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ABSTRACT: This paper describes how Finite Element (FE) analysis can be used to predict buckling modes, 
highlighting methods which are practical for day-to-day use.  It explores some criterion which might be used to 
identify if such behavior, including global buckling modes, should be of concern to the designer, drawing on 
recommendations including those in the recently published NCHRP Report 725 and Eurocodes.  Use of FE in the 
determination of member resistances is also explored. 
 

 
INTRODUCTION 

Buckling affects slender flexural and compressive 
members.  It is caused by the amplification of initial 
imperfections and of deflections due to lateral loads 
and is characterized by sudden loss of stiffness with 
little or no warning, potentially leading to 
catastrophic failure. 
Finite Element (FE) analyses can be used to analyze 
members or whole structures, considering non-
standard details, support conditions and load 
arrangements as necessary*.  FE buckling analysis 
options fall into two categories: Elastic (Eigenvalue) 
buckling analyses and nonlinear analyses. 
Several uses for Eigenvalue buckling analyses will be 
explored in this paper: 
1.1 Elastic critical buckling stresses can be used, 

together with codified buckling curves, in the 
determination of member resistances.   

1.2 The global stability of a girder system can be 
assessed using an elastic critical buckling 
moment (McrG). 

1.3 A global amplification factor (AFG) can be used 
to assess the susceptibility of a structure to 
second-order effects. 

                                                
* Since the basic principle of subdividing a structure into simple 
elements can be applied to structures of all forms and complexity, 
there is no logical limit to the type of structures that can be 
analysed and FE provides the most versatile method of analysing 
structures available at present, and, for many structures, the only 
practical method.   FE is widely accepted in the industry and 
endorsed in AASHTO [4] article 4.4.  A familiarity with basic FE 
concepts is assumed. 

1.4 Likely buckling modes are identified and may 
be visualized, resulting in better 
understanding of structural behavior. 

Furthermore, some instances for which nonlinear 
buckling analyses are required will be identified.  In 
broad terms, such analyses may be understood to 
allow: 
2.1 Detailed consideration of second-order 

effects. 
2.2 Investigation into any unexpected behavior 

highlighted by an Eigenvalue buckling 
analysis. 

2.3 Consideration of structures & details which 
are outside the scope of the code. 

2.4 Validation of member resistances derived from 
code rules, particularly when considering an 
unusual detail or unfamiliar clause. 

2.5 Identification of more economical solutions in 
certain cases. 

In order to gain these benefits and have confidence 
in the results obtained using FE methods, engineers 
need to understand the analysis options available, in 
the context of other existing methods, and adopt 
suitable checking procedures, such as the calculation 
of bounding values.  This paper is intended to assist 
by giving such context and indicating some possible 
checks. 

BEAM AND SHELL ELEMENTS 
The finite element types referred in this paper are 
restricted to 3D beam and 3D shell elements.   
Where a structural member has cross-sectional 



 

dimensions that are small by comparison to its 
length, the member can typically be represented 
using beam elements.  Beam elements are then 
described by giving a direction and cross-sectional 
properties (A, Iyy, Izz, Iyz, J, Asy, Asz).  3D beam 
elements support axial force, shears, moments and 
torsion and generally have 6 degrees of freedom.  
Beams can be formulated either as thick (including 
shear deformations) or thin (excluding shear 
deformations).  The beams referred to in this paper 
are thick linear order (BTS3), semiloof (BSL4) and 
semiloof cross-section a.k.a. “fiber” beam (BXL4), 
with reference to [1]. 
Where a structural member has a thickness which is 
small by comparison to its plan area, the member 
can typically be represented using shell elements.  
Shell elements are described in terms of a reference 
plane, typically (though not exclusively) at the mid-
surface of the structural member, and a thickness 
(t).  3D shell elements support in-plane forces, out-
of-plane shears, flexural moments and twisting 
moments.  They generally have 6 degrees of 
freedom, enabling them to be connected to 3D 
beam elements.  Like beam elements, shells can be 
formulated either as thick or thin. The shells referred 
to in this paper are thick quadratic order (QTS8) and 
semiloof (QSL8) [1]. 
The selection of elements and use of sufficient 
numbers of elements is important in obtaining 
appropriate results and will be discussed in the 
context of several simple examples. 

CRITICAL ELASTIC BUCKLING 
Central to most engineers’ understanding of buckling 
is the “Euler” buckling load, after Leonhard Euler, 
who derived the well-known expression for the load 
at which an ideal pin-ended strut will first become 
unstable and buckle if slightly perturbed from its 
equilibrium position: 
 �� � ����

��  (1) 
The formula is commonly adjusted to take account 
of conditions other than pinned ends.  However, in 
principle the formula is the solution to the second-
order differential equation governing the lateral 
deflection (ν) of the column in the absence of 
transverse loading [2]: 
 EI ���

��� � �ν � 0 (2) 
Due to initial out-of-straightness, residual stresses 

and other effects such as load-following, nominal 
member resistance is generally less than an Euler-
type solution would predict*.  However, this “critical 
elastic buckling load” is used in the calculation of 
member resistances and amplification factors and is 
therefore required by engineers on a day-to-day 
basis.  Crucially, if the same problem is formulated 
numerically, an Eigenvalue solution can be obtained 
which corresponds to the Euler solution.  The 
“critical elastic buckling load” obtained by Euler or 
by numerical means (e.g. FE analysis) may be used 
interchangeably. 

EXAMPLE EULER STRUT 
An Eigenvalue extraction from an FE model is used 
to obtain the critical elastic buckling load for a 
concentrically loaded pin-ended strut.  Using FE 
analysis for a pin-ended strut is, of course, 
unnecessary since the solution is trivial, however, 
such an example can be used to identify some 
modeling considerations which apply equally to more 
complex structures.   
PROBLEM DETAILS.  L=18’.  H-section with 
D=B=8”, flange & web thickness = 0.5”. Ag=11.5in2, 
Izz=42.74in4.  Steel E=29000ksi.   
By hand calculations, Pe=262.2kip.   
Results from FE analyses are shown in Table 1. 
Elements in 

height 
Thick 
beam  

Semiloof 
beam 

Thick 
shell 

4 290.8 262.1 260.8 
8 268.3 262.2 259.9 
16 263.1 262.2 259.9 
32 261.8 262.2 259.9 

Table 1.  Critical elastic buckling load for 
example strut (kip) 

Several things may be noted from this example: 
BOUNDARY CONDITIONS.  Naturally it is very 
important that supports represent the intended 
structure.  However, a common modeling error 
leading to numerical difficulties in a problem of this 
sort is the omission of a torsional support, which is 
                                                
* For slender plates in compression, member resistance may be 
greater than the elastic critical buckling stress because of post-
buckling behaviour; see below and [3] Fig 4.6 (page 134) 



 

required to prevent bodily rotation of the strut about 
its own longitudinal axis. 
ELEMENT CHOICE AND REFINEMENT.  By nature, all 
FE analyses are a numerical approximation of the 
real (or potentially real) structure.  The results will 
only be accurate if the mesh is defined in such a 
way as to simulate the change in load effects across 
the structure effectively.  Using a small number of 
elements may produce results which are significantly 
inaccurate.  Moreover, a coarse mesh may produce 
results that are unconservative for design purposes.  
Here it is seen (Table 1) that the thick beam 
element results converge (with increased numbers 
of elements) from above, while the semiloof beam 
element results converge from below, reaching a 
satisfactory accuracy with far fewer elements.  This 
illustrates the importance of shape functions.  
Engineers should familiarize themselves with the 
elements available in their specific FE software 
system and/ or experiment with different element 
types if possible. 

 
Figure 1(a). Critical elastic buckling mode for 

strut by FE method (beam model) 
FLANGE LOCAL BUCKLING.  Contrary to a beam 
element model, a shell element model allows plate 
local buckling modes to be identified and visualized 
in addition to the “global” buckling modes.  In order 
to model the same (pin-ended) system using shells, 
a rigid link constraint equation is used at each end 
of the strut.  In this particular case the lowest 
buckling mode is the expected half-wave and for a 

problem like this, beam elements are perfectly 
sufficient (Figure 1(a)), and computationally far 
more efficient.  For other problems, shell elements 
may well be necessary to capture the full behavior 
of the structure adequately (Figure 1(b) and (c)). 

  
Figure 1(b). Critical elastic buckling mode for 

strut by FE method (shell model) 

 
Figure 1(c). Critical elastic flange buckling 

mode (shell model) 
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COMPRESSIVE MEMBER RESISTANCE 
In principle, compressive member resistance checks 
[4, 5] are based on identifying the slenderness (λ) of 
a member in terms of the critical elastic buckling 
load (Pe) and an equivalent nominal yield resistance, 
(Po) *: 
 � � 		�

	� (3) 
Design resistance is then derived from a “critical 
load curve” (see Figure 2 below), where the nominal 
compressive resistance (Pn) for a given value of λ† 
may be obtained from the corresponding y-axis 
value.  Such critical load curves are empirically 
based, taking into account residual stresses and 
initial out-of-straightness [3] (pg 52ff).   

 
Figure 2. SSRC column strength curves, after 

Galambos [3] 
AASHTO [4] equations 6.9.4.1.1-1 and 6.9.4.1.1-2 
represent a curve that is essentially the same as the 
SSRC column strength curve 2P of [3], illustrated in 
Figure 2 above.  In this sense, the applicability of 
the codified equations is limited to certain classes of 
column as identified by Bjorhovde [3] (pg 54), and 
                                                
* Po incorporates a reduction factor (Q in AASHTO [4] article 
6.9.4.2) to take account of plate buckling.  In EN1993-1-1 [5] 
clause 6.3.1.1(3) the same phenomenon is handled by the use of 
a reduced effective area (Aeff). 
† For a strut without local buckling, it may be seen that this 
definition of slenderness can be reduced to a material constant × 
effective length / radius of gyration, more familiar to many 
engineers. � � ����� � � �����EI���� � 1����� . ��  

an initial out-of-straightness of L/1500 is assumed – 
ref [3] (pg 59), AASHTO [4] C6.9.4.1.1.  The 
Eurocode (EN1993-1-1 [5] clause 6.3.1.2) appears 
to be - in this area - more generalized, offering a 
range of curves represented by a reduction factor 
(χ), calculated from not only the slenderness (λ) but 
also an imperfection factor (α) appropriate to the 
type of section. 
AASHTO gives several formulae for critical elastic 
buckling resistance (Pe) in section 6.9.4.1, which 
must be selected by virtue of the section type and 
potential buckling modes, and which are based on 
effective lengths (article 4.6.2.5), since the 
underlying critical load curve is for a pin-ended strut.  
In the Eurocode, such formulae are not given; it is 
anticipated that Pe can be determined by the 
engineer on the basis of formulae commonly 
available in textbooks - or by numerical methods.   
The design resistances in both AASHTO and the 
Eurocode are thus based upon the critical elastic 
buckling load (Pe) which may be determined using 
an Eigenvalue extraction from a finite element (FE) 
analysis – as AASHTO [4] C6.9.4.1.1 describes it: “a 
refined buckling analysis”. 
However, moving beyond Eigenvalue analyses and 
codified approaches, a nonlinear analysis can 
provide an alternative means for assessing failure 
loads.  

EXAMPLE FAILURE LOAD OF STRUT 
A nonlinear analysis of the strut in the example 
above is carried out to compare with a member 
resistance derived from AASHTO.  Nonlinear FE 
analyses can incorporate geometric nonlinearity 
(large displacements), material nonlinearity (in this 
case, yielding) and boundary nonlinearity (such as 
lift-off).  Any nonlinear buckling analysis will be 
based on geometric nonlinearity but may also 
require other nonlinearities to be incorporated in 
order to capture the true behavior of the structure.   
MEMBER RESISTANCE CALCULATION.  As previously 
noted, Pe=262.2kip.  Being made up of nonslender 
plates according to AASHTO article 6.9.4.2.1, 
Po=FyAg=50*11.5=575kip.   
Thus from article 6.9.4.1.1, Pe/Po=0.456 and 
Pn=230kip. 
  



 

INITIAL IMPERFECTIONS.  The strut as modeled is 
perfectly straight, symmetrical and concentrically 
loaded.  In order for any geometrically nonlinear 
analysis to indicate buckling, an initial imperfection 
must be incorporated.  As noted above, the AASHTO 
column design curves assume an imperfection of 
L/1500 but also incorporate an allowance for 
residual stress.  AASHTO does not appear to give 
further guidance on imperfections for use in second-
order analyses.  Since other sources suggest larger 
initial imperfections*, the sensitivity of the analysis 
to the magnitude of initial imperfections may be of 
interest. 
GEOMETRICALLY NONLINEAR ANALYSIS.  Based on 
the prior Eigenvalue analyses, 4 semiloof beam 
elements are used.  These elements support 
geometrically nonlinear analysis with the Total 
Lagrangian formulation.  A geometrically nonlinear 
analysis with an initial imperfection of L/1500 is 
carried out; the initial shape is created by inheriting 
the deformed shape of the lowest buckling mode 
illustrated in Figure 1(a) above, factored to 
216/1500=0.144”.  The buckled shape and load/ 
displacement curve are shown in Figure 3.  The 
stresses illustrated in Figure 3(a) are appropriate to 
the change in slope of the graph (P=237kip) and it 
is noted that stresses exceed 50ksi.  Furthermore 
the load/ displacement curve indicates continued 
strength in the strut, up to 261kips (albeit with 
uncontrolled displacement).  This preliminary 
analysis indicates that material nonlinearity plays a 
part in the failure of the strut and must be 
incorporated. 

                                                
* EN1993-1-1 [5] suggests using the shape of the elastic critical 
buckling mode as an imperfection when second-order analysis is 
used (see clause 5.3.4) with the amplitude based on the section 
in question (see Table 6.2 and Table 5.1 in conjunction).  Broadly 
speaking, the imperfections are of order span/150, or span/300 
for heavy bridge sections if LTB is concerned.  These values -
significantly greater than expected fabrication tolerances - 
incorporate an allowance in lieu of residual stresses. 
BS5400-3:2000 [11] clause 9.12.1 recommends that initial 
imperfections for use in nonlinear buckling analyses should be 1.5 
times the relevant tolerances given in BS5400-6:1999 Table 8.  
This leads, broadly speaking, to imperfections of order 
1.5*L/1000 or 5mm (whichever is greater) for a bridge girder. 
AISC 303-10 [12] gives fabrication tolerances (section 6.4) which 
(for spans >30ft) come down to L/1000 or 1/8", whichever is 
greater, and erection tolerances which, are broadly of the order 
L/500.  Using the British 1.5 factor, initial imperfections of the 
order L/300 seem reasonable, in agreement with the Eurocode. 

 
Figure 3(a).  Buckling of strut in preliminary 

GNL analysis 

 
Figure 3(b).  Load/ displacement of strut in 

preliminary GNL analysis 
MATERIAL NONLINEARITY.  In order to facilitate 
gradual through-section yielding, the semiloof 
beams are switched to semiloof cross-section 
beams.  Yield is set at 50ski and tensile strength 
taken as 65ksi, with a 21% elongation, in a stress 
potential (Von Mises) material model.  The load/ 
displacement curve is shown in Figure 4.   
The effect of the magnitude of initial imperfections 
was investigated by re-running the full nonlinear 
beam model with a range of imperfections as shown 
in Table 2 below. 
The maximum load associated with an initial 
imperfection of L/1500, Pn=232kip, agrees closely 
with the AASHTO member resistance calculated.   
By way of validation, a shell model using semiloof 
shell elements, the same material properties and an 
initial imperfection of L/1500 was analyzed, giving a 
maximum load of Pn=237kip. 
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Figure 4. Load/ displacement of strut in full 

NL analysis 
Magnitude of initial 

imperfection 
Maximum load, Pn 

(kips) 
L/1500 232 
L/1000 223 
L/500 202 
L/300 184 

Table 2.  Effect of initial imperfection on 
Maximum load in strut 

LONG PLATES IN COMPRESSION  
The equivalent nominal yield resistance of a 
compression member incorporates a reduction to 
take account of plate buckling (AASHTO [4] article 
6.9.4.1).  Local flange buckling (AASHTO [4] article 
6.10.8.2.2) also makes consideration of such effects.  
In principle the approach is similar to that described 
for columns above, in this case relying on a 
slenderness (λ) defined in terms of the critical elastic 
buckling stress (Fcr) and yield stress (Fy): 
 � � 	
�


�� (4) 
Design resistance may again be derived from a 
critical load curve, similar to Figure 2 – for example, 
the buckling curves of [3] (pg 134) *.  The reduction 
                                                
* Unlike columns, the buckling resistance of slender plates may 
be greater than the elastic critical buckling stress because of 
post-buckling behavior.  This is because plates have a significant 
post-buckling reserve of strength (dependent upon boundary 
conditions), whereas columns are essentially in a state of neutral 
equilibrium after elastic buckling 

factors of AASHTO [4] article 6.9.4.2.2 reflect such a 
form.   
The elastic critical buckling stress of a plate is 
therefore of importance to design engineers, and 
the general expression given in AASHTO [4] 
C6.9.4.2.1 and [3] (pg 126) is: 
 
�� � � ���

��������/��� (5) 
Here, the buckling coefficient (k) is a function of 
loading and support conditions.  Values for k may be 
obtained from texts for a limited number of 
conditions – ref [3] (Fig 4.2 pg 127), for example, 
where both long edges are simply supported, k=4.0.   
As an alternative, Fcr may be determined using an 
Eigenvalue extraction from an FE analysis.  Any such 
value of Fcr may be of direct use, else values of k 
may be back-calculated if required†. 
EXAMPLE ELASTIC BUCKLING OF A LONG PLATE 

An Eigenvalue extraction from an FE model is used 
to obtain the critical elastic buckling load for a long 
simply supported plate.  As for the strut example, 
using FE analysis is unnecessary in this case, 
however, the example serves as a benchmark to 
help build confidence when more complex structures 
are considered. 
PROBLEM DETAILS.  L=120”, b=12”, t=0.5”.  Steel 
E=29000ksi, ν=0.3.  The plate simply supported and 
end-loaded.   
By hand calculations, using k=4.0, Fcr=182ksi 
Results from FE analyses are shown in Table 3. 

Element size Semiloof shell (QSL8) 
3” 171.8 
2” 177.6 
1” 181.0 

Table 3.  Critical elastic buckling stress for 
example plate (ksi) 

It is noted that the semiloof shell converges to the 
expected result with increased mesh refinement, 
                                                
† It should be noted that the “classical” buckling coefficient k in 
AASHTO [4] C6.9.4.2.1 and “tabulated” buckling coefficient k in 
AASHTO eqn 6.9.4.2.1-1 are not the same, and are related as 
follows: �����	���
 � ������������

������� 



 

from the “safe side”. 
FLEXURAL MEMBERS 

In flexural members, there are several buckling 
modes which are significant.  Flange local buckling 
(FLB) is covered explicitly in AASHTO [4] article 
6.10.8.2.2.  Lateral torsional buckling (LTB) is 
considered in article 6.10.8.2.3, and takes the form 
of checks on sections between bracing locations, 
which are taken as points of fixity, with the 
unbraced length (Lb) being critical to the design.  
Web local buckling is not covered explicitly in section 
6.10.8, being effectively precluded by the web 
proportion limits in article 6.10.2.1 – this presents 
difficulties when rating existing members that do not 
meet the requirements of that article.   
As illustrated in Figure 5 (also described well in 
AASHTO [4] Fig C6.10.8.2.1-1 and [3] Fig 5.1, page 
193), design resistances based on FLB and LTB are 
implicitly based upon buckling curves not dissimilar 
to those described earlier in this paper.   

 
Figure 5.  Flexural buckling curve from [3]*  

In principle, slenderness is again defined in terms of 
elastic critical stress, although, working on an 
assumption of effective bracing, it can be expressed 
simply using the ratio Lb/ry.  Beyond a limiting 
unbraced length (Lb>Lr), the member resistance is 
assumed to be given by the elastic critical stress - as 
given in AASHTO [4] eqn 6.10.8.2.3-8: 
 
�� � �������

���/����
 (6) 

This is noted (C6.10.8.2.3) to be an accurate to 
conservative simplification, based on the theoretical 
                                                
* Fig 5.13, pg 213.  Reproduced by kind permission of the author. 

solution for a doubly-symmetric I-section for the 
case of constant moment (Cb = 1.0) assuming the St 
Venant torsional constant (J) to be zero, and an 
alternative expression is offered in eqn A6.6.3-8 
which may be applied in certain circumstances.   
In the check on member resistances in AASHTO [4] 
(article 6.10.8.1) a flange lateral bending stress is 
required.  By reference to article 6.10.1.6, the flange 
lateral bending stress for larger unbraced lengths is 
given by: 

 �� �  �.��
�	�


���
��� � �� (7) 

Once again the elastic critical buckling stress (Fcr) is 
required for the calculation.  In connection with this, 
3D FE analysis is, in broad terms, needed if flange 
lateral bending stresses and cross-frame forces are 
to be determined with good accuracy - refer to 
NCHRP [6] Report 725 Appendix B Table 3.1. 
A wholly different approach is taken in the Eurocode 
(EN1993-1-1 [5] clause 6.3.2.2) for flexural 
members – an approach consistent with that for 
compressive members – defining slenderness as: 
 ��� � 	��

���
 (8) 

With this in hand, Eurocode design curves are 
implemented by way of a reduction factor (χLT), 
calculated from λLT but also an imperfection factor 
(αLT) appropriate to the type of section. 
There seems to be no reason why Fcr or Mcr may not 
be determined using an Eigenvalue extraction from 
an FE analysis, as for compressive members.  This 
would be beneficial since several assumptions 
implicit to the AASHTO formulae might be 
eliminated, such as those associated with web 
proportion limits.  Furthermore, the engineer may 
gain a better understanding of structural behavior by 
virtue of being able to visualize the buckling modes 
rather than “blindly” calculating resistances using 
formulae.  Such an approach is implicit to the 
Eurocode. 

GLOBAL BUCKLING BEHAVIORS 
AASHTO LTB checks currently consider only the 
member resistance of individual girders controlled by 
the distance (Lb) between brace points.  In certain 
situations – particularly during construction of 
composite bridge decks while loads are carried by 
girders prior to the hardening of the concrete deck – 
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provide comparable results, as should be expected.  
An FE solution allows the consideration of non-
identical, non-prismatic, non-symmetric girders, as 
well as the consideration of skew and/ or plan 
curvature. 
In any case, the Amplification Factors in Table 5, 
being >1.25, suggest a need to further investigate 
second-order effects through a geometric nonlinear 
3D FE analysis.   
Analysis 
type 

Girder spacing (in) 
80 109 150 

From Eqn (9) 20.70 28.22 38.83 
LUSAS, 50” 
elements 

20.13 26.78 35.60 

LUSAS, 25” 
elements 

20.21 26.91 35.77 

Table 4.  Stress in extreme fibers* at global 
buckling of twin girder system, σcrG 

 
 

Girder spacing (in) 
80 109 150 

AFG from 
eqn (10) 

1.59 1.38 1.26 

Table 5.  Amplification Factor based on global 
buckling of twin girder system, AFG 

 
Figure 7.  Global buckling mode from twin 

girder system 

                                                
* The extreme stress is calculated as ��� � ���� ��  where M is the 
applied moment (20,400kip.in), Z the section modulus 
(105,251/38.638=2724in3) and αcr the Eigenvalue buckling factor 
from the FE analysis. 

Interestingly, incorporating a modest skew of 20° 
reduced the amplification factor somewhat (that is, 
lower second-order effects were indicated).  This is 
thought to be because of opposing torques at the 
supports.  However, since lift-off could occur, a full 
nonlinear analysis should be used to properly 
consider stability issues. 
Incorporating a modest plan curvature of radius 
1200’ led to buckling in the bracing members at a 
lower load than buckling of the girder system, 
underlining the importance of these as structural 
members. 

CONCLUDING REMARKS 
The elements used in FE buckling analyses might 
comprise shells, beams or a mixture, on the 
understanding that plate local buckling effects 
cannot be identified using beam elements.  The 
choice of elements should consider the shape 
function and mesh refinement should be checked.   
Elastic critical buckling loads may be obtained from 
Eigenvalue buckling analyses.  The elastic critical 
forces, moments or stresses may be used together 
with codified buckling curves, in the determination 
of member resistances.  Importantly, buckling 
modes are identified and may be visualized, 
potentially resulting in better understanding of 
structural behavior than when calculations proceed 
“blind”. 
Second-order (nonlinear) analysis may be used to 
assess member resistances, and this may be 
appropriate when unexpected behavior has been 
highlighted by a prior Eigenvalue buckling analysis, 
when the structure or details are outside the scope 
of the code, or for validation when unusual detail or 
unfamiliar clauses are approached. 
Initial imperfections need to be included in any 
nonlinear buckling analysis.  Eigenvalue buckling 
mode shapes typically provide a suitable imperfect 
shape.  The magnitude of the imperfection assumed 
has a significant effect on member resistances 
derived from nonlinear analysis - this underlines the 
limitation of codified buckling rules to members 
fabricated and erected to modern tolerances, and 
the possible need for nonlinear analysis to be used 
for members not meeting such standards.  
It is perhaps not widely appreciated that the critical 
load curves which form the basis of member 
resistance calculations in design codes, such as 
those developed by Bjorhovde & Tall [10] were 
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themselves based on computer analyses - validated 
against physical tests - rather than a statistical 
analysis of data purely from physical tests.  Thus, 
codified member resistance checks largely offer the 
practicing engineer access to the results of 
numerical analyses undertaken by researchers - 
perhaps 40 years ago - by way of slenderness and 
other parameters which may be calculated by hand.  
Ironically, as compared to their 1970’s research 
counterpart, the practicing engineer of 2013 
typically has a computer of considerably greater 
power, loaded with software of considerably greater 
sophistication at their disposal.  With this in mind it 
is perhaps not unreasonable to suggest that 
engineers could consider using numerical methods 
which take into account initial imperfections, load-
following and (potentially) yielding – nonlinear 
analyses – to assess member resistances.   
Elastic critical buckling loads can also be used to 
investigate the global stability of a girder system and 
its susceptibility to second-order effects.  While 
simple rules exist for girder systems meeting 
particular criteria, an FE Eigenvalue buckling analysis 
allows the consideration of non-identical, non-
prismatic, non-symmetric girders, and those with 
skew and/ or plan curvature. 
Second-order (nonlinear) analysis is recommended 
for structures with a large amplification factor (AFG) 
by NCHRP Report 725 [6], AASHTO [4] clause 
4.5.3.2, EN1994-1-1 [8] clause 5.2.1(3) etc, or for 
which lift-off may occur.  Such analyses can be 
readily undertaken, based upon the same analytical 
models constructed for Eigenvalue buckling 
analyses. 
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