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Example 1.1.1

Example 1.1.1

Linear Static Analysis Of A Curved Cantilever (using 4
elements)
Keywords

Curved Beam

Description

Determine the tip displacements for a quarter circle cantilever with the dimensions, properties
and subject to the loading as given below. Neglect the effect of shear deformations but include
the effect of axial deformations on the displacements.

Discretisation

Model with four equal length curved BM3 beam elements which, being thin beam elements,
explicitly exclude the effects of shear deformations.

Geometric properties

Cross-section breadth Cross-section depth
Radius, mm (b), mm (d), mm
200 10 10




Verification Manual

Material properties

Young's modulus 200 x10° N/mm?2

Loading
Point load at tip in X Point load at tip in Y Concentrated moment
direction (Px), N direction (Py), N at tip (Mz), Nm
200 10 20
Theory
The following equations for the tip displacements may be derived using the unit load method.
Point load at tip in X Point load at tip in Y Concentrated moment
direction, Px direction, Py at tip, Mz
PR3Y( - PRPR MR22 (-
o PR ) R R _MB2(n- )
4EI4EA 2EI2EA 2El
PR il MR ?
% B T — —z
2EI2EA 4EI4EA El
PRZ 2 MR
e _ B (T[_ ) Pﬁ T
2Fl El 2|
Comparison
Load Result source u \ 0
Point load at tip in LUSAS 3.42023 -4.79880 -0.0273976
X direction, Px Theory 3.42104 -4.799 -0.0273982
Point load at tip in LUSAS -4.79880 7.54071 0.048
Y direction, Py Theory -4.799 7.54139 0.048
Concentrated LUSAS -2.73976 4.8 0.0376988
moment at tip, MZ  Theory -2.73982 4.8 0.0376991
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References
1. Timoshenko, S.P., and Gere, JW., Mechanics of materials, Van Nostrand Reinhold, 1972.

Input data
X01D11A. DAT
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Example 1.1.2

Linear Analysis Of A Curved Cantilever (using 16 Elements)

Keywords
Curved Beam

Problem Description

Determine the tip displacements for a quarter circle cantilever with the dimensions, properties
and subject to the loading as given below. Neglect the effect of shear deformations but include
the effect of axia deformations, on the displacements.

Discretisation

Model with 16 equal length curved BEAM elements. Use a large shear area to ensure negligible
shear deformations.

Geometric properties

Cross-section breadth Cross-section depth
Radius, mm (b), mm (d), mm
200 10 10
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Material properties

Young's modulus 200 x10° N/mm?2

Loading
Point load at tip in X Point load at tip in Y Concentrated moment
direction (Px), N direction (Py), N at tip (Mz), Nm
200 10 20
Theory
The following equations for the tip displacements may be derived using the unit load method.
Point load at tip in X Point load at tip in Y Concentrated moment
direction, Px direction, Py at tip, Mz
- PRPR MR22(7-
M N i _MB2Z(r- )
4EI4EA 2EI2EA 2El
,omR R wg 2
2EI2EA 4EI4EA El
2
0o R0 ) il R
2E| El 2El
Comparison
Load Result source u v 0
Point load at tip in LUSAS 3.42298 -4.79707 -0.0274258
X direction, Py Theory 3.42104 -4.799 -0.0273982
Point load at tip in LUSAS -4.79707 7.52627 0.0479422
Y direction, Py Theory -4.799 7.54139 0.048
Concentrated LUSAS -2.74258 4.79422 0.0376840
moment at tip, Mz Theory -2.73982 4.8 0.0376991
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References
2. Timoshenko, S.P., and Gere, JW., Mechanics of materias, Van Nostrand Reinhold, 1972.

Input data
X01D12A. DAT
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Example 1.1.3

Linear Static Stress Analysis Of A Plane Frame Using Beam
Elements

Keywords

Plane Frame

Problem Description

To determine the bending moments and shear forces when the plane frame shown in Figure 1 is
subjected to the following load cases;

U Three horizonta point loads of 25 KN (Figure 2).

U Threevertical point loads of 50, 60 and 70KN along with three udl loads of 10, 10 and 20
KN/m (Figure 3).

O A combination of load cases (1) and (2) with a scaling factor of 0.9 and 1.4 respectively
(Figure 4).
O A combination of load cases (1) and (2) with ascaling factor of 1.4 (Figure5).
Finite Element Model
The frame is made up of 11 BEAM e ements with the element and nodal numbering detailed in
Figure 6.

Geometric properties

Members Area (m?) I (m% Shear area (m?)
1-6,10 0.1 0.00133 0.1
7,8 0.3 0.00399 0.3
9,11 0.2 0.00266 0.2

Material properties

Young's modulus 30 x10° kKN/m2
Poisson’sratio 0.3
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Boundary conditions

The left hand column (node 1) is fully restrained in both translation and rotation while the centre
(node 2) and right hand columns (node 3) are only restrained in translation.

Theory

A number of methods exist for the solution of plane frames, e.g. moment distribution and slope
deflection methods of analysis, which are described in [1].

Modelling Hints

The four load cases defined above may be specified in the LUSAS datafilein the following way:

The horizontal and vertical load conditions (cases 1 and 2) are declared as two separate LOAD
CASE's using CONCENTRATED LOAD (CL) and ELEMENT LOADS (ELDS) respectively.
A number of combinations of the previously defined separate LOAD CASE’'s may be analysed
by using the LOAD COMBINATION card. In addition the ENVELOPE facility may be used to
compute the maximum loads of the combined load cases (i.e. worst conditions). The form in
which the commands have been implemented is shown in the input datafile listing.

References
1. Sted Designers Manual (Constrado) Granada publishing 1983.

Input data
X01D13A. DAT
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Example 1.1.4

Temperature Dependent Properties Constant Strain
Cantilever

Keywords
Constant Strain, Temperature Dependent Properties, Beam 3D

Problem Description

A cantilever of length 10392mm, width 200mm and depth 100mm is subject to a variable
temperature loading such that the product of the coefficient of thermal expansion and the
temperature rise at any point is constant. Figures 1 and 2 show the geometry of the cantilever.

Discretisation

The cantilever beam is modelled using two meshes, each of three elements. The finite element
discretisation is shown in figure 3.

Mesh 1 - three B4 elements
Mesh 2 - three BSX4 elements

Material properties

The material properties assumed for the analysis are as follows:
Young's modulus = 200000 N/mm?
Poisson's ratio =03
Thermal expansivity (variable) * Temperature
= Constant

=24

Boundary conditions

One end of the beam is fully restrained while the other is free.

12
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Theory

The structure is only restrained to prevent rigid body motions so that stress free, thermal
expansion may occur. For load case 1, with constant temperature throughout the section, the
strain at any point is constant and is the product of the coefficient of thermal expansion and the
temperature at that point:-

Strain=o* T=24 (1.12)
Where o is the coefficient of thermal expansion and T is the temperature rise.

For load cases 2 and 3, alinear variation is used such that the top and bottom fibre temperature
strains are 120 and -120 respectively. Therefore the resulting strain will be pure bending with a
value of:

Strai nZE.A(IZO)% (21.2)

Comparison
A constant strain condition (of 2.4) is achieved for all the cases analysed.

References

1. Roark.R, Young.W 'Formulae for stress and strain: Fifth Edition’, McGraw-Hill Publishing
Company (1975).
Input Data

X01D14A. DAT
X01D14B. DAT

13
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Example 1.2.1

Linear Elastic Static Fracture Analysis Of A Three-Point
Bend Specimen

Keywords

Fracture, Stress I ntensity

Problem Description

In the specialised field of fracture mechanics a number of small scale tests are used extensively
in determining the quality of a material. One such test is the three-point bend specimen. A typical
arrangement is shown in Figure 1.

The test specimen is supported at positions A and B while a CONCENTRATED LOAD is
applied at point C. The stress intensity factor may then be evauated for the initial crack length

3.
Discretisation

As the test piece and loading conditions are symmetric, only half the specimen need be analysed.
The finite element discretisation is shown in Figure 2, consisting of 126 eight-noded plane strain
membrane elements (QPN8) and two crack tip elements (QNKS8).

Material properties

Young's modulus, E 214x10° Pa

Poisson’ sratio, v 0.3

Loading condition
A concentrated load (P) of 2000 N applied at position C.

Theory

Griffith's criterion G="— (1.2.1)

15
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P/2

Irwin'srelation: K|2 = (1.2.2)
f1-v7)
where
Crack length
Y oung's modulus
Energy release rate
K, Stress intensity factor (mode 1)
t Thickness
U Strain energy
v Poisson’ sratio
P/2
A A :
c
l P = 2000 N
21 1
i l
|
W ~ 2% 4 mm
H/W = 2.0
a/M = 0.5

Figure 1. Three-point bend specimen.

16
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(a)

crack tip

(b) ,

a pa
o

Figure2. (a) Mesh discretisation (b) Effective crack extenson.
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Modelling Hints

In this example the load is applied at position A in the form of a reaction P/2. There exist a
number of methods for determining the value of the stress intensity factor, the method adopted
hereis the energy balance approach.

The user conducts a linear elastic static analysis with an initial crack length a,. A second analysis
may then be done after repositioning the crack tip to give a new crack length, a, + a. The change
in energy may then be used to compute the value of K .

Solution Comparison
(1) Crack length &,
Displacement at the point of application of the reaction
ug =0.513712 mm
Strain energy
U; =P/2* ug =0.513712 Nm
(2) Crack length  a,+a
Displacement at the point of application of the reaction
ug = 0.553229 mm
Strain energy
U, = P2 * ug = 0.553229 Nm
Energy release rate
G =(0.553229 - 0.513712)/0.0005 = 79.036 Nm/m?
As symmetry has been considered this value of G must be multiplied by afactor of 2. Therefore:
G = 158.072 Nm/m?

This value of G, the energy release rate, may now be inserted into Irwin's relation (1.2.2) to give
the stress intensity factor:

K= 158.072*214x10%0.91= 3.717x10%
K, = 6.097 MN/m3/2

An aternative method to the energy balance approach is the displacement extrapolation
technique [1]. The analytical expressions for the displacement variations along radia lines
emanating from the crack tip, in terms of the stress intensity factor are as follows:

Kl [(2k-1)cos0/2 - cos30/2] = 4u(2IT/r)1/2 (u)
Kl [(2k+1)sin0/2 - sin30/2] = 4u(21/r)1/2 )

18
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where:
u x displacement component
Y y displacement component
r radia distance from nodal point to crack tip.

shear modulus
k 3-4y for plane strain
0 angle between radial path chosen and the crack path ahead of the crack tip.

If we assume 6 = 90, then we are considering the radial path of nodes vertically from the crack
tip i.e. nodes 9 to 553 (Figure 3). In this particular instant we shall only consider nodes 26, 43,
77,11, 145,179, 213, 247, 281, 315, 349, 383, 417, 451, 485, 519, and 553. The corresponding
nodal displacements in the x-direction have been substituted into the above equation and the
values of K computed. The results have been plotted and are shown in Figure 7. By discarding
points close to the crack tip the solutions can be extrapolated to r=0[1]. In this case the result is
approximately that obtained by the energy balance method.

References

1. Owen, D.R.J and Fawkes, A.J. Engineering Fracture Mechanics Numerical Methods and
Applications. Pineridge Press Ltd. 1983. p43

Input Data
X01D21A. DAT

19
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Example 1.2.3

Example 1.2.3

Connecting Incompatible Models Using Constraint
Equations

Keywords

Incompatible M odels, Curvilinear Coordinates, Shape Functions

Problem Description

A study of the localised stresses at the root and tip of a cantilever beam, details of which are
shown in Figure 1, isto be carried out. To save on computer resources, the central portion of the
cantilever is to be modelled with a coarse mesh while finer meshes are to be used at the tip and
the root. Derive the constraint equations relating the nodal variables at the interfaces between the
fine meshes at the root and tip and the coarse mesh of the central portion. Analyse the cantilever
when subject to a shear load of 135 MN at the tip. Compare the results for the tip displacements
and the stress distributions for each Cartesian stress component with the results obtained using a
fine mesh over the whole cantilever.

L EALE
"i__ —
1

!

!

|

I

I

|

I

I

|

|

]

| g

L-am
Figure1 - Problem geometry and material properties

Discretisation

As the problem is essentially two dimensional, a finite element model using plane membrane
elements is appropriate. The higher order, 8-noded plane membrane element, QPMS8, is used and
the mesh adopted for the analysis is shown in Figure 2. The full, fine mesh used for comparison
purposesis shown in Figure 3.

Material properties

Young's modulus 200.0x10° Pa
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Poisson’sratio 0.3

Theory

The variables at nodes 22, 39, 73, 90, 30, 47, 81 and 98 are required to be constrained to the
edges of element 8, see Figure 1c. The displacement variation at any point in element 8 is given
by:

m
uNDY (1.2.3)
[E3

where u is the displacement vector at any point, N; are the shape or interpolation functions for
nodal point i, u the displacement vector for nodal point i and m the total number of nodes for the
element.

Using the plane membrane finite element QPM8, with m = 8, the interpolation functions are
given by:

For corner nodes:-

NEsEfmet )( ) (1.2.4)

For midside nodes:-

when Il 0 , NI+ 2)( ) (1.2.6)
&S .mgn (1.2.7)

Thet,n curvilinear co-ordinate system for an 8-noded element is shown in Figure 4b. Comparing
this with element 8, see Figure 4a, enables the co-ordinates of nodes 22, 39, 73, 90, 30, 47, 81
and 98 in the curvilinear co-ordinate system of element 8 to be determined. These are given in
columns 2 and 3 of Table 1.
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a) Element 8 b) Mapping domain

Figure4
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The required constraint equations are of the form:

uﬁ(g,n:) , (1.2.8)

where the superscript 8 refers to element 8, the subscript n refers to the node (22, 39, 73, 90, 30,
47, 81 or 98) and &,n are the curvilinear co-ordinates of node n with respect to element 8. Using
(1.2.3), equations (1.2.4) to (1.2.7) may be written as:

8
> Nigfo-= (1.2.9)
it

Substituting the &,1 co-ordinates of each node in turn into equations (1.2.4)-(1.2.7) yields the N;
values, which aretabulated in cols 4 - 11 in Table 1.

Table 1. Interface node curvilinear co-ordinates and shape functions

Node & n N, N, Ns N, Ns Ne N, Ng
22 -1 -2/3  +5/9 0 0 0 0 0 -1/9  +5/9
39 -1 -1/3 +2/9 0 0 0 0 -1/9  +8/9
73 -1 +1/3  -1/9 0 0 0 0 +2/9  +8/9
90 -1 +2/3  -1/9 0 0 0 0 +5/9  +5/9
30 +1 -2/3 0 0 +5/9 +5/9 -1/9 0 0 0
47 +1 -1/3 0 0 +2/9 +8/9  -1/9 0 0 0
81 +1 +1/3 0 0 -1/9  +8/9 +2/9 0 0 0
98 +1 +2/3 0 0 -9  +5/9  +5/9 0 0 0

The displacement vector at any point for the plane membrane family of elementsis given by:

U= {}j (1.2.10)

where U and V are the displacement components in the global X and Y directions respectively.
Using a subscript to denote the node humber and noting the correspondence between the node
numbering of the mapping domain, Figure 4b, and element 8, Figure 4a, the constraint conditions
of (1.2.9) may be written explicitly as:
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Equations (1.2.11) are now in the form required for input to LUSAS.

|oo

|oo

oo

|~

Comparison
1. Tip displacements at node 17.

Fine mesh Coarse mesh with Constraint Equations
u 0.0228175 0.0228031
\Y -0.107897 -0.107364

2. Stressdistributions.

Figures 5 to 10 show the stress distributions as plotted with MY STRO.

Note

The displacement field for the structure is relatively unaffected by the use of a single element to
model the central half of the cantilever. Stress distributions at the tip and the root are also
relatively unaffected by the use of a single element to model the central half of the cantilever.
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Example 1.2.4

Plane Membrane Analysis - Perforated Sheet Under Pure
Tension
Keywords

Plane Stress, Stress Concentration Factor

Problem Description

A thin rectangular sheet with a central perforation is subjected to atensile loading. The objective
isto investigate the longitudinal stress distribution and to evaluate the stress intensity factor.

The geometry of the structureis as follows:

Length, | 240 mm
Width, w 180 mm
Thickness, t 5mm

Radius of central opening,r 30 m

Discretisation

One quarter of the structure is discretised using 27 isoparametric plane stress elements (QPM8).
The mesh is graded towards the central opening in order gain a better approximation to the stress
concentration expected in this region of the structure. The internal boundaries of the mesh are
restrained according to the double symmetry conditions assumed. The external boundaries of the
mesh are unrestrained.

The uniform tensile load is modelled by the application of a series of nodal point loads acting in
the Y direction along the bottom edge of the structure (note that in order to obtain a uniform
distribution the nodal point loads are applied in the ratio 1:4:1 to the first corner, midside and
second corner nodes of the element face respectively). The total load applied to the bottom edge
of the structure is 36,000N.

Material properties

The material properties assumed in the analysis are as follows:
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Young's modulus 207x10° N/mm2
Poisson’sratio 0.3

Theory

The uniform stress distribution in the absence of the central opening may be calculated from
elastic theory.

Tota applied load F=36,000N
Total section area Ay =5mm* 180mm = 900mm
Stress S, = F/A = (36,000/900) = 40 N/mm? (1.2.12)

The presence of the central opening will change this uniform stress distribution to form a
concentration of tensile stress in the proximity of the opening [1]. From Saint-Venant's principal
it may be concluded that at distances which are large compared to the dimensions of the opening
its effect on the stress distribution will be negligible. The expected distribution of longitudinal
stress is therefore in the form of a decay from high tensile stresses at the opening towards the
normal stress level at the edge of the plate. The concentration factor may be obtained from the
mean stress (equation (1.2.12)) and the computed stress (at the opening) as

stress concentration factor = computed stress / mean stress

Comparison

The LUSAS results for the stressin the Y direction are given below. ((*) denotes the stress value
isthe average from the contributing nodes):

Node LUSAS
13 143.431
26 111.922

39(*) 81.6375
52 69.7183

65(*) 57.2874
78 51.7408

91(*) 46,0919
104 38.1439
117 29,5542

Stress concentration factor = 143.4/40.0 = 3.585
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References

1. 'Theory of Elagticity', Second edition, S.Timoshenko, J.N.Goodier, Publisher. McGraw-Hill
Book Co.Ltd. (1951)
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Example 1.3.1

Orthotropic Plate Under Pressure Load

Keywords

Plate, Orthotropic, Anisotropic

Problem Description

A simply supported square plate is analysed to verify the plate behaviour when the materia is
anisotropic and the plate is subjected to a uniform pressure load.

Finite Element Model

Allowing for symmetry only one quarter of the plate need be analysed. The model consists of a
4*4 element mesh with 8-noded el ements.

The problem is solved using both data cards, MATERIAL PROPERTIES, ORTHOTROPIC and
ANISOTROPIC.

Geometric Properties

Thickness 0.015m
Length 0.3m

Material properties

Anisotropic Orthotropic Isotropic

Ew  1.38x10%° N/m? E, 1.3555 x10° N/m*  E 2.0 x10™ N/m?
Ey  5.31x10°N/m? E,  1I1200x10°N/m* v 0.3

E, 115x10°N/m? Ve 0.4619

Gy  1.17x10°N/m? 0.03848

Gy 11700 x10° N/m?

Boundary Conditions
Simply supported around the plate edges.
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Loading Conditions
A uniformly distributed pressure load p = 1000 N/ m2

Theory

The expression for the deflection w in the z-direction takes the following form;

wasinsh > o G%”y — (13.1)

m&3,5n1,3,5

where the coefficient 8, and afull description of the theory isgivenin [1].

Solution Comparison

The solutions obtained from the LUSAS orthotropic and anisotropic analysis are presented
below, and are shown in the following figures. A principa stress plot for the isotropic case is
included for comparison.

Vertical Deflection w (m)

Location Theory LUSAS (Anisotropic) LUSAS (Orthotropic)
C 3.543E-04 3.545E-04 3.545E-04
E 2.529E-04 2.531E-04 2.531E-04
F 1.925E-04 1.939E-04 1.937E-04

Bending Moments (Nm/m)

Location Theory LUSAS (Anisotropic) LUSAS (Orthotropic)
C Mx=37.49 Mx=38.21 Mx=38.21
My=3.685 My=3.710 My=3.710
E Mx=28.44 My=29.27 My=29.27
My=2.680 My=2.690 My=2.690
References

1. Timoshenko, S.P. and Woinowsky-Krieger, S.,'Theory of Plates and Shells, Second Edition,
McGraw-Hill, 1959.

Input data
X01D31A. DAT
X01D31B. DAT
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Example 1.3.2

Static Linear Analysis Of A Thick Circular Plate
Keywords

Plate, Linear

Problem Description

A clamped circular plate is subjected to a transverse uniformly distributed load. The dimensions
of the plate are as follows:

Radius, a 0.5inches
Thickness, h 0.1inches
Discretisation

The structure is idealised using the thick plate flexure elements QTF8 and TTF6. By using the
CARTESIAN SETS and TRANSFORMED FREEDOM facilities it is only necessary to idealise
asmall segment of the total structure. In this example a 30 degree segment is analysed. The outer
boundaries of the circular plate are assumed to be fully restrained.

The materia properties are as follows

Young's modulus 10.92 Ibfin?
Poisson’ sratio 0.3

Theory

The linear elastic thick plate solution may be obtained by combining the ‘thin' plate solution with
acorrection for out of plane transverse shearing effects.

The thin plate solution is obtained by the solution of the biharmonic plate equation [1]

o

25

i) :_j

drrdrdr

" (1.3.2)

0

Differentiating with respect to r and dividing by r yields
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1dd
i ik | I 1 (1.3.3)
ru'lu'r.irdil} O

R
) 12(1 v 2)

Triple integration of (1.3.3) enables the deflection profile e ( ) to be obtained as:

wa%%gr - — (1.35)
D4a

where A, B and C are the constants of integration. By applying the deflection and slope
conditions associated with the clamped periphery of the plate, (1.3.5) may be simplified as:

where

D (1.3.4)

W&%( 2 )2 (1.3.6)

The maximum displacement occurs at the centre of the plate (r=0) and is given by the expression

4
a
Wi, :24_D (137)

The deflection profile defined by (1.3.6) was derived under the conditions of pure bending. The

effects of transverse shear may be included by the addition of a shear correction term to yield the
deflection profile[1]

2
2222
w(ap)é%yﬂ =) (138)

and the maximum deflection relationship (at r=0)

waer A4

64D ( —v)

(1.3.9)

Comparison
The LUSAS results for the maximum deflection are compared to the thin and thick plate
solutions below:

h h/2a Thin Plate Theory Thick Plate Theory LUSAS results
0.1 01 -0.97656 -1.19966 -1.15480
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References

1. S.P.Timoshenko, S.Woinowsky-Kreiger, 'Theory of Plates and Shells, Second edition,
Publisher. McGraw-Hill Book Co. Ltd (1959).
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Example 1.3.3

Eccentric Ribbed Plate
Keywords

Plate, Linear, Eccentric

Problem Description

A cantilevered eccentric ribbed plate is subjected to an end moment. The dimensions of the plate
are asfollows:

| T
Aewiral L. h

wxiy

H niTercsms dn merres

Discretisation

The structure is idealised using 4 thick shell elements QTS4 modelling the plate and 2 eccentric
stiffeners BMS3 modelling the web. The plate is supported as a cantilever fully restrained at one
end with a constant moment of 1000 KNm applied to the free end.

Material properties

Young's modulus 100.0 x 10° KN/m2
Poisson’sratio 0.0

Theory

The position of the neutral axis from the bottom of the section is cdculated as:
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yﬁrﬁ% (1.3.10)

The moment of inertia about the neutral axisis:
| yﬁ% 24 1.3.11
ﬁ' 1212 ( )

Stress on the top surface:

M
o= 23]145 KNm 2 (1.3.12)
Yy

Stress on the bottom surface:

M
op= 4%2% KN/m 2 (1.3.13)
¥y

Comparison

The LUSAS results for the stresses compared to theoretical results. Plate output for nodes at
fixed end:

Top stress = 31.267 KN/m (average)
Beam output for nodes at fixed end:

Axial force = 250.018 KN

Moment  =167.424 KNm

Moment of inertiafor beam:

3
110685k 4 1314
;30 12 ( )
Bottom Stress:
M
oﬁ+:£ N e KNm? (1.3.15)
Alyy
Input Data
X01D33B. DAT
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Example 1.4.1

Static Stress Analysis Of A Cantilever Subjected To
Multiple Load Cases
Keywords

Three Dimensional Beam, L oading

Problem description

Determine the tip displacements, moments and flexura strains for a straight cantilever. The
geometry of the cantilever is as follows:

Length, | 5.0
Breadth, b 0.25
Depth, d 1.0

Discretisation

The cantilever is modelled using one or two beam BMI21 (with Residual Bending Flexibility
correction), BM131 or BS4 elements. The material properties are as follows:

Young's modulus 30000.0
Poisson’sratio 0.3
Density 0.283

Coefficient of thermal expansion 0.0003

The fixed end of the cantilever is assumed to be fully restrained.

Theory

The cantilever is subjected to the following load cases:
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Case Loading Description of load case
1 CL End concentrated load -30 in Y direction
2 CL End concentrated load 30 in X direction
3 CL End anti clockwise moment (positive) 30
4 uUDL Uniformly distributed load 15 in local x direction
5 ubDL Uniformly distributed load -16 in local y direction
6 CBF Constant body forces 15x4 in global X direction
7 CBF Constant body forces-16x4 in globa Y direction
8 CBF Centrifugal forces 15 about global Y axis
9 CBF Centrifugal forces 15 about global X axis
10 TEMP Uniform temperature rise 50 at nodes
11 TEMP Flexural temperature gradient =10 at nodes
12 BFP Constant nodal body force 15*4 and -16*4 at nodes in global X and Y
directions
13 SSl Initial stress resultant 15 at nodesin local x direction
14 SSl Initial strains-0.002 at nodesin local x direction
15 SSIG Initial stress resultant 15 at Gauss pointsin local x direction
16 SSIG Initial strains-0.002 at Gauss pointsin local x direction
17 BFP Body force potential 15in local x direction
18 BFP Body force potential -16 in local y direction
19 COMB Combination of 2 * case (1) + 2 * case (2)

Theory and Solution Comparison

Load case Quantity Theoretical solution LUSAS
Displacement v=PI33El =-2.00 -2.0(-2.13)

1 Moment M = P(x-1) = 150.0 150.0
Strain = M/EI =024 0.24 (0.12")
Displacement u=PlI/EA =0.02 0.02

2 Axial Force Fx P =30.0 30.0
Strain = P/EA = 0.004 0.004
Displacement v=M12/2El =0.60 0.60

3 Moment M=M =-30.0 -30.0
Strain = M/El =-0.048 -0.048
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Load case Quantity Theoretical solution LUSAS
Displacement d = WIZI2EA =0.025 0.025

4 Moment F, = W(1-X) =75.0 75.0
Strain = F,/EA =001 0.01 (0.005")
Displacement d = WI3/SEl =20 -2.0(-2.173)

5 Moment M = WI2/2 -2000 19167 (200"
Strain - M/EI -0.32 0.3067 (0.1067")

6 See load case (4)

7 See load case (5)
Displacement u=wa33E =0.08843 0.088437
Axial force Fx = W2Al12/2 —10808 207.3(199.0"
Strain w22/2E =0.02653 0.02764 (0.01769")
Displacement v = Fyl4/8El = 0.99487 0.9949 (1.081")

9 Moment M = Fyl2/2 = .9949p -95.347(-99.492")
Strain - M/EI - 01592 -0.1526 (-0.0531")
Displacement u=TI =0.075 0.075

10 Strain =u/l =0.015 0.015
Displacement v = (dT/dy) 12/2 =0.0375 -0.0375

11 Strain = (dT/dy) =0.003  0.003

12 Seeload case (4) & (5)

combined

Displacement u=F/EA =-0.01 -0.01

13 Strain = u/l =-0.002 -0.002
Displacement u= 1 =-0.01 -0.01

14 Strain = =-0.002 -0.002

15 See load case (13)

16 See load case (14)

17 See load case (4)

18 See load case (5)
Displacement Seeload case (2) = 0.06 0.06

19 Axial Force Seeload case (2) = 90.0 90.0
Strain Seeload case (2) = -0.012 -0.012

*

Displacements in brackets are results from thick beam elements BMI21/BMI31 if
different from thin beam element B4.
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T Moments and strains in brackets are results from BMI21 if different from BMI31 and
B4,

References

1. Roak, RJ. Young, C.T. 'Formulas for stress and strain: Fifth edition’, McGraw-Hill
Publishing Company.

Input Data

X01D41A. DAT
X01D41B. DAT
X01D41C. DAT
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Example 1.5.1

Linear Elastic Stress Analysis Of A Compact Tension
Fracture Specimen

Keywords

Compact Tension Specimen, Three Dimensional Continuum, Solid

Problem Description

Determine the opening displacement and linear elastic stress distribution in a compact tension
fracture specimen.

The compact tension test consists of a plane sheet loaded at either side of the crack by two
loading pins (figure 1). The dimensions of the test specimen are as follows:

Height, h 120.0 mm
Width , w 100.0 mm
Thickness, t 3.0mm

The loading pins are positioned at 55 mm centres and have a diameter of 25 mm. The stress
concentration required for crack propagation is achieved by a pointed notch 50 mm long and 6
mm wide cut into the specimen. At the point of the notch a cut is made into the specimen to a
further depth of 21.6mm.

The crack opening displacement is measured by a clip gauge mounted across the notch directly
in line with the applied loading.

Discretisation

The full test specimen is modelled using three dimensiona continuum (HX20 and PN15)
elements.

The loading pins are included in the finite element model and assumed to behave as a rigid
bodies compared to the test specimen. Thisisin an attempt to reduce localised effects around the
loading pins and hence more accurately model the physical test conditions.

The following material properties are assumed in the analyses:

Young's modulus 210.915 kN/mm?
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Poisson’sratio 0.33

Theory and Loading

Previous experimental and numerical investigations of this specimen have established the stress
concentration around the notch, and have indicated that localised plastification occurs around this
point prior to the unstable propagation of the crack throughout the specimen [1-3]. The structure
is known to behave linearly until aload of approximately 10 KN. In the finite element model the
loading is applied to the structure via point loads acting at the centre of the rigid pins.

Solution

The results obtained from the LUSAS three-dimensional analysis are presented in the figures
below.

References

1. Bleackley, M.H. Luxmoore, A.R. '‘Comparison of finite element solutions with analytical
and experimental data for elastic-plastic cracked problems. International Journal of Fracture
(in press)

2. Bleackley, M.H. 'A numerica study of energy criteria in fracture mechanics. PhD. Thesis,
University of Wales, (1981).

3. Owen, D.RJ, Fawkes, A.J, 'Engineering fracture mechanics. Numerica methods and
applications. Publisher. Pineridge Press Ltd, Swansea, U.K. (1983).

Input data
X01D51A. DAT
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Example 1.6.1

A Simply Supported Twin Box Beam Under Concentrated

Loads

Keywords

Box Beam

Problem description

A simply supported twin box beam with trapezoida cross-section is subjected to two
symmetrical point loads near the centre span (Figure 1). The beam is made of thin mild steel
plates with the following thicknesses:

Top flange thickness 0.5cm
Web thickness 0.3cm
Bottom flange thickness 0.3cm

Loading condition

Two point loads of 20KN are applied at a position 7/16 of the span section over the inner webs
(Figure1).

Finite Element Model

The discretisation consists of 264 SHI4 elements. Due to the non-symmetric loading case the
whole beam must be included in the discretisation.

Material properties

Young'smodulus, E 19620 KN/cm2
Poisson’ sratio, v 0.27

Boundary conditions
The beam is simply supported at each end a ong the bottom flange.
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Theory

Structural design of spine-beam bridges presents many difficulties because of the complex nature
of the interaction of individua elements. A number of analysis methods exist; however, the

reader isreferred to publications by Maisel and Roll [1,2] for further information.

Solution

The problem investigated in this example is one that was performed experimentally by Zhang [3]
a The City University London. The experimental results obtained have been compared to those

Comparison

of LUSAS in Figures 3 and 4.

References

1. Maisd, B.l. Review of Literature Related to the Analysis and Design of Thin-Walled
Beams, Technical Report TRA 440, Cement and Concrete Association London, July 1970.

2. Maisd, B.l. and Roll, F. Methods of Analysis and Design of Concrete Boxbeams with Side
Cantilevers, Technical Report 42.494, Cement and Concrete Association London,

November 1974.

3. Zhang, SH. The Finite Element Analysis of Thin-Walled Box Spine Beam Bridges, PhD

thesis, The City University, London February 1982.

Input data
X01D61A. DAT

(a) Half top flange plan

$00/2

4
]
_-.-.-.-._._-=_~____-__-._._._-_m_.-T.--_--.-_-_-_-.__m_-.-.__n—~__.1_
— = - - ——-=-——--" r—-=————"=""=""7"="="""= 1
I
|
937 |
I
————————————————— —_—)—————————— ——_—
I— { USSR —
Load position l
i . Support
< loading cells
g Diaphragm } 24
i - I
0 i)
20 | 50 ! 150 | }29

(b) Half bottom flange plan

(c) Cross-section

Figure 1. Simply supported twin-box beam model (in mm).
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centre Line

-2.38
(-1.62)

13.63
(12.53)

13.863

(12.53)

-2.38
(-1.862)

b

Figure 4.

=1.12

(0.002)

9.87
(8.73)

T 7 Tcentre line
9.87

(8.73)

-1.12
(0.002)

Support reactions due to transverse loads in

twin-box model (KN)
Experimental results shown

In parentheses

TITLE: Simply supported twin box beam under concentrated Loads
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Example 1.6.2

Static Stress Analysis Of A Shallow Spherical Shell

Keywords
Shallow Spherical Shell

Problem Description

Determine the central deflection of a shallow spherical shell under a central point load and an
eccentric patch load (see figure 1).

Discretisation

The analysis is performed with two different element meshes. The first model uses 6 BXS3
axisymmetric shell elements (see figure 2). This models one radian of the structure and
consequently is only applicable to the central point load case. The second model uses 5 X 12
QSI4 and 1 X 12 TS3 incompatible flat shell elements (see figure 3). This models half of the
structure and can therefore be applied to both load cases. It should be noted that a one radian
section of 12 QSI4 and 1 TS3 flat shell elements would have been sufficient to model the central
point load case.

Geometry
The geometry of the shallow spherical shell structureis shown in figure 1.

Material properties

Young's modulus 70000 N/mm?2
Poisson’sratio 0.3

Boundary conditions

The axisymmetric model is fully restrained at the base, node 1, and restrained from trandlation or
rotation across the line of symmetry, node 13. The thin shell model is fully restrained at the base,
nodes 7 to 91 in steps of 7, and restrained from trandation or rotation across the line of
symmetry, nodes 1 to 6 and nodes 86 to 90.
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Theory

The fundamental theory for the central deflection of a shallow spherical shell under central point
load is given in page 477 of [1].

Results

Table 1 gives the results for the central deflection due to a central point load for theory,
axisymmetric model and thin shell model.

Analysis Central deflection (mm)
Theory -0.9514

BXS3 -0.8961

QSI4/TS3 -0.9495 (figure 4)

The central deflection due to the eccentric patch load is +0.0235 mm and the deflections at nodes
3 and 4 under the patch load are 0.473 mm and 0.458 mm (figure 5).
References

1. R.J RoakandW. C. Young, "Formulas for Stress and Strain", Fifth edition. McGraw-Hill,
1975.

Input data
X01D62A. DAT
X01D62B. DAT
1. Axisymmetric shell analysis, central point |oad

2. Thin shell analysis, centra point load and patch load
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Example 1.6.3

Graphite/Epoxy Resin Laminated Orthotropic Square Plate

Keywords
Composite Analysis, Laminated Plate

Problem Description

The composite/laminated material comprises 9 graphite/epoxy resin material layers. Each layer is
arranged so that its principa directions of orthotropy form a 0/90/0/90/0/90/0/90/0 sequence with
respect to the globa reference axes. The layup sequence is shown in figure 1. Owing to the
different thicknesses of each of the layers in the parallel and perpendicular pairs, the plate is
orthotropic with respect to both the material laminates and the resulting composite material. The
plate is loaded with audl and the central deflection of the plate is computed.

Discretisation

A symmetric quarter of the plate is modelled using a fine mesh of 6*6 Semiloof shell elements,
figure 2. The composite construction of the material is modelled using 9 orthotropic material
layers.

Geometry
The geometry of the plate is as follows:
Sidelength (a) =10cm
Thickness () =0.1cm
Span/Thickness =100
Load Intensity () = 100 N/mm?
Material properties
The orthotropic material properties are as follows:
Young'smodulus E; = 40E6 N/cm?
Young'smodulus E, = 1E6 N/cm?

Poisson's ratio vy, =025
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Shear Modulus G, =0.6 E6 N/cm
Orthotropy EJ/E, =40

The material lay-up sequence for the laminated plate is as follows (note that the LUSAS
convention is sequential from the bottom to the top of the material, and that the orientations are
defined as that of the principal direction of orthotropy to the global x-axis:

Position Layer Thickness Orientation
Bottom 1 0.01 0
2 0.0125 90
3 0.01 0
4 0.0125 90
5 0.01 0
6 0.0125 90
7 0.01 0
8 0.0125 90
Top 9 0.01 0

Boundary Conditions

The externa and internal plate boundary conditions are specified simply supported and
symmetric respectively.

Theory

The non-dimensional central deflection of the plate may be obtained from the expression (see
first reference):

3
v‘kux@ ?;7 (1.6.1)

LUSAS results

Analysis method Reference Finite element mesh Deflection w
Theory 2 N/A -4.486
LUSAS 6*6 QSI8 -4.526
FE2000 (1) Laminated solid 6*6* 1 -4.480

LUSAS results for on-axis lamina stressesin layers 7, 8 & 9 are displayed in figure 3.
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References

1

2.

Razzague A. MathersM.D., 'Layered solid elements for non-linear analysis of composite
structure’, Quality assurance in Finite Element Technology (1988)

Noor,A K., MathersM.D., 'Shear flexible models of laminated composite plates, NASA-TN
D-8044 (1975)

Input data
X01D63A. DAT

-
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Figurel Layup Sequencefor the Laminated Graphic/Epoxy Resin Orthotropic Plate
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Example 1.7.1

Example 1.7.1

Axisymmetric Analysis Of A Clamped Circular Plate

Keywords
Circular Plate, Axisymmetric Solid, Axisymmetric Sheet

Problem Description

The problem considered in this example is a clamped circular plate subject to a uniform pressure
load. Figure 1 shows the dimensions and material properties of the problem under consideration.

0.1 Cc/L
| uDL g=1

ooy

] | \

Discretisation

Four axisymmetric elements are used to model the circular plate. Figures 2 & 3 show the finite
element mesh for QAX8 and BXS3 elements respectively.

Material properties

Young's modulus 10.0x10° N/m?
Poisson’sratio, v 0.3

Boundary conditions
The edge of the plateis fully fixed against translation or rotation.
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Theory
Bt
1102
o
"= aéi(MD )
where

w = downward deflection

g = uniform pressure

r = distance measured radialy from centre of plate
a=radius of plate

D = flexurd rigidity of plate

E = Young's Modulus

v = Poisson's Ratio

t = thickness of plate

For further information see [2].

Solution comparison

(1.7.2)

1.7.2)

Rotation Rotation
Radius, Displacement Theory, Displacement BXS3, Displacement
m Theory, m radians BXS3, m radians QAX8, m
0 -0.17063 0 -0.17080 0 -0.16237
25 0.14996 0.01599 -0.15004 0.01597 -0.14212
5.0 -0.09598 0.02559 -0.09603 0.02558 -0.08970
7.5 -0.03266 0.02239 -0.03269 0.02239 -0.02891

Although only one element is modelled through the thickness the LUSAS results compare

favourably with the theory.

References

1. M.E. Honnor, ‘Axisymmetric thin shell element’, FEAL internal report FEAL503, 10th

December 1985.

2. SP. Timoshenko and S.Woinowsky-Krieger, 'Theory of plates and shells, pp. 55-56,

McGraw-Hill, 1970.
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Input data
X01D71A. DAT
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Example 1.7.2

Axisymmetric Thin-Walled Pressure Vessel

Keywords
Pressure Vessal, Axisymmetric Solid, Axisymmetric Shell, Axisymmetric Sheet

Problem Description

The analysis of a thin-walled, cylindrical and hollow pressure vessel is considered in this
example. Three different element types are utilised together with three different load cases.
Axisymmetry about the X & Y axesis also considered for one set of the meshes. The element
types are utilised as follows:-

a) Axisymmetric eight-noded solid elements QAX8
b) Axisymmetric thin shell element BXS3
c) Axisymmetric sheet element BXM3
The three |oad cases considered are:
Casel) Uniform axial load per unit length of 6 N/m
Case2) Uniformradial pressure of 10 Pa
Case3) Linearly varying radial pressure from zero at the bottom to 100Pa at the top.

Figure 1 shows the dimensions and material properties of the problem under consideration.

Discretisation

Four elements are used along the length of the wall. The finite element mesh for QAX8 is shown
in Figure 2. Figure 3 shows the mesh for BXS3 and BXM3.

Material properties

Young's modulus 200x10° Pa
Poisson’sratio 0.3
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I‘.“-"""--—-.__..---""J"
L =100m, R=50m, t=1.25m, E=0.2E6Pa v =0.3

Boundary Conditions

The bottom end of the cylinder is restrained against rotation and movement in the meridional
direction but free to move radialy.

Theory

Notation:
E Young's Modulus
L Length of cylinder
p Axial load per unit length
q Uniform pressure per unit area
r Radial displacement at top end
R Radius of cylinder
t Thickness of cylinder
y Meridional displacement at top end
v Poisson's Ratio
X Meridional stress at top end
X Circumferentia stresstop end
T Rotation of ameridian
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Case 1 Case 2 Case 3
Om ! 0
t
R R
Ce 0 ® ®
. R R R’
Et t
pL L
= —R— —gR—
Y B | o
2
T 0 ﬂ
EtL
For more information see [1].
LUSAS Results
Load case 1 Theory QAX8 BXS3 BXM3
Meridional stress (Pa) 4.8 4.8 4.8 4.8
Circumferential stress (Pa) 0.0 0.0104 0.0 0.0
Radial displacement at end (m) -35x10%  -3.6x10*  -3.6x10*  -3.6x10™
Meridional displacementatend (m)  2.4x10°  2.4x10°  24x10°  2.4x10°
Rotation (radians) 0.0 - 0.0 -
Load case 1 Theory QAX8 BXS3 BXM3
Meridiona stress (Pa) 0.0 0.0 0.0 0.0
Circumferential stress (Pa) 400.0 400.0 400.0 400.0
Radial displacement at end (m) 0.1 0.09998 0.1 0.1
Meridional displacement at end (m) -0.06 -0.06 -0.06 -0.06
Rotation (radians) 0.0 - 0.0 -
Load case 1 Theory QAX8 BXS3 BXM3
Meridional stress (Pa) 0.0 -0.0058 0.0
Circumferential stress (Pa) 4000.0 4000.2 4000.0 4000.0

72



Example 1.7.2

Load case 1 Theory QAX8 BXS3 BXM3

Radial displacement at end (m) 1.0 0.9999 0.9999 1.0

Meridional displacement at end (m) -0.3 -0.3 -0.3 -0.3

Rotation (radians) -0.01 - -0.0099 -
References

1. R.Roark and W.Y oung,'Formulas for stresses and strains, pp.448. LUSAS Results

Input data

X01D72A. DAT

X01D72B. DAT

X01D72C. DAT

X01D72D. DAT

(axisymmetry about the Y-axis)
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Example 1.7.3

Cooling Tower Subject To Wind Loading
Keywords

Fourier, Semiloof Shell, Face Loading, Curve Definitions, Curve Assignment,
Cartesian Set Cylindrical, Wind Loading

Problem Description

The effect of wind load on a cooling tower is modelled by a static analysis. For comparison, the
analysis is performed using both the solid Fourier ring element QAX8F and the Semiloof shell
element QSL8.

The pressure of the wind varies circumferentially, but is taken to be independent of the height
above ground. The distribution of the load is symmetric about the diameter 0-180R. This
simplifies the solution since only symmetric harmonics need be considered for the Fourier
analysis, and only half the cooling tower need be meshed by the QSL8 elements. The load
variation around the circumference is given in Figure 3.

Discretisation

The Fourier analysis utilises 10 elements to model the cooling tower length with 5 and then 10
harmonics taken to expand the variation of the load circumferentially. 10 QSL8 elements are aso
used to model the tower length, whilst 6 elements are used to model the circumferential section O
to 180R.

Geometry

The shell mid-surface is defined by the parabolic equation:

09,661

(1.7.3)

The overall height of the cooling tower is 330ft (100.584m) and has a constant wall thickness of
0.5833ft (0.1778m). The outside radii at the bottom and top of the tower are 136.96ft (41.745m)
and 87.4ft (26.64m) respectively.
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Boundary Conditions

The cooling tower is encastre at the base. Symmetry boundary conditions are applied to the
QSL8 mesh in cylindrical co-ordinates using transformed freedoms. Tangential displacements
and loof rotations are restrained.

Material properties

Y oung's modulus 4.320X10° psf,
20.68x10° Pa
Poisson’sratio 0.15

Theory

The original problem was solved using a finite difference solution of the shell differentia
equations, with the circumferentia variations modelled using a Fourier expansion. A fuller
descriptionisgivenin[1,2].

Note: the load was applied as a USER curve rather than using the Fourier coefficients given in
[2] to alow afairer comparison between the two anaysis types.

LUSAS Results

Figures 1 & 2 show both the initial mesh and the final deformed shape from perspective and
elevation views respectively. Figure 3 depicts the radial displacements for a node at the top of the
tower; the crosses represent results from the Fourier analysis, the solid line corresponds to the
shell analysis. The QSL8 radial displacements (Table 1) were obtained using option 115 to
output displacements and reactions in transformed directions. Figure 3 also details the variation
of wind load with circumference. Note that a positive face load acts in towards the surface.

Solution type Radial displacement at the top edge
QAXSEF (5 terms) -0.2564 (Node 42, 6=0°)

QAXS8F (10terms)  -0.2565 (Node 42, 6=0°)

QSL8 -0.2493 (Node 21)

References

1. Program Verification and Qualification Library, ASME Pressure Vessel and Piping
Division, Committee on Computer Technology, 1972.

2. Albasiny, E.L. and Martin, D.W.,Bending and Membrane Equilibrium in Cooling Towers,
Jour. Eng. Mech. Div., ASCE, EM3, 1967.
Input Data

X01D73A. DAT
X01D73B. DAT
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X01D73C. DAT

Note: The different results for taking 5, 10 terms of the Fourier expansion can be obtained by
changing the range of the harmonic series defined in the FOURIER CONTROL data chapter.
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Example 2.2.1

Groundwater Seepage Problem

Keywords
Groundwater, Seepage, Cofferdam

Problem Description

The problem considered in this example is the flow of groundwater beneath a cofferdam using a
potential formulation approach. Figure 1 shows the dimensions of the problem under
consideration.

Finite Element Model

The finite element mesh is shown in Figure 2, where 180 regular quadrilateral elements are used.
The thickness of the sheet pile wall has not been modelled as this is assumed negligible
compared to the overall dimensions of the problem. The sheet pile wall is represented by a
boundary where no flow occurs.

Material properties
Permeability Ky =Ky = 0.864 m/day

Boundary conditions

It is assumed that the boundary ABC (see Figure 1) isimpermeable as is the sheet pile wall EFG.
The pressure head in this case is the difference in height between AG and DF which is 3.0 m.
Arbitrarily setting ¢ = zero along DF, since the flow velocities depend only on the gradient of ¢
then ¢ = 3.0 along AG. Along ABC and on either side of the sheet pile wall it is required that
od/on = 0 (see theory section). Also symmetry conditions along CD require d¢/on = 0.

The total flow rate may be obtained by summing the nodal reactions across section AG or DF on
which the value of is prescribed.

Theory

The steady state behaviour of many physical phenomena can be described in 2-dimensions by the
following quasi-harmonic equation:

g@g@iﬂ%mé — (221)
Y
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where ¢ is the unknown function and Kx, Ky and Q are material parameters which can be
functions of x and y. A number of field problems are governed by (2.2.1) and the physical
interpretations of Kx, Ky and Q are listed on page 2.31 of the LUSAS User Manual.

Two main types of boundary condition are of interest;

(a) The value of the unknown to be specified at the noda points on the boundary,
0=0 D (2.2.2)

(b) That aboundary loading exists of the form,
KLO%%P)OHH»Q)—(I): (2.2.3)

in which g, and X are constants and Lx, Ly are the direction cosines between the outward
normal, n, and the x and y axes respectively.

Three different cases are now defined for boundary condition (b) assuming Kx = Ky =K.

XX
Casel.g=a =0 —KO 224
asel.q=a =N (22.4)

which implies the temp (/flow etc) gradient in a direction normal to the surface is zero i.e. this
portion of the surface is perfectly insulated (/impermeable).

XX
Case2.a=0 K— KX 2.25
ase 2. o = o} (22.5)

This states that a specified quantity of heat(/fluid), g, flows into the body per unit area of the
surface. Also known as the 'flux' boundary condition.

KK
Case3.q=0 Koy B BN (RRE,) (2.2.6)

The flow of heat (/fluid) from any point on the surface is directly proportiona to the differencein
the temperature (/potential) and the ambient temperature (/potential) ¢, Also known as the
convection boundary condition.

Groundwater flow is given by:

299 - av 227
= ?&fﬂym (227)

where S is the rate fluid is injected into an element per unit volume and dV/dt is the rate of
change in volume/unit volume in the element during flow. As stated previously (Case 1) the flow
velocity in the direction normal to an impermeable boundary is equal to zero. From (2.2.1) and
(2.2.7) we see a potential analysis problem reduces to a solution of the quasi-harmonic equation
with:

Q=S-dv/dt (2.2.8)

80



Example 2.2.1

although S and dV/dt have no physical interpretation in ideal fluid flow.

Solution comparison

Flow rate value qm3/day
Theory 8.6
LUSAS 84

Figure 3 shows a contour plot of the pressure head variation, thus each contour line is a line of
equal potential or equipotential line.

References

1. Hinton, E. and Owen, D.R.J. 'An introduction to Finite Element Computations, Pineridge
Press, 1981.

Input Data
X02D21A. DAT
I 8.0 m 10.0 m l
! !
G Ground level $= 3.0 A
Impermeable \
J0nm sheet pile
o $ = 0.0 e
]5 ® \\
1T E
35a \

Figurel. Groundwater flow beneath a coffer dam.
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Example 2.2.2

Steady State Thermal Analysis Of An Underground Tunnel

Keywords
Field, Steady State, Thermal Conduction, Tunnel

Problem Description

To determine the steady state temperature distribution in the rock strata surrounding an
operational underground rail tunnel.

Figure (1) shows a section of the Channel Tunnel at a distance of 32 km from the Dover
entrance. The surrounding rock mass consists of chak, chalk/marl and clay, the tunnel itself
being confined by the chalk/marl stratum.

The heat generated within the tunnel is assumed to act as aline heat source to the rock mass. The
origins of this heat source are considered to be the result of turbulent frictional contact at the
train/air and air/tunnel boundaries, increased air pressure within the tunnel, and the operating
temperature of the train itself.

In addition it is assumed that the sea bed is environmentally controlled at a temperature of 10.1
degrees, and that a geothermal gradient of 0.036 degrees per metre exists at this latitude.

Discretisation

The section through the rock mass is discretised using quadrilatera field elements (QDF8). The
finite element mesh is graded towards the tunnel opening in order to accurately model the local
temperature gradient anticipated in this region. The boundaries of the mesh are considered to be
sufficiently removed from the tunnel so as to be subject to environmental conditions only.

The materia properties for the rock strata are as follows:

Ky K, C
Chalk 10.58 7.958 2178
Chalk/Marl 7.642 7.642 2267
Clay 7.988 7.988 2353
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Boundary Conditions

Prescribed temperature conditions are imposed on the upper (sea bed) and lower mesh limits.
Free conditions are imposed a the verticd mesh boundaries in order to impose a zero
temperature gradient at these limits.

Theory

The heat flux input resulting from an operational tunnel is calculated on the basis of twelve trains
per 24 hours[1]. Thetotal heat generated per metre of tunnel in thistimeis 10,500 KJ.

Two heat flux input conditions are considered. The first (gross heat flux) assumes that all the
heat generated within the tunnel is available to increase the temperature of the surrounding rock.
The second (net heat flux) assumes that a percentage of the total heat generated will be
responsible for an increase in the train operating temperature. The net heat flux condition is
calculated as a function of the number, type, and mass of each carriage, and the initia train and
tunnel lining temperatures [1].

Gross heat flux condition q = 19.89 KJ per hr, per sg.m.
Nett heat flux condition g =8.999 KJ per hr, per sg.m.

The steady state temperature distribution is governed by the two dimensional quasi-harmonic
equation [2]

dT
0&@%&%7 —U — (2.2.9)

Ky Ky  arethe orthogonal thermal conductivities

where

C isthe material heat capacity
T isthe local temperature variable

A simplified analytical solution may be obtained by the 'mirror image method' [1]. The steady
state temperature at a point P which is at distances R1 and R2 from the heat sink and source
respectively may be cal culated from the expression:

Q
T@%R@ G— (2.2.10)

Tp isthe steady state temperature at point P

where

To isthe steady state temperature at the boundary

84



Example 2.2.2

Comparison

The temperature distributions (in degrees Celsius) obtained from the LUSAS steady state thermal
analyses (gross and net heat flux input in the absence of a geothermal gradient) are compared to
the analytical solution below.

Gross Heat Flux Nett Heat Flux
Node Distance(X) Analytical LUSAS temp Analytical LUSAS temp
temp temp
42 20.0 24118 24.997 16.487 17.791
44 60.0 15.606 17.179 12.592 14.252
46 160.0 11.401 13.231 10.688 12.465
48 280.0 10.556 12.313 10.310 12.050
50 400.0 10.334 12.074 10.206 11.942
52 700.0 10.177 11.956 10.131 11.888

Note: The analytical solution does not account for any stratification in the surrounding rock
mass.

References

1. Kent,A.J. 'The English Channel Tunnd : An investigation of rock and lining temperatures,
Internal thesis CP/838/83, Dept. Civil Engineering, University, College of Swansea, U.K.
(1983).

2. Hinton, E. Owen, D.R.J. A simple guide to finite elements Publisher. Pineridge press,
Swansea, U.K.

Input Data
X02D22A. DAT
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Example 2.2.3

Conductance Between A Plate And Half Cylinder

Keywords
Conductance, Thermal Surfaces, Environmental Nodes, Field

Description

Heat flows across the gap between a half cylinder and a plate, figure 1.The gap conductanceis a
linear function of gap opening and heat is alowed to flow to the environment. The problem is
analysed with and without the use of environmental nodes for comparison. The first case
corresponds to an infinite heat sink surrounding the structures and the second to an enclosure.

Discretisation

The plate and cylinder are modelled with QFD4 plane field elements and the element mesh is
shown in figure 2.

Geometry
N
8.0
—*
2.0 environmental nodes
¥ N
2.0 ¢
%
to_ ] | B
100°
[ N|
’ 20.0 7

Figure 1 - Initial geometry
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Boundary conditions
Theinternal surface of the cylinder is at 400 degrees and the bottom of the plate at 100 degrees.

Material properties
Solid conductivity = 80 W/m/degrees
Gap conductance
Conductance for closed gap ko = 100 W/m/degrees
Variation of conductance with gap opening, dk/dL = -12.5 W/m/m/degrees
Maximum limit for thermal link length, Lmax =8 m
Surface properties
Conductance to environment = 2.0 W/m/degrees

Environmental temperature = 0.0 degrees

LUSAS results

Smooth temperature profiles should result with hot spots occurring at the point of closest
approach of the plate to the half cylinder.

Figures 3 and 4 show the temperature distribution of the analysis with and without the
environmental nodes. It is noticeable that the point at which the links from the plate intersect
with the cylinder results in afluctuation in the isotherm.

Figure 5 illustrates the change in element connectivity when environmental nodes are included in
the solution. Introducing these environmental nodes has the effect of increasing the surface area
of the cylinder which is at the temperature of the inner surface. That is, they have the effect of
insulating the surface. Thisis expected since heat cannot be lost from the solution, but must flow
from the cylinder to the plate via the environmental nodes (the temperature distribution is seen to
be dightly different in Figure 4 which shows that more of the cylinder remains at a higher
temperature). The heat flows through the plate for the different analyses are:

Without environmental nodes= 39418 W
With environmental nodes = 43967 W

For this example, the introduction of environmenta nodes increases the heat flow by
approximately 10%

Input data

X02D23A. DAT
X02D23B. DAT
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Figure4 Temperaturedistribution with 2 environmental nodes
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Example 2.3.1

Cylinder With Temperature Dependent Conductivity

Keywords
Steady State, Conductivity

Description

This problem involves a hollow cylinder with prescribed temperatures around the inner and outer
circumferences. It is required to find the steady state temperatures at intervals of 1/5 of the
cylinder thickness. The convergence rate and CPU time for HF8 and QXF8 element
discretisations using both MNR and NR solution procedures are also compared. This problem is
an application of LUSAS to solve steady state heat conduction problems with temperature
dependent materials.

Discretisation

15 Solid HF8 elements are used to model a 15R dlice of the cylinder, figure 3. 5 QXF8 elements
are used for the axisymmetric analysis, figure 2.

Geometry

\

Figurel

Inner radius, a 0.041666 ft
Quter radius, b 0.083333 ft
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Material properties

Co 50.0 BTU/hr.ft. F
C;, 0.5BTU/hr.ft. F
K(t) Cy+Cit

Boundary conditions

Prescribed temperature T=100RF around inner circumference r=a, and T=0RF, around outer
circumference r=b.

Reference

1. Schneider, P. J,,Conduction Heat Transfer, Addison-Wesley Publishing Co., Inc., Reading,
Mass., USA, 2nd Printing, 1957.

LUSAS results

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6

REFERENCE 100.0 79.2 59.6 40.2 20.8 0.0
HF8 100.0 79.222 59.567 40.298 20.720 0.0
QXF8 100.0 79.190 59.490 40.206 20.665 0.0

Comparison of NR and MNR

NR CPU MNR CPU
HF8 4 67.46 10 88.02
QXF8 4 20.70

The QFX8 element solution failed to converge using MNR after 20 iterations. At the time of
ceasing computation the MNR solution appeared to be exhibiting a very sow rate of
convergence.

Input Data

X02D31A. DAT
X02D31B. DAT
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Example 3.1.1

Frequency Analysis Of A Simply Supported Beam

Keywords
Eigenvalue

Description
Determine the first three fundamental frequencies of the following simply supported beam.

Length, | 2.032m
Area, A 2.58x10°% m?

——=% J
i a o
r i

Discretisation

Model the complete beam to include both symmetric and non-symmetric modes.

Geometric properties

Moment of inertia, | 0.55497E-06 m*
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Material properties

Y oung's modulus, E 30 x10° kN/m2

Poisson's ratio, v 0.3

Density, p 7780 kg/m®
Theory

The fundamental frequencies may be determined from the following relationships;

o (KEyﬁQ;( 4 f o (311)

R, XK 2K eigenvelue
K, K g

m¥ mass/ unit length ¥ KA

Comparison
Mode Exact LUSAS
f, 28.763 28.7663
f, 115.05 115.400
f4 258.86 263.016
References

1. W.C. Hurty and M.F. Rubinstein, Dynamics of structures, Prentice-Hall, 1964. Chap. 5, p
203.

Input data
X03D11A. DAT
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Example 3.1.2

Frequency Analysis Of A Sprung Mass
Keywords

Eigenvalue

Description

Determine the natural frequency of vibration (f) of a mass, m, set on a rubber mount system with
adtiffnessK.

Mass (m) = 0.00647668 Ib-sec? /in.
Stiffness of mount (K) = 48.0 Ib/in.

1‘3

Discretisation

Model with single joint element

Theory
The natural frequency may be determined from the following relationships;
K o)
0= ,[— frequency =— (3.1.2)
m 2n
RRR2 R eigenvalue
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Comparison

Exact LUSAS
Frequency (Hz) 13.7014 13.7014

References
1.  W.C. Hurty and M.F. Rubinstein, Dynamics of structures, Prentice-Hall, 1964.

Input data
X03D12A. DAT
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Example 3.1.3

Linear Buckling Analysis Of A Simple Portal Frame

Keywords
Linear Buckling

Problem Description

Determine the first two critical loads for the rigid jointed plane frame detailed in Figure 1.
Compare thefirst critical load with atheoretical solution.

Discretisation

Model the rigid jointed plane frame using a coarse mesh of three BM3 or six BMI21 beam
elements and a finer mesh of nine BM 3 elements (see Figure 1).

Geometry

The rigid jointed plane frame has dimensions as shown in Figure 1 with all members having a
0.1m sguare, solid section.

Material properties

Young's modulus 20.0x10° N/m?
Poisson’sratio 0.3

Boundary conditions
The frame isrigidly supported at the base nodes, 1 and 19 (see Figure 1).

Theory
The theoretical solution may be obtained from the following equations [1].

Py =K2El, , Kl/tan(kl) =-6l1, /b, (3.1.3)

Inserting the value of k determined from the second equation into the first gives the critical load
as

Pe = 12940 N
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Comparison

The results from theory, the coarse mesh and the fine mesh are compared in the table below

Analysis Per(N)
Theory 12940.0
Course BM3 14431.8
BMI21 14880.8
Fine BM3 12957.4
References

1. S.P. Timoshenko and J. M. Gere, "Theory of Elagtic Stability."2nd ed. McGraw-Hill
Kogakusha Ltd., 1961, pp 149-150

Input data
X03D13A. DAT
X03D13B. DAT
X03D13C. DAT
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Example 3.3.1

Cantilevered Thin Square Plate

Keywords
Eigenvalue, Guyan Reduction

Description

A square plate with side length 10m and uniform thickness 0.05mis restrained against trandation
and rotation along the X=0 edge, figure 1. It is required to find the lowest 6 eigenmodes of the
plate (shown in figures 2 to 7) using:

i) Subspace iteration
i) Guyan reduction with 12 automatic master freedoms
iii) Guyan reduction with 20 automatic master freedoms

iv) Guyan reduction (with automatic masters) as a first approximation to the subspace
iteration vectors

V) Guyan reduction with 20 specified master freedoms

vi) Guyan reduction (with specified masters) as a first approximation to the subspace
iteration vectors

This example compares the convergence of Guyan reduced solutions with that of full subspace
iteration analysis as master density is increased. Further, it illustrates the use of a Guyan reduced
solution as a starting point for subspace iteration analyses.

Discretisation

The whole plate is discretised using a regular mesh of 16 (4*4) quadrilateral 8-noded Semiloof
shell elements (QSLS8).

Material properties

Young's modulus 200.0x10°% N/m?
Poisson’sratio, v 0.3
Mass density, p 8000 Kg/m®
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Theory

Thin plate predictions of the natural frequencies of a cantilevered square plate of side length (a)
and thickness (t) are given by the following relationship:

12
22 2
fy=— s i Jﬁa (33.1)

For a Poisson’sratio of 0.3, the values tabul ated below may be obtained:

Mode &%j f; i (H2)
1 3.494 0.421
2 8.546 1.029
3 21.440 2.582
4 27.460 3.306
5 31.169 3.753
6 54.440 6.555

Lusas results

The results obtained from the LUSAS analyses are presented below, and are compared with
those givenin [2]:

Mode Number 1 2 3 4 5 6

Reference solution 0421 1029 2582 3306 3.753 6.555
Subspaceiteration eigenvalue evaluation 0.415 1.013 2502 3.233 3.684 6.422
Guyan reduction 12 automatic masters 0416 1.025 2797 3552 4121 9.399
Guyan reduction 20 automatic masters 0415 1.014 2583 3293 3.908 7.336

Guyan reduction with automatic master
approximation

Guyan reduction 20 specified asters 0415 1.014 2519 3274 3.746 6.762

Guyan reduction with specified master
approximation

0415 1.013 2501 3233 3.684 6.422

0415 1013 2502 3233 3.684 6.422

Note

1. The relatively poor solutions obtained using automatic master selection with Guyan
reduction are due to the fact that the K/M ratios are constant for all internal nodes.

2. The subspace iteration procedure converges in less iterations when the eigenvectors of the
Guyan reduction analysis are used as starting iteration vectors.
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References

1. Abbassian,F., Dawswell,D.J., Knowles,N.C. "Free Vibration Benchmarks', Tests 73 and 74,
NAFEMS Report FVB, EAD 6.11.87, (November 1987), Report prepared by W.S.Atkins
Engineering Science for National Agency for Finite Element Methods and Standards.

2. Blevins, R.D., "Formulas for Natural Freguency and mode shape’, Publishers Van-
Nostrand, (1979).

3. LEISSA,A.W., "Vibration of plates', National Aeronautical and Space Administration,
N.A.S.A Report SP-160, (1969)

Input Data
X03D31A. DAT
X03D31B. DAT
X03D31C. DAT
X03D31D. DAT
X03D31E. DAT
X03D31F. DAT
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WODE 3
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Example 3.4.1

Bifurcation Of A Double Arch

Keywords
Total Lagrangian, Large Rotation, Eigenvectors Of Stiffness Matrix

Description

Two orthogonal arches, joined at their crowns, are subject to a point load applied in the vertical
direction. The structure is loaded to close to its critica load and the eigenvectors corresponding
to the buckling modes are evaluated.

Finite Element Model

The arches are modelled by 60 BTS3 beams, which are pinned at the supports.

Elevation

Plan

Geometry
Radius of the arch =5

Angle subtended by arch = 180 degrees

Beam geometric properties
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Area =01

2nd moment of area about y-axis l,, =0.4E-5

2nd moment of area about z-axis I,, =0.8E-5
Torsion stiffness Kt =0.1406x10™
Shear areaAs, =01

Neutral axis eccentricity e, =0.0

Material properties

Young's modulus 210.0x10°
Poisson’sratio 0.0

Load
Load applied in (downwards) vertical direction at joint of archesin three

Steps

step1 - 1.5*10°
step 2 - 3.0v10°
step 3 - 4.042%10°

Boundary Conditions

Beam ends are free to rotate but are restrained against trandationsin the x, y and z directions.

Solution Comparison

The eigenvalues extracted at near the critical load are:

Mode Eigenvalue
1 -0. 398217
2 -0. 398217
3 1025.41
4 13100.2
5
6

13347.1
14828.8
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At acritical load corresponding to a bifurcation or limit point, the determinant of the stiffness
matrix is zero or equivaently one or more of the eigenvalues of the stiffness matrix are zero. The
negative eigenvalues indicate that the load applied is dightly above the critical buckling load but
these numbers are close enough to zero to assume that the buckling load is given by the load
applied. The eigenvector corresponding to the lowest eigenvalue is the buckling mode. In this
instance, the double symmetry of the combined arches leads to a compound bifurcation involving
two buckling modes as shown in figure 1. Further higher modes are also presented in figure 1.

Input Data
X03D41A. DAT

Eigenmode 4 N

Figurel Eigenmodesof Double Arch
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Example 3.5.1

Natural Frequency Analysis Of A Solid Cantilever

Keywords
Eigenvalue, Natural Frequency

Description

To determine the first four natural frequencies of the cantilevered beam shown in Figure 1.

Finite Element Model

The cantilevered beam consists of four HX20 3-D solid elements with the element and node
numbering detailed in Figure 2.

Material properties

Young's modulus 30.0x10° N/m
Mass density 5.0 kg/m

Boundary conditions

All nodesin the y-z plane at x=0 are fully restrained resulting in an encastre support condition.

Theory

The natural frequencies of beams with various end constraints can be found in [1]. The natural
frequencies, w, of a cantilevered beam may be determined from the following equation:

2(\El
WRE( )n 7 (35.1)
where the Bl factors for the first four natural frequencies are given by
Bl, =1.872
B|2 =4.694
Bl; =7.855
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Bl, =10.9955

The other terms appearing in the equation for the natura frequencies are, for this particular
example

E = Young's modulus = 30,000 N/m?
| = second moment of inertia= 8.33333E-02 m*
m = mass per unit length =5.00 Kg/m

| = beam length =10m

Modelling Hints

This simple example has been chosen for two main reasons. The first is to enable a comparison
to be made with theoretica values, and the second is to highlight LOCAL CARTESIAN
COORDINATES, COPY NODES and EIGENVALUE CONTROL facilities. Comments on the
use of these commands have been included in the data file printout.

The first side of the beam is defined by using QUADRILATERAL SPACING and SIDE
POINTS. The mid-height and full height nodes are described by defining a LOCAL
CARTESIAN COORDINATE system about these heights and using COPY NODES to copy a
repetitive pattern of nodes to a new position and orientation. In this case from the lower surface
to the mid-height and full height. These coordinates are then transformed to the global system by
using the command GLOBAL CARTESIAN COORDINATES.

It must be noted that because of the regular geometry, a more convenient method of generating
the nodal coordinates, would be by using the INCREMENTAL line generation facility.

eg. NODE COORDINATES
FIRST1 0 0 0
INC 10 0 05 3
INC 30 05 (3
INC 9 0125 )

Solution Comparison

Mode 1 2 3 4
Theory 0.6179 0.6179 24.27 24.27
LUSAS 0.6168 0.6168 24.00 24.00

Note:

The coefficients (Bl ) and (Bl ) defined in the theory section refer to modes in 2-D, and are
repeated in the 3-D case. So modes 1 and 2 in 2-D correspond to modes 1, 2, 3 and 4 respectively
in3-D.
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References
1. Hurty, W.C. and Rubinstein, M.F., 'Dynamics of Structures, Prentice-Hall Inc.

Input data
X03D51A. DAT
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Figurel. Cantilever beam made up of 4 HX20 type dements.
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Example 3.6.1

Buckling Analysis Of A Rectangular Panel
Keywords

Buckling, Eigenvalue, Semiloof
Decription

Determine the critical buckling load for a rectangular panel subject to in-plane compressive
loading. The dimensions of the panel are asfollows:

Length, a 2m
Width, b 0.5m
Thickness, t 0.001 m

The panel is subjected to an in-plane compressive load acting aong the short

edges.

Discretisation

The whole structure is discretised using 16 Semiloof shell elements (QSL8) and is simply
supported on al sides. The in-plane compressive loading is applied as a series of concentrated
loads acting in the plane of the structure parallel to its long sides. A total load of 24 N is applied
to each loaded edge.

Material properties

Young's modulus 70x10°
Poisson’ sratio 0.3

Theory

For a given integer side length ratio (a/b) and number of half waves in the buckled configuration
(m), the critical buckling load is given by the expression
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2
Dipla
NIyt =+—nb2 ah (3.6.1)

For 4 half waves and aside length ratio of 4, (3.6.1) therefore reduces to

4B
Nyerit = 7 (3.6.2
b
Where
3
Et
D= — (3.6.3)
12f 02|
The critical buckling stress is given by the expression
N
Ot Xtc”‘ (3.6.4)
or, combining (3.6.2)-(3.6.4) by
4
(3.6.5)

ot 2 v |

Comparison

The results obtained from the LUSAS analysis are compared to the theoretical results. From
(3.6.5) the theoretical critical buckling stressis given by the expression

t 2
O5i 3.62E05

¥

or
X 1013 MN / m?

Xcrit

Results from the LUSAS analysis were as follows:

Eigenvalues after 11 iterations

Mode Eigenvalue Load factor Error norm

1 19.1316 19.1316 0.678980E-01

The critical buckling load and corresponding stress are
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N, i K 191316 248 459184 N

R, B 4591584/ (Area) X 4591584/ (05* 0.001) K 0918316 MN / m?

References

1. 'Formulas for stress and strain’, Fourth Edition, R.J.Roark, Publisher. McGraw-Hill Book

Co. Kogakusha Co. Ltd. Tokyo (1965).

Input data
X03D61A. DAT
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Example 3.7.1

Eigen-Analysis Of A Cooling Tower

Keywords
Fourier, Semiloof Shell, Eigenvalue

Description

The first four modes of a cooling tower are extracted. Both Fourier and Semiloof elements are
used and the results compared.

Discretisation

The cooling tower is modelled initially by 10 QAX8F Fourier elements. The circumferential
number of harmonics is varied from O to 6 with an eigenvalue analysis performed for each
harmonic.

The QSL8 elements are utilised with two meshes; 10 elements are used in both to modd the
length of the cooling tower, whilst 12 and 48 elements respectively are used to represent coarse
and fine modelling of the circumference.

Geometry

The shell mid-surface is defined by the parabolic equation,

ol 371
09.661 579

The overdl height of the cooling tower is 330ft (100.584m) and has a constant wall thickness of
0.5833ft (0.1778m). The outside radii at the bottom and top of the tower are 136.96ft (41.745m)
and 87.4ft (26.64m) respectively.

Boundary Conditions

The cooling tower is assumed to be encastre at the base.

Material properties

Young'smodulus  432.0 x10° psf, 20.68x10° Pa
Poisson’ s ratio 0.15
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Mass density 8000 Ib ft3, 128,147.7 kg m®

Theory

The eigenvalues obtained from the two analysis types are compared.

LUSAS results

Figures 1 and 2 show the first four eigenvectors from the coarse and fine shell analyses
respectively. The extracted frequencies from the Fourier analysis are detailed in Table 1 below.

Table 1: Fourier frequencies

Eigenvalue Harmonic Number
Number 0 1 2 3 4 5 6
1 0.1855 0.0788 0.0423 0.0332 0.0296 0.0283 0.0333
2 0.2805 0.1633 0.0889 0.0483 0.0360 0.0378 0.0387
3 0.2978 0.2544 0.1683 0.1052 0.0679 0.0514 0.0530

The eigenvalues obtained from the Fourier analyses indicate that the lowest four modes
correspond to the n=5,4,3,6 harmonics. However, the frequencies obtained from the coarse shell
analysis (see Table 2) produce higher frequencies and ordered the harmonics as n=4,3,5,6. The
inability of the structure to deform into its true eigenmodes is due to the coarse mesh
discretisation and the resulting stiffer structural response. A refined QSL8 mesh produces
answersthat are in closer agreement with the Fourier analyses and predict a harmonic order of n=
5,4,3,6.

Table2: Frequency comparison

Harmonic Number Fourier Course shell Fine shell
n=3 0.03318 0.03423 0.03356
n=4 0.02958 0.03319 0.02994
n=5 0.02829 0.03637 0.02871
n=6 0.03333 0.03788 0.03394

Using the QSL8 elements, two repeated eigenvalues are obtained for each mode which are out-
of-phase with each other (not always by 90 degrees). For a cylindrical structure there are an
infinite number of eigenvectors for each harmonic, but al can be modelled by two out-of-phase
eigenvectors. Relative solution times for the analyses are detailed in Table 3, from which it may
be seen that the Fourier analysis compares favourably with the shell analyses.

Table 3: Solution times
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Fourier (QAX8F) QSL8(coarse) QSL8(fine)
1 7 52

The mode number n can sometimes be very large for thin shell structures, and in these instances,
the Fourier solution quickly provides a sweep of selected harmonics n. If the precise eigenvalues
from a shell analysis are required, the knowledge provided from the Fourier analysis can be used
to decide on the mesh discretisation for a complete model of the structure or on the selection of a
segment of the shell to which symmetric and asymmetric boundary conditions can be applied in
turn.

References

1. Program Verification and Qualification Library, ASME Pressure Vessel and Piping
Division, Committee on Computer Technology, 1972.

2. Albasiny, E.L. and Martin, D.W., Bending and Membrane Equilibrium in Cooling Towers,
Jour. Eng. Mech. Div., ASCE, EM3, 1967.

Input Data
X03D71A. DAT
X03D71B. DAT
X03D71C. DAT
X03D71D. DAT
X03D71E. DAT
X03D71F. DAT
X03D71G DAT
X03D71H. DAT
X03D711 . DAT

Note: The different results for taking 0,1,2.. terms of the Fourier expansion can be obtained by
changing the range of the harmonic series defined in the FOURIER CONTROL data chapter.
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Example 4.1.1

Geometrically Nonlinear Analysis Of A Cantilevered Beam

Keywords
Updated L agrangian, Geometric Nonlinearity

Description

Determine the large deformation response of the thin, cantilevered strip, shown in Figure 1,
subject to a point load at the tip.

Discretisation

Model the cantilever using eight, equal length, two dimensional BM3 beam elements (see Figure
1).

Geometry

The cantilever has a width of 1 inch, a depth of 0.1 inches and the nodal line is assumed to
coincide with the centroid of the cross section. Thus, each element has the following geometric
properties;

Cross-sectional area =0.1inch?
Second moment of area about thelocal z axis = 0.8333E-4 inch®

First moment of area about the local z axis =0.0inch®

Material properties

Y oung's modulus 120.0x10° Ib/in?
Poisson’sratio 0.3

Boundary conditions
The cantilever isrigidly supported at node 1 (see Figure 1).
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Theory

This problem is one of the classical elastic problems which have analytical solutions based on
elliptical integrals. Reference 1 gives further details on this method of solution and also presents
atable of tip displacements and rotations for various load levels.

Comparison

A comparison of the theoretical and LUSAS results is given in Figure 2. Theta is the rotation at
thetip inradians. Figure 3 shows the deformed configurations for various PL**2/El values.
References

1. TIMOSHENKO, S.P. and GERE, J.M. Mechanics of materials. Van Nostrand Reinhold Co.,
S.l. ed., 1973.

Input Data
X04D11A. DAT
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bl »«x S\EI = 0

bl xx S\EI =T

bl xx S\EI =S

bl xx S\EI = 2

bl xx S\EI = TO
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Example 4.1.2

Bifurcation Of Simple Bar-Spring System

Keywords
Bar, Spring, Bifurcation

Description

The bar-spring system shown in Figure 1 is subjected to an axial load. The system is stable until
the horizontal load reaches the buckling load. At this point, the solution is forced to branch on to
an unstable path and the end of the bar that is attached to the spring begins to move verticaly. By
continuing the solution further, the vertical displacement of the end of the bar reaches a peak and
then reduces towards zero. The bifurcation path is followed until a second bifurcation point is
encountered, Figure 2.

7
1000A EA =5x10

N

Figure1: Bar-spring sysem

Discretisation

The system consists of a horizontal bar element BAR2 with area A=1.0 connected to a vertical
spring element INT3 at one end.

Material properties

BAR3: Young'sModulus = 5E8 KN/m?
Poisson’sratio =0.0
INT3:  Spring stiffnesses =0.0 (x direction)
= 1.5 (y direction)
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Theory

The equilibrium equations for the system can be written as:

/L Ou A
I)J | (4.1.1)
/Lw +A

where L is the length of the bar and N the axia force in the bar; the vertical spring stiffnessisk.
Au and Aw are increments in the displacements shown in Figure 1. The bar-spring system is
stable until the stiffness matrix becomes singular. This occurs when N = -Lk, which is equa to
3750 for the parameters used in this problem. Asthe axial force in the bar is given by F=EA/L*u,
the axial displacement at the loaded end at the bifurcation point can be computed as u=0.1875.

Comparison

Figure 2 shows the stable primary solution path which was obtained by carrying out a nonlinear
analysis with bracketing. It can be seen that the vertical displacement was zero along this path.
The bifurcation point that was bracketed is shown to be at the point F=3749.7, w=0, u=0.187506
which agrees very closely with the theoretical values. The unstable secondary (or bifurcated)
path is al'so shown in the figure and it can be seen that the vertical displacement peaks at a value
of just under 2500 while the horizontal load varies between values of +/- 3750. This path was
obtained after arestart analysis by utilising the branching option within the nonlinear control data
section of the data file. The solution is continued aong the unstable path until a second
bifurcation point is encountered, Figure 2. It is only possible to bracket one bifurcation point
therefore the solution aong this unstable path cannot progress any further.

References

1. Non-linear Finite Element Anaysis of Solids and Structures (volume 1), M.A. Crisfield.
John Wiley & SonsLtd., England (1991).

Input Data
X04D12A. DAT
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Example 4.3.1

Free Vibration Analysis Of A Rotating Blade.

Keywords
Centripetal Stiffening, Rotating Machinery, Total Lagrangian, Geometric
Nonlinearity

Description

Determine the free vibration response of a cantilevered plate rotating at 20000 rpm. The
dimensions and details of the blade are shown in Figure 1.

Discretisation
Model the blade structure using four BSL4 Semiloof beam elements (see Figure 2).

Geometry

The blade structure has the following geometric properties for each element
Cross-sectional area = 6.4516E-5 m?
Second moment of area about thelocal y axis = 3.46859E-11 m*
Second moment of areaabout thelocal zaxis = 3.46859E-9 m*

Torsional constant = 3.50327E-9 m4
First moment of area about thelocal y axis =oom?
First moment of area about the local z axis =0.0m
Product moment of area =00m*

Material properties

Y oung's modulus 72.4072x10° N/m?
Poisson’sratio 0.3
Density 2726.0 kg/m®
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Boundary conditions
The bladeisrigidly supported at the root, node 1 (see Figure 2).

Theory

To analyse this problem correctly a nonlinear solution procedure is adopted to account for the
large displacements [1]. These geometric nonlinearities are handled via the Tota Lagrangian
formulation. In addition to the usual large displacement and initia stress stiffness matrices a
further contribution to the tangential stiffness due to centripetal acceleration is included. This
additional stiffness matrix is called aload correction stiffness matrix.

Comparison

Table 1 compares the natura frequencies of the fundamental mode for various element meshes
for an angular velocity of zero, 20000 rpm and 20000 rpm with the load correction stiffness
matrix due to centripetal acceleration neglected (Lusas Solver option 102). As can be seen from
Table 1, the effect of neglecting the load correction tiffness matrix due to centripetal
acceleration results in errors of approximately 20% in the calculation of the natural frequency of
the fundamental mode of vibration.

Table1: Natural Frequenciesof vibration

Frequency, Hz
Load Load
correction correction
Element Integration rule stiffness stiffness
included neglected
Mass Stiffness
Mesh Type matrix matrix ®=0 ®=20,000 rpm ®=20,000 rpm
4x1 HX16 2x2x2 2x2x2 225 380 458
4x1 QSL8 5 point 5 point 208 358 440
5x2 HX20 3x3x3 3x3x3 216 345 454
5x2 QsL8 5 point 5 point 211 366 447
5x2 HX20 2x2x2 2x2x2 216 375 454
4 BSL4 3 3 209 367 448
10 BSL4 3 3 209 367 448
5x2 HX20 3x3x3 3x3x3 219 347 456

References

1. M. E. Honnor and P. Lyons, "Free Vibrations in Rotating Machinery.", Finite Element
AnalysisLtd Internal Report No. FEAL401, 1984.
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Input data
X04D31. DAT
g"/
1 é/
3.96"
| 0.64"

{ 1
4(;? —/

A’Q = 20.000 rpm

Figurel Problem Geometry and Material properties
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Example 4.3.2

Curved Cantilever Under Concentrated End Load

Keywords

Nonlinear, Co-Rotational, Total Lagrangian

Description

A curved cantilever is subjected to a transverse concentrated load applied at the free end. This
problem involves a three dimensional response to a geometrically nonlinear problem. Large
displacements and rotations occur in this example and the beam element used, BTS3, is based on
a co-rotational formulation. The beam is aso modelled with continuum elements where a Total
Lagrangian formulation is used. Linear material properties are assumed.

Discretisation

The curved cantilever is modelled with:
i) 8 straight linear BTS3 elements of equal length.

ii) 16 HX8M solid elements of equal length and unit square cross section.

Geometry
Figure 1 showstheinitial geometry of the beam P=0.0

Radius of curvature = 100.0
Co-ordinates for centre of curvature = (0.0, 0.0, 100.0)
The co-ordinates at the ends of the beam centre line are:
Fixed end= (0.0, 0.0, 0.0)
Free end =(70.71, 0.0, 29.29)

Sectional properties for beam elements:

Axx =10
Asy =10
Asz =1.0
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lyy =8.3333E-2
lzz =8.3333E-2
Kt =14.06E-2

The cantilever is of unit square cross section and Kt is evaluated from:
Kt =0.1406a"

where aisthe length of the sides of the cross section.

Boundary conditions
Fully fixed at one end.

Material properties

Young's modulus 10x10°
Poisson’sratio 0.0
Loading

For the beam elements, total concentrated loads of 300, 450 and 600 are applied incrementally at
the free end. For the solid elements, the total load of 600 is applied in 12 equal steps. The loads
are applied in the vertical (Y) direction.

Lusas Results

Figure 1 shows the deformation of the beam elements for the loading considered. A table of tip
displacements is given below including a comparison with the reference solutions. For the
HX8M elements the average of the 4 end node displacementsis quoted.

Tip digplacement (u,v,w) for curved cantilever

Load level
300 450 600
Simo and V u-Quoc -11.87,40.08,-6.96  -18.39,48.39,-10.67 -23.48,53.37,-13.50
Cardona and Geradin -12.07,40.35,-7.15  -18.60,48.59,-10.91 -23.67,53.50,-13.74
BTS3 -12.16,40.47,-7.16  -18.78,48.76,-10.93  -23.91,53.71,-13.77
HX8M -11.83,40.05,-7.06  -18.29,48.29,-10.79  -23.30,53.20,-13.60

Comparison

The results obtained for this example are very sensitive to the value taken for the torsional
constant Kt. The actual value used for executing this test is seldom given in published results.
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The effective value of Kt for the solid elements is dightly higher than that used for the beam
edements; this results in a stiffer response when using HX8M elements. For the anaysis
involving BTS3 eements, large load steps were taken to demonstrate the robustness of the
consistent co-rotational formulation. Load steps of this size can cause negative pivots to occur
during the iterative solution procedure. However, these negative pivots are not present when a
solution has converged. In practise, smaller load steps should be used to ensure a more stable
sequence of iterations.

References

1. SIMO,J.C. and Vu-Quoc, L., A Three Dimensiona Finite Strain Rod Model. Part II:
Computational Aspects, Comp. Meth. in Appl. Mech. and Engineering, Vol 58, pp 79-116,
1986.

2. CARDONAA., GERADIN, M. A Beam Finite Element Non-Linear Theory with Finite
Rotations. Int. Journ. for Num. Meth. in Eng., Vol 26, pp 2403-2438, 1988.

Input data
X04D32A. DAT

b = €00
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pelokweq 2psbe nugsk jogq
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Example 4.5.1

Hinged Cylindrical Shell Under Central Point Load.

Keywords
Total Lagrangian, Geometric Nonlinearity, Snap Through

Description

Determine the nonlinear |oad/displacement response of a cylindrical shell of the form shown in
Figure 1, when it is subjected to a point load acting vertically downwards at its centre.

Discretisation

As the loading and boundary conditions are symmetric, only 1/4 of the shell is analysed, using a
4x4 mesh of QSL8 Semiloof shell elements (see Figure 1).

Geometry
The geometry of the hinged cylindrical shell is shown in Figure 1.

Material properties

Young'smodulus 3103 N/mm?
Poisson’ sratio 0.3

Boundary conditions

The shell structure is hinged along the left-hand side, nodes 1 to 9, restrained from crossing and
rotating about the yz plane, nodes 73 to 80, restrained from crossing and rotating about the xz
plane, nodes 18, 27, 36, 45, 54, 63 and 72, and totally restrained at its centre, node 81. The z
direction isrestrained to permit the application of prescribed displacements.

Theory

This example is commonly referred to as a snap through problem which has been studied by
Sabir and Lock [1]. Due to the large displacements and this snap through effect the problem must
be analysed nonlinearly using the Total Lagrangian geometric nonlinearity formulation.
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Comparison
A Comparison of the results obtained by LUSAS with those of [1] are shown in Figure 2.

References

1. Sabir, A.B., Lock, A.C." The Application of Finite Elements to the Large Deflection
Geometrically Nonlinear Behaviour of Cylindricad Shells. Variationa Methods in
Engineering. Ed. Brebbiaet al. Pub. Soton. Univ. Press. 1972.

Input data
X04D51A. DAT
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Example 4.5.2

Clamped Spherical Cap Subject To A Point Load

Keywords
Total And Updated Lagrangian, Axisymmetric Solid, Axisymmetric Shell

Description

This geometrically non-linear example consists of a clamped spherical cap subject to apoint load
at the apex. Figure 1 shows the geometry and loading of the problem under consideration. For
each mesh the analysis is performed using a total Lagrangian formulation and an updated
Lagrangian formulation.

Internal Radius R 22.27 inches
Thickness of shell t 0.41 inches
Semi-angle C) 26.67 degrees

!
| ¢

R
\ ®

|

Figurel.

Discretisation

The spherical cap is modelled with five QAX8 elements for the first mesh and twelve BXS3
elements for the second mesh. Figures 2 and 3 show the mesh for QAX8 and BXS3 elements
respectively.
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Material properties

Young's modulus 10.0x10° N/m?
Poisson’sratio 0.3

Boundary conditions
The edge of the cap isfully fixed against translation and rotation.

Theory
See[2].

Solution comparison

Apex Load P QAX8 Load P BXS3
Deflection Updated Total

Lagrangian (N) Lagrangian (N)
0.01 9.576 9.689
0.02 14.00 14.28
0.03 16.75 17.06
0.04 19.29 19.53
0.05 22.02 22.17
0.06 25.01 25.09
0.07 28.18 28.20
0.08 31.34 31.37
0.09 34.28 34.42
0.10 36.83 37.16
0.11 38.94 39.46
0.12 40.81 41.32
0.13 43.30 43.21
0.14 48.40 46.56
0.15 59.18 54.13
0.16 78.58 69.32

References

1.  M.E. Honnor, 'Axisymmetric thin shell element’, FEAL interna report FEAL503.

2. W.E. Haidler, JA. Stricklin and F.J. Stebbins, 'Development and evauation of solution
procedures for geometrically nonlinear structural analysis by the direct stiffness method',
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AIAA/ASME 12th Structures Struct. Dynamics and Materials Conference, Anahein,
Cdifornia.

Input Data

X04D52A. DAT

X04D52B. DAT

Input data for axisymmetry about the Y -axis:

Note: Include OPTION 47 for axisymmetry about the X-axis.
Note: Include OPTION 47 for axisymmetry about the X-axis

[FSE— :L:S:[QQ —
‘\““;::::::I‘\\\\\?
«\\\\\\::::::]

EICNBE S
EIUIL6 6eWweuf weay 2pomiud
6l6WeUL SJUQ UOQE UNWPELa™

142



Example 4.5.2

T I - N S

EICNBE 3
EIUIEE 6]6WeUs wea2p 2pomiud
elelleUL gUQ WOUE UNWpeka”

0°T7e0 - BX23

0°Tv0 - )

6vxs

07730 -

07700 -

LOLVI FYCEVYUCIVN

07080 CEOWELEIC VOUI IMEVBILA

0°0€0 -

AQ3X JAT3AAL d33430TIOM

0°0v0 -

07030 -
rovD V. VbEX

0°0 L L L L L L L I
0°0 0°70 0°S0 0730 070 0°20 0°eo 0°\0 0780

CIYWbED 2bEBICYI 2HEFT 2NBIECL 1O COWCEMLIBYLED OVD
(rovD - DEEFECLIOWN BE2bOW2E)

143



Verification Manual

Example 4.5.3

Large Displacement Of A Hyperbolic Paraboloid

Keywords
Total Lagrangian, Large Rotation, War ped Elements

Description

The hyperbolic paraboloid tests the large rotational and translational behaviour of a structure
with an initial mesh of distorted and warped elements. The paraboloid is supported on two
inwardly sloping rollers about which concentrated moments are applied. The sloping supports
provide membrane restraint only, but alow large rigid body motion under the moment loading.

Finite Element Model

Taking advantage of symmetry only one quarter of the paraboloid is modelled. Symmetry
conditions are imposed along two of the edges while the third edge is free. The paraboloid is
supported on inwardly sloping hinged rollers as shown below. A 12x4 graded mesh (see Figure
1) comprising QT $4 elements compares directly with the results presented in [1].

z4

Figurel
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Geometry
The full problem geometry is:

Material properties

Young's modulus 10.0x10°
Poisson’sratio 0.0

Boundary Conditions

a - 10.0
c= 5.0

h =-0.2

d = 0.88388

Roller supports alowing rotation about and transl ation along the transformed axes.

Solution Comparison

LUSAS results are detailed for node 13. The deformed shape is shown in Figure 2.

Support displacement along transfor med freedom

Load 0.5 1.0 15 2.0 2.5 3.0

3.5 4.0

Ref. 18567 5.1118 9.0081 128471 159420 17.8904
LUSAS 1.8574 51081 89973 128238 159011 17.8400

194014 20.2423
19.3280 20.1348
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Load 0.5 1.0

Support rotation

15 2.0 2.5 3.0 3.5 4.0

Ref. 34.32 74.49
LUSAS 34.36 74.54

116.85 160 20755 24400 29243 352.79
11643  160.83 207.23 24354 291.02 346.95

References

1. Stander N, Matzenmiller A, and Ramm E. An assessment of assumed strain methods in
finite rotation shell analysis. Engineering Computations, VVol. 6, pp58-66, 1989.

Input Data
X04D53A. DAT

Plan View

End View

Grading of Mesh for Hyperboalic Parabaloid
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fnitial
configuration

Load step 3

Load step 5

Load step 9

Figure2 Deformation of hyperbalic paraboloid
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Example 4.5.4

Large Displacement Of A Hemispherical Shell

Keywords
Co-Rotational Geometric Nonlinearity, L arge Rotations

Description

A hemispherical shell is subjected to point loads as shown in Figures 1 and 2. In addition to rigid
body rotations, both membrane and bending strains contribute significantly to the radial
displacement at the loading points.

Finite Element Model

Taking advantage of symmetry only one quarter of the hemisphere is modelled. Symmetry
conditions are imposed along two of the edges while the other edges are free. The hemisphereis
discretised with TSR6 facet shell elements as shown in Figure 1.

Figurel
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Geometry
The full problem geometry is:

Radius = 10

18° Thickness = 0.04
v =03
/ E - 6825107 ,
[ symm.
symmhﬁ
5 -7
/ F=1
=1 Z free

Figure2

Material properties

Young'smodulus, E  68.25x10°
0.3

Poisson’sratio, v

Boundary Conditions
Due to the symmetry of the problem only ¥ of the hemisphere is modelled. Two of the edges are

free while symmetry isimposed at the other two edges.
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Solution Comparison
LUSAS results are compared with [1] in the following figures; the fina deformed mesh is shown
in Figure 6.

References

1. Stander N, Matzenmiller A, and Ramm E. An assessment of assumed strain methods in
finite rotation shell analysis. Engineering Computations, VVol. 6, pp58-66, 1989.

Input Data
X04D54. DAT

Large displacement of a hemispherical shell
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Large displacement of a hemispherical shell
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Example 4.5.5

Optimisation of cable forces in cable stayed bridge

Keywords
Geometric Nonlinearity, Optimisation, Target value

Description

A geometrically nonlinear cable stayed bridge is optimised to minimise the cable forces subject
to limits in the tower sway and deck displacement under self weight loading. Additionally, The
forcein apair of cablesis specified using the target value loading type.

The horizontal movement at the top of the tower Uy is limited to a displacement of 1cm whilst
the vertical displacements at Wz and W must be greater than or equal to zero.Finally, the cable
forcesin the pair of cableslabelled T; is set to 38,000kN.

Finite Element Model

The simple cable stayed bridge is shown in figure 1.

Una
LE
T
V ’
£ We We
7 < Ua<0m
W = 0m
yx ) We = Om
X : T,=38,000kN
Figurel
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Geometry

The problem geometry is:
Ima

v

Oom

v

A
\ 4
A
v
A
v
A

10m 10m 10m 10m

10m

Figure2

Material properties

Young'smodulus, E 210 x10° kN

Poisson’sratio, v 0.3

Density, p 7850 kg/m®

Boundary Conditions

The base of the towers are fully restrained and the ends of the spans are supported in the veritical
direction.

Solution Comparison

Value Target LUSAS
Ua <0 -0.0013
Ws >0 0.0041
We >0 -0.66x10*
T, 38,000 38,000
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References

Input Data
X04D55. DAT
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Example 5.1.1

Elastoplastic Analysis Of A Cantilever Bar

Keywords
Elastoplasticity, Strain Hardening, Load Cycling

Description

The cantilever bar shown in Figure l1a is subjected to a uniaxia load which aternates from
tension to compression. The nonlinear behaviour of the material is given in Figure 1b as the
stress/strain relationship with strain hardening. The required output is the |oad/displacement
history.

Finite element model

A single BAR2 element is used to model the complete cantilever. The bar is assumed to be
perfectly straight and is not subject to buckling or any other geometrically nonlinear effects.

Geometric properties

Length 10 mm
Cross-sectional area 1 mm?

Material properties

Young'smodulus, E  1.0x10° N/mm?
Plasticity modulus, E,  2.0x10* N/mm?
Yield stress 400 N/mm?

Loading condition

A displacement condition at end 2 of u, (Figure 14) is prescribed using load type PDSP. This
displacement varies from + 0.14 mm to -0.08 mm.

Solution Comparison

The results in the form of the load/displacement curve are given in figure 2, where RX1 is the

reaction a node 1 and the positions marked on the graph are the displacement increments with
the corresponding values of RX1 and u given in Table 1. This example of a uniaxia load shows
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how the solution converges to the exact value instantaneously. It should also be noted how if the
loading/ unloading procedure were continued within the limits stated above, the model would
converge to its linear elastic form, represented by the line 9-13 of the graph in Figure 2, as
further strain hardening occurs.

Input Data
XO5D11A. DAT
y.v
A1 2
=
/ | —_———  X,Uu
-~
~
5 L =10 mm
i
- +
A
R -
2 ] A
> u
= b2y
~
€)
g
Vo A
/ E=1.0E405 N/ 2
=]. mm
a0
Ep- E/S

= -(E_/E
o Epl(l ( p/ )

(o ]]

(b)

Figurel. (a) Cantilever beam subjected to an extension (b) Nonlinear stress/strain relation for
material moddl.
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Example 5.1.2

Uniaxial Tension/ Compression Cycling

Keywords
M odified Von Mises

Description

A bar is subjected to cycling under uniaxia stress conditions, which causes yield in both tension
and compression. The material is modelled by a Modified von Mises yield criterion which allows
for different yield properties in tension and compression. Additionally, both the compressive and
tensile strain hardening characteristics may be different.

Finite Element Model

One plane stress element.

Geometry

Length =10

Width =1 P
Depth =1

Material properties
Y oung's modulus = 2000

Poisson'sratio =0.0
Yield stress oo 0 oy 2
Hardening H°=150 H' =100
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Boundary Conditions
Freeto pull-in at laterally supported end

Solution Comparison

The load/displacement relationship is calculated by prescribing the load which uniquely
determines the plastic strain developed to sustain it. Asthe plastic strain is accumulated, the yield
stress in both tension and compression is changed according to the hardening characteristics of
the material in each sector.

The plastic stress multiplier, A, is given by:

AgP

e _

A= (5.1.1)

12
where:

AgP effective plastic strain = (x%t KRS 0)/ HY , where H¥ is the hardening gradient and

m% ) the current yield stress and o may be the tension or compression value.

o

deviatoric components of the yield function

211
333 000

12
333

2
p=|T3s - — 000 (5.12)
000000
000000

000000

- 000

ﬁ pressure dependent components of the yield function

(5.1.3)

|1 >
I
'

[} current stress vector
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and

(5.1.4)

)
Q
|
=
=
I
N[

1
2

1
L 2
When considering the X ., component of the stress vector to be the only non-zero value, the
denominator of (5.1.1) reduces to:

T 2
~ 2ct
w00 Hhwl ) 619
The incremental plastic strain vector is then computed from:
AgB+y @E ’ (5.1.6)

Using equations (5.1.1), (5.1.5) and (5.1.6) the computation of the A¢,, component of 5g
reduces to: )

AR, A‘g&%_ﬁy’té( )) (5.1.7)

fwal f

The compressive and tensile yield stresses are a function of the plastic strain, which may be
calculated for one dimensional problems from

t
o
= % if 6, istensile (5.18)
oo
2 | X*%t if 6, istensile (5.1.9)
H
The yield stresses are then computed from:
o% ' H™ (5.1.10)
i -
GV% H (5.1.11)

Summing the elastic and plastic strain components, the total axial strain is,
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nn
exfde=tAD | Qgim% (5.1.12)
38

The results can be calculated by using (5.1.8) or (5.1.9) to calculate the total plastic strain. Once
the plastic strain is known, the yield stresses are defined using (5.1.10) and (5.1.11). The axia
plastic strain isthen given by (5.1.7) and the total strain by (5.1.12).

Load = - C t p p T
o ¢ Ae 0y Oy Aey, Lejy S

20.000 0.0000 0.0000 30.000 20.000 0.0000 0.0000 0.0100
25.000 0.0500 0.0500 37.500 25.000 0.0589 0.0589 0.0714
30.000 0.1000 0.0500 45.000 30.000 0.0589 0.1178 0.1329
29.000 0.1000 0.0000 45.000 30.000 0.0000 0.1178 0.1324
-45.000 0.1000 0.0000 45.000 30.000 0.0000 0.1178 0.0954
-65.000 0.2333 0.1333 65.000 43.333 -0.1081 0.0097 -0.0228
-64.000 0.2333 0.0000 65.000 43.333 0.0000 0.0097 -0.0223
43.333 0.2333 0.0000 65.000 43.333 0.0000 0.0097 0.0314
50.000 0.3000 0.0667 75.000 50.000 0.0786 0.0883 0.1133

Exact agreement is obtained from LUSAS. The load/displacement history is shown on figure 1.
To prevent convergence difficulties, the stress is relaxed from the yield surface prior to applying
alarge stressreversal.

Input Data
X05D12A. DAT
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Example 5.1.3

Uniaxial Cycling Elastic-Damage Analysis

Keywords
Damage, Cyclic Loading

Description

A bar of elastic material is subjected to uniaxial compressive load cycling with an increasing
stress level. A damage criterion for the material is specified so that progressive degradation of
the elastic Young's modulus takes place as the analysis proceeds. As an elastic material is
defined, zero strains are produced when the bar is stress free. Under this stress free state the
stress/strain curve returns to the origin.

Discretisation
A single BAR2 element of length 20mm and unit cross section is used to represent the bar.

Material properties

Young's modulus = 2E3 N/mm?
Poisson’sratio =00
Damage property data (Simo [1,2]):

Initial damage threshold, r, =0.44
Congtants, A =B =1.0

Boundary conditions
Fully fixed at one end, lateral displacements restrained at the other.

Loading
Cyclic vertical compressive load at the free end.

Theory
The damage parameter, d, for the Simo [1,2] model is given by:
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dise B ) s ) (5.1.13)
lt

Using the specified damage properties this reduces to:

dre- (044 (5.1.14)

For the uniaxial case, the complementary energy norm, r, , reduces to:

, 1
f = H’E (5.1.15)

The axia strain isthen given by:

0

&= —
EY

where EldE ) (5.1.16)

More information on the damage models available in LUSAS can be found in the LUSAS
Theory Manual.

Solution comparison

Using the above eguations strains can be computed for each step of the analysis:

Load G I d £

Loading 20 20 0.447214 0.007188 0.010072
30 30 0.670820 0.206118 0.018894

40 40 0.894427 0.365189 0.031505

Unloading 30 30 0.894427 0.365189 0.023629
20 20 0.894427 0.365189 0.015753

0 0 0.894427 0.365189 0.000000

Loading 40 40 0.894427 0.365189 0.031505
60 60 1.341641 0.594097 0.073909

Unloading 50 50 1.341641 0.594097 0.061591
0 0 1.341641 0.594097 0.000000

Loading 60 60 1.341641 0.594097 0.073909
80 80 1.788854 0.740463 0.154120

85 85 1. 900658 0. 767916 0. 183124

90 90 2. 012461 0. 792466 0. 216832

Unloading 85 85 2. 012461 0. 792466 0. 204786
0 0 2. 012461 0. 792466 0. 000000
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The theoretical assumptions for this damage model are such that, after the onset of damage, no
further damage can occur until the maximum stress previously attained is exceeded. Hence the
table shows that the damage parameter remains constant during unloading and reloading until a
stress higher than the previous maximum is attained. The results for the LUSAS analysis
reproduce these values exactly and are plotted in Figures 1 and 2.

References

1. Simo, JC. and JU, JW. Strain- and stress-based continuum damage models - |I.
Formulations. Int. Journ. Solids and Structures, Vol. 23, No. 7, pp821-840, 1987.

2. Simo, JC. and JU, JW. Strain- and stress-based continuum damage models - |II.
Computational aspects. Int. Journ. Solids and Structures, Vol. 23, No. 7, pp841-869, 1987.
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Example 5.1.4

Uniaxial Cycling of a Piecewise Multi-Linear Elastic

Material

Keywords
Multi-linear M aterial, Cyclic L oading

Description

A bar comprising amulti-linear elastic material is subjected to three different loading sequences:

1. Increasing monotonic
2. Decreasing monotonic
3. Random cyclic sequence

The material model is such that stress/strain behaviour is completely recoverable.

Discretisation
A single BAR2 element of length 100 and unit cross section is used to represent the bar.

Material properties

The piecewise linear material properties are defined by a series of stress/strain points which
resultsin a segmental curve defining a seris of Y oung’s moduli, Table 1.

Strain -0.01 0.00 0.02 0.025 0.065

Stress -15.00 -10.00 10.00 20.00 30.00

Tablel Stress/strain input data defining piecewise E values
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35.00 +
30.00 A
25.00 A

Stress

20.00 A
15.00 A
10.00 +
5.00 ~

faWatal

5.0@.CV 0.020
-10.00

-20.00 -

0.060
Strain

-0.020 0.040 0.080

Figurel Stresystrain input data defining piecewise E values

Boundary conditions
Fully fixed at one end, lateral displacements restrained at the other.

Loading

The three loading sequences described above are applied via an axial concentrated load at the
free end as shown in Table 2:

Increment number
'S-e‘;id;;‘ge 1 2 3 4 5 6 7
1 -17.50 -15.00 -12.50 -10.00 -6.25 -1.25 0.00
2 35.00 30.00 25.00 20.00 15.00 10.00 5.00
3 35.00 -10.00 30.00 25.00 -15.00 20.00 15.00

Increment number (cont’d)

Loading

o 8 9 10 11 12 13 14
1 5.00 1000 | 1500 | 2000 | 2500 | 3000 | 35.00
2 0.00 1.5 625 | -1000 | -1250 | -1500 | -17.50
3 -17.50 -6.25 5.00 11250 | -1.25 10.00 0.00

Table2 Load sequencesfor applied concentrated load
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Results

L oad ascending or der

Results 1 2 3 4 5 6 7

Stress -17.50 -15.00 -12.50 -10.00 -6.25 -1.25 0.00

Strain -0.01500 | -0.01000 | -0.00500 | 0.00000 | 0.00375 | 0.00875 | 0.01000
L oad ascending order (cont’d)

Results 8 9 10 1 12 13 14

Stress 5.00 10.00 15.00 20.00 25.00 30.00 35.00

Strain 0.01500 | 0.02000 | 0.02250 | 0.02500 | 0.04500 | 0.06500 | 0.08500

Table3 Stresg/strain resultsfor all tests

Each test yielded identical results for stress/strain, convergence was achieved in 1 or 2 iterations,
results are displayed in Table 3 and have been verified via hand calculations.

Input Data
X05D14A. DAT
X05D14B. DAT
X05D14C. DAT
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Example 5.2.1

Buried Pipe With Soil-Pipe Interface Modelled Using 2d
Interface Model

Keywords
Elasto-Plastic, Friction

Description

This example (figure 1) consists of an elastic pipe buried in a homogeneous and elastic soil. The
interface between the pipe and soil is modelled using an elasto-plastic interface material. Three
cases of interface friction are considered:-

(i) frictionless slip (tan¢g = 0.001),
(i) stick (tang = 2),
(iii) frictional dip (tand = 0.25).

Discretisation

The discretisation (figure 2) is similar to that used in [1]. QPM8 elements are used to discretise
the pipe, soil and interface.

Theory

The interaction between the soil and pipe is governed by a frictional type law i.e. bond between
the pipe and soil is maintained by africtional force and once this is overcome debonding and dlip
will occur. This friction/dlip behaviour is modelled using an elasto-plastic interface model, with
yielding (slip) defined using the Mohr-Coulomb criterion [2] defined as

‘[:+d¢n (5.2.1)
where 1 maximum shear stress,
c stress normal to the soil/pipe interface,
c cohesion,
¢ friction angle.
Comparison

Figure 3 is the deformed mesh for the frictionless dip analysis. A large amount of diding is
visible in the interface. Figure 4 shows the shear stress distribution along the pipe-soil interface.
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References

1. DESAICS, ZAMANM.M., LIGHTNERJG. and SIRIWARDANE,H.J. Thin-layer
element for interfaces and joints. Int. J. Num. Anal. Meth. Geomech., Vol.8, 19-43, 1984.

2. OWEN,D.R.J. and HINTON,E. Finite elements in plasticity: theory and practice. Pineridge
Press, Swansea, UK, 1980.

3. KATONA,M.G. A simple contact-friction interface element with applications to buried
culverts. Int. J. Num. Anal. Meth. Geomech., Vol.7, 371-384, 1983.
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X05D21A. DAT
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Figure 1 Buried Pipe Example
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Figure 2 Finite Element Mesh
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Example 5.2.2

Elasto-Plastic Analysis Of A Thick Cylinder Under Internal

Pressure

Keywords
Plane Strain, Cylinder, Elasto-Plastic, Pressure

Description

An infinitely long thick cylinder of internal and external radii 100 mm and 200 mm respectively
subject to an increasing internal pressure

Discretisation

Plane strain conditions are idealised, the global Z axis being coincident with the axis of the
cylinder. One symmetric quarter of the structure is idealised using 30 quadrilateral plane strain
(QPN8) elements. Symmetric conditions are specified on the straight line boundaries, and the
curved internal and external surfaces are unrestrained. The finite element discretisation is shown
in Figure (1).

The nonlinear material behaviour is modelled using a Von-Mises yield criterion and a perfectly
plastic post-yield response. The materia properties are as follows:

Young's Modulus = 21000dN/mm?

Poisson's ratio = 0.25
Yield stress = 24 dN/mm?
Theory

An increasing internal pressure is applied to the structure. The cylinder deforms elastically until
an internal pressure of approximately 12dN/mm? is reached. Beyond this pressure level the
cylinder behaves elasto-plastically. The spread of plastic deformation through the thickness of
the cylinder can be seen from the distribution of the hoop stress component with increasing load.

LUSAS Results

The progressive deformation of the cylinder is shown in Figure (2). Figure (3) shows the von
Mises stress distribution obtained from LUSAS as the internal pressureis increased.
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References

1

Owen, D.R.J, Hinton, E. Finite Elements in Plasticity: Theory and Practice Publisher.
Pineridge Press Ltd. Swansea, U.K. 1980. ISBN 0-906674-05-2

2. Hinton, E., Owen, D.R.J. An Introduction to Finite Element Computations. Publisher.
Pineridge Press Ltd. Swansea, U.K. 1979. ISBN 0-906674-06-9

3. Zienkiewicz, O.C.Z. The Finite Element Method, 3rd Edition. Publisher. McGraw Hill Ltd,
London, U.K. 1977. ISBN 0-07-084072-5

4. FEAL internal Report 'Plane Strain', FEAL708, Finite Element Analysis Ltd. Forge House,
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Input Data

X05D22A. DAT

Note: The load incrementation may alternatively be defined automatically using the following
NONLINEAR CONTROL INCREMENTATION and TERMINATION cards:

C Ref.factor Max.Factor change Iterative variation
INCREMENTATION 1 0.25 0

Cc Max.Factor Max.No.Increments

TERMINATION 0 5

100mm

Internal radlus =
= 200mm

External radius

Figurel
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Figure2

Load :as; 1 Load case 3 Load cusa'ﬁ
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Figure3
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Example 5.2.3

Nonlinear Stress Analysis Of A Two Span Reinforced
Concrete Beam

Keywords
Plane Stress, Concrete, Reinfor cement, Cracking
Description
Nonlinear plane stress analysis of areinforced concrete beam. The dimensions of the beam are as
follows:
Tota Length 1800 mm
Effective Length 1680 mm
Span 840 mm
Depth 80 mm
Breadth 60 mm

Reinforcement is provided at the upper and lower faces of the beam with an average cover of 3
mm. Both the upper and lower reinforcement arrangements consist of 4 bars with atotal cross-
sectional area of 50.4 sg.mm.

The beamis simply supported at its ends and centre, and a concentrated vertical load is applied at
each midspan point.

Details of the geometry and steel arrangement are shown in Figures (1) and (2).

Cross -section
P2 P12 60 mm
‘ 420 mm 840 mm ‘ 420 mm ‘
< < > oo oo
\ |
80 mm
X X
le le |
‘ 840 mm ‘ 840 mm ! Reinforcement

Figure 1: Geometry of reinforced concr ete two span beam, also showing beam cr oss-section.
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Centre
P2 jline
420 mm 420 mm !

l¢

_Y.

80 m{

Figure2: Dimensonsof left hand span of reinforced concrete beam. Symmetry meansthat only
one span of the beam needsto be analysed.

Discretisation

Owing to its symmetrica nature only one span of the beam is discretised. The finite element
mesh consists of 80 elements; 60 plane stress (QPM8) elements to represent the concrete, and 20
bar (BAR3) elements to represent the two layers of steel reinforcement.

The plane stress elements are integrated using a 9 point Gaussian integration scheme.

The constitutive behaviour of the reinforced concrete is modelled using the LUSAS nonlinear
material models 94 (nonlinear concrete) and 62 (elasto plastic Von-Mises) [1,2].

Material properties

94 | Young's modulus = 16680N/mm? Comp.strength = 32N/mm?
Poisson’sratio  =0.0 Shear retention  =0.5
Density =0.0 Tensstrength = 1.67N/mm?
Thermal Expsn. =0.0 Strain/peak stress = 0.0027
Hyst. damping =0.0 Softening param =35

62 Youngs modulus = 196000N/mm? Hyst.damping = 0.0
Poissonsratio  =0.0 Yield stress = 579N/mm?
Mass density =0.0 Slope(i) =1
Thermal expsn. =0.0 Limit(i) =100
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Support Conditions

Prescribed Boundary

Node Support Type Conditions
1 Roller FR
261 Restrained RR
262-73 Symmetric (C/L) RF

Notes:

The flexural steel reinforcement is represented by bar elements of equivalent cross sectional
areas. It should be noted that the superposition of the nodal degrees of freedom at the
steel/concrete interface assumes that a perfect bond exists between the two components.

Any deformation resulting from the self weight of the beam is neglected as being small
compared to that resulting from the applied load.

The effects of the shear reinforcement are not considered in the analysis.

Theory

The reinforced concrete beam analysed here formed part of an experimenta investigation
undertaken by Duddeck et a [3]. Under load the beam exhibits both flexural and shearing
deformation, and progressses from a well distributed cracking pattern to a local material failure
under the loads and at the middle support. The beam has been used as a benchmark test by many
research workersin the field of nonlinear concrete analysis [4].

LUSAS results

Figure (4) shows the load deflection responses obtained from linear and nonlinear analyses of the
beam. Figure (5) shows contours of principal stress at the initial loading stage and clearly
demonstrates the areas of tensile stress. Figure (6) shows the progression of the cracks through
the section of the beam asthe load isincreased.

References
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Ltd. Forge House, 66 High Street, Kingston Upon Thames, London, U.K.

3. Duddeck, H. Griebenow, Schaper, G. 'Material and time dependent nonlinear behaviour of
cracked reinforced concrete dabs IASS symposium, Nonlinear behaviour of reinforced
spatial structures, Vol.1, 103-133, (July 1978).

4. Abdd-Rahman, H.H. '‘Computational models for the nonlinear analysis of reinforced
concrete flexural slab systems. Ph.D. thesis, University of Wales, Department of Civil
Engineering, Swansea, (1982).
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Figure3: LOAD-DEFLECTION CURVE FOR DUDDECK’SREINFORCED CONCRETE
BEAM
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Figure4: DUDDECK’SREINFORCED CONCRETE TWO SPAN BEAM. PRINCIPLE
STRESSCONTOURSAT FIRST INCREMENT.
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Figure5: Crack pattern across one span of reinforced concrete beam. Load P=2.5kN. Crack
pattern from multi-crack concrete material mode 82.

Figure6: Crack pattern acrossone span of reinforced concrete beam. L oad P=5.0kN. Crack
patter n from multi-crack concrete material mode 82.

Figure7: Crack pattern acrossone span of reinforced concrete beam. Load P=10.0kN. Crack
pattern from multi-crack concrete material mode 82.

Figure8: Crack pattern acrossone span of reinforced concrete beam. Load P=12.5kN. Crack
pattern from multi-crack concrete material mode 82.

Figure6: Crack pattern acr oss one span of reinforced concrete beam. Load P=17.5kN. Crack
pattern from multi-crack concrete material mode 82.
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Example 5.2.4

Uniaxial Cycling Elasto-Plastic Damage Analysis

Keywords
Damage, Cyclic Loading, Plasticity

Description

A bar of elasto-plastic material is subjected to uniaxial compressive/ tensile load cycling with an
increasing stress level. A damage criterion for the materia is specified so that progressive
degradation of the elastic Young's modulus takes place as the analysis proceeds. The damage
model due to Oliver [1] is invoked which allows different damage thresholds to be specified for
tension and compression.

Discretisation
A single QPM4 element of length 10mm and unit width and depth is used to represent the bar.

Material properties

Young's modulus, E = 2E3 N/mm?
Poisson’ s ratio, v=0.0

Initial yield stress, Oyo =22 N/mm?
Hardening gradient, h = 100 N/mm?

Damage property data (Oliver):
Initial damage threshold, rp=0.44
Constant, A =044

C
Ratio of initial stresses that cause damage in compression/tension = —? Mnk2
d

Boundary conditions

The boundary conditions are such that lateral displacements are unrestrained while longitudinal
displacements are fixed at one end, Figure 1.

Loading

Cyclic vertical compressive/tensile load at the free end, Figure 1.
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Theory
The damage parameter, d, for the Oliver [1] model is given by:
dtexpnd O — (5.22)
o

Using the specified damage properties this equation becomes:

drexp0 il H Or—t (52.3)

10.44

For this example, the complementary energy norm, r, , reduces to:
, B
=P { W (5.2.4)

The parameter, B, isdefined as:

B:GO ] (5.2.5)
n

where for this example:

Y )
- < W> with <cw> {}?ﬁy (5.2.6)
oy © og
The plastic strain, Sgy , iscomputed using:
Oy Ph (5.2.7)
The axia strain, €y, isthen given by:
grae W P where 14 (5.2.8)

More information on the damage models available in LUSAS can be found in the LUSAS
Theory Manual.

Solution comparison

Using the above equations strains can be computed for each step of the analysis:
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Load Gyy B re d E 5 E W
20 20 1.0 0.447213 0.023202 0.000 0.010238
225 225 1.0 0.503115 0.178941 0.005 0.018702
25 25 1.0 0.559017 0.301322 0.030 0.047888
275 215 1.0 0.614919 0.399285 0.055 0.077889
30 30 1.0 0.670820 0.479282 0.080 0.108806
325 325 1.0 0.726722 0.545470 0.105 0.140751
35 35 1.0 0.782624 0.600883 0.130 0.173847
37.5 375 1.0 0.838525 0.647744 0.155 0.208228
40 40 1.0 0.894427 0.687714 0.180 0.244044
42,5 425 1.0 0.950329 0.722063 0.205 0.281456
45 45 1.0 1.006230 0.751776 0.230 0.320644
44,9999 49.9999 1.0 1.006230 0.751776 0.230 0.320644
0 0 1.0 1.006230 0.751776 0.230 0.230000
-20 -20 0.5 1.006230 0.751776 0.230 0.189714
-50 -50 0.5 1.006230 0.751776 0.180 0.079285
-60 -60 0.5 1.006230 0.751776 0.080 -0.040859
-70 -70 0.5 1.006230 0.751776 -0.020 -0.161001
-80 -80 0.5 1.006230 0.751776 -0.120 -0.281145
-90 -90 0.5 1.006230 0.751776 -0.220 -0.401288
-100 -100 0.5 1.118030 0.800230 -0.320 -0.570288
-99.9999 -99.999 0.5 1.118030 0.800230 -0.320 -0.570288
0 0 1.0 1.118030 0.800230 -0.320 -0.320000

The theoretical assumptions for this damage model are such that after the onset of damage, no
further damage can occur until the maximum stress previoudly attained is exceeded. The Oliver
damage model also alows some control over the damage threshold (by specification of the n
parameter), depending on whether the material isin tension or compression. For this example, it
can be seen from the table that the damage parameter remains constant between loads of -20 and
-90 as a result of specifying n=2. The results for the LUSAS analysis reproduce these values
exactly and are plotted in Figure 2.

References

1. Oliver, J, Cervera, M., Oller, S. and Lubliner, J. Isotropic damage models and smeared
crack analysis of concrete. Computer Aided Analysis and Design of Concrete Structures,
Edited by, Bicanic, N. and Mang, H., Vol. 2, 4th-6th April 1990.
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Input Data
X05D24A. DAT

Loadlng

Ai% Supports

Figurel. Supportsand Loading condition

Stress (N/mm2)
X E3

0.075

0.050

0.025

-0.60 -0.50 -0.40 £0.30 -0.20

Figure2. Stressv total grain - Sky components.

0.40
Strain
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Example 5.2.5

Thermally Induced Creep Of Internally Pressurised Hollow

Sphere

Keywords
Implicit, Creep, Viscous

Description

An internally pressurised sphere with a linear variation of temperature through its thickness is
allowed to creep over a period of 10%. The creep is defined using a variant of the eigth parameter
law.

Finite Element Model

10 axisymmetric elements are used to model the through thickness variation.

Geometry and loads
Internal radius 200

External radius 500

10°

il
)o_—-’
an——

l‘zoo n.sm

Face load of 30
Temperature gradient along sphere radius of T=333(1+100/R)
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Material properties
Young's modulus = 10000

Poisson'sratio =0.25

Eight parameter law (specialised form of)

ngmA~(-h/T
e=Ag't"e""
where A=3E-6, n=5.5, m=1, h=12500, T=temperature

Boundary conditions

Free to displace along radius of centre of sphere

Solution Comparison

The effective stresses at time 10™° at various radii are compared below with the NAFEM's target
solution. The solution is fully automatic with the initial step size evaluated from the first (static)
stress solution. Further time steps are calculated using criterion which limit the change in creep
strain across an increment. Figure 1 shows the variation of stresses with respect to time.

Radius NAFEMS LUSAS

205 11.47 11.54

350 17.61 17.81

495 21.10 21.07
References

1. NAFEMS sdlected benchmarks for material non-linearity (to be published)

Input Data
X05D25A. DAT
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EQUIVALENT STRESS

Variation of effective stress with time

45.00 g

40.
0.00 Legend

Reference solution
LUSAS

35.00

+
30.00

25.00

20.00

15.00 |

350

10.00 bR

5.000 r R 495
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0.0 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.0
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Example 5.2.6

Combined Plasticity And Creep Of Bar

Keywords
Implicit, Creep, Viscous, Plastic

Description

A bar is loaded from yield to a value of twice the initia yield stress and then unloaded back to
the original yield stress. The unloading takes place in the éastic regime so that there is no
additional plastic flow. However, the bar continues to creep since it is subject to stress.

Finite Element Model

A single plane stress element

Geometry
Bar length =10

cross sectional area= 1

Material properties

Young'smodulus = 2x10°
Poisson's ratio =03

Hardening =100

Power hardening law - time dependent form & = Ao Ntm

where A=1E-7, n=5, m=0.5
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Boundary Conditions

The element is restrained at one end in the axial direction, but it is allowed to pull-in to relieve
stress in the orthogonal direction.

Solution Comparison

Since the area of the bar is unity, the uniaxia stress s is equivaent to the applied load P. The
stress varies linearly, initially increasing to twice the yield stress over a period of 1 second and
then reducing back to the yield stressin 0.5 seconds.

PO+ () 0td< (5.2.9)
P () S
and the stress history is therefore,
oftho o Otd< (5.2.10)
oftho 1, 185 (5.2.11)
Where grg+c sincett  and assuming s, isconstant.

Considering the period for O<t<1, the rate of creep strain is

iBmt o, ) (5.2.12)

and integrating with respect to time, gives the creep strain as,

t
s%%mﬁﬁgi( a ) (5.2.13)
The plastic strain is evaluated from the strain hardening definition as,
2 %ﬂ (5.2.14)

and the dagtic strainis

& %” (5.2.15)

Summing the components, the total strain over the period 0<t<1 isthen,

1@ +e
_ toopt 5 1 (5.2.16)
—R&%ﬁr{]— ++61+(50+%§gﬁ%911 — -
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For the period 1<t<1.5 the prescribed stresses decrease. The new creep strain rate is then

iy, )5 -/ (5.2.17)

For simplicity the rate of decrease of stress 5, has been set to the minus of the maximum
attained stress ;. Integrating the creep strain over the period 1<t<1.5 yields,

. gig SOAOIOI58L (5.2.18)
37911693

and the total strain for the period 1<t<1.5is,

Jugie~ (1) 6 4672 . (5.2.19)
Eh693

Note: the solution produces strains of over 3 which are invalid in the context of linear
deformations. However, the purpose of the example is simply to demonstrate the integration of
combined creep and plastic material behaviour and to compare with an analytical solution
derived from the same assumptions as the implemented theory.

The LUSAS results are shown in Figure 1 and compare exactly with those computed by
equations (5.2.16) and (5.2.19).

Input Data
XO5D26A. DAT
Elasto-plastic creep with cyclic load

3.500
3.000 |
£ 2500}
o
C
+ 2.000
)
—
o 1.500
+
(o)
+ 1.000 t
Legend
0.500 Analytlical solutlon
LUSAS - every tonth polnt plotted +
0.0 — : L .
0.0 0.25 0.50 0.75 1.00 1.25 1.50
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Example 5.2.7

Extension Of A Double Notched Specimen

Keywords
Incompatible Elements, Plasticity

Description

A notched bar is stretched until the limiting load, following yield, is attained. Standard
(compatible) displacement based elements produce a load- deflection curve which increases
monotonically beyond the limit load, whilst the incompatible elements are able to capture the
true behaviour.

Finite Element Model

A rectangular mesh of 15*5 elements models one quarter of the structure. The bar is considered
to bein astate of plane strain.

Geometry
Length 30.0
Width 10.0
1

— j
p —
—
—
t—r - -—- == - === —{—
+— —
— =
\ pa ! —
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Material properties

Young's modulus 70.0

Poisson’sratio 0.3
Yield stress 0.243
Hardening 0.0

Boundary Conditions

Symmetry boundary conditions are applied along the edges. The notch is modelled by freeing the
displacements along its length.

Solution Comparison

The theoretical limit load is 5.94 x yield stress = 1.4434. Two solutions are illustrated, one for
the standard displacement elements and the other for the incompatible elements. The applied load
is calculated by the summation of the reactions along the extended edge. From symmetry, the
expected load is half that calculated for the full plate.

The initial mesh and support conditions are shown in the top diagram of figure 1. The two other
diagrams of figure 1 shown the distribution of yield and the equivaent von Mises stress at the
end of the fina loadstep, for the incompatible elements. Figure 2 displays the corresponding
yield and equivaent stress plots for the standard displacement elements. The yield zone for the
standard elements is less localised than that of the incompatible elements and is capable of
sustaining alarger load asis shown in figure 3.

References

1. Simo J.C., Rifai, M.S.,, A class of mixed assume strain methods and the method of
incompatible modes,Int. J. Num. Meth. Eng., 31, 385-405, 1991.

Input Data

X05D27A. DAT

The data file for the standard elements is obtained by substituting the element type QPN4 for
QPN4M in the above datafile.

194



Example 5.2.7

(In negative
x-directlon)

PDSP Loadlng

Initlal mesh and boundary condlitlions
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Outline of deformed mesh showing
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~— 8 CONTOURS OF SE
A 0.5571E-01
h—\\‘B_B__‘B——‘”) . B 0.1087
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D 0.2146
E 0.2675

Equivalent stress contours - Incompatible elements

Figurel Failure of Notched Bar (1)
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Outline of deformed mesh showing
ylelded gauss points - standard elements

L4 T

R

CONTOURS OF SE

A 0.5621E-01
B 0.1002
| p—D C  0.1449
0D 0.1881
E 0.2321

Equivalent stress contours - standard slements

Figure2 Failureof Notched Bar (2)
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1.500
-l
]
- 1,250 standard displacement elements - QPN4
°
o
; A A A i
2 1.000 f---=-5F---= Ay = =
- Incompatible elements - QPN4M
o
o
- 0.750

0.500

0.250

0.0 1 A1 1 Il J

0.0 5.00 10.0 15.0 20.0 25.0 30.0 35.0 X E-3

Stretch (End displacement/length)

Figure 3 L oad/Displacement Behaviour of Notched Bar
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Example 5.2.8

Plane Strain Limit Load Analysis of Granular Material

Keywords
Elasto-Plastic, Volumetric Crushing, Drucker-Prager, M ohr-Coulomb

Description

A strip of granular material compressed by arigid footing is analysed to determine its limit load.
Details of the problem can be found in Figure 9.

Strip of granular material

]

152 nﬂ_}: 1E2m/_ Rigid footing

i
< < e N N

8.84m 8.84m 8.84m 8.84m

| Region in which significant
plastic deformation occurs
Figure 9: Dimensionsof thegranular material for which thelimit load analysisiscarried out. The
dark shaded areais considered theregion where sgnificant plastic defor mation takes place.

The strip of granular material isin fact considered to beinfinitely long, so the vertical boundaries
at the edge of the specimen have been positioned such that their presence has aminimal effect on
the results.

The performance of three material models is examined — the Drucker-Prager material model, the
Mohr-Coulomb material model and the V olumetric Crushing material model.

Discretisation

Utilising symmetry about the centre plane, only one half of the problem in Figure 9 is meshed.
The strip itself is modelled using quadratic plane strain elements, QPNB. The finite element mesh
can be found in Figure 10.
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Figure 10: Finite dement mesh for thegranular material limit load analysis, showing supports
and loading.

Material properties

The material properties of the strip are defined using the Drucker-Prager material model in one
test, the Mohr-Coulomb material model in a second test and the Volumetric Crushing material
model in athird. Table 1 gives the Mohr-Coulomb material properties for thistest.

Table 1: Mohr-Coulomb material propertiesfor granular material limit load verification test.

Young’'s modulus, E Poisson’s ratio, v Angle of friction, ¢ Cohesion, c

206.8 MPa 0.3 200 68.94 KPa

Mohr-Coulomb material properties
The Mohr-Coulomb material properties can be found in Table 1.

Drucker-Prager material properties

In order to determine the appropriate Drucker-Prager parameters to use in this test it is useful at
this stage to probe the relationship between the Drucker-Prager and Mohr-Coulomb material
models.

The genera form of the Drucker-Prager yield function is given by

Fla,k) = aly + {3, - K (5.2.20)

where | 4 is the first stress invariant, J, is the second stress invariant and o and K are
constants that define the yield surface.

I = 0y + Oy + 05 (5.2.21)
1 2 2 2
J, = E (Gxx — Gm) + (ny - Gm) + (GZZ - Gm) + Txy + Tyz + Ty
(5.2.22)

198



Example 5.2.8

where o, = :—:;Il

(5.2.23)

The LUSAS Drucker-Prager material model has its yield criteria coincide with the outer apices
of the Mohr-Coulomb material model (see Figure 11). In this case, the yield function is given by

Feox) = % E - \/_ 6COS¢ —= ¢ (5.2.24)

- sing)
where P isthe angle of friction and < is the cohesion.
AGC)

Mohr-Coulomb Drucker-Prager
inner cone

Drucker-Prager
outer cone

Figure 11: Thetwo formsof the Drucker-Prager material model. Theouter cone coincideswith
theouter apices of the M ohr-Coulomb modd whiletheinner cone coincideswith theinner apices
of the M ohr-Coulomb mode!.

There is another form of the Drucker-Prager material model that coincides with the inner apices
of the Mohr-Coulomb model (Figure 11). This given by

2sing 6cosd
K) = 289 22
Rax) J3(3 + sin¢ 2" Ja@ + sng) (6229

It is possible to modify the outer Drucker-Prager cone in Figure 11 so that it coincides with the
inner apices of the Mohr-Coulomb model. This is achieved by modifying the angle of friction
and the cohesion used in (5) so that yield function for the outer cone form simulates the inner
form.

The first step is to compute values for o and K that represent the inner cone. Comparing the
inner cone formulation in (6) with the more general formin (1), leadsto

2sin¢ 6cosd

ki, = —— =% 2.
J3(3 + sng) " s s o

Qint =
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Next, by comparing the outer cone formulation in (5) with (1), oy and kint can then be used to
derive an angle of friction and a cohesion that simulates the inner cone. They are given by

&)‘int\/§

sng = ———— 5.2.27

d) 2 + O(.int\/g ( )

_ kinV/3(3 — sing) (5.2.28)
6cosp

In the computation of the cohesion in (9) the value of ¢» computed from (8) is used.

Applying this technique to the problem being investigated here, the angle of friction and the
cohesion that will simulate the inner cone form of the Drucker-Prager material model, using the
datain Table 1, are

o = 16.2 and ¢ = 54927 Pa (5.2.29)

It can be seen that the difference between the material propertiesin Table 1 and those in equation
(10) isquite significant.

Having shown how the LUSAS Drucker-Prager yield function can be adjusted to take different
forms, we can proceed to make a further adjustment for plane strain. A proposed modification,
corresponding to an adjustment of failure loads, is based on the following.

o = sin% and k = CCOSd) (5.2.30)

Using (1), (5) and (11), the angle of friction and cohesion that should be used in the LUSAS
Drucker-Prager model for plane strain are

o = 159° and ¢ = 53007 Pa (5.2.31)

A summary of material properties to use with the Drucker-Prager material model is given in
Table 2.

Table2: Material propertiesto be used with the LUSAS Drucker-Prager material mode.

Young's Poisson’s ratio, Angle of Cohesion, ¢

modulus, E v friction, ¢
Outer cone form 206.8 MPa 0.3 200 68 940 Pa
Inner cone form 206.8 MPa 0.3 16.20 54 927 Pa
Pmp‘;ﬁnp'a”e 206.8 MPa 03 15.90 53007 Pa
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Volumetric crushing material properties

The Volumetric Crushing material properties are computed to match the Drucker-Prager
properties. The yield function for the Volumetric Crushing material model is given by

o = %§TE§ - (ao + ap + a2p2) (5.2.32)

where S isthe deviatoric stress vector, L isgiven by

100000
010000
L -|001000 (5.2.33)
=" loo0o0200
000020
0000 0 2

P is the volumetric pressure and ag, &1, Ay are user defined constants. If the following
applies

8 + p + ap’ = O (5.2.34)

then the yield function in (13) resembles the basic von Mises yield criterion, where o is the

uniaxia yield stress. If we also assume infinitesimal strains then the volumetric pressure, P is
defined as

P = -1 ox + oy + 0y (5.2.35)
When both (15) and (16) apply the VVolumetric Crushing yield criteria can be re-expressed as

Jp - %(Sao ~ aly + azlf) =0 (5.2.36)
Taking the square of (1) we have for the Drucker-Prager yield function

3, - (K® = 20Ky + o%1F) = 0 (5:2.37)

By equating the Volumetric Crushing yield function in (17) with the squared Drucker-Prager
yield function in (18) the constants for the V olumetric Crushing model are given by

ay = k2 ay = 6ok, a, = 9a? (5.2.38)

If the inner cone form of the Drucker-Prager model is to be matched, then (6) should be used to
compute o and K whileif the plane strain form is to be matched then (11) should be used. The
Volumetric Crushing constants can then be computed from (19) using these values of ¢ and kK
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The remaining material properties for the VVolumetric Crushing model are

Bukmodulus K = —E = 1725 x 1 Pa

31-2v)

Shear modulus G = E - 7.962 x 10’ Pa

2(1+v)

Thetension cut off, P, is defined as alarge number, 1 x 10°Pa

A summary of the materia properties for the Volumetric Crushing material model can be found
in Table 3. To enable a comparison with the Drucker-Prager material model, the pressure-
logarithm of relative volume curve is defined as linear, see Table 3: Material properties for the
Volumetric Crushing materiad model that simulate the plane strain adjusted Drucker-Prager
material model.

Table3: Material propertiesfor the Volumetric Crushing material mode that smulate the plane
grain adjusted Drucker-Prager material modd.

Drucker- Bulk Shear
Prager Modulus, Modulus, Constant Constant Constant Tension
match K G ao a; a, cut off, pc

Inner cone 1725MPa  79.62MPa 4.509GPa 47.61KPa 0.1257 1.0 GPa
Planestrain  1725MPa 79.62MPa 4.192 GPa 45.10 KPa 0.1213 1.0GPa

Table4: Datafor the pressure-logarithm of relative volume curve.

In (V/Vo) p
Start point 0 0
End point -1x10-4 17.25 KPa

Loading

A compressive prescribed displacement is applied to the node at the centre of the rigid footing in
the vertical direction. Thisis shown on the mesh in Figure 10. This vertical displacement is then
linked to remainder of the nodes underneath the footing via constraint equations. In this way
perfect roughnessis ensured. A total prescribed displacement of 1.25m is applied.
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LUSAS Results

Figure 12 shows results that are obtained from the Mohr-Coulomb, the Drucker-Prager and the
Volumetric Crushing material models. On the same graph are limit analysis solutions from
Terzaghi and Prandtl. The graph shows that all three material models have produced limit loads
that lie within or are close to the boundaries of the two analytical solutions. The models have
therefore returned acceptable limit loads.

In this test the outer cone form of the Drucker-Prager model produced a limit load of
approximately 2.5 MPa. Both the inner cone form and the plane strain adjusted form produce
results that are much closer to the analytical solutions. Since the outer cone form represents
triaxial compression thisillustrates that care is needed in identifying the dominant stress state and
adjusting the Drucker-Prager material parameters accordingly.

Comparing the adjusted LUSAS Drucker-Prager results with those from the LUSAS Mohr-
Coulomb model shows that the plane strain adjustment has brought the results closer to the
Mohr-Coulomb results, but indicates that adjustment could be refined further for this particular
problem, However, since the stress combination in thistest is not simple, further refinement may
not be feasible or straightforward.

Considering the Volumetric Crushing material model, results from both the inner cone and the
plane strain matched models lie closer to the Mohr-Coulomb results than the Drucker-Prager
results do. However, the Volumetric Crushing model produces results that are softer than both
models. The latter is due to the non-associative flow rule that the Volumetric Crushing model
uses.

Input Data

Drucker-Prager : XO5D28E. DAT, XO05D28F. DAT, X05D28G. DAT
Mohr-Coulomb : X05D28H. DAT

Volumetric crushing : X05D281 . DAT, X05D28J. DAT

References
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————— LUSAS - Volumetric crushing (inner)

Figure 12: Variation of pressure underneath the footing against applied displacement. Volumetric
crushing key: ps—matched with plane strain Drucker-Prager, inner —matched with Drucker-
Prager inner cone.
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Example 5.2.9

Plane Strain Analysis Of Slope Stability Limit

Keywords
Elasto-Plastic, M ohr-Coulomb, Associative/non-associative Flow

Description

In this analysis gravity is increased in vaue until the slope collapses. The larger the fina value
above the actua value of gravity the safer the slope. The problem is modelled using plane strain
elements. The analysis is run twice, once using associative plastic flow properties and then for
non-associative plastic flow.The non-symmetric solver is used for the non-associative flow
solution.

Discontinuity \\\ 30m
surface

40m

‘

\ 4

A

75m

Figure 13: Dimensons of dope.

The strip of granular material isin fact considered to be infinitely long, so the vertical boundaries
at the edge of the specimen have been positioned such that their presence has a minimal effect on
the results.

Discretisation

The strip itself is modelled using quadratic plane strain elements, QPN8. The finite element mesh
can be found in Figure 14.
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Figure 13: Finite dement mesh showing supports.

Material properties

The material properties of the strip are defined using the Modified Mohr-Coulomb material
model. Table 1 gives the materia propertiesfor thistest.

Table5: Modified M ohr-Coulomb material propertiesfor granular material limit load

verification test.
Young’s modulus, E Poisson’s ratio, v Angle of friction, Cohesion, c
2x10* KPa 0.49 20° 50 KPa
Anglee of dilation Density
Test 1. 20 2039 Kg/m3
Test 2. 10°
Loading

The soil weight due to gravity isincreased using the arclength method until the soil fails.

LUSAS Results

If the slope angle is greater than the angle of internal friction  the slope will collapse when
theratio N reaches a critical value

206



Example 5.2.9

(5.2.39)

where histhe slope height and  the specific weight of the sail
(5.2.40)

and isthe soil density, g the gravitational acceleration. The critical value of N, for the present
geometry istabulated [1] as
(5.2.41)

Theload factor  applied to gravitational acceleration at collapseis therefore
(5.2.42)

Figure 15 shows the increase in the gravity load factor until failure. The displacement plotted is

for the total displacement at point A as shown on figure 13.
Both the associative and non-associative material models dlightly overpredict the ultimate failure

load.
= 4,259 Py e
g g g : 5 g
= .‘.4-
= 4
= {
=] i
= i
3.4 1 i
i
i
’
i
!
2.554 |
¢’
i
1.7 ¢ i
i
]
i
! Legend
L] 2e
L85 e tabulated value
i S S associated plasticity
*' mrmemme ) e non-associative
1.5 3. 4.5 6.
Displacement A (m)

Figure 15 Load v. total displacement at point A

The contours of effective stress at failure are shown in figure 16.
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Loadcase: 10:Increment 10 Load Factor = 420342
Results file: slope_neto.mys
Entity: Stress- Plane Strain
Component. SE

45,8665
91.733

137.593
183.466
229332
275,198
321.0685
366.932
412798

Mazxirmurm 450.45 at node 9
Minimum 37 8513 at node 370

Figure 16 Contours of effective stress at failure (Associative flow)

Input Data

Associative flow : XO5D29A. DAT

Non-associatve flow : X05D29B. DAT

References

1 de Souza Neto EA, Peric D. and Owen DRJ, Computational Methods for Plasticity,

John Wiley and Sons Ltd, 2008.
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Example 5.4.1

Buried Pipe With Soil-Pipe Interface Modelled Using 3d
Interface Model

Keywords
Sail Structure Interaction, Interface M odel, Elasto-plastic, Friction

Description

This example (figure 1) consists of an elastic pipe buried in a homogeneous and elastic soil. The
interface between the pipe and soil is modelled using an elasto-plastic interface material. Three
cases of interface friction are considered:-

(i) frictionless dip (tano = 0.001),
(i) stick (tano = 2),
(i) frictional dlip (tano = 0.25).

Discretisation

The discretisation (figure 2) is similar to that used in [1]. HX20 elements are used to discretise
the pipe, soil and interface. The modél istotally restrained from moving in the z-direction.

Theory

The interaction between the soil and pipe is governed by a frictional type law i.e. bond between
the pipe and soil is maintained by africtional force and once this is overcome debonding and dlip
will occur. This friction/dlip behaviour is modelled using an elasto-plastic interface model, with
yielding (slip) defined using the Mohr-Coulomb criterion [2] defined as

T=1etin (5.4.2)
where 1 maximum shear stress,
c stress normal to the soil/pipe interface,
c cohesion,
¢ friction angle.
Comparison

Figure 3 isthe deformed mesh for the frictionless dip analysis. A significant amount of sliding is
visible in the interface. Figure 4 shows the shear stress distribution along the pipe-soil interface.
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References

1. DESAICS, ZAMANM.M., LIGHTNERJG. and SIRIWARDANE,H.J. Thin-layer
element for interfaces and joints. Int. J. Num. Anal. Meth. Geomech., Vol.8, 19-43, 1984.

2. OWEN,D.R.J. and HINTON,E. Finite elements in plasticity: theory and practice. Pineridge
Press, Swansea, UK, 1980.

3. KATONA,M.G. A simple contact-friction interface element with applications to buried
culverts. Int. J. Num. Anal. Meth. Geomech., Vol.7, 371-384, 1983.

Input data
X05D41A. DAT

I
i

—

I

-
L

T i el gl ! e o » sl il iy - s < i
@
; S
= s e e L L S L S SRR

iiiEniaiananinsaEAnand

Figurel Buried Pipe Example
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Figure 3 Deformed M esh Showing Sliding on Interface
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Normalised Shear stress along interface

— -— Katona

/ ' ) \ —e— LUSAS

\

\

T T T T

22.5 45 67.5 90

Theta from spring line to crown (degrees)
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Example 5.4.2

Elasto-Plastic Analysis of a Thick Porous Cylinder Under
Internal Pressure

Keywords
Cylinder, Drained, Plasticity, Porous, Undrained

Description

An infinitely long thick porous cylinder of interna and external radii 100 mm and 200 mm
respectively is subjected to an increasing interna pressure.

Geometry, boundary and loading conditions

The cylinder is idealised into both plane strain and 3D problems. The global Z axisis coincident
with the axis of the cylinder. In the 3D analysis, one symmetric quarter of the structure with a
length of 80mm is considered, as shown in Figure 1; boundary and loading conditions are also
shown in the figure. Symmetric conditions are specified on the straight boundaries; the curved
internal surface (which has a pressure loading) and external surface are unrestrained. The plane
strain idealisation is a projection of the 3D idealisation in the Z-direction.

Discretisation

The 3D finite element discretisation with 120 hexahedral (HX20P) elements is shown in Figure
2. In the plane strain analysis, 30 quadrilateral (QPN8P) elements are used without discretisation
in the Z-direction.

Material properties

The nonlinear material behaviour is modelled using a von Mises yield criterion and a perfectly
plastic post-yield response. The materia properties are as follows:

Fully drained analysis:

Young's modulus E = 21000dN/mm?
Poisson’ sratio v=0.3
Yield stress s = 24dN/mm?
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Undrained analysis:
Y oung's modulus of the soil skeleton  E’= 17830.2 dN/mm?

Poisson’ s ratio of the soil skeleton v =0.1038

Bulk modulus of the pore fluid K= 10*
Porosity n=1
Theory

Under fully drained conditions, geotechnical elements give identical results to their counterpart
continuum elements using drained properties. Furthermore, following the principle of effective
stress, if an undrained analysis is performed with soil and pore fluid properties being chosen so
as to correspond to the drained material parameters, the obtained displacement and strain results
(but not stresses or pore pressures) are comparable to those obtained by the fully drained
analysis. Slight difference may occur due to atwo-field (displacement and pressure) interpolation
employed in the undrained analysis.

With the increase of the applied interna pressure, the cylinder deforms elastically until an
internal pressure of approximately 12dN/mm? is reached; beyond this pressure level the cylinder
behaves elasto-plastically. The spread of plastic deformation through the thickness of the
cylinder can be seen from the distribution of the hoop stress component with increasing load in
52.2.

LUSAS Results

For the current materially non-linear, but geometricaly linear analysis, the progressive radia
displacements of the interna circumference against the internal pressure are:

Internal pressure 8 10 12 14 16 18
Terget QPN8 0.0721 0.0901 0.1116 0.1399 0.1823 0.2566
HX20 0.0726  0.0908 0.1115 0.1398 0.1828 0.2622
U | LUSAS QPN8P 0.0721 0.0901 0.1116 0.1399 0.1823 0.2566
fully drained KX20P 0.0726 0.0908 0.1115 0.1398 0.1828 0.2622
LUSAS QPN8P 0.0721 0.0901 0.1116 0.1399 0.1821 0.2565
undrained KX20P 0.0726 0.0908 0.1115 0.1398 0.1826 0.2623

From the above table, 3D drained/undrained results agree favourably with 2D analysis. However,
the 3D analysis reproduces better axisymmetry of the problem than the plane strain analysis. The
following table gives the pore pressure on the inner and outer faces of the cylinder obtained by
the 3D undrained analysis:
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Internal pressure 8 10 12 14 16 18
inner -1.3206 -1.6508 -1.3847 -0.0732 0.9772 2.1293
outer -1.3206 -1.6508 -2.0188 -2.4936 -3.1749  -4.3960

Pore pressure

As the deformation is small, similar results have been obtained with the consideration of
geometric nonlinearity. A difference in pore pressure between the inner and outer surfaces can be
seen at an internal pressure of 12 when the material has yielded.

References

1. Owen, D.R.J, Hinton, E. Finite Elements in Plasticity: Theory and Practice Publisher.
Pineridge Press Ltd. Swansea, U.K. 1980. ISBN 0-906674-05-2

2. Zienkiewicz, O.C... The Finite Element Method, 3rd Edition. Publisher. McGraw Hill Ltd,
London, U.K. 1977. ISBN 0-07-084072-5

3. FEAL interna Report 'Plane Strain', FEAL708, Finite Element Analysis Ltd. Forge House,
66 High Street, Kingston Upon Thames, Surrey KT1 1HN. 1986.

4. Hodge, P.G., White, G.N. A quantitative comparison of flow and deformation theories of
plasticity. J. Applied Engineering Mechanics, Vol.17, 180-184, 1950.

Input Data
X05D42A. DAT (Pl ane strain)
X05D42B. DAT (3D conti nuum

Note: The load incrementation may alternatively be defined automatically using NONLINEAR
CONTROL INCREMENTATION and TERMINATION cardsasin 5.2.2.

free boundary

u=0,pfrge

Internal pressure,
free

Figure 1
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Figure2
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Example 5.5.1

Cylindrical Shell Subject To Self Weight

Keywords
Anisotropic, Elasto-Plastic

Description

This example (figure 1) consists of a cylindrical shell subjected to a uniformly distributed load
over the outer surface. The shell has a length of 7.6m, a radius of 7.6m and a thickness of
0.076m. The angle subtended by the arc of the shell at the centre of the circle is 80 degrees.

Discretisation

Because of symmetry conditions only a quarter of the shell is modelled. A 4*4 mesh of QSL8
(Semiloof shell) elements are used to discretise the shell; thisis shown isfigure 1.

Material properties

This problem is geometrically linear but the non-linear Hill criterion for anisotropic plasticity is
used to model the material. The following values are used to describe the yield surface for each
of the anisotropic property definitions:

1. Isotropic
oFeF@=0 (56.5.1)
- - 1_
0FH33=0 — (552
9313 \/é
2. Anisotropic
(_jfp 2 (5.5.3)
05830 (5.5.4)
- - 1_
Or93(=0 E (5.5.5)
3. Anisotropic
om0 (5.5.6)
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o5 2 (55.7)
G (5.5.8)
_ o _ 1_

Se558=0 = (5.5.9)

Heres isthe reference yield stress (=4200 kN/m2). Note that even though the shell formulation
is based on the plane stress hypothesis, the complete yield surface must be defined for the
material. No hardening is present in this problem. The Elastic modulus, E = 21E6 kN/m? and a
Poisson's ratio of zero are used to define the elastic behaviour of the material.

Comparison

Figure 2 shows the load-displacement curves at the point A. These results agree exactly with the
results in the reference solution [1]. It can be seen that anisotropic properties alow a much
higher limiting load to be sustained (an increase of approximately 25%).

References

1. DeBORST, R. and FEENSTRA, P.H. Studies in Anisotropic Plasticity with Reference to
the Hill Criterion. Int. J. Num. Meth. Eng., v29, pp315-336, 1990.

2. LUSAS Theory Manua. Finite Element Analysis Ltd, Forge House, 66 High Street,
Kingston-upon-Thames, Surrey, KT1 1HN.

Input Data
X05D51A. DAT

Length L =7.6m
Thickness d = 0.076m
Radius R = 7.6m

Figurel Geometry of cylindrical shell
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load q(kN/mz)

4.000 [

3.500 o = 2 S
3.000 -W?&:j:qZ&

2.500 =) R
2.000

1.500

1.000 /

0.500

0.0 J

0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
displacement point A (m)

Figure2 Load-digplacement curveat point A of the cylindrical shell for isotropic and anisotropic
material propertiesand using 4*4 Semiloof dements.
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Example 5.6.1

Axisymmetric analysis of sand under compression

Keywords
Elasto-Plastic, Drucker-Prager, M ohr-Coulomb

Description

Thisexampleisauniaxial strain test of McCormick Ranch sand, details of which can be found in
Figure 13. A compressive load is applied to the sand sample and the resulting stress and strain
characteristics are compared with experimental and other finite element solutions.

The axisymmetric nature of the model means that the example is analysed as an axisymmetric
problem. The line of axisymmetry passes through the centre of the sand samplein the y direction.

Vertical prescribed
displacement applied

A to top of sample
Yy
12.7 mm
12.7
Yy
I A4
: » >
A 1< >
25.4 mm
Top view of sand Section through A-A
sample

Figure 14: Theuniaxial M cCor mick Ranch sand test. Dimensions are not to scale.
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Discretisation

The finite element mesh is shown in Figure 14, where only one haf of the cross-section
illustrated in Figure 13 has been modelled. The sand is modelled using four linear enhanced

strain axisymmetric elements QAX4M

—* Supports

v
\

Figure 15: Finite dement mesh for the uniaxial M cCormick Ranch sand test. A vertical
compressive prescribed displacement isapplied to thetop set of nodes.

Material properties

The Drucker-Prager and Mohr-Coulomb material models are used to define the material
properties of the sand. The material properties can be found in Table 5. For the Mohr-Coulomb
material model, the dilation angleis set to the angle of friction.

Table6: Material propertiesfor uniaxial M cCor mick Ranch sand te<t.

Young’s Modulus, E  Poisson’s Ratio, v Angle of friction,¢  Cohesion, ¢

689 MPa 0.25 7.15 0.577 MPa

Loading

The top face of the sand sample is loaded by a compressive prescribed displacement in the y
direction. The maximum vertical displacement is 0.8382 mm. In the full experimental test, the
variation of the prescribed displacement is shown in Figure 15.
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0.9 4

0.8 4

0.7 4

0.6

0.5 4

0.4 4

0.3 1

0.2 q

0.1 4

Compressive displacement (mm) .

0 2 4 6 8 10 12 14 16 18 20

Sample number/Increment number

Figure 16: Variation of applied compressive prescribed displacement for the uniaxial M cCor mick
Ranch sand test. Thegraph showsthefull variation used for the experimental results. Only one
st of results, from [1], ispublished for the reduction in displacement between increment numbers
10 and 20, with very specific cap and tension cut off definitions.

LUSAS Results

Results for the test can be found Figure 16, which shows the variation of compressive stress with
compressive strain in the direction of the applied displacement. In addition to the results from the
LUSAS Drucker-Prager model, the graph aso shows experimental results [1,2], results from the
LUSAS Mohr-Coulomb model and finite element results from [1]. Results in [1] are from a
Drucker-Prager model that has a cap and atensions cut off.

The graph in Figure 16 shows that the results from LUSAS are in good agreement with
experimental results and results from other FE packages when compressing the sand specimen.
Both LUSAS Drucker-Prager and Mohr-Coulomb material models produce identical results in
thistest.

Experimental results have also been generated for the case when the prescribed displacement
loading is reversed (see Figure 15 between sample numbers 10 and 20), shown by the reduction
in compressive stress after its peak value. Reference [1] has been able to approximate these
experimental results with a very specific cap definition and tension cut off.
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8.0E+06 -

7.0E+06 -
< y
S Z
S 6.0E+06 - 3
[S)
§ s
L soe06 p R
S > 7
> -
.S 40E+06 o P
9] = " .
0 s .
o g .~
S 3.0E+06 o ~ - X~ : X
o =
g =
B 20E+06 4 =X X
@ s~
. —
S = X
£ 10E+06 A
o)
O X
0.0E+00 ‘ ‘ ‘ ‘ X ‘ ‘
001 002 003 004 0.05 \/ 0.06 007

-1.0E+06 -

Compressive strain in y direction
[1] - D=-0.78ksi — - — - [1] - D=-0.67ksi

X Experiment

— - — [1] - D=-0.9ksi

LUSAS -DP  — — — LUSAS - MC

Figure 17: Variation of compressive sresswith compressve gtrain in thedirection of the applied
displacement. Graphswith D valuesrepresent resultsfrom Drucker -Prager modelsthat have
capsand tension cut offs, where D isused to definethe cap. See[1]. MC —LUSAS M ohr-Coulomb
material model, DP — LUSAS Drucker-Prager material modd.

Input Data

Drucker-Prager : XO5D61A. DAT
Mohr-Coulomb  : X05D61B. DAT

References

1. K.-J Bathe, M.D. Snyder, A.P. Cimento, W.D. Rolph I1I. *On some current procedures and
difficultiesin finite element analysis of elastic-plastic response’. Computers and Structures,
Volume 12, pp. 607-624 (1980).

2. F.L.DiMaggio, |.S. Sandler. ‘Material model for granular soils'. Journal of the Engineering
Mechanics Division ASCE 97, pp. 935-949 (1971).
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Example 5.7.1

Single joint test for lateral earth pressure

Keywords

Lateral Earth Pressure, M ulti-linear

Description

This example models latera earth pressures via a single joint. Displacements or forces are
applied at one degree of freedom, while other degrees of freedom are fixed. The numerical
response can then be compared with hand calculations.

Geometry, Boundary and Loading Conditions

A singlejoint is defined by 3 or 4 nodes

node 1 2 3 4

Coordinates 2.0,0.0,0.0 1.0,0.0,0.0 20,1.0,00 20,10,-1.0

For 2D joints, the 3rd node is used to define the local x-direction; for 3D joints, the 3rd and 4th
nodes are used to define the local x-axis and local xy-plane respectively.

Node 2 is fixed; the prescribed displacement u, at node 1 in the x-direction varies as

t 0.0 10 20 3.0 10.0 150

f(t) 0.0 0.016 0.1 0.016 -0.16 -0.2

wheret; and f(t;) are controlling variable time and curve factor, respectively.

Discretisation
Thejoint is discretised into one 2D or 3D joint element.

Material properties
The properties for active, at rest and passive lateral earth pressures are
8a=-0.016, f, = 66.6, 5, = 0.0, fy = 100.0, 3, = 0.16, f, = 600.0

in the lateral or horizontal direction; propertiesin all other directions are zero.
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The corresponding properties for multi-linear elastic models with number of segmentsn =1, 2
and 3 are

n | h o1 f, 5 f3 5 fa Sa r
1 -600.0 | -0.16 -66.6 0.016 0
2 | -6000 | 016 |-1000 |00 | -666 | 0.016 0
3 -600.0 | -0.16 -350.0 | -0.08 -100.0 | 0.0 -66.6 0.016 0

LUSAS results

For al tests the obtained relationship between lateral earth pressure and relative joint
deformation, as shown in Figure 1, was confirmed by hand calculations.

8 9 5 9

—8—Stress Fy Element 1 GP 1(2)_2 / Strain Ey Element 1 GP 1{1)

Figurel
Input data
x05d71a (INT3, coupled, n=3)
x05d71b (INT3, uncoupled, n=2)
x05d71c (INT3, coupled (USER), n = 2)
x05d71d (INT3, uncoupled (USER), n=2)
x05d71e (INT4, coupled, n=2)
x05d71f (JPH3, coupled, n=2)
x05d71g (JAXS3, coupled n=2)
x05d71h (JF3, coupled, n=2)
x05d71i (JXS3, coupled, n=2)
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x05d71]
x05d71k
x05d71
x05d71m

(JL43, coupled, n = 2)
(JSH4, coupled, n=2)
(JL46, coupled, n = 2)
(JSL4, coupled, n=2)
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Example 5.7.2

Plastic hinge with axial force dependent moment-curvature

relation

Keywords
Multi-linear, Plastic Hinge, Pushover

Description

This example models a plastic hinge with axia force dependent moment-curvature relationship,
which is widely used in pushover analysis. Rotations or moments are applied at one degree of
freedom, while other degrees of freedom are fixed. The numerical response can then be
compared with hand calculations.

Geometry, Boundary and Loading Conditions
A singlejoint isdefined by 3 or 4 nodes

node 1 2 3 4

Coordinates 2.0,0.0,00 1.0,0.0,0.0 2.0,1.0,00 2.0,10,-10

For 2D joints, the 3rd node is used to define the local x-direction; for 3D joints, the 3rd and 4th
nodes are used to define the local x-axis and local xy-plane respectively.

Node 2 is fixed; for the JPH3 element the prescribed rotation 6, at node 1 in the z-direction varies
as:

step 0z

0.

-0.1

-5.0

-5.1

-10.

gl K W N P O

-10.1
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For the JSH4 element, the same 6z is applied at node 1 but in the positive direction.

Discretisation

Thejoint is discretised into one 2D or 3D joint element.

Material properties

The following multi-linear moment-curvature relationship is defined in the local direction, which
corresponds to the global z-direction

(0.0, 0.0), (0.0, 0.1), (10.0, 5.0), (0.0, 5.1), (5.0, 10.0), (0.0, 10.1), r = 0. at Fax = -10.0
(0.0, 0.0), (20.0, 0.1), (20.0, 5.0), (10.0, 5.1), (5.0, 10.0), (0.0, 10.1), r = 0. a Fax = 10.0

Propertiesin al other directions are zero.

LUSAS results

The variation of joint moment with curvature is shown in Figure 1, which is in agreement with
the prescribed moment-curvature relation at Fax = 0.

(] =+ =)

- W 1 w0 w0
— o =+ s}

Lo
[}

—®— Stress Mz Element 1 GP 1(2) / Strain Bz Element 1 GP 1(1)

Figurel
Input data
x05d72a (JPH3)
x05d72b (JSH4)
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Example 6.3.1

Materially And Geometrically Nonlinear Encastre Beam

Keywords
Nonlinear, Plagticity, Updated L agrangian Description

Description

An encastre beam of length 495mm, width 7.78mm, and depth 7.72mm is subjected to a central
transverse concentrated load. The loading is applied in increments of 100N. Figure 1 shows the
dimensions of the beam, the boundary conditions and the position of the load.

Discretisation

Due to its symmetrical nature only a half of the beam is discretised using six curved beam
elements (BSX4). The noda positions and element numbers are shown in figure 2. Symmetrical
and fully restrained boundary conditions are imposed on the central and encastre ends of the
mesh respectively.

Modelling

The geometric nonlinearity is modelled using an updated Lagrangian description. The material
nonlinear behaviour is modelled using a Von-Mises elasto-plastic model with the following
material properties:

Young's modulus 197.3x10° N/mm?

Poisson’sratio 0.3

Yield stress 248.0 N/mm?
Comparison

The LUSAS results are presented in the table below, and are compared to the experimental data
[1] inthe following load deflection graph.

Applied Load, N Central Deflection BSX4
100 1.059
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Applied Load, N Central Deflection BSX4

200 2.044
300 2.921
400 3.758
500 4.609
600 5.956
References

1. Campbell, T.I. Charlton, T.M. 'Finite defrmatio of a fully fixed beam comprised of a
nonlinear material'. Int.Jou.Mechanical Science, Vol.15, No.5, 415-428.

Input data
X06D31A. DAT

0.08 |
TOTAL LOAD (KN}

Q.08 EXPERIMENT

m  Lusas

MIOSPAN DEFLECTION ()

" i " L i —
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 X E1
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P/2

Figurel.
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d=7 . 78mm

’ b=7.72mm ’

Figure2.
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Example 6.5.1

Elasto-Plastic Buckling Analysis Of A An Imperfect
Rectangular Panel

Keywords
Buckling, Plagticity, Total Lagrangian, Nonlinear, Rectangular Panel
Description

Determine the buckling behaviour of an imperfect rectangular panel subject to an in-plane
compressive loading.

The dimensions of the panel are as follows:

sidelength a=875mm
side length b =1000 mm
thickness t=25mm
side length ratio alb =0.875
aspect ratio b/t =40

In order to initiate a buckling mode of failure the panel is given an out of plane initial
imperfection in the form of half of a sine wave. The semi sine wave imperfection acts over the
entire plate surface and has a maximum amplitude of 0.001*b at the centre of the plate.

zdsingin G&y — (6.5.2)

where dy isthe maximum amplitude.

The panel is subjected to an in-plane compressive loading acting along its long edges.

Discretisation

A symmetric quarter of the panel is discretised using a uniform mesh of sixteen Semiloof shell
(QSL8) elements. The nodal coordinates of the mesh are calculated so as to give an initial sine
wave imperfection as described by (6.5.1).

The externa edges of the panel are assumed to be simply supported and the internal edges are
subject to symmetry enforcing boundary conditions.
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The geometrically nonlinear behaviour of the panel is recorded using a total Lagrangian
approach.

The material is assumed to behave in an elasto-plastic manner according to a Von Mises yield
criterion. The assumed material properties of the panel are as follows:

Young's modulus 207.0x10° N/mm?
Poisson’sratio 0.3
Yield stress 247.0 N/mm?

The in-plane compressive loading is applied via prescribed displacements along the long edges
of the panel. The results quoted were obtained by using the standard frontal equation solver.

Theory

The behaviour of the panel is represented in the form of aload versus shortening curve. Previous
studies [1-2] have established that the lowest critical buckling strength occurs at a side length
ratio of approximately 0.875.

The squash load is calculated from the yield stress as

P@?Mﬂ&@@%%.SkN

Similarly the strain at the squash load may be calculated as

(6}
s 210 o103

E  207x10°
Solution Comparison

The results obtained from the nonlinear LUSAS analysis are compared to the linear solution and
to the nonlinear solutions of [1].

Average
Displacement in membrane
X direction strain in X Strain/squash  Load in X  Load/squash
Increment along line Y=0 direction (x10% strain (go) direction load (Po)
1 0.261021 0.5966 0.5 1538.96 0.49891
2 0.417633 0.9548 0.8 2458.54 0.79628
3 0.469837 1.0739 0.9 2763.93 0.89519
4 0.522041 1.1932 1.0 3020.4 0.97826
5 0.574245 1.3124 11 3052.56 0.98868
6 0.626449 1.4317 12 3039.9 0.98458
7 0.678653 1.5512 13 3022.94 0.97908
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Average
Displacement in membrane
X direction strain in X Strain/squash  Load in X  Load/squash
Increment along line Y=0 direction (x10%) strain (go) direction load (Po)
8 0.730857 1.6706 14 3000.57 0.97184
9 0.783062 1.7898 15 29724 0.96272
10 0.835266 1.9092 1.6 2938.48 0.95173
11 0.887470 2.0285 1.7 2899.49 0.93911
12 0.939674 21411 18 2856.62 0.92522

References

1. Crisfield, M.A. 'Full range analyses of steel plates and stiffened plating under uniaxial
compression'. Proc.Inst.Civil Engineers, Part 2, Volume 59, 595-624, (1975)

2. lrving,D.J. 'Large deformation elasto-plastic finite element analysis of plates, shells and
tubular joints using Semiloof shell elements, Ph.D. Thesis, Kingston Polytechnic, London,
U.K. (1982).

Input data

X06D51A. DAT
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I3 14 S I8 77 bd | A __ A0 #1
¢ 3 ps 14 15 PO 16 &
U T N TR} B 1)
kS 9 1] 10 rﬂ 11 F2 42 13
' bz sa ha 4n L 42 " s
X R 5 [ pz 7 bs 8 1]
2
ha 20 b1 22 By 24 28 ?
STAUCTURE
o 4 2 g e 3 he e
2 h A K & . b

FINITE ELEMENT DISCRETISATION (asLe!

Imperfect rectangular pand subject to in-plane compressive load

235



Verification Manual
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b INCREMENT 6
BUCKLED IMPERFECT RECTANGULAR PANEL c INCREMENT 8
DEFORMED CONF | QURATIONS d INCREMENT 12
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Example 6.5.2

Elasto-Plastic Analysis Of A Clamped Spherical Cap

Keywords
Spherical Shell, Total Lagrangian, Nonlinearity, Elasto-Plastic,

Description

Determine the load-deflection response of an elasto-plastic spherical shell cap. The geometry of
the shell is formed from a truncated sphere of radius 4.758 inches. The cap has a base radius of
0.9 inches, a centra height of 0.085895 inches, and a thickness of 0.01576 inches. The shell is
fully restrained at its base and is subject to an increasing concentrated transverse load at its apex.

Discretisation

Due to its doubly symmetric nature only a quarter of the structure is considered in the finite
element model. The shell is discretised using 32 Semiloof shell (QSL8 and TSL6) elements. The
initial geometry of the shell is formed using the LUSAS arc facility to generate the truncated
portion of the sphere. Symmetric boundary conditions (restraint of the loof rotations and the
appropriate lateral translations) are imposed on the internal boundaries of the mesh, and the
nodes at the base of the structure are restrained against translation and rotation. The nonlinear
material behaviour is modelled by a Von-Mises elasto-plastic model with the following material
properties:

Y oung's modulus 10.0x10° psi.

Poisson’sratio 0.3
Yield stress 50.0x10° psi.
Theory

The maximum (apex) deflection for a fully restrained partial sphere is given by the expression
(1]
-ABRR 2
=—t— (6.5.2)
16D n

Where

238



Example 6.5.2

3
Do E (6.5.3)
12(1pv 2
and in which A, istabulated according to the parameter o, where
18
(s )

{2

For the current sphere geometry the following values apply:
o =6.00 A =0.161 D =3.584

Hence for atotal load of 50 |bs the maximum deflection is

y =-0.036189 inches

Comparison

The results obtained from the LUSAS analysis are compared to the linear solution [1] and the
axisymmetric nonlinear analysis of Wood [2,3].

Increment Displacement  Total Force (Ib)  Total Force (Ib)

Number at Apex (ins) (Elastic) (Elastoplastic)

0.01 9.50 9.40
2 0.02 14.15 13.17
3 0.03 16.94 15.07
4 0.04 19.38 17.20
5 0.05 21.98 19.70
6 0.06 24.84 22.46
7 0.07 27.90 25.26
8 0.08 31.04 28.00
9 0.09 34.09 30.60
10 0.1 36.86 32.98
11 0.11 39.18 35.18
12 0.12 41.06 37.19
13 0.13 42.86 38.77
14 0.14 45.80 40.50

References

1. Roak,RJ. Young,W.C. 'Formulas for stress and strain : Fifth edition’, McGraw-Hill
Publishing Co. (1975)
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2. Oliver, J. Onate, E. A total Lagrangian formulation for the geometrically nonlinear analysis
of structures using finite elements. Part 1. Two dimensiona problems: Plate and shell
structures. Int. Journ. Num. Mthds. in Eng. Vol.20. 2253-2281, (1981).

3. Wood,R.D. The application of finite element methods to geometrically nonlinear structural
analysis. PhD.Thesis C/Ph/20/73, University of Wales, Swansea, U.K.
Input Data

Note: Load incrementation may dlternatively be defined using the nonlinear control
INCREMENTATION and TERMINATION control cards.

X06D52A. DAT
X06D52B. DAT

DEFORMED CONF | BURATION
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0.40

LOAD

BN S—

SPHERICAL SHELL CAP

FINITE ELEMENT DISCRETISATION

jul

ELASTIC

ELASTD-PLASTIC

APEX DEFLECTION

L

I

0.

06

0.07

0.09

L oad-deflection response for spherical shell under apex point load
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Example 6.5.3

Nonlinear Analysis Of A CHS Welded Tubular Joint
Keywords

Tubular Joint, Elasto-Plastic, Total Lagrangian Nonlinearity, Semiloof Shell,

Three Dimensional Solid

Description

Determine the relationship between the applied axial load and the penetration for the welded

tubular joint.

The X-joint is formed by the right angled intersection of two circular section hollow tubes. The
intersection is secured by a fillet weld. The vertical tube is subjected to an axia load such that

the horizontal tube is progressively penetrated.

Discretisation

Owing to the symmetrical nature of the problem only one half and one quarter of the vertical and

horizontal tubes are modelled respectively.

The hollow tubes are represented using 8 and 6 noded Semiloof shell (QSL8 and TSL6)

elements, and the fillet weld by 15 noded solid wedge (PN15) elements.

The vertical tubeisaxialy compressed by means of prescribed displacement of itstop edge.

The nonlinear behaviour is modelled using a nonlinear Von-Mises elasto-plastic material model,

and atotal Lagrangian geometric description.

Modelling Hints

The solid wedge elements are numerically integrated using three pairs of two Gauss points
located on the quadrilateral faces of the element. The Semiloof shell elements are integrated in
plane using a5 point integration rule, and through the thickness by afive point mid-ordinate rule.

The configuration of the loof node rotations [1] alows the Semiloof shell element to model
branched or intersecting shell geometries. In this case the intersection of the shell and three
dimensional elements is achieved by coupling the global trandational degrees of freedom of the
two element types. The loof rotations however are unrestrained. Although theoreticaly this
permits arotation at the tube-weld interface, in practice the small size of the weld and the relative
stiffness of the connection prevents the occurrence of any serious discretisation error.
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Theory

The welded tubular structure has been investigated experimentally and numerically by several
authors[2-4].

The response of the structure is represented by a graph of applied axia load against the branch
penetration (the branch penetration of the vertica tube is defined as the applied axia
displacement minus any elastic compressional deformation). Although somewhat inconclusive,
the experimental results clearly show a limit point in this response at a load level of
approximately 90 kN.

Comparison

The solution obtained from the LUSAS andysis (tabulated below) is compared to the
experimental results[2].

Increment Prescribed Branch Axial Load
Number Displacement  Penetration (kN)

-1 -0.9491 -54.326
2 -2 -1.9086 -91.984
3 -3 -2.8934 -101.263
4 -4 -3.8908 -100.564
5 -5 -4.8972 -97.096
6 -6 -5.8944 -93.02
7 -7 -6.8987 -89.329
8 -8 -7.9019 -85.844
9 -9 -8.9053 -82.676
10 -10 -9.9084 -80.267
11 -11 -10.911 -78.134
12 -12 -11.9131 -76.631

References

1. lrons, B.M. 'The Semiloof shell element’, Finite Elements for thin shells and curved
members, Eds. Ashwell and Gallagher, Wiley (1976).

2. Sparrow, K.D. 'Ultimate strength of welded joints in tubular steel structures, Ph.D. Thesis,
Kingston Polytechnic, London (1979).

3. Hoadley,P.W. YuraJA. 'Ultimate strength of tubular joints subjected to combined loads,
Department of Civil Engineering, University of Texas at Austin, U.S.A. (1982).

4. Holsgrove,S.C. Lyons,L.P.R. 'Nonlinear FEM analysis of CHS T/X joints under axial load,
in plane bending, and out of plane bending, Safety Criterion in the Design of Tubular
Structures, (1987).
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Input data
X06D53A. DAT

DETAIL OF WELD SECTION

Detail of weld section
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Example 6.5.4

Large Deflection Of Orthotropic Spherical Cap

Keywords
Total Lagrangian, Large Displacement, Hill Yield Criterion

Description

A materia which has yield stressesin the principle directions of 200, 200 and 100 is applied with
the weak direction of the materiad aligning with the hoop, meridional and through thickness
directions in turn. The orientation of the yield surface produces different responses as the cap
snaps through under a point load applied at its vertex.

Finite Element Model

The cap is restrained to deform axisymmetrically and is modelled by a mesh of 8*1
axisymmetric shell elements.

Geometry

Radius of sphere  =4.758

Anglesubtended = 21.8 degrees

Shell thickness =0.01576

Material properties

Young'smodulusin X direction = 1x10°
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Young's modulusin Y direction= 1x10°

Poisson'sratio = 0.3

Casel
Yield stressin meridional direction = 200
Yield stressin hoop direction = 100

Yield stress in through-thickness direction = 200

Shear yield stress (not used) = 1

Case 2
Yield stressin meridional direction = 100
Yield stressin hoop direction = 200

Yield stress in through-thickness direction = 200

Shear yield stress (not used) = 1

Case 3
Yield stressin meridional direction = 200
Yield stressin hoop direction = 200

Yield stress in through-thickness direction = 100

Shear yield stress (not used) = 1

Boundary Conditions

Symmetry conditions are applied to the apex. The shell is hinged but fixed against translational
motion.

Solution Comparison

Figure 1 illustrates the loading paths for the various materia orientations. After buckling, three
distinctly different responses occur. The apex displacement is detailed in figures 2 to 4, and
figures 5 to 7 plot the development of the snap through for each case.

The material is considered to be in a state of plane stress. However, the through thickness yield
stress is significant and does effect the results as the out-of-plane plastic strain is related to the
inplane plastic strains, by the constraint that there must be no change of volume following
inelastic straining.

It is important when considering orthotropic yield that al three yield stresses in the principle
directions are known. On the other hand, the shear stresses are de-coupled, both from themselves
and the direct stresses so only the relevant values need be input.
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Input Data
X06D54A. DAT
X06D54B. DAT
X06D54C. DAT

The data files for cases 2 and 3 are obtained by changing the yield values on the STRESS
POTENTIAL data command.

Yield stresses 200 100 200 A
Yield stresses 100 200 200 O
Yield stresses 200 200 100 + - 5.000

A @ 13.500
e W O 1 3.000

/
4
Load factor

SO 12.000

\‘ﬂ 1 1.500

Figure 1 Effect of Materlal Anisotropy \K

[ 1 L 1 i " 1 L n L

&0.
X E-3100. -90.0 -80.0 -70.0 -60.0 -50.0 -40.0 -30.0 -20.0 -10.0 0.0
Apex displacement
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10.00

4 8.000

4 6.000

Load factor

1 4.000

! 1 1 L 1 1 1 L ‘\0.0
-0.22 -0.2% -0.1 T.-U.iS -0.13 -0.10 -0.08 -0.05 -0.03 0J0

4 Apex displacement

Figure?2 Yidd stressesin Principle Directions 200 100 200

W 10.00
8.000

6.000

Load factor

4.000

-0.22 -0.20 -0.17

-0.13 -0.10

Apex
displacement

Figure3 Yidd stressesin Principle Directions 100 200 300
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Figure7 Deformation for yield stresses 200 200 100
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Example 7.1.1

Transient Analysis With Radiation And Convection

Keywords

Radiation, Convection, Transient Analysis

Description

This problem involves an infinite slab subjected to combined radiation and convection and
congtitutes a two dimensional nonlinear transient anaysis. The analysis involves computing
temperature at the centre (Tc) and surface (Ts) of the slab as a function of time (t). This problem
was chosen to demonstrate the iterative procedures available in LUSAS for solving problems
involving nonlinear radiation and convection boundary conditions.

Discretisation

The analysisis performed using 20 QFD8 elements to model half the slab, figure 3.

Geometry

Infinite slab
_/L.
o.1:[
/E A

Depth of slab = 10

TEE]
LN
[

AR

Figurel

Material properties
Thermal conductivity K=0.01 Btu/ F.hr.in.

Specific heat c=0.01 Btu/ F.in®
Convective heat transfer coefficient h, =0.04
Emissivity €=1.0

Stefan-Boltzmann's constant 6=0.118958E-10 Btu/in? .hr.R*
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Boundary conditions
Initial temperature field Ti = 1498.1505 F

Radiation to environment at T = 0 F at points B anc C

Convection to environment at T = 0 F at pointsB and C

Lusas results

t=0.04 hr t=0.66 hr t=3.66 hr
Ts 681.448 191.611 1.899
T. 1497.62 636.820 6.300

b O
. e
Ve |
& %

g~ / =2
o} a i

8- “ a

‘ t Tc/Ti

Ts/Ti a A |

& - - 3]

a .8

? L. / T . = 8
& s |

Al : ! : Ll ) Ll 10~ o
2 4 6810°% 2 a 68|o"22 4 680° 2 a6

t/L
Figure2

References

1. BATHEK.J KHOSHGOFTAARM.R. Finite Element Formulation and Solution of
Nonlinear Heat Transfer J. Nuclear Engineering and Design, Vol.51, 389-901

2. Hgji-Sheikh, A. and Sparrow, E.M., The Solution of Heat Conduction Problems by
Probability Methods, Trans. ASME, J. Heat Transfer, Vol. 39, pp. 121-131, 1967

Input data

X07D11A. DAT
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Example 7.2.1

Transient Field Analysis Of Heat Conduction Problem

Keywords
Transient Field Analysis, Heat, Conduction

Description

Determine the temperature distribution with time along an insulated bar, initially at zero degrees
C, dueto aunit temperature rise at one end (see Figure 1).

Discretisation
Model the bar using eight QFD4 plane field elements (see Figure 1).

Geometry

The geometry of the bar is shown in Figure 1.

Material properties
Coefficient of thermal conductivity =1.0Jsec.m.C

Coefficient of specific heat =1.0Jm*.C

This value is computed from the product of the specific heat and the density which are
Specific heat =1.0Jkg.C
Density =1.0kg/m®

Coefficient of convection heat transfer = 0.0 ¥m? .sec. C

Boundary conditions

The left-hand end of the bar, nodes 1 and 10, are restrained to remain at unit temperature. The
top, bottom and right-hand surfaces are insulated.

Theory

The exact solution for auniform initial temperature of zero isgivenin[1] as

255



Verification Manual

00

X A2 -
o= IQXES'FM k{‘}f _— (7.21)

k&

The exponential factor decreases rapidly so that for practical purposes only the first few terms of
the expansion need be considered.

Comparison

A comparison of the LUSAS results with the theoretical solution is presented in graphical form
in Figure 2.

References

1. W.L.WoodandR. W. Lewis, "A Comparison of Time Marching Schemes for the Transient
Heat Conduction Equations’, Int. Jnl for Num. Methods in Eng., Vol 9, 1975, p679

Input Data
X07D21A. BAT

Insulated Boundary Condition

N

N
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q !
T R 0 T
4.0

Figurel Finite dement mesh for heat conduction problem.

256



Example 7.2.1

Temperature
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Example 7.2.2

2-D Solidification Of A Corner Region

Keywords
Transient, Nonlinear, Phase Change, Enthalpy

Description

This problem involves a transient nonlinear analysis with phase changes. A corner region, which
is initially in a temperature field, has prescribed temperatures imposed along two of its
boundaries. The temperatures at selected points in the region are computed as a function of time.
This problem demonstrates facilities available in LUSAS for solving problems involving phase
changes with the use of enthalpy averaging methods. The problem is solved for three different
phase change intervals using a time step of Dt=0.05 sec.

Discretisation

The analysis is performed using 81 QFD4 elements. The element mesh is gradually refined
towards the two sides of the corner where boundary temperatures are prescribed, Figure 2.

Geometry

4.0

# B c

4.0

Figurel

Material properties
K= 108
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pC= 1.0

pL =70.26

Phase change temperature = -0.15

where:

K = Thermal conductivity

p = Density

C = Specific heat

L = Latent heat

The analytical solution is evaluated for a pure substance i.e. it is assumed that the phase change
occurs instantaneously at T = -0.15. With the enthalpy formulation a phase change zone must be
defined. LUSAS analyses were carried out using three different phase change zones:

1. Phase ChangeZone=05C

Temperature Conductivity Specific Heat Enthalpy
-45.0 1.08 1.0 0.0
-0.40 1.08 1.0 44.6
0.10 1.08 1.0 115.36
10.1 1.08 1.0 125.36

2. Phase ChangeZone=1.0C

Temperature Conductivity Specific Heat Enthalpy
-45.0 1.08 1.0 0.0
-0.65 1.08 1.0 44.35
0.35 1.08 1.0 115.61
10.35 1.08 1.0 125.61

3. PhaseChangeZone=15C
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Temperature Conductivity Specific Heat Enthalpy
-45.0 1.08 1.0 0.0
-0.90 1.08 1.0 44.10
0.60 1.08 1.0 115.86
10.60 1.08 10 125.86

Boundary conditions
Initial Temperaturefield T = ORF

Prescribed temperature T = -45RF along AB and BC
AD and CD insulated

Theory

The transformation of a material between phases is accompanied by either liberation or
absorption of latent heat in the phase transition zone, i.e. the temperature gradient is
discontinuous. The most suitable methods for incorporation in standard finite element codes are
the enthalpy or specific heat formulations (see [1]).

Reference

1. Morgan, K., Lewis, RW., Zienkiewicz, O.C., An Improved Algorithm for Heat Conduction
Problems with Phase Change, Int. J. Num. Meth. Eng., Vol.12, 1191-1195, 1978

LUSAS results

Comparison between LUSAS results and those in [1] are shown for the time variation of the
point x=1m, y=1m (node 45).

Input data
X07D22A. DAT
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O DT = 0.5F Reference
A DT = 1.0F
+ DT = 1.5 F
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Figure 3 - Temperatureat coordinates(1,1) Vs Timefor phasechangezones0.5, 1.0and 1.5
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Example 7.2.3

Heat Conducting Plate With Sudden Cooling
Keywords

Transient, Heat, Conduction

Description

This example shows the LUSAS solution for heat transfer between two contacting surfaces of a
structure. The problem is a nonlinear transient analysis with temperature dependant convective
heat transfer coefficients. The problem is solved for At=0.35 hr using 20 steps.

Discretisation

Two analyses are performed using 10 QFD8 and 20 PF6 field elements respectively, figures 2
and 3.

Geometry

0.66666ft
I

1.0fc Point 1 Point 2

Thickness = 0.1

Figurel

Note that the QFD8 element mesh forms an x-y plane between points 1 and 2, figure 2.
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Material properties

Density, r 800 Ib/ft®
Specific heat, C 0.83333 BTU/Ib F
Thermal conductivity, K 2.0BTU/hr.ft F

Convective heat transfer coefficient, h 0.04(Tag +100)/2-2.0 BTU/hr.ft?> F

Boundary conditions
(i) Initial temperature along the surface AB is T=500 F and along CD is T=100 F.

(ii) Step change in environmental temperature on AB to T=100 F.

Reference

1. Kreith, F., Principles of heat transfer, International Textbook Co., Scranton, Pennsylvania,
USA, 2nd Printing, 1959.

Lusas results

Point 1 Point 2
Reference 285.0 100.00
QFD8 287.679 100.00
*PF6 286.243 100.00

* results for convection through triangular faces

LUSAS results for change in temperature at point 1 with respect to time are plotted in figure 4.

Input data

X07D23A. DAT
LUSAS results for temperature at point 1 Vs time.

3__LL S _LS Z_ LR g _sn s§4 s2 s €, €% S8 S7 S8 59 80 1 §2 3

22 4 Ré 2 25 1 R8 0 g B2 g L7 B6 g B8 g 0 g k2
il 2 A B B 8 10 11¢ 12 43 9¢ s 98 N7 18 119 20 1
Figure2
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temperature ot point |
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280

Figure3
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time

Figure4 - LUSASresultsfor temperatureat point 1 Vstime.
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Example 8.1.1

Spectral Response Analysis Of A 2-D Frame Structure

This example has now been retired.
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Example 8.1.2

Linear Dynamic Analysis Of A Spring/Mass/ Damping

System

Keywords

Linear Dynamics, Damping

Problem Description

Determine the damped natural period (Td) and the ratio (R) between any two succesive
amplitudes of afreely vibrating spring/mass/damping system. The massisinitialy displaced and
subsequently allowed to vibrate fredly.

Discretisation

The spring/mass/damping system is modelled using a single joint (JNT3) element. The material
properties are as follows:

K, =30Iblin M; =0.0259Ibsec?/in C; =0.12 b sec?/in

The system is fully restrained at node 1 and restrained in the Y direction at node 2, resulting in a
single degree of freedom problem. An initial load of 30 Ib is applied to the structure.

Theory
The undamped natural frequency of the system in radians per second is
K
W, = M (8.1.12)

so that w%@é@@a (8.1.2)
0.0259

The critical damping coefficient and damping factor are

CgMw1.7629Ib/in/sec 813
T8 2 (8.1.4)
c1.7629
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The logarithmic decrement is

de: 4 (8.15)
1F 2
The amplitude ratio for any two consecutive cyclesis
X1 e 535 (8.1.6)
X2
The damped period is

Tp-igetkes (81.7)
Tw,
Comparison

The LUSAS results are compared to the theoretical solution.

Peak 1 2 3 4

Maximum amplitude (in) 1.000 0.650 0.423 0.275

Time (secs) 0.000 0.186 0.372 0.558

Ratio R(1-2) R(2-3) R(3-4)

Theory 1.535 1.535 1.535

LUSAS 1.538 1.538 1.538

Difference (percent) 0.195 0.195 0.195

Damped natural Period Td(1-2) Td(2-3) Td(3-4)

Theory 0.185 0.185 0.185

LUSAS 0.186 0.186 0.186

Difference (percent) 0.54 0.54 0.54
References

1. Thomson,W.T. 'Theory of vibration with applications, 2nd Edition, George Allen of Unwin.

Input data
X08D12A. DAT
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Displacement
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i
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Time v Displacement for damped spring mass system

0.80

Time
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Example 8.1.3

Beam Subject To A Harmonic, Periodic And Step Load
Keyword

Linear Elastic, Periodic, Har monic

Description

The response of a deep, ssimply supported beam to a harmonic, periodic and direct uniformly
distributed load is presented in this example. The objectives are to establish the displacement and
stress amplitudes at the midpoint of the beam. An initial eigenvalue analysis of the system is also
performed.

Discretisation

The beam is modelled using 10 equal, two noded beam elements (BM S3). Boundary conditions
are applied in the global X,Y,Z and jx directions at one of the beam extremities. The other
extremity has 'Y and Z supports only.

Geometry

Consider a beam (see figure 1) of length 10m, square cross-section (b) of 2m and aligned with
the global X-axis, for which the following sectional values are used:

lyy =lzz= (b**4)/12

Kt =0.1406* (b**4)

Asy=Asz= gA
where:

g = (10+10v)/(12+11 v) (v is Poisson's ratio)

Material properties

Young's modulus 200x10° N/m?
Poisson’ sratio 0.3
Density 8000 Kg/m®
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Loading
The forcing function for the steady state harmonic loading is:

F=1E6sin(Wt) Nm*
where:
Q = 2xf (0<f<70H2)

Viscous damping of 0.02 is used with no structural damping. The first 16 modes are used to form
the modal domain. This test is repeated with distributed viscous damping of approximately 0.02
for mode 8 and viscous damping of 0.02 for al other modes and no structural damping.

2. Theforcing function for the steady state periodic loading is:
F = 1E6 (sin(Qt) - sin(3Qt)) Nm?
where:
Q =2xf
Rayleigh damping is used with: o =5.36, and 8 = 7.46E-5
3. Theforcing function for the direct loading is:
F=1E6 Nm™*
Rayleigh damping is used with: a=5.36, and b = 7.46E-5
LUSAS results
Eigenvalue Analysis

Figure 2 shows vibration modes 1, 6 and 9, whilst the table below gives the values obtained
using Lusas:

Frequency
Mode Lusas Reference’

42.5363 42.65
2 42.5363 42.65
3 71.2751 71.20
4 125.129 125.0
5 144.220 148.15
6 144.220 148.15
7 215.587 213.61
8 260.624 283.47
9 260.624 283.47
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* . A closed form solution

Har monic L oading Response

Figure 3 shows the response of the beam in the frequency domain, whilst the table below
compares the values obtained at the beam midpoint for both the peak displacement and the peak
stress.

Lusas Target’ Reference”
Frequency (Hz) 42.54 42.60 42.65
Peak displacement at beam midpoint 12.48 13.44 13.45
Peak stress at beam midpoint (Pa) 243.8E8 240.3E6 241.9E6

# : Closed form analytical solution
* : Vaue for engineer's beam (ignoring shear and rotary inertia)
Periodic L oading Response

Figure 4 shows the response of the beam in the time domain as the transient components die out,
whilst the table below compares the values obtained at the beam midpoint for both the peak
displacement and the peak stress.

Lusas Target’ Reference”
Peak displacement (mm) 0.944 0.953 0.951
Peak stress (Pa) 17.19E6 17.33E6 17.1E6

#: Closed form analytical solution
* : Vaue for engineer's beam (ignoring shear and rotary inertia)
Direct Loading response

Figure 4 shows the response of the beam in the time domain, whilst the table bel ow compares the
values obtained at the beam midpoint for both the peak displacement and the peak stress. Note
that the peak occurs at t=0.0117 for both the Lusas and reference solutions.

Lusas Target* Reference”
Peak displacement (mm) 1.044 1.057 1.043
Peak stress (Pa) 18.64E6 18.77E6 18.76E6
Time (9) 0.0117 0.0117 0.0117
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#: Closed form analytical solution
* . Average of two codes:-
(i) Valuefor engineer's beam (ignoring shear and rotary inertia)

(ii) Timoshenko beam (with shear and rotary inertia)

Reference
1. NAFEMS Report Number E1261/R002

Input Data
X08DL3A. DAT
X08D13B. DAT
X08D13C. DAT
X08D13D. DAT
X08D13E. DAT

f
| STEADY STATE HARMONIC |

Fo sin wt

| Fa = 1E6 Nim i
w = 0 to 60 Hz ‘
Lgpampwnc 2% levery mods) |
Uniformly Distributed Load

T ; ‘ !
. [ l L ‘ PERIODIC LOADING }
N o - . . q -
'T z ' F = Folsin wt - sin Zwt: }
| Fo = 1E6 Nim \
J wt = 20 Hz \
| Demping |
DISCRETISATION USING 10 BMS3 ELEMENTS [ Ar = 536 Br = 7 LBE-S |

TRANSIENT STEP LOADING

Fa = {EB N/m
Damp ing
Ar = S5.36 Br = 7.LBE-S

Figurel
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— T o __ i—:?m

Mode 1 - freguency 42.54 Hz

Mode 2 - frequency 144.2 Hz

Mode 3 - frequency 260.6 Hz

FLEXURAL MODE SHAPES AND FREQUENCIES

Figure2
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Example 8.1.4

Large Deformation Dynamics of Stiff and Elastic Pendulum

Keyword
L arge Defor mation, Step-By-Step Dynamics

Description

The rotation of a pendulum is simulated by the generalized a-method together with a co-
rotational formulation for large deformation. The pendulum can be stiff, undergoing
approximate rigid-body rotation, or flexible, undergoing coupled rotation and axial vibration
with medium strains.

Stiff pendulum

The geometry and material properties, boundary and initial conditions of the pendulum presented
in Kuhl and Crisfield [2] and adopted by Bathe [1] are given in Figure 1. The pendulum is
powered by theinitial tangential velocity = 7.72mV/s. In order to obtain an equilibrium state at
theinitial timet, = 0 theinitial radial accelerationiscalculatedto = 19.6m/s%.

Elastic pendulum

Following Kuhl and Crisfield [2] and Bathe [1], the stiffness of the truss element is reduced from
EA, = 10%° N to EA, = 10* N, hence the element is now flexible and shows an axial vibration.
Also, we now use theinitial radial acceleration = 0.0 m/s2.

Discretisation

The pendulum is modelled by one two-node bar or truss BAR2 or BRS2 element with a
consistent mass matrix. The time step At =0.01s.

Theory

Stiff pendulum

As a result of the large stiffness EAq the motion of the truss is (approximately) a rigid-body
rotation with the angular velocity = 0.4036 1/s (Figure 1). The analytical rotationa period is
24777 s[1].

Elastic pendulum
The period of axial vibrationis0.28 s[1].
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Comparison
Stiff pendulum

Kuhl and Crisfield [2] already report that the trapezoida rule is unstable; the generalized o-
method can be used to solve the problem with integration constant « = -0.4/1.6. The obtained
time history of displacement, velocity and acceleration shown in Figure 2 agree with the
theoretical solution, and are very close to the results given by Bathe [1].

Elastic pendulum

The time step employed corresponds to 28 steps per cycle of the axia vibration, which is a
reasonable time step size to capture this vibration. The obtained time history of displacement,
velocity, acceleration and strain from BAR2 and BRS2 are the same (Figure 3), and close to the
results given by Bathe [1]. The pendulum undergoes medium strains, which reach its maximum
256% at t = 0.14s.

References

1. Bathe, K. J. ‘Conserving energy and momentum in nonlinear dynamics: A simple implicit
time integration scheme’. Comput. Sruct. 85: 437445 (2007).

2. Kuhl, D., Crisfield, M. A. ‘Energy-conserving and Decaying Algorithms in Non-linear
Structural Dynamics'. Int. J. Numer. Meth. Engng. 45: 569-599 (1999).

Input data

x08d14a

x08d14b

x08d14c

277



Verification Manual

X

A=0.1s

:

|

|
[
m_so
=]
ST = B ]
i n _._n.

=

<

lig="7.72 m/s

-

iip=19.6 m/s?

motion

truss model

Figure 1. Smple pendulum with boundary and initial conditions.
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—8—"elocity ¥ Mode 2{8) / Response timel7)

! Response time(3)

—— Acceleration ¥ Node 2{10)
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Figure 2. Variation of displacement, velocity and accder ation of the iff pendulum in 1t cycle.

.

.

Fo—a---r -

—-A---r--a---

]
Rl b bl b Tt il ol Bl

'
'
Lo Lo_do__L__d___L__

[T R F

a

05 b--
1 -
4

25 -
3
&5 -

o SR
55 |-

B -
£.4

5Z
¥
£C
[
L'Z

Ll

L R L T I R L B
o0 o ooooao

—®— Dizplacement X MNode 2(21 / Response time(1)

281



Verification Manual

-
'
'
]
[

'
-
'

'
L
v

'

'
-
'
'
v
v
'
'
-
'
'
L
'
'
'
-
'
'
L
]
'
'
=
'
'
v
'
'
'
-

0.8 -
afp--

g .

! Response time(3)

)

—8—Displacement ¥ Mode 2(4

—8—"elocity ¥ Mode 2(10) / Response time(3)

282



Example 8.1.4

—8—"/elocity ¥ Mode 2(8) / Response time(7)

—8— Acceleration ¥ Mode 2{(5) / Respanse time(5)
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Example 8.1.5

Free-Free Nearly Rigid Beam Undergoing Large Overall

Motion

Keywords
L arge Deformation, Step-By-Step Dynamics

Description

The free flight of a beam, which is affected by very small strains so that the motion is similar to a
rigid body motion, is simulated by the generalized a-method together with a co-rotational
formulation for large deformation. The geometry, initial conditions and materia properties, given
in Figure 1, are the same as Crisfield et al. [1]. The principle axes of inertia of the cross-section
areinitialy aligned with global coordinate axes X and Z.

Discretisation

The beam is divided into 4 linear BMI21 or quadratic BMI31 elements with a consistent mass
matrix. Theinitia timestep sizeis  =0.2s.

Comparison

The integration constant a. = 0 is adopted by the generalized a-method. The displacements of the
lower end B in the first revolution are given in Figure 2. BM121 and BM 131 elements give results
identical to the BMS3R element of Crisfield et al. [1].

References

1. Crisfield, M. A., Galvanetto, U. and Jeleni¢, G., ‘Dynamics of 3-D co-rotational beams'.
Comput Mech 20: 507-519 (1997).

Input data

x08d15a

x08d15b
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A (10,250,0)
Material properties:
E= ,v=0,p=1
Geometric properties:
A=1 = =112
Y
X B (1000 80
z 40

Figure 1. Freeflight beam.
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Figure2. Timehigtory of the displacementsat thelower end B.
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Example 8.2.1

Linear Dynamic Analysis Of A Beam With Pressure Loading

Keywords
Step-By-Step Dynamics

Description

Determine the dynamic response of a cantilevered beam subject to a suddenly applied uniformly
distributed load (see Figure 1).

Discretisation

Model the two-dimensional cantilevered structure using 8 QPM8 plane membrane elements (see
Figure 1).

Geometry
The cantilevered structure has unit depth and breadth and isten inches in length (see Figure 1).

Material properties

Young's modulus 12000 Ibfin?
Poisson’sratio 0.3
Density 10x10° Ib.sec? fin?

Boundary conditions

The structure is fully restrained at nodes 1,18 and 35 forming a cantilevered condition. The
pressure load is applied according to the load/time history graph in Figure 2. To allow for a zero
initial displacement condition the structure is fully restrained at every node for the first load case
and then freed accordingly for subsequent loads.

LUSAS Results

From the results of an eigenvalue extraction of this structure the following parameters were
determined:

Fundamental eigenvalue = 0.1235E6 1/sec?
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Natural frequency =55.93 Hz
Period of response, T =0.01788 sec
Increment of time for step-by-step, T/30 = 0.0006 sec

The time-displacement response curve derived from the dynamic analysis results

isshown in figure 3.

References

1. K.-J BATHE, E. RAMM and E. L. WILSON, "Finite Element Formulations for Large
Deformation Dynamic Analysis’, Int. Jnl. Num. Mthd. Eng., VOL 9, pp 353-386, 1975.

Input Data
X08D21A. DAT
X08D21B. DAT

1.425 Ib/in applied to the top and bottom faces

15 AB. a7 JA <l &0 1 &2 ol AR bt &b Vi 8 9 (1 1

po o P2 3 pb 6 5 ps 5 $0 7 f2 3 Lt

NN

10 ins

Figurel Linear dynamic analysisof cantilevered beam.
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LOAD

P = 2.85 1lb/in
P S —

TIME

Figure2 Load/timehistory graph for cantilevered beam.

Tip displacement (in)

10 -l-
Displacement/Time Graph For Cantilevered Beam
s +
. +
7 -
s -+
s +
‘ -+
T
2 +
1 4
L] t t t t t t t t } {
[} 2 ‘ L L] 10 17 " " it ] 20

Figure 3 Displacement time graph for cantilevered beam.
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Example 8.6.1

Nonlinear Dynamic Analysis Of A Clamped Spherical Shell

Keywords
Nonlinear Dynamics, Elasto-Plastic, Natural Frequency, Spherical Shell

Description

Determine the natural frequency and dynamic behaviour of a clamped spherical cap subject to a
uniform lateral pressure over its outer surface. The shell geometry is in the form of a truncated
sphere with aradius of 22.27 inches. The truncated spherical cap subtends a semi angle of 26.67
degrees at the centre of the sphere, and has a thickness of 0.41 inches. The shell is fully clamped
around its periphery, and is subject to a uniform external pressure. The geometry and loading of
the shell are shown in figure 1.

Thefinite element analysisis performed in four stages:
Stage 1 Eigenvalue extraction for natural frequency analysis
Stage 2 Linear elastic step-by-step dynamic stress analysis
Stage 3 Elasto-plastic step-by-step dynamic stress analysis
Stage4 Geometrically nonlinear elasto-plastic step-by-step dynamic stress analysis

Discretisation

The shell structure is modelled using five curved axisymmetric shell elements (BXS3). The shell
is assumed to be fully clamped at its supported base. The material properties used in the above
analyses are as follows:

i) Eigenvalue extraction, and linear analysis
Young'smodulus = 10.5E6 Ib/in2
Poisson's ratio =03
Mass density = 2.45E-4 |bsec2/in4

ii) Elasto-plastic analyses: Von-Mises elasto-plastic model
Young's modulus = 10.5E6 Ib/in2

Poisson's ratio =03
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Mass density = 2.45E-4 |bsec2/in4
Yield stress = 0.024E6 Ib/in2
Hardening modulus =2.142E5 |b/in2

The shell is assumed to be axisymmetric about its centre line and fully restrained against
deflection and rotation at the nodes representing its clamped base. Geometrically nonlinear
effects are modelled using atotal Lagrangian description.

The dynamic analyses were performed using atime step of 0.000025 seconds.

Results Comparison
Stage 1. Eigenvalue analysis for Natural Frequency

The natural frequency obtained from the LUSAS eigenvalue extraction analysis compares well
with that obtained bt Bathe and Ozdenir in[1].

Lowest eigenvalue = 0.132202
Natural Frequency = 1829.95 Hz
Stages 2-4: Step-by-step Dynamic Analyses

Figure 2 presents results of the LUSAS step-by-step dynamic analyses of the pressure loaded
shell and compares each of the following cases :

LE - Linear elastic step-by-step analysis
MNL - Materially nonlinear analysis (el astoplastic)

GMNL - Geometrically and materialy nonlinear analysis

References

1. BatheK.J. and Ozdemir,H. 'Elasto-plastic large deformation static and dynamic analyses,
Computers and Structures, Volume 6, 81-92, 1976

2. FEAL Interna Report FEAL503 'Axisymmetric thin shell element’, Finite Element Analysis
Ltd. Kingston upon Thames, (1985).

Input data

Total Lagrangian geometric nonlinearity isinvoked by including OPTION 87.

X08D61A. DAT

X08D61B. DAT

X08D61C. DAT

X08D61D. DAT
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Figurel
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Figure2 Clamped Spherical Cap
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Example 9.1.1

Quenching Of An Infinite Plate

Keywords
Coupled Analysis, Thermal Stress

Description

This example is an illustration of semi-coupled heat transfer and subsequent thermal stress
analysis. Because a semi-anaytic solution is available for the case (see [1]), the problem
provides verification of this type of analysis. The purpose of the analysisisto predict the residual
stresses caused by the quenching of alarge, homogeneous plate in regions away from the edges
of the plate. In this manner it can be treated as a plate of infinite extent in all but the thickness
direction. The plate is made of an elastic, perfectly plastic material, with ayield stress that drops
linearly with temperature above 121 C (250 F). Because the plate is assumed to be of infinite
extent the problem is one-dimensional and the only gradient occurs through the thickness of the
plate. The plateisinitialy at auniform temperature near its melting point (when itsyield stressis
small). It is assumed to be stress free in this condition. The surface is then quenched by
convective cooling to a medium at room temperature. Cooling is alowed to continue until all of
the plate reaches room temperature. The analysis consists of a transient heat transfer analysis
followed by a thermal stress anaysis. During the heat transfer analysis the temperature-time
history is used as input to the thermal stress analysis. The transient stresses are large enough to
cause significant plastic flow, so that residual stresses will remain after the plate reaches room
temperature.

Discretisation

Ten elements are used through the half thickness of the plate. The heat transfer mesh uses QXF8
elements and the stress analysis QAX8 elements.

Geometry
The plate is 914.4mm (36in) thick.

Material properties

Y oung's modulus 206.8 GPa (30.0E6 Ib/in?)
Poisson's ratio 0.3
Yield stress 248.2 MPafor j<121 C (36000 Ib/in ,j<250 F)
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248.2(1-(j-121)/1111.1) MPa, j>121 C
(36000(1-(j-250)/2000) Ibfin? , j>250 F

Density 7832 kg/m® (0.283 Ib/in®)
Specific heat 0.6 kJ/kg C (0.1431 BThu/lb F)
Thermal conductivity 58.8 W/m C (7.872E-4 BThu/in sec F)

The film coefficient on the surface of the plateis 193.1 W/m. C (6.559E-5 BThu/in.sec F)

Theory

Equations for the determination of transient and residua stresses in plates subject to transient
temperature distributions, based on the assumption of a viscoelastic, perfectly plastic materia
obeying a von Mises temperature-dependent yield condition are given in [1]. The analytical
values for residual stress for this problem are given in [1] and are compared with LUSAS values
in figure 2.

Reference

1. Landau,H.G., JH. Weiner, E.E Zwicky, Jr., "Thermal Stressin a Viscoelastic-Plastic Plate
with Temperature Dependent Yield Stress’, Journal of Applied Mechanics, Vol.27, pp.297-
302 (1960).

Input Data
X09D11A. DAT
X09D11B. DAT

X09D11C. DAT
X09D11D. DAT

Figurel
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Example 9.1.2

Coupled Temperature Displacement Analysis

Keywords
Coupled Analysis

Description

This example is an elementary nonlinear case of one dimensional, fully coupled, heat transfer
and stress analysis. The model is shown in figure 1. A conductive rod is fixed at one end, A, and
free at the other end B. Between the free end and an adjacent body, C, there is a gap, across
which heat will be conducted. The heat transfer coefficient for the gap drops linearly as the
clearance increases. The fixed end of therod, A, and thewall, C, (which is also fixed in position)
are both held at fixed temperatures, ¢, and ¢c.

The objectiveis to predict the displacement, ug , and temperature, ¢ , of the free end of the rod.
For simplicity, al temperatures and displacements are measured from a standard, constant
temperature position in which the gap distance is d,. It is assumed that the strains are small and
the behaviour of the rod is linear elastic with constant modulus and therma expansion
coefficient. We also assume that the gap never closes, so that the rod is always stress free.

Discretisation

The following element types are used:
(i) Structura - 1 HX8 element and 4 INT4 elements.
(ii) Thermal - 1 HF8 element.
(iii) 4 LFS2 link elements.
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Geometry
ﬁ ——
y/ L
7, [
/
7/
7 |
7
7 |A B
7
7
7
Figurel
Material properties
All specifications in consistent units
E = Young's modulus =3.0E6
v = Poisson’s ratio =00
o = expansion coefficient = 1.0E-5
¢ = rod conductivity =10

Boundary conditions
(i) Structurd

at (a) restrained, at (b) free
(i) Field
at (a) temperature ¢, =400, at (c) temperature ¢c =200

Theory

NN O NI '

The exact solution to the problem is devel oped using the equilibrium and compatibility equations
with the appropriate boundary conditions. Heat conduction in the rod is assumed to be governed

by Fourier's Law:

d
0
K

q I‘dS

(9.1.2)

where K, isthethermal conductivity of the rod and distance sis measured from A.
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Heat conduction across the gap is given by:

q&(l)—éﬁc ) (9.12.2)

and the thermal conductivity of the gap, K, , decreases linearly as the clearance increases:

Kigk+ H dgLiB (9.1.3)

where Ky and d; are constants and Ug the displacement of B.
For this problem the following values have been chosen:
Ki=Ko—-1
Ky =2.0when Ug = 0.0
Kg= 0.0 when Ug = 0.02
- dy-dy=0.01
For thermal equilibrium:

%

- (9.1.4)

Therefore, from (9.1.1) d¢/ds is constant in the rod, so that (9.1.1) may be expressed as:

q&d)_Fb(B ) (9.1.5)

The thermal expansion of therod is given by:

UBA—E;%#( ) (9.1.6)

For thermal equilibrium:

Ki(aggeo—9 ) (9.1.7)

Substituting (9.1.3) and (9.1.6) in (9.1.7) yields a quadratic equation for ¢g . The boundary
values and chosen constants can be used in this equation to solve for ¢g , where only one

admissible positive root is obtained. Substitution of ¢g in (9.1.7) gives Ug

0g =2854  Ug =3.427E-3

Results

Two approaches are implemented to allow a solution of this example. Firstly, if two analyses can
be run concurrently, an iterative solution of the problem is possible. Secondly, if only one
module can be run at once, a solution is obtained by the use of restart files. The temperature and

displacement at point b computed by the two approaches are:
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Iteration O Iteration 1 Iteration 2 Itn. 3

Temp Disp Temp Disp Temp Disp Temp

Method 1
Thermal 3000 35x10° 285084 3.425x10° 285.206 3.426x10° 285.208
Structural

Method 2
Thermal 3000 35x10° 284936 3.425x10° 285213 3.426x10°
Structural

The dight differences with theoretical values are due to the use of a constant value for L in the
manual calculations.

Input Data
X09D11c. DAT
X09D11d. DAT

Note that restart file X09D12C. RST isrenamed to Z09D12C. RST

Note that restart file X09D12D. RST isrenamed to Z09D12D. RST
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Example 9.2.1

Compression Of An Angle Into A Corner

Keywords
Thermal Surfaces, Coupled Analysis, Nonlinear

Description

A poorly formed angle bracket, subtending an angle greater than 90 degrees, is pushed against a
second right angle bracket, figure 1. Contact along the faces is progressive as the angles deform.
A semi-coupled static structural/thermal analysis is carried out using thermal surfaces. The
temperature at the interface between the anglesis afunction of the pressure at the contact point.

Discretisation

Each angle is meshed using the following two dimensional elements:
Structural analysis - 36 QPM4 plane stress continuum elements.
Thermal anadlysis - 36 QF4 plane field elements.

The mesh at theinitial configuration is shown in figure 2.
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Geometry

0.5 05

f——

—_—
>
o
©
5.0
0.25 direction of prescribed
displacement
100° C
a ¥ 0.5
[nner angle )
outer angle I 05
U
—Dmk v
50°
T A
" 5.0

Figurel- Initial geometry
Boundary conditions
Thermal:
Prescribed temperature
outer angle - outer surface temperature of 50
inner angle - outer surface temperature of 100
Structural:
Tota prescribed displacements applied to end A
stepl -0.12
step2 -0.24
step3 -0.25
step4 -0.26
step5 -0.27
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Material properties
Thermal:

solid conductance = 101
thermal contact properties:

gap conductance contact pressure

0 0
1000 0.03
Structural:
E =100

Poisson'sratio = 0.0
Master surface stiffness=0.1

Slave surface stiffness = 0.1

Loading
Structural:

Total prescribed displacements applied to end A
stepl -0.12
step2 -0.24
step3 -0.25
step4 -0.26
step5 -0.27

LUSAS results

The results should show a uniform progression of contact with the hottest point indicating the
point of greatest contact pressure. If the surfaces are in contact, but there is no contact pressure,
heat will not flow between the surfaces. Figure 3 details the progression of contact as the end
displacement of the inner angle isincreased. Initial contact is at the top of the angles as shown in
load case 1. A second contact point is predicted at the point of prescribed displacement as the
outer angle bends to accommodate the inner angle. The largest stresses arise from bending. As
loading is increased, load cases 2 to 4, the point of contact moves down the angles. Above the
point of contact the angles are stress free. Finaly, in load case 5, the inner angle isin a state of
amost pure compression and the outer angle is restraining this load by a combination of bending
and tension. Figure 4 mirrors the progression of contact with the heat flowing across the contact
as expected.
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Input data
X09D21A. DAT
X09D21B. DAT

|

Figure2Mesh ininitial configuration
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CONTOURS OF SE CONTOURS OF SE CONTOURS OF SE

0.2035€-01 0.4073E-01 0.5144E-01
0.6082E-01 0.1218 0.1543
0.1013 0.2029 0.2572
0.1418

0.2841 0.3601

Load case 1 Load case 3

Load case 5

CONTOURS OF SE CONTOURS OF SE

0.3866E-01 .4220E-01
0.1158 . 1266
0.1930 L2110
0.2701 . 2054

Load case 2 Load case &

Figure3 Stresscontoursand contact points (circled)

Load case 1 Load case 3 Load case 3

CONTOURS OF PHI

56.25
68.75
81.25
93.75

Load case 2 Load case &

Figure4 Temperature contoursand contact points (circled)
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Example 9.2.2

Upsetting Of A Cylindrical Billet

Keywords
Plasticity, Coupled Analysis, Plastic Work

Description

A cylindrical billet is compressed between two plattens so that its length is reduced by 52%. The
rate at which the billet is compressed dictates the amount of heat developed as a result of plastic
work done. This example compares the temperature distributions for a fast and slow rate of
compression.

The hbillet is 30mm long and of 10mm radius with al surfaces fully insulated. The initial and
final configurations of the hillet are shown in Figure 1. Symmetry of the problem alows an
axisymmetric analysis to be performed. Elasto-plastic material properties are assumed for this
metal forming example. The effects of applying the prescribed displacement loading at a rate of
0.09 mm/sec and 90 mm/sec are compared. Note that inertia effects have been ignored and the
time-step used in the thermal analysis dictates the rate at which the heat is developed. Data
transfers are performed in parallel during the execution of this thermo- mechanical coupled
analysis.

Discretisation

A mesh of 119 axisymmetric solid elements (QAX4) was used in the structural analysis, while
the same number of QXF4 elements was used in the thermal analysis. The initial mesh is shown
in Figure 1.

Material properties
Young's modulus = 2E11 N/m?

Poisson’sratio = 0.3

Thermal expansion coefficient = 1.2E-5 per °C
Initial yield stress = 7E8 N/m?

Work hardening rate = 3E8 N/m?

Specific heat = 586J/(Kg °C)

Density = 7833 Kg/m®
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Conductivity = 52J(m-s- °C)
Heat fractionh; = 0.9

Boundary conditions
Structural:

Symmetry conditions are applied aong the axis and over the middle surface of the billet so that
only half an axisymmetric segment is modelled. Nodes along the axis of symmetry are restrained
horizontally but are free to move in the vertica direction. To simulate the loading platten, the
nodes along the top surface are free to move in the horizontal direction but are restrained
vertically solely to apply the prescribed displacements. Symmetry conditions for nodes on the
middle surface require restraint in the vertical direction and freedom horizontally.

Thermal

All external surfaces are insulated. Thisis achieved by initialising the environmental temperature
a the boundary to zero and defining a very low convective heat transfer coefficient at the
external surface of the billet. An initial environmental load is applied to al element faces along
the boundary to model this condition.

Solution comparison

The genera response ohserved for both the rapidly loaded test and the slower case agrees with
what would be expected for such analyses. The slow loading test shows that the temperatures
have time to diffuse leading to a uniform temperature distribution throughout the billet, Figure 3;
the temperatures in this case range between 121 and 122.8 degrees. The opposite is true for the
faster loading case where higher temperatures are computed with a large temperature gradient
occurring across the billet. The highest temperatures are located at the point where most plastic
deformation occurs. Results for each case are compared in Figures 2 and 3.

Input Data
X09D22A. DAT
X09D22B. DAT
X09D22C. DAT
X09D22D. DAT
Note:

This data file can be used for both the fast and dow cases. However, different data transfer file
names should be used to avoid confusion.

Note:

For the dow rate of loading, the incrementation line in TRANSIENT CONTROL must be
changed from 0.01/9 to 10/9. The data transfer file should also be renamed to avoid confusion.
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Figure 1. Deformed mesh plot at 52% upsetting

CONTOURS OF PHI

121.0
121.3
121.6
121.9
Shar,ate o
122.5
122.8

CONTOURS OF PHI

20.71
54.98
89.25
123.5
157.8
192.1
226.3

Fast rate of
loading

Figure2. Temperaturedistributionsfor dow and fast rates of loading at 52% upsetting.
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Slow rate of
loading

CONTOURS OF PHI

20.71
54.98
89.25
123.5
157.8
192.1
226.3

Fast rate of
loading

Figure3. Comparison of temperaturedistribution for dow and fast rates of loading at 52%
upsetting
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Example 10.1.1

Plastic Bar Impact Against A Rigid Wall.

Keywords
Impact, Slideline, Plastic Flow

Description

This example consists of a cylindrical steel projectile striking perpendicular to arigid boundary.
Upon impact, the stress in the projectile at the impact point exceeds the elastic limit of the
material, and a plastic front moves back through the projectile. Within the plastic zone the
material flows radially and resultsin a shortening of the projectile.

Wilkins [1] performed a series of experiments which illustrated that the final cylinder length is
very sensitive to the yield strength of the material. Consequently, as the projectile undergoes
finite strains, this example furnishes a worthwhile test for both elastoplastic algorithms and finite
strain procedures in explicit dynamic analysis.

Figures 1 and 2 illustrate the final configuration of the bar for an initial velocity of 252 m/s. The
accuracy of the bar shortening predicted in the analysis is compared with the shortening observed
experimentally [1].

Discretisation

The projectile is modelled using 5x21 4-noded one point quadrature axisymmetric elements
(QAXAJE), figure 1. The boundary between the projectile and the rigid wall is represented using a
penalty based slideline procedure [2].

Geometry

— 7.62 mm —

23.47 mm
1

l v = 252 ms~
o

///////////////;////////////////////////////////////////////////////
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Material properties

Young's modulus, E 211.0x10° Pa
Poisson’sratio, v 0.3

Density, p 7840.0 kg/m®
Initial yield stress, oo 1.2x10° Pa

I sotropic hardening parameter, H,; 1.0x10° Pa

Default values for the hourglass viscosity and for the artificial viscosity coefficients are to be
used.

LUSAS results

(i) The fina length of the bar can be approximated as 19.87mm by considering the net
displacement of the top and bottom surfaces; this is in good agreement with the experimental
value of 19.76mm given in [1], figure 1. The configuration at the point of maximum deformation
isgivenin figure 2.

References

1. WILKINS, M. L., GUINAN, M. W. Impact of Cylinders on a Rigid Boundary. J. Appl.
Phys., Vol. 44, No. 3, pp1200-1207, March 1973.

2. GOUDREAU, G. L., HALLQUIST, J. O. Recent Developments in Large-Scale Finite
Element Lagrangian Hydrocode Technology. Comp. Meth. in Appl. Mech. and Eng., 33,
pp725-757, 1982.

Input data
X10D11A. DAT
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Figurel
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Example 10.1.2

Cantilever Subject To Dynamic Loading.

Keywords
Impact, Tied Slideline

Description

This example consists of an elastic cantilever which is subjected to an instantaneously applied
uniformly distributed load. A single tied slideline is used to enable refinement of the mesh near
the fixed end. The free end displacements computed by the dynamic finite element analysis are
compared with those given by static linear and nonlinear analyses.

The free end displacements calculated by static analysis are:
Linear solution =0.36

Geometrically nonlinear solution = 0.33

Discretisation
The beam is modelled with 36 HX8E elements, figure 3, arranged in the following manner:

6 x 4 element mesh near the support

4 x 3 element mesh for remainder

Geometry

B/2 lb/in

LiliLiilleired L

o

T A A R A A A A A A AR

P/2 1b/in

- —] [

L=10in. h=14in. b =1 in.

Figurel
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Material properties

Young's modulus, E 12.0 x10° Ib/in?
Poisson’sratio, v 0.20
Density, p 1.0x10° Ib sec? /in*

Default values for the hourglass viscosity and for the artificial bulk viscosity coefficients are to
be used.
Reference

1. BATHE, K-J, RAMM, E., WILSON, E. L. Finite Element Formulations for Large
Deformation Dynamic Analysis. Int. J. Num. Meth. Eng., Vol. 9, pp353-386, 1975.

Lusas results

Figure 2 shows the peak deflection computed by LUSAS compared with that given in [1]. The
differences observed can be attributed to the use of different strain measures. In [1] a Tota
Lagrangian approach is used whereas the LUSAS solution is based on the Green-Naghdi stress
rate and velocity strain.

Taking further time steps confirms oscillation about the nonlinear static solution. The deformed
mesh at peak deflection is shown in figure 3.

Input data
X10D12A. DAT

:9.\-‘ o~ Refarence
e ‘m‘.\"&
F — S\\ T
X = e
-6 00G =

-7 000~

VERTICAL END
DEFLECTION

Figure2
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Figure3
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Example 10.1.3

Interference Fit Test

Keywords
Axisymmetric Solid, Elastic, Slideline, Implicit

Description

One range of problems which is of considerable interest to the Engineer is the assembly of
components using interference fit techniques.

This example consists of two cylinders of length 0.01m and outer and inner diameters of
(0.10025, 0.08m) and (0.11, 0.09975m) respectively. An initia interference of 0.0005m is thus
considered between the cylinders. The geometry of the initial configuration of the cylinders is
shown below. The first phase of the anaysis is a linear elastic solution to obtain the initia
configuration as a result of the interference fit. The response of the structure to subsequent
loading on the innermost diameter corresponding to a suddenly applied constant radial load is
aso investigated. 2% damping of the two lowest modes is applied to the structure for this
secondary phase utilising the Rayleigh damping facility. The cylinders are modelled using a 10x2
element mesh (see figure 1) with 4 noded axisymmetric solid elements (QAX4).

Geometry

0.01lm Cylinder 1 Cylinder 2

—— 0.08n —

+— 0.099750 ———————
+— 0.10025n —————>

0.11lm

Boundary conditions
Top and bottom surfaces fully restrained in global Y only
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Material properties

Cylinder 1 Cylinder 2
Young's modulus, E 150 x10° kN/m? 207 x10° kN/m?2
Poisson’sratio, v 0.25 0.3
Density, p 7470 Kg/m® 7470 Kg/m®

2% critica damping of the lowest two vibration modes is also required. This will give the
Rayleigh damping factors as (according to the primary eigen-frequencies of 8213 and 8383 Hz
obtained from an initial eigenvalue analysis on the structure):-

Rayleigh damping factor o~ 104265
Rayleigh damping factor . 3.83598x10”

Loading

A compressive radia loading is applied over the inner diameter of the inner cylinder as a
concentrated step load of magnitude 2.5 GPa.

Slideline Properties

Stiffness scale Stiffness scale Zonal contact

factor, master factor, slave detection Slideline
surface surface parameter extension
1.0 1.0 100.0 1.0
Theory

The Rayleigh damping factors may be computed from the following equation:-

2c=+fo (10.1.1)
®

where z is the known moda damping factor, a and b are the Rayleigh damping factors and w is
the circular frequency at which the modal damping factor is operative. The Rayleigh damping
factors are thus computed as:

2618}
o==—"_"2L 104265 (10.1.2)
(V¥

And
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_298  geanag10 7 (10.13)

The approximate analytical solution for the interface pressure (P) due to an initial interference fit
and an internal pressure (P, ) acting on the inside surface of the inner cylinder is given by the
following:

2Pa?
Efbaf>

R=— (10.1.4)

EQ bR 20

L
b

where:
y istheinitia interference
aistheinner diameter of the inner cylinder (0.08)
b isthe diameter of the interferencefit  (0.10)
cisthe outer diameter of the outer cylinder (0.11)

For theinitial interference configuration without internal pressure loading, the analytical solution
yields:-

P=617 MPa

whilst for the secondary case of superimposed interna loading of 2.5 GPa, the interface pressure
isgiven as--

P=793.4 MPa

Lusas Results

The initial radia stress distribution over the cylinder cross-section is shown in Figure 3, from
which the normal interface pressure obtained is 62.8 MPa. The effect of damping on the normal
interface displacement for node 111, subsequent to the application of the internal pressure may
be seen in Figure 2.

The fina radia stress distribution over the cylinder cross-sections for the damped response is
shown in Figure 4. It may be seen that the final value for the interface pressure of 818 MPa
represents a difference of 3% when compared with the approximate analytical solution of 793.4
MPa. This analysis was also carried out using a statically applied load, figure 6, where the final
interface pressure was found to be 820 MPa. A comparison of radial stresses at each side of the
interface for the damped system is given in figure 5. This figure shows that as the analysis
progresses a state is reached where the effects of loading the structure dynamically have
effectively been damped. This leads to afina stress distribution very similar to that for the static
analysis.
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Reference
1. Reismann,H.,Pawlik,P., Elasticity: Theory and Applications, JWiley and Sons, 1980

Input Data
X10D13A. DAT
X10D13B. DAT
X10D13C. DAT

Outer cylinder

Initial
configuration

|
Inner cylinder | I Initlal Interference
&
Final \
conflguration i

Final Interface
position

Figurel Initial and final configuration of cylinders
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(m)

Radial displacement at node 111

Radial stress (Pa)

X E-3
7.000 ¢

6.000

5.000

4.000
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1.000 H/
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I
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0.0
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1.000 =

~ 300.

400.
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00.

800. %00. 1000. X E-6

Figure2 Comparison of damped and undamped responsefor Interface node 111

0.0

10.0

Radial distance (m)

15.0

20.0

25.0

30.0 35.0 X E-3

-10.00

-20.00

-30.00

-40.00

-50.00

-60.00

-70.00 -
X E6

Interface

Contact

T 1

Average Iinterface
pressure = 62.8 MPa

Figure3 Initial radial sressdigribution for cylinders.
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Radlal stress (Pa)

Radlal stress {(Pa)

Radlal distance (m)

0.0 5.00 10.0 15.0 20.0 25.0 30.0 X E-3
0.0 T T T T

-0.250

-1.000

-1.250

Smoothed Inter L]
pressure = B18 MPa

Interface

-1.500
=1.750

-2.000

Contact

-2.250

-2.500
X ES

Figure4 Final radial sressdigribution for cylinders.

Time (secs)

0.0 100. 200. 300. 400. 500. 600, 700. 800. 900. 1000. X E-6
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! o node 111
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1
|
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1
|
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I
1
-1.250 -
X E9

Figure5 Radial stresseson each sideof interface.
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Radial distance (m)

0.0 5.00 10.0 15.0 20.0 25.0 30.0 X E-3
0.0 . . . . ’
-0.250 |
-0.500 |

-0.750 |

Average interface

-1.000 pressure = 820 MPa

.250

interface

-1.500

Radlal stress (Pa)
f

-1.750

-2.000

Contact

-2.250

-2.500 *
X E8

Figure6 Final radial stressdidtribution - gatic analysis
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Example 10.1.4

Cylinder Compression Between Platens

Keyword

Nonlinear, Contact, I mplicit, Static, Slidelines

Description

The crushing of a long, straight pipe between two flat, frictionless anvils is presented in this
example. The objectives are to establish the load deflection response of the pipe and to describe
the overall deformation of the section. The example is a simple test for modelling contact
problems involving deformable bodies and rigid, impenetrable surfaces.

RF RF
Platen
RF RF
Outer diameter = 0.1143m
Wall thickness = 0.008865m
RR RR
4
Platen
RR RR

depth = 0.025m

Discretisation

The cylinder is modelled using 4x8x1 eight noded solid elements (HX8), whilst the platen
utilises an 8x1x1 element mesh. The boundary between the outer cylinder surface and the platen
face is represented using the frictionless slideline option (type 1). The boundary conditions are
depicted in the proceeding diagram and loading is applied over 80 increments to the upper platen
via a prescribed displacement to give a total displacement of -0.035m. Note that there are two
symmetry planesin this problem.
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Material properties

Young's modulus, E 30 x10° kN/m2
Poisson’ s ratio, v 0.3

Density, p 7800 Kg/m®
Yield stress, o, 241 N/m?

where o, isthevon Misesinitial yield stress. The hardening curveis as follows:-

Hardness, C; (N/m?) Plastic strain, &
9.850x10° 0.0035
5.386x10° 0.0083
3.447x10° 0.0133
1.741x10° 0.0281
1.144x10° 1.0000

Slideline Properties

Default values are specified for all dideline properties, except for the slideline extension where a
value of 0.1 isused.

Lusas results

The undeformed mesh is shown in Figure 1, together with the deformed mesh at load increment
35. Figure 2 shows the deformation history. The force displacement variation of total normal
interface force corresponds well with the experimental curve given in [1]. Note that the relative
displacement is plotted, i.e. twice the applied displacement.

Reference

1. Taylor,L.M., "A finite Element Analysis for Large Deformation Metal Forming Problems
Involving Contact and Friction" TICOM report number 81-15, 1981

Input Data
X10D14A. DAT
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Figure2 Variation of normal interface forcewith total platen displacement (3D)
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Example 10.2.1

Propped Cantilever With Joint Elements And Contact/Gap

Model

Keywords
Cantilever, Contact, Gap, Joint

Description

Determine the end deflection and reactions of point loaded cantilever beam fully restrained at
one end and supported at its mid length by a sunken support.

Discretisation

The cantilever is modelled using two BS4 element. The prop is modelled using one JSH4
element and the nonlinear contact/gap model.

Three support conditions are considered:

1. Freecantilever

Since the contact stiffness is only invoked by a downward (negative) deflection of the
cantilever, apositive end load results in afree cantilever condition.

2. Propped cantilever

The propped cantilever condition is modelled using an initial gap of 0 mm and a large
contact stiffness (10E16). The end load is applied in the negative Z direction.

3. Cantilever with sunken prop

The sunken propped cantilever is modelled using an initial gap of 1 mm and alarge contact
stiffness (10E16). The end load is applied in the negative Z direction.

Geometry

The dimensions and geometry of the cantilever are shown in figure 1.
Length, L 40 mm
Distance to prop, | 20 mm
Second moment of area, | 833.3mm*
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Material properties

Young's modulus, E 2.0x10°

Loading

The cantilever is subjected to a concentrated end load (P= 390609.3 N) designed to produce a
free cantilever end deflection of 5 mm. The total load is applied in five equal increments:

Increment Case 1 Case 2 Case 3

0.2P -02P  -02P
2 0.4P -04P  -04P
3 0.6P -06P  -0.6P
4 0.8P -08P  -0.8P
5 1.0P -LOP  -10P

Theory

Case 1. Free cantilever condition (Figure 2)

The end deflection of a free cantilever subject to atransverse end load is given by the expression

(1]

O = z:? — (10.2.1)
Hence, since (a=L) and (b=0)
PLS
O “E (10.2.2)

Case 2. Propped cantilever condition (Figure 3)

The end deflection of a propped cantilever is given by the expression
i 33(q 2 ) (102.3)
12F] o
and the reactions by the expressions
3pp 3
RA = T and RB].=—+ ? (10.2.9)

where
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p=$ and Q=|E (10.2.5)
Hence, since (a=l) and (b=0), therefore (p=1) and (g=0), and
o
B=( ) — (10.2.6)
12E112E
and
Ra :3—2P and RR=- [E (10.2.7)

Case 3. Propped cantilever with sunken support

The propped cantilever with the sunken mid support behaves as the free cantilever until the
initial gap of 1 mm is closed. Following this deflection the stiff contact spring isinvoked, the end
deflection restricted, and the reaction at the prop progressively increased.

fPKRKR 25 (10.2.8)
where
fistheload factor (Total Load level = fP)
K, , K, arethe support reaction scaling factors
Comparison

The LUSAS results for the end deflection and the support reactions are compared to the
theoretical solutions.

Case 1. Free Cantilever.

End Displacement

Increment Load Level Theory LUSAS

0.2P 1.000 0.9999
2 0.4P 2.000 1.9999
3 0.6P 3.000 2.9988
4 0.8P 4.000 3.9988
5 1.0P 5.000 4.9988
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Case 2. Propped Cantilever

End Displacement End Reaction Ra Prop Reaction Rg

Inc. Load Theory Lusas Theory Lusas Theory Lusas

-0.2P -0.2187 -0.2187  -117182  -117183 195304 195305
-0.4P -0.4374 -0.4375  -234365  -234366 390609 390609
-0.6P -0.6562 -0.6562  -351548  -351548 585914 585914
-0.8P -0.8749 -0.8749  -468730  -468731 781217 781219
-1.0P -1.0937 -1.0937  -585913  -585913 976523 976523

a b WO N B

Case 3. Cantilever with sunken prop.

End
Displacement End Reaction Ra Prop Reaction Rg

Inc. Load Theory Lusas Theory Lusas Theory Lusas K:  K;

1 -02P -02187 -0.2187 -117182 -117183 195304 195305 1.0 0.0
2 -04P -04374 -04375 -234365 -234366 390609 390609 1.0 0.0
3  -06P -0.6562 -0.6562 -351548 -351548 585914 585914 1.0 0.0
4 08P -0.8749 -0.8749 -468730 -468731 781217 781219 05 0.5
5 -10P -1.0937 -1.0937 -585913 -585913 976523 976523 0.1 0.9

References

1. C.SGray et d. 'Steel Designers Manua : Second Edition’, Crosby-Lockwood and Sons
Publishers Ltd. (1960)

Input Data

X10D21A. DAT

X10D21B. DAT

X10D21C. DAT
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b i
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Figure 1. Geometry of Cantilever
and Finite Element Contact/Gap Model

T S

Figure 2. Theory of Free Cantilever

/0
—

¢ L

Figure3. Theory of Propped Cantilever.
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Example 11.1.1

Eigenvalue Analysis Of Pinned Double Cross

Keywords
Super elements, Eigenvalue Analysis, Generalised Coordinates

Description

The eigenvalues of a pinned double cross are calculated using a full mesh. The structure is then
partitioned into three superelements and the same analysis is repeated. Generalised coordinates
are used to improve the solution.

Finite Element Model

Superelement 1 is defined by arms with node numbers 68-9, 1-9, and 35-9, superelement 2 by
34-9 and 18-9 and superelement 3 by 51-9, 17-9, and 52-9. The master freedoms are those of

node 9.
1
Geometry
Length of arms 5m
Arm cross-sectional area 0.125 m?
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Material properties

Y oung's modulus 200.0 x10°
Density 8x10°% kg/m®

Boundary Conditions
Pinned at each support.

Solution Comparison
The lowest 16 eigenvalues of the full mesh compared to [1] are:

Eigenvalue (Hz)

Modes Reference Full mesh
1 11.336 11.336
2-3 17.687 17.687
4-8 17.715 17.715
9 45477 45477
10-11 57.364 57.364
12-16 57.683 57.683

The problem has multiple and close eigenvalues for which the corresponding eigenvectors are
detailed in Figure 1. Surprisingly, there is no symmetry associated with the multiple vectors at
the higher modes. The structure is split into superelements which are connected at node 9. There
are only three eigenval ues associated with the reduced structure.

Eigenvalue (Hz)

Reduced mesh (master

Modes Full mesh freedoms only)
1 11.336 14.411
2-3 17.687 175.866

The eigenvalues of the reduced structure do not adequately describe the behaviour of the
complete structure since only three degrees of freedom are used to simulate the complete
structure. To improve the estimate, additional freedoms called generalised coordinates are
introduced. Generalised coordinates are fictitious freedoms that are used to enhance the reduced
stiffness and mass of the individua superelements by using the modes of vibration of the
individual superelements.
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Figure 2 details the three lowest modes of each of the superelements. In their calculation, node 9
was fully restrained; therefore they correspond to the first mode of a beam which is simply
supported at one end and encastre at the other. Superelement 2 has only two arms, thus the third
mode corresponds to the next highest mode for the beam. Including generalised coordinates into
the computations the lowest 9 modes are:

Eigenvalue (Hz)

Reduced mesh (master
freedoms +3

Modes Full mesh generalised coordinates)
1 11.336 11.343
2-3 17.687 17.687
3 17.687
4-8 17.715 17.715
9 45477 53.404

There is a large improvement in the accuracy of the analysis. The best results are obtained for
modes 4-8. In thisinstance node 9 is stationary and the generalised coordinates exactly represent
the full eigenvectors.

Superelement Analysis Sequence

a) Solve with Master freedoms only
(i) Generate superelements 1, 2, 3
(ii) Combine superelements and solve eigen problem

b) Solve with Master freedoms + Generalised coordinates
(i) Generate superelements with modal freedoms defined

(ii) Combine superelements and solve eigen problem

References
1. Test No FV2, The Standard NAFEMS benchmarks, NAFEMS.

Input Data
X11D11A. DAT
X11D11B. DAT
X11D11C. DAT
X11D11D. DAT
X11D11E. DAT
X11D11F. DAT
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X11D11G DAT
X11D11H. DAT
X11D111 . DAT
a) Solve complete structure

b) Use superelements with master freedoms only

(i) Create superelement 1

(ii) Create superelement 2

(iii) Create superelement 3

(iv) Solve eigenvalue andysis

¢) Use superelements with master freedoms and generalised coordinates

(i) Create superelement 1

Note for other superelements 2 and 3 include GENERALISED COORDINATES command

(i) solvefor eigenvaues of combined structure

f=17.715Hz £=17.715Hz

£=57.364Hz £:=57.683Hz

£=57.683Hz f=57.683Hz £=57.683Hz £=57.683Hz £=103.65Hz

Figurel Eigenvectorsof Pin-Ended Double Cross.
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Superelement 1 Superelement 3

Supereleme r_\t 2

Figure2 Generalised Coor dinates.
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Example 11.5.1

Tip Loaded Cantilever Analysed Using Superelements

Keywords
Superelements, Static Analysis

Description

A cantilever is divided into two superelements, one modelling the root, the other the free end.
The superelements are assembled and load is applied. Displacement and stresses of the
superelements are then recovered using the restart file for the root and by re-defining the
superelement data for the tip.

Finite Element Model

Elements 1 and 2 form the root superelement, whilst 3 and 4 constitute the tip superelement.

Encastre supports

Geometry
Length 4
Width 1
Thickness 0.05

338



Example 11.5.1

Material properties

Young's modulus 200.0x10M
Poisson’sratio 0.3

Load
Concentrated load of -1 applied at cantilever tip (total load=-2)

Boundary Conditions
Encastre at fixed end

Solution Comparison
Moment at restrained nodes = 4x-2/2 = -4

Shear force =22 =1

Analysis Sequence
(i) Generate root superelement - use RESTART WRITE to save superelement data

(ii) Generate tip superelement - RESTART WRITE is not used so a full solution is required to
recover superelement data

(iii) Solve superelement with applied concentrated loads
(iv) Recover root datausing RESTART READ

(v) Recover tip datausing full re-definition of problem
Both superelements are stored in the same external file
CANTLVR.SDA

If arestart fileis not saved, then data defining the elements comprising the superelement must be
input in the datafile.

Input Data
X11D51A. DAT
(i) Create root superelement

(ii) Create tip superelement
(iii) Assemble root and tip superelement into cantilever and apply load
(iv) Recover root stresses and displacements using restart file to define superelement

(v) Recover tip stresses by re-defining superelement datainput
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Example 12.1.1

1-D Soil Consolidation

Keywords

Consolidation, Linear, Nonlinear, Transient

Description

A soil column fixed along its base and subjected to uniform vertical load applied along its upper
face is analysed by plane strain and 3D two phase elements. In order to establish 1D sail
consolidation, proper horizontal constraints are applied to the column.

Geometry, Boundary and Loading Conditions

distributed load q = 100, undrained conditions (p free) applied at time O;
drainage (p = 0) is provided in the subsequent time steps

X
u=0, u=0,
p free A 1 < piree
w=0,
p free

u,v, w=0, pfree

Figure 1

The 3D model of the column is shown in Figure 1, together with boundary and loading
conditions. In the plane strain anaysis, only one xy section (projection of the 3D model in z-
direction) is considered.
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Discretisation

In the 3D analysis, the column is discretised by 96 hexahedral (HX20P) elements (four columns
of 24 elements as shown in Figure 2); in the plane strain andysis, it is discretised by 48
quadrilateral (QPN8P) elements (two columns of 24 elements) (without discretisation in the Z-
direction).

Figure2
Material properties
Linear material properties:
Effective Y oung’s modulus of the soil E’= 6.0x10°
Poisson’sratio v=0.0 (1D deformation)

Consolidation data:

Bulk modulus of pore fluid K, = 2.2x10"

Soil permeability factor K= Ky = K, =0.02
Porosity n=1

Unit weight of water s =0 =10

Mohr-Coulomb material properties:

Cohesion of the soil skeleton c=20
Angle of friction ¢= 6
Theory

Firstly, alinear analysis is carried out, then, the same linear problem is solved using non-linear
solution facilities. The target results for these two cases are the Terzaghi 1D consolidation
analytical solution. The results for the displacement at the top and the pore pressure at the bottom
at specific timesare (Craig, 1974):
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Time (t) 0.0 0.1 0.5 1.0 1.999
v(0, t) 0.0 0.02061 0.04607 0.06515 0.09208
p(12, t) 100.0 100.0 99.8936 97.1388 83.3619

Finaly, the problem is solved using the non-linear Mohr-Coulomb material model; the final
displacements, stresses and plastic strains should be the same as those obtained by their
counterpart continuum elements using drained properties.

All analyses are run for atota time of 2 units using a constant time step of length At = 0.1 units
after theinitial conditions have been established at timet = 0.001 units.

Reference

1. Craig, R.F. Soil Mechanics. Van Nostrand Reinhold Ltd., U.K., 1974.

2. Norris, V.A. The easto-plastic analysis of soil consolidation with special reference to
kinematic hardening. Ph.D. Thesis, Department of Civil Engineering, University College of
Swansea, 1980.

LUSAS results

Displacements and pore pressures from QPN8P and HX20P elements for the linear problem
using linear (L) and nonlinear (NL) facilities (QPNS8P givesidentical results for the two cases)

Time (1) 0.001 0.101 0.501 1.001 2.000

v(0, t) QPN8P 0.0 0.01842 0.04497  0.06437 0.09149
HX20P(L) 0.0 0.01841 0.04493  0.06422 0.09097
HX20P(NL) 0.0 0.01842 0.04497  0.06437 0.09149

p(12, t) QPN8P 100.0 99.9968 99.5893  96.5290 83.3734

HX20P(L) 99.9984 99.8649 99.0530  95.6493 82.1417
HX20P(NL) 100.000 99.9968 99.5893  96.5290 83.3734

The above linear consolidation solutions by elements QPN8P and HX20P are satisfactory
considering the coarse mesh adopted. A finer mesh at the permeable boundary and a smaller time
step can further improve the accuracy of the solution.

In 3D linear consolidation analysis, dlight out-of-balance may occur, i.e. the reaction force
becomes dlightly different from the applied load. This effect becomes more serious with softer
soils and when increasing the number of elements. This is because of the ill conditioning of the
stiffness matrix due to the big difference in the amplitude of displacements and pressures, as also
noticed by Norris (1980). This problem disappears when we solve the linear transient problem
using nonlinear control.

The results from QPN8P and KHX20P elements using a Mohr-Coulomb plasticity model are:
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Time (t) 0.001 0.101 0.501 1.001 2.000

v(0, t) QPN8P 0.0 0.01862 0.04556 0.06523 0.09273
HX20P 0.0 0.01862 0.04556 0.06523 0.09273

p(12, t) QPN8P 100.0 99.9968 99.5902 96.5392 83.4284
HX20P 100.0 99.9968 99.5902 96.5392 83.4284

They are close to the above linear solution; when using a non-linear material model, the final
displacements are somewhat larger than the linear material model due to the onset of yielding.
The fina displacements, stresses and plastic strains agree well when compared with their
counterpart continuum elements.

Input data

X12d11a.
X12d11b.
X12di1ic.
X12d11d.
X12d1i1le.
X12d11f.

dat  (Planestrain, linear anaysis)

dat  (Planestrain, linear problem with nonlinear control)

dat  (Planestrain, nonlinear material)

dat (3D, linear anaysis)

dat (3D, linear problem with nonlinear control)

dat (3D, nonlinear material)
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Example 12.1.2

Isothermal Drainage of Water from a Sand Column

Keywords

Consolidation, Geostatic, Nonlinear, Transient, Unsatur ated

Description

This example simulates the experiment performed by Liakopoulos [1] on desaturation of a
column of very fine De Monte sand due to gravitationa effects. Before the start of the
experiment, water was continuously added from the top and allowed to drain freely at the bottom
through afilter, until uniform flow (i.e. fully saturated) conditions were established. At the start
of the experiment, the water supply ceased and water flows out from the bottom due to the

desaturation process, and also to the squeezing effect of soil deformation.

Geometry, Boundary and Loading Conditions

In accordance with [2, 3], a column of soil with height 1m and width 0.1m is analysed. The

boundary conditions are

lateral surface g"= 0, u=0 (impervious and constrained)
top surface g'=0,t>0
bottom surface p°® = 0 (free water outflow) fort >0, u=v=0

The initial conditions are: at t = 0, p° = 0 at all nodes (i.e. full saturation with water), which
corresponds to a steady flow of water through the sand column. Furthermore, a state of
mechanical equilibrium is assumed for t = 0. All the displacements are related to these initia

displacements which correspond to the equilibrium state.

Only gravity of soil and water is considered.

Discretisation

The column is discretised into 10 uniform 2D QPN8P or 3D HX20P (with thickness of 0.1m)

elements along the height.
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Material properties

Deformable linear elastic soil and isotropic permeability are assumed. The porosity and hydraulic
properties of Del Monte sand were measured by Liakopoulos [1] in an independent set of
experiments.

Y oung' s modulus* E=1.3MPa
Poisson'’ s ratio* v=04

Solid grain density 5= 2000 kg m
Liquid density " =1000 kg m*
Porosity n=0.2975
Intrinsic permeability K= 45x102 m?
Water viscosity ©"=1x10°Pas
Air viscosity 18=1.8x10° Pas
Gravitational acceleration g=9.80665 ms*
Atmospheric pressure ( T = 293.15K) Pam = 101 325 Pa
Biot’s constant* =1

Bulk modulus of solid grains* K= 1.0x10°MPa
Bulk modulus of water* K,, = 2.0x10°MPa

(* These mechanical parameters adopted by Lewis and Schrefler [2] were not measured by
Liakopoulos[1])

Liakopoulos [1] used the following saturation-capillary pressure and relative permeability-
saturation relationships in isothermal conditions, valid for water saturation S, > 0.91

which can be fitted by the relationships of Valiantzas [4] with n = 3.207, w = 0.522 and h. = -
1.654; the maximum errorsin S, and are 5.4% and -3.2%, respectively.

Reference

1. Liakopoulos, A.C. Transient flow through unsaturated porous media. PhD thesis, University
of California, Berkeley (CA), USA, 1965.

2. Lewis, RW. and Schrefler, B.A. The finite element method in the static and dynamic
deformation and consolidation of porous media. John Wiley & Sons Ltd, Chichester, 1998.

3. Kolditz, O. and Shao, H. (Eds) OpenGeoSys devel oper-benchmark-book. OGS-DBB 5.04,
UFZ Publisher, 2010.
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, J.D. Combined Brooks-Corey/Burdine and van Genuchten/Mualem closed-form
improving prediction of unsaturated conductivity. J. Irrig. Drain Eng. 137: 223-

ults

an initia (t = 0) nonlinear static (or Geostatic) analysis to the column under
ven displacement condition and p" = 0 at al nodes to ensure an equilibrium
d. The obtained effective stresses are transformed into initial stresses for the
coupled pore diffusion/stress analysis fromt > 0.

2], the simulation started with At = 1s for 3600 time steps, then increased to
steps; and 3x3 full Gauss integration was adopted.

ertical displacement and water pore pressure versus height at different times
The results from HX20P are identical to those from QPN8P. When the S, —

ionships of Liakopoulos are adopted (input in tabular form), the obtained
Figure 1) are the same as in the literature [2, 3]. If the deformability of the
ered, i.e. K= 10° MPais used instead of an infinite value, the changein the
However, when the fitted Valiantzas relationships [4] with n = 3.207, w =
are used, evident differences are noticed in the results (dash linesin Figure
mediate stages, e.g. t =5, 10 and 20m.

Height y (m
04y Qe

0.2 0.8 1

——t=1m

—&—t=5m

——t=10m
—>%—1t=20m

—*—t=30m —— Liakopoulos model
— t=60m ——-- Vdiantzas model

——t=120m
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Height y (m)
0.2 04 0.6 0.8 1
&
= t=1m
[}
= —B—t=5m
% ——t=10m
o -
o) —>—t=20m
B8 000 — _ .
—¥—t=30m  —— Liakopoulos model
-8000 — t=60m ———. Valiantzas model
9000 ——¢=120m
-10000
Figurel
Input data

X12d12a. dat  (Planestrain QPN8P element)
X12d12b. dat (3D HX20P element)
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Index

A

ANISOTROPIC, 37, 214

AXISYMMETRIC SHEET, 67, 70

AXISYMMETRIC SHELL, 70, 140

AXISYMMETRIC SOLID, 67, 70, 140,
302

B

BAR, 127

BEAM 3D, 12
BIFURCATION, 127
BOX BEAM, 55
BUCKLING, 117, 229
C

CANTILEVER, 312

CARTESIAN SET CYLINDRICAL, 75

CENTRIPETAL STIFFENING, 130

CIRCULAR PLATE, 67

COFFERDAM, 79

COMPACT TENSION SPECIMEN, 51

COMPOSITE ANALYSIS, 63

CONCRETE, 174

CONDUCTANCE, 91

CONDUCTION, 252, 260

CONDUCTIVITY, 96

CONSTANT STRAIN, 12

CONTACT, 309, 312

CONVECTION, 249

CO-ROTATIONAL, 134

COUPLED ANALYSIS, 279, 282, 286,
291

CREEP, 184, 187

CURVE ASSIGNMENT, 75

CURVE DEFINITIONS, 75

CURVED BEAM, 1, 4

CURVILINEAR COORDINATES, 23

CYCLIC LOADING, 161, 165, 180

D

DAMAGE, 161, 180
DAMPING, 264
DRUCKER-PRAGER, 194, 217

E

ECCENTRIC, 45

EIGENVALUE, 99, 101, 105, 114, 117,
120

EIGENVALUE ANALYSIS, 317

EIGENVECTORS OF STIFFNESS
MATRIX, 111

ELASTIC, 302

ELASTO-PLASTIC, 168, 171, 194, 202,
206, 214, 217, 235, 239, 276

ELASTOPLASTICITY, 153

ENTHALPY, 255

ENVIRONMENTAL NODES, 91

F

FACE LOADING, 75
FIELD, 83, 91
FOURIER, 75, 120
FRACTURE, 15
FRICTION, 168, 206

G

GAP, 312

GENERALISED COORDINATES, 317

GEOMETRIC NONLINEARITY, 124,
130, 137

GROUNDWATER, 79

GUYAN REDUCTION, 105
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HARMONIC, 267 PERIODIC, 267
HEAT, 252, 260 PHASE CHANGE, 255
HILL YIELD CRITERION, 243 PLANE FRAME, 7
PLANE STRESS, 32, 174
PLASTIC, 187
PLASTIC FLOW, 295
IMPACT, 295, 299 PLASTIC WORK, 291
IMPLICIT, 184, 187, 302, 309 PLASTICITY, 180, 190, 226, 229, 291
INCOMPATIBLE ELEMENTS, 190 PLATE, 37,41, 45
INCOMPATIBLE MODELS, 23 PRESSURE, 171
INTERFACE MODEL, 206 PRESSURE VESSEL, 70
J R
JOINT, 312 RADIATION, 249
RECTANGULAR PANEL, 229
L REINFORCEMENT, 174

ROTATING MACHINERY, 130
LAMINATED PLATE, 63

LARGE DISPLACEMENT, 243 S
LARGE ROTATION, 111
LARGE ROTATION,, 144 SEEPAGE, 79
LINEAR, 41, 45 SEMILOOF, 117
LINEAR BUCKLING, 103 SEMILOOF SHELL, 75, 120, 239
LINEAR DYNAMICS, 264 SHAPE FUNCTIONS, 23
LINEAR ELASTIC, 267 SLIDELINE, 295, 302
LOAD CYCLING, 153 SLIDELINES, 309
LOADING, 47 SNAP THROUGH, 137
SOIL STRUCTURE INTERACTION, 206
M SOLID, 51
SPHERICAL SHELL, 235, 276
MODIFIED VON MISES, 156 SPRING, 127
MOHR-COULOMB, 194, 202, 217 STATIC, 309
STATIC ANALYSIS, 322
N STEADY STATE, 83, 96
STEP-BY-STEP DYNAMICS, 273
NATURAL FREQUENCY, 114, 276 STRESS CONCENTRATION FACTOR,
NONLINEAR, 134, 226, 229, 255, 286, 32
309 STRESSINTENSITY, 15
NONLINEAR DYNAMICS, 276 SUPERELEMENTS, 317, 322
NONLINEARITY, 235 T
O TEMPERATURE DEPENDENT
ORTHOTROPIC, 37 PROPERTIES, 12

THERMAL CONDUCTION, 83
THERMAL STRESS, 279
THERMAL SURFACES, 91, 286

349



Verification Manual

THREE DIMENSIONAL BEAM, 47 U
THREE DIMENSIONAL CONTINUUM,

5l UPDATED LAGRANGIAN, 124
THREE DIMENSIONAL SOLID, 239 UPDATED LAGRANGIAN
TIED SLIDELINE, 299 DESCRIPTION, 226
TOTAL AND UPDATED

LAGRANGIAN, 140 Y,

TOTAL LAGRANGIAN, 111, 130, 134,
TOTAL LAGRANGIAN VISCOUS, 184, 187
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