetric)

Not applicable.Matrix Not applicableJoint Not applicableConcreteElasto-Plastic Stress resultant:Interface:Tresca:Drucker-Prager:Mohr-Coulomb:
CreepModified Cam-clayOptimisedImplicit Von
Mises:VolumetricCrushing:Stress PotentialModified Mohr-Coulomb:
Damage
Viscoelastic
Shrinkage
Ko Initialisation ApplicableRubber Not applicableGeneric Polymer Isotropic
MATERIAL PROPERTIES NONLINEAR 109(Elastic: Isotropic, Plastic: Smoothed Multi-CrackConcrete)
Not applicable.
MATERIAL PROPERTIES NONLINEAR 27.
MATERIAL PROPERTIES NONLINEAR 61 61
(Elastic: Isotropic, Plastic: Tresca, Hardening:Isotropic Hardening Gradient, Isotropic PlasticStrain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64(Elastic: Isotropic, Plastic: Drucker-Prager,Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65(Elastic: Isotropic, Plastic: Mohr-Coulomb,Hardening: Granular with Dilation)
MATERIAL PROPERTIESMODIFIED MOHR_COULOMB (Elastic:Isotropic, Plastic: Mohr-Coulomb/Tresca, non-associative Hardening with tension/compressioncut-off)MATERIAL PROPERTIES CAM CLAYMODIFIED (Elastic: Isotropic, Plastic)
MATERIAL PROPERTIES NONLINEAR 75(Elastic: Isotropic, Plastic: Von Mises, Hardening:Isotropic \& Kinematic)
MATERIAL PROPERTIES NONLINEAR 81(Volumetric Crushing or Crushable Foam)STRESS POTENTIAL VON_MISES, HILL,HOFFMAN
(Isotropic: von Mises, Modified von MisesOrthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
DAMAGE PROPERTIES SIMO, OLIVER(Damage)
VISCO ELASTIC PROPERTIES
SHRINKAGE CEB_FIP_90, EUROCODE_2,GENERAL, USER
MATERIAL PROPERTIES NONLINEAR 89

(Generic Polymer Model)

Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL Loads

Element Loads Not applicable. Distributed Loads UDL

FLD

FLDG
Body Forces CBF

BFP, BFPE

Velocities VELO
 Accelerations ACCE
 Initial SSI, SSIE
 Stress/Strains

SSIG

Residual Stresses SSR, SSRE

SSRG

Target TSSIE, TSSIA Stress/Strains

Prescribed variable. U, V, P: at corner nodes. U, V:at midsaide nodes.
Concentrated loads. Px, Py, Q: force/flux per unit radian at corner nodes. Px,Py: force per unit radian at midside nodes.

Not available.
Face loads. Px, Py, Q: local face pressures/flux at corner nodes (force/flux per unit area). Px, Py: local face pressures at midside nodes.
Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodes
Constant body forces for element. Xcbf, Ycbf, Ωx, $\Omega \mathrm{y}$ (angular velocity must be applied about axis of symmetry), 0, 0, gx, gy. (See Notes on Use)
Body force potentials at nodes/for element. 0, 0, 0, $\varphi 4, \mathrm{Xcbf}, \mathrm{Ycbf}, \mathrm{gx}, \mathrm{gy}$. (See Notes on Use)
Velocities. Vx, Vy: at nodes.
Acceleration Ax, Ay: at nodes.
Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma \mathrm{xy}, \sigma \mathrm{z}, \sigma \mathrm{p}$: global stresses. $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \gamma \mathrm{xy}, \varepsilon z$: global strains.
Initial stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma \mathrm{z}, \sigma \mathrm{p}:$ global stresses. $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \gamma \mathrm{xy}, \varepsilon z$: global strains.

Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma x y$, $\sigma z, \sigma p:$ global stresses.

Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y, \sigma z$, σ p: global stresses.

Target stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z, \sigma p:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:$ global strains.
Target stresses/strains at Gauss points. $\sigma x, \sigma y, \sigma x y$,
$\sigma \mathrm{z}, \sigma \mathrm{p}:$ global stresses. $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \gamma \mathrm{xy}, \varepsilon z:$ global strains.
Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0, To, 0 , 0,0
Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.
Loads

LUSAS Output

Solver
Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma p, \sigma m a x, \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)

Strain: $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z, \varepsilon m a x, \varepsilon m i n, ~ \beta, \varepsilon s, \varepsilon e$
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational Not applicable.

Integration Schemes

Stiffness	Default.	3-point (TAX6P), 2x2 (QAX8P)
	Fine (see Options).	3×3 (QAX8P)
Mass	Default.	3-point (TAX6P), 2x2 (QAX8P)
	Fine (see Options).	3×3 (QAX8P)

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes finer integration rule.
$47 \quad$ X-axis taken as axis of symmetry
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.
139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.

Notes on Use

1. Two phase material parameters must be used with these elements for undrained and consolidation analysis.
2. The element formulations are based on the standard isoparametric approach. The variation of isoparametric stresses and pore pressures within an element can be regarded as linear.
3. All elements pass the patch test.
4. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
5. Option 123 will not operate on a mesh with a mixture of clockwise and anti-clockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
6. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
7. The global components of gravity acting on the fluid phase are defined by $g x$ and gy under CBF and BFP loading.
8. The maximum and minimum principal stress computations for axisymmetric elements do not include the $\square \mathrm{z}$ term as this is implicitly a principal stress in a biaxial stress field.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- The 8 -noded element with a $2 * 2$ Gauss rule is usually the most effective element, as the under-integration of the stiffness matrix prevents locking, which may occur either when the element is subjected to parasitic shear, or as the material reaches the incompressible limit (elasto-plasticity). The Gauss point stresses are also sampled at the most accurate locations for the element. However, the element does possess one spurious zero energy mode. This mode is very rarely activated in linear analysis, but it may occur in both materially and geometrically nonlinear analyses. Therefore, a careful examination of the solution should be performed, to check for spurious stress oscillations and peculiarities in the deformed configuration.
- The 8 -noded element with a $3 * 3$ Gauss rule may be used if a spurious mechanism is excited with the $2 * 2$ Gauss rule.

2D Axisymmetric Fourier Ring Elements

General

Element Group 2D Continuum

Element Subgroup

Element
Description

Number Of
Nodes
Freedoms

A family of 2D isoparametric elements with higher order models capable of modelling curved boundaries. The structure must be axisymmetric but
the loading need not be. By default the Y-axis is taken to be the axis of of modelling curved boundaries. The structure must be axisymmetric but
the loading need not be. By default the Y-axis is taken to be the axis of symmetry. The elements are numerically integrated.
$3,4,6$ or 8 numbered anticlockwise.

Node X, Y: at each node.
Fourier Ring

U, V, W: at each node (in cylindrical coordinates, see local coordinates).

Geometric Properties

Not applicable.

Material Properties

Linear Isotropic:
Orthotropic:

Anisotropic:
Rigidities.
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Ko Initialisation Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable
MATERIAL PROPERTIES (Elastic: Isotropic)
MATERIAL PROPERTIES ORTHOTROPIC
(Elastic: Orthotropic Plane Stress)
MATERIAL PROPERTIES ORTHOTROPIC
SOLID (Elastic: Orthotropic Solid)
Not applicable
Not applicable

MATERIAL PROPERTIES (Elastic: Isotropic) MATERIAL PROPERTIES ORTHOTROPIC (Elastic: Orthotropic Plane Stress) MATERIAL PROPERTIES ORTHOTROPIC SOLID (Elastic: Orthotropic Solid) Not applicable Not applicable

Loading

Prescribed Value PDSP, TPDSP
Concentrated CL Loads
Element Loads Not applicable.
Distributed Loads UDL FLD

FLDG
Body Forces CBF

Prescribed variable. U, V, W: at each node.
Concentrated loads. Px, Py, Pz: at each node (global, may also be applied locally, see options).

Not applicable.
Face loads. Px, Py, Pz: local face axis pressures at nodes Pz in the direction of increasing θ.
Not applicable.
Constant body forces for element (see Notes). Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}} \Omega_{\mathrm{z}}, \alpha_{\mathrm{x}}, \alpha \mathrm{y}, \alpha_{\mathrm{z}}, \mathrm{Xo}, \mathrm{Yo}, \mathrm{Zo}$, d $\theta / d t$
Body force potentials at nodes/for element. Xcbf,
Ycbf, Zcbf

Velocities VELO
Accelerations ACCE
Initial SSI, SSIE
Stress/Strains

Residual Stresses Not

 applicable.Target Not
Stress/Strains applicable.
Temperatures TEMP, TMPE Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0$, 0,0
Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not
Loads applicable.

LUSAS Output

Solver
Stress (default): $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \gamma_{\mathrm{xy}}, \gamma_{\mathrm{yz}}, \gamma_{\mathrm{xz}}, \varepsilon \max , \varepsilon \min , \beta, \varepsilon s, \varepsilon e$
Use LUSAS Modeller to access results at various angles around the structure. See Local and Global Results in the Modeller User Manual
Modeller See Results Tables (Appendix K).

Local Axes

- Cylindrical coordinates (see Appendix F).
\square The element axes are defined in the cylindrical coordinate system $\mathrm{x}, \mathrm{y}, \mathrm{z}$, with associated displacements $\mathrm{u}, \mathrm{v}, \mathrm{w}$. The tangential displacement w is positive in the direction of increasing θ, where θ is the positive rotation defined by the right-hand coordinate system about the axis of symmetry. u and v are positive in the direction of increasing x and y respectively and may be either axial or radial displacements depending on the definition of the axis of symmetry.

Sign Convention

- Standard 3D continuum element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point (TAX3F), 3-point (TAX6F), 2x2 (QAX4F, QAX8F)
Fine (see Options). 3x3 (QAX8F), 3-point (TAX3F)
Mass Default.
1-point (TAX3F), 3-point (TAX6F), 2x2 (QAX4F, QAX8F)
Fine (see Options). 3x3 (QAX8F), 3-point (TAX3F)

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
47 X -axis taken as axis of symmetry.
55 Output strains as well as stresses.
102 Switch off load correction stiffness matrix due to centripetal acceleration.
105 Lumped mass matrix.
202 Apply concentrated loads in cylindrical coordinates.

Notes on Use

1. CBF loads are always applied as acceleration loading. Xo, Yo, Zo, permit a shift in the original point of the global coordinate system (about which the rotations are applied). $\mathrm{d} \theta / \mathrm{dt}$ is the local angular velocity about the finite element coordinate system.
2. The application of the CBF loading depends on the particular element material model selected. See the description of Fourier analysis in Chapter 2 of the LUSAS User Guide.
3. If CBF loads are used the structure must be axisymmetric about the X-axis (option 47).
4. Fourier elements cannot be mixed with other element types.
5. Temperature fields cannot be used in dynamic or harmonic response analyses.
6. Centripetal load stiffening has been applied to the $\mathrm{n}=0$ term, but there is no nonlinear stress stiffening contribution. The centripetal load stiffening matrix, contrary, to its name, actually decreases the stiffness of the structure. Centripetal forces are proportional to the angular rotation squared and the lever arm of the mass from the centre of rotation. As the body spins, the lever arm is lengthened by positive displacements, which increases the applied load. This may, conversely, be thought of as reducing the stiffness. The centripetal load stiffness is applied by default, but is may be omitted by setting option 102.
7. The maximum and minimum principal stress computations for axisymmetric elements do not include the σz term as this is implicitly a principal stress in a biaxial stress field.

Restrictions

Ensure mid-side node centrality
\square Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- The element is designed to model fairly solid structures, but it also performs well in comparison to standard shell analyses and may be an effective alternative for axisymmetric problems. The QAX8F is the most effective element of the family.
- If eigenvalues are required from a thin shelled structure such as a cylinder, the Fourier elements provide an efficient means of checking a range of circumferential harmonics and will indicate the permissible coarseness of a finite element mesh which will adequately represent the 3D variation.

Chapter 4 : 3D Continuum Elements.

3D Solid Continuum Elements

General

TH10

PN12

PN15

HX8

HX16

HX20

Element Group 3D Continuum

Element

Solid Continuum
Subgroup
Element A family of 3D isoparametric solid continuum elements with higher order Description

Number Of Nodes

Freedoms
Node
Coordinates
numerically integrated.

4 or 10 (tetrahedra). 6,12 or 15 (pentahedra). 8,16 or 20 (hexahedra).
The elements are numbered according to a right-hand screw rule in the local z-direction.
$\mathrm{U}, \mathrm{V}, \mathrm{W}$: at each node.
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

Geometric Properties

Not applicable.

Material Properties

Linear Isotropic:
Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC SOLID (Elastic: Orthotropic Solid)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC SOLID (Elastic: Anisotropic Solid)
Rigidities. Not applicable.
Matrix Not applicable.
Joint Not applicable.

Concrete

Elasto-Plastic Stress
resultant:
Tresca: MATERIAL PROPERTIES NONLINEAR 61
(Elastic: Isotropic, Plastic: Tresca, Hardening:
Isotropic Hardening Gradient, Isotropic Plastic
Strain or Isotropic Total Strain)
Drucker- MATERIAL PROPERTIES NONLINEAR 64
Prager: (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
Mohr- MATERIAL PROPERTIES NONLINEAR 65
Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)

Ko Initialisation Applicable

Elasto- Plastic

 InterfaceRubber Not
applicable.
Generic Polymer Isotropic

Composite Not applicable

MATERIAL PROPERTIES NONLINEAR 26

MATERIAL PROPERTIES NONLINEAR 89 (Generic Polymer Model)

Loading

Prescribed Value
PDSP, TPDSP Concentrated CL Loads Element Loads Not applicable.
Distributed Loads UDL FLD

FLDG

Body Forces CBF

BFP, BFPE

Velocities VELO
Accelerations ACCE
Initial SSI, SSIE
Stress/Strains

SSIG

Residual Stresses SSR, SSRE

SSRG

Prescribed variable. U, V, W: at each node.
Concentrated loads. Px, Py, Pz: at each node.

Not applicable.
Face Loads. Px, Py, Pz: local face pressures at nodes.

Global Face Loads. $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z$ at nodes
Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega \mathrm{x}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha \mathrm{z}$
Body force potentials at nodes/for element. $0,0,0$, φ_{4}, Xcbf, Ycbf, Zcbf
Velocities. Vx, Vy, Vz: at nodes.
Acceleration Ax, Ay, Az: at nodes.
Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y, \varepsilon z$, $\gamma_{\mathrm{xy}}, \gamma \mathrm{yz}, \gamma_{\mathrm{xz}}$: global strains.
Initial stresses/strains at Gauss points $\sigma x, \sigma y, \sigma z$, $\sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y$, $\gamma \mathrm{yz}, \gamma \mathrm{xz}$: global strains.
Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma z$, $\sigma x y, \sigma y z, \sigma x z:$ global stresses.
Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma z, \sigma x y$, $\sigma y z, \sigma x z$ global stresses.
Target TSSIE, TSSIA Target stresses/strains at nodes/for element. $\sigma x, \sigma y$,

Stress/Strains

TSSIG

Temperatures TEMP, TMPE
$\begin{aligned} \text { Overburden } & \text { Applicable. } \\ \text { Fieatic Surface } & \text { Applicable. } \\ \text { Loads } & \text { Not applicable. } \\ \text { Dependent } & \text { Not applicable. }\end{aligned}$
$\begin{array}{rll}\text { Overburden } & \text { Applicable. } \\ \text { Phreatic Surface } & \text { Applicable. } \\ \text { Field Loads } & \text { Not applicable. } \\ \text { Temp Dependent } & \text { Not applicable. }\end{array}$
$\begin{aligned} \text { Overburden } & \text { Applicable. } \\ \text { Fieatic Surface } & \text { Applicable. } \\ \text { Loads } & \text { Not applicable. } \\ \text { Dependent } & \text { Not applicable. }\end{aligned}$
$\begin{array}{rll}\text { Overburden } & \text { Applicable. } \\ \text { Phreatic Surface } & \text { Applicable. } \\ \text { Field Loads } & \text { Not applicable. } \\ \text { Temp Dependent } & \text { Not applicable. }\end{array}$
Loads
$\sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y, \varepsilon z$, $\gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}$: global strains.
Target stresses/strains at Gauss points $\sigma x, \sigma y, \sigma z$, $\sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y$, $\gamma \mathrm{yz}, \gamma \mathrm{xz}$: global strains.
Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0$, 0,0

LUSAS Output

Solver
Stress (default): $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z, \sigma e:$ global stresses.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}, \varepsilon_{\mathrm{e}}$ global strains.
For optional principal stress/strain output, together with the corresponding direction cosines, use Option 77.
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.

Lagrangian

Eulerian For large displacements, large rotations and moderately large strains.

Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness	Default.	1-point (TH4), 4-point (TH10), 3x2 (PN6, PN12, PN15), 2x2x2 (HX8, HX16, HX20)
	Fine (see Options). Coarse (see Options)	5-point (TH10), 3x3x2 (HX16), 3x3x3 (HX20)
Mass	13-point (HX20), 14-point (HX20)	
Default.	1-point (TH4), 4-point (TH10), 3x2 (PN6, PN12,	
	PN15), 2x2x2 (HX8, HX16, HX20)	
	Fine (see	4-point (TH4) 11-point (TH10), 14-point (TH10)
Options).	3x3x2 (HX16), 3x3x3 (HX20)	
Coarse (see	13-point (HX20), 14-point (HX20)	
Options)		

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
36 Follower loads
54 Updated Lagrangian geometric nonlinearity
55 Output strains as well as stresses.
77 Output principal stresses and direction cosines.
87 Total Lagrangian geometric nonlinearity.
91 Invoke finer integration of the mass matrix.
102 Switch off load correction stiffness due to centripetal acceleration.
105 Lumped mass matrix.
139 Output yielded Gauss points only.
155 Use 14-point integration rule for HX20.
156 Use 13-point integration rule for HX20.
167 Eulerian geometric nonlinearity.
229 Co-rotational geometric nonlinearity.
395 Use 14-point integration rule for mass matrix of TH10 (used together with Option 91).

398 For HX20 and HX16 with fine integration use all integration points for stress extrapolation.

Notes on Use

1. The elements are based on the standard isoparametric approach. The variation of stresses within an element may be regarded as constant for the lower order elements (corner nodes only), and linear for the higher order elements (with mid-side nodes).
2. All elements pass the patch test.
3. When using table input format for temperature dependent ORTHOTROPIC SOLID or ANISOTROPIC SOLID material properties, the value of nset used is that defined in the first line of the property table.
4. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.

Restrictions

Ensure mid-side node centrality
A Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- The 3D solid elements should be used if the stress field is fully 3D, i.e. it cannot be approximated with any of the 2D elements, e.g. as for a non-axisymmetric pressure vessel.
- For linear materials, the 20 -noded element with a $2 * 2 * 2$ Gauss rule is usually the most effective element, as this under-integration of the stiffness matrix prevents locking, i.e. over-stiff solutions will occur if the elements are used with a $3 * 3 * 3$ Gauss integration rule to model structures subjected to bending. However, the element possesses six zero energy modes. Therefore, a careful examination of the solution should be performed to check for spurious stress oscillations and peculiarities in the deformed configuration. Either the 14 -point or $3 * 3 * 3$ Gauss rules should be used for materially nonlinear problems or materially linear problems that exhibit spurious deformations.
- The 8-noded element should not be used for analyses where bending effects are significant as the element tends to lock in parasitic shear [C1]. The 8 -noded element will perform poorly if it is highly distorted. The 4-noded tetrahedron TH4 element is generally not effective and should only be used if the geometry requires elements of this shape.

3D Solid Continuum Element with Enhanced Strains

General

Element Name
HX8M

Element Group 3D Continuum

Element
 Solid Continuum

Subgroup
Element
Description
A 3D isoparametric solid element with an incompatible strain field. This mixed assumed strain element demonstrates a much superior performance to that of the HX8 element.
Number Of 8 . The element is numbered according to a right-hand screw rule in the
Nodes local z-direction.
Freedoms U, V, W: at each node.
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
	Orthotropic:	MATERIAL PROPERTIES ORTHOTROPIC SOLID
		(Elastic: Orthotropic Solid)
	Anisotropic:	MATERIAL PROPERTIES ANISOTROPIC SOLID (Elastic: Anisotropic Solid)
	Rigidities.	Not applicable.
Matrix	Not applicable.	

Joint Not applicable.

Concrete

Elasto-Plastic Stress resultant: Tresca:

DruckerPrager:

MohrCoulomb:

Modified MohrCoulomb:

Modified
Cam-clay
Optimised Implicit Von Mises:
Volumetric
Crushing:
Stress Potential

Creep AASHTO

CEB-FIP

MATERIAL PROPERTIES NONLINEAR 105
(Elastic: Isotropic, Plastic: Transient Smoothed MultiCrack Concrete)
MATERIAL PROPERTIES NONLINEAR 109
(Elastic: Isotropic, Plastic: Smoothed Multi-Crack Concrete)
Not applicable.
MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64
(Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65
(Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
MATERIAL PROPERTIES MODIFIED MOHR_COULOMB (Elastic: Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
MATERIAL PROPERTIES CAM_CLAY MODIFIED (Elastic: Isotropic, Plastic)
MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
MATERIAL PROPERTIES NONLINEAR 81 (Volumetric Crushing or Crushable Foam)
STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)

MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 CEBFIP
(Concrete creep model to CEB-FIP Model Code
1990)
Chinese
EurocodeDamageViscoelastic
Shrinkage
Ko Initialisation Applicable Rubber Ogden:
IRC MATERIAL PROPERTIES NONLINEAR 86 IRC
MATERIAL PROPERTIES NONLINEAR 86CHINESE(Chinese creep model to Chinese Code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)(Concrete creep model to Indian IRC code ofPractice)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)
VISCO ELASTIC PROPERTIES
SHRINKAGE CEB_FIP_90, EUROCODE_2,GENERAL, USER
MATERIAL PROPERTIES RUBBER OGDEN(Rubber: Ogden)
Mooney- MATERIAL PROPERTIES RUBBER
Rivlin: MOONEY_RIVLIN (Rubber: Mooney-Rivlin)Neo-Hookean: MATERIAL PROPERTIES RUBBERNEO_HOOKEAN (Rubber: Neo-Hookean)
Hencky: MATERIAL PROPERTIES RUBBER HENCKY(Rubber: Hencky)
MATERIAL PROPERTIES NONLINEAR 89(Generic Polymer Model)
Composite Not

Loading

Prescribed Value PDSP, TPDSP
Concentrated CL Loads Element Loads Not applicable.
Distributed Loads UDL
FLD

FLDG

Body Forces CBF

Prescribed variable. U, V, W: at each node. Concentrated loads. Px, Py, Pz: at each node.

Not applicable.
Face Loads. Px, Py, Pz: local face pressures at nodes.

Global Face Loads. $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z$ at nodes
Constant body forces for element. Xcbf, Ycbf, Zcbf,

		$\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{x}}, \alpha_{\mathrm{y}}, \alpha_{\mathrm{z}}$
	BFP, BFPE	Body force potentials at nodes/for element. $0,0,0$, $\varphi_{4}, \mathrm{Xcbf}, \mathrm{Ycbf}, \mathrm{Zcbf}$
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay, Az: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma \mathrm{z}, \sigma \mathrm{xy}, \sigma \mathrm{yz}, \sigma \mathrm{xz}:$ global stresses. $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \varepsilon \mathrm{z}$, $\gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}$: global strains.
	SSIG	Initial stresses/strains at Gauss points $\sigma x, \sigma y, \sigma z$, $\sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y$, $\gamma \mathrm{yz}, \gamma \mathrm{xz}$: global strains.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma z$, $\sigma x y, \sigma y z, \sigma x z:$ global stresses.
	SSRG	Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma z, \sigma x y$, $\sigma y z, \sigma x z$ global stresses.
Target Stress/Strains	TSSIE, TSSIA	Target stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma \mathrm{z}, \sigma \mathrm{xy}, \sigma \mathrm{yz}, \sigma \mathrm{xz}:$ global stresses. $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \varepsilon \mathrm{z}$, $\gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}$: global strains.
	TSSIG	Target stresses/strains at Gauss points $\sigma x, \sigma y, \sigma z$, $\sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y$, $\gamma \mathrm{yz}, \gamma \mathrm{xz}$: global strains.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0$, 0,0
Overburden	Applicable.	
Phreatic Surface	Applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver Stress (default): $\sigma \mathrm{x}, \sigma \mathrm{y}, \sigma \mathrm{z}, \sigma \mathrm{xy}, \sigma \mathrm{yz}, \sigma \mathrm{xz}, \sigma \mathrm{e}$: global stresses.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \gamma \mathrm{xy}, \gamma_{\mathrm{yz}}, \gamma_{\mathrm{xz}}, \varepsilon_{\mathrm{e}}$ global strains.
Stretch (for rubber only): $\mathrm{V}_{11}, \mathrm{~V}_{22}, \mathrm{~V}_{33}, \mathrm{~V}_{12}, \mathrm{~V}_{23}, \mathrm{~V}_{13}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \operatorname{det} \mathrm{~F}$.

Where V_{ii} are components of the left stretch tensors, λ_{i} the principal stretches, $\theta \lambda$ the angle between the maximum principal stretch and the global X axis, and $\operatorname{det} \mathrm{F}$ the determinant of the deformation gradient or volume ratio.

For optional principal stress/strain output, together with the corresponding direction cosines, use Option 77.

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations (large strains with the rubber material model).

Integration Schemes

Stiffness	Default. Mass	$2 \times 2 \times 2$
	Fine.	As default.
	Dine.	$2 \times 2 \times 2$
	As default.	

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

39 Stress smoothing for rubber material models.
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
77 Output principal stresses and direction cosines.
87 Total Lagrangian geometric nonlinearity.
102 Switch off load correction stiffness due to centripetal acceleration.
105 Lumped mass matrix.
139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.
225 Use alternative number of parameters for enhanced strain interpolation (see Notes).
229 Co-rotational geometric nonlinearity.

Notes on Use

1. The element is based on the standard isoparametric approach. The variation of stresses within an element may be regarded as linear.
2. The strain field for this element consists of two parts: the compatible strains derived from the assumed displacement field and the assumed enhanced strains; see LUSAS Theory Manual. By default, 18 parameters are used to define the assumed enhanced strain. In general, the default number of parameters should be used. However, 9 parameters may be specified using Option 225. In most cases the use of 9 or 18 parameters will give an equivalent solution. However, in some instances a better response may be obtained using more parameters at the expense of increased computation time.
3. The element passes the patch test and the large strain patch test for rubber.
4. When using table input format for temperature dependent ORTHOTROPIC SOLID or ANISOTROPIC SOLID material properties, the value of nset used is that defined in the first line of the property table.
5. Non-conservative (follower) loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility. The load does not have to be normal to the face and may also vary over the face.
6. To apply a non-conservative (follower) pressure load (load type FLD) with corotational geometric nonlinearity, Option 36 must be specified. Note that this load must be normal to the face and constant for all the nodes of the element face.
7. The converged stresses for the rubber material model are Kirchhoff stresses (see LUSAS Theory Manual).
8. Option 39 is used to smooth the stress output. It is particularly useful when the rubber material model is applied and the element is under very high compression where oscillatory stresses may appear (checker-board pattern).
9. For the rubber material model, converged values for strain output are replaced by the left stretch tensor V, the principal stretches of the vectors defining these principal directions. The principal stretches and directions can be obtained using Option 77. The value of $\operatorname{det} \mathrm{F}=\lambda_{1} \lambda_{2} \lambda_{3}$ (the volume ratio) is only available for Gauss point output.
10. For the rubber material model, the iterative values of stress and strain are output in local co-rotated directions at the Gauss points only.
11. Convergence difficulties can sometimes arise when using enhanced strain elements with nonlinear materials, particularly if the material is elastic-perfectly plastic or if a very shallow hardening curve is defined. In such cases it is recommended that the standard element formulation is used.

Restrictions

Avoid excessive aspect ratio
Rubber material models can only be applied in conjunction with the co-rotational formulation, Option 229.

Recommendations on Use

This element exhibits an improved performance when compared with the parent element HX8. The integration rules are the same as the parent element. The HX8M element does not suffer from locking due to parasitic shear or when the material approaches the incompressible limit. No zero energy modes exist for this element.

3D Solid Continuum Crack Tip Elements

General

Crack specified at Node 1

PN15K

Crack specified at Node 1
HX20K

Crack specified at Node 1

Crack specified along edge 1-2-3

Crack specified along edge 1-2-3

Crack specified along edge 1-2-3

Element Group 3D Continuum

Element
Solid Continuum
Subgroup
Element A family of 3D isoparametric crack tip elements where the crack tip can Description be located at any corner node or along any edge of an element. The mid-
side nodes are moved to the quarter points to produce a singularity at the crack tip. The strains vary as the square root of $1 / R$, where R is the distance from the crack tip. These elements are used at the crack tip only. The elements are numerically integrated.
Number Of
10 (tetrahedra). 15 (pentahedra). 20 (hexahedra). The elements are
Nodes
numbered according to a right-hand screw rule in the local z-direction.
Freedoms U, V, W: at each node.
Node X, Y, Z: at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear	Isotropic: Orthotropic:	MATERIAL PROPERTIES (Elastic: Isotropic) MATERIAL PROPERTIES ORTHOTROPIC SOLID (Elastic: Orthotropic Solid)
	Anisotropic:	MATERIAL PROPERTIES ANISOTROPIC SOLID (Elastic: Anisotropic Solid)
	Rigidities.	Not applicable.

Ko Initialisation Elasto- Plastic Interface

Applicable

MODIFIED MOHR_COULOMB (Elastic: Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
MATERIAL PROPERTIES CAM_CLAY MODIFIED (Elastic: Isotropic, Plastic) MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
MATERIAL PROPERTIES NONLINEAR 81 (Volumetric Crushing or Crushable Foam)
STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 CEB-

 FIP(Concrete creep model to CEB-FIP Model Code 1990)

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC code of Practice)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)
VISCO ELASTIC PROPERTIES

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

MATERIAL PROPERTIES NONLINEAR 26

Rubber Not
 applicable.

Generic Polymer Isotropic
MATERIAL PROPERTIES NONLINEAR 89 (Generic Polymer Model)

Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP Concentrated CL Loads Element Loads Not applicable.
Distributed Loads UDL
FLD

FLDG

Body Forces CBF

BFP, BFPE

Velocities VELO
Accelerations ACCE
Initial SSI, SSIE Stress/Strains

SSIG

Residual Stresses SSR, SSRE

SSRG

Target TSSIE, TSSIA Stress/Strains

Prescribed variable. U, V, W: at each node.
Concentrated loads. Px, Py, Pz: at each node.

Not applicable.
Face Loads. Px, Py, Pz: local face pressures at nodes.

Global Face Loads. $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z$ at nodes
Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha \mathrm{z}$
Body force potentials at nodes/for element. 0, 0, 0, φ_{4}, Xcbf, Ycbf, Zcbf
Velocities. Vx, Vy, Vz: at nodes.
Acceleration Ax, Ay, Az: at nodes.
Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z: ~ g l o b a l ~ s t r e s s e s . ~ \varepsilon x, ~ \varepsilon y, ~ \varepsilon z, ~$ $\gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}$: global strains.

Initial stresses/strains at Gauss points $\sigma x, \sigma y, \sigma z$, $\sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y$, $\gamma \mathrm{yz}, \gamma \mathrm{xz}$: global strains.
Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma z$, $\sigma x y, \sigma y z, \sigma x z:$ global stresses.

Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma z, \sigma x y$, $\sigma y z, \sigma x z$ global stresses.
Target stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y, \varepsilon z$,

LUSAS Output

Solver Stress (default): $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z, \sigma e:$ global stresses.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z, \varepsilon e$: global strains.
For optional principal stress/strain output, together with the corresponding direction cosines, use Option 77.
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness	Default.	4-point (TH10K), 6x3 (PN15K), 3x3x3 (HX20K)
	Fine (see Options).	11-point (TH10K), 12×4 (HX15K)
Mass	Default.	4-point (TH10K), 6×3 (PN15K), $3 \times 3 \times 3$ (HX20K)
	Fine (see Options).	11-point (TH10K), 14-point (TH10K), 12×4 (HX15K)

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
36 Follower loads
54 Updated Lagrangian geometric nonlinearity
55 Output strains as well as stresses.
77 Output principal stresses and direction cosines.
87 Total Lagrangian geometric nonlinearity.
91 Invoke finer integration of the mass matrix.
102 Switch off load correction stiffness due to centripetal acceleration.
105 Lumped mass matrix.
139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.
229 Co-rotational geometric nonlinearity.
395 Use 14-point integration rule for mass matrix of TH10 (used together with Option 91).
398 For HX20 and HX16 with fine integration use all integration points for stress extrapolation.

Notes on Use

1. The elements are based on the standard isoparametric approach. Moving the mid-side nodes to the quarter points creates a singularity with theoretically infinite stress at the crack tip.
2. When using table input format for temperature dependent ORTHOTROPIC SOLID or ANISOTROPIC SOLID material properties, the value of nset used is that defined in the first line of the property table.
3. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.

Restrictions

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- The 3D solid crack tip elements should be used if the stress field is fully 3D, i.e. it cannot be approximated with any of the 2D crack tip elements.
- Elements TH10K, PN15K and HX20K are specifically designed for application to fracture mechanics problems and may be used to model the singularities that occur at the crack tip. The mid-side nodes near the crack tip are shifted to the quarter point. This ensures a singularity is present at the crack tip and that strains vary as 1 over the square root of r - where r is the distance from the crack tip.

3D Solid Continuum Composite Elements (Tetrahedral)

General

Element Name
TH10S

Element Group 3D Continuum

Element Solid Continuum
Subgroup
Element
Description
A 3D tetrahedral element capable of modelling curved boundaries. The element can be arbitrarily oriented with respect to the laminate and allows for the fully automatic mesh generation of laminate geometric models imported from CAD packages.
Number Of 10. The element is numbered according to a right-hand screw rule in the Nodes local z-direction.
Freedoms U, V, W: at each node.
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

	applicable.	
Joint	Not applicable.	
Concrete		MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi-Crack Concrete)
Elasto-Plastic	Stress resultant:	Not applicable.
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	DruckerPrager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	Mohr- Coulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Modified	MATERIAL PROPERTIES
	Mohr- Coulomb:	MODIFIED MOHR_COULOMB (Elastic: Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
	Volumetric Crushing:	Not applicable.
	Stress Potential	STRESS POTENTIAL VON_MISES, HILL, HOFFMAN (Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
Creep	AASHTO	MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEB- FIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE (Chinese creep model to Chinese Code of Practice)
	Eurocode	MATERIAL PROPERTIES NONLINEAR 86

EUROCODE(Concrete creep model to EUROCODE_2)
Damage
Viscoelastic
Shrinkage
IRC
Ko Initialisation Not applicable
Rubber Not
applicable.
Generic PolymerResin CureModelComposite Compositesolid:

MATERIAL PROPERTIES NONLINEAR 89 (Generic Polymer Model)MATERIAL PROPERTIES NONLINEAR CURELAYER, FIBRE_RESINCOMPOSITE PROPERTIES (Elastic: OrthotropicSolid)

Loading

Prescribed Value PDSP, TPDSP Concentrated Loads Element Loads Not applicable.
Distributed Loads
UDL
FLD

FLDG

Body Forces CBF

BFP, BFPE Body force potentials at nodes/for element. 0, 0, 0, φ_{4}, Xcbf, Ycbf, Zcbf
Velocities. Vx, Vy, Vz: at nodes.
Acceleration Ax, Ay, Az: at nodes.
Initial stresses/strains at nodes/for element.
$\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses.
$\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ global strains.

SSIG

Residual Stresses SSR, SSRE

SSRG

Target TSSIE, TSSIA Stress/Strains

TSSIG

Temperatures TEMP, TMPE
Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Not applicable.
Temp Dependent Not applicable. Loads

Initial stresses/strains at Gauss points (see Notes). $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ global strains. Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. Residual stresses at Gauss points (see Notes). $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z$ global stresses. Target stresses/strains at nodes/for element. $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ global strains. Target stresses/strains at Gauss points (see Notes). $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ global strains.
Temperatures at nodes/for element.

$$
\mathrm{T}, 0,0,0, \mathrm{To}, 0,0,0
$$

LUSAS Output

Solver

Stress (default): $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ local stresses.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ local strains.
Stresses and strains are output at the Gauss and corner points of the subdivision(s) of each layer. For optional principal stress/strain output, together with the corresponding direction cosines, use Option 77.
Modeller See Results Tables (Appendix K).

Local Axes

The local axes for each layer are defined by the LAMINAR DIRECTIONS specified for its bottom surface. The three node set in LAMINAR DIRECTIONS define the local Cartesian set origin, the x -axis and the positive quadrant of the xy-plane respectively. The local z -axis forms an orthonormal coordinate system with x and y .

Sign Convention

\square Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.
Updated Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness	Default.	1-point for a tetrahedral subdivision (see Notes), 3-point for a pentahedral/pyramid subdivision, 2×2 for a hexahedral/wrick subdivision
	Fine (see Options).	1-point for a tetrahedral subdivision (see Notes), 3×2 for a pentahedral/pyramid subdivision, $2 \times 2 \times 2$ for a hexahedral/wrick subdivision
Mass	Default	5-point for the whole element or (see Options) 1-point for a tetrahedral subdivision, 3×2 for a pentahedral/pyramid subdivision, $2 \times 2 \times 2$ for a hexahedral/wrick subdivision
	Fine (see Options).	11-point or (see Options) 14 -point for the whole element

Mass Modelling

Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
36 Follower loads.
55 Output strains as well as stresses.
77 Output principal stresses and direction cosines.
91 Formulate element mass with fine integration.
105 Lumped mass matrix.
139 Output yielded Gauss points only.

229 Co-rotational geometric nonlinearity.
266 Layer by layer computation of mass matrix.
394 Lamina directions supported.
395 Use 14-point fine integration rule for mass matrix of TH10 family (used together with 91).

Notes on Use

1. The element is based on the standard isoparametric approach. The variation of strains within an element may be regarded as linear.
2. All elements pass the patch test.
3. The LAMINAR DIRECTIONS and COMPOSITE PROPERTIES data chapters must be used with this element in conjunction with the COMPOSITE ASSIGNMENTS data chapter.
4. The stresses obtained from a geometric nonlinear analysis are Kirchhoff stresses.
5. If the whole tetrahedral element is embedded in a single lamina, a 4-point integration rule will be used for this tetrahedral subdivision; otherwise a 1-point rule will be used.
6. The mass matrix can be computed using a layer by layer integration (OPTION 266), however this should only be used when the densities of the layers vary considerably because the computation time can be greatly increased when this OPTION is specified.
7. Numerical integration through the thickness is performed. The integration points are located in the subdivisions of each layer. Each subdivision forms the shape of a regular 3D solid continuum element and the integration points are located accordingly within the subdivision as described above.
8. SSIG and SSRG loads have to be applied at the Gauss point positions for the subdivision(s) of each layer.
9. Layer 1 is always the bottom layer.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- 3D solid composite elements should be used for modelling thick composite structures comprising laminae of differing material properties where the computational cost of modelling each lamina with an individual solid element would be prohibitive.
- As these elements can be arbitrarily oriented with respect to the laminate, they are particularly aimed at the use of fully automatic mesh generation of laminate geometric models imported from CAD packages.

3D Solid Continuum Composite Elements (Pentahedral and Hexahedral)

General

HX8L

PN12L

HX16L

Element Group 3D Continuum

Element Solid Continuum
Subgroup
Element 3D isoparametric pentahedral and hexahedral solid elements with higher Description order models capable of modelling curved boundaries. The element can be used to model a laminate, where lamina planes are defined by the top and bottom surfaces of the element. The elements are numerically integrated.
Number Of 6 or 12 (pentahedra), 8 or 16 (hexahedra). The elements are numbered Nodes according to a right-hand screw rule in the local z-direction.
Freedoms
$\mathrm{U}, \mathrm{V}, \mathrm{W}$: at each node.

Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.
Coordinates

Geometric Properties

See Composites in the Modeller Reference Manual

Material Properties

Linear Isotropic.
Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC SOLID (Elastic: Orthotropic Solid)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC SOLID (Elastic: Anisotropic Solid)
Rigidities. Not applicable.
Matrix Not applicable.
Joint Not applicable.
Concrete

Elasto-Plastic Stress resultant:

Prager:

Mohr-
Coulomb:

Modified
Mohr-
Coulomb:

Volumetric Not applicable.
Crushing: Potential HOFFMAN

Tresca: MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
Drucker- MATERIAL PROPERTIES NONLINEAR 64

Stress STRESS POTENTIAL VON_MISES, HILL,
MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi-Crack Concrete)
Not applicable.
(Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65
(Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
MATERIAL PROPERTIES
MODIFIED MOHR_COULOMB (Elastic:
Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)

Creep	AASHTO	(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
		MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEB- FIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE (Chinese creep model to Chinese Code of Practice)
	Eurocode	MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)
	IRC	MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC code of Practice)
Damage		DAMAGE PROPERTIES SIMO, OLIVER (Damage)
Viscoelastic		VISCO ELASTIC PROPERTIES
Shrinkage		SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER
Ko Initialisation Rubber	Not applicable Not applicable.	
Generic Polymer		MATERIAL PROPERTIES NONLINEAR 89 (Generic Polymer Model)
Resin Cure Model		MATERIAL PROPERTIES NONLINEAR CURE LAYER, FIBRE_RESIN
Composite	Composite solid:	COMPOSITE PROPERTIES (Elastic: Orthotropic Solid)

Loading

Prescribed Value	PDSP, TPDSP
Concentrated	PL
Loads	
Concentrated loads. Px, Py, Pz: at each node.	

Element Loads Not applicable.

Distributed Loads	UDL	Not applicable.
	FLD	Face Loads. Px, Py, Pz: local face pressures at nodes.
	FLDG	Global Face Loads. $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z$ at nodes
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z},} \alpha_{\mathrm{x}}, \alpha_{\mathrm{y}}, \alpha_{\mathrm{z}}$
	BFP, BFPE	Body force potentials at nodes/for element. $0,0,0$, φ_{4}, Xcbf, Ycbf, Zcbf
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay, Az: at nodes.
Initial	SSI, SSIE	Initial stresses/strains at nodes/for element.
Stress/Strains		$\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y, \varepsilon z, \gamma_{\mathrm{xy}}, \gamma_{\mathrm{yz}}, \gamma_{\mathrm{xz}}$: global strains.
	SSIG	Initial stresses/strains at Gauss points (see Notes). $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses.
		$\varepsilon x, \varepsilon y, \varepsilon z, \gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma_{\mathrm{xz}}$: global strains.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element.
	SSRG	$\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. Residual stresses at Gauss points (see Notes).
		$\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z$ global stresses. Target stresses/strains at nodes/for element.
Target Stress/Strains	TSSIE, TSSIA	Target stresses/strains at nodes/for element. $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses.
		$\varepsilon x, \varepsilon y, \varepsilon z, \gamma \mathrm{xy}, \gamma_{\mathrm{yz}}, \gamma \mathrm{xz}$: global strains.
	TSSIG	Target stresses/strains at Gauss points (see Notes).
		$\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses.
		$\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ global strains.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0$, To, $0,0,0$
Overburden	Applicable.	
Phreatic Surface	Applicable.	
Field Loads	Not applicable.	
Temp Dependent	Not applicable.	

LUSAS Output

$$
\begin{aligned}
& \text { Solver } \text { Stress (default): } \sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z: \text { local stresses. } \\
& \text { Strain: } \varepsilon x, \varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z: \text { local strains. } \\
& \text { Stresses and strains are output at the top and bottom of each layer. For } \\
& \text { optional principal stress/strain output, together with the corresponding } \\
& \text { direction cosines, use Option } 77 .
\end{aligned}
$$

Local Axes

The local axes for each layer are defined using the convention for standard area elements. Local axes are computed at the top and bottom surfaces (at the Gauss points) and average values are interpolated for the mid-surface. The top and bottom faces of the element are as shown, e.g. nodes 1, 2, 3, 4 define the bottom face of HX8L. Every layer uses the same averaged values.

Sign Convention

\square Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian

Updated
Lagrangian
Eulerian
Co-rotational

Not applicable.
Not applicable.
Not applicable.
For large displacements and large rotations.

Integration Schemes

Stiffness Default. 1-point for each layer (PN6L), 3-point for each layer (PN12L), 2x2 for each layer (HX8L,HX16L)
Fine (see 3-point for each layer (PN6L), 3x3 for each layer (HX16L) Options).
Mass Default 3×2 for the whole element (PN6L,PN12L) or (see Options) 1-point for each layer (PN6L), 3-point for each layer (PN12L), $2 \times 2 \times 2$ for the
whole element or 2×2 for each layer (HX8L,HX16L)
Fine (see 3×2 for the whole element or 3-point for each layer (PN6L), $3 \times 3 \times 2$ for Options). the whole element or 3×3 for each layer (HX16L)
Mass Modelling
\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
36 Follower loads.
55 Output strains as well as stresses.
77 Output principal stresses and direction cosines.
105 Lumped mass matrix.
139 Output yielded Gauss points only.
229 Co-rotational geometric nonlinearity.
266 Layer by layer computation of mass matrix.
303 Exclude incompatible modes for solid composite elements.

Notes on Use

1. The elements are based on the standard isoparametric approach. The variation of stresses within an element may be regarded as constant for the lower order elements (corner nodes only), and linear in the plane of the quadratic element faces for the higher order elements.
2. All elements pass the patch test.
3. The COMPOSITE GEOMETRY and COMPOSITE PROPERTIES data chapters must be used with this element in conjunction with the COMPOSITE ASSIGNMENTS data chapter.
4. The stresses obtained from a geometric nonlinear analysis are Kirchhoff stresses.
5. The mass matrix can be computed using a layer by layer integration (Option 266), however this should only be used when the densities of the layers vary considerably because the computation time can be greatly increased applying this option.
6. Numerical integration through the thickness is performed. The integration points are located at the top and bottom surface of each layer.
7. SSIG and SSRG loads have to be applied at the Gauss point positions for the top and bottom surfaces of each layer.
8. Layer 1 is always the bottom layer.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- The 3D solid composite elements should be used for modelling thick composite structures comprising laminae of differing material properties where the computational cost of modelling each lamina with an individual solid element would be prohibitive.
- Because of the numerical integration through the thickness, by increasing the number of layers the accuracy of solution will increase. This can be achieved by dividing each single layer into two or three identical layers.

3D Solid Continuum Explicit Dynamics Elements

General

Element Group 3D Continuum

Element Solid Continuum

Subgroup
Element Description

A family of 3D isoparametric solid elements for explicit dynamic analyses. The elements are numerically integrated.
Number Of
4 (tetrahedra), 6 (pentahedra), 8 (hexahedra).
Nodes The elements are numbered according to a right-hand screw rule in the local z-direction.
Freedoms
U, V, W: at each node.
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear .. Isotropic:
Orthotropic:
MATERIAL PROPERTIES (Elastic: Isotropic)
MATERIAL PROPERTIES ORTHOTROPIC SOLID (Elastic: Orthotropic Solid)
Anisotropic: Not applicable.
Rigidities. Not applicable.
Matrix Not applicable

Joint Concrete	Not applicable Not applicable	
Elasto-Plastic	Stress resultant:	Not applicable.
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker- Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	Mohr- Coulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Modified	MATERIAL PROPERTIES
	Mohr-	MODIFIED MOHR_COULOMB (Elastic:
	Coulomb:	Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
	Modified	MATERIAL PROPERTIES CAM_CLAY
	Cam-clay	MODIFIED (Elastic: Isotropic, Plastic)
	Optimised Implicit Von Mises:	MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
	Volumetric Crushing:	MATERIAL PROPERTIES NONLINEAR 81 (Volumetric Crushing or Crushable Foam)
	Stress	STRESS POTENTIAL VON_MISES, HILL,
	Potential	HOFFMAN (Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
Creep		CREEP PROPERTIES (Creep) (see Notes)
Damage		DAMAGE PROPERTIES SIMO, OLIVER (Damage)
Viscoelastic		VISCO ELASTIC PROPERTIES
Shrinkage	Not applicable	
Ko Initialisation	Not applicable	
Rubber	Not applicable	
Generic Polymer	Not applicable	
Composite	Not applicable	

LoadingPrescribed Value PDSP, TPDSPConcentrated CLLoads
Element Loads Not
applicable.
Distributed Loads UDL

Not applicable.FLDFLDGBody Forces CBFBFP, BFPE
Velocities VELO
Accelerations ACCE
Initial SSI, SSIEStress/StrainsSSIG
Residual Stresses SSR, SSRESSRGTarget Not
Stress/Strains applicable.
Temperatures TEMP, TMPE Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0$,

$$
0,0
$$ 0,0

Overburden Not

Overburden Not applicable.Phreatic Surface Notapplicable.
Field Loads Notapplicable.
Temp Dependent Not

Loads applicable.

Prescribed variable. U, V, W: at each node.
Concentrated loads. Px, Py, Pz: at each node.

Face Loads. Px, Py, Pz: local face pressures at nodes.
Not applicable
Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z},} \alpha_{\mathrm{x}}, \alpha \mathrm{y}, \alpha_{\mathrm{z}}$
Body force potentials at nodes/for element. 0, 0, 0, φ_{4}, Xcbf, Ycbf, Zcbf
Velocities. Vx, Vy, Vz: at nodes.
Acceleration Ax, Ay, Az: at nodes.
Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z: ~ g l o b a l ~ s t r e s s e s . ~ \varepsilon x, ~ \varepsilon y, ~ \varepsilon z, ~$ $\gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}$: global strains.
Not applicable.
Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma z$, $\sigma x y, \sigma y z, \sigma x z:$ global stresses.

Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma z, \sigma x y$, $\sigma y z, \sigma x z:$ global stresses.

Phreatic Surface Not applicable. applicable.

LUSAS Output

Solver $\operatorname{Stress}($ default): $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z, \sigma e$: global stresses. Strain: not available (see Notes).
For optional principal stress output, together with the corresponding direction cosines, use Option 77.
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.
Updated Not applicable.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness	Default.	1-point (see Notes).
	Fine.	As default.
Mass	Default.	1-point (see Notes).
	Fine.	As default.

Mass Modelling

\square Lumped mass only (see Notes).

Options

77 Output principal stresses and direction cosines.

105 Lumped mass matrix.
139 Output yielded Gauss points only.

Notes on Use

1. The elements are based on the standard isoparametric approach. Stresses within an element may be regarded as constant.
2. When using tabular input for ORTHOTROPIC SOLID the value of nset used is that defined in the first line of the property table.
3. The system parameter HGVISC is used to restrict element mechanisms due to underintegration. The default value is usually sufficient.
4. The bulk viscosity coefficients are used to restrict numerical oscillations due to the traversal of stress waves. The default bulk viscosity coefficients (BULKLF and BULKQF) may be altered as SYSTEM parameters.
5. These elements must be used with a dynamic central difference scheme and a lumped mass matrix.
6. These element are Not applicable. for static or eigenvalue analyses.
7. Automatic time step length calculations are implemented.
8. As element geometry is always updated in an explicit dynamic analysis, the solution is nonlinear. When using explicit dynamic elements NONLINEAR CONTROL must be specified.
9. If CREEP PROPERTIES are defined, explicit time integration must be specified in VISCOUS CONTROL.
10. Strains are computed incrementally and therefore total strains are not available for output.
11. Non-conservative loading is invoked when the FLD loading facility is applied.
12. Rayleigh damping coefficients are not supported by these elements.
13. Constraint equations are not available for use with these elements.

Restrictions

\square Avoid excessive aspect ratio

Recommendations on Use

- Explicit dynamics elements may be used to define surface boundaries which will be active in a slideline analysis.

Element Reference Manual

- The 3D explicit dynamics elements should be used if the stress field is fully 3D, i.e. it cannot be approximated with any of the 2D elements, e.g. a non-axisymmetric pressure vessel.

3D Solid Two Phase Continuum Elements

General

PN12P

HX16P

PN15P

HX20P

Element Group 3D Continuum

Element
Solid Continuum

Subgroup

Element
A family of 3D isoparametric solid two phase continuum elements Description capable of modelling curved boundaries. The elements are numerically integrated.
Number Of 10 (tetrahedra). 12 or 15 (pentahedra). 16 or 20 (hexahedra). The elements

Nodes are numbered according to a right-hand screw rule in the local z-direction.
Freedoms U, V, W, P: at corner nodes, U, V, W at mid-side nodes.
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Isotropic:
Orthotropic:
Anisotropic:
Rigidities. Not applicable.
Matrix Not applicable.
Joint Not applicable.

Concrete

Elasto-Plastic Stress resultant: Tresca: MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64
(Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65
(Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
Modified MATERIAL PROPERTIES Mohr- MODIFIED MOHR_COULOMB (Elastic: Coulomb: Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
MATERIAL PROPERTIES CAM_CLAY

Optimised Implicit Von Mises:
Volumetric Crushing:
Stress
Potential:

Cam-clay

MODIFIED (Elastic: Isotropic, Plastic)

MATERIAL PROPERTIES NONLINEAR 75
(Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
MATERIAL PROPERTIES NONLINEAR 81 (Volumetric Crushing or Crushable Foam)
STRESS POTENTIAL VON_MISES, HILL, HOFFMAN (Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)
VISCO ELASTIC PROPERTIES
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Ko Initialisation Applicable
Elasto- Plastic Interface Rubber

Not

Creep
Damage
Viscoelastic
Shrinkage applicable.

Generic Polymer Isotropic

MATERIAL PROPERTIES NONLINEAR 26

MATERIAL PROPERTIES NONLINEAR 89 (Generic Polymer Model)
Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL
Loads
Element Loads Not applicable.
Distributed Loads UDL FLD

FLDG

Prescribed variable. U, V, W, P: at corner nodes, U, V, W at mid-side nodes.
Concentrated loads. Px, Py, Pz, Q: at corner nodes, .Px, Py, Pz at mid-side nodes.

Not applicable.
Face Loads. Px, Py, Pz, Q: face pressures/flux per unit area at corner nodes relative to local face axes. $\mathrm{Px}, \mathrm{Py}, \mathrm{Pz}$: face pressures at midside nodes relative to local face axes.

Global Face Loads. $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z$ at nodes

Body Forces CBF

BFP, BFPE

SSIG

Residual Stresses SSR, SSRE

SSRG

Target TSSIE, TSSIA Stress/Strains

TSSIG

Temperatures TEMP, TMPE
Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Not applicable.
Temp Dependent Not applicable. Loads

Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z},} \alpha_{\mathrm{x}}, \alpha \mathrm{y}, \alpha \mathrm{z}, \mathrm{gx}, \mathrm{gy}, \mathrm{gz}$. (See notes on use)
Body force potentials at nodes/for element. $0,0,0$, $\varphi 4, \mathrm{Xcbf}, \mathrm{Ycbf}, \mathrm{Zcbf}, \mathrm{gx}, \mathrm{gy}, \mathrm{gz}$. (See notes on use)
Velocities. Vx, Vy, Vz: at nodes.
Acceleration Ax, Ay, Az: at nodes.
Initial stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z, \sigma p$ global stresses. $\varepsilon x, \varepsilon y, \varepsilon z$, $\gamma_{\mathrm{xy}}, \gamma_{\mathrm{yz}}, \gamma \mathrm{xz}$: global strains.
Initial stresses/strains at Gauss points $\sigma x, \sigma y, \sigma z$, $\sigma x y, \sigma y z, \sigma x z, \sigma p:$ global stresses. $\varepsilon x, \varepsilon y, \varepsilon z$, $\gamma_{\mathrm{xy}}, \gamma_{\mathrm{yz}}, \gamma_{\mathrm{xz}}$: global strains.
Residual stresses at nodes/for element. $\sigma x, \sigma y, \sigma z$, $\sigma x y, \sigma y z, \sigma x z, \sigma p:$ global stresses.
Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma z, \sigma x y$, $\sigma y z, \sigma x z, \sigma p$ global stresses.
Target stresses/strains at nodes/for element. $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z, \sigma$ p global stresses. $\varepsilon x, \varepsilon y, \varepsilon z$, $\gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}$: global strains.
Target stresses/strains at Gauss points $\sigma x, \sigma y, \sigma z$, $\sigma x y, \sigma y z, \sigma x z, \sigma p:$ global stresses. $\varepsilon x, \varepsilon y, \varepsilon z$, $\gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}$: global strains.
Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}, 0$, 0,0

LUSAS Output

Solver
Stress (default): $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z, \sigma p, \sigma e:$ global stresses.

Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}, \varepsilon \mathrm{v}, \varepsilon_{\mathrm{e}}$: global strains.
For optional principal stress/strain output, together with the corresponding direction cosines, use Option 77.

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

\square Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default.

Fine (see Options).
Coarse (see Options)
Mass Default.

Fine (see Options). Coarse (see Options)

4-point (TH10P), 3x2 (PN12P, PN15P), 2x2x2 (HX16P, HX20P)
5 -point (TH10P), $3 \times 3 \times 2$ (HX16P), $3 \times 3 \times 3$ (HX20P)
13-point (HX20P), 14-point (HX20P)

4-point (TH10P), 3x2 (PN12P, PN15P), 2x2x2 (HX16P, HX20P)
11-point (TH10P), 14-point (TH10P), $3 \times 3 \times 2$ (HX16P), 3x3x3 (HX20P)
13-point (HX20P), 14-point (HX20P)

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
36 Follower loads
54 Updated Lagrangian geometric nonlinearity
55 Output strains as well as stresses.
77 Output principal stresses and direction cosines.
87 Total Lagrangian geometric nonlinearity.
91 Invoke finer integration of the mass matrix.
102 Switch off load correction stiffness due to centripetal acceleration.
105 Lumped mass matrix.
139 Output yielded Gauss points only.
155 Use 14-point integration rule for HX20P.
156 Use 13-point integration rule for HX20P.
167 Eulerian geometric nonlinearity.
229 Co-rotational geometric nonlinearity.
398 For HX20P and HX16P with fine integration use all integration points for stress extrapolation.

Notes on Use

1. Two phase material parameters must be used with these elements for undrained and consolidation analysis.
2. The elements are based on the standard isoparametric approach. The variation of stresses and pore pressures within an element may be regarded linear, except for elements PN12P and HX16P where the stress is constant in the z direction.
3. All elements pass the patch test.
4. When using table input format for temperature dependent ORTHOTROPIC SOLID or ANISOTROPIC SOLID material properties, the value of nset used is that defined in the first line of the property table.
5. Non-conservative loading is available with these elements when using Updated Lagrangian, Eulerian or co-rotational (with OPTION 36) geometric nonlinear formulations together with the FLD loading facility.
6. The global components of gravity acting on the fluid phase are defined by gx and gy under CBF and BF loading.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- The 3D solid two phase elements should be used if the stress field is fully 3D, i.e. it cannot be approximated with any of the 2D elements, e.g. a non-axisymmetric pressure vessel.
- For linear materials, the 20 -noded element with a $2 * 2 * 2$ Gauss rule is usually the most effective element, as this under-integration of the stiffness matrix prevents locking, i.e. over-stiff solutions will occur if the elements are used with a $3 * 3 * 3$ Gauss integration rule to model structures subjected to bending. However, the element possesses six zero energy modes. Therefore, a careful examination of the solution should be performed to check for spurious stress oscillations and peculiarities in the deformed configuration. Either the 14-point or $3 * 3 * 3$ Gauss rules should be used for materially nonlinear problems or materially linear problems that exhibit spurious deformations.
- In general, PN15P and HX20P give the best performance; TH10P is less accurate and needs to be used with a finer mesh. HX16P and PN12P should only be used to overcome connectivity problems when meshing.

Chapter 5: Plate Elements.

2D Isoflex Thin Plate Flexure Elements

General

Element Name

TF3

QF4

Element Group Plates

Element
Isoflex Plates
Subgroup
Element
Description
A family of thin plate flexure elements in 2D with higher order models capable of modelling curved boundaries. The element formulation takes account of varying thickness and anisotropic properties. As required by thin plate theory, transverse shearing effects are excluded.
Number Of 3 or 4 numbered anticlockwise. Nodes Freedoms

Node X, Y : at each node.

Geometric Properties

t1 ... tn Thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)
Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC (Elastic: Orthotropic Plane Stress)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 3 (Elastic: Anisotropic Thin Plate)

Rigidities.
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

RIGIDITIES 3 (Rigidities: Membrane/Thin Plate)

Loading

Prescribed Value PDSP, TPDSP
Concentrated CL
Loads
Element Loads Not applicable.
Distributed Loads UDL

FLD, FLDG
Body Forces CBF
BFP, BFPE
Velocities VELO
Accelerations ACCE
Initial SSI, SSIE
Stress/Strains

SSIG
Residual Stresses Not applicable.
Target TSSIE, TSSIA
Stress/Strains

TSSIG
Temperatures TEMP, TMPE

Prescribed variable. W, $\theta \mathrm{x}, \theta \mathrm{y}$: at the corner nodes.
Concentrated loads. Pz, Mx, My: at corner nodes.

Uniformly distributed loads. Wz: normal pressure for element (global).
Not applicable.
Constant body forces for element. Zcbf
Body force potentials at nodes/for element. $\varphi 1, \mathrm{Zcbf}$
Velocities. Vz: at nodes.
Accelerations. Az: at nodes.
Initial stresses/strains at nodes/for element. Mx, My, Mxy: moments/unit width (global).
$\psi x, \psi y, \psi x y:$ flexural strains (global).
Not applicable.

Target stresses/strains at nodes/for element. Mx, My, Mxy: moments/unit width (global).
$\psi x, \psi y, \psi x y:$ flexural strains (global).
Not applicable.
Temperatures at nodes/for element. $0,0,0, \mathrm{dT} / \mathrm{dz}, 0,0,0, \mathrm{dTo} / \mathrm{dz}$
Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not
Loads applicable.

LUSAS Output

Solver Stress resultant: Mx, My, Mxy: moments/unit width (global).
Strain: $\psi x, \psi y, \psi x y:$ flexural strains (global).
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

\square Standard plate element

Formulation

Geometric Nonlinearity

Not applicable.
Integration Schemes

Stiffness	Default.	3-point (TF3), 2x2 (QF4).
	Fine.	As default.
Mass	Default.	3-point (TF3), 2x2 (QF4).
	Fine.	As default.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element.
55 Output strains as well as stresses.
143 Output shear forces for low order thin plate bending elements.
170 Suppress transfer of shape function arrays to disk.

Notes on Use

1. The element formulations are based on an Kirchhoff hypothesis for thin plates.
2. The variation of moments within the elements can be regarded as linear.
3. The elements pass the patch test for convergence for mixed triangular and quadrilateral element geometry.
4. The averaged nodal values produced with ELEMENT OUTPUT do not include the thin isoflex plate shear stresses if Option 143 is invoked.
5. When Option 143 is invoked shear stresses are only computed for the low order isoflex elements (QF4,TF3).

Restrictions

\square Avoid excessive aspect ratio

Recommendations on Use

- This element may be used to analyse any 2D plate type structures where transverse shear effects do not influence the solution, e.g. thin cantilever plates.
- The thick plate elements QTF8 and TTF6 are recommended for thick plates where transverse shear strains are no longer negligible.

The following element combinations should be used for ribbed plates;

Ribs with small or no eccentricity

QSI4/TS3 elements with BMI21 elements,
Q QTS4/TTS3 elements with BMI21 elements.

Ribs with large eccentricity

Q QSL8/TSL6 elements with BSL3/BSL4/BXL4 elements.
\square QTS4/TTS3 elements with BMI21 elements.
The through thickness integration is performed explicitly.

2D Isoflex Thick Plate Flexure Element

Geometric Properties

t1... tn At each node.

Material Properties

Linear Isotropic:
MATERIAL PROPERTIES (Elastic: Isotropic)
Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC THICK (Elastic: Orthotropic Thick)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 5 (Elastic: Anisotropic Thick Plate)
Rigidities: RIGIDITIES 5 (Rigidities: Thick Plate)
Matrix Not applicabl
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicableCreep Not applicable.
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable
Loading
Prescribed Value PDSP, TPDSP
Concentrated CL
Loads
Element Loads Notapplicable.
Distributed Loads UDLFLD, FLDGBody Forces CBFBFP, BFPEVelocities VELOAccelerations ACCEInitial SSI, SSIE
Stress/Strains
SSIG
Residual Stresses Notapplicable.Target TSSIE, TSSIAStress/Strains
TSSIGTemperatures TEMP, TMPE
Overburden Notapplicable.Phreatic Surface Not

Prescribed variable. W, $\theta \mathrm{x}, \theta \mathrm{y}$: at nodes. Concentrated loads. Pz, Mx, My: at nodes.
Uniformly distributed loads. Wz: normal pressurefor element (global).
Not applicable.
Constant body forces for element. Zcbf
Body force potentials at nodes/for element. φ_{1},Zcbf
Velocities. Vz: at nodes.
Accelerations. Az: at nodes.
Initial stresses/strains at nodes/for element.Mx, My, Mxy: moments/unit width (global).$\psi x, \psi y, \psi x y$: flexural strains (global).
Not applicable.
Target stresses/strains at nodes/for element.Mx, My, Mxy: moments/unit width (global).$\psi x, \psi y, \psi x y$: flexural strains (global).
Not applicable.Temperatures at nodes/for element. $0,0,0, \mathrm{dT} / \mathrm{dz}$,$0,0,0, \mathrm{dTo} / \mathrm{dz}$
applicable.
Field Loads Not applicable.
Temp Dependent Not
Loads applicable.

LUSAS Output

Solver Stress resultant: Mx, My, Mxy, Sx, Sy: moments, shear forces/unit width (global)

Strain: $\psi \mathrm{x}, \psi \mathrm{y}, \psi \mathrm{xy}, \gamma \mathrm{xz}, \gamma \mathrm{yz}:$ flexural, shear strains (global).
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

Standard plate element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness	Default.	2×2
Mass	Fine.	Default.

Mass Modelling

\square Consistent mass (default).

- Lumped mass.

Options

55 Output strains as well as stresses.
105 Lumped mass matrix.
170 Suppress transfer of shape function arrays to disk.

Notes on Use

1. The element formulation involves imposing an assumed bi-linear shear strain field on the isoflex thin plate element QF4.
2. Though this element cannot model nonlinear behaviour, it can be mixed with other elements in a nonlinear analysis.
3. The element passes the patch test for convergence with rectangular and parallelogram element geometry.
4. The QF4, QF8,TF3,TF8 elements are usually more effective elements for thin plate analyses.
5. The QTF8 and TTF6 elements are usually more effective for thick plate analyses, and in such cases should be preferred to QSC4.
6. 3D solid elements should be used if the normal stress in the transverse direction is not insignificant in comparison with the in-plane stresses.
7. The following element combinations should be used for ribbed plates

Ribs with small or no eccentricity

- QSI4/TS3 elements with BMI21 elements,
- QTS4/TTS3 elements with BMI21 elements.

Ribs with large eccentricity

- QSL8/TSL6 elements with BSL3/BSL4/BXL4 elements,
- QTS4/TTS3 elements with BMI21 elements.

8. The through-thickness integration is performed explicitly.

Restrictions

\square Avoid excessive aspect ratio

Recommendations on Use

This element may be used to analyse any 2D plate type structures where transverse shear effects influence the solution, e.g. perforated thick plates.

2D Mindlin Thick Plate Flexure Element

General

Element Name

TTF6

QTF8

Element Group Plates

Element Mindlin Plates

Subgroup

Element A family of thick plate flexure elements based on a Mindlin plate Description formulation. The elements can accommodate curved boundaries and varying thicknesses. Transverse shear deformations are included.
Number Of 6 or 8 , numbered anticlockwise.
Nodes
Freedoms $\mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}$: at each node.
Node X, Y: at each node.
Coordinates

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Linear Isotropic:
MATERIAL PROPERTIES (Elastic: Isotropic)
Orthotropic:
Anisotropic:
MATERIAL PROPERTIES ORTHOTROPIC
THICK (Elastic: Orthotropic Thick)
MATERIAL PROPERTIES ANISOTROPIC 5
(Elastic: Anisotropic Thick Plate)
Rigidities.
RIGIDITIES 5 (Rigidities: Thick Plate)
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicableCreep Not applicableDamage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicableRubber Not applicable
Generic Polymer Not applicable
Composite Not applicable
Loading
Prescribed Value PDSP, TPDSPConcentrated CLLoadsElement Loads Notapplicable.
Distributed Loads UDL Uniformly distributed loads. Wz: normal pressureFLD, FLDGBody Forces CBFBFP, BFPE
Velocities VELO
Accelerations ACCEInitial SSI, SSIEStress/Strains
Residual Stresses Notapplicable.Target TSSIE, TSSIAStress/Strains

TSSIG
Temperatures TEMP, TMPEfor element (global).
Not applicable.
Constant body forces for element. Zcbf

Constant body forces for element. Zcbf
Body force potentials at nodes/for element. $\varphi 1$, Zcbf

Body force potentials at nodes/for element. φ_{1}, Zcbf
Velocities. Vz: at nodes.
Accelerations. Az: at nodes.
Initial stresses/strains at nodes/for element.

Initial stresses/strains at nodes/for element.Mx, My, Mxy, Sx, Sy: moments, shear forces/unitwidth (global)
$\psi \mathrm{x}, \psi \mathrm{y}, \psi \mathrm{xy}, \gamma \mathrm{xz}, \gamma \mathrm{yz}:$ flexural, shear strains /unit width (global).

$\psi x, \psi y, \psi x y, \gamma x z, \gamma y z:$ flexural, shear strains
Not applicable.
Not applicable.

Prescribed variable. W, $\theta \mathrm{x}, \theta \mathrm{y}$: at nodes.
Concentrated loads. $\mathrm{Pz}, \mathrm{Mx}, \mathrm{My}$: at nodes.
for element (global).

Accelerations. Az: at nodes.

Mx, My, Mxy, Sx, Sy: moments, shear forces/unit width (global).

Target stresses/strains at nodes/for element. Mx, My, Mxy, Sx, Sy: moments, shear forces/unit width (global).
$\psi \mathrm{x}, \psi \mathrm{y}, \psi \mathrm{xy}, \gamma \mathrm{xz}, \gamma \mathrm{yz}:$ flexural, shear strains /unit width (global).
Not applicable.
Temperatures at nodes/for element. $0,0,0, \mathrm{dT} / \mathrm{dz}, 0,0,0, \mathrm{dTo} / \mathrm{dz}$
Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not
Loads applicable.

Output

Solver Stress resultant: Mx, My, Mxy, Sx, Sy: moments, shear forces/unit width (global).

Strain: $\psi x, \psi y, \psi x y, \gamma x z, \gamma y z:$ flexural, shear strains /unit width (global).
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard plate element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness	Default.	3-point (TTF6), 2x2 (QTF8)
	Fine (see Options).	3×3 (QTF8).
Mass	Default.	3-point (TTF6), 2x2 (QTF8)
	Fine (see Options).	3×3 (QTF8).

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element.
55 Output strains as well as stresses.
105 Lumped mass matrix.
170 Suppress transfer of shape function arrays to disk.

Notes on Use

1. The element formulations are based on an isoparametric approach. The variation of moments and shears within the element may be regarded as linear.
2. Though this element cannot model nonlinear behaviour, it can be mixed with other elements in a nonlinear analysis.
3. The elements pass the patch test for convergence with triangular and parallelogram element geometry.
4. These elements are usually more effective than the QSC4 thick shell element (section 7.6.2).
5. The elements tend to lock as the plate thickness approaches the thin plate limit since shear strain energy dominates the element stiffness. Therefore, a thin plate or shell element should be used when the depth/span ratio exceeds $1 / 50$.
6. 3D solid elements should be used if the normal stress in the transverse direction is not insignificant in comparison with the in-plane stresses.
7. The following element combinations should be used for ribbed plates

Ribs with small or no eccentricity

- QSI4/TS3 elements with BMI21 elements,
- QTS4/TTS3 elements with BMI21 elements.

Ribs with large eccentricity

- QSL8/TSL6 elements with BSL3/BSL4/BXL4 elements,
- QTS4/TTS3 elements with BMI21 elements.

8. The QTF8 element with $2 * 2$ Gauss quadrature is generally more effective than the $3 * 3$ rule. The $2 * 2$ rule does, however, exhibit one zero energy mode which can be eliminated using option 18.
9. The through-thickness integration is performed explicitly.

Restrictions

\square Ensure mid-side node centrality

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

These elements may be used to analyse any 2D plate type structures where transverse shear effects influence the solution, e.g. perforated thick plates.

Chapter 6 : Shell Elements.

2D Axisymmetric Thin Shell Element

General

Element Group Shells
Subgroup
Element A parabolically curved axisymmetric thin shell element in 2D in which Description shear deformations are excluded. The geometric properties may vary

Number Of
Nodes
End Releases
Freedoms
dU : (relative local in-plane displacement) at the mid-length node.

Element Axisymmetric Shells along the length of the element.
3.
$\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$: at end nodes.
Node X, Y: at each node.
BXS3

Geometric Properties

$\mathbf{t}, \mathbf{t}, \mathbf{t}_{3}$ Thickness at each node.

Material Properties

Linear	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
	Orthotropic:	MATERIAL PROPERTIES ORTHOTROPIC
		(Elastic: Orthotropic Plane Stress)
		MATERIAL PROPERTIES ORTHOTROPIC
		SOLID (Elastic: Orthotropic Thick)

```
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 2 (Not
    supported in LUSAS Modeller)
    Rigidities: Not applicable.
    Matrix Not applicable.
    Joint Not applicable.
    Concrete Not applicable.
Elasto-Plastic Stress
    resultant:
    Tresca:
    Drucker-
    Prager:
    Mohr-
    Coulomb:
    Optimised
    Implicit Von
    Mises:
    Volumetric Not applicable.
    Crushing:
    Stress Potentia
    Creep
    AASHTO
CEB-FIP
Chinese
Eurocode
```

MATERIAL PROPERTIES NONLINEAR 29
(Elastic: Isotropic, Plastic: Resultant) (ifcode not required)
MATERIAL PROPERTIES NONLINEAR 61
(Elastic: Isotropic, Plastic: Tresca, Hardening:
Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64
(Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
Not applicable.

STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO Code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 CEBFIP
(Concrete creep model to CEB-FIP Model Code 1990)

Chinese

Eurocode

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE

IRC

Damage

Viscoelastic Not applicable. Shrinkage

Rubber Not applicable. Generic Polymer Not applicable

Composite Not applicable.
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC Code of Practice)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Loading

Prescribed Value PDSP, TPDSP
Concentrated CL
Loads
Element Loads ELDS

Prescribed variable. $\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$: at end nodes. dU : at the mid-length node.
Concentrated loads. Px, Py, Mx: point loads, moments/unit length/radian at end nodes (global). DPx: point load/unit length/radian at mid-length node (local).

Element loads

LTYPE, S1, Px, Py, Mx
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, $0, \mathrm{Wx}$, Wy, Mx
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions
LTYPE, S1, Wx1, Wy1, Mx1, S2, Wx2, Wy2, Mx2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions
LTYPE, S1, Wx, Wy, Mx
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.

Distributed Loads UDL

FLD
FLDG
Body Forces CBF

BFP, BFPE

Velocities VELO
Accelerations ACCE
Initial SSI, SSIE
Stress/Strains

Residual Stresses
SSR, SSRE
SSRG

LTYPE=43: trapezoidal projected loads in global directions
Uniformly distributed loads. Wx, Wy: forces/unit length/radian in local x, y directions for element.
Face Loads. Px, Py: local face pressures at nodes.
Not applicable.
Constant body forces for element. Xcbf, Ycbf, $\Omega \mathrm{x}$, $\Omega_{y}, \Omega_{z}, \alpha_{z}$
Body force potentials at nodes/for element. φ_{1}, φ_{2}, $0,0, \mathrm{Xcbf}, \mathrm{Ycbf}$
Velocities. Vx, Vy: at nodes.
Accelerations. Ax, Ay: at nodes.
Initial stresses/strains at nodes/for element.
Resultants (for linear material models without cross section integration and material model 29). $\mathrm{Nx}, \mathrm{N} \theta, \mathrm{Mx}, \mathrm{M} \theta, 0$: axial and circumferential forces, moments/unit width. $\varepsilon x, \varepsilon_{\theta}, \psi x, \psi{ }_{\theta}, 0$, axial and circumferential strains (all models).
Initial stresses/strains at Gauss points.
(1) Resultants (for linear material models without cross section integration and material model 29). $\mathrm{Nx}, \mathrm{N} \theta, \mathrm{Mx}, \mathrm{M} \theta, 0$: axial and circumferential forces, moments/unit width. $\varepsilon_{x}, \varepsilon_{\theta}, \psi \mathrm{x}, \psi \theta, 0$: axial and circumferential strains (all models).
(2) Components (for linear material models with cross section integration and all nonlinear material models except 29). $0,0,0,0,0,0,0,0,0,0,(\sigma x$, $\left.\sigma_{\theta}, \varepsilon_{x}, \varepsilon_{\theta}\right)$ Bracketed terms repeated for each fibre integration point.
Not applicable.
Residual stresses at Gauss points.
(1) Resultants (model 29). Nx, N $\theta, \mathrm{Mx}, \mathrm{M} \theta, 0$
(2) Components (all models except 29) $0,0,0,0$, $0,0,0,0,0,0,(\sigma x, \sigma \theta)$ Bracketed terms repeated for each fibre integration point.
Target TSSIE, TSSIA Stress/Strains

Target stresses/strains at nodes/for element. Resultants (for linear material models without cross section integration and material model 29). $\mathrm{Nx}, \mathrm{N} \theta, \mathrm{Mx}, \mathrm{M}_{\theta}, 0$: axial and circumferential forces, moments/unit width. $\varepsilon_{x}, \varepsilon_{\theta}, \psi x, \psi \theta, 0$, axial and circumferential strains (all models).

	TSSIG	Target stresses/strains at Gauss points. (1) Resultants (for linear material models without cross section integration and material model 29). $\mathrm{Nx}, \mathrm{N} \theta, \mathrm{Mx}, \mathrm{M}_{\theta}, 0$: axial and circumferential forces, moments/unit width. $\varepsilon_{x}, \varepsilon_{\theta}, \psi \mathrm{x}, \psi_{\theta}, 0$: axial and circumferential strains (all models). (2) Components (for linear material models with cross section integration and all nonlinear material models except 29). $0,0,0,0,0,0,0,0,0,0,(\sigma x$, $\left.\sigma \theta, \varepsilon x, \varepsilon_{\theta}\right)$ Bracketed terms repeated for each fibre integration point.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0, \mathrm{dT} / \mathrm{dy}, 0, \mathrm{To}, 0, \mathrm{dTo} / \mathrm{dy}, 0$: in local directions.
Overburden	Not applicable.	
Phreatic Surface	Applicable.	
Field Loads	Not applicable.	
Temp Dependent	Not applicable.	

LUSAS Output

Solver Force. $\mathrm{Nx}_{\mathrm{x}}, \mathrm{N} \theta, \mathrm{Mx}, \mathrm{M}_{\theta}$: axial and circumferential forces, moments/unit width in local directions.

Strain. $\varepsilon x, \varepsilon_{\theta}, \gamma_{\mathrm{x}}, \gamma_{\theta}$: axial and circumferential strains.
Layer stress and strain output is also available when using the nonlinear continuum material models.

Modeller See Results Tables (Appendix K).

Local Axes

The local x -axis lies along the line of the element in the direction in which the nodes are numbered. The local y and z-axes form a right-hand set with the local x-axis such that the y axis lies in the global XY-plane with the z -axis parallel to the global Z-axis.

Sign Convention

Standard shell element. Axial and circumferential moments are positive for tension on element top fibre (the top fibre lies on the positive local y side of the element).

Formulation

Geometric Nonlinearity

$$
\begin{aligned}
\text { Total Lagrangian } & \text { For large displacements, rotations up to } 1 \text { radian, and small strains. } \\
\text { Updated } & \text { For large displacements, rotation increments up to } 1 \text { radian and small } \\
\text { Lagrangian } & \text { strains. } \\
\text { Eulerian } & \text { Not applicable. } \\
\text { Co-rotational } & \text { Not applicable. }
\end{aligned}
$$

Integration Schemes

Stiffness	Default.	2-point.
	Fine (see Options).	3-point.
Mass	Default.	2-point.
	Fine (see Options).	3-point.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element
47 X-axis taken as axis of symmetry
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity
105 Lumped mass matrix.
157 Material model 29 (non cross-section elements), see Notes.
170 Suppress transfer of shape function arrays to disk.

Notes on Use

1. The element formulation is based on a constrained super-parametric approach.
2. The variation of axial force and moment along the length of the element is linear. The variation of displacements is cubic in the local y-direction, and quadratic in the local x direction.
3. Temperature dependent properties cannot be used with material model 29.
4. The through-thickness integration is performed explicitly for linear and stress resultant plasticity models and with a 5-point Newton-Cotes rule for all other material models.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

The element can be used for analysing shell structures which are axisymmetric, e.g. pressure vessels or pipes.

2D Axisymmetric Thick Shell Elements

General

Element Name

BXSI2

BXSI3
(s)

Element Group Shells
Element Axisymmetric Shells
Subgroup
Element Straight and curved isoparametric degenerate thick axisymmetric shell
Description elements in 2D for which shearing deformations are included. The element thickness may vary along the length.
Number Of 2 (BXSI2), 3 (BXSI3)
Nodes
End Releases
Freedoms U, V, $\theta \mathrm{z}$: at end nodes.
Node X, Y : at each node.
Coordinates

Geometric Properties

$\mathbf{t}, \mathbf{t} 2, \mathbf{t} \mathbf{3}$ Thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic) Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC
(Elastic: Orthotropic Plane Stress)
MATERIAL PROPERTIES ORTHOTROPIC
SOLID (Elastic: Orthotropic Thick)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 2 (Not supported in LUSAS Modeller)
Rigidities: Not applicable.
Matrix Not applicable.
Joint Not applicable.
Concrete Not applicable.
Elasto-Plastic

Creep

Stress resultant:
Tresca: MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
Drucker- MATERIAL PROPERTIES NONLINEAR 64
Prager: (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
Mohr- MATERIAL PROPERTIES NONLINEAR 65
Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
Optimised
Implicit Von Mises:
Volumetric
MATERIAL PROPERTIES NONLINEAR 75
(Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)

Crushing:
Stress Potential STRESS POTENTIAL VON_MISES, HILL,
Not applicable. HOFFMAN (Isotropic: von Mises, Modified von Mises
Orthotropic: Hill, Hoffman)
AASHTO

CEB-FIP

Eurocode
Not applicable.

STRESS POTENTIAL VON_MISES, HILL,

CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 CEBFIP
(Concrete creep model to CEB-FIP Model Code 1990)

Chinese

Eur

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE

IRC

Damage

Viscoelastic Not applicable.

Shrinkage

Rubber Not applicable.
Generic Polymer Not applicable
Composite Not applicable.
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86 IRC
(Concrete creep model to Indian IRC code of Practice)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Loading

Prescribed Value PDSP, TPDSP
Concentrated CL Loads
Element Loads ELDS
Prescribed variable. U, V, θ z: at end nodes.
Concentrated loads. Px, Py, Mx at nodes.
Element loads on nodal line
LTYPE, S1, Px, Py, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, 0, Wx, Wy, Mz
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions
LTYPE, S1, Wx1, Wy1, Mz1, S2, Wx2, Wy2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions
LTYPE, S1, Wx, Wy, Mz
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected loads in global directions

Distributed Loads	UDL	Uniformly distributed loads. Wx, Wy: forces/unit length/radian in local x , y directions for element.
	FLD	Face Loads. Px, Py: local face pressures at nodes.
	FLDG	Not applicable.
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, Ω_{x}, $\Omega \mathrm{y}, \Omega_{\mathrm{z}}, \alpha \mathrm{z}$
	BFP, BFPE	Body force potentials at nodes/for element. φ_{1}, φ_{2}, $0,0, \mathrm{Xcbf}, \mathrm{Ycbf}$
Velocities	VELO	Velocities. Vx, Vy: at nodes.
Accelerations	ACCE	Accelerations. Ax, Ay: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. Components: $0,0,0,0,0,0,0,0,0,0,(\sigma x, \sigma x y$
		$\sigma z, \varepsilon x, \varepsilon x y, \varepsilon z)$ Bracketed terms repeated for each fibre integration point
	SSIG	Initial stresses/strains at Gauss points. These stresses/strains are specified in the same manner as SSI and SSIE.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. Components:
		$0,0,0,0,0,0,0,0,0,0,(\sigma x, \sigma x y, \sigma z)$ Bracketed terms repeated for each fibre integration point.
	SSRG	Residual stresses at Gauss points for element.
		Components: $0,0,0,0,0,0,0,0,0,0,(\sigma x, \sigma x y$,
		$\sigma z)$ Bracketed terms repeated for each fibre integration point.
Target Stress/Strains	TSSIE, TSSIA	Target stresses/strains at nodes/for element.
		Components: $0,0,0,0,0,0,0,0,0,0,(\sigma x, \sigma x y$,
		$\sigma z)$ Bracketed terms repeated for each fibre integration point.
	TSSIG	Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element.
		$\mathrm{T}, 0, \mathrm{dT} / \mathrm{dy}, 0, \mathrm{To}, 0, \mathrm{dTo} / \mathrm{dy}$, 0 : in local directions.
Overburden	Not	
Phreatic Surface	Face pressure.	The fluid pressure is applied in the $-y$ direction of the element y axis.
Field Loads	Not applicable.	
Temp Dependent	Not	

Loads applicable.

LUSAS Output

Solver Force. Nx, Ne, Mx, Me, Sxy: axial and hoop forces, moments/unit width in local directions, shear force

Strain. $\varepsilon_{x}, \varepsilon_{\square}, \gamma \mathrm{x}, \square \theta$, $\varepsilon_{x y}$ axial, hoop, flexural and shear strains.
Continuum stresses: $\sigma x, \sigma x y, \sigma \theta$ in local directions.
Strain: $\varepsilon_{x}, \varepsilon_{x y}, \varepsilon_{\square}$: Axial, shear and hoop strains in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

The local x -axis lies along the line of the element in the direction in which the nodes are numbered. The local y and z -axes form a right-hand set with the local x -axis such that the y axis lies in the global XY-plane with the z -axis parallel to the global Z-axis.

Sign Convention

Standard shell element. Axial and circumferential moments are positive for tension on element top fibre (the top fibre lies on the positive local y side of the element).

Formulation

Geometric Nonlinearity

Total Lagrangian
For large displacements, rotations up to 1 radian, and small strains.
Updated Not applicable. Lagrangian

Eulerian Not applicable.
Co-rotational Not applicable.

Integration Schemes

Stiffness Default.
Fine (see Options).
Mass Default.

1-point (BXSI2), 2-point (BXSI3).
Same as default.
2-point (BXSI2), 3-point (BXSI3).

Fine (see Options). Same as default.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity
102 Switch off load correction stiffness matrix due to centripetal acceleration
105 Lumped mass matrix.
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
139 Output yielded integration points only.

Notes on Use

1. The element is formulated from the degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Plane cross-sections initially normal to the x axis remain plane and undistorted (the shape of the cross-section remains unchanged) under deformation, but do not necessarily remain normal to the x axis. Shearing deformations are included.
2. The axial force, hoop force, shear force and moments are constant in BXSI2 and vary linearly along the length of the beam in BXSI3.
3. OPTION 36 is only applicable for use with element load types FLD, ELDS, UDL and phreatic surface pressure. Specifying this option makes these element loads follow the element geometry as the analysis progresses.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

The element can be used for analysing linear and nonlinear shell structures which are axisymmetric, e.g. pressure vessels or pipes.

3D Flat Thin Shell Elements

General

TS3

QSI4

Element Group
Element Subgroup

Element Description

A family of flat thin shells in 3D which include a high performance incompatible model. The elements take into account both membrane and flexural deformations. As required by thin plate theory, transverse shearing deformations are excluded. An average thickness value for each element is obtained from the specified nodal thicknesses. Since the elements are formulated in local element axes, directional material properties may be defined relative to the element orientation.

Nodes
Freedoms
Node
Coordinates

3 or 4 numbered anticlockwise.
Shells
Flat Thin Shells

3or
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at each node.
X, Y, Z: at each node.

Geometric Properties

Ez, $\mathbf{t} 1 \ldots$ tn Eccentricity and thickness at each node.

Material Properties

Linear Isotropic:
Orthotropic:

Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 3
MATERIAL PROPERTIES (Elastic: Isotropic) MATERIAL PROPERTIES ORTHOTROPIC (Elastic: Orthotropic Plane Stress) MATERIAL PROPERTIES ORTHOTROPIC SOLID (Elastic: Orthotropic Thick)
(Elastic: Anisotropic Thin Plate)
Rigidities.
Matrix Not applicable Joint Not applicable
Concrete Not applicable Elasto-Plastic Not applicable Creep Not applicable Damage Not applicable Viscoelastic Not applicable

Shrinkage

Rubber Not applicable
Generic Polymer Not applicable Composite Not applicable

RIGIDITIES 6 (Rigidities: Shell) (D7, D8, D9, D11, D12, D13, D16, D17, D18=0)

Loading

Prescribed Value PDSP, TPDSP
Concentrated CL
Loads
Element Loads Not applicable.
Distributed Loads UDL
FLD, FLDG
Body Forces CBF
BFP, BFPE

Velocities VELO
Accelerations ACCE
Initial SSI, SSIE
Stress/Strains

Prescribed variable. $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta_{\mathrm{x}}, \theta_{\mathrm{y}}, \theta_{\mathrm{z}}$ at nodes.
Concentrated loads. Px, Py, Pz, Mx, My, Mz: at nodes.

Uniformly distributed loads. Wx, Wy, Wz: local surface pressures for element (see Notes).
Not applicable.
Constant body forces for element. Xcbf, Ycbf, Zcbf (see Notes).
Body force potentials at nodes/for element. φ_{1}, φ_{2}, φ_{3} (see Notes).
Velocities. Vx, Vy, Vz: at nodes.
Accelerations. Ax, Ay, Az: at nodes.
Initial stresses/strains at nodes/for element. Resultants. Nx, Ny, Nxy, Mx, My, Mxy: forces, moments/unit width in local directions. $\varepsilon x, \varepsilon y$, $\gamma \mathrm{xy}, \psi \mathrm{x}, \psi \mathrm{y}, \psi \mathrm{xy}$: membrane, flexural strains in local directions (see Notes).
Not applicable.
Residual Stresses Not
applicable.
Target TSSIE, TSSIAStress/StrainsResultants. Nx, Ny, Nxy, Mx, My, Mxy: forces,moments/unit width in local directions. $\mathcal{E x}, \mathcal{E}$ y,$\gamma \mathrm{xy}, \psi \mathrm{x}, \psi \mathrm{y}, \psi \mathrm{xy}:$ membrane, flexural strains inlocal directions (see Notes).
TSSIG Not applicable.Temperatures TEMP, TMPETemperatures at nodes/for element. T, $0,0, \mathrm{dT} / \mathrm{dz}$,To, $0,0, \mathrm{dTo} / \mathrm{dz}$: in local directions. (see Notes)
Overburden Notapplicable.
Phreatic Surface Notapplicable.Field Loads Notapplicable.
Temp Dependent Not
Loads applicable.

LUSAS Output

Solver Stress resultant: Nx, Ny, Nxy, Mx, My, Mxy: forces, moments/unit width in local directions.

Stress (default): $\sigma \mathrm{x}, \sigma \mathrm{y}, \sigma \mathrm{xy}, \sigma \max , \sigma \mathrm{min}, \beta, \sigma \mathrm{e}$ in local directions (see Notes).

Strain: $\mathcal{E x}, \varepsilon_{y}, \gamma \mathrm{xy}, \psi \mathrm{x}, \psi \mathrm{y}, \psi \mathrm{xy}$: membrane, flexural strains in local directions.

Modeller See Results Tables (Appendix K).

Local Axes

\square Standard area element

Sign Convention

\square Thin shell element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point for the in-plane incompatible modes, (QSI4),
2×2 for the in-plane compatible modes, (QSI4), 2×2 for bending (QSI4).
1-point for in-plane (TS3), 3-point for bending (TS3).
Fine. As default.
Mass Default. 1-point for the in-plane incompatible modes, (QSI4),
2×2 for the in-plane compatible modes, (QSI4), 2×2 for bending (QSI4).
1-point for in-plane (TS3), 3-point for bending (TS3).
Fine. As default.

Mass Modelling

Lumped mass only.

Options

32 Suppress stress output but not stress resultants.
34 Outputs stress resultants.
55 Outputs strains as well as stresses.
59 Outputs local direction cosines for elements.
170 Suppresses transfer of shape function arrays to disk.

Notes on Use

1. The element formulations are based on the standard isoflex approach for the flexural matrices.
2. The variation of membrane stresses within the element can be regarded as constant for TS3 and linear for QSI4. The higher order membrane performance of QSI4 is due to
the addition of four incompatible in-plane displacement modes. The variation of flexural stresses can be regarded as linear for all elements.
3. The stress results are most easily interpreted if the local element axes are all parallel.
4. The elements pass the patch test for mixed triangular and quadrilateral geometry.
5. Stress output to the LUSAS output file is on 4 lines:

- Stresses due to membrane action.
- Top surface stresses due to bending action.
- Top surface stresses due to membrane and bending action.
- Bottom surface stresses due to membrane and bending action.

Gauss point output is not available.
6. All distributed loading will be lumped at the nodes.
7. For effective analysis of curved shell structures, a flat shell element should not extend over more than 15 degrees of arc.
8. Though this element cannot model nonlinear behaviour, it can be mixed with other elements in a nonlinear analysis.
9. A system variable is used to alter the artificial stiffness for in-plane rotations.
10. A fine discretisation will be required to reproduce the correct behavioural response for curved structures. Therefore, the Semiloof shell elements (QSL8,TSL6) or the thick shell elements (QTS8, TTS6) may be more appropriate.
11. The ORTHOTROIC SOLID material model may be used with either composite or non-composite thin shell elements. Using a Solid rather than a Thick orthotropic material means that a local coordinate may be used to orientate the material.
12. Element loading on elements with eccentricity is applied as follows:

- SSI, SSIE, TSSIE, TSSIA, TEMP, TMPE - at the mid-plane of the element.
- UDL, CBF, BFP, BFPE - at the nodal plane.

Restrictions

A Avoid excessive aspect ratio.
\square Avoid excessive warping.

Recommendations on Use

- The flat thin shell elements are suitable for modelling both flat and curved thin shell structures which exhibit negligible transverse shear deformations.
- A fine discretisation will be required to reproduce the correct behavioural response for curved structures. Therefore, the Semiloof shell elements (QSL8,TSL6) or the thick shell elements (QTS8, TTS6) may be more appropriate.
- The Semiloof shell elements (QSL8,TSL6) or the thick shell elements (QTS8, TTS6) are more effective for structures containing multiple shell intersections.
- The Semiloof shell elements (QSL8,TSL6) or the thick shell elements (QTS4, QTS8, TTS3, TTS6) may be more effective for eigen-analyses since a consistent mass matrix is available.
- The Semiloof shell elements (QSL8,TSL6) should be utilised for nonlinear analyses.
- The elements can be combined with BMI21 beam elements for analysing ribbed shells with small or no eccentricity. However, the Semiloof shell (QSL8,TSL6) and beam (BSL3,BSL4,BXL4) are more effective for thin ribbed shells with larger eccentricity. For thick ribbed shells with larger eccentricity the thick shell (QTS4, QTS8, TTS3, TTS6) and co-rotational beam (BMI21) are recommended.

3D Flat Thin Nonlinear Shell Element

General

Element Name
TSR6

Element Group Shells
Element
Flat Thin Shells
Subgroup
Element Description

A triangular shell element for the analysis of faceted shell geometries, including multiple branched junctions. The elements can accommodate varying thickness and anisotropic material properties. The element is based on the "Morley shell" formulation and assumes constant membrane and bending strains across the element. As required by thin shell theory, transverse shearing deformations are excluded.
Number Of 6 numbered anticlockwise.
Nodes
Freedoms
$\mathrm{U}, \mathrm{V}, \mathrm{W}:$ at corner nodes. θ_{1} : (loof rotation) at mid-side nodes (see Notes).
Node X, Y, Z: at each node.
Coordinates

	Anisotropic:	MATERIAL PROPERTIES ANISOTROPIC 3 (Elastic: Anisotropic Thin Plate)
	Rigidities.	RIGIDITIES 6 (Rigidities: Shell)
Matrix	Not applicable	
Joint	Not applicable	
Concrete		MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi-Crack Concrete)
Elasto-Plastic	Stress resultant:	MATERIAL PROPERTIES NONLINEAR 29 (Elastic: Isotropic, Plastic: Resultant) (ifcode not required)
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker- Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	Mohr- Coulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Volumetric Crushing:	Not applicable.
	Stress Potential	```STRESS POTENTIAL VON_MISES, HILL, HOFFMAN (Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)```
Creep		CREEP PROPERTIES (Creep)
	AASHTO	Not applicable

CEB-FIP
ChineseNot applicableEurocodeIRC
DamageNot applicableNot applicableNot applicableDAMAGE PROPERTIES SIMO, OLIVER(Damage)
Viscoelastic Not applicable
ShrinkageGENERAL, USER
Rubber Not applicable.
Generic Polymer Not applicable
Composite Not applicable
Loading
Prescribed Value PDSP, TPDSP
Concentrated CL
Loads
Element Loads Notapplicable.
Distributed Loads UDL
FLD, FLDG
Body Forces CBFPrescribed variable. U, V, W: at corner nodes. θ_{1} : atmid-side nodes.

Prescribed variable. U, V, W: at corner nodes. θ_{1} : at mid-side nodes.
Concentrated loads. Px, Py, Pz: at corner nodes. M1: at mid-side nodes.

Uniformly distributed loads. Wx, Wy, Wz: midsurface local pressures for element.
Not applicable.
Constant body forces for element. Xcbf, Ycbf, Zcbf,

Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not
Loads applicable.

LUSAS Output

Solver Stress resultant: Nx, Ny, Nxy, Mx, My, Mxy: forces, moments/unit width in local directions.

Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma \max , \sigma \min , \beta, \sigma e:$ in local directions (see Notes).

Strain: $\mathcal{E x}, \varepsilon_{y}, \gamma x y, \psi x, \psi y, \psi x y$: membrane, flexural strains in local directions.

Modeller See Results Tables (Appendix K).

Local Axes

- Standard area element

Sign Convention

- Thin shell element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.
Updated Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational For large displacements and rotations

Integration Schemes

Stiffness Default.	1-point
Fine.	1-point
Coarse.	1-point
Mass Default.	1-point
Fine.	1-point

Mass Modelling

\square Consistent mass.

Options

32 Suppresses stress output but not resultants.
34 Outputs element stress resultants.
55 Outputs strains as well as stresses.
59 Outputs local direction cosines at nodes and Gauss points.
77 Output principal stresses and directions.
139 Output yielded Gauss points only.

Notes on Use

1. The element formulations are based on a Kirchhoff hypothesis for thin shells.
2. The stresses are constant within the elements.
3. The loof rotations refer to rotations about the element edge at the mid-side nodes. The positive direction of a loof rotation is defined by a right-hand screw rule applied to a vector running in the direction of the lower to higher numbered corner nodes. It should be noted that this direction is enforced on a global level which means that the loof rotations along the adjoining edge of several elements will be consistent in terms of direction and ordering.
4. The element edges must remain straight even though the elements have mid-side nodes.
5. The elements pass the patch test for convergence.
6. Stresse will not be output when using RIGIDITIES or material model 29.
7. The through-thickness integration is performed explicitly for linear analyses and a 5point Newton-Cotes rule is utilised for materially nonlinear analyses with continuum material models. The through-thickness integration rules are as follows:

- Linear models: 3-layers.
- Nonlinear models: 5-layers.

Restrictions

\square Ensure mid-side node centrality and straight element edges

- Avoid excessive aspect ratio

Recommendations on Use

- These elements may be utilised for analysing flat and faceted 3D shell structures where the transverse shear effects do not influence the solution. The configuration of the nodal freedoms provides an element suitable for modelling intersecting shells.
- The elements are recommended for geometrically nonlinear problems where large displacements and rotations occur. The single Gauss point integration scheme gives rise to a computationally efficient solution, however, the mesh may need to be refined if there is an unacceptable differentiation in stresses between adjacent elements..

Semiloof Curved Thin Shell Elements

General

QSL8

Element
Subgroup
Element Description

Number Of
Nodes
Freedoms

TSL6

Shells
Semiloof Shells geometries, including multiple branched junctions. The elements can accommodate generally curved geometry with varying thickness and accommodate generally curved geometry with varying thickness and
anisotropic and composite material properties. The element formulation takes account of both membrane and flexural deformations. As required by thin shell theory, transverse shearing deformations are excluded. 6 or 8 numbered anticlockwise.
$\mathrm{U}, \mathrm{V}, \mathrm{W}$: at corner nodes. $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta_{1}, \theta_{2}$: (loof rotations) at mid-side nodes (see Notes).
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

Semiloof Shell
A family of shell elements for the analysis of arbitrarily curved shell

Geometric Properties

t1... tn Thickness at each node. Also see Composite Geometry data chapter.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Orthotropic:	MATERIAL PROPERTIES ORTHOTROPIC (Elastic: Orthotropic Plane Stress) MATERIAL PROPERTIES ORTHOTROPIC
	SOLID (Elastic: Orthotropic Solid)
Anisotropic:	MATERIAL PROPERTIES ANISOTROPIC 3 (Elastic: Anisotropic Thin Plate)
Rigidities.	RIGIDITIES 6 (Rigidities: Shell)
Not applicable	

Joint Not applicable

Concrete

Elasto-Plastic Stress resultant:

Tresca:

Drucker-
Prager:

Mohr-

> Coulomb:

Volumetric Not applicable.
Crushing:

Creep

Stress Potential STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi-Crack Concrete)
MATERIAL PROPERTIES NONLINEAR 29
(Elastic: Isotropic, Plastic: Resultant) (ifcode not required)

MATERIAL PROPERTIES NONLINEAR 61
(Elastic: Isotropic, Plastic: Tresca, Hardening:
Isotropic Hardening Gradient, Isotropic Plastic
Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64
(Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)

MATERIAL PROPERTIES NONLINEAR 65
(Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)

REEP PROPERTIES (Creep)

	AASHTO	MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEBFIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE (Chinese creep model to Chinese Code of Practice)
	Eurocode	MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)
	IRC	MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC code of Practice)
Damage		DAMAGE PROPERTIES SIMO, OLIVER (Damage)
Viscoelastic	Not applicable	
Shrinkage		SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER
Rubber	Not applicable.	
Generic Polymer	Not applicable	
Composite	Composite shell:	COMPOSITE PROPERTIES

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V, W: at corner nodes. U, V, $\mathrm{W}, \theta_{1}, \theta_{2}$: at mid-side nodes.
Concentrated CL

Loads
Element Loads Not applicable.
Distributed Loads UDL

FLD, FLDG
Body Forces CBF

BFP, BFPE

Velocities VELO
 Accelerations ACCE
 Initial SSI, SSIE
 Stress/Strains

SSIG

Residual Stresses
 SSR, SSRE
 SSRG

$\mathrm{Py}, \mathrm{Pz}, \mathrm{M}_{1}, \mathrm{M}_{2}$: at mid-side nodes.

Uniformly distributed loads. Wx, Wy, Wz: midsurface local pressures for element.
Not applicable.
Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha_{\mathrm{z}}$
Body force potentials at nodes/for element. φ_{1}, φ_{2}, $\varphi_{3}, 0, \mathrm{Xcbf}, \mathrm{Ycbf}, \mathrm{Zcbf}$, where $\varphi_{1}, \varphi_{2}, \varphi_{3}$ are the face loads in the local coordinate system.
Velocities. Vx, Vy, Vz: at nodes.
Accelerations. Ax, Ay, Az: at nodes.
Not applicable.
Initial stresses/strains at Gauss points.
(1) Resultants (for linear analysis and model 29) Nx, Ny, Nxy, Mx, My, Mxy, $\varepsilon x, \varepsilon_{y}, \gamma x y, \psi x, \psi y$, $\psi x y$: forces, moments/unit width and membrane/flexural strains in local directions.
(2) Components (for all other nonlinear material models) are: $0,0,0,0,0,0,0,0,0,0,0,0,(\sigma x$, $\sigma y, \sigma x y, \varepsilon x, \varepsilon y, \gamma x y)$ - with the bracketed terms repeated for each of the five layers. (See note 7 in the Notes of Use) section.
Not applicable.
Residual stresses at Gauss points.
(1) Resultants (for model 29) Nx, Ny, Nxy, Mx, My, Mxy: forces, moments/unit width in local directions.
(2) Components (for all other nonlinear material models) are: $0,0,0,0,0,0,0,0,0,0,0,0,(\sigma x, \sigma y$, $\sigma x y)$ - with the bracketed terms repeated for each of the five layers. (See note 7 in the Notes of Use) section.
Target TSSIE, TSSIA Stress/Strains

TSSIG

Not applicable.
Target stresses/strains at Gauss points.
(1) Resultants (for linear analysis and model 29) Nx, Ny, Nxy, Mx, My, Mxy, $\varepsilon x, \varepsilon y, \gamma x y, \psi x, \psi y$, $\psi \mathrm{xy}$: forces, moments/unit width and
membrane/flexural strains in local directions.
(2) Components (for all other nonlinear material models) are: $0,0,0,0,0,0,0,0,0,0,0,0,(\sigma x$, $\sigma y, \sigma x y, \varepsilon x, \varepsilon y, \gamma x y)$ - with the bracketed terms repeated for each of the five layers. (See note 7 in the Notes of Use) section.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, $0,0, \mathrm{dT} / \mathrm{dz}$, To, $0,0, \mathrm{dTo} / \mathrm{dz}$

Overburden Not

 applicable.Phreatic Surface Not applicable.
Field Loads Not applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress resultant: Nx, Ny, Nxy, Mx, My, Mxy: forces, moments/unit width in local directions.
Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma \max , \sigma \min , \beta, \sigma \mathrm{e}$: in local directions (see Notes).

Strain: $\mathcal{E x}, \varepsilon y, \gamma x y, \psi x, \psi y, \psi x y:$ membrane, flexural strains in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

- Local y axis The local element y-axis at a point coincides with a curvilinear line $\xi=$ constant in the natural coordinate system which lies in the shell mid-surface.
- Local x axis The local x-axis at a point is perpendicular to the local y-axis in the positive η direction and is tangential to the shell mid-surface.
- Local z axis The local z -axis forms a right-hand set with the x and y axes and the direction is given by the ordering of the element nodes according to a right-hand screw rule. The local z -axis + ve direction defines the element top surface.

TSL6

QSL8

Sign Convention

- Thin shell element (seeNotes).

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, rotations up to 1 radian and small strains.
Updated For large displacements, rotation increments up to 1 radian and small Lagrangian strains.

Eulerian Not applicable.
Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 3-point (TSL6), 5-point (QSL8).
Fine (see 3×3 (QSL8)
Options).
Coarse (see 2x2 (QSL8)
Options).
Mass Default. 3-point (TSL6), 5-point (QSL8).
Fine (see 3×3 (QSL8)
Options).
Mass Modelling
\square Consistent mass (default).
\square Lumped mass.
Options
18 Invokes fine integration rule.
19 Invokes coarse integration rule.
32 Suppresses stress output but not resultants.
34 Outputs element stress resultants.
54 Updated Lagrangian geometric nonlinearity.
55 Outputs strains as well as stresses
59 Outputs local direction cosines at nodes and Gauss points.
87 Total Lagrangian geometric nonlinearity.
102 Switch off load correction stiffness due to centripetal acceleration.
105 Lumped mass matrix.
138 Output yield flags only.
139 Output yielded Gauss points only.
169 Suppress extrapolation of stresses to nodes.
170 Suppress transfer of shape function arrays to disk.

Notes on Use

1. The element formulations are based on a Kirchhoff hypothesis for thin shells.
2. The variation of stresses within the elements may be regarded as linear.
3. The loof rotations refer to rotations about the element edge at the loof points. The positive direction of a loof rotation is defined by a right-hand screw rule applied to a vector running in the direction of the lower to higher numbered corner nodes. It should be noted that this direction is enforced on a global level which means that the loof rotations along the adjoining edge of several elements will be consistent in terms of direction and ordering. The ordering is such that loof point 1 is located between the lower numbered node and the appropriate mid-side node. Similarly loof point 2 lies between the mid-side node and the higher numbered node along an element edge. The loof rotations are actually specified at the element mid-side nodes.
4. The elements pass the patch test for convergence for mixed triangular and quadrilateral element geometry.
5. Stress output to the LUSAS output file is on 4 lines:

- Stresses due to membrane action.
- Top surface stresses due to bending action.
- Top surface stresses due to membrane and bending action.
- Bottom surface stresses due to membrane and bending action.

6. Stresses will not be output when using RIGIDITIES or material model 29. Averaged stresses will not be processed when using RIGIDITIES.
7. The through-thickness integration is performed explicitly for linear analyses and a 5point Newton-Cotes rule is utilised for materially nonlinear analyses with continuum material models. The through-thickness integration rules are as follows:

- Linear models: 3-layers.
- Nonlinear models: 5-layers.
- Composite model: Variable.

8. The quadrature points of the 3-point rule are non-standard.
9. The coarse $2 * 2$ quadrature rule provides the most effective element if the mesh is highly constrained. However, the element possesses two mechanisms, the usual inplane hourglass mechanism encountered when reduced integration is utilised with 8noded elements and an out of plane mechanism. The in-plane mechanism is rarely activated but the out-of-plane mechanism may be more troublesome, particularly where elements are regular and have one zero principal curvature, e.g. a cylinder subject to internal pressure. Provided the mechanisms are not activated the element with $2 * 2$ provides the best results.
10. The 5-point quadrature rule provides an element with a performance below that of the element with $2 * 2$ quadrature, but considerably better than the element with $3 * 3$ quadrature. However, the element possesses a 'near' mechanism which may be activated for lightly constrained meshes, particularly if out of plane loads are present.
11. The middle integration point of the 5 point rule is only implemented as a method of reducing the excitation of spurious modes (or mechanisms) which are present with the $2 * 2$ integration rule. The 5 th integration point is actually weighted with an arbitrarily small value which has the effect of stabilising the results. For these reasons, values from the middle integration point are not taken into account for the nodal extrapolation.
12. The $3 * 3$ quadrature rule provides an element that has no mechanisms but tends to provide over-stiff solutions. Therefore, a finer discretisation is required than if the 5point quadrature rule is used.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature

Avoid excessive aspect ratio

Recommendations on Use

- These elements may be utilised for analysing flat and curved 3D shell structures where the transverse shear effects do not influence the solution. The configuration of the nodal freedoms provides an element suitable for modelling intersecting shells, e.g. tubular joints and also for use with solid elements (HX20).
- The elements may be combined with the Semiloof beam (BSL3,BSL4,BXL4) for analysing ribbed plates and shells.

3D Thick Shell Elements

General

TTS3

QTS4

TTS6

QTS8

Element Group
 Element
 Subgroup
 Element Description

Shells
Thick Shells

A family of shell elements for the analysis of arbitrarily thick and thin curved shell geometries, including multiple branched junctions. The quadratic elements can accommodate generally curved geometry while all elements account for varying thickness. Anisotropic and composite material properties can be defined. These degenerate continuum elements are also capable of modelling warped configurations. The element formulation takes account of membrane, shear and flexural deformations. The quadrilateral elements use an assumed strain field to define transverse shear which ensures that the element does not lock when it is thin (see Notes).
Number Of 3, 4, 6 or 8 numbered anticlockwise. Nodes
Freedoms Default: 5 degrees of freedom are associated with each node U, V, W, $\theta \alpha, \theta \beta$. To avoid singularities, the rotations $\theta \alpha$ and $\theta \beta$ relate to axes

Geometric Properties

$\mathbf{e x}_{\text {, }}, \mathbf{t} \ldots$... $\mathrm{tn}^{\text {Eccentricity }}$ and thickness at each node.

Material Properties

Linear	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
	Orthotropic:	MATERIAL PROPERTIES ORTHOTROPIC THICK (Elastic: Orthotropic Thick) MATERIAL PROPERTIES ORTHOTROPIC SOLID (Elastic: Orthotropic Thick)
	Anisotropic:	MATERIAL PROPERTIES ANISOTROPIC 5 (Elastic: Anisotropic Thick Plate)
	Rigidities.	Not applicable.
Matrix	Not applicable	
Joint	Not applicable	
Concrete		MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi-Crack Concrete)
Elasto-Plastic	Stress resultant:	Not applicable.
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker- Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	MohrCoulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Volumetric	Not applicable.

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL

Prescribed variable. 5 degrees of freedom: U, V, W, $\theta \alpha, \theta \beta$ or 6 degrees of freedom: $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}$, θz
Concentrated loads. 5 degrees of freedom: Px, Py,

Loads		$\mathrm{Pz}, \mathrm{M} \alpha, \mathrm{M} \beta$, where $\mathrm{M} \alpha$ and $\mathrm{M} \beta$ relate to axes defined by $\theta \alpha$ and $\theta \beta$ respectively. 6 degrees of freedom: Px, Py, Pz, Mx, My, Mz.
Element Loads	Not applicable.	
Distributed Loads	UDL	Uniformly distributed loads. Wx, Wy, Wz: midsurface local pressures for element (see Notes).
	FLD, FLDG	Not applicable.
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{x}}, \alpha_{\mathrm{y}}, \alpha_{\mathrm{z}}$ (see Notes).
	BFP, BFPE	Body force potentials at nodes/for element. φ_{1}, φ_{2}, $\varphi_{3}, 0, \mathrm{Xcbf}, \mathrm{Ycbf}, \mathrm{Zcbf}$, where $\varphi_{1}, \varphi_{2}, \varphi_{3}$ are the face loads in the local coordinate system (see Notes).
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Accelerations. Ax, Ay, Az: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element (see Notes).
	SSIG	Initial stresses/strains at Gauss points. Stress/strain components relating to local axes at Gauss points:
		$\sigma x, \sigma y, \sigma x y, \sigma y z, \sigma x z, \varepsilon x, \varepsilon y, \gamma x y, \gamma y z, \gamma x z$. All of these 10 terms are repeated for each fibre integration point through the thickness (see Notes).
Residual Stresses	SSR, SSRE	Not applicable.
	SSRG	Residual stresses at Gauss points. Stress components relating to local axes at Gauss points: $\sigma x, \sigma y$,
		$\sigma x y, \sigma y z, \sigma x z$ all of these 5 terms are repeated for each fibre integration point through the thickness (see Notes).
Target Stress/Strains	TSSIE, TSSIA	Target stresses/strains at nodes/for element (see Notes).
	TSSIG	Target stresses/strains at Gauss points. Stress/strain components relating to local axes at Gauss points:
		$\sigma x, \sigma y, \sigma x y, \sigma y z, \sigma x z, \varepsilon x, \varepsilon y, \gamma_{x y}, \gamma y z, \gamma x z$. All of these 10 terms are repeated for each fibre integration point through the thickness (see Notes).
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0, \mathrm{dT} / \mathrm{dz}$, To, $0,0, \mathrm{dTo} / \mathrm{dz}$ (see Notes).
Overburden	Applicable.	
Phreatic Surface	Applicable.	
Field Loads	Not applicable.	

Temp Dependent Not applicable. Loads

LUSAS Output

Solver Stress resultant: Nx, Ny, Nxy, Mx, My, Mxy, Sx, Sy: forces, moments/unit width in local directions.

Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma y z \sigma x z, \sigma e$ in local directions (see Notes).

Strain: $\varepsilon x, \varepsilon_{y}, \gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma_{\mathrm{xz}}, \varepsilon_{\mathrm{e}}$ in local directions (see Notes).
Modeller See Results Tables (Appendix K).

Local Axes

The local element x-axis at a point coincides with a curvilinear line $\eta=$ constant in the natural coordinate system which lies in the shell mid-surface. The local z -axis at a point is obtained from the cross product of a curvilinear line $\xi=$ constant in the natural coordinate system and the local x -axis. The local y -axis forms a right-hand set with the x and z axes and the direction is given by the ordering of the element nodes according to a right-hand screw rule. The local z -axis +ve direction defines the element top surface.

TTSTTS6

QTS8

Sign Convention

\square Thick shell element (seeNotes).

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, large rotations and small strains.
Updated Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational Not applicable.

Integration Schemes

Stiffness	Default.	1-point (TTS3), 3-point (TTS6), 2x2 (QTS4, QTS8).
	Fine (see Options).	3-point (TTS3), 5-point (QTS8)
Mass	Default.	1-point (TTS3), 3-point (TTS6), 2x2 (QTS4, QTS8).
	Fine (see Options).	3-point (TTS3), 5 point (QTS8)

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
32 Suppresses stress output but not resultants.
34 Outputs element stress resultants.
55 Outputs strains as well as stresses.
59 Outputs local direction cosines at nodes and Gauss points.
77 Outputs principal stresses.
87 Total Lagrangian geometric nonlinearity.
102 Switch off load correction stiffness due to centripetal acceleration.
105 Lumped mass matrix.
110 Use assumed shear strain field for TTS6 and QTS8 thick shell elements.
139 Output yielded Gauss points only.
169 Suppress extrapolation of stresses to nodes.
171 Switch off assumed strain field for QTS4 elements.
278 Six degrees of freedom.
396 Invokes the improved transverse shear calculation ('on' by default for models created by version 14.4 and above, and 'off' - for models created by previous
versions).
417 Introduce residual bending flexibility correction for 3-node thick shell TTS3.
422 Use assumed transverse shear strain field for TTS3 thick shell element.

Notes on Use

1. For TTS3 elements all moments and shears are constant for the element. For QTS4 the variations of moments, out of plane shears and in-plane loads is near-constant and the variation of in-plane shear is near-linear. For TTS6 and QTS8 elements the variation of moments and in-plane shear is near-linear while the variation of out of plane shears is near constant.
2. Shear locking is much more of an issue for lower order elements, and hence an assumed shear strain field is always switched on for TTS3/QTS4 elements; if it were switched off, these elements would always lock and perform very badly. Higher order elements are less prone to shear locking, and the situation is not quite so clear cut. It has been found that using an assumed shear strain field with QTS8 elements when transverse shear strain dominates can lead to poor results. The view has therefore been taken that the assumed shear strain field should be switched off by default for the higher order TTS6/QTS8 elements.
3. The QTS8 element fails the shear patch test when the assumed strain field is utilised with $2 * 2$ or 5 point integration rule. When carrying out analyses involving these elements that are dominated by transverse shear effects, e.g. a shear wall, it is recommended, as discussed above, that the assumed strain field is disabled. This is the default setting for QTS8 elements. Option 110 may be used to invoke the assumed strain interpolation but this is not recommended for general use.
4. The assumed strain field is invoked automatically for QTS4 elements. The assumed strain field may be revoked for QTS4 by specifying Option 171.
5. The introduction of assumed transverse shear strains (Option 422) significantly improves the performance of the TTS3 element. The RBF correction (Option 417) further improves the TTS3 element, especially for very thin shells. For elasto-plastic materials, the correction matrix is computed using the linear material properties
6. Continuum stresses (and strains using Option 55) at each fibre integration point are output by default. For linear materials these stresses relate to the top, middle and bottom surfaces of the element. If a nonlinear material is specified then stresses are output at 5 points through the thickness after material yield.
7. Option 55 must be specified if nonlinear state variables are to be written to the LUSAS output file.
8. The through-thickness integration rules are as follows:

- Linear material models: 3-layers.
- Nonlinear material models: 5-layers.
- Composite model: variable.

7. Initial stresses/strains must be specified at 3 layers for a linear material or 5 layers for a nonlinear material. Residual stresses must be specified for 5 layers. In all instances the stresses/strains are specified sequentially from the bottom surface to the top.
8. There are usually 2 rotational degrees of freedom and a common nodal normal associated with each node giving a smooth surface to the shell assembly:

The direction of the axes defining the rotations depends upon the orientation of the normal at a node (see Thick Shell Nodal Rotation). In certain circumstances 3 rotational degrees of freedom relating to global axes will be assigned to a node. This is done automatically:

- When connecting with beam elements, joint elements or other types of shells, eg.QSI4.
- When a Concentrated Load is applied in LUSAS Modeller.
- When a Support is applied in LUSAS Modeller.
- When the angle between adjacent shell normals exceeds the SYSTEM parameter SHLANG (see below).
- When option 278 is specified.

If Option 278 is specified then all nodes for these shell element types will be assigned six global degrees of freedom. To overcome the problems associated with in-plane drilling rotations an artificial stiffness is automatically included for the rotation about the shell normal. The use of Option 278 is not recommended for analyses that involve large displacements or rotations. LUSAS Modeller will automatically specify Option 278 but it can be switched off in Modeller via File > Model Properties > Solution > Element options.
Option 278 should be switched off if QTS4 elements are to be used to model thick curved shells in which membrane action leads to a significant difference between the in-plane strains in the top and bottom surface of the shell. If Option 278 is not disabled under these circumstances the moments associated with this in-plane strain
differential are not accurately accounted for. An alternative approach would be to switch to QTS8 elements as these elements produce more accurate moments under these conditions.

When the maximum angle between adjacent normals at a node is greater than 20 degrees, e.g., branched shell structures. (20 degrees is a default value which may be changed using the SYSTEM parameter SHLANG); if the nodal freedom command has not been specified for that node.

9. A system variable (STFINP) is used to alter the artificial stiffness for in-plane rotations. This system parameter can only be used in conjunction with Option 278.
10. The desired number of rotational degrees of freedom for a node may be enforced through the NODAL FREEDOMS data input. Care must be taken if 6 degrees of freedom are specified in this manner as a singularity may occur if appropriate in-plane rotations are not restrained. This facility is provided together with the TRANSFORMED FREEDOMS data chapter to allow more flexibility in the specification of boundary conditions. In these circumstances, the in-plane rotation about the normal of the shell must usually be restrained to avoid singularities. In general, wherever possible, 5 degrees of freedom should be used when the shell surface is smooth.
11. The TTS3 and QTS8 elements possess one out of plane mechanism when using the default integration rules. The 3 noded element is most effective using the one point rule.
12. The through-thickness integration is performed by utilising a 3 point Newton-Cotes rule for linear materials and a 5 point rule for nonlinear materials and creep. In an analysis involving material nonlinearity, a 3 point rule is used until the material yields and then a 5 point rule is invoked.
13. The thick shell formulation assumes constant transverse shear deformation. In the post-processing stage, after the application of the constitutive relationship, this results in a constant transverse shear stress. This result can be improved by taking into
account the true parabolic shear stress distribution while preserving the same shear resultant. Thus, when Option 396 is used, the transverse shear stresses for a nonlayered shell are set to zero at the top and bottom and to 1.5 times the constant value at the middle. For a layered shell, the distribution of the transverse shear depends on the in-plane stiffness of the layers. The output results are for the middle of the layer, thus the top and bottom layers will not have zero transverse shear.
14. The ORTHOTROPIC SOLID material model may be used with either composite or non-composite thick shell elements. Using a Solid rather than a Thick orthotropic material means that a local coordinate may be used to orientate the material.
15. If applying an initial stress/strain or thermal load that varies across an element, a higher order element (6 or 8 nodes) should be used. A limitation of the standard isoparametric approach when used for lower order elements (3 or 4 nodes) is that only constant stress/strain fields can be imposed correctly.
16. For an element with eccentricity the following load types are applied at the mid-plane of the element (not the nodal plane): UDL, CBF, BFP, BFPE, SSI, SSIE, SSIG, SSRG, TSSIE, TSSIA, TSSIG, TEMP, TMPE.
17. The Smoothed Multi Crack Concrete Model (109) can be used with this element, however, due to the "plane sections remaining plane" hypothesis, crack widths cannot be computed.

Restrictions

Ensure mid-side node centrality
\square Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- These elements may be utilised for analysing flat and curved 3D shell structures where it is necessary to account for transverse shear. This typically involves thick shell structures where transverse shear deformation can have a considerable influence on the response. The degenerate continuum formulation also allows the low order quadrilateral element (QTS4) to successfully model warped shell configurations.
- The elements may be used for modelling intersecting shells or branched shell junctions. In this instance the nodal rotation freedoms are transformed to relate to the global axes. For modelling stiffened shell structures, the shells may be connected to beam elements BMI21.
- This family of thick shell elements offers a consistent formulation of the tangent stiffness which makes them particularly effective in geometrically nonlinear applications.
- Be aware that when the shell is defined with eccentricity to a reference surface and this reference surface does not pass through the centroid of the cross section,
membrane forces or displacements prescribed/calculated at the nodes will cause bending.

Chapter 7 : Membrane Elements.

2D Axisymmetric Membrane Elements

General

Element Name

BXM2

BXM3

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Linear Isotropic:
MATERIAL PROPERTIES (Elastic: Isotropic)
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Tresca:
MATERIAL PROPERTIES NONLINEAR 61
(Elastic: Isotropic, Plastic: Tresca, Hardening:

Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
Drucker-Prager: MATERIAL PROPERTIES NONLINEAR 64
(Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
Mohr-Coulomb: MATERIAL PROPERTIES NONLINEAR 65
(Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
Optimised Implicit
Von Mises:
Volumetric
MATERIAL PROPERTIES NONLINEAR 75
(Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
Not applicable.
Crushing:
Stress Potential
Creep
Damage
Viscoelastic
Not applicable Shrinkage
Rubber Ogden:
Mooney-Rivlin:
Neo-Hookean:
Hencky:
Generic Polymer Not applicable
Composite Not applicable
Field Not applicable

Loading

Prescribed Value PDSP, TPDSP
Concentrated CL Loads
Element Loads Not applicable.

Prescribed variable. U, V: at nodes.
Concentrated loads. Px, Py: at nodes.

LUSAS Output

Solver
Stress (default): $\sigma x, \sigma_{\theta}$: axial, circumferential stress.
Strain: $\varepsilon_{x}, \varepsilon_{\theta}$: axial, circumferential strain.

Modeller See Results Tables (Appendix K).

Local AxesStandard line element
Sign ConventionStandard membrane element
Formulation
Geometric Nonlinearity
Total Lagrangian For large displacements and small strains.
Updated Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational Not applicable.
Integration Schemes
Stiffness Default. 1-point (BXM2), 2-point (BXM3).Fine (see2-point (BXM2).Options).
Mass Default. 1-point (BXM2), 2-point (BXM3).Fine (see2-point (BXM2).
Mass Modelling
Consistent mass (default).
\square Lumped mass.
Options
18 Invokes fine integration rule.
36 Follower loads (see Notes).
47 Use the X-axis as the axis of symmetry.
55 Output strains as well as stresses.

87 Total Lagrangian geometric nonlinearity.
105 Lumped mass matrix.
170 Suppress transfer of shape function arrays to disk

Notes on Use

1. The element formulation is based on the standard isoparametric approach.
2. The variation of stress along the element is constant for BXM2 and linear for BXM3.
3. To apply a non-conservative (follower) pressure load (load type FLD), Option 36 must be specified. Note that this load should be normal to the face and constant for all the nodes of the element. Follower load can only be used with BXM2 elements.
4. The elements should not be used as 'stand-alone' elements if any bending effects are present. The thin axisymmetric shell element BXS3 should be used for this case.
5. The BXM3 element has a zero energy mode which may be excited if the midside node is free and not connected to any other element.
6. When BXM2 elements are used with either variable nodal thicknesses, temperature dependent material properties or utilised in materially nonlinear analyses the 2-point Gauss rule is most effective.

Restrictions

\square Ensure mid-side node centrality

- Avoid excessive element curvature

Rubber material models can only be used with element BXM2 and must be used with Total Lagrangian geometric nonlinearity (Option 87).

Recommendations on Use

The elements may be used alone to model circular plates or pipes, or coupled with axisymmetric solid elements to provide stiffeners, e.g. radial reinforcement.

3D Space Membrane Elements

General

TSM3

SMI4

Element Group
 Membranes

Element
Space Membranes
Subgroup
Element
Description
A family of space membrane elements in 3D which include a high performance incompatible model (SMI4 only). The elements are intended for 3D membrane structures (they possess no bending stiffness). The elements are formulated in the local element axes which allows directional material properties to be defined relative to the element orientation. The elements can accommodate varying thickness.
Number Of 3 or 4 numbered anticlockwise.
Nodes
Freedoms
Node
$\mathrm{U}, \mathrm{V}, \mathrm{W}$: at each node.
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Linear	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
	Orthotropic:	MATERIAL PROPERTIES ORTHOTROPIC
		(Elastic: Orthotropic Plane Stress)
	Anisotropic:	MATERIAL PROPERTIES ANISOTROPIC 3
		(Elastic: Anisotropic Thin Plate)
	Rigidities:	RIGIDITIES 3 (Rigidities: Membrane/Thin
		Plate)

Matrix Not applicableJoint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable
LoadingPrescribed Value PDSP, TPDSP
Concentrated CL
Loads
Element Loads Notapplicable.
Distributed Loads UDLFLD, FLDGBody Forces CBFBFP, BFPEVelocities VELOAccelerations ACCEInitial SSI, SSIE
Stress/StrainsSSIG
Residual Stresses Notapplicable.Target TSSIE, TSSIAStress/Strains
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Prescribed variable. U, V, W: at nodes.
Concentrated loads. Px, Py, Pz: at nodes.

Uniformly distributed loads. Wx, Wy, Wz: local surface pressures for element.
Not applicable.
Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha \mathrm{z}$
Body force potentials at nodes/for element. φ_{1}, φ_{2}, ب3
Velocities. Vx, Vy, Vz: at nodes.
Accelerations. Ax, Ay, Az: at nodes.
Initial stresses/strains at nodes/for element. Nx, Ny, Nxy : forces in local directions. $\varepsilon x, \varepsilon y, \gamma \mathrm{xy}$: membrane strains in local directions.
Initial stresses/strains at Gauss points. Nx, Ny, Nxy: forces in local directions. $\varepsilon x, \varepsilon y, \gamma x y$: membrane strains in local directions.
membrane strains in local directions.
TSSIG
Target stresses/strains at Gauss points. Nx, Ny, Nxy: forces in local directions. $\varepsilon x, \varepsilon y, \gamma x y$: membrane strains in local directions.
Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0, To, 0, 0,0
Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not
Loads applicable.

Output

Solver Stress resultant: $\mathrm{Nx}, \mathrm{Ny}, \mathrm{Nxy}$, Nmax, Nmin, β : forces/unit length in local directions.

Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma \max , \sigma \min , \beta$: membrane stresses in local directions.

Strain: $\varepsilon x, \varepsilon y, \gamma \mathrm{xy}, \varepsilon \max , \varepsilon \min , \beta$: membrane strains in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard area element

Sign Convention

\square Standard membrane element
Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point (TSM3), 2x2 (SMI4).
Fine. As default.
Mass Default. 1-point (TSM3), 2x2 (SMI4).
Fine. As default.

Mass Modelling

Lumped mass only.

Options

32 Suppress stress output but not stress resultants.
34 Output stress resultants.
55 Output strains as well as stresses.
59 Output local direction cosines for elements.
77 Output averaged global stresses.

Notes on Use

1. The element formulations are based on the standard
2. The variation of stresses within an element may be regarded as constant for TSM3 and linear for SMI4.
3. The higher performance of SMI4 is due to the addition of 4 incompatible displacement modes.
4. The elements pass the patch test for mixed triangular and quadrilateral geometry.
5. Distributed loads are lumped at the nodes.
6. The element is formulated so that the material response is evaluated in the local Cartesian system.
7. The SMI4 element is generally the most effective element due to its quadratic displacement accuracy. However, its behaviour tends to deteriorate as the element become distorted.
8. The element matrices are formed using 1-point Gauss quadrature for TSM3. Selective integration is utilised for the evaluation of the element matrices for SMI4. The method used is similar to that proposed by Hughes, with the contribution of the incompatible modes to the strain-displacement matrix being evaluated at the 1-point Gauss rule sampling location and then extrapolated to the $2 * 2$ Gauss rule sampling locations. The element matrices are then formed using the $2 * 2$ Gauss rule.

Restrictions

A Avoid excessive aspect ratio.
\square Avoid excessive warping.

Recommendations on Use

- The space membrane elements have limited 'stand-alone' use because of their inability to support any loading except membrane loading. However, they can be utilised with the flat shell elements (QSI4, TS3) to model very thin membranes in structural components.
- If a structure is composed of exactly co-planar flat space membrane elements that are not stiffened by plate or shell elements, singularities may arise since there is no out-of-plane stiffness.
- If there is a possibility of bending behaviour then a thin shell should be utilised for the analysis.

Chapter 8 : Joint Elements.

2D Joint Element for Bars, Plane Stress and Plane Strain

General

Element Name
JNT3

Element Group Joints
Element 2D Joints
SubgroupElement A 2D joint element which connects two nodes by two springs in the localDescription x and y -directions.
Number Of 3. The 3rd node is used to define the local x-direction.
Nodes
Freedoms U, V : at nodes 1 and 2 (active nodes).
Node X, Y : at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable
Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 4 K1,..., K10 element stiffness matrix (Not supported in LUSAS Modeller)
Mass: MATRIX PROPERTIES MASS 4 M1,..., M10 element mass matrix (Not supported in LUSAS Modeller)
Damping: MATRIX PROPERTIES DAMPING 4 C1,..., C10 element damping matrix (Not supported in LUSAS Modeller)

Joint Standard:

Dynamic general:
Elasto-plastic:

Elasto-plastic:
Nonlinear contact:
Nonlinear friction:
Viscous damping:
Lead-rubber:
Friction pendulum:
Multi-linear elastic
Multi-linear
hysteresis
Multi-linear compound hysteresis
Axial force dependent multilinear elastic
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

JOINT PROPERTIES 2 (Joint: 2/Spring Stiffness Only)
JOINT PROPERTIES GENERAL 2 (Joint: 2/General Properties)
JOINT PROPERTIES NONLINEAR 312
(Joint: 2/Elasto-Plastic (Tension and Compression Equal))
JOINT PROPERTIES NONLINEAR 322 (Joint: 2/Tension and Compression Unequal)
JOINT PROPERTIES NONLINEAR 332 (Joint: 2/Smooth Contact)
JOINT PROPERTIES NONLINEAR 442 (Joint: 2/Frictional Contact)
JOINT PROPERTIES NONLINEAR 352 (Joint: 2/Viscous Damper)
JOINT PROPERTIES NONLINEAR 362 (Joint: 2/Lead Rubber Bearing)
JOINT PROPERTIES NONLINEAR 372 (Joint: 2/Frictional Pendulum System)
JOINT PROPERTIES NONLINEAR 402 (Joint: 2/Multi-Linear Elastic)
JOINT PROPERTIES NONLINEAR 412
(Joint: 2/Multi-Linear Hysteresis)
JOINT PROPERTIES NONLINEAR 422
(Joint: 2/Multi-Linear Compound Hysteresis)
JOINT PROPERTIES NONLINEAR 432
(Joint: 2/Axial Force Dependent Multi-Linear Elastic)

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V: at active nodes.
Concentrated CL Concentrated loads. Px, Py: at active nodes.
Loads
Element Loads Not
applicable.
Distributed Loads Notapplicable.Body Forces CBF
BFP, BFPE Not applicable.
Velocities VELO
Accelerations ACCEInitial SSI, SSIE
Stress/Strains
SSIG
Residual Stresses Not
applicable.
Target TSSIE, TSSIA Target stresses/strains at nodes/for element. Fx, Fy:
Stress/StrainsTSSIG
Temperatures TEMP, TMPE
Overburden Not applicable.
Phreatic Surface Notapplicable.Field Loads Notapplicable.
Temp Dependent Not
Loads applicable.
LUSAS Output
Solver Force: Fx, Fy: spring forces in local directions.
Strain: $\mathcal{E x}, \varepsilon_{y}$: spring strains in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

\square Standard joint element

Sign Convention

\square Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point.
Fine. As default.
Mass Default. 1-point.
Fine. As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

55 Output strains as well as stresses.
119 Invokes temperature input for joints.

Notes on Use

See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

2D Joint Element for Engineering and Kirchhoff Beams

General

Element Name

JPH3

Element Group
 Joints

Element
 2D Joints

Subgroup
Element Description

A 2D joint element which connects two nodes by two springs in the local x and y -direction and one spring about the local z -direction.
Number Of
3. The 3rd node is used to define the local x-direction.

Nodes
Freedoms
Node X, Y: at each node.
Coordinates

Geometric Properties

ey Eccentricity measured from the joint x axis to the nodal line (i.e. parallel to the joint y axis).
dy Parametric distance factor (between 0.0 and 1.0), which defines the position of the shear spring for the local y direction between nodes 1 and 2 . It is measured from node $1(\mathrm{dy}=0)$ along the local x direction

Material Properties

Linear Not applicable
 Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 6 K1,..., K21 element stiffness matrix (Not supported in LUSAS Modeller)
 Mass: MATRIX PROPERTIES MASS 6 M1,..., M21 element mass matrix (Not supported in LUSAS

Damping:	Modeller) MATRI PROPERTIES DAMPING 6 C1,..., C21 element damping matrix (Not supported in LUSAS Modeller)
Joint	Standard:
JOINT PROPERTIES 3 (Joint: 3/Spring Stiffness	
Only)	

Rubber Not applicable Generic Polymer Not applicable Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP
Concentrated CL Loads
Element Loads Not applicable
Distributed Loads Not applicable
Body Forces CBF

BFP, BFPE
Velocities VELO
Accelerations ACCE
Initial SSI, SSIE
Stress/Strains

SSIG

Residual Stresses Not applicable

Target TSSIE, TSSIA Stress/Strains

TSSIG
Temperatures TEMP, TMPE
Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable
Temp Dependent Not applicable Loads

Prescribed variable. U, V, $\theta \mathrm{z}$: at active nodes. Concentrated loads. Px, Py, Mz: at active nodes.

Constant body forces for element. Xcbf, Ycbf, Ω x, $\Omega \mathrm{y}, \Omega_{\mathrm{z}}, \alpha \mathrm{z}$
Not applicable.
Velocities. Vx, Vy: at nodes.
Accelerations. Ax, Ay: at nodes.
Initial stresses/strains at nodes/for element.
Resultants. Fx, Fy, Mz: spring forces and moment in local directions. $\varepsilon x, \varepsilon y, \psi z$: strains at nodes.
Not applicable.
Target stresses/strains at nodes/for element.
Resultants. Fx, Fy, Mz: spring forces and moment in local directions. $\varepsilon x, \varepsilon y, \psi z$: strains at nodes.
Not applicable.
Temperatures at nodes/for element. $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{10}$, T20, T30: actual and initial spring temperatures.

LUSAS Output

Solver Force: Fx, Fy, Mz: spring forces and moment in local directions.
Strain: $\varepsilon x, \varepsilon y, \psi z$: spring strains in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard joint element

Sign Convention

- Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point.
Fine. As default.
Mass Default. 1-point.
Fine. As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

55 Output strains as well as stresses.
119 Invokes temperature input for joints.

Notes on Use

See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

2D Joint Element for Grillage Beams and Plates

General

Element Name
JF3

Element Group Joints

Element 2D Joints
Subgroup
Element A 2D joint element which connects two nodes by one spring in the local Description z-direction and two springs about the x and y directions.
Number Of 3. The 3rd node is used to define the local x-direction.
Nodes
Freedoms
$\mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}$: at nodes 1 and 2 (active nodes).
Node X, Y : at each node.
Coordinates

Geometric Properties

dz Parametric distance factor (between 0.0 and 1.0), which defines the position of the shear spring for the local z direction between nodes 1 and 2 . It is measured from node $1(\mathrm{dz}=0)$ along the local x direction.

Material Properties

Linear Not applicable

Matrix Stiffness:

Mass:

[^0]LUSAS Modeller)Damping: MATRIX PROPERTIES DAMPING 6 C1,...,C21 element damping matrix (Not supportedin LUSAS Modeller)
Joint Standard: JOINT PROPERTIES 3 (Joint: 3/Spring Stiffness Only)
Dynamic general: JOINT PROPERTIES GENERAL 3 (Joint: 3/General Properties)
Elasto-plastic: JOINT PROPERTIES NONLINEAR 313 (Joint: 3/Elasto-Plastic (Tension and Compression Equal))
Elasto-plastic: JOINT PROPERTIES NONLINEAR 323 (Joint: 3/Tension and Compression Unequal)
JOINT PROPERTIES NONLINEAR 333 (Joint: 3/Smooth Contact)
Nonlinear friction: Not applicable
Viscous damping: JOINT PROPERTIES NONLINEAR 353 (Joint: 3/Viscous Damper)
Lead-rubber: Not applicable
Friction pendulum: Not applicable
Multi-linear elastic JOINT PROPERTIES NONLINEAR 403 (Joint: 3/Multi-Linear Elastic)
Multi-linear JOINT PROPERTIES NONLINEAR 413 hysteresis
Multi-linear compound hysteresis
Axial force dependent multilinear elastic
(Joint: 3/Multi-Linear Hysteresis)
JOINT PROPERTIES NONLINEAR 423
(Joint: 3/Multi-Linear Compound Hysteresis)
JOINT PROPERTIES NONLINEAR 433
(Joint: 3/Axial Force Dependent Multi-Linear Elastic)
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable.
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP
Concentrated CL
Loads
Element Loads Not applicable
Distributed Loads Not applicable
Body Forces CBF
BFP, BFPE
Velocities VELO
Accelerations ACCE
Initial SSI, SSIE
Stress/Strains

SSIG
Residual Stresses Not applicable
Target TSSIE, TSSIA Stress/Strains

TSSIG
Temperatures TEMP, TMPE

Prescribed variable. $\omega, \theta \mathrm{x}, \theta \mathrm{y}$: at active nodes.
Concentrated loads. Pz, Mx, My: at active nodes.

Constant body forces for element. Zcbf Not applicable. Velocities. Vz: at nodes. Accelerations. Az: at nodes. Initial stresses/strains at nodes/for element. Fz, Mx, My : at active nodes. $\varepsilon z, \psi \mathrm{x}, \psi \mathrm{y}$: at active nodes.
Not applicable.
Target stresses/strains at nodes/for element. Fz, Mx, My : at active nodes. $\varepsilon z, \psi \mathrm{x}, \psi \mathrm{y}:$ at active nodes.
Not applicable.
Temperatures at nodes/for element. $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$, $\mathrm{T}_{10}, \mathrm{~T}_{20}, \mathrm{~T}_{30}$: actual and initial spring temperatures.

LUSAS Output

Solver Force: $\mathrm{Pz}, \mathrm{Mx}, \mathrm{My}$: spring forces in local directions.
Strain: $\varepsilon z, \psi x, \psi y$: spring strains in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

Standard joint element

Sign Convention

- Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness	Default.	1-point.
	Fine.	As default.
Mass	Default.	1-point.
	Fine.	As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

55 Output strains as well as stresses.
119 Invokes temperature input for joints.

Notes on Use

See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

2D Joint Element for Axisymmetric Solids

General

Element Name

JAX3

Joints
2D Joints
Subgroup
Element An axisymmetric joint element for use with axisymmetric solid elements, Description which connects two nodes by two springs in the local x and y -directions and a 3rd spring in the circumferential direction.
Number Of 3. The 3rd node is used to define the local x-direction.
Nodes
Freedoms U, V: at nodes 1 and 2 (active nodes).
Node X, Y: at each node.

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable
Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 6 K1,..., K10 element stiffness matrix (Not supported in LUSAS Modeller)
Mass: MATRIX PROPERTIES MASS 6 M1,..., M10
element mass matrix (Not supported in LUSAS Modeller)
Damping: MATRIX PROPERTIES DAMPING 6 C1,..., C10 element damping matrix (Not supported in LUSAS Modeller)
Joint Standard:
Dynamic general:
Elasto-plastic:
Elasto-plastic:
Standard:
Dynamic gener
Elasto-plastic:
Elasto-plastic:
Nonlinear contact:
Nonlinear friction:
Viscous damping:hysteresisMulti-linearcompoundhysteresisAxial forcedependent multi-linear elastic

Concrete Not applicable

Elasto-Plastic Not applicable

Creep Not applicable

Damage Not applicable

Viscoelastic Not applicable

Shrinkage Not applicable

Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicableJOINT PROPERTIES 2 (Joint: 2/SpringStiffness Only) (See notes on use)JOINT PROPERTIES GENERAL 2 (Joint:2/General Properties) (See notes on use)
JOINT PROPERTIES NONLINEAR 312 312
(Joint: 2/Elasto-Plastic (Tension andCompression Equal)) (See notes on use)
JOINT PROPERTIES NONLINEAR 322
(Joint: 2/Tension and Compression Unequal)
(Joint: 2/Tension and Compression Unequal)(See notes on use)
JOINT PROPERTIES NONLINEAR 332
(Joint: 2/Smooth Contact) (See notes on use)
JOINT PROPERTIES NONLINEAR 442
JOINT PROPERTIES NONLINEAR 442
(Joint: 2/Frictional Contact) (See notes on use)
JOINT PROPERTIES NONLINEAR 352
(Joint: 2/Viscous Damper) (See notes on use)
Lead-rubber: JOINT PROPERTIES NONLINEAR 362
(Joint: 2/Lead Rubber Bearing) (See notes on use)
Friction pendulum: JOINT PROPERTIES NONLINEAR 372
(Joint: 2/Frictional Pendulum System) (Seenotes on use)Multi-linear elastic JOINT PROPERTIES NONLINEAR 402(Joint: 2/Multi-Linear Elastic)
Multi-linear

JOINT PROPERTIES 2 (Joint: 2/Spring Stifness Only)(See notes on use) OINT PROPERTIES GENERAL 2 (Joint:use) (See notes on use)

JOINT PROPERTIES NONLINEAR 402 (Joint: 2/Multi-Linear Elastic)(Joint: 2/Multi-Linear Hysteresis)
JOINT PROPERTIES NONLINEAR 422
(Joint: 2/Multi-Linear Compound Hysteresis)
JOINT PROPERTIES NONLINEAR 432(Joint: 2/Axial Force Dependent Multi-LinearElastic)
Loading
Prescribed Value PDSP, TPDSP Prescribed variable. U, V: at active nodes.
Concentrated CLLoads
Element Loads Not
applicable.
Distributed Loads Not
applicable.
Body Forces CBF Constant body forces for element. Xcbf, Ycbf, Ω_{x},
BFP, BFPE Not applicable.Velocities VELOAccelerations ACCEInitial SSI, SSIE
Stress/StrainsSSIG
Residual Stresses Notapplicable.Target TSSIE, TSSIA
Stress/Strains
TSSIG
Temperatures TEMP, TMPE Temperatures at nodes/for element. $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{10}, \mathrm{~T}_{20}$:
Velocities. Vx, Vy: at nodes.
Accelerations. Ax, Ay: at nodes..
Initial stresses/strains at nodes/for element. Fx, Fy:spring forces in local directions. $\mathcal{E x}, \varepsilon_{y}$: springstrains in local directions.
Not applicable.
Concentrated loads. Px, Py: at active nodes.
$\Omega \mathrm{y}, \Omega \mathrm{z}, \alpha \mathrm{z}$
Target stresses/strains at nodes/for element. Fx, Fy:spring forces in local directions. $\mathcal{E x}, \boldsymbol{\varepsilon y}$: springstrains in local directions.
Not applicable.actual and initial spring temperatures.
Overburden Notapplicable.Phreatic Surface Notapplicable.
Field Loads Notapplicable.
Temp Dependent NotLoads applicable.

LUSAS Output

Solver Force: Fx, Fy, Fz: spring forces in local directions.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z$: spring strains in local directions.

Modeller See Results Tables (Appendix K).

Local Axes

\square Standard joint element

Sign Convention

Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point.
Fine. As default.
Mass Default. 1-point.
Fine. As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

$47 \quad$ X-axis taken as axis of symmetry.
55 Output strains as well as stresses.
119 Invokes temperature input for joints.

Notes on Use

- This joint has only two degrees of freedom but requires 3 inputs. The 3rd input required is the circumferential stiffness.
- For problems where the circumferential forces are to be transmitted by adjacent elements the circumferential stiffness should be input as zero.
- This element cannot be used with axisymmetric Fourier elements.

See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

2D Joint Element for Axisymmetric Shells

General

Element Name
JXS3

Element Group Joints

Element 2D Joints
Subgroup
Element An axisymmetric joint element for use with axisymmetric shell elements, Description which connects two nodes by two springs in the local x and y -directions, one spring about the local z-direction and a 4th spring in the circumferential direction.
Number Of 3. The 3rd node is used to define the local x-direction. Nodes
Freedoms U, V, θ : at nodes 1 and 2 (active nodes).
Node X, Y : at each node.
Coordinates

Geometric Properties

dy Parametric distance factor (between 0.0 and 1.0), which defines the position of the shear spring for the local y direction between nodes 1 and 2 . It is measured from node $1(\mathrm{dy}=0)$ along the local x direction.

Material Properties

Linear Not applicable

Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 8 K1,...,
element mass matrix (Not supported in LUSAS Modeller)
Damping:

Joint Standard:
Dynamic general:
Elasto-plastic:

Elasto-plastic:

Nonlinear contact:
Nonlinear friction:
Viscous damping:
Lead-rubber:

Friction pendulum:

Multi-linear elastic
Multi-linear hysteresis
Multi-linear compound hysteresis
Axial force dependent multilinear elastic
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable

MATRIX PROPERTIES DAMPING 8 C1,..., C21 element damping matrix (Not supported in LUSAS Modeller)
JOINT PROPERTIES 3 (Joint: 3/Spring Stiffness Only) (See notes on use)
JOINT PROPERTIES GENERAL 3 (Joint: 3/General Properties) (See notes on use)
JOINT PROPERTIES NONLINEAR 313 (Joint: 3/Elasto-Plastic (Tension and Compression Equal)) (See notes on use)
JOINT PROPERTIES NONLINEAR 323 (Joint: 3/Tension and Compression Unequal) (See notes on use)
JOINT PROPERTIES NONLINEAR 333 (Joint: 3/Smooth Contact) (See notes on use)
JOINT PROPERTIES NONLINEAR 443 (Joint: 3/Frictional Contact) (See notes on use)
JOINT PROPERTIES NONLINEAR 353 (Joint: 3/Viscous Damper) (See notes on use)
JOINT PROPERTIES NONLINEAR 363 (Joint:3/Lead Rubber Bearing) (See notes on use)
JOINT PROPERTIES NONLINEAR 373 (Joint: 3/Frictional Pendulum System) (See notes on use)
JOINT PROPERTIES NONLINEAR 403 (Joint: 3/Multi-Linear Elastic)
JOINT PROPERTIES NONLINEAR 413 (Joint:
3/Multi-Linear Hysteresis)
JOINT PROPERTIES NONLINEAR 423 (Joint: 3/Multi-Linear Compound Hysteresis)

JOINT PROPERTIES NONLINEAR 433 (Joint: 3/Axial Force Dependent Multi-Linear Elastic)
Generic Polymer Not applicable
Composite Not applicable
Loading
Prescribed Value PDSP, TPDSP
Concentrated CL
Loads
Element Loads Not
applicable.
Distributed Loads Not
applicable.
Body Forces CBF
Constant body forces for element. Xcbf, Ycbf, $\Omega \mathrm{x}$,$\Omega \mathrm{y}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{z}}$
BFP, BFPEVelocities VELOAccelerations ACCE
Initial SSI, SSIE
Stress/StrainsSSIG
Residual Stresses Not
applicable.
Target TSSIE, TSSIA
Stress/StrainsTSSIG
Temperatures TEMP, TMPE Temperatures at nodes/for element. $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{10}$,
Target stresses/strains at nodes/for element. Fx, Fy:spring forces in local directions. $\varepsilon x, \varepsilon y$: springstrains in local directions.
Not applicable.$\mathrm{T}_{20}, \mathrm{~T}_{30}$: actual and initial spring temperatures.
Overburden Notapplicable.
Phreatic Surface Notapplicable.
Field Loads Notapplicable.
Temp Dependent Not
Loads applicable.

LUSAS Output

Solver Force: Fx, Fy, Fz,M: spring forces in local directions.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \psi z$: spring strains in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

Standard joint element

Sign Convention

\square Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point. Fine. As default.
Mass Default. 1-point. Fine. As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

$47 \quad$ X-axis taken as axis of symmetry.
55 Output strains as well as stresses.
119 Invokes temperature input for joints.

Notes on Use

This joint has only three degrees of freedom but requires 4 inputs. The 4th input required is the circumferential stiffness.
See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

3D Joints for Bars, Solids and Space Membranes

General

Element Name

JNT4

Joints
Element
3D Joints
Subgroup
Element Description

A 3D joint element which connects two nodes by three springs in the
Number Of
Nodes local x, y and z -directions.
4. The 3rd and 4th nodes are used to define the local x-axis and local $x y$ plane.
Freedoms U, V, W: at nodes 1 and 2 (active nodes).
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable
Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 6 K1,..., K21 element stiffness matrix (Not supported in LUSAS Modeller)
Mass: MATRIX PROPERTIES MASS 6 M1,..., M21 element mass matrix (Not supported in LUSAS Modeller)
Damping:
in LUSAS Modeller)
Joint Standard: JOINT PROPERTIES 3 (Joint: 3/SpringStiffness Only)Dynamic general: JOINT PROPERTIES GENERAL 3 (Joint:3/General Properties)Elasto-plastic: JOINT PROPERTIES NONLINEAR 313(Joint: 3/Elasto-Plastic (Tension andCompression Equal))Elasto-plastic: JOINT PROPERTIES NONLINEAR 323(Joint: 3/Tension and Compression Unequal)
Nonlinear contact: JOINT PROPERTIES NONLINEAR 333
(Joint: 3/Smooth Contact)
Nonlinear friction: JOINT PROPERTIES NONLINEAR 443
(Joint: 3/Frictional Contact)
Viscous damping: JOINT PROPERTIES NONLINEAR 353
(Joint: 3/Viscous Damper)
Lead-rubber: JOINT PROPERTIES NONLINEAR 363
(Joint: 3/Lead Rubber Bearing)
Friction pendulum: JOINT PROPERTIES NONLINEAR 373
(Joint: 3/Frictional Pendulum System)
Multi-linear elastic
JOINT PROPERTIES NONLINEAR 403(Joint: 3/Multi-Linear Elastic)Multi-linear
JOINT PROPERTIES NONLINEAR 413
hysteresisMulti-linearcompoundhysteresisAxial forcedependent multi-linear elastic
(Joint: 3/Multi-Linear Hysteresis)
JOINT PROPERTIES NONLINEAR 423
(Joint: 3/Multi-Linear Compound Hysteresis)
JOINT PROPERTIES NONLINEAR 433
(Joint: 3/Axial Force Dependent Multi-LinearElastic)
Concrete Not applicable
Elasto-Plastic Not applicableCreep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable
Loading
Prescribed Value PDSP, TPDSP Prescribed variable. U, V, W: at active nodes.
Concentrated CLLoads
Element Loads Not
applicable.
Distributed Loads Notapplicable.Body Forces CBF Constant body forces for element. Xcbf, Ycbf, Zcbf,$\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha \mathrm{z}$
BFP, BFPE Not applicable.
Velocities VELOAccelerations ACCE
Initial SSI, SSIE
Stress/StrainsSSIG
Velocities. Vx, Vy, Vz: at nodes.
Accelerations. Ax, Ay, Az: at nodes.
Initial stresses/strains at nodes/for element. Fx, Fy,Fz: spring forces in local directions. $\varepsilon x, \varepsilon y, \psi z$:spring strains in local directions.
Not applicable.Residual Stresses Notapplicable.
Target TSSIE, TSSIA Target initial stresses/strains at nodes/for element.
Stress/Strains
TSSIG
Temperatures TEMP, TMPE Temperatures at nodes/for element. $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{1} \mathrm{o}$,Fx, Fy, Fz: spring forces in local directions. Ex,$\varepsilon y, \psi z$: spring strains in local directions.
Not applicable.$\mathrm{T}_{20}, \mathrm{~T} 30$: actual and initial spring temperatures.
Overburden Notapplicable.Phreatic Surface Notapplicable.
Field Loads Notapplicable.
Temp Dependent NotLoads applicable.

LUSAS Output

Solver Force: Fx, Fy, Fz: spring forces in local directions. Strain: $\mathcal{E x}, \varepsilon$ y, ε z: spring strains in local directions.

Modeller See Results Tables (Appendix K).

Local Axes

\square Standard joint element

Sign Convention

Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default.	1-point.
Fine.	As default.
Mass Default.	1-point.
Fine	As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

55 Output strains as well as stresses.
119 Invokes temperature input for joints.

Notes on Use

See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

3D Joints for Semiloof Shells

General

Element Name
JL43

Element Group Joints

Element
3D Joints
Subgroup
Element
Description
A 3D joint element which connects two nodes by three springs in the
Number Of local x, y and z -directions.
4. The 3rd and 4th nodes are used to define the local x-axis and local $x y$ -

Nodes plane.
Freedoms U, V, W: at nodes 1 and 2 (active nodes).
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable
Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 6 K1,..., K21 element stiffness matrix (Not supported in LUSAS Modeller)
Mass: MATRIX PROPERTIES MASS 6 M1,..., M21
element mass matrix (Not supported in LUSAS Modeller)
Damping:
in LUSAS Modeller)
JOINT PROPERTIES 3 (Joint: 3/SpringStiffness Only)Dynamic general: JOINT PROPERTIES GENERAL 3 (Joint:3/General Properties)
Elasto-plastic: JOINT PROPERTIES NONLINEAR 313(Joint: 3/Elasto-Plastic (Tension andCompression Equal))Elasto-plastic: JOINT PROPERTIES NONLINEAR 323(Joint: 3/Tension and Compression Unequal)
JOINT PROPERTIES NONLINEAR 333
(Joint: 3/Smooth Contact)
Nonlinear friction: JOINT PROPERTIES NONLINEAR 443
(Joint: 3/Frictional Contact)
Viscous damping: JOINT PROPERTIES NONLINEAR 353
(Joint: 3/Viscous Damper)
Lead-rubber: JOINT PROPERTIES NONLINEAR 363
(Joint: 3/Lead Rubber Bearing)
Friction pendulum: JOINT PROPERTIES NONLINEAR 373
(Joint: 3/Frictional Pendulum System)
Multi-linear elastic
JOINT PROPERTIES NONLINEAR 403(Joint: 3/Multi-Linear Elastic)Multi-linear
JOINT PROPERTIES NONLINEAR 413
hysteresisMulti-linearcompoundhysteresisAxial forcedependent multi-linear elastic
(Joint: 3/Multi-Linear Hysteresis)
JOINT PROPERTIES NONLINEAR 423
(Joint: 3/Multi-Linear Compound Hysteresis)
JOINT PROPERTIES NONLINEAR 433
(Joint: 3/Axial Force Dependent Multi-LinearElastic)
Loading
Prescribed Value PDSP, TPDSP Prescribed variable. U, V, W: at active nodes.Concentrated CLLoads
Element Loads Not
applicable.
Distributed Loads Notapplicable.Body Forces CBF Constant body forces for element. Xcbf, Ycbf, Zcbf,$\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z},}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha \mathrm{z}$BFP, BFPE Not applicable.

Velocities VELO Accelerations ACCE

Initial SSI, SSIE Stress/StrainsSSIGResidual Stresses Notapplicable.Target TSSIE, TSSIA Target stresses/strains at nodes/for element. Fx, Fy,Stress/StrainsTSSIGTemperatures TEMP, TMPE Temperatures at nodes/for element. $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{10}$,$\mathrm{T}_{20}, \mathrm{~T}_{30}$: actual and initial spring temperatures.
Overburden Notapplicable.Phreatic Surface Notapplicable.Field Loads Notapplicable.
Temp Dependent NotLoads applicable.

LUSAS Output

Solver Force: Fx, Fy, Fz: spring forces in local directions.
Strain: $\mathcal{E x}, \mathcal{E y}, \varepsilon$ z: spring strains in local directions.

Modeller See Results Tables (Appendix K).

Local Axes

\square Standard joint element

Sign Convention

Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness	Default.	1-point.
	Fine.	As default.
Mass	Default.	1-point.
	Fine.	As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

55 Output strains as well as stresses.
119 Invokes temperature input for joints.

Notes on Use

- When using Modeller to assign this semiloof joint element to interface lines a JL43 joint element will be created at the semiloof shell corner nodes and a JSL4 joint element will be created at the semiloof shell mid-side nodes.

See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

3D Joint Elements for Engineering, Kirchhoff and Semiloof Beams

General

Element Name

JSH4, JL46

Element Group Joints

Element
 3D Joints

Subgroup

Element
Description
3D joint elements which connects two nodes by six springs in the local x, y and z-directions. Use JL46 for semiloof beam end nodes.
Number Of
Nodes
4. The 3rd and 4th nodes are used to define the local x-axis and local $x y$ plane respectively.
Freedoms
Node
Coordinates
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at nodes 1 and 2 (active nodes).
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

Geometric Properties

ez Eccentricity measured from the joint xy-plane to the nodal line.
dy Parametric distance factor (between 0.0 and 1.0), which defines the position of the shear spring for the local y direction between nodes 1 and 2 . It is measured from node 1 $(\mathrm{dy}=0)$ along the local x direction.
dz Parametric distance factor (between 0.0 and 1.0), which defines the position of the shear spring for the local z direction between nodes 1 and 2 . It is measured from node 1 $(\mathrm{dz}=0)$ along the local x direction

Material Properties

Linear Not applicable
Matrix Stiffness:
MATRIX PROPERTIES STIFFNESS 12 K1,..., K78 element stiffness matrix (Not supported in LUSAS Modeller)
Mass: MATRIX PROPERTIES MASS 12 M1,..., M78 element mass matrix (Not supported in LUSAS Modeller)
Damping: MATRIX PROPERTIES DAMPING $12 \mathrm{C} 1, \ldots$, C78 element damping matrix (Not supported in LUSAS Modeller)
Joint Standard: JOINT PROPERTIES 6 (Joint: 6/Spring Stiffness Only)
Dynamic general: JOINT PROPERTIES GENERAL 6 (Joint: 6/General Properties)
Elasto-plastic: JOINT PROPERTIES NONLINEAR 316 (Joint: 6/Elasto-Plastic (Tension and Compression Equal))
Elasto-plastic: JOINT PROPERTIES NONLINEAR 326 (Joint: 6/Tension and Compression Unequal)
Nonlinear contact: JOINT PROPERTIES NONLINEAR 336 (Joint: 6/Smooth Contact)
Nonlinear friction: JOINT PROPERTIES NONLINEAR 446 (Joint: 6/Frictional Contact)
Viscous damping: JOINT PROPERTIES NONLINEAR 356 (Joint: 6/Viscous Damper)
Lead-rubber: JOINT PROPERTIES NONLINEAR 366 (Joint: 6/Lead Rubber Bearing)
Friction pendulum: JOINT PROPERTIES NONLINEAR 376 (Joint: 6/Frictional Pendulum System)
Multi-linear elastic JOINT PROPERTIES NONLINEAR 406 (Joint: 6/Multi-Linear Elastic)
Multi-linear
JOINT PROPERTIES NONLINEAR 416 hysteresis
Multi-linear compound hysteresis
Axial force dependent multilinear elastic
(Joint: 6/Multi-Linear Hysteresis)
JOINT PROPERTIES NONLINEAR 426
(Joint: 6/Multi-Linear Compound Hysteresis)
JOINT PROPERTIES NONLINEAR 436
(Joint: 6/Axial Force Dependent Multi-Linear Elastic)
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicableRubber Not applicable
Generic Polymer Not applicable
Composite Not applicable
Loading
Prescribed Value PDSP, TPDSP
Concentrated CL
Loads
Element LoadsDistributed Loads Not applicable.Body Forces CBFBFP, BFPEVelocities VELOAccelerations ACCEInitial SSI, SSIEStress/Strains
SSIG
Residual Stresses Not applicable.
Target TSSIE, TSSIAStress/Strains
TSSIG
Temperatures TEMP, TMPE
Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.Loads

Prescribed variable. U, V, W, $\theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at active nodes.
Concentrated loads. Px, Py, Pz, Mx, My, Mz: at active nodes.

Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha z_{\mathrm{z}}$ Not applicable.
Velocities. Vx, Vy, Vz: at nodes. Accelerations. Ax, Ay, Az: at nodes. Initial stresses/strains at nodes/for element. Fx, Fy, Fz, Mx, My, Mz: spring forces in local directions. $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, y y, y z:$ spring strains in local directions.
Not applicable.

Target stresses/strains at nodes/for element. Fx, Fy, Fz, Mx, My, Mz: spring forces in local directions. $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, y y, y z$: spring strains in local directions.
Not applicable.
Temperatures at nodes/for element. $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$, T4, T5, T6, T10, T20, T30, T40, T50, T60: actual and initial spring temperatures.

LUSAS Output

Solver Force: Fx, Fy, Fz, Mx, My, Mz spring forces in local directions.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, \psi z$: spring strains in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard joint element

Sign Convention

- Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default.	1-point.
Fine.	As default.
Mass Default.	1-point.
Fine	As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

55 Output strains as well as stresses.
119 Invokes temperature input for joints

Notes on Use

See Joint Element Compatibility and Notes.

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

3D Joint Element for Semiloof Beams

General

JSL4

A 3D joint element which connects two nodes by three springs in the local x, y and z -directions and two springs about the local x -direction at

Number Of 4. The 3rd and 4th nodes are used to define the local x-axis and local $x y$ -
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta_{1}, \theta_{2}$: at nodes 1 and 2 (active nodes).

Element Name

3D Joints
Subgroup
Element Description

A 3D joint element which co
local x, y and z-directions a
the 1st and 2nd loof points.
4. The 3rd and 4th nodes are Nodes plane respectively.
Freedoms
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.
Coordinates

Element Group Joints

Element
Damping: MATRIX PROPERTIES DAMPING 10 C1,..., C55 element damping matrix (Not supported in LUSAS Modeller)
Joint Standard:
JOINT PROPERTIES 5 (Joint: 5/Spring Stiffness Only)
Dynamic general: JOINT PROPERTIES GENERAL 5 (Joint: 5/General Properties)
Elasto-plastic: JOINT PROPERTIES NONLINEAR 315
(Joint: 5/Elasto-Plastic (Tension and Compression Equal))
Elasto-plastic: JOINT PROPERTIES NONLINEAR 325 (Joint:5/Tension and Compression Unequal)
Nonlinear contact: JOINT PROPERTIES NONLINEAR 335 (Joint: 5/Smooth Contact)
Nonlinear friction: JOINT PROPERTIES NONLINEAR 445 (Joint: 5/Frictional Contact)
Viscous damping: JOINT PROPERTIES NONLINEAR 355 (Joint: 5/Viscous Damper)
Lead-rubber: JOINT PROPERTIES NONLINEAR 365 (Joint: 5/Lead Rubber Bearing)
Friction pendulum: JOINT PROPERTIES NONLINEAR 375 (Joint: 5/Frictional Pendulum System)
Multi-linear elastic JOINT PROPERTIES NONLINEAR 405 (Joint: 5/Multi-Linear Elastic)
Multi-linear
hysteresis
Multi-linear
compound hysteresis
Axial force dependent multilinear elastic
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

JOINT PROPERTIES NONLINEAR 415
(Joint: 5/Multi-Linear Hysteresis)
JOINT PROPERTIES NONLINEAR 425
(Joint: 5/Multi-Linear Compound Hysteresis)
JOINT PROPERTIES NONLINEAR 435
(Joint: 5/Axial Force Dependent Multi-Linear Elastic)

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL
Loads
Element Loads Not applicable.
Distributed Loads Not applicable.
Body Forces CBF

BFP, BFPE
Velocities VELO
Accelerations ACCE
Initial SSI, SSIE
Stress/Strains

SSIG
Residual Stresses Not applicable.
Target TSSIE, TSSIA
Stress/Strains

TSSIG
Temperatures TEMP, TMPE

Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable. Loads

Prescribed variable. U, V, W, θ_{1}, θ_{2} : at active nodes.
Concentrated loads. Px, Py, Pz, M1, M2: at active nodes.

Constant body forces for element. Xcbf, Ycbf, $Z \mathrm{zbf}, \Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha_{\mathrm{z}}$
Not applicable.
Velocities. Vx, Vy, Vz: at nodes.
Accelerations. Ax, Ay, Az: at nodes.
Initial stresses/strains at nodes/for element. Fx, Fy, Fz, Mx, My, Mz: spring forces in local directions. $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, \psi z$: spring strains in local directions.
Not applicable.

Target stresses/strains at nodes/for element. Fx, $\mathrm{Fy}, \mathrm{Fz}, \mathrm{Mx}, \mathrm{My}, \mathrm{Mz}$: spring forces in local directions. $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, \psi z$: spring strains in local directions.
Not applicable.
Temperatures at nodes/for element. $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$, $\mathrm{T}_{4}, \mathrm{~T}_{5}, \mathrm{~T}_{10}, \mathrm{~T}_{20}, \mathrm{~T}_{30}, \mathrm{~T}_{40}$, T50: actual and initial spring temperatures.

LUSAS Output

Solver Force: Fx , Fy , $\mathrm{Fz}, \mathrm{M}_{1}, \mathrm{M}_{2}$: spring forces in local directions.
Strain: $\mathcal{E x}, \varepsilon y, \varepsilon z, \psi_{1}, \psi_{2}$: spring strains in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

Standard joint element

Sign Convention

- Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point. Fine. As default.
Mass Default. 1-point. Fine. As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

55 Output strains as well as stresses.
119 Invokes temperature input for joints.

Notes on Use

See Joint Element Compatibility and Notes.

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

Chapter 9 : Thermal / Field Elements.

2D Bar Field Elements

General

| Element Group | Field |
| ---: | :--- | :--- |
| Element | Thermal Bars |
| Subgroup | |
| Element | Straight and curved |
| Description | |
| Number Of | 2 or 3. |
| Nodes | |
| Freedoms | $\varphi:$ field value (temperature) at each node |
| Node | X, Y: at each node. |
| Coordinates | |

Geometric Properties

A1 ... An Cross-sectional area at each node.

Material Properties

Matrix Not applicable
Joint Not applicable
Composite Not applicable
Field Isotropic MATERIAL PROPERTIES FIELD

> ISOTROPIC (Field: Isotropic)

MATERIAL PROPERTIES FIELD ISOTROPIC CONCRETE(Field: Isotropic)
Orthotropic:
Not applicable
Linear Not applicable convection/radiation:

Arbitrary convection/radiation:
Not applicable

Loading

Prescribed Value PDSP, TPDSP
Rate of Heat RGN
Inflow at a Point
Element Loads Not applicable.
Distributed Loads UDL
FFL

Rate of Heat RBC Inflow/Unit Volume

RBV, RBVE
Velocities Not applicable.
Accelerations Not applicable.
Initial Not applicable.
Stress/Strains
Residual Stresses Not applicable.
Target Not applicable.
Stress/Strains
Temperatures TEMP, TMPE
Field Loads ENVT

Temp Dependent TDET

RIHG
φ : field variable (temperature) at nodes.
Q: field loading at nodes.

Not applicable.
qa: (Q/unit area) at nodes (positive defines heat input) (see FLD Face loading applied to thermal bars).
qv: (Q/unit volume) for element.
qv: (Q/unit volume) at nodes/ for element.

Temperatures at nodes/for element. T, $0,0,0,0$, $0,0,0$ (See Notes.)

Environmental boundary conditions. $\varphi e, h c$, hr : external environmental temperature, convective and radiative heat transfer coefficients. (See Notes)
Temperature dependent environmental boundary conditions. $\varphi \mathrm{e}, \mathrm{hc}, \mathrm{hr}, \mathrm{T}$: external environmental temperature, convective and radiative heat transfer coefficients and temperature for element. (See Notes)
Internal heat generation rate. Q, T : coefficient/unit volume and temperature. (See Notes)

LUSAS Output

Solver Field variable (temperature). gx, qx: gradient and flow in local axes.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard line element

Sign Convention

\square Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity	Default.	1-point (BFD2), 2-point (BFD3).
	Fine (see Options).	2-point (BFD2), 3-point (BFD3).
Specific Heat	Default.	1-point (BFD2), 2-point (BFD3).
	Fine (see Options).	2-point (BFD2), 3-point (BFD3).

Specific Heat Modelling

\square Consistent specific heat (default).
\square Lumped specific heat.

Options

18 Invokes fine integration rule.
105 Lumped specific heat.

Notes on Use

1. TEMP/TMPE loading can be used to initialise the temperature field on the first step of a nonlinear field analysis. The temperature will be applied on the first pass of iteration 0 only and the load must be specified as a manual increment.
2. For linear field problems only one load case is allowed if an ENVT load is to be applied.
3. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
4. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
5. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
6. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

These elements may be used to analyse heat conduction along bars either individually or in conjunction with continuum field elements, e.g. supporting struts.

2D Axisymmetric Membrane Field Elements

General

Geometric Properties

tı... tn Thickness at each node.

Material Properties

Matrix Not applicable.
Composite Not applicable.
Field Isotropic MATERIAL PROPERTIES FIELD ISOTROPIC (Field: Isotropic)
MATERIAL PROPERTIES FIELD ISOTROPIC CONCRETE (Field: Isotropic)
Orthotropic: Not applicable
Linear Not applicable
convection/radiation:
Arbitrary Not applicable
convection/radiation:

Loading

Prescribed PDSP, TPDSP Value

Rate of Heat
Inflow at a Point
Element Loads Not applicable.
Distributed UDL
Loads
FFL

Rate of Heat RBC
Inflow/Unit
Volume
RBV, RBVE
Velocities Not applicable.
Accelerations Not applicable.
Initial Not applicable.
Stress/Strains
Residual Not applicable.
Stresses
Target Not applicable.
Stress/Strains
Temperatures TEMP, TMPE
Field Loads ENVT

Temp TDET
Dependent
Loads
RGN

RIHG
φ : field variable (temperature) at nodes.
Q: field loading at nodes.

Not applicable.
qa: (Q/unit area) at nodes (positive defines heat input) (see FLD Face loading applied to thermal bars).
qv : (Q/unit volume) for element.
qv: (Q/unit volume) at nodes/ for element.

0,0 (See Notes.)

Environmental boundary conditions. $\varphi \mathrm{e}, \mathrm{hc}, \mathrm{hr}$: external environmental temperature, convective and radiative heat transfer coefficients. (See Notes.)
Temperature dependent environmental boundary conditions. $\varphi \mathrm{e}, \mathrm{hc}, \mathrm{hr}, \mathrm{T}$: external environmental temperature, convective and radiative heat transfer coefficients and temperature. (See Notes.)
Internal heat generation rate. Q, T: coefficient/unit volume and temperature for element. (See Notes.)

LUSAS Output

Solver Field variable (temperature). gx, qx: gradient and flow in local axes.
Modeller See Results Tables (Appendix K).

Local Axes

\square Standard line element

Sign Convention

\square Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity	Default.	1-point (BFX2), 2-point (BFX3).
	Fine (see Options).	2-point (BFX2), 3-point (BFX3).
Specific Heat	Default.	1-point (BFX2), 2-point (BFX3).
	Fine (see Options).	2-point (BFX2), 3-point(BFX3).

Specific Heat Modelling

Consistent specific heat (default).
\square Lumped specific heat.

Options

18 Invokes fine integration rule.
$47 \quad \mathrm{X}$-axis taken as axis of symmetry.
105 Lumped specific heat.

Notes on Use

1. TEMP/TMPE loading can be used to initialise the temperature field on the first step of a nonlinear field analysis. The temperature will be applied on the first pass of iteration 0 only and the load must be specified as a manual increment.
2. For linear field problems only one load case is allowed if an ENVT load is to be applied.
3. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
4. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
5. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
6. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.

Restrictions

\square Ensure mid-side node centrality
\square Avoid excessive element curvature

Recommendations on Use

One example of the usage of these elements is the analysis of in-plane temperature flow in a thin circular plate.

3D Bar Field Elements

General

| Element Group | Field |
| ---: | :--- | :--- |
| Element | Thermal Bars |
| Subgroup | |
| Element | Straight and curved |
| Description | |
| Number Of | 2 or 3. |
| Nodes | |
| Freedoms | $\varphi:$ field value (temperature) at each node |
| Node | X, Y, Z: at each node. |
| Coordinates | |

Geometric Properties

A1 ... An Cross sectional area at each node.

Material Properties

Linear Not applicable
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable.
Generic Polymer Not applicable
Composite Not applicable

Field Isotropic

Orthotropic:
Linear
convection/radiation:
Arbitrary
convection/radiation:
MATERIAL PROPERTIES FIELD
ISOTROPIC (Field: Isotropic)
MATERIAL PROPERTIES FIELD
ISOTROPIC CONCRETE (Field: Isotropic)
Not applicable.
Not applicable.
Not applicable.

Loading

Prescribed Value PDSP, TPDSP
Rate of Heat RGN
Inflow at a Point
Element Loads Not applicable.
Distributed Loads UDL
FFL

Rate of Heat RBC
Inflow/Unit
Volume
RBV, RBVE
Velocities Not applicable.
Accelerations Not applicable.
Initial Not applicable.
Stress/Strains
Residual Stresses Not applicable.
Target Not applicable.
Stress/Strains
Temperatures TEMP, TMPE

Field Loads ENVT

Not applicable.
qa: (Q/unit area) at nodes (positive defines heat input) (see FLD Face loading applied to thermal bars).
qv : (Q/unit volume) for element.
φ : field variable (temperature) at nodes.
Q : field loading at nodes.
$\mathrm{qv}:(\mathrm{Q} /$ unit volume) at nodes/ for element.

Temperatures at nodes/for element. T, $0,0,0,0$, $0,0,0$ (See Notes.)
Environmental boundary conditions. $\varphi \mathrm{e}$, hc, hr: external environmental temperature, convective and radiative heat transfer
Temp Dependent

Loads \quad TDET | coefficients. (See Notes.) |
| :---: |
| |

LUSAS Output

Solver Field variable (temperature). gx, qx: gradient and flow in local axes.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard line element

Sign Convention

- Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity	Default.	1-point (BFS2), 2-point (BFS3).
	Fine (see Options).	2-point (BFS2), 3-point (BFS3).
Specific Heat	Default.	1-point (BFS2), 2-point (BFS3).
	Fine (see Options).	2-point (BFS2), 3-point (BFS3).

Specific Heat Modelling

\square Consistent specific heat (default).
\square Lumped specific heat.

Options

18 Invokes fine integration rule.
105 Lumped specific heat.

Notes on Use

1. TEMP/TMPE loading can be used to initialise the temperature field on the first step of a nonlinear field analysis. The temperature will be applied on the first pass of iteration 0 only and the load must be specified as a manual increment.
2. For linear field problems only one load case is allowed if an ENVT load is to be applied.
3. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
4. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
5. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
6. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.

Restrictions

\square Ensure mid-side node centrality

- Avoid excessive element curvature

2D Link Field Element

General

Element Group
 Field

Element Thermal Links
Subgroup
Element Straight conductive, convective or radiative thermal link element for 2D
Description field analysis.
Number Of
2.

Nodes
Freedoms
φ : field value (temperature) at each node.
Node X, Y at each node.
Coordinates

Geometric Properties

A1 ... An Cross sectional area at each node.

Material Properties

Linear	Not applicable
Matrix	Not applicable
Joint	Not applicable
Concrete	Not applicable
Elasto-Plastic	Not applicable
Creep	Not applicable
Damage	Not applicable
Viscoelastic	Not applicable
Shrinkage	Not applicable
Rubber	Not applicable

Generic Polymer Not applicable
Composite Not applicable
Field Isotropic: Not applicable.
Orthotropic: Not applicable.
Linear MATERIAL PROPERTIES FIELD LINK 18(Field: Linear Link)
convection/radiation:
ArbitraryMATERIAL PROPERTIES FIELD LINK 19convection/radiation:

Loading

Prescribed Value	PDSP, TPDSP	φ : field variable (temperature) at nodes.
Concentrated	Not applicable.	
Loads		
Element Loads	Not applicable.	
Distributed Loads	Not applicable.	
Body Forces	Not applicable.	
Velocities	Not applicable.	
Accelerations	Not applicable.	
Initial	Not applicable.	
Stress/Strains		
Residual Stresses	Not applicable.	
Target	Not applicable.	
Stress/Strains		
Temperatures	Not applicable.	
Field Loads	Not applicable.	
Temp Dependent	Not applicable.	

LUSAS Output

Solver Field variable (temperature). qx: flow at nodes in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

Standard line element

Sign Convention

- Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conduction, Default. 1-point (at element centroid).
Convection,
Radiation

Fine. As default.
Specific Heat Default. Not applicable.
Fine. Not applicable.

Specific Heat Modelling

Not applicable.

Options

Not applicable.

Notes on Use

No notes at present.

Restrictions

Not applicable.

Recommendations on Use

An example of the usage of these elements is the analysis of heat conduction at contacting interfaces.

3D Link Field Element

General

Element Group
 Field

Element Thermal Links
Subgroup
Element
Straight conductive, convective or radiative thermal link element for 3D
Description field analysis.
Number Of
2.

Nodes
End Releases
Freedoms
Node
Coordinates
φ : field value (temperature) at each node.
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ at each node.

Geometric Properties

A1 ... An Cross sectional area at each node.

Material Properties

Linear Not applicable.
Matrix Not applicable.
Joint Not applicable.
Concrete Not applicable.
Elasto-Plastic Not applicable.
Rubber Not applicable.
Generic Polymer Not applicable
Composite Not applicable.
Field Isotropic: Not applicable.
Orthotropic: Not applicable.
Linear convection/radiation:
Arbitrary convection/radiation:
MATERIAL PROPERTIES FIELD LINK 18 (Field: Linear Link)
MATERIAL PROPERTIES FIELD LINK 19 (Field: Nonlinear Link)
Stress Potential Not applicable.
Creep Not applicable.
Damage Not applicable.
Viscoelastic Not applicable.
Shrinkage Not applicable
Loading
Prescribed Value PDSP, TPDSP
Concentrated Not applicable. Loads
Element Loads Not applicable.
Distributed Loads Not applicable.
Body Forces Not applicable.
Velocities Not applicable.
Accelerations Not applicable.
Initial Not applicable.
Stress/Strains
Residual Stresses Not applicable.
Target Not applicable.
Stress/Strains
Temperatures Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.Loads

LUSAS Output

Solver Field variable (temperature). qx: flow at nodes in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

Standard line element

Sign Convention

- Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conduction, Default. 1-point (at element centroid).
Convection,
Radiation

Fine. As default.
Specific Heat Default. Not applicable.
Fine. Not applicable.

Specific Heat Modelling

Not applicable.

Options

Not applicable.

Notes on Use

No notes at present.

Restrictions

Not applicable.

Recommendations on Use

An example of the usage of these elements is the analysis of heat conduction at contacting interfaces.

2D Axisymmetric Link Field Element

General

Element Group
 Field

Element Thermal Links
Subgroup
Element Straight conductive, convective or radiative thermal link element for 2D
Description
axisymmetric field analysis.
Number Of
2.

Nodes
End Releases
Freedoms
φ : field value (temperature) at each node.
Node X, Y at each node.
Coordinates

Geometric Properties

tı... tn Thickness at each node.

Material Properties

Linear Not applicable.
Matrix Not applicable.
Joint Not applicable.
Concrete Not applicable.
Elasto-Plastic Not applicable.
Rubber Not applicable.
Generic Polymer Not applicable
Composite Not applicable.
Field Isotropic: Not applicable.

Orthotropic:	Not applicable.
Linear	MATERIAL PROPERTIES FIELD LINK 18
convection/radiation:	(Field: Linear Link)
Arbitrary MATERIAL PROPERTIES FIELD LINK 19 convection/radiation: (Field: Nonlinear Link)	

Loading

Prescribed Value	PDSP, TPDSP	φ : field variable (temperature) at nodes.
Concentrated	Not applicable.	
Loads		
Element Loads	Not applicable.	
Distributed Loads	Not applicable.	
Body Forces	Not applicable.	
Velocities	Not applicable.	
Accelerations	Not applicable.	
Initial	Not applicable.	
Stress/Strains		
Residual Stresses	Not applicable.	
Target	Not applicable.	
Stress/Strains		
Temperatures	Not applicable.	
Field Loads	Not applicable.	

LUSAS Output

Solver Field variable (temperature). qx: flow at nodes in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

Standard line element

Sign Convention

Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conduction, Default. 1-point (at element centroid).
Convection, Radiation

Fine. As default.
Specific Heat Default. Not applicable.
Fine. Not applicable.

Specific Heat Modelling

Not applicable.

Options

$47 \quad \mathrm{X}$-axis taken as axis of symmetry.

Notes on Use

No notes at present.

Restrictions

Not applicable.

Recommendations on Use

An example of the usage of these elements is the analysis of heat conduction at contacting interfaces.

2D Axisymmetric Field Elements

General

TXF3

QXF4

TXF6

QXF8

Element Group Field
Element
Plane Field

Subgroup

Element Description capable of modelling curved boundaries. The elements are applicable to both steady state and transient field problems. The formulations apply over a unit radian segment of the structure and the loading and boundary conditions are axisymmetric. The elements are numerically integrated. Axisymmetry is taken about the Y -axis by default.

Coordinates
$3,4,6$, or 8 numbered anticlockwise.
Nodes
Freedoms
Node X, Y: at each node
Number Of
φ : field variable at each node.

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear	Not applicable.	
Matrix	Not applicable.	
Joint	Not applicable.	
Concrete	Not applicable.	
Elasto-Plastic	Not applicable.	
Rubber	Not applicable.	
Generic Polymer	Not applicable	
Composite	Not applicable.	MATERIAL PROPERTIES FIELD
Field	Isotropic:	ISOTROPIC (Field: Isotropic)
		MATERIAL PROPERTIES FIELD
	Orthotropic:	MATERIAL PROPERTIES FIELD
		ORTHOTROPIC (Field: Orthotropic)
		ORTERIAL PROPERTIES FIELD
	Linear	Orthotropic)
	convection/radiation:	Not applicable.
	Arbitrary	Not applicable.

Loading

Prescribed Value PDSP, TPDSP $\quad \varphi$: field variable (temperature) at nodes.
Rate of Heat RGN
Q: field loading at nodes.

Inflow at a Point

Element Loads Not applicable.

Distributed Loads UDL
FFL
Not applicable.
qa: (Q/unit area) at nodes (see FLD Face loading applied to thermal bars).
Rate of Heat RBC
qv: (Q/unit volume) for element.
Inflow/Unit
Volume
RBV, RBVE qv: (Q/unit volume) at nodes/ for element.
Velocities Not applicable.
Accelerations Not applicable.
Initial Velocities Not applicable.Initial Not applicable.
Stress/Strains
Residual Stresses Not applicable.
Target Not applicable.
Stress/Strains
Temperatures Not applicable.Field Loads ENVT
Environmental boundary conditions. $\varphi \mathrm{e}$, hc,hr : external environmental temperature,convective and radiative heat transfercoefficients. (See Notes.)
Temp Dependent TDET Temperature dependent environmentalLoads
RIHG
boundary conditions. $\varphi \mathrm{e}, \mathrm{hc}, \mathrm{hr}, \mathrm{T}$: externalenvironmental temperature, convective andradiative heat transfer coefficients andtemperature. (See Notes.)Internal heat generation rate. Q, T:coefficient/unit volume and temperature forelement. (See Notes.)

LUSAS Output

Solver Field variable (temperature). gx, gy, gz, qx, qy, qz: gradients and flows in global directions.
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable.

Sign Convention

\square Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity	Default.	$\begin{aligned} & \text { 1-point (TXF3), 3-point (TXF6), 2x2 } \\ & \text { (QXF4, QXF8) } \end{aligned}$
	Fine (see	3×3 (QXF8)
	Options).	
Specific Heat	Default.	$\begin{aligned} & \text { 1-point (TXF3), 3-point (TXF6), 2x2 } \\ & \text { (QXF4, QXF8) } \end{aligned}$
	Fine.	As default.

Specific Heat Modelling

\square Consistent specific heat (default)
\square Lumped specific heat.

Options

18 Invokes fine integration rule for elements.
$47 \quad \mathrm{X}$-axis taken as axis of symmetry.
105 Lumped specific heat.

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of field variable (temperature) within an element is linear low order (corner node only) elements and quadratic high order (mid-side node) elements.
2. All elements pass the patch test for convergence.
3. For linear field problems only one load case is allowed if an ENVT load is to be applied.
4. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
5. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
6. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
7. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

The axisymmetric field elements are suitable for analysing solid field problems which exhibit geometric and loading symmetry about a given axis, e.g. temperature distribution in a pipe or radial groundwater flow into a well.

2D Plane Field Elements

General

Element Group Field

Element
 Plane Field

Subgroup
Element A family of plane field elements in 2D with higher order elements capable Description of modelling curved boundaries. The elements are applicable to both steady state and transient field problems. The elements are numerically integrated.
Number Of 3, 4, 6 or 8 numbered anticlockwise.
Nodes
Freedoms
φ : field value (temperature) at each node.
Node X, Y : at each node.

Coordinates

Geometric Properties

t1... $\mathbf{t n}^{\text {Thickness at each node. }}$

Material Properties

Linear	Not applicable	
Matrix	Not applicable	
Joint	Not applicable	
Concrete	Not applicable	
Elasto-Plastic	Not applicable	
Creep	Not applicable	
Damage	Not applicable	
Viscoelastic	Not applicable	
Shrinkage	Not applicable	
Rubber	Not applicable.	
Generic Polymer	Not applicable	
Composite	Not applicable.	MATERIAL PROPERTIES FIELD
Field	Isotropic:	ISOTROPIC CONCRETE (Field: Isotropic)
		ISOTROPIC (Field: Isotropic)
	Orthotropic:	ORTHOTROPIC (Field: Orthotropic)
		MATERIAL PROPERTIES FIELD
		ORTHOTROPIC CONCRETE (Field:
	Linear	Orthotropic)
	convection/radiation:	
	Arbitrary	Not applicable.

Loading

Prescribed Value PDSP, TPDSP
Rate of Heat RGN

Inflow at a Point

Element Loads Not applicable.
Distributed Loads UDL
FFL
φ : field variable (temperature) at nodes.
Q : field loading at nodes.

Not applicable.
qa: (Q/unit area) at nodes (see FLD Face loading applied to thermal bars).
$\left.\begin{array}{rll}\begin{array}{r}\text { Rate of Heat } \\ \text { Inflow/Unit } \\ \text { Volume }\end{array} & \text { RBC } & \text { qv: (Q/unit volume) for element. } \\ \begin{array}{rl}\text { Velocities } \\ \text { RBV, RBVE }\end{array} & \text { Not applicable. }\end{array}\right)$

LUSAS Output

Solver Field variable (temperature). gx, gy, qx, qy: gradients and flows in global directions.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard surface element

Sign Convention

\square Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity	Default.	1-point (TFD3), 3-point (TFD6), 2x2 (QFD4, QFD8).
	Fine.	As default.
Specific Heat	Default.	1-point (TFD3), 3-point (TFD6), 2x2 (QFD4, QFD8).
	Fine.	Not applicable.

Specific Heat Modelling

\square Consistent specific heat (default).
\square Lumped specific heat.

Options

18 Invokes fine integration rule for elements.
105 Lumped specific heat.

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of field variable (temperature) within an element is linear for low order (corner node only) elements and quadratic for high order (mid-side node) elements.
2. All elements pass the patch test for convergence.
3. For linear field problems only one load case is allowed if an ENVT load is to be applied.
4. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
5. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
6. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
7. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

The plane field elements may be utilised for analysing continuum field problems whose behaviour is essentially two dimensional, e.g. thermal analysis of a long tunnel . The elements are formulated using the 2D quasi-harmonic equation. See Theory Manuals for details.

3D Solid Field Elements

General

Element Group

Field

Element

 SubgroupElement Description

PF6

HF8

TF10

PF12

HF16

PF15

HF20

Solid Field

A family of solid field elements in 3D with higher order elements capable of modelling curved boundaries. The elements are applicable to both
Freedoms
Coordinatessteady state and transient field problems. The elements are numericallyintegrated.
Number Of 4 and 10 (tetrahedra). 6, 12 and 15 (pentahedra). 8, 16 and 20
Nodes (hexahedra). The elements are numbered according to a right-hand screwrule in the local z-direction.φ : field variable at each node.Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.
Geometric Properties
Not applicable.
Material Properties
Linear Not applicable
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Field Isotropic:

Orthotropic:

Linear convection/radiation:
Arbitrary Not applicable.

MATERIAL PROPERTIES FIELD ISOTROPIC CONCRETE (Field: Isotropic) MATERIAL PROPERTIES FIELD ISOTROPIC (Field: Isotropic)
MATERIAL PROPERTIES FIELD
ORTHOTROPIC SOLID (Field: OrthotropicSolid)
MATERIAL PROPERTIES FIELD
ORTHOTROPIC SOLID CONCRETE
(Field: Orthotropic Solid)
Not applicable.Not applicable.

Loading

Prescribed Value	PDSP, TPDSP
Rate of Heat	RGN
Inflow at a Point	
Element Loads	Not applicable.
Distributed Loads	UDL
	FFL
Rate of Heat	RBC
Inflow/Unit	
Volume	RBV, RBVE
	Velocities

Temp Dependent TDET
Loads

RIHG
φ : field variable (temperature) at nodes.
Q : field loading at nodes.

Not applicable.
qa: (Q/unit area) at nodes (see FLD Face loading applied to thermal bars).
qv: (Q/unit volume) for element.
qv: (Q/unit volume) at nodes/ for element.

Environmental boundary conditions. $\varphi \mathrm{e}, \mathrm{hc}$, hr: external environmental temperature, convective and radiative heat transfer coefficients. (See Notes.)
Temperature dependent environmental boundary conditions. $\varphi \mathrm{e}, \mathrm{hc}, \mathrm{hr}, \mathrm{T}$: external environmental temperature, convective and radiative heat transfer coefficients and temperature. (See Notes.)
Internal heat generation rate. Q, T : coefficient/unit volume and temperature for element. (See Notes.)

LUSAS Output

Solver Field variable (temperature). gx, gy, gz, qx, qy, qz: gradients and flows in global directions.

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity Default. 1-point (TF4), 4-point (TF10), 3x2 (PF6, PF12, PF15), 2x2x2 (HF8, HF16, HF20)
Fine (see Options). 5-point (TF10)
3x3x2 (HF16), 3×3x3 (HF20)
Coarse (see 1-point (HF20), 14-point (HF20)
Options).
Specific Heat Default. 1-point (TF4), 4-point (TF10), 3x2 (PF6, PF12, PF15), 2x2x2 (HF8, HF16, HF20)
Fine (see Options). 5-point (TF10)
3x3x2 (HF16), $3 \times 3 \times 3$ (HF20)
Coarse (see 13-point (HF20), 14-point (HF20)
Options).

Specific Heat Modelling

\square Consistent specific heat (default).
\square Lumped specific heat.

Options

18 Invokes fine integration rule for elements.
105 Lumped specific heat.
155 Use 14-point integration rule for HF20.

156 Use 13-point integration rule for HF20.
398 For HF20 and HF16 with fine integration use all integration points for stress extrapolation.

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of potential within an element may be regarded as constant for low order (corner node only) elements and linear for high order (mid-side node) elements.
2. For linear field problems only one load case is allowed if an ENVT load is to be applied.
3. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
4. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
5. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
6. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

The solid field elements may be used to analyse continuum field problems where the response is fully 3D (i.e. it cannot be approximated using the plane or axisymmetric elements), e.g. temperature distribution in a pipe intersection.

3D Solid Composite Field Element (Tetrahedral)

General

Element Group Field

Element
 Solid Field

Subgroup

Element
3D solid field element capable of modelling curved boundaries. The
Description element is applicable to both steady state and transient field problems. The element is numerically integrated, can be arbitrarily oriented with respect to the laminate, and allows for the fully automatic mesh generation of laminate geometric models imported from CAD packages.
Number Of 10. The element is numbered according to a right-hand screw rule in the Nodes local z-direction.
Freedoms
φ : field variable at each node.
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

Coordinates

Geometric Properties

See Composites in the Modeller Reference Manual

Material Properties

Linear Not applicable
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable
CompositeField Isotropic:Orthotropic:
Loading
Prescribed Value PDSP, TPDSP
Rate of Heat RGN
Inflow at a Point
Element Loads Not applicable.
Distributed Loads UDLFFL
Rate of Heat RBC
Inflow/Unit
Volume
RBV, RBVE $\mathrm{qv}:(\mathrm{Q} /$ unit volume $)$ at nodes/ for element.
Velocities Not applicable.
Accelerations Not applicable.
Initial Not applicable.
Stress/Strains
Residual Stresses Not applicable.

Linear convection/radiation: Arbitrary convection/radiation:

COMPOSITE MATERIAL
MATERIAL PROPERTIES FIELD ISOTROPIC (Field: Isotropic) MATERIAL PROPERTIES FIELD ISOTROPIC CONCRETE (Field: Isotropic) MATERIAL PROPERTIES FIELD ORTHOTROPIC SOLID (Field: Orthotropic Solid)
MATERIAL PROPERTIES FIELD ORTHOTROPIC SOLID CONCRETE (Field: Orthotropic Solid)
Not applicable

Not applicable

Target Not applicable.
Stress/Strains
Temperatures Not applicable.
Field Loads ENVT
Temp Dependent TDET
Loads
RIHG
Environmental boundary conditions $\varphi \mathrm{e}, \mathrm{hc}$, hr : external environmental temperature, convective and radiative heat transfer coefficients. (See Notes.)
Temperature dependent boundary conditions. $\varphi \mathrm{e}, \mathrm{hc}, \mathrm{hr}, \mathrm{T}$: external environmental temperature, convective and radiative heat transfer coefficients and temperature. (See Notes.)
Internal heat generation rate. Q, T : coefficient/unit volume and temperature for element. (See Notes.)

LUSAS Output

Solver Field variable (temperature). gx, gy, gz, qx, qy, qz: gradients and flows. Gauss point values are in local directions. Nodal values are in global directions.
Modeller See Results tables (Appendix K)

Local Axes

The local axes for each layer are defined by the LAMINAR DIRECTIONS specified for its bottom surface. The three node set in LAMINAR DIRECTIONS define the local Cartesian set origin, the x -axis and the positive quadrant of the xy-plane respectively. The local z -axis forms an orthonormal coordinate system with x and y.

Sign Convention

\square Standard field elements

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity Default. 1-point for a tetrahedral subdivision (see Notes), 3 -point for a pentahedral/pyramid subdivision, 2×2 for a hexahedral/wrick subdivision

Fine (see 1-point for a tetrahedral subdivision (see Notes), Options) 3×2 for a pentahedral/pyramid subdivision, $2 \times 2 \times 2$ for a hexahedral/wrick subdivision

Specific Heat Default. 5-point for the whole element or (see Options) 1point for a tetrahedral subdivision, 3×2 for a pentahedral/pyramid subdivision, $2 \times 2 \times 2$ for a hexahedral/wrick subdivision
Fine (see 11-point or (see Options) 14 -point for the whole Options) element

Specific Heat Modelling

- Consistent specific heat (default).
- Lumped specific heat.

Options

18 Invokes fine integration rule for elements.
91 Formulate element specific heat with fine integration
105 Lumped specific heat.
266 Layer by layer computation of specific heat matrix.
394 Lamina directions supported
395 Use 14-point fine integration rule for specific heat matrix of TH10 family (used together with 91)

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of field gradients within an element may be regarded as linear.
2. The LAMINAR DIRECTIONS and COMPOSITE MATERIAL data chapters must be used with this element in conjunction with the COMPOSITE ASSIGNMENTS data chapter.
3. If the whole tetrahedral element is embedded in a single lamina, a 4-point integration rule will be used for this tetrahedral subdivision; otherwise a 1-point rule will be used.
4. The specific heat matrix can be computed using a layer by layer integration (OPTION 266), however this should only be used when the thermal properties of the layers vary considerably because the computation time can be greatly increased when this OPTION is specified.
5. Numerical integration through the thickness is performed. The integration points are located in the subdivisions of each layer. Each subdivision forms the shape of a regular 3D solid field element and the integration points are located accordingly within the subdivision as described above.
6. For linear field problems only one load case is allowed if an ENVT load is to be applied.
7. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
8. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
9. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
10. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.
11. Layer 1 is always the bottom layer.

Restrictions

Ensure mid-side node centrality
\square Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- 3D solid composite field elements should be used for modelling thick composite structures comprising laminae of differing material properties where the computational cost of modelling each lamina with an individual solid element would be prohibitive. This field element can be used to analyse continuum field problems where the response is fully 3D.
- As these elements can be arbitrarily oriented with respect to the laminate, they are particularly aimed at the use of fully automatic mesh generation of laminate geometric models imported from CAD packages.

3D Solid Composite Field Elements (Pentahedral and Hexahedral)

General

Element Name

PF6C

HF8C

PF12C

HF16C

Element Group
Element
Subgroup
Element Description

Number Of
Nodes
Freedoms
Node
Coordinates

Field
Solid Field

3D solid field elements capable of modelling curved boundaries. The elements are applicable to both steady state and transient field problems. The elements are numerically integrated. The composite layers are parallel to the top and bottom faces and the bottom surface of the first layer coincides with the bottom surface of the element. The top and bottom faces of the element are as shown, e.g. nodes $1,2,3,4$ define the bottom face of HF8C
6 or 12 (pentahedra), 8 or 16 (hexahedra). The elements are numbered according to a right-hand screw rule in the local z-direction.
φ : field variable at each node.
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

Geometric Properties

See Composites in the Modeller Reference Manual

Material Properties

$$
\begin{array}{rll}
\text { Linear } \\
\text { Matrix } & \text { Not applicable } & \text { Not applicable } \\
\text { Joint } & \text { Not applicable } & \\
\text { Concrete } & \text { Not applicable } & \\
\text { Elasto-Plastic } & \text { Not applicable } & \\
\text { Creep } & \text { Not applicable } & \\
\text { Damage } & \text { Not applicable } & \\
\text { Viscoelastic } & \text { Not applicable } & \\
\text { Shrinkage } & \text { Not applicable } & \\
\text { Rubber } & \text { Not applicable } & \\
\text { Generic Polymer } & \text { Not applicable } & \text { COMPOSITE MATERIAL } \\
\text { Composite } & & \text { MATERIAL PROPERTIES FIELD } \\
\text { Field } & \text { Isotropic: } & \text { ISOTROPIC (Field: Isotropic) } \\
& & \text { MATERIAL PROPERTIES FIELD } \\
& & \text { ISOTROPIC CONCRETE (Field: Isotropic) } \\
& & \text { Orthotropic: } \\
& & \text { ORTHOTRIAL PROPERTIES FIELD } \\
& & \text { MATERIAL PROPERTIES FIELD } \\
& & \text { ORTHOTROPIC SOLID CONCRETE (Field: } \\
& \text { Linear } & \text { Orthotropic Solid) } \\
\text { convection/radiation: } & \\
& \text { Arbitrary } & \text { Not applicable } \\
\text { convection/radiation: } & \\
& &
\end{array}
$$

Inflow/Unit
Volume
RBV, RBVE $\mathrm{qv}:(\mathrm{Q} /$ unit volume) at nodes/ for element.

Velocities Not applicable.
Accelerations Not applicable.
Initial Not applicable. Stress/Strains
Residual Stresses Not applicable.
Target Not applicable.
Stress/Strains
Temperatures Not applicable.
Field Loads ENVT

Temp Dependent TDET
Loads

RIHG

Environmental boundary conditions φe, hc, hr: external environmental temperature, convective and radiative heat transfer coefficients. (See Notes.)
Temperature dependent boundary conditions. $\mathrm{Qe}, \mathrm{hc}, \mathrm{hr}, \mathrm{T}$: external environmental temperature, convective and radiative heat transfer coefficients and temperature. (See Notes.)
Internal heat generation rate. Q, T: coefficient/unit volume and temperature for element. (See Notes.)

LUSAS Output

Solver Field variable (temperature). gx, gy, gz, qx, qy, qz: gradients and flows. Gauss point values are in local directions. Nodal values are in global directions.
Modeller See Results tables (Appendix K)

Local Axes

The local axes for each layer are defined using the convention for standard area elements. Local axes are computed at the top and bottom quadratic surfaces (at the Gauss points) and average values are interpolated for the mid-surface. Every layer uses the same averaged values.

Sign Convention

- Standard field elements

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity Default.
1-point for each layer (PF6C), 3-point for each layer (PF12C), 2×2 for each layer (HF8C, HF16C)
Fine (see 3-point for each layer (PF6C), 3x3 for each layer Options) (HF16C)

Specific Heat Default. 3x2 for the whole element (PF6C, PF12C) or (see Options) 1-point for each layer (PF6C), 3-point for each layer (PF12C), $2 \times 2 \times 2$ for the whole element or 2×2 for each layer (HF8C, HF16C)
Fine (see 3×2 for the whole element or 3-point for each Options) layer (PF6C), $3 \times 3 \times 2$ for the whole element or 3×3 for each layer (HF16C)

Specific Heat Modelling

- Consistent specific heat (default).
- Lumped specific heat.

Options

18 Invokes fine integration rule for elements.
105 Lumped specific heat.
266 Layer by layer computation of specific heat matrix.

Notes on Use

1. The element formulations are based on the standard isoparametric approach.
2. For linear field problems only one load case is allowed if an ENVT load is to be applied.
3. The COMPOSITE GEOMETRY and COMPOSITE MATERIAL data chapters must be used with this element in conjunction with the COMPOSITE ASSIGNMENTS data chapter.
4. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
5. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
6. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
7. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.
8. The through thickness integration is performed assuming a linear variation of the field gradient-variable matrix for each layer.
9. Layer 1 is always the bottom layer.
10. The simplifying assumptions which allow the uncoupling of in-plane and through thickness co-ordinates leads to the restriction that any individual layer should be of a constant thickness. This restriction should be considered when the finite element mesh is created and adhered to as closely as possible. In addition, out of plane lamina curvatures should also be minimised although in-plane curvature (in the $x-y$ plane) is not restricted.

Restrictions

\square Ensure mid-side node centrality

- Avoid excessive element curvature
\square Avoid excessive aspect ratio
Constant layer thickness for each individual layer

Recommendations on Use

The 3D solid composite field elements should be used for modelling thick composite structures comprising laminae of differing material properties where the computational cost of modelling each lamina with an individual solid element would be prohibitive. These field elements can be used to analyse continuum field problems where the response is fully 3D.

Chapter 10 : HygroThermal Elements.

2D Plane Hygro-Thermal Elements

General

Element Group Hygro-Thermal
Element Plane Hygro-Thermal
Subgroup
Element
Description
A family of plane hygro-thermal elements in 2D with higher order elements capable of modelling curved boundaries. The elements can be used in hygro-thermal transient analyses, i.e. heat and moisture flow in porous media, e.g. concrete.
Number Of 3, 4, 6 or 8 numbered anticlockwise.
Nodes
Freedoms T, Pc: Temperature and capillary pressure at each node.
Node X, Y: at each node.
Coordinates

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Hygro-Thermal Linear Isotropic

Nonlinear Isotropic

MATERIAL PROPERTIES HYGROTHERMAL LINEAR MATERIAL PROPERTIES HYGROTHERMAL CONCRETE

Loading

Initial Conditions	TMPE	Initial temperature $\left(\mathrm{T}_{0}\right)$ and concrete relative humidity (RH) per element.
	TMP	Initial temperature (T_{0}) and concrete relative humidity (RH) per global nodes.
Prescribed Values	TDSP	Temperature (T) and concrete relative humidity (RH) at nodes.
	RGN	Rates of heat (QT) and/or water inflow (QW) concentrated at nodes.
	RBVE	Rates of heat and/or water inflow per unit volume, per element, can vary across the element.
	RBV	Rates of heat and/or water inflow per unit volume, per global nodes.
	RIHG	Rates of heat and/or water inflow per unit volume, per element at a specific reference nodal temperature (See Notes.)
Boundary Conditions	FFL	Rates of heat and/or water inflow per unit area (flux).
	ENVT	Environmental boundary condtions. Tenv, hc, $\mathrm{hr}, \mathrm{RH}, \mathrm{hw}$: external environmental temperature, convective and radiative heat transfer coefficients, environmental relative humidity, water mass transfer coefficient. (See Notes.)
	TDET	Temperature dependent environmental boundary conditions. Tenv, hc, hr, RH, hw, T: external environmental temperature, convective and radiative heat transfer coefficients, environmental relative humidity, water mass transfer coefficient and reference nodal temperature. (See Notes.)

LUSAS Output

Solver | Temperature gradients | $\mathrm{G}_{\mathrm{T}} \mathrm{X}, \mathrm{G}_{\mathrm{T}} \mathrm{Y}$, (in global directions) |
| :--- | :--- |
| Water saturation gradients | $\mathrm{G}_{\mathrm{W}} \mathrm{X}, \mathrm{G}_{\mathrm{W}} \mathrm{Y}$, (in global directions) |
| Temperature fluxes | qX, qY (in global directions) |
| Water fluxes | $\mathrm{J}_{\mathrm{w}} \mathrm{X}, \mathrm{J}_{\mathrm{w}} \mathrm{Y}$, (in global directions) |
| Vapour fluxes | $\mathrm{J}_{\mathrm{V}} \mathrm{X}, \mathrm{J}_{\mathrm{v}} \mathrm{Y}$, (in global directions) |
| Modeller | See Results Tables (Appendix K). |.

Local Axes

\square Standard surface element

Sign Convention

\square Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

1-point (THT3), 3-point (THT6), 2x2 (QHT4), 3x3 (QHT8).

Options

55 Output all element Gauss point derivatives and state variables

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of temperature and capillary pressure within an element is linear for the low order triangle and bi-linear for the low order quadrilateral; similarly it is quadratic for the higher order triangle and bi-quadratic for the higher order quadrilateral.
2. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear transient solution progresses.
3. Decreasing permeability and increasing water vapour convection coefficient in ENVT may result in divergence and an unstable solution. A rough estimate for the latter may be obtained by dividing the heat convection coefficient by a factor of 104 (obtained by the Chilton-Colburn analogy and scaled by an average porosity).
4. Variable thickness results in a heat and moisture transfer that is not in the plane of the element, this effect is neglected. The variable thickness influences only the amount of heat and moisture stored in the element's volume.
5. Heat of hydration loading is defined via the hygro-thermal concrete material properties.
6. Concrete relative humidity RH in TMPE, TMP and TPDSP is internally converted to capillary pressure (Pc).
7. ENVT load over the area of the element cannot be modelled.

Restrictions

Ensure mid-side node centrality
\square Avoid excessive element curvature
\square Avoid excessive aspect ratio
\square Certain combinations of permeability and convection boundary water vapour transfer coefficient may result in problems that do not converge.

Recommendations on Use

The plane hygro-thermal elements may be utilised for analysing continuum problems involving the heat of hydration of concrete, when behaviour is essentially two dimensional. These elements are normally used in a hygro-thermal-structural coupled analysis. They can be coupled with plane strain structural elements (since the heat/moisture exchange over the area of the element would have effect only near both ends of the 'infinite' thickness), or with thin, plane stress elements, when they are ideally isolated on both sides of their area.

2D Axisymmetric Solid Hygro-Thermal Elements

General

Element Group Hygro-Thermal
Element Axisymmetric Solid Hygro-Thermal
Subgroup
Element
Description
A family of axi-symmetric solid hygro-thermal elements in 2D with higher order elements capable of modelling curved boundaries. The elements can be used in hygro-thermal transient analyses, i.e. heat and moisture flow in porous media, e.g. concrete.
$3,4,6$, or 8 numbered anticlockwise.
Number Of
Nodes
Freedoms
T, Pc: Temperature and capillary pressure at each node.
Node X, Y: at each node
Coordinates

Geometric Properties

Not applicable (a unit radian segment is assumed).
Material Properties

Hygro-Thermal	Linear Isotropic	MATERIAL PROPERTIES HYGRO-
		THERMAL LINEAR

Loading

Initial Conditions TMPE

TMP

Prescribed Values TDSP

RGN

RBVE

RBV

RIHG

Boundary FFL
Conditions
ENVT

TDET

Initial temperature $\left(\mathrm{T}_{0}\right)$ and concrete relative humidity (RH) per element.
Initial temperature (T_{0}) and concrete relative humidity (RH) per global nodes.
Temperature (T) and concrete relative humidity (RH) at nodes.
Rates of heat (QT) and/or water inflow (QW) concentrated at nodes.
Rates of heat and/or water inflow per unit volume, per element, can vary across the element.
Rates of heat and/or water inflow per unit volume, per global nodes.
Rates of heat and/or water inflow per unit volume, per element at a specific reference nodal temperature (See Notes.)
Rates of heat and/or water inflow per unit area (flux).
Environmental boundary condtions. Tenv, hc, hr, RH, hw: external environmental temperature, convective and radiative heat transfer coefficients, environmental relative humidity, water mass transfer coefficient. (See Notes.)
Temperature dependent environmental boundary conditions. Tenv, hc, hr, RH, hw, T: external environmental temperature, convective and radiative heat transfer coefficients, environmental relative humidity, water mass transfer coefficient and reference nodal temperature. (See Notes.)

LUSAS Output

Solver	Temperature gradients	$\mathrm{G}_{\mathrm{T}} \mathrm{X}, \mathrm{G}_{\mathrm{T}} \mathrm{Y}$, (in global directions)
	Water saturation gradients	$\mathrm{G}_{\mathrm{W}} \mathrm{X}, \mathrm{G}_{\mathrm{W}} \mathrm{Y}$, (in global directions)
	Temperature fluxes	qX, qY (in global directions)
	Water fluxes	$\mathrm{J}_{\mathrm{w}} \mathrm{X}, \mathrm{J}_{\mathrm{w}} \mathrm{Y}$, (in global directions)
	Vapour fluxes	$\mathrm{J}_{\mathrm{v}} \mathrm{X}, \mathrm{J}_{\mathrm{v}} \mathrm{Y}$, (in global directions)
Modeller		See Results Tables (Appendix K)

Local Axes

- Standard surface element

Sign Convention

\square Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

1-point (TXHT3), 3-point (TXHT6), 2x2 (QXHT4), 3x3 (QXHT8).

Options

47 Axisymmetry about the global X-axis
55 Output all element Gauss point derivatives and state variables

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of temperature and capillary pressure within an element is linear for the low order triangle and bi-linear for the low order quadrilateral; similarly it is quadratic for the higher order triangle and bi-quadratic for the higher order quadrilateral.
2. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear transient solution progresses.
3. Decreasing permeability and increasing water vapour convection coefficient in ENVT may result in divergence and an unstable solution. A rough estimate for the latter may be obtained by dividing the heat convection coefficient by a factor of 104 (obtained by the Chilton-Colburn analogy and scaled by an average porosity).
4. Variable thickness results in a heat and moisture transfer that is not in the plane of the element, this effect is neglected. The variable thickness influences only the amount of heat and moisture stored in the element's volume.
5. Heat of hydration loading is defined via the hygro-thermal concrete material properties.
6. Concrete relative humidity RH in TMPE, TMP and TPDSP is internally converted to capillary pressure (Pc).

Restrictions

Ensure mid-side node centrality
\square Avoid excessive element curvature

- Avoid excessive aspect ratio

Certain combinations of permeability and convection boundary water vapour transfer coefficient may result in problems that do not converge.

Recommendations on Use

The axi-symmetric solid hygro-thermal elements may be utilised for analysing continuum problems involving the heat of hydration of concrete, which exhibit geometric and loading symmetry about a given axis. These elements are normally used in a hygro-thermal-structural coupled analysis.

3D Solid Hygro-Thermal Elements

General

PHT6

HHT8

THT10

PHT12

HHT16

PHT15

HHT20

Element Group

Hygro-Thermal

Element

Solid Hygro-Thermal
Subgroup
Element
A family of solid hygro-thermal elements in 3D with higher order
Description
elements capable of modelling curved boundaries. The elements can be
used in hygro-thermal transient analyses, i.e. heat and moisture flow in porous media, e.g. concrete
Number Of 4 and 10 (tetrahedra). 6, 12 and 15 (pentahedra). 8,16 and 20

Nodes

 (hexahedra). The elements are numbered according to a right-hand screw rule in the local z-direction.Freedoms
Node
T, Pc: Temperature and capillary pressure at each node.
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Hygro-Thermal Linear Isotropic

Nonlinear Isotropic

MATERIAL PROPERTIES HYGROTHERMAL LINEAR MATERIAL PROPERTIES HYGROTHERMAL CONCRETE

Loading

Initial Conditions TMPE
TMP

Prescribed Values TDSP

RGN

RBVE

RBV

RIHG

Boundary FFL
Conditions
ENVT

Initial temperature $\left(\mathrm{T}_{0}\right)$ and concrete relative humidity (RH) per element.
Initial temperature (T_{0}) and concrete relative humidity (RH) per global nodes.
Temperature (T) and concrete relative humidity (RH) at nodes.
Rates of heat (QT) and/or water inflow (QW) concentrated at nodes.
Rates of heat and/or water inflow per unit volume, per element, can vary across the element.
Rates of heat and/or water inflow per unit volume, per global nodes.
Rates of heat and/or water inflow per unit volume, per element at a specific reference nodal temperature (See Notes.)
Rates of heat and/or water inflow per unit area (flux).
Environmental boundary condtions. Tenv, hc, hr , RH, hw: external environmental temperature,
convective and radiative heat transfer coefficients, environmental relative humidity, water mass transfer coefficient. (See Notes.)
Temperature dependent environmental boundary conditions. Tenv, hc, hr, RH, hw, T: external environmental temperature, convective and radiative heat transfer coefficients, environmental relative humidity, water mass transfer coefficient and reference nodal temperature. (See Notes.)

LUSAS Output

SolverTemperature gradients	$\mathrm{G}_{\mathrm{T}} \mathrm{X}, \mathrm{G}_{\mathrm{T}} \mathrm{Y}, \mathrm{G}_{\mathrm{T}} \mathrm{Z}$ (in global directions)
Water saturation gradients	$\mathrm{G}_{\mathrm{W}} \mathrm{X}, \mathrm{G}_{\mathrm{W}} \mathrm{Y}, \mathrm{G}_{\mathrm{W}} \mathrm{Z}$ (in global directions)
Temperature fluxes	$\mathrm{qX}, \mathrm{qY}, \mathrm{qZ}$ (in global directions)
Water fluxes	$\mathrm{J}_{\mathrm{w}} \mathrm{X}, \mathrm{J}_{\mathrm{w}} \mathrm{Y}, \mathrm{J}_{\mathrm{w}} \mathrm{Z}$ (in global directions)
Vapour fluxes	$\mathrm{J}_{\mathrm{v}} \mathrm{X}, \mathrm{J}_{\mathrm{v}} \mathrm{Y}, \mathrm{J}_{\mathrm{w}} \mathrm{Z}$ (in global directions)
Modeller	See Results Tables (Appendix K)..

Local Axes

Not applicable (global axes are the reference).

Sign Convention

\square Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

1-point (THT4), 5-point (THT10), 3×2 (PHT6, PHT12, PHT15), $2 \times 2 \times 2$ (HHT8), $3 \times 3 \times 2$ (HHT16), 3x3x3 (HHT20)

Options

55 Output all element Gauss point derivatives and state variables

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The distribution of temperature and capillary pressure within an element may be regarded as linear or bilinear for low order elements and quadratic or bi-qudratic for higher order elements.
2. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
3. Decreasing permeability and increasing water vapour convection coefficient in ENVT may result in divergence and an unstable solution. A rough estimate for the latter may be obtained by dividing the heat convection coefficient by a factor of 104 (obtained by the Chilton-Colburn analogy and scaled by an average porosity).
4. Heat of hydration loading is defined via the hygro-thermal concrete material properties.
5. Concrete relative humidity RH in TMPE, TMP and TPDSP is internally converted to capillary pressure (Pc).

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature
\square Avoid excessive aspect ratio
\square Certain combinations of permeability and convection boundary water vapour transfer coefficient may result in problems that do not converge.

Recommendations on Use

The solid hygro-thermal elements may be used to analyse continuum problems where the response is fully 3D (i.e. it cannot be approximated using the plane or axisymmetric elements). These elements are generally used for problems involving the heat of hydration of concrete, and are normally used in a hygro-thermal-structural coupled analysis.

Chapter 11: Interface Elements.

2D Interface Element

General

Element Group Interface

Element
 2D Interface

Subgroup
Element A family of 2D interface elements used for modelling standard Mohr-
Description
Coulomb friction contact as well as delamination for plane stress, plane strain and axisymmetric crack propagation. An initial gap is allowed for Mohr-Coulomb friction contact but not for delamination.
Number Of
4,6
Nodes
Freedoms
Node X, Y: at each node.
Coordinates

Geometric Properties

Not applicable to plane strain and axisymmetric elements.
For plane stress t1..tn for each node

Material Properties

Linear Not applicable

Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicableInterface Interface MATERIAL PROPERTIES NONLINEAR25
MATERIAL PROPERTIES INTERFACE Interface
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable
Loading
Prescribed ValueConcentratedPDSP, TPDSPCL
Loads
Element Loads Not applicable.
Distributed Loads Not applicable.
Body Forces Not applicable.VelocitiesAccelerationsVELOACCE
Initial Not applicable.
Stress/Strains
Residual Stresses Not applicable.
Target Not applicable.
Stress/Strains
Temperatures TEMP, TMPEVelocities. Vx, Vy: at nodes.Acceleration Ax, Ay: at nodes.
Prescribed variable. U, V: at each node.Concentrated loads. Px, Py: at each node.
Temperatures at nodes/for element. T, $0,0,0$, To, $0,0,0$
Overburden Not applicable.
Phreatic Surface Not applicable.Field Loads Not applicable.
Temp Dependent Not applicable.

LUSAS Output

Solver Stress (default): shear and direct tractions. Strain: shear and direct relative displacements Modeller See Results Tables (Appendix K).

Local Axes

Sign Convention

A positive traction occurs if the local relative displacement (with respect to the first line of the element) is a positive value, i.e. for the quadratic elements at nodes $3>6$ the local relative displacement, Ez, would be positive if (DZ3 - DZ6) >0, where DZi is the local displacement at node i.

Formulation

Geometric Nonlinearity

Total Lagrangian	Not applicable.
Updated Lagrangian	Not applicable.
Eulerian	Not applicable.
Co-rotational	Applicable to IPN4 and IAX4 elements.

Integration Schemes

Stiffness Default. 2 (Newton Cotes) (IPN4, IPM4, IAX4) 3 (Newton-Cotes) (IPN6, IPM6, IAX6)
Fine. As default

Mass Modelling

Not applicable.

Options

62 Continue solution if more than one negative pivot occurs
64 Non-symmetric solver
229 Co-rotational geometric non-linearity.
252 Suppress pivot warning messages.
261 Select the root with the lowest residual norm with arc-length.

Notes on use in delamination analyses

1. When defining the transient analysis control the arc-length procedure should be adopted with the option to select the root with the lowest residual norm [option 261].
2. It is recommended that fine integration [option 18] is selected for the parent elements.
3. The nonlinear convergence criteria should be selected to converge on the residual norm.
4. Option 62, Continue solution if more than one negative pivot occurs, should be selected to continue if more than one negative pivot is encountered and option 252 should be used to suppress pivot warning messages from the solution process.
5. The non-symmetric solver is selected automatically when mixed mode delamination is specified.
6. Although the solution is largely independent of the mesh discretisation, to avoid convergence difficulties it is recommended that at least 2 elements are placed in the process zone.

Restrictions

None.

Recommendations on Use

These elements may be used to model contact between two bodies. For delamination problems they should be placed at sites of potential delamination between 2D plane and axisymmetric continuum elements. The non-symmetric solver should be used.

2D Two Phase Interface Element

General

Element Name
IPN6P, IAX6P

Element Group Interface
Element 2D Two-phase Interface
Subgroup
Element A family of 2D interface elements used for modelling standard Mohr-
Description Coulomb friction contact in soil/structure interactions.
Number Of 6
6
Nodes
Freedoms U, V, P: at end nodes, U,V at middle nodes.
Node X, Y: at each node.
Coordinates

Geometric Properties

Not applicable to plane strain and axisymmetric elements.
For plane stress t 1 ..tn for each node

Material Properties

Linear Not applicable
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable Interface Interface
Interface
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable
Two-Phase Interface

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL
Loads
Element Loads Not applicable.
Distributed Loads Not applicable.
Body Forces Not applicable.
Velocities VELO
Accelerations ACCE
Initial Not applicable.
Stress/Strains
Residual Stresses Not applicable.
Target Not applicable.
Stress/Strains
Temperatures TEMP, TMPE

Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.

TWO PHASE MATERIAL INTERFACE
MATERIAL PROPERTIES NONLINEAR 25
MATERIAL PROPERTIES INTERFACE

LUSAS Output

Solver Stress (default): shear and direct tractions.
Strain: shear and direct relative displacements
Modeller See Results Tables (Appendix K).

Local Axes

Element Name IPN6P, IAX6P
Evaluated at each node.

Sign Convention

A positive traction occurs if the local relative displacement (with respect to the first line of the element) is a positive value, i.e. for the quadratic elements at nodes $3>6$ the local relative displacement, Ez, would be positive if (DZ3 - DZ6) >0, where DZi is the local displacement at node i.

Formulation

Geometric Nonlinearity

Total Lagrangian
Updated
Lagrangian
Eulerian
Co-rotational

Not applicable.
Not applicable.

Not applicable.
Not applicable.

Integration Schemes

Stiffness Default. 3 (Newton-Cotes)

Fine. As default

Mass Modelling

Not applicable.

Options

64 Non-symmetric solver

Restrictions

None.

Recommendations on Use

These elements should be used to model soil/structure and soil/soil interactions. The nonsymmetric solver should be used.

3D Interface Element

General

IS6

> IS12

IS8

IS16

Element Group
Interface
Element
3D Interface
Subgroup
Element
Description
Number Of
6,8,12,16
Nodes
Freedoms
Node
Coordinates crack propagation.

A family of 3D interface elements used for modelling delamination and

U, V, W: at each node.
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

Geometric Properties

Not applicable (a zero thickness is assumed).

Material Properties

$$
\begin{aligned}
\text { Linear } & \text { Not applicable } \\
\text { Matrix } & \text { Not applicable } \\
\text { Joint } & \text { Not applicable }
\end{aligned}
$$

Concrete Not applicable Elasto-Plastic Not applicable Creep Not applicable
Damage Not applicable Viscoelastic Not applicable Shrinkage Not applicable Interface Interface Interface
Rubber Not applicable Generic Polymer Not applicable Composite Not applicable

MATERIAL PROPERTIES NONLINEAR 25

MATERIAL PROPERTIES INTERFACE

Loading

Prescribed Value Concentrated Loads	PDSP, TPDSP CL	Prescribed variable. U, V, W: at each node. Concentrated loads. Px, Py, Pz: at each node.
Element Loads	Not applicable.	
Distributed Loads	Not applicable.	
Body Forces	Not applicable.	
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay, Az: at nodes.
Initial Stress/Strains	Not applicable.	
Residual Stresses	Not applicable.	
Target Stress/Strains	Not applicable.	
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}$, $0,0,0$
Overburden	Not applicable.	
Phreatic Surface	Not applicable.	
Field Loads	Not applicable.	

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress (default): shear tractions in X and Y , and direct tractions. Strain: relative displacements in X, Y and Z directions.
Modeller See Results Tables (Appendix K).

Local Axes

Element Name

IS6
Evaluated at each node.

IS12
Evaluated at each node.

IS8

IS16

Sign Convention

A positive traction occurs if the local relative displacement (with respect to the first surface of the element) is a positive value, i.e. for the IS16 element at nodes $3>11$ the local relative displacement, EZ, would be positive if $(\mathrm{DZ} 11-\mathrm{DZ3})>0$, where DZi is the local displacement at node i.

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.

Updated Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational Applicable to IS6 and IS8 elements.

Integration Schemes

Stiffness Default. 3×3 (Newton-Cotes) (IS16), 2×2 (Newton Cotes) (IS8), 7-point cubic (IS12), 3-point (IS6)
Fine. As default

Mass Modelling

Not applicable.

Options

62 Continue solution if more than one negative pivot occurs.
64 Non-symmetric solver.
229 Co-rotational geometric non-linearity.
252 Suppress pivot warning messages
261 Select the root with the lowest residual norm with arc-length.

Notes on Use

1. When defining the transient analysis control the arc-length procedure should be adopted with the option to select the root with the lowest residual norm [option 261].
2. It is recommended that fine integration [option 18] is selected for the parent elements.
3. The nonlinear convergence criteria should be selected to converge on the residual norm.
4. Option 62, Continue solution if more than one negative pivot occurs, should be selected to continue if more than one negative pivot is encountered and option 252 should be used to suppress pivot warning messages from the solution process.
5. The non-symmetric solver is selected automatically when mixed mode delamination is specified.
6. Although the solution is largely independent of the mesh discretisation, to avoid convergence difficulties it is recommended that at least 2 elements are placed in the process zone.

Restrictions

None.

Recommendations on Use

These elements should be used at places of potential delamination between 3D continuum elements. The non-symmetric solver should be used.

3D Two Phase Interface Element

General

Geometric Properties

Not applicable (a zero thickness is assumed).

Material Properties

Linear	Not applicable	
Matrix	Not applicable	
Joint	Not applicable	
Concrete	Not applicable	
Elasto-Plastic	Not applicable	
Creep	Not applicable	
Damage	Not applicable	
Viscoelastic	Not applicable	
Shrinkage	Not applicable	
Interface	Interface	MATERIAL PROPERTIES NONLINEAR
		25

Interface
Two-phase Interface
Rubber Not applicable Generic Polymer Not applicable Composite Not applicable

Loading

Prescribed Value	PDSP, TPDSP	Prescribed variable. U, V, W, Q: at corner nodes $\mathrm{U}, \mathrm{V}, \mathrm{W}$ at midside nodes.
Concentrated Loads	CL	Concentrated loads. Px, Py, Pz, Q: at corner nodes, $\mathrm{Px}, \mathrm{Py}, \mathrm{Pz}$ at midside nodes.
Element Loads	Not applicable.	
Distributed Loads	Not applicable.	
Body Forces	Not applicable.	
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay, Az: at nodes.
Initial Stress/Strains	Not applicable.	
Residual Stresses	Not applicable.	
Target Stress/Strains	Not applicable.	
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0, \mathrm{To}$, $0,0,0$
Overburden	Not applicable.	
Phreatic Surface	Not applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver Stress (default): shear tractions in X and Y, and direct tractions. Strain: relative displacements in X, Y and Z directions.
Modeller See Results Tables (Appendix K).

Local Axes

Element Name

IS6
Evaluated at each node.

IS12
Evaluated at each node.

IS8

IS16

Sign Convention

A positive traction occurs if the local relative displacement (with respect to the first surface of the element) is a positive value, i.e. for the IS16 element at nodes $3>11$ the local relative displacement, Ez, would be positive if (DZ11-DZ3) >0, where DZi is the local displacement at node i.

Formulation

Geometric Nonlinearity

Total Lagrangian
 Not applicable.

Updated
Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational Applicable to IS6 and IS8 elements.

Integration Schemes

$$
\begin{array}{ccl}
\text { Stiffness } & \text { Default. } & \begin{array}{l}
3 \times 3(\underline{\text { Newton-Cotes }}) \\
\\
\\
\text { (IS12), 3-point (IS16), } 2 \times 2 \text { (Newton Cotes) (IS8), 7-point cubic }
\end{array} \\
\text { Fine. } & \text { As default }
\end{array}
$$

Mass Modelling

Not applicable.

Options

64 Non-symmetric solver.

Restrictions

None.

Recommendations on Use

These elements should be used to model soil/structure and soil/soil interactions. The nonsymmetric solver should be used.

Chapter 12 : NonStructural Mass Elements

2D Point Mass Element

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable

Matrix Not applicable
Joint Not applicable
Mass 2D
MATERIAL PROPERTIES MASS 21
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable

Shrinkage Not applicable
 Rubber Not applicable
 Generic Polymer Not applicable
 Composite Not applicable
 Field Not applicable

Loading

Prescribed			
Value	CBF		Constant body forces for element. Xcbf, Ycbf,
:---			
Zcbf (applied as accelerations)			

LUSAS Output

None

Local Axes

The 2 nd node is used to define the local x -axis.

Sign Convention

\square Not applicable.
Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Not applicable.

Mass Modelling

Consistent mass (default).
\square Lumped mass.

Options

105 Lumped mass matrix.

Notes on Use

1. Use to model point mass in a structure.

Restrictions

None.

Recommendations on Use

The 2D point mass element can be used to model point masses occur in a 2D structure.

3D Point Mass Element

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable
Matrix Not applicable
Joint Not applicable
Mass 3D.
MATERIAL PROPERTIES MASS 31

Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable

Damage Not applicable
 Viscoelastic Not applicable
 Shrinkage Not applicable
 Rubber Not applicable
 Generic Polymer Not applicable
 Composite Not applicable

Loading

Prescribed Value CBF Constant body forces for element. Xcbf, Ycbf, Zcbf (applied as accelerations)

Output

None

Local Axes

The $2^{\text {nd }}$ node is used to define the local x-axis. The $2^{\text {nd }}$ and $3^{\text {rd }}$ node define the local $x-y$ plane.

Sign Convention

\square Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Not applicable.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

105 Lumped mass matrix.

Notes on Use

1. Use to model point mass in a structure.

Restrictions

None.

Recommendations on Use

The 3D point mass element can be used to model point masses occur in a 3D structure.

3D Line Mass Elements

General

LMS3

LMS4

Element Group Non-Structural Mass

Element 3D Line
Subgroup
Element
Description
3D straight (LMS3) and curved (LMS4) line mass elements to model
mass along an edge. The elements can accommodate varying mass along the length.
Number Of 3 (LMS3). The $3^{\text {rd }}$ node is used to define the local $x-y$ plane.
Nodes 4 (LMS4). The $4^{\text {th }}$ node is used to define the local $x-y$ plane.
End Releases
Freedoms U, V, W, $\theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at each active node (see Notes).
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable
Matrix Not applicable
Joint Not applicable.
Mass 3D.
MATERIAL PROPERTIES MASS 32 (or 3)
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable

Viscoelastic Not applicable
 Shrinkage Not applicable
 Rubber Not applicable
 Generic Polymer Not applicable
 Composite Not applicable

Loading

Prescribed Value CBF Constant body forces for element. Xcbf, Ycbf, Zcbf (applied as accelerations)

Output

None

Local Axes

Standard Line Element

Sign Convention

\square Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Mass Default. 2-point
Fine 2-point (LMS2), 3-point (LMS3)

Mass Modelling

Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
105 Lumped mass matrix.

Notes on Use

1. Use to model mass on an edge in a structure.
2. There is no mass associated with the rotational degrees of freedom $\theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$; these freedoms are used purely to orientate the directions of the local element axes. If the LMS3/LMS4 elements are connected to an element that does not possess the same rotational degrees of freedom (e.g. the edge of a continuum element), then the rotational degrees of freedom will automatically be restrained

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

3D line mass elements can be used to model masses along an edge in a 3D structure.

2D Line Mass Elements

General

LM3

Element Group Non-Structural Mass

> Element 2D Line

Subgroup
Element 2D straight (LM2) and curved (LM3) line mass elements to model mass
Description along an edge. The elements can accommodate varying mass along the length.
Number Of 2 (LM2). 3 (LM3). Nodes
End Releases
Freedoms U, V: at each node.
Node X, Y: at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable
Matrix Not applicable
Joint Not applicable
Mass 2D.
MATERIAL PROPERTIES MASS 22 (or 3)
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable

Viscoelastic Not applicable
 Shrinkage Not applicable
 Rubber Not applicable
 Generic Polymer Not applicable
 Composite Not applicable

Loading

Prescribed Value CBF Constant body forces for element. Xcbf, Ycbf, Zcbf (applied as accelerations)

Output

None

Local Axes

Standard Line Element

Sign Convention

\square Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Mass Default. 2-point
Fine 2-point (LM2), 3-point (LM3)

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
105 Lumped mass matrix.

Notes on Use

1. Use to model mass on an edge in a structure.

Restrictions

\square Ensure mid-side node centrality
\square Avoid excessive element curvature

Recommendations on Use

2D line mass elements can be used to model masses along an edge in a 2 D structure.

Surface Mass Elements

General

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable
Matrix Not applicable
Joint Not applicable
Mass 3D MATERIAL PROPERTIES MASS 3 (3,4,6 or 8)
Concrete Not applicable.
Elasto-Plastic Not applicable.
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable.

Loading

Prescribed Value CBF Constant body forces for element. Xcbf, Ycbf, Zcbf (applied as accelerations)

Output

None

Local Axes

- Standard Surface Element

Sign Convention

Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Mass Default. 1-point (TM3), 3-point (TM6), 4-point (QM4,QM8)
Fine $\quad 3$-point (TM3, TM6), 4-point (QM4), 9-point (QM8)

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
105 Lumped mass matrix.

Notes on Use

1. Use to model mass on a surface in a structure.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

The surface mass elements can be used to model masses on a surface 3D structures.

Chapter 13 : Rigid Slideline Elements

Rigid Slideline Surface 2D Elements

General

Element Name R2D2

Element Group Rigid

Element 2D Rigid Slideline Surface
Subgroup
Element 2D Rigid Slideline Surface elements capable of modelling non-
Description deformable surfaces in a contact analysis.
Number Of 2

Nodes
Freedoms U, V at each node
Node X, Y at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Isotropic:
MATERIAL PROPERTIES (Elastic: Isotropic)

Loading

Prescribed Value	PDSP, TPDSP	Prescribed variable. U, V at each node.
Concentrated	Not applicable.	
Loads		
Element Loads	Not applicable.	
Distributed Loads	Not applicable.	
Body Forces	Not applicable.	Velocities. Vx, Vy at nodes.

Accelerations	ACCE	Acceleration Ax, Ay at nodes.
Initial	Not applicable.	
Stress/Strains		
Residual Stresses	Not applicable.	
Temperatures	Not applicable.	
Field Loads	Not applicable.	
Temp Dependent	Not applicable.	
Loads		

LUSAS Output

Solver Displacements \& Reactions only.
Modeller Displacements \& Reactions only.

Formulation

Geometric Nonlinearity

$$
\begin{aligned}
\text { Total Lagrangian } & \begin{array}{l}
\text { Depends on the other surface (deformable surface) which is in contact } \\
\text { with the rigid surface. See the related section for the deformable } \\
\text { surface elements. }
\end{array} \\
\text { Updated } & \text { As above. } \\
\text { Lagrangian } & \\
\text { Eulerian } & \text { As above. } \\
\text { Co-rotational } & \text { As above. }
\end{aligned}
$$

Integration Schemes

Not applicable.

Mass Modelling

Not applicable.

Restrictions

- A rigid slideline surface cannot contact another rigid slideline surface.
- Rigid slideline surface elements do not accept external applied forces.

Notes on use

1. All the rigid slideline surface element nodes must be fully restrained.
2. There is no stress and strain calculation for these elements.
3. If rigid slideline surfaces are defined there is no need to assign geometric and material properties to these elements. However, when using automatic contact surfaces, linear elastic isotropic material properties need to be assigned.
4. For saving analysis time a one pass contact algorithm can be used. In this case only the penetration of the deformable surface into the rigid slideline surface is checked. To avoid the penetration of the rigid surface into the deformable surface use either the default two pass algorithm or a finer mesh on the deformable surface.

Recommendations on Use

These elements should be used when one of the surfaces which come into contact is nondeformable. Using these elements will make the analysis faster.

Rigid Slideline Surface 3D Elements

General

Element R3D3
Name

R3D4

Element Group Rigid
Element 3D Rigid Slideline Surface
Subgroup
Element 3D Rigid Slideline Surface elements capable of modelling non-
Descriptiondeformable surfaces in a contact analysis.
Number Of 3/4
Nodes
Freedoms U, V, W at each node.
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Isotropic:

Loading

Prescribed Value	PDSP, TPDSP
Loads	Prescribed variable. U, V, W at each node.
Concentrated	
Element Loads	Not applicable.
Distributed Loads	Not applicable.
Body Forces	Not applicable.

Velocities	VELO	Velocities. Vx, Vy, Vz at nodes.
Accelerations	ACCE	Acceleration Ax, Ay, Az at nodes.
Initial	Not applicable.	
Stress/Strains		
Residual Stresses	Not applicable.	
Temperatures	Not applicable.	
Field Loads	Not applicable.	
Temp Dependent	Not applicable.	
Loads		

LUSAS Output

Solver Displacements \& Reactions only.
Modeller Displacements \& Reactions only.

Formulation

Geometric Nonlinearity

Total Lagrangian Depends on the other surface (deformable surface) which is in contact with the rigid surface. See the related section for the deformable surface elements.
Updated As above.
Lagrangian
Eulerian As above.
Co-rotational As above.

Integration Schemes

Not applicable.

Mass Modelling

Not applicable.

Restrictions

- A rigid slideline surface cannot contact another rigid surface.
- Rigid slideline surface elements do not accept external applied forces.

Notes on use

1. All the rigid slideline surface element nodes must be fully restrained.
2. There is no stress and strain calculation for these elements.
3. If rigid slideline surfaces are defined there is no need to assign geometric and material properties to these elements. However, when using automatic contact surfaces, linear elastic isotropic material properties need to be assigned.
4. For saving analysis time a one pass contact algorithm can be used. In this case only the penetration of the deformable surface into the rigid slideline surface is checked. To avoid the penetration of the rigid surface into the deformable surface use either the default two pass algorithm or a finer mesh on the deformable surface.

Recommendations on Use

These elements should be used when one of the surfaces which come into contact is nondeformable. Using these elements will make the analysis faster.

Chapter 14 :
 Phreatic Elements

Phreatic Surface 2D Elements

General

Element Name PHS2

Element Group	Phreatic surface
Element	2D Phreatic Surface
Subgroup	
Element	2D Phreatic surface elements for defiing phreatic surface
Description	
Number Of	2
Nodes	
Freedoms	U, V at each node
Node	X, Y at each node.
Coordinates	

Geometric Properties

Not applicable.

Material Properties

Not applicable.

Loading

Prescribed Value	PDSP, TPDSP	Prescribed variable. U, V at each node.
Concentrated	Not applicable.	
Loads		
Element Loads	Not applicable.	
Distributed Loads	Not applicable.	
Body Forces	Not applicable.	Velocities. Vx, Vy at nodes.
Velocities	VELO	

Residual Stresses Not applicable.
Temperatures Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.

Not applicable.
Accelerations ACCE Acceleration Ax, Ay at nodes.

Acceleration Ax, Ay at nodes.

Not applicable.

Loads

LUSAS Output

Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Not applicable.

Mass Modelling

Not applicable.

Restrictions

Not applicable.

Notes on use

1. All the phreatic surface element nodes must be fully restrained.
2. There are no stress or strain calculations.
3. There is no need to assign geometric and material properties.
4. The phreatic surface elements are used with the Phreatic Surface load type and are used to define the location and extent of a phreatic surface.

Recommendations on Use

These elements are for use in geotechnical problems for the definition of the nodal pore-water pressures and hydrostatic loads.

Phreatic Surface 3D Elements

General

PHS4

Element Group

Phreatic Surface
Element
3D Phreatic Surface
Subgroup
Element 3D Phreatic surface elements for defiing phreatic surface.
Description
Number Of
3/4
Nodes
Freedoms U, V, W at each node.
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Not applicable.

Loading

Prescribed Value Concentrated

Loads
Element Loads Not applicable.
Distributed Loads Not applicable.
Body Forces Not applicable.
PDSP, TPDSP Not applicable.

Prescribed variable. U, V, W at each node.

Velocities	VELO	Velocities. Vx, Vy, Vz at nodes.
Accelerations	ACCE	Acceleration Ax, Ay, Az at nodes.
Initial	Not applicable.	
Stress/Strains		
Residual Stresses	Not applicable.	
Temperatures	Not applicable.	
Field Loads	Not applicable.	
Temp Dependent	Not applicable.	

LUSAS Output

Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Not applicable.

Mass Modelling

Not applicable.

Restrictions

Not applicable.

Notes on use

1. All the phreatic surface element nodes must be fully restrained.
2. There are no stress or strain calculations.
3. There is no need to assign geometric and material properties.
4. The phreatic surface elements are used with the Phreatic Surface load type and are used to define the location and extent of a phreatic surface.

Recommendations on Use

These elements are for use in geotechnical problems for the definition of the nodal pore-water pressures and hydrostatic loads.

Appendix A: Element and

 Pressure Loads.

 Pressure Loads.}

ELDS Element Loads

These are referred to as Internal Beam Point Loads and Internal Beam Distributed Loads within LUSAS Modeller.

Parameter	Description
Itype	Element load type
S1, S2	Distances to specified loads
Px, Py, Pz	Point loads in local/global directions
Mx, My, Mz	Point moments in local/global directions
Wx, Wy, Wz	Distributed loads in local/global directions

Itype 11
Point loads and moments in local directions

Itype 21
Uniformly distributed loads in local directions

Itype 12
Point loads and moments in global directions

Itype 22
Uniformly distributed loads in global directions

Itype 31
Distributed loads in local directions. Multiple load sets supported.

Itype 23
Uniformly distributed projected loads in global directions

1
Itype 32

Distributed loads in global directions. Multiple load sets supported.

Global
Itype 41
Trapezoidal loads in local directions
Definition only supported in LUSAS Solver. In LUSAS Modeller trapezoidal beam loads are defined in accordance with Itype 31.
Wx, Wy, Wz

Local

Distributed projected loads in global directions. Multiple load sets supported.

Itype 42

Trapezoidal loads in global directions
Definition only supported in LUSAS Solver. In LUSAS Modeller trapezoidal beam loads are defined in accordance with Itype 32.
Wx, Wy, Wz

Global

Itype 43
Trapezoidal projected loads in global directions Definition only supported in LUSAS Solver. In LUSAS Modeller trapezoidal beam loads are defined in accordance with Itype 33.

ENVT/TDET Environmental Boundary Conditions

Contains some or all of:

Parameter	Description
Tenv	External environmental temperature.
hc	Convective heat transfer coefficient.
RH	Radiative heat transfer coefficient.
hv	Vapour mass transfer coefficient.
T	Temperature for element.

Face Numbering Convention for Thermal Bars

Note

The environmental temperature loading for node 2 cannot be specified for a 3 noded bar.

FLD Face loading applied to thermal bars

Face number $=$ local node number

Face Numbering Convention for Thermal Bars

Face Loads On 2D Continuum Elements

Parameter	
Px, Py	
Face pressures defined at nodes in local x, y directions	

2-Noded Element Faces

3-Noded Element Faces

Notes

- In structural analysis note that the direction of the normal face load is not consistent between 2D and 3D continuum elements. For 2D continuum elements it is from the
face towards the interior of the element. For 3D elements it is in the opposite direction - from the face of the element outwards.
- Face loads for explicit dynamics elements are constant, i.e. the average of the input nodal pressures

Face Numbering Convention

3 Noded Elements 4 Noded Elements 6 Noded Elements 8 Noded Elements

Face Loads On 3D Continuum Elements

$\frac{\text { Parameter }}{\text { Px, Py, Pz }} \frac{\text { Description }}{$| Face pressures defined at nodes in local $x, y \text { directions acting positively in the local }$ |
| :--- |
| coordinate directions |}

Note

- In structural analysis note that the direction of the normal face load is not consistent between 2D and 3D continuum elements. For 2D continuum elements it is from the face towards the interior of the element. For 3D elements it is in the opposite direction - from the face of the element outwards.
- Face loads for explicit dynamics elements are constant, i.e. the average of the input nodal pressures.+

Local Face Coordinates

Face Numbering Convention

The following diagrams show exploded view of the various 3D elements. The grey faces show the element external faces that can be seen from a single perspective point, the white faces depict the internal faces from the same view point.

Notes

- The views of the internal faces show the x -axis direction from the inside. Take care when converting this to a view from the outside of the element.

UDL Loads on Shells

Appendix B: Element Restrictions.

Mid-side Node Centrality

The mid-length node must be equidistant from the end nodes. Mid-side nodes may be automatically corrected for elements with global translational mid-side node freedoms using Option 49. The mid-side node is moved along the existing element edge until it is positioned centrally.

Excessive Element Curvature

Elements must not be excessively curved. A warning will be invoked (but the analysis will continue) if the element curvature is not in accordance with the following inequalities:
i) $\mathrm{ABS}(\mathrm{S} 1-\mathrm{S} 2) /(\mathrm{S} 1+\mathrm{S} 2)<0.05$
ii) $(S 1+S 2) / S 3<1.02$

Where the function ABS returns the absolute value of the arguments.

Excessive Aspect Ratios

An aspect ratio can be defined as the ratio of the longest to shortest element side lengths, such that:

R \quad max ($\mathrm{a} / \mathrm{b}, \mathrm{b} / \mathrm{a}$) for surface elements (e.g. 2D continuum, plates and shells)
$\square R=\max (\mathrm{a} / \mathrm{b}, \mathrm{b} / \mathrm{a}, \mathrm{c} / \mathrm{a}, \mathrm{c} / \mathrm{b}, \ldots)$ for three dimensional solid elements

Elements must not have an excessive aspect ratio. A warning will be invoked (but the analysis will continue) if the element aspect ratio is greater than 10.
In general, severe distortion of an element will affect the accuracy of the stress distribution through an element. The type of stress field being imposed is also of importance, since a badly shaped element will still yield a good distribution in the presence of a constant uniaxial stress field, but not when subjected to a full stress field in which any of the components have a significant variation across the element.
The force equilibrium for the element will always be satisfied.

Excessive Warping

The four nodal points defining quadrilateral surface elements should be coplanar. However a small out of plane tolerance is permitted to allow a slightly warped shape according to

$$
\mathrm{z}<0.01(\mathrm{~L} 12)
$$

where \mathbf{z} is the out of plane distance of a node, and L12 is the length between the first and second nodes.
If the above inequality is exceeded a warning will be issued but the analysis will proceed.

Appendix C : Local Element Axes.

Standard Joint Element

Local x-axis The local x-axis is defined by the vector between the first and the third nodes of the element topology.

Note.

The third node must be different from nodes 1 and 2 of the topology.

Standard Line Element

Local x axis The local x -axis lies along the element in the direction in which the element nodes are defined. For curved elements the local x -axis is the tangent to the curve.
Local y axis The local xy plane is either defined by a dummy node and the two end nodes, or (in the absence of a dummy node), defined by the two end nodes and the central node. For the latter case, the local y-axis is perpendicular to the x -axis and on the positive convex side.
Local z axis The local z -axis forms a right-handed set with the local xy plane.
For cross-section beams the top surface is defined by the local +ve z direction.

Note

Default line axes are defined in Modeller with the local x axis of the element following the line direction. The element local z is then defined in the XZ plane unless the local x axis is aligned to the global Z axis in which case the element local z axis is aligned with the global Y axis.

Standard Surface Element

Local \mathbf{x} axis For 3 or 4 noded elements the local x -axis is defined by a line joining the first and second element nodes. For 6 and 8 noded elements the local x-axis is the tangent to the curve between the first 3 nodes.
Local y axis The local $x y$-plane is defined by the remaining nodes, the local y-axis being perpendicular to the x -axis and forming a right-handed set with the x -axis and the xy plane.

Element Reference Manual

Local z-axis The local z -axis forms a right-handed set with the local x and y -axes. For shell elements the top surface is defined by the local +ve z direction.

Appendix D: Sign Conventions.

The sign convention for forces, moments, stresses, rotations, eccentricities and potentials for different element types is documented in the following section headings.

Standard Bar Element

Axial force

(+ve) Axial tension
(-ve) Axial compression

Standard Beam Element

Numerically Integrated Beam Elements

Axial force

(+ve) Axial tension
(-ve) Axial compression

Bending Moment

(+ve) Hogging moment (Top of beam in tension)
(-ve) Sagging moment (Bottom of beam in tension)
Note: The top/bottom of the beam is determined by the element axes.

Torsion

(+ve) Rotation at 1st node greater than rotation at other end node
(-ve) Rotation at 1st node smaller than rotation at other end node

Grillage Elements

End Forces and Rotations

Positive end forces and rotations for grillage elements are those acting on the element nodes in local directions, and are as follows:

Note that when a reference path has been specified, additional force/moment components are available, and for this situation the x, y, and z element axes relate to longitudinal, transverse and vertical terms respectively. For instance My will relate to MF (longitudinal) - the flexural moment in longitudinal members that are following the path and MF (transverse) - the flexural moment in the transverse members that are orthogonal or skewed in relation to the reference path. Similarly, Fz will relate to FV (longitudinal) - the force in the vertical direction for longitudinal members that are following the path and FV (transverse) - the vertical direction for transverse members that are orthogonal or skewed in relation to the reference path.

Internal forces

These forces follow the sign convention for numerically integrated beams.

Axial force
Not applicable

Bending Moment
(+ve) Sagging moment
(-ve) Hogging moment

Torsion

(+ve) Rotation at 1st node greater than rotation at other end node
(-ve) Rotation at 1st node smaller than rotation at other end node

Sign convention in Modeller for bending moment

(+ve) Top of beam in tension
(-ve) Bottom of beam in tension
Where the top/bottom of the beam are determined by the element axes
See numerically integrated beam sign convention.

2D Engineering Beam Elements

End Forces and Rotations

Positive end forces and rotations for 2D engineering beams are those

Internal forces

These forces follow the sign convention for numerically integrated beams.

Axial force	
(+ve) Axial tension (-ve) Axial compression Moment (+ve) Hogging moment (-ve) Sagging moment	

Sign convention in Modeller for bending moment

(+ve) Top of beam in tension
(-ve) Bottom of beam in tension
Where the top/bottom of the beam are determined by the element axes See numerically integrated beam sign convention.

3D Engineering Beam Elements

End Forces and Rotations

Positive end forces and rotations for 3D engineering beams are those acting on the element nodes in local directions, and are as follows:

Internal forces

These forces follow the sign convention for numerically integrated beams.

Axial force
(+ve) Axial tension
(-ve) Axial
compression

Bending Moment
(+ve) Hogging moment
(-ve) Sagging moment

Torsion (+ve) Rotation at 1st node greater than rotation at other end node (-ve) Rotation at 1st node smaller than rotation at other end node

Sign convention in Modeller for bending moment

(+ve) Top of beam in tension
(-ve) Bottom of beam in tension
Where the top/bottom of the beam are determined by the element axes
See numerically integrated beam sign convention.

Standard Beam Eccentricities

Eccentricities are optional geometric properties for some elements and may be specified if the nodal line of the element does not lie along the required bending line/plane for the structural component being modelled.
Measurement of Ez (see diagram) is from the required bending plane (the beam xy plane) to the nodal line in the local element axis z-direction. If a beam xy plane is required such that it has negative local z coordinates relative to
 the nodal line, the eccentricity is positive.
Similarly, measurement of Ey is from the required bending plane (the beam xz plane) to the nodal line in the local element axis y-direction. If a beam $x z$ plane is required such that it has negative local y coordinates relative to the nodal line, the eccentricity is positive.

Standard 2D Continuum Element

Direct stress

(+ve) Tension
(-ve) Compression

Shear stress

(+ve) Shear into XY quadrant
(-ve) Shear into XY quadrant

Note. Positive stress values are shown.

Standard 3D Continuum Element

Direct stress

(+ve) Tension
(-ve) Compression

Shear stress

(+ve) Shear into XY, YZ and XZ quadrants
(-ve) Shear into XY, YZ and XZ quadrants

Note. Positive stress values shown.

Standard Plate Element

Flexural stress

(+ve) Hogging moment (producing +ve stresses on the element top surface)
(-ve) Sagging moment (producing -ve stresses on the element top surface)

The +ve local z-direction defines the top surface.

Thin Shell Element

Membrane stress

$(+\mathrm{ve})$	Direct tension
$(-\mathrm{ve})$	Direct compression
$(+\mathrm{ve})$	In-plane shear into xy quadrant
$(-\mathrm{ve})$	In-plane shear into xy quadrant

Flexural stress

(+ve) Hogging moment (producing +ve stresses on the element top surface)
(-ve) Sagging moment (producing -ve stresses on the element top surface)

Notes

- Positive stress values shown.
- The +ve local z-direction defines the top surface.

Thin Shell Eccentricity

Eccentricity is an optional geometric property for this element type and may be specified if the nodal plane of the element does not lie along the required bending plane for the structural component being modelled.

Measurement of e_{z} is from the required bending plane to the nodal plane in the local element axis z -direction.

Thick Shell Element

Thick shell stress

Stress Resultant

Membrane stress	$(+\mathrm{ve})$ $(-\mathrm{ve})$	Direct tension Direct compression
	$(+\mathrm{ve})$	In-plane shear into xy quadrant
$(-\mathrm{ve})$	In-plane shear into xy quadrant	

The + ve local z-direction defines the top surface.

Thick Shell Eccentricity

Eccentricity is an optional geometric property for this element type and may be specified if the nodal plane of the element does not lie along the required bending plane for the structural component being modelled.

Measurement of ez is from the required bending plane to the nodal plane in the local element axis z -direction.

Standard Membrane Element

Direct stress	$(+\mathrm{ve})$ $(-\mathrm{ve})$	Tension Compression

Shear stress (+ve) Shear into xy quadrant
(-ve) Shear into xy quadrant

Standard Field Element

Potential

(+ve) +ve field value, $\mathrm{dT} / \mathrm{dx}$ rate of change of field in x direction

Standard Joint Element

Direct force : (+ve) Tension and (-ve) Compression
Spring Moment : (+ve) for positive rotational spring strain and (-ve) for negative rotational spring strain
The sign of joint results is dependent upon both the element direction(that is which geometry is the master, and which is the slave) and the orientation of the local coordinate axes chosen.

Coincident Master and Slave nodes, $M=$ Master, $S=$ Slave

Element Reference Manual

Compression	Tension	Negative Moment	Positive Moment
$\mathrm{Mu}>\mathrm{Su}$	$\mathrm{Su}>\mathrm{Mu}$	$\mathrm{M}_{6 \mathrm{x}}>S_{\text {ex }}$	$\mathrm{S}_{\theta \mathrm{x}}>\mathrm{M}_{\theta \mathrm{x}}$
$\mathrm{Mv}>\mathrm{Sv}$	Sv > Mv	$\mathrm{M}_{\theta \mathrm{y}}>\mathrm{S}_{\theta \mathrm{\theta}}$	$\mathrm{S}_{\theta \mathrm{y}}>\mathrm{M}_{\theta \mathrm{y}}$
$\mathrm{Mw}>\mathrm{Sw}$	$\mathrm{Sw}>\mathrm{Mw}$	$\mathrm{M}_{\theta \mathrm{z}}>\mathrm{S}_{\theta \mathrm{z}}$	$S_{\theta z}>M_{\theta z}$

Appendix E: Thick Shell Notation.

Thick Shell Nodal Rotation

Problems with Singularities

In general, five degrees of freedom will be associated with each shell node: three translations and two rotations. The first axis of rotation will be defined by one of the global axes. The second axis of rotation is defined by the vector product of the selected global axis and the nodal normal.
Choosing one global axis to define the first rotation is not possible for all cases as singularities can occur depending on the orientation of the shell. As the topology of the shell cannot be known a means of choosing suitable rotations after the shell orientation has been defined must be provided.

How the Nodal Systems are Defined

The axis defining the $\theta \alpha$ rotation is chosen by examining the global components of the nodal normal. The smallest (absolute) component of the normal vector defines the global axis to be chosen as the first axis of rotation. The vector product of this axis and the nodal normal defines the axis for the second rotation $\theta \beta$. If the nodal normal coincides with the global Z axis, the global X axis will be chosen to define $\theta \alpha$. In this instance, the X and Y components will both be
 minimum values. When two components define the same minimum value the order of priority for selection of the axis is $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$. Note that, in general, the axes of rotation and the nodal normal will form a non-orthogonal left-handed set. The rotations are indicated in the following figure where the global x axis has been used to define $\theta \alpha$:

Five or Six Degrees of Freedom at a Node

LUSAS Solver will automatically select five degrees of freedom at a node, with rotations defined as above, unless:
\square The maximum angle between the normals of adjacent elements meeting at the node is greater than 20 degrees. The value of 20 degrees is selected by default and may be changed using the SYSTEM parameter SHLANG.

- Beam, joint or other shell element types are connected to the node

Concentrated loads or support conditions have been specified at the node using LUSAS Modeller

- Option 278 has been specified

Six degrees of freedom have been selected for the node within the NODAL FREEDOMS data chapter If six degrees of freedom are used at a node the rotations will relate to the global axes, $\theta \mathrm{X}, \theta \mathrm{Y}$ and $\theta \mathrm{Z}$ unless TRANSFORMED FREEDOMS have been specified. It is recommended that the default value for SHLANG is retained wherever possible.

When are Six Degrees of Freedom Necessary?

Rotations relating to global axes will be required in the following circumstances:
\square When a branched shell connection exists in the structure to be analysed. LUSAS Solver will automatically detect this and assign six degrees of freedom to nodes along the branch connection.
\square When connecting with other element types. Six degrees of freedom will automatically be assigned to shell nodes connected to beams, joints or other shell element types.
\square When boundary conditions or loading cannot be easily specified using the above definition of rotations, e.g. when applying moments or using symmetry.
If the rotations $\theta \alpha, \theta \beta$ will not allow the required loading or symmetry conditions to be applied, rotations about global axes may be enforced using NODAL FREEDOMS. The use of TRANSFORMED FREEDOMS will then allow the rotations to be related to a more convenient local orthogonal set if necessary. If six degrees of freedom at a node are enforced using NODAL FREEDOMS (i.e. not set automatically by LUSAS Solver) singularities may occur if the in-plane rotation (about the normal) is not restrained.

Appendix F: Newton Coates Integration.

Newton-Cotes Integration Points

For beam elements BMX3, BSX4 and BXL4 the rigidity is computed by integration of the cross section. The default integration employs a 3×3 Newton Cotes rule for linear materials and a 5×5 rule for nonlinear materials. These may be altered by the user within the GEOMETRIC PROPERTIES definition. The locations of the default integration points are shown in the accompanying diagram, together with the local axes for the beam cross section (note the different corner numbering). The integration points are equally spaced along a particular natural ordinate for the section. The integration point numbers shown correspond with those given in the stress output for the element. More information on the cross sectional integration for these elements is available in the LUSAS Theory Manual.

Newton-Cotes Integration Points for 3D Elements

Newton-Cotes Integration Points for 2D Elements

Appendix G: Shear Area and Torsional

 Constant.

 Constant.}

Shear Areas

In beams of small span to depth ratio, the shear stresses are likely to be high and the resulting deflection due to shear may not be negligible. The shear area is used to control the amount of shear deformation which will occur (Asz, Asy). For various sections, approximate values are as follows:

Rectangular beams $=5 \mathrm{~A} / 6$
I-beams (along web direction) = Area of web
I-beams (along flange direction) $=$ Area of flanges
Thin walled, hollow circular section $=\mathrm{A} / 2$

- Solid circular section $=9 \mathrm{~A} / 10$
\square No shear deformation $=1000 \mathrm{~A}$

Note

- If Asz or Asy equal zero, mechanisms may occur.
- For elements which support this geometric input, shear deformation effects may be removed by assigning an artificially large value.
- The section property calculator in Modeller can be used to accurately compute shear areas

Torsional Constant

The torsional constant provides a measure of the torsional rigidity of a line member. Approximate values are as follows:

Solid circle

(equivalent to the polar moment of inertia)

$$
\frac{\pi \cdot r^{4}}{2}
$$

where \mathbf{r} is the radius of the circle

Hollow circle

$$
\frac{\pi}{2}\left(r_{2}^{4}-r_{1}^{4}\right)
$$

where $r 2$ is the outer radius and r 1 is the inner radius

Solid square $=0.1406 \mathrm{a}^{4}$
where a is the side length

Solid rectangle $=$

$$
a b^{3}\left[\frac{16}{3}-3.36 \frac{b}{a}\left(1-\frac{b^{4}}{12 a^{4}}\right)\right]
$$

where $\mathbf{2 a}$ is the length of the longest side and $\mathbf{2 b}$ is the length of the shortest side

Equilateral triangle

$$
\frac{a^{4} \sqrt{3}}{80}
$$

where \mathbf{a} is the side length

Rectangular tube

$$
\frac{2 \cdot t_{1} \cdot t_{2} \cdot\left(a-t_{2}\right)^{2}\left(b-t_{1}\right)^{2}}{a t_{2}+b t_{1}-t^{2}{ }_{2}-t^{2}{ }_{1}}
$$

where
\mathbf{a} is the length of the longest side
$\mathbf{t} \mathbf{1}$ is the thickness of the longest side
\mathbf{b} is the length of the shortest side
$\mathbf{t 2}$ is the thickness of the shortest side

Thin rectangle

$$
\frac{1}{3} b t^{3}
$$

where \mathbf{b} is the rectangle length and \mathbf{t} is the rectangle length thickness

Any section consisting of thin rectangles

$$
\frac{1}{3} \sum b t^{3}
$$

Solid ellipse

$$
\frac{\pi a^{3} b^{3}}{a^{2}+b^{2}}
$$

where $\mathbf{2 a}$ is the longest dimension
and $\mathbf{2 b}$ is the shortest dimension

Note

- The section property calculator in Modeller can be used to accurately compute torsional constants

Appendix H: Principal Stress Output.

Output Notation for Principal Stresses

For a bi-axial stress state, the Mohr's circle representation of a stress field is:

where:
Smax is the maximum principal stress.
$\mathbf{S m i n}$ is the minimum principal stress
Ss is the maximum shear stress
$\boldsymbol{\beta}$ defines the orientation of the principal axis (the plane on which the principal stresses act).
$\mathbf{S x}, \sigma \mathbf{y}, \sigma \mathbf{x y}$ represent an arbitrary two dimensional stress state.

Appendix I: Mass Lumping.

Mass Lumping in LUSAS

Non-Structural mass elements are used to define a lumped mass at a point, or a distributed mass along a line and over a surface.
See Non-Structural Mass Elements in the Modeller Reference Manual for more details.

Appendix J: Moments of Inertia.

Moments of Inertia Definitions

Second moment of area about line yy

$$
I_{W}=\int z^{2} d A
$$

Second moment of area about line $\mathbf{z z}$

$$
I_{Z Z}=\int y^{2} d A
$$

Product moment of inertia of section

$$
I_{y z}=\int y z d A
$$

($=0$ for sections symmetric about either yy or zz)
First moment of area about yy

$$
I_{y}=\int z d A
$$

(=0 for sections symmetric about yy)
First moment of area about $\mathbf{z z}$

$$
I_{z}=\int y d A
$$

(=0 for sections symmetric about zz)

Note

- The above definitions are for a section defined in the two dimensional yz plane. Similar expressions apply for a section in the three dimensional space.
- For a beam with eccentricity e from the nodal line, then:

$$
I_{z z}=A e^{2}+I_{n a} \text { and } I_{z}=e A
$$

where I_{na} is the second moment of area about the centroidal axis.

- For the purpose of the moment inertia definitions above only, the eccentricity is measured from the nodal line to the required bending plane (the beam's xy plane in the figure above). For example, if a beam xy plane is required such that it has negative local z coordinates relative to the nodal line, the eccentricity to be used above is negative.

Appendix K: Results Tables.

Key to Element Results Tables

This section contains the notation for the results in the Results Tables. Some results are available in local and global directions depending on the element type. The case of the direction indicator associated for each term in the table will indicate its default direction for that element. Lower case indicates local element directions and upper case indicates that results are available in global directions by default.

Displacements

DX Displacement in X
direction

DY Displacement in Y
direction

DZ Displacement in Z direction
RSLT Resultant displacement
THX Rotation about X
THY Rotation about Y
THZ Rotation about Z

THL1 First loof rotation

THL2 Second loof rotation
DU Hierarchical disp. at mid-node
DTHX Hierarchical rotation at mid-node
PRES Pore Pressure
THw Rate of change of twisting angle (warping beams)

Note: Rotations are output in radians.

Velocities and Accelerations

VX Velocity in X direction

VY Velocity in Y direction
VZ Velocity in Z direction
RSLT Resultant velocity

AX Acceleration in X direction
AY Acceleration in Y direction
$\mathbf{A Z}$ Acceleration in Z direction
RSLT Resultant acceleration

VC Results calculator values

Strains

EX Direct strain in X direction
EY Direct strain in Y direction
EZ Direct strain in Z direction

EXY Shear strain in XY plane

EYZ Shear strain in YZ plane
EZX Shear strain in XZ plane
EMa Maximum principal strain
x
EMin Minimum principal strain
E1 Major principal strain
E2 Intermediate principal strain
E3 Minor principal strain
Eabs Signed largest value of principal strain
Bx Bending strain (curvature) about x
axis

By Bending strain (curvature) about y axis
Bz Bending strain (curvature) about z axis
Bxy Bending or torsional strain into $x y$ plane
Byz Bending or torsional strain into yz plane
Bxz Bending or torsional strain into $x z$ plane
BMax Maximum principal bending strain
BMin Minimum principal bending strain
$\boldsymbol{\beta}$ Angle between E1 and X axis
EE Equivalent strain (von Mises)
EI Maximum shear strain
EV Volumetric strain

Strains: Top/Middle/Bottom (TMB)

EX Direct strain in X direction
EY Direct strain in Y direction
EZ Direct strain in Z direction
EXY Shear strain in XY plane
EYZ Shear strain in YZ plane
EXZ Shear strain in XZ plane

Plastic Strains

EPX Plastic direct strain in X direction
EPY Plastic direct strain in Y direction
EPZ Plastic direct strain in Z

E1 Major principal strain
E2 Intermediate principal strain
E3 Minor principal strain
Eabs Signed largest value of principal strain
$\boldsymbol{\beta}$ Angle between E1 and X axis
EE Equivalent strain (von Mises)
EI Maximum shear strain

EP1 Major principal strain
EP2 Intermediate principal plastic strain
EP3 Minor principal plastic strain
direction
EPXY Plastic shear strain in XY plane
EPYZ Plastic shear strain in YZ plane
EPZX Plastic shear strain in ZX plane
EPMax Maximum principal plastic strain
EPMin Minimum principal plastic strain

Creep Strains

ECX Creep direct strain in X direction

ECY Creep direct strain in Y direction
ECZ Creep direct strain in Z direction
ECXY Creep shear strain in XY plane
ECYZ Creep shear strain in YZ plane
ECZX Creep shear strain in ZX plane
ECMax Maximum principal creep strain
ECMin Minimum principal creep strain

Rubber Stretches

StchX $\begin{aligned} & \text { Direct stretch tensor in X } \\ & \text { direction }\end{aligned}$
StchY Direct stretch tensor in Y direction
StchZ Direct stretch tensor in Z direction
StchXY Shear stretch tensor in XY plane
StchYZ Shear stretch tensor in YZ plane
StchXZ Shear stretch tensor in XZ

EPabs Signed largest value of principal plastic strain
$\boldsymbol{\beta}$ Angle between EP1 and X axis
EPE Equivalent plastic strain (von Mises)
EPI Maximum shear strain
CWMax Maximum crack width
EFSMax Maximum equivalent fracture strain

EC1 Major principal creep strain
EC2 Intermediate principal creep strain
EC3 Minor principal creep strain
Ecabs Signed largest value of principal creep strain
$\boldsymbol{\beta}$ Angle between EC 1 and X axis
ECE Equivalent creep strain (von Mises)
ECI Maximum shear creep strain

Stch1 Major principal stretch
Stch2 Intermediate principal stretch
Stch3 Minor principal stretch
StchAbs Signed largest value of principal stretch
$\boldsymbol{\beta}$ Angle between Stch1 and X axis
StchE Equivalent stretch
plane
StchMax Maximum principal stretch
StchI Maximum shear stretch
StchMin Minimum principal stretch
Strains: Interface Elements
Ex Shear relative displacement in local x direction

Ey Shear relative displacement in local y
direction

Ez Direct relative displacement in the
thickness direction
dP Pressure difference
Stresses: Continuum Elements
SX Direct stress in global X direction
SY Direct stress in global Y direction
SZ Direct stress in global Z direction
SXY Shear stress in Y-direction on a planenormal to X
SYZ Shear stress in yz plane
SXZ Shear stress in xz plane
SMax Maximum principal stress
SMin Minimum principal stress
S1 Major principal stress
S2 Intermediate principal stress
S3 Minor principal stress
Sabs Signed largest value of principal stress
$\boldsymbol{\beta}$ Angle between E1 and x axis
SI Maximum shear stress
SE Equivalent stress (von Mises)
Pres Pore pressure

Force/Moment: Bar and Beam Elements

Fx Force in local x direction
Fy Force in local y direction
Fz Force in local z direction
Fb Bi-shear or torque (warping)

Mx Moment about local x direction
My Moment about local y direction
Mz Moment about local z direction
Mb Bi-moment (warping)

Stresses: Bar and Beam Elements

$\mathbf{S x}(\mathbf{F x})$ Stress due to axial force in x
$\mathbf{S x}(\mathbf{M y})$ Stress due to bending about y
$\mathbf{S x}(\mathbf{M z})$ Stress due to bending about z
$\mathbf{S x}(\mathbf{M y}, \mathbf{M z})$ Stress due to bending about y and z
$\mathbf{S x}(\mathbf{F x}, \mathbf{M y})$ Stress due to axial force and bending about y
$\mathbf{S x}(\mathbf{F x}, \mathbf{M z})$ Stress due to axial force and bending about y
$\mathbf{S x}(\mathbf{F x}, \mathbf{M y}, \mathbf{M z}) \quad$ Stress due to axial force and bending about y and z

Force/Moment: Plate Elements (per unit width)

SX Shear force in global YZ plane
SY Shear force in global XZ plane

MX Moment in global X
MY Moment in global Y
MXY Twisting moment in global XY plane
Mmax Major principal moment
Mmin Minor principal moment
$\boldsymbol{\beta}$ Angle between MMax and X axis
MI Maximum shear moment
Mabs Signed largest value of moment
ME Equivalent moment

Force/Moment: Membrane and Shell Elements (per unit width)

Nx In-plane force in local x direction
Ny In-plane force in local y direction
Nxy In-plane shear force
NMax Major principal in-plane force
NMin Minor principal in-plane force
$\mathrm{N} \beta \varepsilon \tau \boldsymbol{\alpha}$ Angle between NMax and x axis
NI Maximum in-plane shear force
NE Equiv stress resultant (von Mises)
Nabs Signed largest value of in-plane force
Sx Shear force in local yz plane
Sy Shear force in local xz plane
Mx Moment in local x direction
My Moment in local y direction
Mxy Twisting moment in local xy plane
Mmax Major principal moment
Mmin Minor principal moment
M $\beta \boldsymbol{\varepsilon} \boldsymbol{\tau} \boldsymbol{\alpha}$ Angle between MMax and Xaxis
MI Maximum shear moment
ME Equivalent moment
Mabs Signed largest value of moment
Stresses: Top/Middle/Bottom (TMB)SX Direct stress in global X direction
SY Direct stress in global Y direction
SZ Direct stress in global Z direction
SXY Shear stress in XY plane
$\mathbf{S Y Z}$ Shear stress in YZ plane
$\mathbf{S X Z}$ Shear stress in XZ plane

S1 Major principal stress
S2 Intermediate principal stress
S3 Minor principal stress
Sabs Signed largest value of principal stress
SI Maximum shear stress
SE Equivalent stress (von Mises)

Stresses: Interface Elements

Sx Shear traction in local x direction
Sz Direct traction in thickness direction

Sy Shear traction in local y direction
Q Flow

Force/Moment: Wood-Armer (per unit width for Shells)

$\mathbf{M x}(\mathbf{T})$ Top surface local x moment
$\mathbf{M y}(\mathbf{T})$ Top surface local y moment
$\mathbf{M x}(\mathbf{B})$ Bottom surface local x moment
$\mathbf{M y}(\mathbf{B})$ Bottom surface local y moment
Util(T) Top surface utilisation factor
Util(B) Bottom surface utilisation factor
MUtil(T) Top surface utilisation factor for bending only
MUtil(B) Bottom surface utilisation factor for bending only
$\mathbf{N x}(\mathbf{T})$ Top surface local x force
$\mathbf{N y}(\mathbf{T})$ Top surface local y force
$\mathbf{N x}(\mathbf{B})$ Bottom surface local x force
$\mathbf{N y}(B)$ Bottom surface local y force
$\mathbf{F c}(\mathbf{T})$ Top surface concrete force
$\mathbf{F c}(\mathbf{B})$ Bottom surface concrete force

Force/Moment: Wood-Armer (per unit width for Plates and Grillages)

MX(T) Top surface global X moment
MY(T) Top surface global Y moment
MX(B) Bottom surface global X moment
MY(B) Bottom surface global Y moment

MUtil(T) Top surface utilisation factor for bending only
MUtil(B) Bottom surface utilisation factor for bending only

Additional Force/Moment Components

Note for influence analysis when a reference path has been specified, additional force/moment components are available for selection when transforming results. These are not listed for relevant elements in the Results tables.

FV Force in Vertical direction for
(longitudinal) longitudinal members that are following the reference path

FV Force in Vertical direction for (transverse) transverse members that are

MF Flexural Moment in
(longitudinal) longitudinal members that are following the reference path
MF Flexural Moment in (transverse) transverse members that are
orthogonal or skewed in relation to the reference path

Stresses: Interface Elements

orthogonal or skewed in relation to the reference path

Sx Shear traction in local x direction
Sz Direct traction in the thickness direction

Concrete Results

CWmax Max Crack width

EPshk Shrinkage strain
Temp Temperature
Ftens tensile strength
ECX Creep strain in global X
ECZ Creep strain in global Z

Potential

PHI Field variable
T Temperature

Gradients

GX Field gradient in X direction
GY Field gradient in Y direction
GY Field gradient in Z direction

Hygro-Thermal Results

SW Water saturation
PV Vapour pressure
Por Porosity
TC Thermal conductivity
HR Relative humidity of concrete

Sy Shear traction in local y direction

ESFmax Max fracture strain EPthm Thermal strain
Fcomp Compressive strength
Young Young's modulus
ECY Creep strain in global Y

PHIC Results calculator values

Fluxes
qX Field flux in X direction
qY Field flux in Y direction
qZ Field flux in Z direction

Reactions / Residual Forces

FX Force in X direction $\quad \mathbf{M Z}$ Moment about Z axis

FY Force in Y direction
FZ Force in Z direction
RSLT Resultant force
MX Moment about X axis
MY Moment about Y axis

FDU Force due to hierarchical displacement
MDX Moment due to hierarchical rotation

QC Flow at a point (field problems)
VFLW Velocity of Flow

Reaction Stress

PX Stress due to reaction in X direction
PZ Stress due to reaction in Z direction
PY Stress due to reaction in Y direction

Fatigue Parameters

Damage A measure of damage
LogLife Log repeats to failure
Note. The fatigue facility uses Miner's rule, that is:

$$
\mathrm{n} 1 / \mathrm{N} 1+\mathrm{n} 2 / \mathrm{N} 2+\cdots+\mathrm{ni} / \mathrm{Ni}=\text { Damage }
$$

where Damage is the damage variable and is usually taken as unity (experiment usually gives values between 0.7 and 2.2). ni is the number of cycles of stress applied to the structure and Ni is the life corresponding to the stress. Loglife is the log (base 10) of the life expectancy of the structure according to the loading and the number of cycles specified. Life is measured in terms of cycles.

Damage Parameters

DDAMA Damage variable DAMAM Damage consistency parameter
CCURD Damage threshold DFUNC Damage function
Note. Damage parameters are only available when a damage model is in use.

Strain Energy and Plastic Work

SED Strain energy density (StEngD) PWD Plastic work density
Note. Strain energy density and plastic work density values can be accessed if turned on by selecting Calculate Strain Energy and Plastic Work Densities from the Results > Options dialog or by using the command: SET RESULTS ENERGY.

Adaptive Error

Eadp Adaptive error.

Note. Adaptive error results are only available when an adaptive results column is set. See the LUSAS User Manual for more details.

State Variables

State variables can be accessed with the command:

SET RESULTS STATE_VARIABLES istvb nsvcmp isvloc

Where istvb is the type of state variable required, nsvcmp is the number of state variables required, and isvloc is the start location of the first state variable required.
The results columns for these state variables vary according to the results type set. The column descriptors have the following prefixes:

- PL Plastic, Rubber
- CR Creep
- DM Damage
- followed by the number of the state variable required. For example, if four creep state variables are required, the column descriptors will be CR1, CR2, CR3 and CR4.

Key to Slideline Results Components

This section contains the notation for slideline results. Note that slideline results components are not listed in the results tables.

TanGapFrcx	Tangential gap force in local x direction	NrmPen	Penetration normal to contact surface
TanGapFrcy	Tangential gap force in local y direction	ContStatus	In-contact/out-of-contact status
RsitTanGFc	Resultant tangential gap force	ContacArea	Nodal contact area
NrmGapForc	Gap force normal to contact surface	ContactIn-contact/out-of-contact status	
ForceX	Contact force in system x direction	Zone	Zonal contact parameter

Transforming Results Directions

Important: Some results entities can be transformed. The results components will use alternative suffixes if results are calculated relative to a system other than the global axis set. The element results tables show the default results directions for all elements with lower case subscripts being used for local results.
See the Local and Global Results in the LUSAS Modeller User Manual for details of results transformation procedures.

2D Structural Bars BAR2, BAR3

Entity	Component										
Displacement	DX	DY	RSLT								
Force/Moment	FX	Fabs	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp
Strain	EX	Eabs	DDAMA	CURRD	damam	DFUNC	SED	PWD	Eadp		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Loading	FX	FY	RSLT								
Reaction	FX	FY	RSLT								
Residual Force	FX	FY	RSLT								
Reaction Stress											
Velocity	vx	VY	RSLT								
Acceleration	AX	AY	RSLT								
Plastic Strain	EPX	EPabs	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Creep Strain	ECX	ECabs	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Rubber Stretches											
TMB Stress											
TMB Strain											
TMB Plastic Strain											
TMB Creep Strain											

3D Structural Bars BRS2, BRS3

Entity	Component										
Displacement	DX	DY	DZ	RSLT							
Force/Moment	FX	Fabs	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp
Strain	EX	Eabs	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Loading	FX	FY	FZ	RSLT							
Reaction	FX	FY	FZ	RSLT							
Residual Force	FX	FY	FZ	RSLT							
Reaction Stress											
Velocity	VX	VY	VZ	RSLT							
Acceleration	AX	AY	AZ	RSLT							
Plastic Strain	EPX	EPabs	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Creep Strain	ECX	ECabs	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Rubber Stretches											
TMB Stress											
TMB Strain											
TMB Plastic Strain											
TMB Creep Strain											

2D Engineering Grillage Thick Beam GRIL

Entity	Component												
Displacement	DZ	RSLT	THX	THY									
Force/Moment	Fz	Mx	My	Mx() $^{\text {(}}$	My() $^{\text {(}}$	Mx(B)	My(B)	Util(T)	Util(B)	Damage	LogLife	SED	Eadp
Strain													
Loading	FZ	RSLT	MX	MY									
Reaction	FZ	RSLT	MX	MY									
Residual Force													
Reaction Stress													
Velocity	VZ	RSLT											
Acceleration	AZ	RSLT											
Plastic Strain													
Creep Strain													
Rubber Stretches													
TMB Stress													
TMB Strain													
TMB Plastic Strain													
TMB Creep Strain													

Note: Wood-Armer results are only available for plotting /printing at nodes. They are not available unaveraged at nodes within elements or at Gauss points.

2D Thick Beam Elements BMI2, BMI3, BMI2X, BMI3X

Entity	Component										
Displacement	DX DY	RSLT	THZ								
Force/Moment	Fx My	Mz	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp
Strain	Ex Exy	Bz	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Loading	FX FY	RSLT	MZ								
Reaction	FX FY	RSLT	MZ								
Residual Force	FX FY	RSLT	MZ								
Reaction Stress											
Velocity	VX VY	RSLT									
Acceleration	AX AY	RSLT									
Plastic Strain	EPx EPxy	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Creep Strain	ECx ECxy	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Rubber Stretches	Sx Sy										
TMB Stress	Ex Exy										
TMB Strain	EPx EPxy										
TMB Plastic Strain	ECx ECxy										

Note: Plastic and creep strains are only available for BMI2X and BMI3X elements with the appropriate material models.

3D Thick Beam Elements BMI21, BMI22, BMI31, BMI33, BMX21, BMX22, BMX31, BMX33

Note: Plastic and creep strains are only available for BMX21, BMX31, BMX22, BMX33 elements with the appropriate material models.

3D Thick Beam Elements with Torsional Warping BMI21W, BMI22W, BMI31W, BMI33W, BMX21W, BMX22W, BMX31W, BMX33W

Entity	Component														
Displacement	DX	DY	DZ	RSLT	THX	THY	THY	THw							
Force/Moment	Fx	My	Mz	Mx	My	Mz	Fb	Mb	Damage	LogLife	DDAMA	$\begin{aligned} & \text { CURR } \\ & \text { D } \end{aligned}$	$\begin{gathered} \text { DAMA } \\ \mathrm{M} \end{gathered}$	$\begin{aligned} & \text { DFUN } \\ & \text { C } \end{aligned}$	SED PWD Eadp
Strain	Ex	By	Bz	Bx	By	Bz	Efb	Emb	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp
Loading	FX	FY	FZ	RSLT	MX	MY	MZ								
Reaction	FX	FY	FZ	RSLT	MX	MY	MZ	Mw							
Residual Force	FX	FY	FZ	RSLT	MX	MY	MZ								
Reaction Stress															
Velocity	vx	VY	VZ	RSLT											
Acceleration	AX	AY	AZ	RSLT											
Plastic Strain	EPx	EPxy	EPzx	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Creep Strain	ECx	ECxy	ECzx	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Rubber Stretches															
TMB Stress															
TMB Strain															
TMB Plastic Strain															

Note: Plastic and creep strains are only available for BMX21W, BMX31W, BMX22W, BMX33W elements with the appropriate material models.

2D Kirchhoff Thin Beams BM3, BMX3

Entity	Component											
Displacement	DX	DY	RSLT	THZ	DU							
Force/Moment	Fx	Fy	Mz	Damage	LogLife	DDAMA	CURRD	damam	DFUNC	SED	PWD	Eadp
Strain	Ex	Ey	Bz	DDAMA	CURRD	damam	DFUNC	SED	PWD	Eadp		
Loading	FX	FY	RSLT	MZ	FDU							
Reaction	FX	FY	RSLT	MZ	FDU							
Residual Force	FX	FY	RSLT	MZ	FDU							
Reaction Stress												
Velocity	vx	VY	RSLT									
Acceleration	AX	AY	RSLT									
Plastic Strain	EPx	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Creep Strain	ECx	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Rubber Stretches												
TMB Stress												
TMB Strain												
TMB Plastic Strain												
TMB Creep Strain												

Note: Plastic and creep strains are only available for BMX3 elements with the appropriate material models.

3D Kirchhoff Thin Beams BS3, BS4, BSX4

3D Semilloof Thin Beams BSL3, BSL4, BXL4

Entity	Component													
Displacement	DX	DY	DZ	RSLT	THX	THY	THZ	THL1	THL2					
Force.Moment		My	Mz	Tzx	Txy	Fy	Fz	Damage	LogLife	DDAMA	CURRD	AMA	FUNC	SED
(continued)	Eadp													
Strain		By	Bz	Bzx	Bxy	Ey	Ez	DDAMA	CURRD	DAMAN	DFUNC	SED	PWD	Ead
Loading		FY	FZ	RSLT	MX	MY	MZ	ML1	ML2					
Reaction	FX	FY	FZ	RSLT	MX	MY	MZ	ML1	ML2					
Residual Force	FX	FY	FZ	RSLT	MX	MY	MZ	ML1	ML2					
Reaction Stress														
Velocity		VY	VZ	RSLT										
Acceleration	AX	AY	AZ	RSLT										
Plastic Strain	EPx		EPyz	EPzx	$\begin{gathered} \text { DDAM } \\ \text { A } \end{gathered}$	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Creep Strain	ECx		ECyz	ECzx	$\begin{gathered} \text { DDAM } \\ \text { A } \end{gathered}$	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Rubber Stretches														
TMB Stress														
TMB Strain														
TMB Plastic Strain														
TMB Creep Strain														

Note: Plastic and creep strains are only available for BXL4 elements with the appropriate material models.

Plane Strain Beam Elements BMI2N, BMI3N

Entity	Component									
Displacement	DX	DY	RSLT	THZ						
Stress	Nx	Nz	Mx	Mz	Nxy	NMax	NMin	Ns	β	Nabs Ne
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
Strain	Ex	Ez	Bx	Bz	Exy	EMax	EMin	EI	β	Eabs EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Loading	FX	FY	RSLT	MZ						
Reaction	FX	FY	RSLT	MZ						
Residual Force	FX	FY	RSLT	MZ						
Reaction Stress	PX	PY								
Velocity	vx	VY	RSLT							
Acceleration	AX	AY								
Plastic Strain										
Creep Strain										
Rubber Stretches										
TMB Stress	Sx	Sz	Sxy	SMax	Smin	SI	β	Sabs	SE	
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
TMB Strain	Ex	Ez	Exy	EPmax	EMin	El	β	Eabs	ECE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
TMB Plastic Strain	EPx	EPz	EPxy	EPMax	EPMin	EPI	β	EPabs	ECE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
TMB Creep Strain	ECx	ECz	ECxy	ECMax	ECMin	ECI	β	ECabs	ECE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			

2D Continuum (Plane Stress) TPM3/6, QPM4/8, QPM4M, TPK6, QPK8

Notes:

Rubber stretches are only available for QPM4M elements with rubber material models. Strains are not available for this element when using rubber materials.
Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Models (105 and 109) are used.

2D Continuum Plane Stress (Explicit Dynamics) TPM3E, QPM4E

Entity	Component								
Displacement	DX	DY	RSLT						
Stress	SX	SY	SXY	SMax	SMin	SI	β	Sabs	SE
(continued)	Damage	LogLife	DDAMA	CURRD	damam	DFUNC	SED	PWD	Eadp
Strain	EX	EY	EXY	EMax	EMin	El	β	Eabs	EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Loading	FX	FY	RSLT						
Reaction	FX	FY	RSLT						
Residual Force	FX	FY	RSLT						
Reaction Stress	PX	PY							
Velocity	vx	VY	RSLT						
Acceleration	AX	AY	RSLT						
Plastic Strain	EPX	EPY	EPXY	EPMax	EPMin	EPI	β	EPabs	EPE
(continued)	DDAMA	CURRD	damam	DFUNC	SED	PWD	Eadp		
Creep Strain	ECX	ECY	ECXY	ECMax	ECMin	ECI	β	ECabs	ECE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Rubber Stretches									
TMB Stress									
TMB Strain									
TMB Plastic Strain									
TMB Creep Strain									

2D Continuum (Plane Strain) TPN3/6, QPN4/8, TNK6, QNK8, QPN4M

Entity	Component											
Displacement	DX	DY	RSLT									
Stress	SX	SY	SXY	Sz	S1	S2	S3	SI	Sabs	SE		
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Strain	EX	EY	EXY	EZ	E1	E2	E3	El	Eabs	EE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Loading	FX	FY	RSLT									
Reaction	FX	FY	RSLT									
Residual Force	FX	FY	RSLT									
Reaction Stress	PX	PY										
Velocity	vX	VY	RSLT									
Acceleration	AX	AY	RSLT									
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPabs	EPE	CWMax	EFSMax
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Creep Strain	ECX	ECY	ECXY	ECZ	EC1	EP2	EC3	ECI	ECabs	ECE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Rubber Stretches	Stch X	StchY	StchXY	StchZ	Stch1	Stch2	Stch3	Stchl	StchAbs	StchE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
TMB Stress												
TMB Strain												
TMB Plastic Strain												
TMB Creep Strain												

Notes:

Rubber stretches are only available for QPN4M elements with rubber material models. Strains are not available for this element when using rubber materials.
Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Models (105 and 109) are used.

2D Continuum (Plane Strain) QPN4L

| Entity | | | | | Component | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Displacement | DX | DY | RSLT | | | | | | |
| Stress | SX | SY | SXY | SZ | S1 | S2 | S3 | SI | SE |
| Strain | StchX | StchY | StchXY | StchZ | Stch1 | Stch2 | Stch3 | Stchl | StchE |
| Loading | FX | FY | RSLT | | | | | | |
| Reaction | FX | FY | RSLT | | | | | | |
| Residual Force | FX | FY | RSLT | | | | | | |
| Reaction Stress | PX | PY | | | | | | | |
| Velocity | VX | VY | RSLT | | | | | | |
| Acceleration | AX | AY | RSLT | | | | | | |
| Plastic Strain | EPX | EPY | EPXY | EPZ | EP1 | EP2 | EP3 | EPI | EPE |
| Creep Strain | | | | | | | | | |
| Rubber Stretches | StchX | StchY | StchXY | StchZ | Stch1 | Stch2 | Stch3 | Stchl | StchE |
| TMB Stress | | | | | | | | | |
| TMB Strain | | | | | | | | | |
| TMB Plastic Strain | | | | | | | | | |
| TMB Creep Strain | | | | | | | | | |

2D Plane Strain Two Phase Continuum TPN6P, QPN8P

Entity	Component											
Displacement	DX	DY	RSLT	Pres								
Stress	SX	SY	SXY	Sz	PRES	S1	S2	S3	SI	Sabs	SE	
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Strain	EX	EY	EXY	EZ	EV	E1	E2	E3	El	Eabs	EE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Loading	FX	FY	RSLT	Q								
Reaction	FX	FY	RSLT	Q								
Residual Force	FX	FY	RSLT									
Reaction Stress	PX	PY										
Velocity	vx	VY	RSLT									
Acceleration	AX	AY	RSLT									
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPabs	EPE	CWMax	EFSMax
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Creep Strain	ECX	ECY	ECXY	ECZ	EC1	EP2	EC3	ECI	ECabs	ECE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Rubber Stretches												
TMB Stress												
TMB Strain												
TMB Plastic Strain												
TMB Creep Strain												

Notes

Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Model (Model 109) is used.

2D Continuum Plane Strain (Explicit Dynamics) TPN3E, QPN4E

2D Continuum Axisymmetric Solid (Explicit Dynamics) TAX3E, QAX4E

2D Axisymmetric Solid Two Phase Continuum TAX6P, QAX8P

Entity	Component											
Displacement	DX	DY	RSLT	Pres								
Stress	SX	SY	SXY	Sz	PRES	S1	S2	S3	SI	Sabs	SE	
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Strain	EX	EY	EXY	EZ	EV	E1	E2	E3	EI	Eabs	EE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Loading	FX	FY	RSLT	Q								
Reaction	FX	FY	RSLT	Q								
Residual Force	FX	FY	RSLT									
Reaction Stress	PX	PY										
Velocity	vx	VY	RSLT									
Acceleration	AX	AY	RSLT									
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPabs	EPE	CWMax	EFSMax
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Creep Strain	ECX	ECY	ECXY	ECZ	EC1	EP2	EC3	ECl	ECabs	ECE		
(continued)	DDAMA	CURRD	damam	DFUNC	SED	PWD	Eadp					
Rubber Stretches												
TMB Stress												
TMB Strain												
TMB Plastic Strain												
TMB Creep Strain												

Notes

Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Model (Model 109) is used.

2D Continuum Axisymmetric Solid Fourier TAX3/6F, QAX4/8F

Entity	Component									
Displacement	DX	DY	DZ	RSLT						
Stress	SX	SY	SXY	SZ	S1	S2	S3	SI	Sabs	SE
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	Eadp		
Strain	EX	EY	EXY	EZ	E1	E2	E3	El	Eabs	EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	Eadp				
Loading	FX	FY	FZ	RSLT						
Reaction	FX	FY	FZ	RSLT						
Residual Force										
Reaction Stress	PX	PY								
Velocity	VX	VY	VZ	RSLT						
Acceleration	AX	AY	AZ	RSLT						
Plastic Strain										
Creep Strain										
Rubber Stretches										
TMB Stress										
TMB Strain										
TMB Plastic Strain										
TMB Creep Strain										

Axisymmetric Solid TAX3/6, QAX4/8, QAX4M, TXK6, QXK8

Notes

Rubber stretches are only available for QAX4M elements with rubber material models. Strains are not available for this element when using rubber materials
Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Models (105 and 109) are used.

Axisymmetric Solid Large Strain QAX4L

Entity	Component									
Displacement	DX	DY	RSLT	Pres						
Stress	SX	SY	SXY	SZ	S1	S2	S3	SI	Sabs	SE
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
Strain	Stch X	StchY	StchXY	StchZ	Stch1	Stch2	Stch3	Stchl	StchE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Loading	FX	FY	RSLT							
Reaction	FX	FY	RSLT							
Residual Force	FX	FY	RSLT							
Reaction Stress	PX	PY								
Velocity	VX	VY	RSLT							
Acceleration	AX	AY	RSLT							
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPE	
Creep Strain										
Rubber Stretches	Stch X	StchY	StchXY	StchZ	Stch1	Stch2	Stch3	Stchl	StchE	
TMB Stress										
TMB Strain										
TMB Plastic Strain										
TMB Creep Strain										

3D Solid Continuum TH4/10, TH10S, PN6/12/15, PN6L/12L, HX8/16/20, HX8M, HX8L/16L, TH10K, PN15K, HX20K

Entity	Component												
Displacement	DX	DY	DZ	RSLT									
Stress	SX	SY	Sz	SXY	SYZ	SZX	PRES	S1	S2	S3	SI	Sabs	SE
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Strain	EX	EY	EZ	EXY	EYZ	EZX	EV	E1	E2	E3	El	Eabs	EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Loading	FX	FY	FZ	RSLT									
Reaction	FX	FY	FZ	RSLT									
Residual Force	FX	FY	FZ	RSLT									
Reaction Stress	PX	PY	PZ										
Velocity	vx	VY	VZ	RSLT									
Acceleration	AX	AY	AZ	RSLT									
Plastic Strain	EPX	EPY	EPZ	EPXY	EPYZ	EPZX	EP1	EP2	EP3	EPI	EPabs	EPE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	CWMax	EFSMax				
Creep Strain	ECX	ECY	ECZ	ECXY	ECYZ	ECZX	EC1	EC2	EC3	ECl	ECabs	ECE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Rubber Stretches	StchX	StchY	StchZ	StchXY	StchYZ	StchZX	Stch1	Stch2	Stch3	Stchl	StchAbs	StchE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
TMB Stress													
TMB Strain													
TMB Plastic Strain													
TMB Creep Strain													

Notes:

Rubber stretches are only available for HX8M elements with rubber material models. Strains are not available for this element when using rubber materials.
Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Models (105 and 109) are used.

3D Solid Continuum Two Phase TH10P, PN12P, PN15P, HX16P, HX20P

Entity	Component											
Displacement	DX	DY	DZ	RSLT	Pres							
Stress	SX	SY	SZ	SXY	SYZ	SZX	S1	S2	S3	SI	Sabs	SE
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Strain	EX	EY	EZ	EXY	EYZ	EZX	E1	E2	E3	El	Eabs	EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Loading	FX	FY	FZ	RSLT	Q							
Reaction	FX	FY	FZ	RSLT	Q							
Residual Force	FX	FY	FZ	RSLT								
Reaction Stress	PX	PY	PZ									
Velocity	vx	VY	VZ	RSLT								
Acceleration	AX	AY	AZ	RSLT								
Plastic Strain	EPX	EPY	EPZ	EPXY	EPYZ	EPZX	EP1	EP2	EP3	EPI	EPabs	EPE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	CWMax	EFSMax			
Creep Strain	ECX	ECY	ECZ	ECXY	ECYZ	ECZX	EC1	EC2	EC3	ECI	ECabs	ECE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Rubber Stretches												
TMB Stress												
TMB Strain												
TMB Plastic Strain												
TMB Creep Strain												

Notes

Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Model (Model 109) is used.

3D Solid Continuum Explicit Dynamics TH4E, PN6E, HX8E

Entity	Component										
Displacement	DX	DY	DZ	RSLT	Pres						
Stress	SX	SY	SZ	SXY	SYZ	SZX	S1	S2	S3	SI Sabs	
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Strain											
Loading	FX	FY	FZ	RSLT							
Reaction	FX	FY	FZ	RSLT							
Residual Force	FX	FY	FZ	RSLT							
Reaction Stress	PX	PY	PZ								
Velocity	VX	VY	VZ	RSLT							
Acceleration	AX	AY	AZ	RSLT							
Plastic Strain											
Creep Strain											
Rubber Stretches											
TMB Stress											
TMB Strain											
TMB Plastic Strain											
TMB Creep Strain											

Isoflex Thin Plates TF3, QF4

Entity						Component							
Displacement	DZ	RSLT	THX	THY									
Stress	MX	MY	MXY	MMax	MMin Ml	β	Nabs ME	Mx(T $^{\text {a }}$	My(T $^{\text {) }}$				Util(B)
(continued)	Damage	LogLife	SED	PWD	Eadp								
Strain	BX	BY	BXY	BMax	BMin Bl	β	Eabs BE	SED	PWD	Eadp			
Loading	FZ	RSLT	MX	MY									
Reaction	FZ	RSLT	MX	MY									
Residual Force	FZ	RSLT	MX	MY									
Reaction Stress	PZ												
Velocity	VZ	RSLT											
Acceleration	AZ	RSLT											
Plastic Strain													
Creep Strain													
Rubber Stretches													
TMB Stress	SX	SY	SXY	SMax	SMin SI	β	Sabs SE	Damage	LogLife	SED	PWD	Ead	
TMB Strain	EX	EY	EXY	EMax	EMin El	β	Eabs EE	SED	PWD	Eadp			
TMB Plastic Strain													
TMB Creep Strain													

Isoflex Thick Plates QSC4

Entity	Component														
Displacement	DZ	RSLT	THX	THY											
Stress	MX	MY	MXY	Sx	Sy	MMax	MMin	MI	β	Nabs	ME	Mx(T)	My() $^{\text {(}}$	Mx(B)	My(B)
(continued)	Util(T) $^{\text {a }}$	Util(B)	Damage	LogLife	SED	PWD	Eadp								
Strain	BX	BY	BXY	EZX	EYZ	BMax	BMin	BI	β	Eabs	BE	SED	PWD	Eadp	
Loading	FZ	RSLT	MX	MY											
Reaction	FZ	RSLT	MX	MY											
Residual Force	FZ	RSLT	MX	MY											
Reaction Stress	PZ														
Velocity	VZ	RSLT													
Acceleration	AZ	RSLT													
Plastic Strain															
Creep Strain															
Rubber Stretches															
TMB Stress	SX	SY	SXY	SMax	SMin	SI	β	Sabs	SE	Damage	LogLife	SED	PWD	Eadp	
TMB Strain	EX	EY	EXY	EMax	EMin	El	β	Eabs	EE	SED	PWD	Eadp			
TMB Plastic Strain															
TMB Creep Strain															

Mindlin Thick Plates TTF6, QTF8

Entity	Component														
Displacement	DZ	RSLT	THX	THY											
Stress	MX	MY	MXY	Sx	Sy	MMax	MMin	MI	β	Nabs	ME	Mx(T $^{\text {) }}$	My(T $^{\text {(}}$	Mx(B)	My(B)
(continued)	Util (T)	Util(B)	Damage	LogLife	SED	PWD	Eadp								
Strain	BX	BY	BXY	EZX	EYZ	BMax	BMin	BI	β	Eabs	BE	SED	PWD	Eadp	
Loading	FZ	RSLT	MX	MY											
Reaction	FZ	RSLT	MX	MY											
Residual Force	FZ	RSLT	MX	MY											
Reaction Stress	PZ														
Velocity	VZ	RSLT													
Acceleration	AZ	RSLT													
Plastic Strain															
Creep Strain															
Rubber Stretches															
TMB Stress	SX	SY	SXY	SMax	SMin	SI	β	Sabs	SE	Damage	LogLife	SED	PWD	Eadp	
TMB Strain	EX	EY	EXY	EMax	EMin	El	β	Eabs	EE	SED	PWD	Eadp			
TMB Plastic Strain															
TMB Creep Strain															

2D Axisymmetric Membranes BXM2, BXM3

Entity	Component								
Displacement	DX	DY	RSLT						
Stress	Sx	Sz	SMax	SMin	SI	β	Sabs	SE	
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp
Strain	Ex	Ez	EMax	EMin	EI	β	Eabs	EE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Loading	FX	FY	RSLT						
Reaction	FX	FY	RSLT						
Residual Force	FX	FY	RSLT						
Reaction Stress	PX	PY							
Velocity	vX	VY	RSLT						
Acceleration	AX	AY	RSLT						
Plastic Strain	EPx	EPz	EPMax	EPMin	EPI	β	EPabs	EPE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Creep Strain	ECx	ECz	ECMax	ECMin	ECI	β	ECabs	ECE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Rubber Stretches									
TMB Stress									
TMB Strain									
TMB Plastic Strain									
TMB Creep Strain									

Note: Rubber models are available for use with the BXM2 element, however strains are output and rubber stretches are not available.

3D Space Membranes TSM3, SMI4

Entity	Component										
Displacement	DX	DY	DZ	RSLT							
Stress	Nx	Ny	Nxy	NMax	NMin	Ns	β	Nabs	Ne		
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Strain	Ex	Ey	Exy	EMax	EMin	El	β	Eabs	EE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Loading	FX	FY	FZ	RSLT							
Reaction	FX	FY	FZ	RSLT							
Residual Force	FX	FY	FZ	RSLT							
Reaction Stress	PX	PY	PZ								
Velocity	vX	VY	VZ	RSLT							
Acceleration	AX	AY	AZ	RSLT							
Plastic Strain											
Creep Strain											
Rubber Stretches											
TMB Stress	SX	SY	Sz	SXY	SYZ	SZX	S1	S2	S3	SI Sabs	SE
(continued)	DDAMA	CURRD	damam	DFUNC	SED	PWD	Eadp				
TMB Strain	EX	EY	EZ	EXY	EYZ	EZX	E1	E2	E3	El Eabs	EE
(continued)	DDAMA	CURRD	damam	DFUNC	SED	PWD	Eadp				
TMB Plastic Strain											
TMB Creep Strain											

Element Reference Manual

2D Thin Axisymmetric Shells BXS3

Entity	Component										
Displacement	DX	DY	RSLT	THZ	DU						
Stress	Nx	Nz	Mx	Mz	Ny	NMax	NMin	Ns	β	Nabs	Ne
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Strain	Ex	Ez	Bx	Bz	Ey	EMax	EMin	El	β	Eabs	EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Loading	FX	FY	RSLT	MZ	FDU						
Reaction	FX	FY	RSLT	MZ	FDU						
Residual Force	FX	FY	RSLT	MZ	FDU						
Reaction Stress	PX	PY									
Velocity	vX	VY	RSLT								
Acceleration	AX	AY									
Plastic Strain											
Creep Strain											
Rubber Stretches											
TMB Stress	Sx	Sz	SMax	SMin	SI	β	Sabs	SE			
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
TMB Strain	Ex	Ez	EPMax	EMin	El	β	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
TMB Plastic Strain	EPx	EPz	EPMax	EPMin	EPI	β	EPabs	EPE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
TMB Creep Strain	ECx	ECz	ECMax	ECMin	ECI	β	ECabs	ECE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				

2D Thick Axisymmetric Shells BXSI2, BXSI3

Entity	Component										
Displacement	DX	DY	RSLT	THZ							
Stress	Nx	Nz	Mx	Mz	Nxy	NMax	NMin	Ns	β	Nabs	Ne
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Strain	Ex	Ez	Bx	Bz	Exy	EMax	EMin	El	β	Eabs	EE
(continued)	DDAMA	CURRD	damam	DFUNC	SED	PWD	Eadp				
Loading	FX	FY	RSLT	MZ							
Reaction	FX	FY	RSLT	MZ							
Residual Force	FX	FY	RSLT	MZ							
Reaction Stress	PX	PY									
Velocity	vX	VY	RSLT								
Acceleration	AX	AY									
Plastic Strain											
Creep Strain											
Rubber Stretches											
TMB Stress	Sx	Sz	Sxy	SMax	SMin	SI	β	Sabs	SE		
(continued)	Damage	LogLife	DDAMA	CURRD	damam	DFUNC	SED	PWD	Eadp		
TMB Strain	Ex	Ez	Exy	EPMax	EMin	El	β	Eabs	EE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
TMB Plastic Strain	EPx	EPz	EPxy	EPMax	EPMin	EPI	β	EPabs	EPE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
TMB Creep Strain	ECx	ECz	ECxy	ECMax	ECMin	ECI	β	ECabs	ECE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				

Element Reference Manual

3D Flat Thin Shells TS3, QSI4

3D Flat Thin Nonlinear Shell TSR6

Entity	Component														
Displacement	DX	DY	DZ	RSLT	THL1										
Stress	Nx	Ny	Nxy	Mx	My	Mxy	NMax	NMin	Ns	β	Nabs	Ne	$\begin{aligned} & \mathrm{Nx}(\mathrm{~T}) / \\ & \mathrm{Mx}(\mathrm{~T}) \end{aligned}$	$\begin{aligned} & \mathrm{Ny}(\mathrm{~T}) / \\ & \mathrm{Ny}(\mathrm{~T}) \end{aligned}$	$\begin{aligned} & \mathrm{Nx}(\mathrm{~B}) / \\ & \mathrm{Mx}(\mathrm{~B}) \end{aligned}$
(continued)	$\begin{aligned} & \mathrm{Ny}(\mathrm{~B}) / \\ & \mathrm{My}(\mathrm{~B}) \end{aligned}$	Util(T)	Util(B)	MUtil(T)	MUtil(B)	Damage	Loglife	$\begin{gathered} \text { DDAM } \\ \text { A } \end{gathered}$	$\begin{gathered} \text { CURR } \\ \mathrm{D} \end{gathered}$	$\begin{gathered} \text { DAMA } \\ \mathrm{M} \end{gathered}$	$\begin{gathered} \text { DFUN } \\ \mathrm{C} \end{gathered}$	SED	PWD	$\mathrm{Fc}(\mathrm{T})$	Fc (B)
Eadp															
Strain	Ex	Ey	Exy	Bx	By	Bxy	EMax	EMin	El	β	Eabs	EE			
(continued)	DDAMA	CURRD	damam	DFUNC	SED	PWD	Eadp								
Loading	FX	FY	FZ	RSLT	ML1										
Reaction	FX	FY	FZ	RSLT	ML1										
Residual Force	FX	FY	FZ	RSLT	ML1										
Reaction Stress	PX	PY	PZ												
Velocity	vx	VY	VZ	RSLT											
Acceleration	AX	AY	AZ	RSLT											
Plastic Strain															
Creep Strain															
Rubber Stretches															
TMB Stress	sx	SY	sz	SXY	SYZ	szx	S1	S2	S3	SI	Sabs	SE			
(continued)	Damage	LogLife	DDAMA	CURRD	damam	DFUNC	SED	Eadp							
TMB Strain	EX	EY	EZ	EXY	EYZ	EZX	E1	E2	E3	EI	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
TMB Plastic Strain	EPX	EPY	EPZ	EPXY	EPYZ	EPLX	EP1	EP2	EP3	EPI	EPabs	EPE	$\underset{\mathrm{x}}{\text { CWMa }}$	$\begin{gathered} \text { EFSMa } \\ \mathrm{x} \end{gathered}$	
(continued)	DDAMA	CURRD	damam	DFUNC	SED	PWD	Eadp								
TMB Creep Strain	ECX	ECY	ECZ	ECXY	ECYZ	ECZX	EC1	EC2	EC3	ECI	ECabs	ECE			
(continued)	DDAMA	CURRD	damam	DFUNC	SED	PWD	Eadp								
	TMB Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Model (Model 109) is used.														

Element Reference Manual

Semilloof Shells TSL6, QSL8

Entity	Component													
Displacement	DX	DY	DZ	RSLT	THL1	THL2								
Stress	Nx	Ny	Nxy	Mx	My	Mxy	NMax	NMin	Ns	β	Nabs		$\begin{aligned} & \mathrm{Nx}(\mathrm{~T}) / \\ & \mathrm{Mx}(\mathrm{~T}) \end{aligned}$	$\begin{array}{ll} \mathrm{Ny}(\mathrm{~T}) / & \mathrm{Nx}(\\ \mathrm{My}(\mathrm{~T}) & \mathrm{B}) / \\ & \mathrm{Mx} \\ & \text { (B) } \end{array}$
(continued)	$\begin{aligned} & \mathrm{Ny}(\mathrm{~B}) / \\ & \mathrm{My}(\mathrm{~B}) \end{aligned}$	Util($\mathrm{T}^{\text {(}}$	Util(B)	MUtil(T)	MUtil(B)	Damage	LogLife	DDAMA	$\begin{aligned} & \text { CURR } \\ & \text { D } \end{aligned}$	DAMAM	DFUNC	SED	PWD	$\mathrm{Fc}(\mathrm{T}) \mathrm{Fc}$ B)
(continued)	Eadp													
Strain	Ex	Ey	Exy	Bx	By	Bxy	EMax	EMin	El	β	Eabs	EE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp							
Loading	FX	FY	FZ	RSLT	ML1	ML2								
Reaction	FX	FY	FZ	RSLT	ML1	ML2								
Residual Force	FX	FY	FZ	RSLT	ML1	ML2								
Reaction Stress	PX	PY	PZ											
Velocity	VX	VY	VZ	RSLT										
Acceleration	AX	AY	AZ	RSLT										
Plastic Strain														
Creep Strain														
Rubber Stretches														
TMB Stress	SX	SY	SZ	SXY	SYZ	SZX	S1	S2	S3	SI	Sabs	SE		
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
TMB Strain	EX	EY	EZ	EXY	EYZ	EZX	E1	E2	E3	El	Eabs	EE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp							
TMB Plastic Strain	EPX	EPY	EPZ	EPXY	EPYZ	EPZX	EP1	EP2	EP3	EPI	EPabs		CWMax	$\begin{gathered} \text { EFSMa } \\ \mathrm{x} \end{gathered}$
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp							
TMB Creep Strain	ECX	ECY	ECZ	ECXY	ECYZ	ECZX	EC1	EC2	EC3	ECI	ECabs	ECE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp							

Notes

TMB Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Model (Model 109) is used.

3D Thick Shells TTS3, TTS6, QTS4, QTS8

Entity	Component														
Displacement	DX	DY	DZ	RSLT	THX	THY	THZ								
Stress	Nx	Ny	Nxy	Mx	My	Mxy	Sx	Sy	NMax	NMin	β	$\begin{gathered} \mathrm{Nab} \\ \mathrm{~s} \end{gathered}$	NE	$\begin{aligned} & \mathrm{Nx}(\mathrm{~T}) / \\ & \mathrm{Mx}(\mathrm{~T}) \end{aligned}$	$\begin{aligned} & \mathrm{Ny}(\mathrm{~T}) / \\ & M y(T) \end{aligned}$
(continued)	$N x(B) / M x($ B)	$\begin{aligned} & \mathrm{Ny}(\mathrm{~B}) / \\ & \mathrm{My}(\mathrm{~B}) \end{aligned}$	Util(${ }^{\text {(}}$	Util(B)	MUtil(T)	MUtil(B)	Damage	LogLife	DDAMA	CURRD	DAMAM	$\begin{aligned} & \text { DFU } \\ & \text { NC } \end{aligned}$	SED	PWD	$\mathrm{Fc}(\mathrm{T})$
(continued)	Fc (B)	Eadp													
Strain															
Loading	FX	FY	FZ	RSLT	MX	MY	MZ								
Reaction	FX	FY	FZ	RSLT	MX	MY	MZ								
Residual Force	FX	FY	FZ	RSLT	MX	MY	MZ								
Reaction Stress	PX	PY	PZ												
Velocity	VX	VY	VZ	RSLT											
Acceleration	AX	AY	AZ	RSLT											
Plastic Strain															
Creep Strain															
Rubber Stretches															
TMB Stress	SX	SY	SZ	SXY	SYZ	SZX	S1	S2	S3	SI	Nabs	SE			
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
TMB Strain	EX	EY	EZ	EXY	EYZ	EZX	E1	E2	E3	El	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
TMB Plastic Strain	EPX	EPY	EPZ	EPXY	EPYZ	EPZX	EP1	EP2	EP3	EPI	EPabs		$\begin{gathered} \text { CWMa } \\ \text { x } \end{gathered}$	$\begin{gathered} \text { EFSMa } \\ \mathrm{x} \end{gathered}$	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
TMB Creep Strain	ECX	ECY	ECZ	ECXY	ECYZ	ECZX	EC1	EC2	EC3	ECI	ECabs	ECE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								

Notes
TMB Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Model (Model 109) is used.

Element Reference Manual

2D Joints (for Bars, Plane Stress and Plane Strain) JNT3

Entity	Component						
Displacement	DX	DY	RSLT				
Stress	Fx	Fy	Damage	LogLife	SED	PWD	Eadp
Strain	Ex	Ey	SED	PWD	Eadp		
Loading	FX	FY	RSLT				
Reaction	FX	FY	RSLT				
Residual Force	FX	FY	RSLT				
Reaction Stress							
Velocity	VX	VY	RSLT				
Acceleration	AX	AY	RSLT				
Plastic Strain	EPx	EPy	SED	PWD	Eadp		
Creep Strain							
Rubber Stretches							
TMB Stress							
TMB Strain							
TMB Plastic Strain							
TMB Creep Strain							

2D Joints (for Engineering and Kirchhoff Beams) JPH3

Entity	Component							
Displacement	DX	DY	RSLT	THZ				
Stress	Fx	Fy	Mz	Damage	LogLife	SED	PWD	Eadp
Strain	Ex	Ey	Bz	SED	PWD	Eadp		
Loading	FX	FY	RSLT	MZ				
Reaction	FX	FY	RSLT	MZ				
Residual Force	FX	FY	RSLT	MZ				
Reaction Stress								
Velocity	vx	VY	RSLT					
Acceleration	AX	AY	RSLT					
Plastic Strain	EPx	EPy	BPz	SED	PWD	Eadp		
Creep Strain								
Rubber Stretches								
TMB Stress								
TMB Strain								
TMB Plastic Strain								
TMB Creep Strain								

2D Joints (for Grillage Beams and Plates) JF3

Entity	Component								
Displacement	DZ	RSLT	THXZ	THY					
Stress	Fz	Mx	My	Damage	LogLife	SED	PWD	Eadp	
Strain	Ez	Bx	By	SED	PWD	Eadp			
Loading	FZ	RSLT	MX	MY					
Reaction	FZ	RSLT	MX	MY					
Residual Force	FZ	RSLT	MX	MY					
Reaction Stress									
Velocity	VZ	RSLT							
Acceleration	AZ	RSLT							
Plastic Strain	EPx	EPy	BPz	SED	PWD	Eadp			
Creep Strain									
Rubber Stretches									
TMB Stress									
TMB Strain									
TMB Plastic Strain									
TMB Creep Strain									

2D Joints (for Axisymmetric Solids) JAX3

Entity	Component						
Displacement	DX	DY	RSLT				
Stress	Fx	Fy	Damage	LogLife	SED	PWD	Eadp
Strain	Ex	Ey	SED	PWD	Eadp		
Loading	FX	FY	RSLT	MZ			
Reaction	FX	FY	RSLT	MZ			
Residual Force	FX	FY	RSLT	MZ			
Reaction Stress							
Velocity	vx	VY	RSLT				
Acceleration	AX	AY	RSLT				
Plastic Strain	EPx	EPy	SED	PWD	Eadp		
Creep Strain							
Rubber Stretches							
TMB Stress							
TMB Strain							
TMB Plastic Strain							
TMB Creep Strain							

2D Joints (for Axisymmetric Shells) JXS3

Entity	Component							
Displacement	DX	DY	RSLT	THZ				
Stress	Fx	Fy	Mz	Damage	LogLife	SED	PWD	Eadp
Strain	Ex	Ey	Bz	SED	PWD	Eadp		
Loading	FX	FY	RSLT	MZ				
Reaction	FX	FY	RSLT	MZ				
Residual Force	FX	FY	RSLT	MZ				
Reaction Stress								
Velocity	vx	VY	RSLT					
Acceleration	AX	AY	RSLT					
Plastic Strain	EPx	EPy	BPz	SED	PWD	Eadp		
Creep Strain								
Rubber Stretches								
TMB Stress								
TMB Strain								
TMB Plastic Strain								
TMB Creep Strain								

3D Joints (for generall 3 dof connection) JNT4, JL43

(for Bars, Solids, Space Membranes and Semiloof Shell Corners)

Entity	Component							
Displacement	DX	DY	DZ	RSLT				
Stress	Fx	Fy	Fz	Damage	LogLife	SED	PWD	Eadp
Strain	Ex	Ey	Ez	SED	PWD	Eadp		
Loading	FX	FY	FZ	RSLT				
Reaction	FX	FY	FZ	RSLT				
Residual Force	FX	FY	FZ	RSLT				
Reaction Stress								
Velocity	VX	VY	VZ	RSLT				
Acceleration	AX	AY	AZ	RSLT				
Plastic Strain	EPx	EPy	EPz	SED	PWD	Eadp		
Creep Strain								
Rubber Stretches								
TMB Stress								
TMB Strain								
TMB Plastic Strain								
TMB Creep Strain								

3D Joints (for generall 6 dof connection) JSH4, JL46

(for Engineering, Kirchhoff and Semiloof Beam End Nodes)

Entity	Component										
Displacement	DX	DY	DZ	RSLT	THX	THY	THZ				
Stress	Fx	Fy	Fz	Mx	My	Mz	Damage	LogLife	SED	PWD	Eadp
Strain	Ex	Ey	Ez	Bx	By	Bz	SED	PWD	Eadp		
Loading	FX	FY	FZ	RSLT	MX	MY	MZ				
Reaction	FX	FY	FZ	RSLT	MX	MY	MZ				
Residual Force	FX	FY	FZ	RSLT	MX	MY	MZ				
Reaction Stress											
Velocity	VX	VY	VZ	RSLT							
Acceleration	AX	AY	AZ	RSLT							
Plastic Strain	EPx	EPy	EPz	BPx	BPy	BPz	SED	PWD	Eadp		
Creep Strain											
Rubber Stretches											
TMB Stress											
TMB Strain											
TMB Plastic Strain											
TMB Creep Strain											

3D Joints (for Semilloof Element Mid-side Nodes) JSL4

Entity	Component									
Displacement	DX	DY	DZ	RSLT	THL1	THL2				
Stress	Fx	Fy	Fz	M1	M2	Damage	LogLife	SED	PWD	Eadp
Strain	Ex	Ey	Ez	B1	B2	SED	PWD	Eadp		
Loading	FX	FY	FZ	RSLT	ML1	ML2				
Reaction	FX	FY	FZ	RSLT	ML1	ML2				
Residual Force	FX	FY	FZ	RSLT	ML1	ML2				
Reaction Stress										
Velocity	vx	VY	VZ	RSLT						
Acceleration	AX	AY	AZ	RSLT						
Plastic Strain	EPx	EPy	EPz	BP1	BP2	SED	PWD	Eadp		
Creep Strain										
Rubber Stretches										
TMB Stress										
TMB Strain										
TMB Plastic Strain										
TMB Creep Strain										

Thermal Bars BFD2/3, BFS2/3, BFX2/3

Entity		Component
Potential	PHI	
Gradient	Gx	Eadp
Flux	qx	Eadp
Reaction	Q	

Thermal Links LFD2, LFS2, LFX2

Entity		Component
Potential	PHI	
Gradient	n.a.	Eadp
Flux	qx	Eadp
Reaction	Q	

Plane and Axisymmetric Field TFD3/6, QFD4/8, TXF3/6, QXF4/8

Entity			Component	
Potential	PHI			
Gradient	Gx	Gy	Eadp	
Flux	qx	qy	Eadp	
Reaction	Q			

Solid Field TF4/10, PF6/12/15, HF8/16/20, TF10S, PF6C/12C, HF8C/16C

Entity				Component
Potential	PHI			
Gradient	Gx	Gy	Gz	Eadp
Flux	qx	qy	qz	Eadp
Reaction	Q			

Plane and Axisymmetric Hygro-Thermal THT3/6, QHT4/8, TXHT3/6, QXHT4/8

Entity	Component						
Nodal variable	T						
Temperature flux	qX	qY	qZ	RSLT			
Water vapour flux	JVX	JyY	JVZ	RSLT			
Liquid water flux	JWX	JWY	JWZ	RSLT			
Temperature gradient	GTX	GTY	GTZ	RSLT			
Water saturation gradient	GWX	GWY	GWZ	RSLT			
Other hygro-thermal results	SW	ROWC	PV	DH	TEFH	POR	TC

Hygro-thermal results components:

SW = Water saturation
ROWC = Liquid water content
$P V=$ Water vapour pressure
DH $=$ Degree of hydration
TEFH = Effective time of hydration
POR = Porosity
$T C=$ Thermal conductivity
PMD = Water permeability
$\mathrm{Hr}=$ Relative humidity

Solid Hygro-Thermal THT4/10, PHT6/12/16, HHT8/16/20

Hygro-thermal results components:
SW = Water saturation
ROWC = Liquid water content
$P V=$ Water vapour pressure
DH $=$ Degree of hydration
TEFH $=$ Effective time of hydration
$P O R=$ Porosity
$T C=$ Thermal conductivity
PMD = Water permeability
$\mathrm{Hr}=$ Relative humidity

2D Interface Element IPN4, IPN6, IAX4, IAX6

Entity			Component		
Displacement	Dx	Dy	RSLT		
Stress	Sx	Sy	Damage	LogLife	Eadp
Strain	Ex	Ey	Eadp		
Loading	Fx	Fy	RSLT	MZ	
Reaction	Fx	Fy	RSLT	MZ	
Residual Force	Fx	Fy	RSLT		
Reaction Stress					
Velocity	Vx	Vy	RSLT		
Acceleration	Ax	Ay	RSLT		
Plastic Strain					
Creep Strain					
Rubber Stretches					
TMB Stress					
TMB Strain					
TMB Plastic Strain					
TMB Creep Strain					

2D Two Phase Interface Elements IPN6P, IPN8P

Entity	Component					
Displacement	Dx	Dy	RSLT	Press		
Stress	Sx	Sy	Q	Damage	LogLife	Eadp
Strain	Ex	Ey	dP	Eadp		
Loading	Fx	Fy	RSLT			
Reaction	Fx	Fy	RSLT	Q		
Residual Force	Fx	Fy	RSLT	Q		
Reaction Stress						
Velocity	Vx	Vy	RSLT			
Acceleration	Ax	Ay	RSLT			
Plastic Strain						
Creep Strain						
Rubber Stretches						
TMB Stress						
TMB Strain						
TMB Plastic Strain						
TMB Creep Strain						

3D Interface Element IS6 IS8 IS12 IS16

Entity				Component	
Displacement	Dx	Dy	RSLT		
Stress	Sx	Sy	Sz	Ez	Eadp
Strain	Ex	Ey	Eadp		
Loading	Fx	Fy	RSLT		
Reaction	Fx	Fy	RSLT		
Residual Force	Fx	Fy	RSLT		
Reaction Stress					
Velocity	Vx	Vy	RSLT		
Acceleration	Ax	Ay	RSLT		
Plastic Strain					
Creep Strain					
Rubber Stretches					
TMB Stress					
TMB Strain					
TMB Plastic Strain					
TMB Creep Strain					

3D Two Phase Interface Element IS12P, IS16P

Entity			Component			
Displacement	Dx	Dy	Dz	RSLT	Press	
Stress	Sx	Sy	Q	Damage	LogLife	Eadp
Strain	Ex	Ey	Ez	dP	Eadp	
Loading	Fx	Fy	Fz	RSLT		
Reaction	Fx	Fy	Fz	RSLT	Q	
Residual Force	Fx	Fy	Fz	RSLT	Q	
Reaction Stress						
Velocity	Vx	Vy	Vz	RSLT		
Acceleration	Ax	Ay	Az	RSLT		
Plastic Strain						
Creep Strain						
Rubber Stretches						
TMB Stress						
TMB Strain						
TMB Plastic Strain						
TMB Creep Strain						

Appendix L: Joint Element

Compatibility.

Joint Element Compatibility and Notes

Joint elements are compatible with the following elements:

Joint Element	Compatible Finite Elements	
JNT3	Bars	BAR2, BAR3
	2D Plane Stress	$\begin{aligned} & \text { TPM3, TPM6, QPM4, QPM8, TPK6, QPK8, QPM4M, } \\ & \text { TPM3E, QPM4E, } \end{aligned}$
	2D Plane Strain	TPN3, TPN6, QPN4, QPN8, TNK6, QNK8, TPN6P, QPN8P, QPN4M, QPN4L
JPH3	2D Beams	BMI2, BMI21, BMI2N, BMI3N, BMI3, BMI3N, BMI2X, BMI3X, BM3, BMX3
JF3	2D Grillage	GRIL
	2D Plates	TF3, QF4, TF6, QSC4, TTF6, QTF8
JNT4	3D Bars	BRS2, BRS3,
	3D Solids	TH4, TH10, PN6, PN12, PN15, HX8, HX16, HX20, TH10P, PN12P, PN15P, HX16P, HX20P, HX8M, PN6L, PN12L, HX8L, HX16L, TH10S
	Space	TSM3, SMI4

Joint Element	Compatible Finite Elements	
	Membranes	
	3D Shell	TSR6 (corner nodes)
JL43	Semiloof Shells	TSL6, QSL8 (corner nodes)
JSH4	3D Beams	BS3, BS4, BSX4, BMI21, BMI31, BMI22, BMI33, BMX21, BMX31, BMX22, BMX33, BMI21W, BMI22W, BMI31W, BMI33W, BMX21W, BMX22W, BMX31W, BMX33W
	3D Shells	TS3, QSI4, TTS3, TTS6, QTS4, QTS8
JL46	Semiloof Beams	BSL3, BSL4, BXL4 (corner nodes)
JSL4	Semiloof Beams	BSL3, BSL4, BXL4 (mid-side nodes)
	Semiloof Shells	QSL8, TSL6 (mid-side nodes)
JAX3	Axisymmetric Solids	TAX3, TAX6, QAX4, QAX8, TAX6P, QAX8P, TAX3E, QAX4E, TAX6P, TXK6, QXK8, QAX4M, QAX4L
JXS3	Axisymmetric Shells	BXS3, BXSI2, BXSI3,

Notes on the use of Joints

1. The nodes of a joint element need not be coincident, but for correct response the distance between them should be as small as possible. This is particularly important with joint elements which contain rotational degrees of freedom, since the stiffness matrix is not formulated using engineering beam theory. This means that a joint moment is independent of both shear force and its length. For instance, the moment calculated with a joint length of zero will remain the same magnitude at any other joint length. These effects can be exacerbated significantly in dynamic analyses (e.g. eigenvalue extraction or Hilber dynamics). Non-coincident nodes will lead to additional forces in the solution which are not in equilibrium (usually small and swamped, but could be significant sometimes). It is not recommend to have joints "hanging off" the side of a modelled structure, having a large stiffness associated.
2. If eccentricity is defined for a joint element (JPH3/JSH4/JL46), the joint will behave in the same manner as an infinitesimally short eccentric beam.
3. Joints do not support any geometric nonlinearity. They may be used, however, in geometrically nonlinear analyses but will themselves remain geometrically linear (that is, infinitesimal strain is assumed and large deformation effects are ignored).
4. The strain for a joint element is measured as follows:

- \quad Strain measure $=($ displacement for 2 nd node $)-($ displacement for 1 st node $)$
- This strain being measured in the local axis system. Therefore, if node 1 is restrained, node 2 would need to be displaced in the negative local ($\mathrm{x} / \mathrm{y} / \mathrm{z}$) direction to generate compressive contact forces.

4. The rotation output for a joint element is measured in radians.

Index

2

2D Continuum, 188, 194, 201, 207, 212, 219, 226, 231, 237, 242, 248, 255, 261, 266, 272, 278, 284
2D Interface, 524, 528
2D Joints, 421, 426, 431, 436
2D Line, 551
2D Phreatic Surface, 566
2D Plane Strain Beam, 179
2D Point, 542
2D Rigid Surface, 558
2DThick Beams, 81
3

3D Continuum, 290, 297, 304, 311, 318, 325

3D Interface, 532, 537
3D Joints, 451, 456
3D Line, 548
3D Phreatic Surface, 569
3D Point, 545
3D Rigid Surface, 561
3D Surface, 554

A

arch, $97,143,150,157$
axial force, 67
Axisymmetric Shells, 356, 363
Axisymmetric Solid, 248, 255, 261, 266
Axisymmetric Solid Continuum, 272
Axisymmetric Solid Two-Phase, 278

B

bar elements
2D, 64
3D, 69
BAR2, 64, 625
BAR3, 64, 625
Bars, 64, 69
BEAM, 81, 179
Beam Elements, 76, 81, 90, 105, 115, 124, 137, 144, 151, 158, 165, 172, 179
Beams, 90, 137, 144
BFD2, 462, 668
BFD3, 462, 668
BFS2, 470, 668
BFS3, 470, 668
BFX2, 466, 668
BFX3, 466, 668
BM3, 137, 631

BMI2, 90, 628
BMI21, 98, 629, 630
BMI21W, 117
BMI22, 98, 629, 630
BMI22W, 117
BMI2N, 634
BMI2X, 628
BMI3, 90, 628
BMI31, 98, 629, 630
BMI31W, 117
BMI33, 98, 629, 630
BMI33W, 117
BMI3N, 634
BMI3X, 628
BMX21, 108
BMX21W, 127
BMX22, 108, 629, 630
BMX22W, 127
BMX3, 144, 631
BMX31, 108, 629, 630
BMX31W, 127
BMX33, 108
BMX33W, 127
BRS2, 69, 626
BRS3, 69, 626
BS3, 151, 632
BS4, 151, 632
BSL3, 165, 633
BSL4, 165, 633
BSX4, 158, 632
BXL4, 172, 633
BXM2, 404, 652
BXM3, 404, 652
BXS3, 356, 363, 654
BXSI2, 363, 655
BXSI3, 655
cable structures, 69
cables, 68, 73
circular plates, 408
composite, 498, 503

delamination, 524

E

Element Loads, 573

Engineering Beam Elements, 589, 591

Engineering Beams, 76

Environmental Temperature Loading, 576
Excessive Aspect Ratios, 583
Excessive Element Curvature, 583
Excessive Warping, 584
Explicit Dynamics, 636, 640, 641

Face loading, 577
Face Loads On 2D Continuum
Elements, 577
Face Loads On 3D Continuum
Elements, 578
For Thermal Bars, 577
Field, 462, 466, 470, 474, 477, 480, 483, 488, 493, 498, 503
Flat Thin Shells, 369, 375
Fourier Ring, 284
fracture mechanics, 236
frame, 97, 141, 149, 155, 163, 171, 178
friction contact, 528

C

GRIL, 76, 627
grillage, 76
Grillage Elements, 588
groundwater, 487

heat conduction, $465,476,482$
HF16, 493, 668
HF16C, 503, 668
HF20, 493, 668
HF8, 493, 668
HF8C, 503, 668
HHT16, 518, 670
HHT20, 518, 670
HHT8, 518, 670
HX16, 290, 646
HX16L, 318, 646
HX16P, 331, 647
HX20, 290, 646
HX20K, 304
HX20P, 331, 647
HX8, 290, 646
HX8E, 648
HX8L, 318, 646
HX8M, 297, 646
Hygro-thermal
axisymmetric elements, 514
plane elements, 510
Hygro-Thermal solid elements, 518

IAX4, 524, 671, 672
IAX6, 524
IAX6P, 528
Interface, 524, 528, 532, 537
IPM4, 524
IPM6, 524
IPN12P, 673, 674
IPN16P, 673, 674
IPN4, 524, 671, 672
IPN6, 524, 671, 672
IPN6P, 528
IS12, 532, 537, 673, 674
IS16, 532, 537, 673, 674
IS6, 532
IS8, 532
Isoflex Plates, 340, 345

JAX3, 431, 663
JF3, 426, 662
JL43, 446, 665
JL46, 451, 666
JNT3, 416, 660
JNT4, 441, 665
Joint Element Compatibility, 675
Joints, 421, 426, 431, 436, 451, 456, 676
JPH3, 421, 661
JSH4, 451, 666
JSL4, 456, 667
JXS3, 436, 664

K

Kirchhoff Beams, 137, 144, 151, 158

LFD2, 474, 668
LFS2, 477, 668
LFX2, 480, 668
LM2, 551
LM3, 551
LMS3, 548
LMS4, 548
Load types, 576
local axes
standard joint element, 585
standard line element, 585
standard surface element, 585
LUSAS Element Types, 12

M

Mass Lumping in LUSAS, 611
Membranes, 409
Mid-side Node Centrality, 583
Mindlin Plates, 350
modelling reinforcement, 73
Moments of Inertia Definitions, 613

Newton-Cotes Integration Points, 603
Non-Structural Mass, 542, 545, 548, 551, 554

Numerically Integrated Beam Elements, 587

Output Notation for Principal Stresses, 609
Overview, 6
perforated thick plates, 349
PF12, 493, 668
PF12C, 503, 668
PF15, 493, 518, 668
PF6, 493, 668
PF6C, 503, 668
Phreatic, 566
Phreatic Surface 3D Elements, 569
PHS2, 566
PHS3, 569
PHS4, 569
PHT12, 518, 670
PHT16, 670
PHT6, 518, 670
pipes, $362,368,408$
Plane Field, 483, 488
plane frames, 141, 149
Plane Strain Continuum, 212, 219, 226, 231, 237, 242
Plane Stress Continuum, 188, 194, 201, 207
Plates, 340, 345, 350
PM2, 542
PM3, 545
PN12, 290, 646

PN12L, 318, 646
PN12P, 331, 647
PN15, 290, 646
PN15K, 304
PN15P, 331, 647
PN6, 290, 646
PN6E, 325, 648
PN6L, 318, 646
pressure vessels, 362, 368

QAX4, 248, 644
QAX4E, 272, 641
QAX4F, 284, 643
QAX4L, 261, 645
QAX4M, 255, 644
QAX8, 248, 278, 644
QAX8F, 284, 643
QF4, 340, 649
QFD4, 488, 668
QFD8, 488, 668
QHT4, 510, 669
QHT8, 510, 669
QHXT4, 514
QHXT8, 514
QM4, 554
QM8, 554
QNK8, 231, 637
QPK8, 201, 635
QPM4, 188, 635
QPM4E, 207, 636
QPM4M, 194, 635
QPM8, 188, 635
QPN4, 212, 637
QPN4E, 237, 640

QPN4L, 226, 638
QPN4M, 219, 637
QPN8, 212, 637
QPN8P, 242, 639, 642
QSC4, 345, 650
QSI4, 369, 656
QSL8, 382, 658
QTF8, 350, 651
QTS4, 391, 659
QTS8, 391, 659
QXF4, 483, 668
QXF8, 483, 668
QXHT4, 669
QXHT8, 669
QXK8, 266, 644

R2D2, 558
R3D3, 561
R3D4, 561
reinforced concrete, 73
Results Notation
Key to Results Tables, 615
Key to Slideline Results, 623
Rigid, 558, 561, 569
Rigid Surface 3D Elements, 561

SED, 622
Semiloof Beams, 165, 172
Semiloof Shells, 382
Shear Areas, 605
shell structures, 390

Shells, 356, 363, 369, 375, 382, 391
sign convention
2d continuum element, 593
2 d engineering beam elements, 589, 591
grillage elements, 588
standard bar element, 587
standard beam eccentricity, 592
standard beam element, 587
standard field element, 597
standard joint element, 597
standard membrane element, 596
standard plate element, 593
thick shell eccentricity, 596
thick shell element, 595
thin shell eccentricity, 595
SMI4, 409, 653
Solid Continuum, 290, 297, 304, 311, 318, 325
Solid Continuum Crack Tip, 304
Solid Field, 493, 498, 503
space frames, 157, 164
space frames., 178
Space Membranes, 409
Standard 2D Continuum Element, 593
Standard 3D Continuum Element, 593
Standard Bar Element, 587
Standard Beam Eccentricity, 592
Standard Beam Element, 587
Standard Field Element, 597
Standard Joint Element, 597
local axes, 585
Standard Line Element
local axes, 585
Standard Membrane Element, 596
Standard Plate Element, 593
Standard Surface Element, 585
Strain energy density, 622
Structural Bars, 64, 69
Surface Mass Elements, 554

TAX3, 248, 644
TAX3E, 272, 641
TAX3F, 284, 643
TAX6, 248, 644
TAX6F, 284, 643
TAX6P, 278
temperature, 466
temperature distribution, 487
Tetrahedral, 311
TF10, 493, 668
TF10S, 498, 668
TF3, 340, 649
TF4, 493, 668
TFD3, 488, 510, 668
TFD6, 488, 668
TH10, 290, 646
TH10K, 304
TH10P, 331
TH10S, 311, 646
TH4, 290, 646
TH4E, 325, 648
thermal analysis, 492
Thermal Bars, 462, 466, 470
Thermal Links, 474, 477, 480
Thick Shell Eccentricity, 596
Thick Shell Element, 595
Thick Shell Nodal Rotation, 599
Thick Shells, 391, 659
Thin Shell Eccentricity, 595
Thin Shell Element, 594
THT10, 518, 670
THT3, 669
THT4, 518, 670
THT6, 510, 669

TM3, 554
TM6, 554
TNH10P, 647
TNK6, 231, 637
Torsional Constant, 605
TPK6, 201, 635
TPM3, 188, 635
TPM3E, 207, 636
TPM6, 188, 635
TPN3, 212, 637
TPN3E, 237, 640
TPN6, 212, 637
TPN6P, 242, 639, 642
Transforming Results Directions, 624
trusses, 73
TS3, 369, 656
TSL6, 382, 658
TSM3, 409, 653
TSR6, 375, 657
TTF6, 350, 651
TTS3, 391, 659
TTS6, 391, 659
two phase, 331
TXF3, 483, 668
TXF6, 483, 668
TXHT3, 514, 669
TXHT6, 514, 669
TXK6, 266, 644

UDL Loads on Shells, 581

[^0]: MATRIX PROPERTIES STIFFNESS 6 K1
 K21 element stiffness matrix (Not supported in LUSAS Modeller)
 MATRIX PROPERTIES MASS 6 M1,..., M21 element mass matrix (Not supported in

