

Rail Track Analysis User Manual

LUSAS Version 15.2 : Issue 1

LUSAS
Forge House, 66 High Street, Kingston upon Thames,
Surrey, KT1 1HN, United Kingdom

Tel: +44 (0)20 8541 1999
Fax +44 (0)20 8549 9399
Email: info@lusas.com
<http://www.lusas.com>

Distributors Worldwide

Copyright ©1982-2016 LUSAS
All Rights Reserved.

Table of Contents

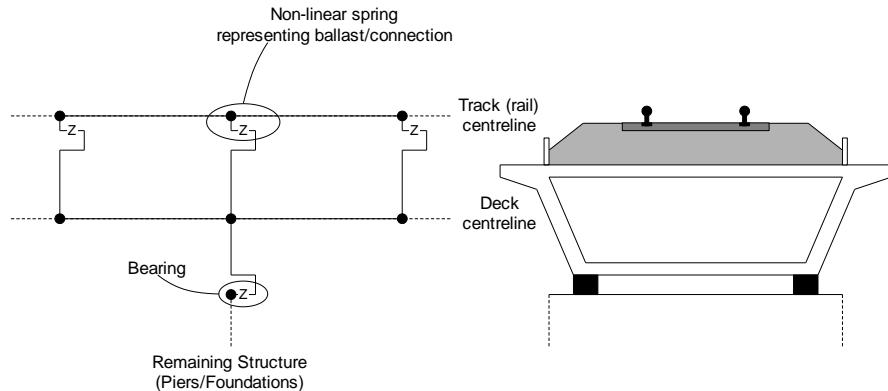
Rail Track Analysis	1
Introduction	1
UIC774-3 Code of Practice	1
LUSAS Rail Track Analysis	4
Worked Example	4
The Rail Track Analysis Spreadsheet	4
Worksheet 1: Decks, Tracks and Embankment Lengths.....	5
Worksheet 2: Structure Definition.....	6
Worksheet 3: Geometric Properties.....	11
Worksheet 4: Material Properties	22
Worksheet 5: Interaction and Expansion Joint Properties.....	23
Worksheet 6: Thermal and Train Loading.....	27
Rail Track Analysis Menu Options	31
Build Model Dialog.....	32
Apply Rail Loads Dialog.....	35
Extract Results To Microsoft Excel Dialog	37
Rail Track Analysis Results Spreadsheet	38
Results worksheets created.....	38
Post-processing of automatically defined groups.....	39
Additional Results from Enveloping in Microsoft Excel.....	46
Post-processing of selected track / rail nodes	59
Post-processing of selected lines if groups are missing	60
Limitations of Use	63
Appendix A: Verification Testing	65
Introduction	65
Description	65
Combination of Separate Thermal and Rail Loading	66
Analysis of Combined Thermal and Rail Loading (One Step)	74
Analysis of Combined Thermal and Rail Loading Taking Account of Effects of Material Change Under Rail Loading	76
Discussion	79
Revisit of UIC774-3 Test E1-3 Using the Separate and LUSAS Methods of Analysis	89
Separate Analyses	89
LUSAS Nonlinear Analysis.....	91
Discussion	93
Revisit of UIC774-3 Test H1-3 Using the Separate and LUSAS Methods of Analysis	98
Separate Analyses	98
LUSAS Nonlinear Analysis.....	100
Discussion	102
Conclusions	104
Separate Thermal and Rail Loading Analysis.....	104
Concurrent Thermal and Rail Loading Analysis	104
LUSAS Nonlinear Thermal and Rail Analysis with Material Change	104
References	105

Table Of Contents

Rail Track Analysis

Introduction

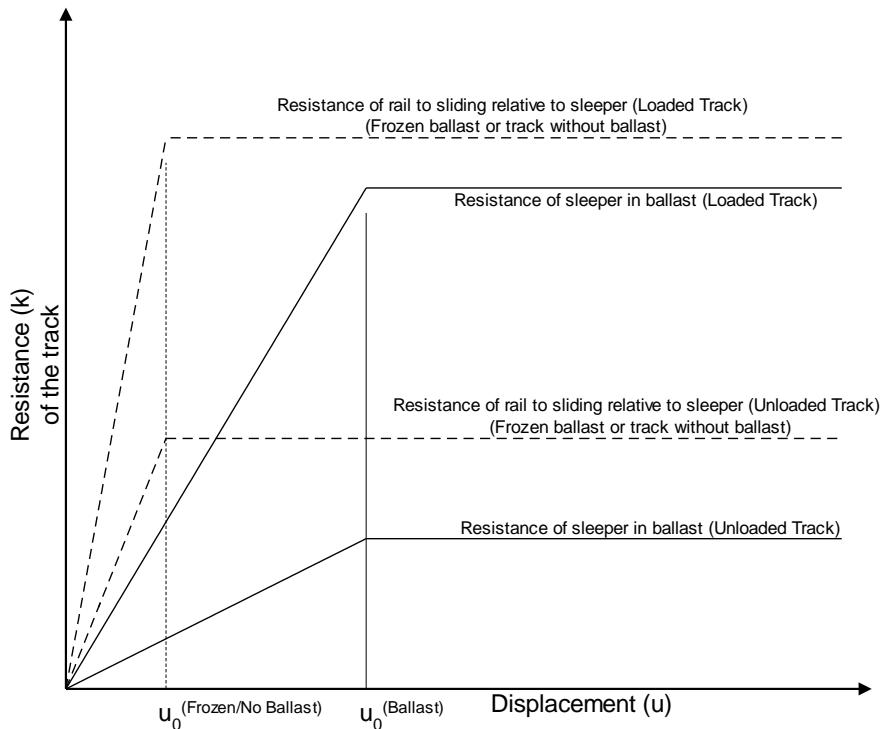
The passage of one or more trains crossing a rail bridge causes forces and moments to occur in the rails that, in turn, induce displacements in the supporting bridge deck, bearings and piers. As part of the design process for rail bridges it is necessary to ensure that any interaction between the track and the bridge as a result of temperature and train loading is within specified design limits.


UIC774-3 Code of Practice

According to the Union Internationale des Chemins de fer (International Union of Railways) UIC774-3 Code of Practice, the track-structure interaction effects should be evaluated in terms of the longitudinal reactions at support locations, rail stresses induced by the temperature and train loading effects in addition to the absolute and relative displacements of the rails and deck. To accurately assess the behaviour these interaction effects should be evaluated through the use of a series of nonlinear analyses where all thermal and train loads are taken into account. These loads should be:

- Thermal loading on the bridge deck**
- Thermal loading on the rail if any rail expansion devices are fitted**
- Vertical loads associated with the trainsets**
- Longitudinal braking and/or acceleration loads associated with the trainsets**

Figure 1: Representation of Structural System for Evaluation of Interaction Effects



Longitudinal Schematic Of The Model

Transverse Cross-Section Of Track-Deck-Bearing System

Figure 2: Typical Model of Track-Deck-Bearing System

The interaction between the track and the bridge is approximated in the UIC774-3 Code of Practice by a bilinear relationship as indicated in the following figure. The resistance of the track to the longitudinal displacements for a particular track type is a function of both the relative displacement of the rail to the supporting structure and the loading applied to the track. If the track is subjected to no train loads then the ultimate resistance of the track to relative movement is governed by the lower curve in the figure (based on the track type). Application of train loads increases the resistance of the track to the relative displacements and the upper curve should be used for the interaction between the track and bridge where these train loads are present – unloaded resistance is still used for all other locations.

Figure 3: Resistance (k) of the Track per Unit Length versus Longitudinal Relative Displacement of Rails

The values of displacement and resistance to use in these bilinear curves are governed by the track structure and maintenance procedures adopted and will be specified in the design specifications for the structure. Typical values are listed in the Code of Practice for ballast, frozen ballast and track without ballast for moderate to good maintenance and are repeated below.

Displacement between the elastic and plastic zones, u_0 :

Resistance of the rail to sliding relative to sleeper = 0.5 mm

Resistance of sleeper in the ballast = 2.0 mm

Resistance in the plastic zone, k :

Resistance of sleeper in ballast (unloaded track), moderate maintenance = 12 kN/m

Resistance of sleeper in ballast (unloaded track), good maintenance = 20 kN/m

Resistance of loaded track or track with frozen ballast = 60 kN/m

Resistance of unloaded track for unballasted track = 40 kN/m

Resistance of loaded track for unballasted track = 60 kN/m

According to the UIC774-3 Code of Practice there is no requirement to consider a detailed model of the substructure (bearing-pier-foundation and bearing-abutment-foundation systems) when ‘standard’ bridges are considered, instead this can be modelled simply through constraints and/or spring supports that approximate the horizontal flexibility due to pier translational, bending and rotational movement. The LUSAS Rail Track Analysis option allows this type of analysis to be carried out where the behaviour of the bearing and the pier/abutment-foundation are individually specified but also provides the capability of explicitly modelling the bearing-pier/abutment-foundation systems where each component is defined, including the height and properties of the pier/abutment.

LUSAS Rail Track Analysis

The Rail Track Analysis option in LUSAS provides the means to automate the finite element analyses required for conducting bridge/track interaction analyses in accordance with the UIC774-3 Code of Practice. The key features are:

- LUSAS finite element models are automatically built from general arrangement, deck/abutment/pier properties, expansion joints, supports, interaction effects, and thermal and train loading data defined in a Microsoft Excel spreadsheet.
- Batch capabilities allow both multiple structures to be built and multiple rail load configurations to be analysed to investigate the interaction effects on different structures, the results of which can be enveloped to determine worst effects
- Rail and structure results are automatically extracted to Microsoft Excel for presentation and further processing

Worked Example

A worked example “Track-Structure Interaction to UIC774-3” is provided in the Application Examples Manual (Bridge, Civil & Structural). This examines the track-structure interaction between a braking train and a single span bridge to replicate (as far as the original test data allows) testcase E1-3 which can be found in Appendix D.1 of the UIC774-3 Code of Practice.

The Rail Track Analysis Spreadsheet

A Microsoft Excel spreadsheet is used to define the data from which a LUSAS finite element model is built and a track/bridge interaction analysis carried out. The spreadsheet is separated into a number of worksheets that relate to particular aspects of the Rail Track Analysis input requirements. These worksheets cover:

- Number of Decks, Tracks and Embankment Lengths**
- Structure Definition**
- Geometric Properties**
- Material Properties**
- Interaction and Expansion Joint Properties**

□ Loading

For each worksheet comments are included to advise on the appropriate input to the spreadsheet. These can be seen when hovering the mouse cursor over the cell of interest.

The template for the input spreadsheet is located in the `\<Lusas Installation Folder>\Programs\Scripts\User` folder. This template should be edited and saved under a different file name in the working folder in order to carry out analyses.

Note. All of the data entered into the Microsoft Excel spreadsheet should be in metric units. The required units are indicated in the various sections of the spreadsheet and should be adhered to for the correct modelling of the interaction analysis. When the model is built, all input will be converted to SI units of N, m, kg, C and s.

Worksheet 1: Decks, Tracks and Embankment Lengths

A1		Decks, Tracks and Embankment											
1	Decks, Tracks and Embankment	Units : m											
3	Number of Decks	5											
4	Number of Tracks	2											
5	Left Embankment Length	300											
6	Right Embankment Length	300											
7	Length of Decks Only / Total Length (m)	325	925										
8													
9													
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27													
28													
29													
30													
31													
32													
33													
34													
35													

Figure 4: Definition of Number of Decks, Tracks and Embankment Lengths

This worksheet defines the global arrangement details of the bridge structure. The inputs to the worksheet are:

Number of Decks

Defines the number of decks in the structure and controls the importing of the structure layout in the **Structure Definition** worksheet. The number of decks is initially limited to 100 but this number can be increased by modifying the **Structure Definition** worksheet as outlined in the following section.

Number of Tracks

Defines the number of railway tracks that pass along the structure and embankments. The number of tracks can be set as either one or two. For two tracks, one track should take the braking load of a trainset and the other the acceleration load of a separate trainset in accordance with the UIC77-3 Code of Practice (Clause 1.4.3). Each track consists of two rails which act together (see the **Geometric Properties** section).

Left and Right Embankment Length

Defines the lengths of the left and right embankments in the model illustrated in the figure below. These lengths should be sufficiently long to allow the trainset loading to be placed in the model and, according to the UIC774-3 Code of Practice, should be greater than 100m (Clause 1.7.3).

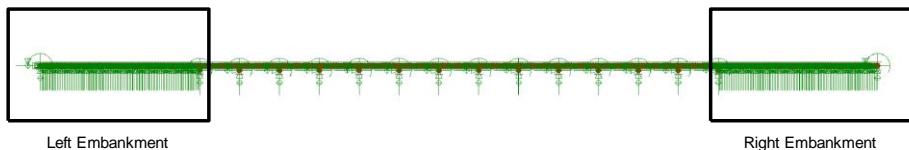


Figure 5: Left and Right Embankments in Model

Worksheet 2: Structure Definition

A1		Structure Definition										
1	A	B	C	D	E	F	G	H	K	L	M	N
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												
25												
26												
27												
28												
29												
30												
31												
32												
33												
34												
35												
36												
37												
38												
39												
40												
41												
42												
43												
44												
45												
46												
47												
48												
49												
50												
51												
52												
53												
54												
55												
56												
57												
58												
59												
60												
61												
62												
63												
64												
65												
66												
67												
68												
69												
70												
71												
72												
73												
74												
75												
76												
77												
78												
79												
80												
81												
82												
83												
84												
85												
86												
87												
88												
89												
90												
91												
92												
93												
94												
95												
96												
97												
98												
99												
100												
101												
102												
103												
104												
105												
106												
107												
108												
109												
110												
111												
112												
113												
114												
115												
116												
117												
118												
119												
120												
121												
122												
123												
124												
125												
126												
127												
128												
129												
130												
131												
132												
133												
134												
135												
136												
137												
138												
139												
140												
141												
142												
143												
144												
145												
146												
147												
148												
149												
150												
151												
152												
153												
154												
155												
156												
157												
158												
159												
160												
161												
162												
163												
164												
165												
166												
167												
168												
169												
170												
171												
172												
173												
174												
175												
176												
177												
178												
179												
180												
181												
182												
183												
184												
185												
186												
187												
188												
189												
190												
191												

The **Structure Definition** worksheet allows the geometry of the bridge to be input deck by deck. For each deck the worksheet allows the definition of the length, geometric and material assignments of the internal spans plus pier/abutment arrangements along with their support and bearing characteristic. The input allows the modelling of the piers through equivalent springs using the method proposed in the UIC774-3 Code of Practice (see note below) or through the physical modelling of the piers by entering input of the pier heights plus geometric and material assignments. The inputs to the worksheet are:

Spring Support for each abutment/pier

Defines the longitudinal stiffness for the abutment or pier. The longitudinal stiffness for the abutment or pier should be entered as either free 'F', restrained 'R' or a positive stiffness in kN/mm.

For the equivalent spring approach, if the displacement behaviour of the support and the bearings are modelled separately the supports should be set to take account of the displacement at the top of the support due to elastic deformation, the displacement at the top of the support due to the rotation of the foundation and the displacement at the top of the support due to the longitudinal movement of the foundation. If instead the displacement behaviour of the support and bearings are lumped together, as illustrated in the example in Figure 6, the spring supports for the piers and abutments should be set to 'R' for restrained.

If the piers are physically modelled then the spring support for the pier should represent the longitudinal stiffness of the foundation at the base of the pier.

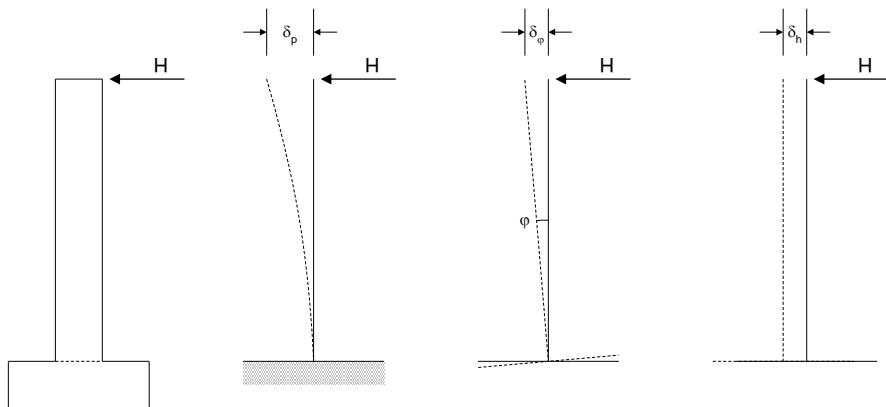
Note. The pier properties for the last pier of one deck must exactly match the properties defined for the next deck or an error will be reported when the Microsoft Excel spreadsheet is used to carry out the analysis.

Note. When the pier/foundation system is modelled as a spring this spring can be calculated by combining the component movements associated with the pier as indicated below and described further in the UIC774-3 Code of Practice:

$$\delta_{\text{total}} = \delta_p + \delta_\phi + \delta_h [+ \delta_b]$$

where

δ_p = displacement at top of support due to elastic deformation


δ_ϕ = displacement at top of support due to rotation of the foundation

δ_h = displacement at top of support due to horizontal movement of the foundation

δ_b = relative displacement between the upper and lower parts of bearing (Only included if bearings effects lumped into support conditions)

and the total spring stiffness is calculated from:

$$K = \frac{H}{\delta_{\text{total}}} \quad (\text{in kN/mm})$$

Figure 7: Component Behaviour for Calculating Support Stiffness

Note. If the piers are modelled in the analysis the rotation of the foundation is assumed to be zero in the analysis. This can be adjusted by modifying the support conditions manually after a temperature only analysis has been performed (see user interface discussions)

Bearing springs on top of each pier

Defines the longitudinal stiffness of the bearings between the top of the support and the deck. The longitudinal stiffness for the bearing should be entered as either free 'F', restrained 'R' or a positive stiffness in kN/mm.

For the equivalent spring approach where the stiffness of the support due to elastic deformation, rotation of the foundation and horizontal movement of the foundation are lumped with the bearing behaviour this input should include all of the stiffness contributions and the **Spring support for each abutment/pier** should be set to 'R'. If the bearing behaviour is separated from the behaviour of the support the input should match the requirements for the bearing alone.

When the piers are physically modelled in the model by setting their height and properties the longitudinal stiffness of the bearing alone should be input since the behaviour of the pier will be incorporated by the extra beam elements representing the pier in the model.

Span Length

Defines the span length between support locations for a deck. Up to nine spans can be defined for each deck. In the example illustrated in Figure 6 the first two decks have two 25m spans each and the third deck has three 25m spans.

Geometric Assignment

Defines the geometric properties that are assigned to the spans of the decks. The integer ID must match one of the geometric properties that is defined in the **Geometric Properties** worksheet. Different properties can be assigned to each span of the deck. Although the input only allows a single ID to be assigned to each span, continuously varying properties can also be modelled (see the section on **Geometric Properties**).

Material Assignment

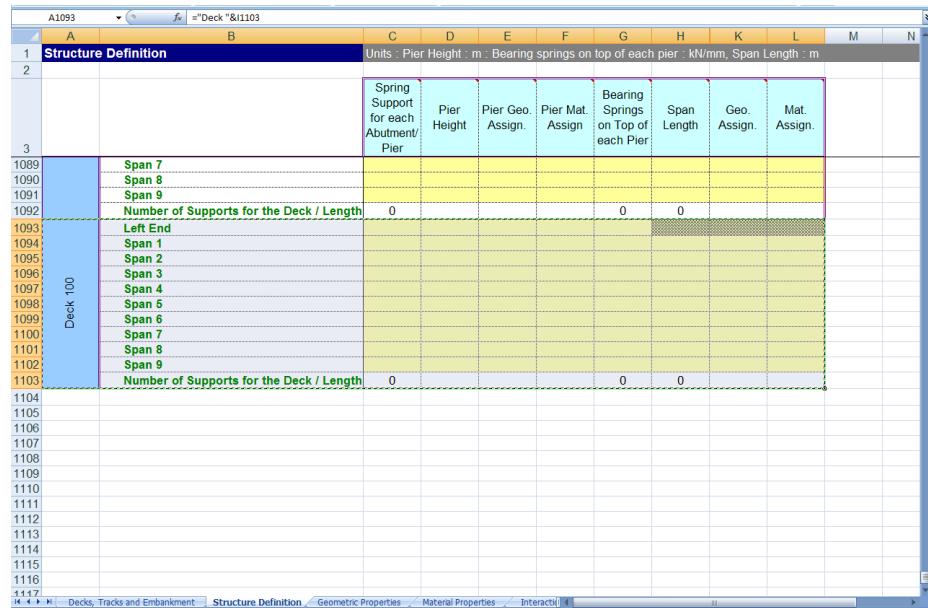
Defines the material properties that are assigned to the spans of the decks. The integer ID must match one of the material properties that is defined in the **Material Properties** worksheet.

If physical modelling of the piers is to be included in the analysis then additional input is required for these piers. The inputs to the worksheet are:

Pier Height

Defines the height of the support / pier for the current location in the deck. If the pier height is blank the wizard assumes that the pier behaviour is represented solely by the spring supports and bearing springs.

Pier Geometric Assignment


Defines the geometric properties that are assigned to the support / pier for the current location in the deck. The integer ID must match one of the geometric properties that is defined in the **Geometric Properties** worksheet. Although the input only allows a single ID to be assigned to the support / pier, continuously varying properties can also be modelled (see the section on **Geometric Properties**).

Pier Material Assignment

Defines the material properties that are assigned to the support / pier for the current location in the deck. The integer ID must match one of the material properties that is defined in the **Material Properties** worksheet.

Increasing the number of decks modelled

If more than 100 decks are required the Microsoft Excel spreadsheet can be modified. To do this, scroll to the end of the **Structure Definition** worksheet and select the last complete deck definition as indicated on the figure below.

The screenshot shows the 'Structure Definition' worksheet in Microsoft Excel. The first few rows are headers and definitions. Row 1092 contains the last complete deck definition, which is highlighted with a green dashed border. The columns are labeled: C (Spring Support for each Abutment/Pier), D (Pier Height), E (Pier Geo. Assign.), F (Pier Mat. Assign.), G (Bearing Springs on Top of each Pier), H (Span Length), K (Geo. Assign.), and L (Mat. Assign.). The data for this deck includes spans 7, 8, and 9, and a row for 'Number of Supports for the Deck / Length' with a value of 0. The row below, row 1093, is the 'Left End' of the next deck, also highlighted with a green dashed border. The 'Deck 100' label is visible on the far left of the selected row. The bottom of the worksheet shows rows 1104 through 1117, which are empty.

Figure 8: Selection and Copying of Structure Definition Worksheet to Increase Number of Decks

Copy and paste this section as many times as required at the end of the worksheet, ensuring that the row formatting is not altered as indicated below. If successful, the deck number should be correctly calculated for the added entries. The number of decks in the first worksheet of the spreadsheet can now be increased to the number of decks added to the structure definition.

Note. This may require the worksheet to be unprotected first which can be done under the Review options in Microsoft Excel. This worksheet protection should be turned back on immediately after the extra entries for additional decks have been inserted into the worksheet to avoid accidental changes to other parts of the worksheet that could cause errors when the spreadsheet is imported into the Rail Track Analysis tool.

A1104		="Deck " & I1114									
1 Structure Definition		Units : Pier Height : m ; Bearing springs on top of each pier : kN/mm, Span Length : m									
2											
3											
1089	Span 7	Spring Support for each Abutment Pier	Pier Height	Pier Geo. Assign.	Pier Mat. Assign	Bearing Springs on Top of each Pier	Span Length	Geo. Assign.	Mat. Assign.		
	Span 8										
	Span 9										
1092	Number of Supports for the Deck / Length	0				0	0				
1093	Left End										
1094	Span 1										
1095	Span 2										
1096	Span 3										
1097	Span 4										
1098	Span 5										
1099	Span 6										
1100	Span 7										
1101	Span 8										
1102	Span 9										
1103	Number of Supports for the Deck / Length	0				0	0				
1104	Left End										
1105	Span 1										
1106	Span 2										
1107	Span 3										
1108	Span 4										
1109	Span 5										
1110	Span 6										
1111	Span 7										
1112	Span 8										
1113	Span 9										
1114	Number of Supports for the Deck / Length	0				0	0				
1115											
1116											

Figure 9: Pasting of Additional Decks to Ensure Formatting Maintained

Worksheet 3: Geometric Properties

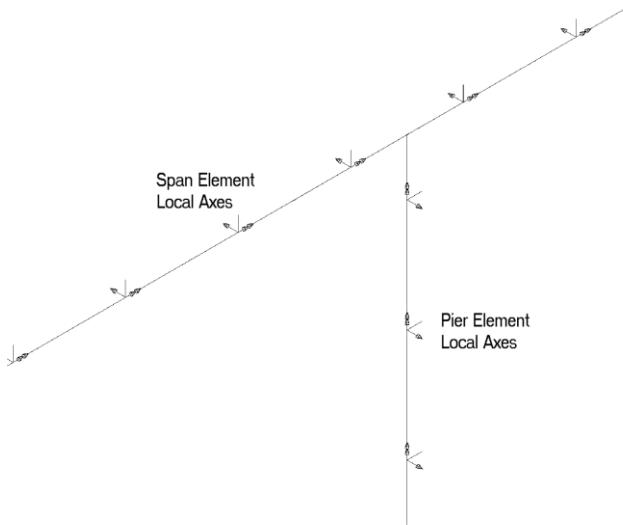
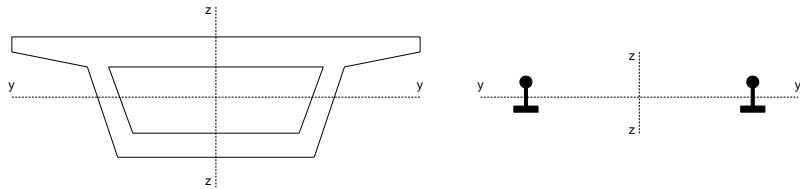

A1 Geometric Properties											
Units : m											
1 Geometric Properties											
2											
3											
4											
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
31											
32											
33											
34											
35											
36											
37											
38											
39											
40											

Figure 10: Geometric Properties Table for Structure

The geometric properties worksheet should list all of the section properties required for the modelling of the structure and the unique ID numbers must include all of the geometric properties that have been assigned in the **Structure Definition** worksheet. The properties should be entered in metres and are all standard LUSAS values except the **Depth of Section to Support** entry that is needed by the model building to ensure the support conditions occur at the correct elevation.


Element Orientations

The orientations of the sectional properties should obey the element local axes indicated in the following figure where the double-headed arrow indicates the element local x-axis, the single headed arrow indicates the element local y-axis and the line without an arrowhead indicates the element local z-axis. For both the spans and the piers the element local y-axis is orientated into the lateral direction for the bridge with the local z-axis orientated vertically for the spans and in the longitudinal direction for the piers.

Figure 11: Beam Element Local Axes for Deck and Pier Modelling

For defining the geometric properties of the decks and rails the section axes are illustrated in Figure 12.

Figure 12: Section Axes for Deck and Rail Definitions

When the tracks are modelled the two rails of a track are assumed to behave together and the section properties should therefore take account of both rails. When analysing a single track structure it is possible to approximate the behaviour of individual rails by choosing to model two tracks and only defining the section properties for a single rail in the **Geometric Properties** worksheet. Caution should be used when considering modelling of this type as the analysis will ignore any connectivity between the two rails that may be provided by the sleeper arrangement.

Eccentricity

All eccentricity in the modelling is defined relative to the nodal line of the track/rail and therefore a positive eccentricity will place a section below this line as indicated in the following figure. If an eccentricity is entered for the geometric property of the rail then the neutral axis of the rail will be offset from this nodal line based on the positive sense described. For this reason the eccentricity of the rail should generally be set to zero for all cases.

Notes

The number of entries can be increased by adding data to the bottom of the table. Data input will terminate on the first blank ID number in column B.

The depth of section should not be defined for geometric properties assigned to piers.

The eccentricity between the rail/slab indicated in the figure is defined later in the interaction worksheet and should not be defined as a geometric property.

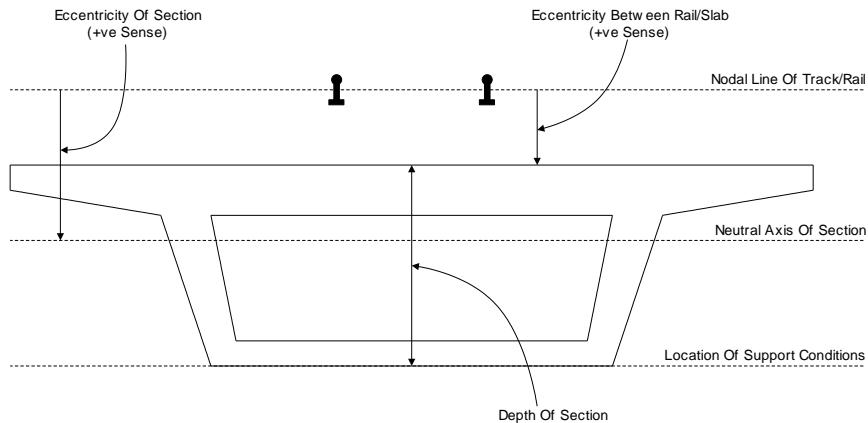


Figure 13: Eccentricity Definition for Geometric Properties and Depth of Section

Varying Section Geometric Properties

Although the Microsoft Excel spreadsheet does not allow the input of geometric properties with varying sections it is possible to analyse structures with varying sections by modifying the temperature loading only model after it has been built by the wizard before subsequently using the **Apply Rail Loads** dialog to include the trainset loading. To do this the model should be defined in the spreadsheet with an initial set of deck geometric properties.

All sections that will be used to define the varying sections of the deck must be defined externally in separate models using either the Precast Beam Section Generator, the Box Section Property Calculator or the Arbitrary Section Property Calculator and the sections added to either a local library or the server library. This will make these sections available to other models.

Note. The *Depth of Section* must be correctly set in the *Geometric Properties* worksheet for each of the deck support locations to ensure that the behaviour of the decks is correct. All other entries will be determined from the varying section.

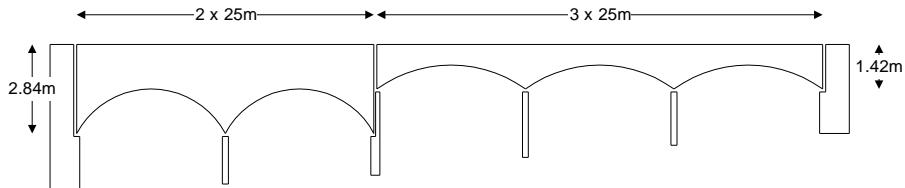


Figure 14: Example Varying Section Structure

If the structure in Figure 14 was required, the main track-structure interaction model could be set up using a Microsoft Excel Spreadsheet with the **Structure Definition** and **Geometric Properties** indicated in Figure 15 and Figure 16. This would define the base model indicated in Figure 17.

A1		Structure Definition		C	D	E	F	G	H	K	L	M	N
A		B		C	D	E	F	G	H	K	L	M	N
1	Structure Definition												
3													
4													
5													
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27													
28													
29													
30													
31													
32													
33													
34													
35													
36													

Figure 15: Structure Definition for Sample Varying Section Structure

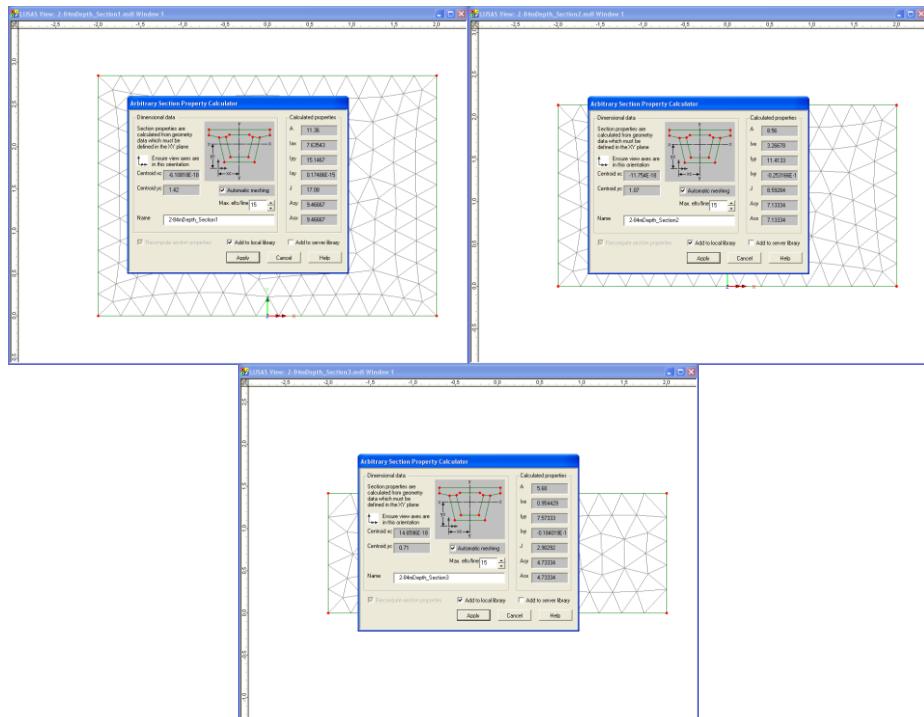

A1		Geometric Properties		C	D	E	F	G	H	I	J	K	
A		B		C	D	E	F	G	H	I	J	K	
1	Geometric Properties												
2													
3													
4													
5													
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27													
28													
29													
30													
31													
32													
33													
34													
35													
36													

Figure 16: Geometric Properties for Sample Varying Section Structure

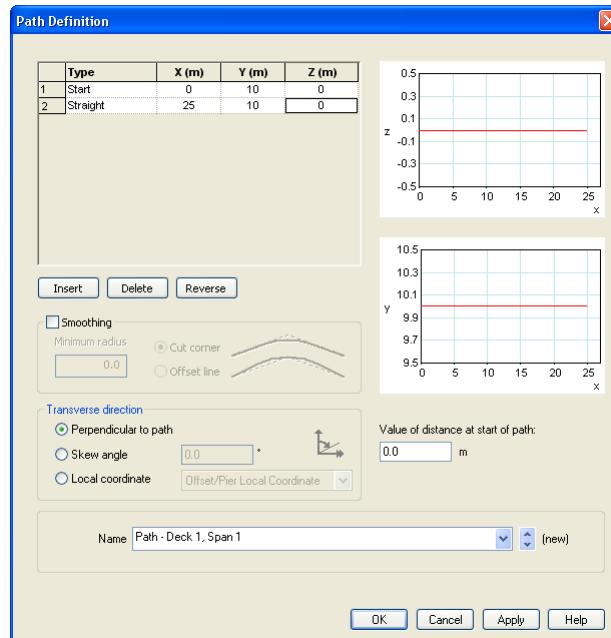
Figure 17: Base Model for Sample Varying Section Structure

In order to define the smooth variation for a single span of the decks the minimum number of sections for interpolation is five. For the 2.84m deep deck spans these sections are illustrated in the figure below and are calculated with the **Arbitrary Section Property Calculator** and added to the local library so they can be accessed from other models (NOTE: Only three actual sizes defined due to symmetry). A similar procedure is followed for the 1.42m deep deck spans.

Figure 18: Arbitrary Section Property Calculation for 2.84m Depth of Section Spans

These sections can now be used to define **Multiple Varying Section** facility in Modeller. Before defining these multiple varying sections the reference paths along which the variation will take place must be defined. Define a reference path for each of

the spans as illustrated in Figure 19 for the first span of the first deck. In this definition the X coordinates match the extent of the span and the Y coordinate has been set to 10 so it can be visualised easily. Four additional reference paths should also be defined, one for each of the other spans. On completion the model will resemble the one in Figure 20 where each reference path has been offset in the Y direction for visualisation purposes.



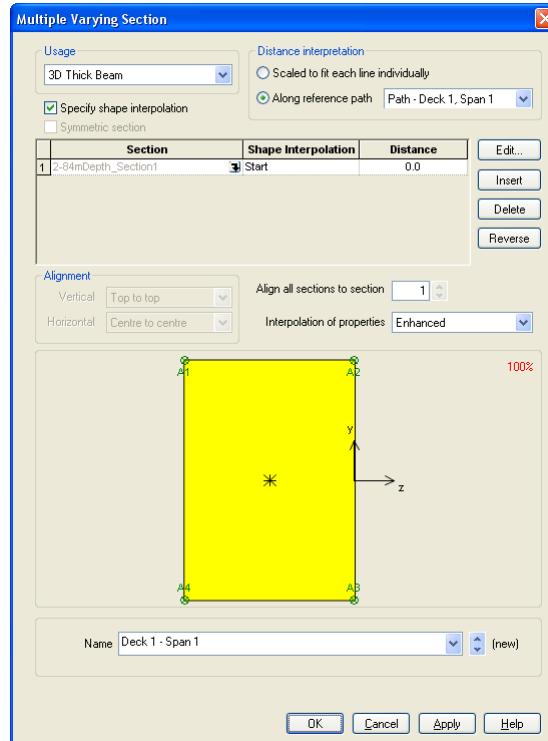

Figure 19: Definition of Reference Path for Deck 1, Span 1

Figure 20: Reference Path for all Decks and Spans (Offset for Visualisation Purposes)

The varying sections can now be defined using the **Multiple Varying Section** dialog. For the definition of the varying section for the first span of the first deck the distance interpretation should be set to **Along reference path** and the path for the first span of the first deck selected (“Path – Deck 1, Span 1” in this example – see Figure 19). For the start of the varying section the 2.84m deep section should be selected from the user library and the section edited. The Offset Rz would be set to the required value of

1.42m to obtain the required eccentricity of the neutral axis of the section from the nodal line of the track / rail which would have been entered into the **Geometric Properties** worksheet. At this stage the Multiple Varying Section dialog will just have the starting section as illustrated in Figure 21.

Figure 21: Definition of Multiple Varying Section for Deck 1, Span 1 (1 of 2)

The other sections defining the span also need to be added to the varying section definition and these are input as follows with the **Vertical alignment** set to **Centre to centre** and the **Horizontal alignment** set to **Right to right**:

Section	Shape Interpolation	Distance
2-84mDepth_Section2	Smoothed	5.0
2-84mDepth_Section3	Smoothed	12.5
2-84mDepth_Section2	Smoothed	20.0
2-84mDepth_Section1	Smoothed	25.0

Table 1: Section Interpolation for Deck 1, Span 1

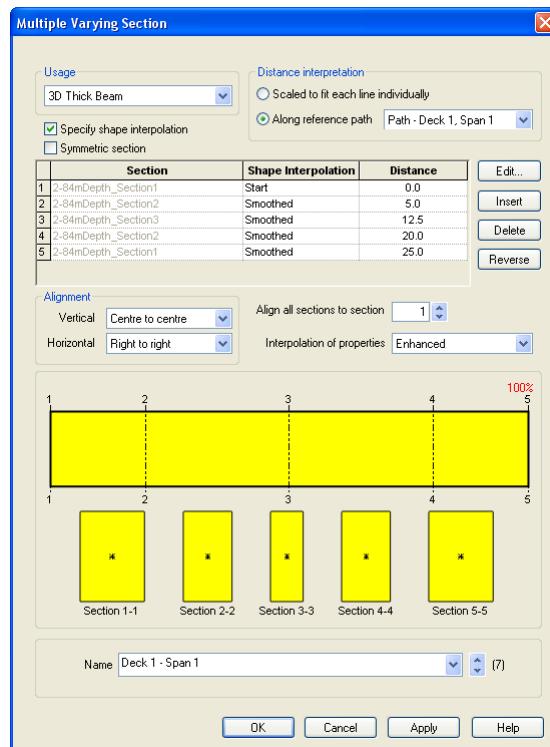
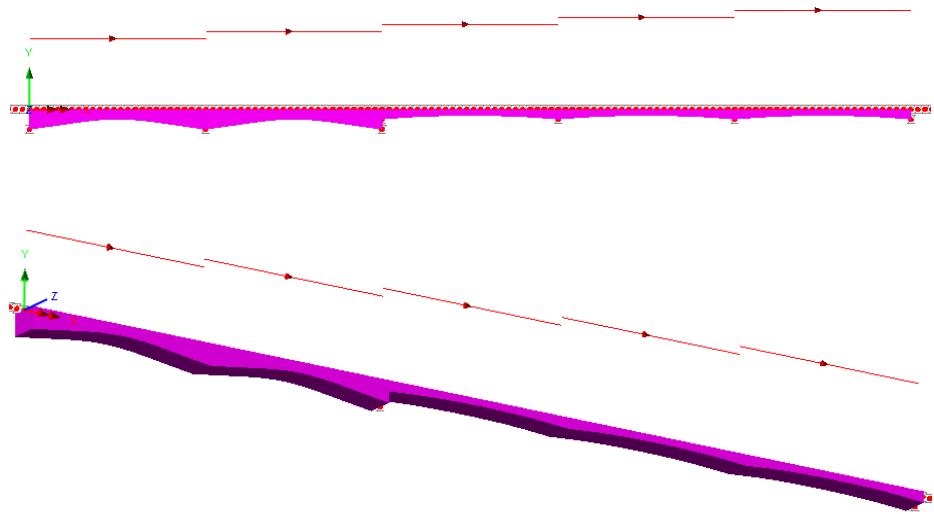



Figure 22: Definition of Multiple Varying Section for Deck 1, Span 1 (2 of 2)

This multiple varying section can now be assigned to all of the lines defining the first span of the first deck, overwriting the original assignment from the wizard. A similar multiple varying section can also be defined and assigned but using the appropriate reference path for the second span of the first deck.

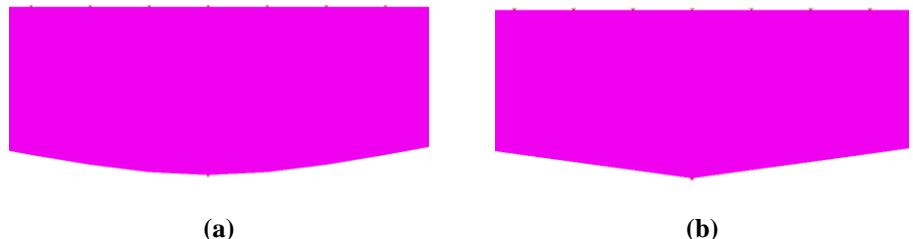
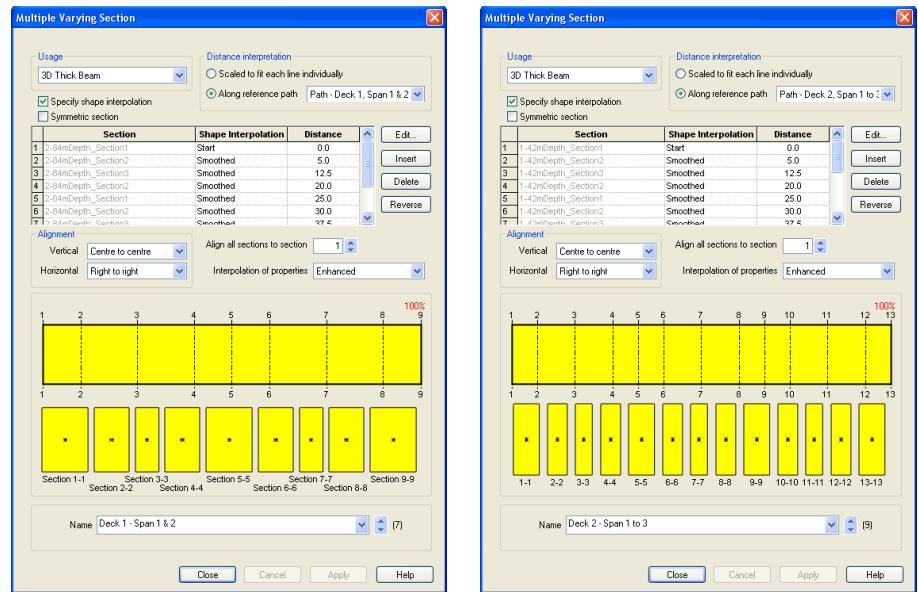
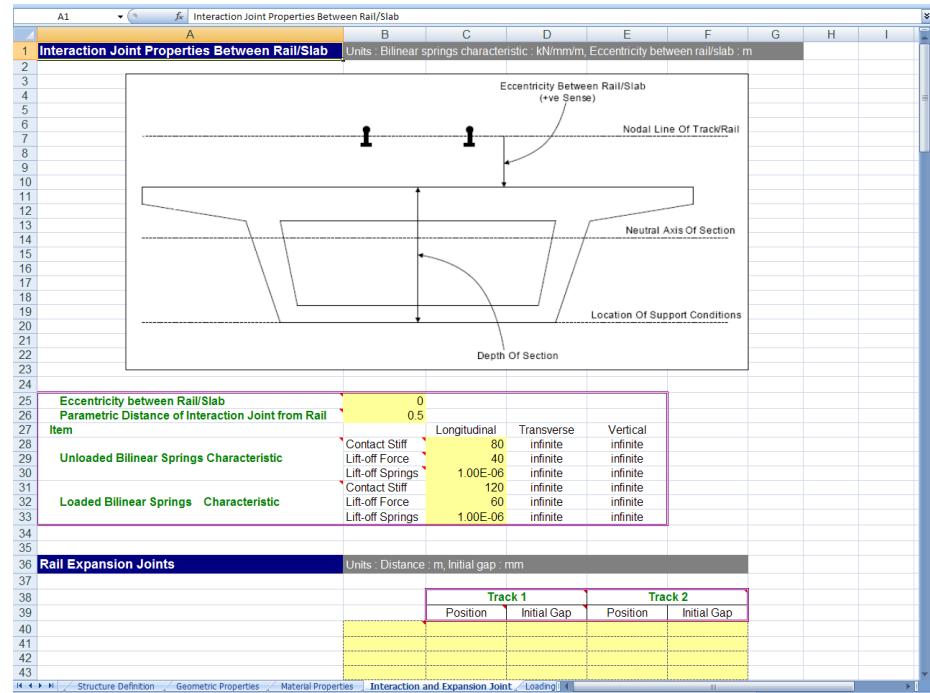


The same procedure should also be followed for the 1.42m deep section using associated sections and a starting offset of 0.71m to obtain the required eccentricity of the neutral axis of the section from the nodal line of the track / rail which would have been entered into the **Geometric Properties** worksheet. On completion and assignment of the multiple varying section geometric attributes to the appropriate spans of the model the structure would look similar to the model in Figure 23.

Figure 23: Model after Assignment of Multiple Varying Sections

Note. The multiple varying section could be defined with just two reference paths, one for each of the decks and the geometric attributes defined as indicated in Figure 24. When modelling structures where the sections do not vary smoothly, for example over a pier as indicated in Figure 14, caution should be exercised as using a single reference path per deck could lead to artificial smoothing of the section variation. This is illustrated in Figure 25 and Figure 26 which examine the behaviour at an intermediate pier of a deck when a single path is used for each deck. In Figure 26 the image on the left is from the use of a single reference path for the whole deck and shows the smoothing that has occurred over the pier when compared to the image on the right which is from the use of a single reference path for each span of the deck.

Worksheet 4: Material Properties

Material Properties										
	A	B	C	D	E	F	G	H	I	J
1	Material Properties	Units : N, mm, kg								
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										
26										
27										
28										
29										
30										
31										
32										
33										
34										
35										
36										


Figure 27: Material Properties Table for Structure

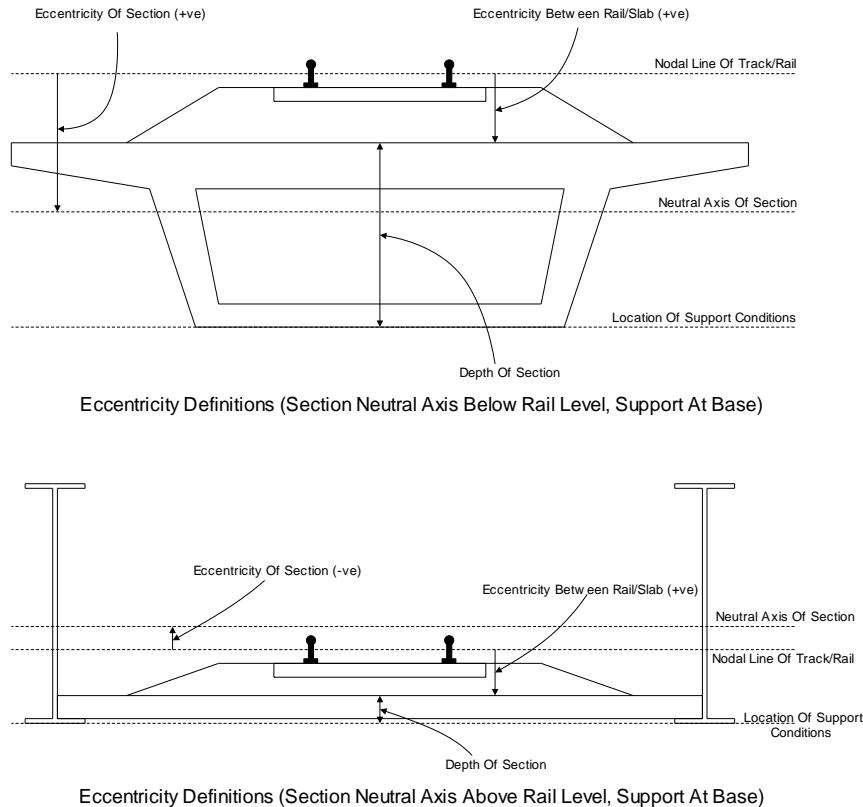
The material properties worksheet should list all of the material properties required for the modelling of the structure and the unique ID numbers must include all of the material properties that have been assigned in the **Structure Definition** worksheet. The elastic properties are all standard LUSAS values which should be entered in Newtons, millimetres and kilograms. The mass density (ρ) is not used in the analysis but is provided to allow the model to be solved with self-weight loading and for it to be combined with the thermal/train loading effects covered in these analyses.

Note. The number of entries can be increased by adding data to the bottom of the table. Data input will terminate on the first blank ID number in column B.

Worksheet 5: Interaction and Expansion Joint Properties

Figure 28: Interaction Properties Between the Track/Bridge and Expansion Joint Definition

The main bilinear interaction effects for the track/bridge interaction are defined in this worksheet along with additional properties associated with the rail/track. These include the eccentricity between the rail/slab (see Figure 11 and the *Geometric Properties* section) and the presence of any rail expansion joints.


Eccentricity Between Rail/Slab

The eccentricity between the rail/slab is used to define the distance between the nodal line of the rail/track and the top of the bridge slab/deck as indicated in Figure 11. In general, all eccentricities will be positive in the modelling unless the neutral axis of the structure section is above the level of the rails. This only happens for certain types of structures and the definitions of eccentricity should generally follow the sign conventions defined in the following figure.

Parametric Distance of Interaction Joint from Rail

The position of the interaction joint from the rail is controlled by this entry. When the eccentricity between the rail/track and the top of the bridge slab/deck is small the eccentricity can be modelled using eccentricity in the elements representing the

components of the model. For larger eccentricities the positioning of the rail/track relative to the bridge slab/deck should be modelled using rigid offsets and the positioning of the interaction joints can be set to be at the elevation of the rail/track by setting this entry to 0, at the elevation of the bridge slab/deck by setting this entry to 1, or at any position in between by setting a value between 0 and 1. If the entry is undefined the Rail Track Analysis tool will assume a value of 0.5 to place the interaction joints midway between the rail/track and the bridge slab/deck.

Figure 29: Sign Conventions for Eccentricity Definition

Bilinear Interaction Properties

The bilinear interaction properties are derived from the bilinear curves defined in the UIC774-3 Code of Practice. Properties are entered for both the unloaded state where just temperature loads are applied in the model to the track and the loaded state where both temperature and trainset loads are applied to the track. For each state of loading the contact stiffness is defined in kN/mm per metre length of track, the lift-off force

(onset of plastic yield) is defined in kN per metre length and the lift-off stiffness defined as a small value so there is no stiffness once plastic yielding has started. The values in Figure 28 are for unballasted track where the displacement between the elastic and plastic zones and the associated resistance in the plastic zone are (see the earlier discussion on the bilinear relationship):

$$\begin{aligned}u_0 &= 0.5\text{mm} \\k &= 40\text{kN/m (Unloaded)} \\k &= 60\text{kN/m (Loaded)}\end{aligned}$$

The contact stiffness is calculated directly from:

$$\text{Contact Stiffness} = \frac{k}{u_0}$$

giving 80 kN/mm/m for the unloaded and 120 kN/mm/m for the loaded interaction contact stiffness values. The transverse spring properties of the interaction should always be infinite (as the analysis is two-dimensional even though the elements are three-dimensional) but the vertical spring properties can be adjusted from this to include vertical deformation effects of the ballast by building the temperature only model and editing the model before applying the trainset rail loads. If this type of analysis is carried out, care must be taken to ensure that the spring remains in the elastic regime. This is achieved by setting a very high value for the lift-off force (1.0E12 kN/mm per metre length for example) and ensuring that the lift-off springs are set to the same stiffness value as the contact stiffness.

Note. If a zero or small lift-off force is used in the interaction characteristics the default settings for the nonlinear convergence scheme used in the solution may not result in a converged solution. These convergence parameters may need to be adjusted and the model resolved if this occurs.

Defining Rail Expansion Joints

If rail expansion joints are present in the bridge then the information for these can be entered into the worksheet for each track. The data input takes the form of a unique positive ID number that is placed in column B, the positions and initial gaps. The expansion joint data will be read from the spreadsheet until a blank ID entry is detected. For each unique ID number an expansion joint can be defined for either track by entering the position in metres from the start of the left-hand embankment and initial gap in millimetres.

Rail Track Analysis User Manual

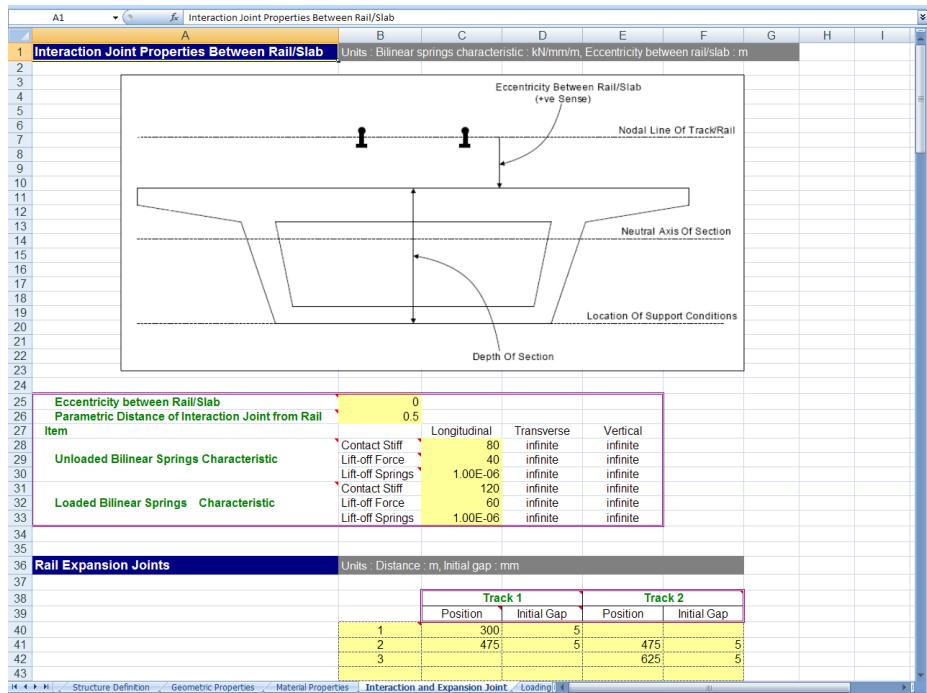


Figure 30: Sample Expansion Joint Definitions

Worksheet 6: Thermal and Train Loading

Loading											
1	Units : Temperature : Celsius , Load Position/Length : m , Load : kN/m										
3	For Deck										
4	Temperature : 20										
5	Temperature : 0										
6	Number of Track Loading Locations : 5										
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
	Material Properties Interaction and Expansion Joint Loading										

Figure 31: Definition of Thermal and Train Loading for Structure

The loading worksheet allows the input of the temperature and trainset loading characteristics that are to be considered for the structure. This includes the capability of defining multiple trainset locations using the parametric loading facility which is described below.

Temperature Loading

The temperature effects in the rails for a continuously welded rail (CWR) track do not cause a displacement of the track and do not need to be considered (UIC774-3 Clause 1.4.2). For all other tracks the change in temperature of the bridge deck and rails relative to the reference temperature of the deck when the rail was fixed needs to be considered in accordance to the code of practice and design specifications. The temperature loads for both the slab/deck and the rail should be entered (zero if not required) in Celsius (degrees centigrade) where temperature rises are entered as positive values and temperature drops are entered as negative values.

Note. For structures where more than one temperature loading may need to be entered for the deck (e.g. mixed steel and concrete bridges) the model should be defined with a single deck temperature and then a temperature only model built. This model can then have its temperature loading for the deck adjusted before the **Apply Rail Loads** dialog is then used to include the trainset loading to the railtracks.

Trainset Loading to Rails of Tracks

The trainset loading is defined in terms of the type, track to load, position and magnitude. The loading allows for multiple trainset loading positions to be defined in a single spreadsheet and all of these positions to be analysed on one go by the wizard. All of the trainset loading must fit within the length of the tracks of the model with the left-hand end of the left embankment at a position of 0.0m and the right-hand end of the right embankment at a position equal to the total length of the model reported in the **Decks, Tracks And Embankment** worksheet.

As many rail/train loads that are required can be defined in the spreadsheet with data input terminating when blank data is detected in the loading type column. This allows more complex loading patterns to be defined such as the accelerating trainset loading illustrated in Figure 32. To extend the bottom of the table extra rows can be inserted (making sure to copy the formulae in columns G and J) or the last rows copied and pasted as many times as required.

Note. This may require the worksheet to be unprotected first which can be done under the Review options in Microsoft Excel. This worksheet protection should be turned back on immediately after the extra entries for additional loads have been inserted into the worksheet to avoid accidental changes to other parts of the worksheet that could cause errors when the spreadsheet is imported into the Rail Track Analysis tool.

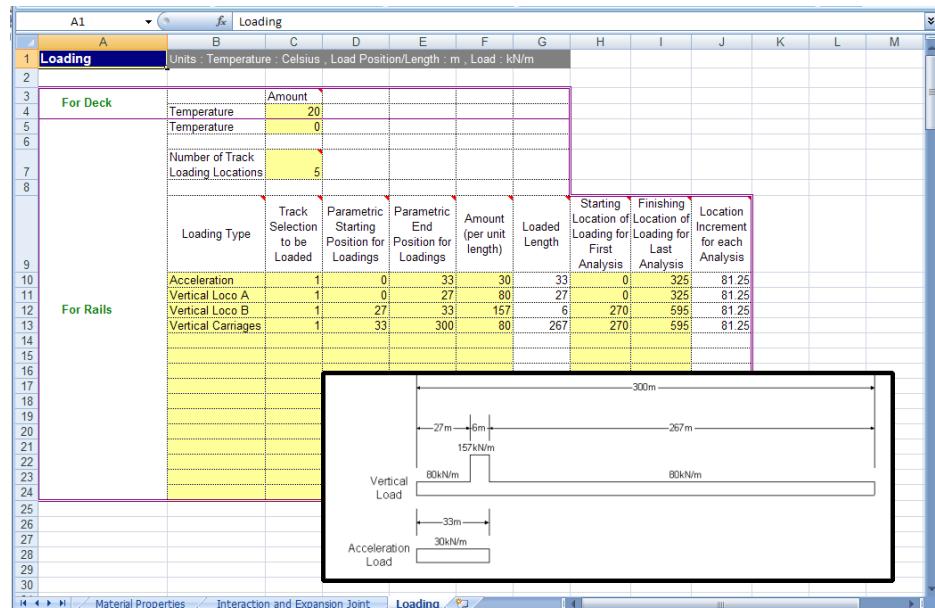


Figure 32: More Complex Train Loading Definition in Spreadsheet

The inputs to the worksheet are:

Number of track loading locations

Defines the number of parametric locations for the placement of the trainset loading carried out in the analysis. If only a single position of the trainset loading is to be considered then this should be set to 1. To analyse more than 1 location the number should be set to a positive integer.

Loading type

Defines the loading type that will be assigned to the selected track. The first character governs the loading type with valid options being Acceleration, Braking and Vertical. A more descriptive definition of the loading type may be entered if required as illustrated in Figure 32 so long as the first character is set to either A, B or V.

Track selection to be loaded

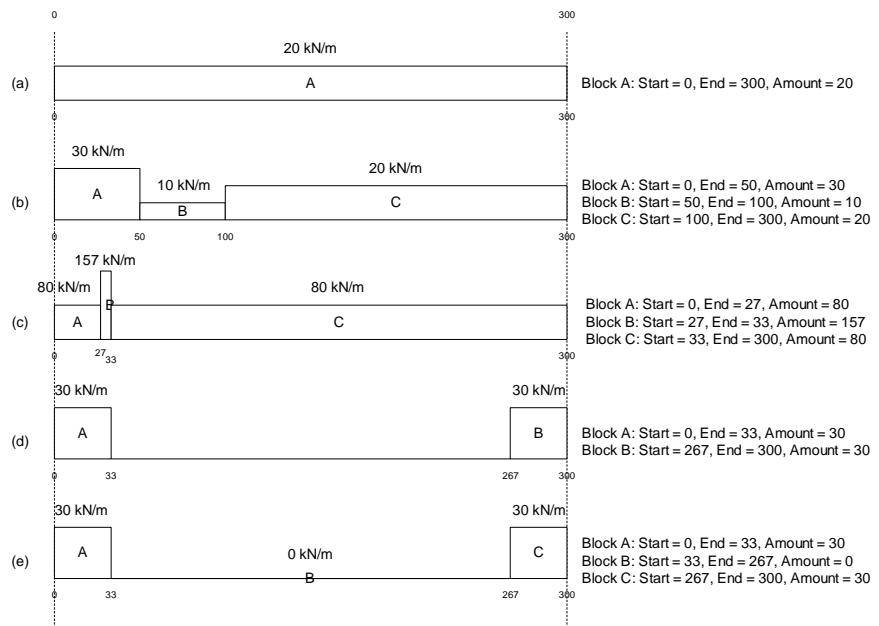
Defines the track that the loading will be assigned to and can be either 1 or 2 (only if the structure is a two track structure). For two tracks the UIC774-3 Code of Practice (Clause 1.4.3) states that the accelerating and braking forces from trainsets should be applied to different tracks.

Parametric starting position for loadings

Defines the start of the loading of the trainset. For the trainset the starting position is the left-most position of the load when considering the trainset alone (i.e. independent of the structure). The reference parametric position used for the combination of the trainset loading and the current position on the structure is at a value of zero so positions that are negative will place the defined loading to the left of the reference position defined using the entries in columns H and I and positions that are positive will place the loading to the right.

Parametric end position for loadings

Defines the end of the loading of the trainset. For the trainset the ending position is the right-most position of the load when considering the trainset alone (i.e. independent of the structure). These are relative to the reference position as described for the parametric starting position above.


Amount (per unit length)

Defines the magnitude of the trainset loading in units of kN per metre length. For longitudinal loads such as acceleration and braking loads a positive value will cause the loading to act towards the right embankment, a negative value will cause the loading to act towards the left embankment. For vertical loads a positive value will cause the loading to act downwards onto the track and structure.

Loaded length

The loaded length is automatically calculated from the parametric starting and end position for the loading and provides a check that these values have been entered correctly. Negative or zero loaded lengths are not permitted in the modelling.

Figure 33 illustrates some trainset loading configurations and their input into the worksheet. Examples (d) and (e) in this figure are equivalent and both definition methods are equally valid in the worksheet.

Figure 33: Sample Trainset Loading Position Definitions

Starting location of loading for first analysis

Defines the starting location of the reference position of the parametric trainset loading on the track for the first analysis and should be defined from the left-most end of the left-hand embankment which is at a location of 0.0m. The starting position should allow for the inclusion of any load that is to the left of this position on the track (defined with a negative position in the parametric loading position) or to the right of this position (defined with a positive position in the parametric loading position). For example, if the parametric trainset loading has been defined from -150m to 150m representing a 300m long trainset centred on the reference position the minimum location for the loading would be +150m relative to the left-most end of the left-hand embankment. Any value less than 150m would mean that it would be impossible to fit the whole of the trainset loading onto the track. Similarly, the maximum location for

the loading would be (TotalLengthTrack - 150)m relative to the left-most end of the left-hand embankment.

Finishing location of loading for last analysis

Defines the finishing location of the reference position of the parametric trainset loading on the track for the last analysis and should be defined from the left-most end of the left-hand embankment which is at a location of 0.0m. The finishing position should allow for the inclusion of any load that is to the left of this position on the track (defined with a negative position in the parametric loading position) or to the right of this position (defined with a positive position in the parametric loading position). The limits of the finishing location are identical to those for the starting location discussed above.

Location increment for each analysis

The location increment for the loading for each analysis is automatically calculated from the starting and finishing locations of the loading and the defined number of track loading locations. All of the loading for a given track should have the same increment to ensure that each component of the loading moves as a group. Generally the starting and finishing locations for the reference position of the loading for a given track should be identical for that track. Different location increments are possible between tracks when more than one track is analysed with positive location increments indicating that the trainset is moving from left to right and negative location increments indicating that the trainset is moving from right to left.

For a single track structure the trainset loading may be stationary (location increment = 0.0m) but for this condition the number of track loading locations must be set to 1. For a two track structure, one of the trainsets on one of the tracks may be stationary but an error will result if both of the trainsets loading the track are stationary if the number of track loading locations is greater than 1. To analyse two stationary trainsets on a two track structure the number of track loading locations must be set to 1.

Rail Track Analysis Menu Options

The Rail Track Analysis option is accessed through the Bridge menu by selecting the Rail Track Analysis UIC774-3 entry. This menu entry provides the following three options:

- Build Model...**
- Apply Rail Loads...**
- Extract Results To Excel...**

Build Model Dialog

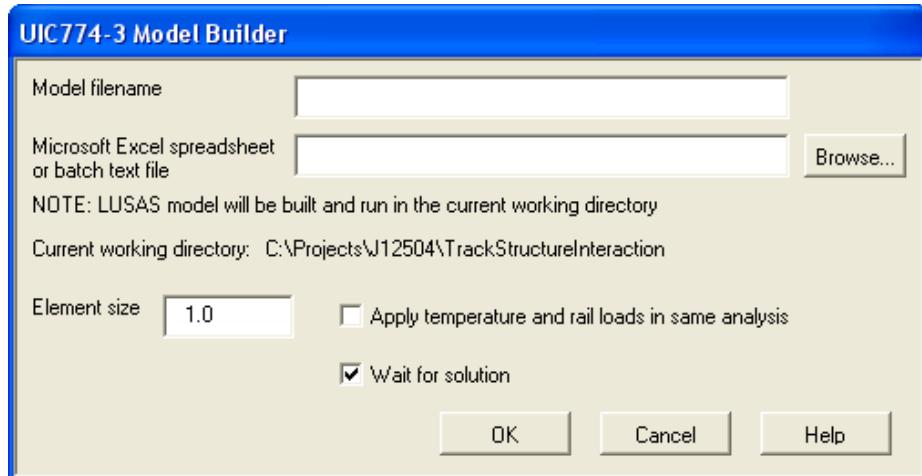


Figure 34: UIC774-3 Model Builder Dialog

- **Model filename** The model filename for the analysis should be entered into the box if batch processing is not being used (see below). The file should not contain any folder specification as all models created will be placed in the current working folder indicated on the dialog.
- **Microsoft Excel spreadsheet or batch text file** If batch processing is not being used and a single model is being created, the filename of the Microsoft Excel spreadsheet that will be used to define the analysis must be entered into the box (including file extension). If no folder structure is specified the spreadsheet should be located in the current working folder. Alternatively, the Browse... button may be used to locate the spreadsheet.

If batch processing of multiple models is being performed then a batch text file listing the Microsoft Excel spreadsheets to use for defining the models should be entered into the box (must have a *.txt file extension). The batch text file can be entered explicitly into the dialog or located using the Browse... button and selecting “Batch text file (*.txt)” as the file type.

The format of the batch text file is indicated below and simply contains a TAB delimited list of the Microsoft Excel files to build the models from and an optional LUSAS model name (if no model name is supplied the basename of the Microsoft Excel spreadsheet will be used) with one model entry per line. If no folder structure is defined for the Microsoft Excel files then the current working folder will be assumed to contain the spreadsheet files, otherwise they may exist at any folder level on the computer system. If a spreadsheet file cannot be found or contains invalid data it will be skipped in the batch processing and an error reported in the “UIC774-3_BuildModel.log” file created in the current working folder. Blank lines are ignored

and batch processing will terminate at the end of the batch text file. The number of analyses in the batch process is unlimited.

In the example below the first model built from the Bridge1.xlsx spreadsheet will be called LUSAS_Bridge1.mdl, the second model will take its basename from the Microsoft Excel spreadsheet and will be called Bridge2.mdl and the third model will be called RTA_Bridge3.mdl .

```
Bridge1.xlsx      LUSAS_Bridge1
.. \SomeFolder\Bridge2.xlsx
D:\Project\Spreadsheet\Bridge3.xlsx  RTA_Bridge3
```

Figure 35: Example Batch Text File With Three Bridges To Build

Element Size The element size to use in the Finite Element mesh should be specified in this box. According to the UIC774-3 Code of Practice, the maximum element size that is permitted in an analysis is 2.0m (Clause 1.7.3). The dialog therefore generally allows element sizes of $0 < \text{Element Size} \leq 2.0\text{m}$ for the building of the models. Larger element sizes can be used (up to the length of the smallest bridge deck span) but a warning will be issued about non-compliance with the UIC774-3 Code of Practice.

Note. For large bridges and/or embankments the use of small element sizes can generate excessively large models which take significant time to manipulate / solve. Use of element sizes below 1.0m should be used with caution.

Apply temperature and rail loads in same analysis Two analysis types are available from the model building dialog. These are:

- The solution of the combined temperature and rail loading effects (option turned on)
- The solution of just the temperature effects (option turned off)

If only a single rail loading configuration is going to be analysed for a particular model then this option should be switched on.

If, on the other hand, a range of rail loading configurations needs to be applied to a model (for different train positions with varying braking / accelerating loading configurations) then this option should be turned off to allow the rail loads to be applied separately by the **Apply Rail Loads** dialog described below.

Building a model to solve only temperature effects also allows the model to be updated prior to applying the rail loading. A situation where this may be needed is the case of a mixed bridge type (for example, one having concrete and steel sections) where the temperature loading of the bridge/deck cannot be classified by the single temperature change available in the Microsoft Excel spreadsheet. If only the temperature model is

built, additional temperature loading attributes can be defined and assigned to the temperature loadcase prior to the rail load application.

Solving only the temperature effects will also allow the support conditions to be modified for pier foundations that require rotational stiffness rather than rigidity (see the discussion of Structure Definition section of the Microsoft Excel spreadsheet) or the addition of varying sections to the decks and spans of the structure.

Note. Models created from spreadsheet data contain named groups that are used in the creation of results worksheets. Care should be taken to avoid making major changes to the layout of the model and the loadcases, otherwise the application of the rail loading may fail.

- Wait for solution** If the option to wait for the solution is selected then all of the analyses will be run from Modeller and nothing can be carried out in the current Modeller window until the solution has finished. For relatively small structures or analyses with a limited set of parametric trainset loading locations this is may be fine. If a large number of parametric trainset loading locations are included in an analysis and/or a large number of models are being built using the batch processing then waiting for the solution can take a considerable amount of time. Under this situation the wait for solution option can be turned off which will cause the analyses to be built and run but the Modeller application will be free for additional tasks.

Note. If the **Wait for solution** option is not selected then VBScript files with the same base name as the LUSAS model(s) will be created in the working folder to allow easy loading of the results. To post-process a particular model, load the model without the results on top (choose No when Modeller reports that a results file of the same name has been detected) and then load the VBScript file named **?????_Reload.vbs** (where **?????** is the base name of the model) using the **File>Script>Run Script...** menu item. These files are also generated if the wait for solution option is selected but will only be required if batch model building is being used or a model and parametric results need to be reloaded at some time in the future.

Caution. You should not attempt to run another rail track analysis in the same folder as an existing analysis is being built or solved. Attempting to do this will corrupt the current analysis that is being built or solved. If sufficient rail track analysis licenses are available on the machine that is being used then additional rail track analyses can be performed so long as each analysis is performed in a different folder.

Apply Rail Loads Dialog

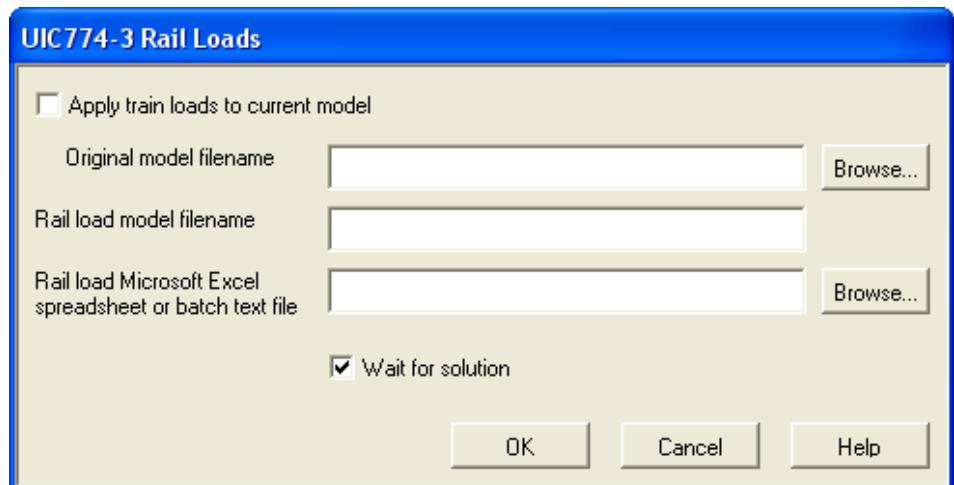


Figure 36: UIC774-3 Apply Rail Loads Dialog

If the bridge model was built and solved with only the temperature loads (**Apply temperature and rail loads in same analysis** turned off in model building dialog) then this model can subsequently be used for applying rail load configurations using this dialog. The dialog should not be used for models that have been built with both the temperature and rail loading applied and will report an error if attempted.

- ❑ **Apply train loads to current model** If the current model loaded was generated from the **Build Model...** dialog with the **Apply temperature and rail loads in same analysis** option turned off then this option can be selected. If this option is not selected then the **Original model filename** entry is available for manual selection of the original model containing only temperature loads.
- ❑ **Original model filename** If a single rail load configuration is to be analysed and the currently loaded model is not being used, the original model filename should be entered into the box. Alternatively, the **Browse...** button can be used to locate the original model file containing only the temperature loading. For batch processing the original model filename is ignored.
- ❑ **Rail load model filename** If a single rail load configuration is to be analysed the new filename for the model incorporating the temperature and rail loads should be entered into the box. This filename can contain the path name for the model location (folder must exist) but should generally only have the filename defined which will then be saved in the current working folder. This filename can be the same as the original model filename but should generally be different to allow the temperature loading model to be reused for another rail load configuration. For batch processing the new rail load model filename is ignored.
- ❑ **Rail load Microsoft Excel spreadsheet or batch text file** If a single rail load configuration is to be analysed for the specified bridge model the filename of

the Microsoft Excel spreadsheet containing the required loading should be entered into the box. Alternatively the Browse... button can be used to locate the file. Once the spreadsheet has been specified the OK button can be clicked to carry out the modification of the original bridge model to include the combined effects of the temperature and rail loading.

If multiple models and/or multiple rail load configurations are to be analysed then only the batch text file (which must have a *.txt file extension) listing the information required by the software should be entered into this box.

Alternatively, the Browse... button can be used, selecting “Batch text file (*.txt)” as the file type.

For each model/rail configuration analysis the batch text file should contain a separate line of data. Each line should specify the original temperature model, the new combined loading model to create and the Microsoft Excel spreadsheet that contains the rail configuration definition. Each item on a line should be TAB delimited to allow spaces to be used in the filenames. An example batch text file is shown below.

Bridge1.mdl	Bridge1_RailConfig1.mdl	Bridge1_RailConfig1.xls
Bridge1.mdl	Bridge1_RailConfig2.mdl	Bridge1_RailConfig2.xls
Bridge1.mdl	Bridge1_RailConfig3.mdl	Bridge1_RailConfig3.xls
Bridge1.mdl	Bridge1_RailConfig4.mdl	Bridge1_RailConfig4.xls
Bridge2.mdl	Bridge2_RailConfig1.mdl	Bridge2_RailConfig1.xls
Bridge2.mdl	Bridge2_RailConfig2.mdl	Bridge2_RailConfig2.xls
Bridge3.mdl	Bridge3_RailConfig1.mdl	Bridge3_RailConfig1.xls

Figure 37: Sample Rail Loading Batch Text File

In the above example, three different bridge deck temperature models have been selected and four rail load configurations analysed for the first, two rail load configurations for the second and one rail load configuration for the third. The number of entries in the batch text file is unlimited and batch processing will terminate once the end of the file is reached. If any analysis fails due to missing or invalid files an error will be reported to the “UIC774-3_RailLoads.log” file in the current working folder.

Note. If the batch text file method is being used the **Apply train loads to current model** option will be ignored since the list of temperature only models to use for the applying of the rail loads for each of the analyses is contained within the batch text file.

- Wait for solution** If the option to wait for the solution is selected then all of the analyses will be run from Modeler and nothing can be carried out in the current Modeler window until the solution has finished. For relatively small structures or analyses with a limited set of parametric trainset loading locations this is may be fine. If a large number of parametric trainset loading locations are included in an analysis and/or a large number of models are being built using the batch

processing then waiting for the solution can take a considerable amount of time. Under this situation the wait for solution option can be turned off which will cause the analyses to be built and run but the Modeller application will be free for additional tasks.

Note. If the **Wait for solution** option is not selected then VBScript files with the same base name as the LUSAS model(s) will be created in the working folder to allow easy loading of the results. To post-process a particular model, load the model without the results on top (choose No when Modeller reports that a results file of the same name has been detected) and then load the VBScript file named **????_Reload.vbs** (where **????** is the base name of the model) using the **File>Script>Run Script...** menu item. These files are also generated if the wait for solution option is selected but will only be required if batch model building is being used or a model and parametric results need to be reloaded at some time in the future.

Caution. You should not attempt to run another rail track analysis in the same folder as the one where an existing analysis is being built or solved. Attempting to do this will corrupt the current analysis that is being built or solved. If sufficient rail track analysis licenses are available on the computer that is being used then additional rail track analyses can be performed so long as each analysis is performed in a different folder.

Extract Results To Microsoft Excel Dialog

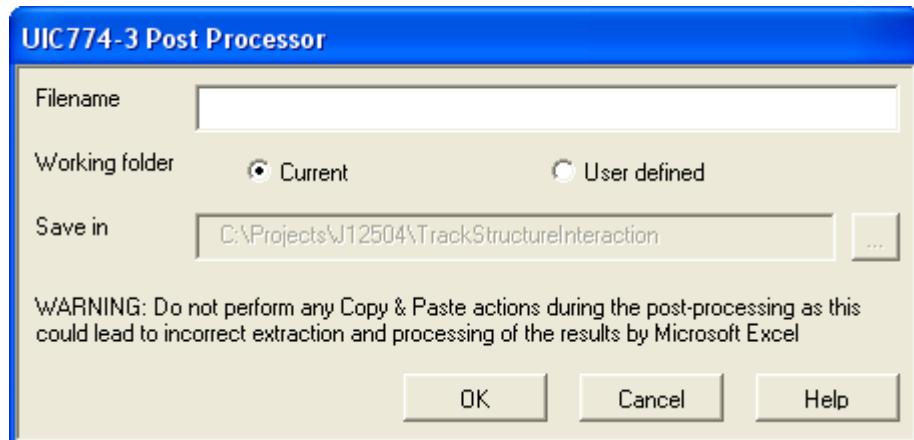


Figure 38: UIC774-3 Post Processor Dialog

A dedicated post-processing dialog is provided that allows the automatic extraction of the results from the track/bridge interaction analysis to a Microsoft Excel spreadsheet. On start-up, if nothing is selected in Modeller, the dialog will inspect the active model to ensure that there are results present and also detect whether the UIC774-3 groups defined during the model building process are present in the Groups Treeview. For this reason any manual editing of the model should be kept to a minimum and the “Track 1”, “Track 2”, “Decks” and interaction joint groups should not be modified or renamed.

- Filename** The filename for the Microsoft Excel spreadsheet that will be created should be entered into this box. The filename must not have any folder structure specified as the file will be placed in the folder selected below.
- Working folder / Save In** If the spreadsheet is to be saved in a folder other than the current working folder then the User defined option can be selected and the required folder entered into the box or browsed for using the ... button.
- After clicking **OK** the option to carry out enveloping of results within Excel is available.

Note. When large models and / or large numbers of results files are being post-processed then the time required for the post-processing can become significant due to the amount of data that is transferred between Modeller and Microsoft Excel. During the post-processing it will not be possible to perform any other tasks in Modeller.

Caution. You should not have any other Microsoft Excel windows open while the post-processing is carried out. Starting Microsoft Excel or opening another Microsoft Excel spreadsheet while the post-processing is running will break the connection between Modeller and Microsoft Excel resulting in an error and termination of the post-processing.

Rail Track Analysis Results Spreadsheet

The results spreadsheet contains worksheets of results for specific areas of interest. The number of worksheets created will depend upon the number of tracks and decks modelled and whether enveloping of results was selected.

In using the Rail Track Analysis post-processor dialog the post-processing carried out is dependent upon whether any selections have been made in LUSAS Modeller. The Rail Track analysis post-processor can carry out:

- Post-processing of automatically defined groups** (when no selections have been made in Modeller)
- Post-processing of selected track / rail nodes**
- Post-processing of selected lines if groups are missing**

Results worksheets created

The spreadsheet created will contain worksheets that typically include results for :

- Track 1, 2**
- Deck 1, 2, 3 etc**
- Envelope, Track 1, 2**
- Envelope, Deck 1, 2, 3 etc**
- Railbed Check**
- Longitudinal Reactions Check**
- Rail Stresses Check**

Post-processing of automatically defined groups

If nothing is selected in the Modeller window and all of the UIC774-3 groups are present in the Groups Treeview then separate results worksheets are generated for the tracks/rails and decks. If more than one results file is loaded, no combinations or envelopes are defined in the LUSAS model and enveloping in Microsoft Excel has been selected then additional envelope results output is generated in separate results worksheets.

If basic combinations or envelopes were defined in the LUSAS model the results from these are output to the tracks/rails and decks worksheets in addition to the temperature only and combined temperature and train loading results. If enveloping in Microsoft Excel has been selected then an additional envelope will be generated for the basic combinations included in the model (and these results will be included in the overall envelope of all results). LUSAS envelopes will not be included in the Microsoft Excel enveloping.

Note. Basic combinations that contain only pure loadcases can be post-processed but basic combinations that contain envelopes or smart combinations cannot be post-processed. Envelopes cannot be post-processed if they contain smart combinations.

Rail Track Results

A separate results worksheet is created for each track in the model. In this worksheet the displacement (including railbed relative displacement), forces / moments and axial stresses in the track rails are reported for all of the results files. If only temperature results exist in a results file the post-processing will only generate the output for these (Increment 1 of the nonlinear analysis), Figure 39 to Figure 41. If trainset loading is also present in the analyses then for each results file the results for the temperature only (Increment 1 of the nonlinear analysis) and the combined temperature and trainset loading (Increment 2 of the nonlinear analysis) are output for each results file, Figure 42 to Figure 44. Figure 45 shows a zoomed out version of the worksheet showing the output for multiple results files. In this figure the temperature only and combined results for two results files are illustrated with the analyses incrementing from left to right and for each, the first column of results and graphs are for the temperature only case and the second column are for the combined case for each analysis.

Rail Track Analysis User Manual

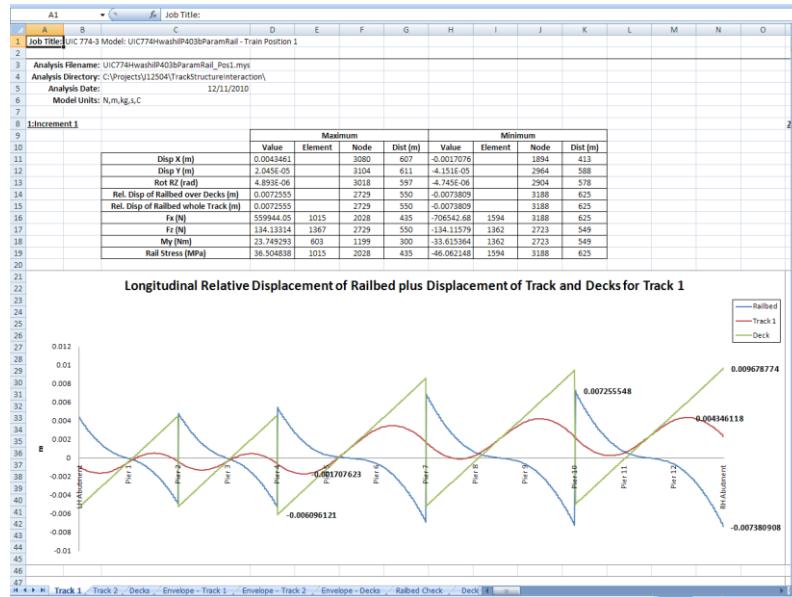


Figure 39: Track Worksheet Summary and Railbed Graph for Temperature Only Results of Analysis, Increment 1 (1 of 3)

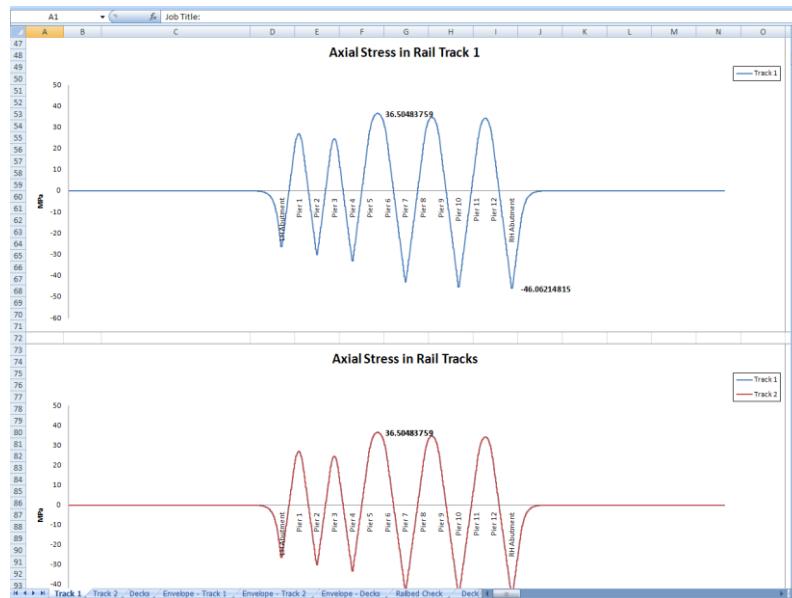


Figure 40: Track Worksheet Rail Stress Graphs for Temperature Only Results of Analysis, Increment 1 (2 of 3)

Rail Track Analysis Results Spreadsheet

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
Element	Node	Abutment / Pier	Distance (m)	X (m)	Y (m)	Z (m)	Disp X (m)	Disp Y (m)	Rot RZ (rad)	Rel. Disp of Railbed (m)	Fx (N)	Fz (N)	My (Nm)	Rail Stress (MPa)
99	1	1	0	-300	0	0	0	0	0	0	0	0	0	1.555564 -1.978215
100	1	2	1	-299	0	0	-0.942623	2.084873	1.177672	-9.426125	0	0	0	3.034615 -1.555564
102	3	2	1	-299	0	0	-0.942623	2.084873	1.177672	-9.426125	-2.108462	-2.078215	-2.078215	-2.078215
103	3	7	2	-298	0	0	-0.190724	1.848173	-2.084873	-1.907623	-3.111625	-2.246664	-2.246664	-2.246664
104	5	7	2	-298	0	0	-0.497124	1.897172	-2.045172	-1.939124	-3.111625	-2.238565	-2.238565	-2.238565
105	5	11	3	-297	0	0	-0.293224	1.929273	-2.022723	-1.929273	-3.059564	-2.184655	-2.184655	-2.184655
106	7	11	3	-297	0	0	-0.292224	1.929273	4.022272	-2.925224	-3.059564	-1.876565	-2.177615	-2.177615
107	7	15	4	-296	0	0	-0.400524	1.445273	5.545972	-4.005624	-3.496615	-3.871664	-2.184655	-2.279515
108	9	15	4	-296	0	0	-0.400524	1.445273	5.545972	-4.005624	-3.810615	-4.873864	2.818655	-2.488619
109	9	19	5	-295	0	0	-0.519624	1.779673	7.413272	5.139624	-3.810615	-4.873864	2.818655	-2.488619
110	11	19	6	-294	0	0	-0.400524	2.084873	9.676572	4.504624	-4.221625	-6.103864	-3.726163	-2.755515
111	11	23	6	-294	0	0	-0.504024	2.355273	9.676572	4.504624	-4.721625	7.902164	4.871664	-3.098615
112	13	23	7	-293	0	0	-0.797824	2.886673	1.278671	-7.979624	-4.721625	7.902164	4.871664	-3.098615
113	13	27	7	-293	0	0	-0.797924	2.886673	1.278671	-7.979624	-5.396155	-1.015663	-6.356635	-3.314619
114	15	27	8	-292	0	0	-0.965224	3.712673	1.661171	-9.652223	-5.396155	-1.015663	-6.356635	-3.314619
115	15	31	8	-292	0	0	-0.965224	3.712673	1.661171	-9.652223	-5.396155	-1.015663	-6.356635	-3.314619
116	17	31	9	-291	0	0	-0.157023	3.785073	1.515771	-1.157023	-0.816215	-1.307663	-0.408563	-1.824619
117	17	35	9	-291	0	0	-0.157523	4.785473	2.157671	-1.157523	-0.708815	-1.686663	-0.671664	-4.621619
119	19	39	10	-290	0	0	-0.137723	6.177673	2.797771	-1.177623	-0.708815	-1.686663	-0.671664	-4.621619
120	21	39	10	-290	0	0	-0.137723	6.177673	2.797771	-1.177623	-0.818961	-2.178863	1.388863	-5.339515
121	21	43	11	-289	0	0	-0.163123	7.982673	8.623871	-1.631623	-0.818961	-2.178863	1.388863	-5.339515
122	23	43	11	-289	0	0	-0.163123	7.982673	8.623871	-1.631623	-0.949815	-2.811664	-1.797664	-6.189515
123	23	47	12	-288	0	0	-0.163123	7.982673	8.623871	-1.631623	-0.949815	-2.811664	-1.797664	-6.189515
124	25	47	12	-288	0	0	-0.152623	1.032373	4.691171	-1.539623	-1.169814	-3.639863	-2.317664	-7.193615
125	25	51	13	-287	0	0	-0.266823	1.334673	6.072771	-2.266823	-1.010363	-3.639863	-2.317664	-7.193615
126	27	51	13	-287	0	0	-0.266823	1.334673	6.072771	-2.266823	-1.285614	-4.707663	-3.011863	-8.376819
127	27	55	14	-286	0	0	-0.266723	1.726672	7.858771	-2.667623	-1.285614	-4.707663	-3.011863	-8.376819
128	29	55	14	-286	0	0	-0.266723	1.726672	7.858771	-2.667623	-1.498614	-6.088863	-3.808863	-9.767619
129	29	59	15	-285	0	0	-0.312023	2.233672	1.017670	-3.125223	-1.789614	-7.876163	5.024164	-1.146163
130	31	59	15	-285	0	0	-0.312023	2.233672	1.017670	-3.125223	-1.789614	-7.876163	5.024164	-1.146163
131	31	63	16	-284	0	0	-0.376523	2.889672	-1.136770	-3.675623	-1.789614	-7.876163	5.024164	-1.146163
132	33	63	16	-284	0	0	-0.376523	2.889672	-1.136770	-3.675623	-2.043614	1.019662	6.324664	-1.332216
133	33	67	17	-283	0	0	-0.430923	3.737672	1.702770	-4.303923	-2.043614	1.019662	6.324664	-1.332216
134	35	67	17	-283	0	0	-0.430923	3.737672	1.702770	-4.303923	-2.043614	-1.318663	-8.441664	-1.557619
135	37	71	18	-282	0	0	-0.506523	3.785073	1.826571	-5.056523	-2.025679	-5.056523	-2.770214	-7.105162
136	37	75	18	-282	0	0	-0.506523	4.835672	2.025679	-5.056523	-2.770214	-5.056523	-2.770214	-8.321515
137	37	75	19	-281	0	0	-0.515713	6.255472	2.857170	-5.917623	-2.025679	-1.705662	1.010263	-1.821823
138	39	75	19	-281	0	0	-0.515713	6.255472	2.857170	-5.917623	-3.265614	-2.209662	-1.413663	-2.125615
139	39	79	20	-280	0	0	-0.693123	8.092672	-3.687770	-6.931623	-3.881964	-2.855662	-1.828663	-2.495615
140	41	79	20	-280	0	0	-0.693123	8.092672	-3.687770	-6.931623	-3.881964	-2.855662	-1.828663	-2.495615
141	41	83	21	-279	0	0	-0.811663	1.047671	1.777670	-8.116663	-3.819614	-2.855662	-1.828663	-2.495615
142	43	83	21	-279	0	0	-0.811663	1.047671	1.777670	-8.116663	-4.499614	-3.693662	-2.305663	-2.918615
143	43	87	22	-278	0	0	-0.403923	3.355273	4.177164	-4.177164	4.970573	-4.649864	-3.639863	-7.113615

Figure 41: Track Worksheet Tabulated Output for Temperature Only Results of Analysis, Increment 1 (3 of 3)

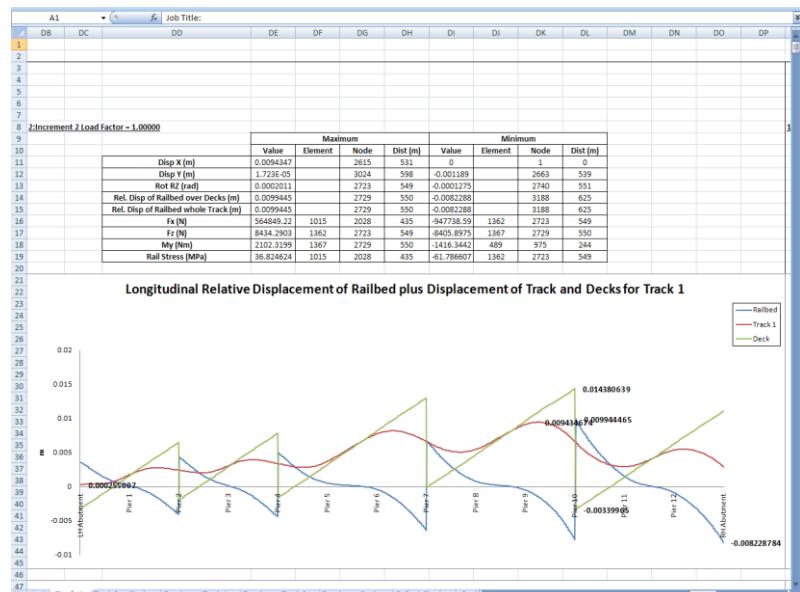


Figure 42: Track Worksheet Summary and Railbed Graph for Temperature and Trainset Results of Analysis, Increment 2 (1 of 3)

Rail Track Analysis User Manual

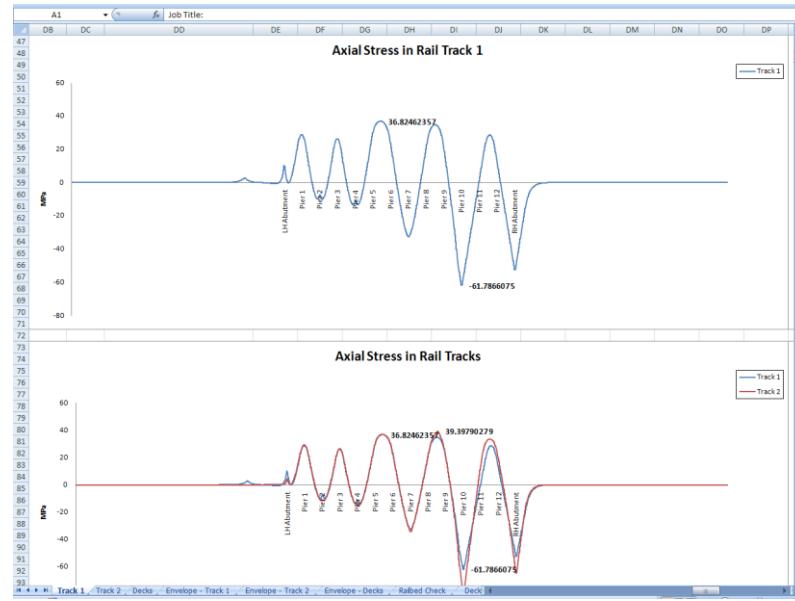


Figure 43: Track Worksheet Rail Stress Graphs for Temperature and Trainset Results of Analysis, Increment 2 (2 of 3)

Element	Node	Abutment / Pier	Distance (m)	X (m)	Y (m)	Z (m)	Disp X (m)	Disp Y (m)	Rot RZ (rad)	Rel. Disp of Railend (m)	Fx (N)	Fz (N)	My (Nm)	Rail Stress (MPa)
100	1	1	0	-300	0	0	0	0	0	0	26.12	7.936156	6.484573	1.304616
101	1	2	1	-299	0	0	6.208822	1.063644	6.005544	6.208822	25.12	7.936156	6.484573	1.204516
102	3	2	1	-299	0	0	6.208822	1.063644	6.005544	6.208822	20.498412	-1.146555	-1.115656	1.338616
103	3	7	2	-298	0	0	1.257621	-7.639545	-1.355453	1.257621	2.049612	-1.146555	-1.115656	1.338616
104	5	7	2	-298	0	0	1.257621	-7.639545	-1.355453	1.257621	2.15612	1.941855	9.57657	1.402516
105	5	11	3	-297	0	0	1.925621	6.595265	2.052464	1.925621	2.15612	1.941855	9.57657	1.402516
106	7	11	3	-297	0	0	1.925621	6.595265	2.052464	1.925621	2.15612	1.941855	9.57657	1.402516
107	7	15	4	-296	0	0	2.644521	-2.831143	2.644521	2.644521	2.049812	-2.979555	-1.114556	1.502516
108	9	15	4	-296	0	0	2.644521	-2.831143	2.644521	2.644521	2.15612	2.487555	1.444556	1.64616
109	9	19	5	-295	0	0	3.421221	9.079645	3.782442	3.421221	2.515612	2.487555	1.444556	1.64616
110	11	19	5	-295	0	0	3.421221	9.079645	3.782442	3.421221	2.789612	-3.155555	-1.898656	1.818616
111	11	21	6	-294	0	0	4.286621	-1.151264	-4.981143	4.286621	2.789612	-3.155555	-1.898656	1.818616
112	13	23	6	-294	0	0	4.286621	-1.151264	-4.981143	4.286621	3.132612	4.032555	2.485556	2.042516
113	13	27	7	-293	0	0	5.259621	1.472564	6.512143	5.259621	3.555212	5.177655	-3.245556	2.216616
114	15	27	7	-293	0	0	5.259621	1.472564	6.512143	5.259621	3.555212	5.177655	-3.245556	2.216616
115	15	31	8	-292	0	0	6.362721	-1.894644	-6.479643	6.362721	3.555212	5.177655	-3.245556	2.316616
116	17	31	8	-292	0	0	6.362721	-1.894644	-6.479643	6.362721	4.061612	6.697655	4.211656	2.648616
117	17	35	9	-291	0	0	7.622621	2.442642	1.101642	7.622621	4.061612	6.697655	4.211656	2.648616
118	19	35	9	-291	0	0	7.622621	2.442642	1.101642	7.622621	4.671612	6.697655	5.496556	3.000516
119	19	39	10	-290	0	0	9.202621	3.152644	4.424742	9.202621	4.671612	6.697655	5.496556	3.000516
120	21	39	10	-290	0	0	9.073621	3.152644	4.424742	9.073621	5.081612	6.697655	5.496556	3.045516
121	21	43	11	-289	0	0	1.075620	4.073642	1.849542	1.075620	5.395712	1.111554	7.081156	3.518616
122	23	43	11	-289	0	0	1.075620	4.073642	1.849542	1.075620	6.237612	1.436654	-9.176556	4.079616
123	23	47	12	-288	0	0	1.269620	5.265644	6.512143	5.259621	3.555212	5.177655	-3.245556	2.216616
124	25	47	12	-288	0	0	1.269620	5.265644	6.512143	5.259621	3.555212	5.177655	-3.245556	2.216616
125	25	51	13	-287	0	0	1.269620	5.265644	6.512143	5.259621	3.555212	5.177655	-3.245556	2.316616
126	27	51	13	-287	0	0	1.455620	6.805644	3.095642	1.455620	4.846612	-2.402654	-3.336555	5.521616
127	27	55	14	-286	0	0	1.758620	-8.087644	2.409642	1.758620	8.446612	-2.402654	-3.336555	5.521616
128	29	55	14	-286	0	0	1.758620	-8.087644	2.409642	1.758620	8.446612	-2.402654	-3.336555	5.521616
129	29	59	15	-285	0	0	2.064620	1.139644	5.188644	2.064620	9.874612	3.107654	1.988655	6.437616
130	31	59	15	-285	0	0	2.064620	1.139644	5.188644	2.064620	1.139644	-4.019654	-2.373653	7.516416
131	31	63	16	-284	0	0	2.422620	-1.474643	-6.713642	2.422620	1.139644	-4.019654	-2.373653	7.516416
132	33	63	16	-284	0	0	2.422620	-1.474643	-6.713642	2.422620	1.139644	-4.019654	-2.373653	7.516416
133	33	67	17	-283	0	0	2.84420	1.907643	6.686642	2.84420	1.436654	-9.176556	4.079616	
134	35	67	17	-283	0	0	2.84420	1.907643	6.686642	2.84420	1.436654	-9.176556	4.079616	
135	35	71	18	-282	0	0	3.328620	-2.467643	-1.124643	3.328620	1.573611	-6.726654	-4.307655	1.026615
136	37	71	18	-282	0	0	3.328620	-2.467643	-1.124643	3.328620	1.870611	5.572655	1.199615	
137	37	75	19	-281	0	0	3.9620	3.192643	1.345446	3.9620	1.848611	8.702655	5.572655	1.199615
138	39	75	19	-281	0	0	3.9620	3.192643	1.345446	3.9620	1.848611	8.702655	5.572655	1.199615
139	39	79	20	-280	0	0	4.566620	4.129643	1.881641	4.566620	2.152611	-1.126654	-7.209655	1.408615
140	41	79	20	-280	0	0	4.566620	4.129643	1.881641	4.566620	2.517611	1.437653	9.328655	1.641615
141	41	83	21	-279	0	0	5.349620	5.342643	2.434641	5.349620	2.517611	1.437653	9.328655	1.641615
142	43	83	21	-279	0	0	5.349620	5.342643	2.434641	5.349620	2.517611	1.437653	9.328655	1.641615
143	43	87	22	-278	0	0	6.761620	6.917641	3.149F41	6.761620	2.434641	-1.884653	-1.207654	1.97615

Figure 44: Track Worksheet Tabulated Output for Temperature and Trainset Results of Analysis, Increment 2 (3 of 3)

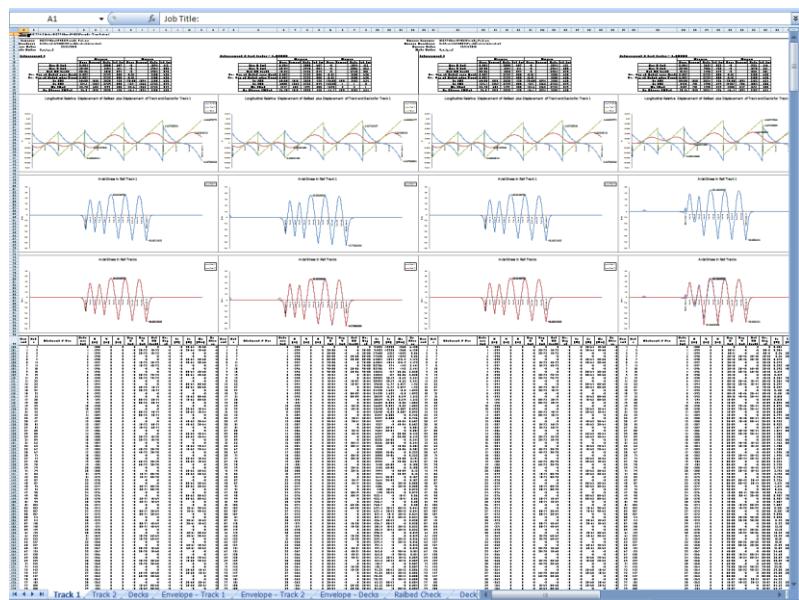
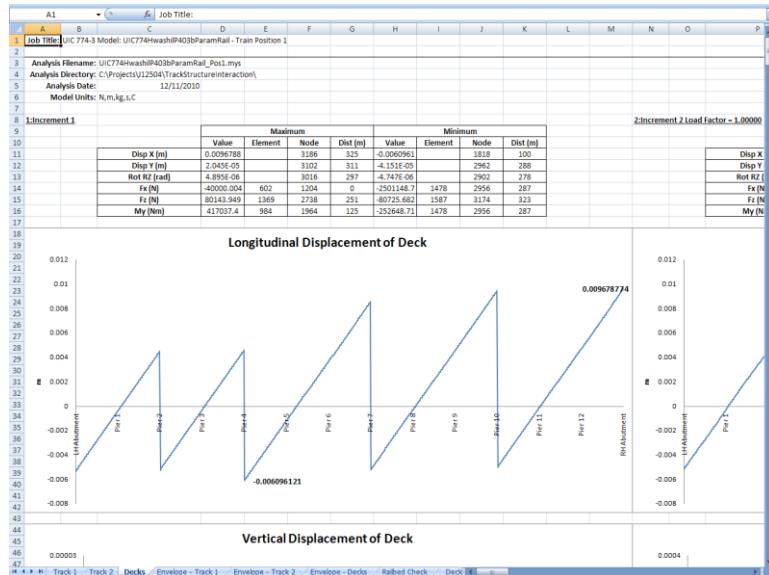
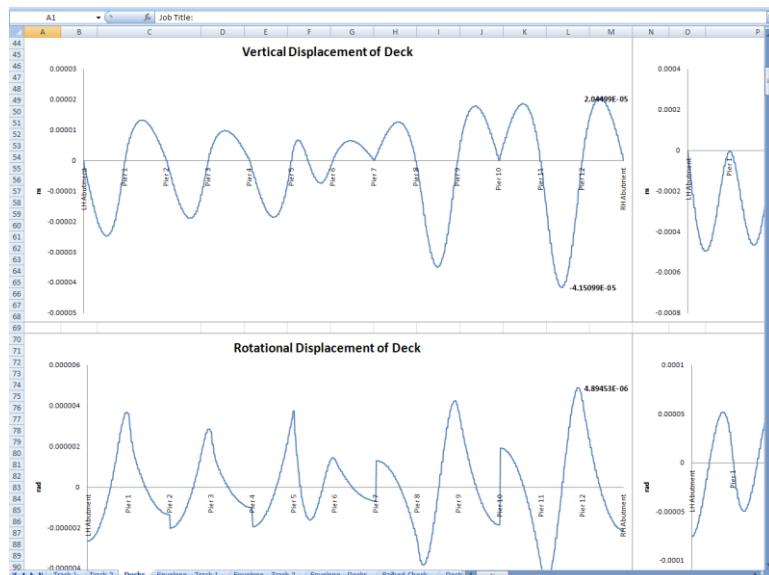


Figure 45: Track Worksheet for Multiple Results Files


If valid basic combinations or envelopes that match the criteria described in **Post-processing of automatically defined groups** are present in the model then additional results for these will be tabulated into the Microsoft Excel worksheets for the tracks. For basic combinations a warning will be added at the top of the extracted results indicating that basic combinations of nonlinear results are not strictly valid. For envelopes all quantities other than the railbed displacements will be calculated for the tracks but the results from LUSAS envelopes will be excluded from any enveloping carried out in Microsoft Excel.

Deck Results


A separate worksheet is created for the deck in the model. In this worksheet the displacement and forces / moments in the deck are reported for all of the results files. If only temperature results exist in a results file the post-processing will only generate the output for these (Increment 1 of the nonlinear analysis). If trainset loading is also present in the analyses then for each results file the results for the temperature only (Increment 1 of the nonlinear analysis) and the combined temperature and trainset loading (Increment 2 of the nonlinear analysis) are output for each results file. Figure 46 to Figure 49 show the tabulated and graph output generated for the deck for all of the loading conditions included in the analyses. Figure 50 shows a zoomed out version of the worksheet showing the output for multiple results files. In this figure the temperature only and combined results for more than two results files are illustrated with the analyses incrementing from left to right and for each, the first column of

Rail Track Analysis User Manual

results and graphs are for the temperature only case and the second column are for the combined case for each analysis.

Figure 46: Deck Worksheet Summary and Longitudinal Displacement Graph for Results of Analysis (1 of 4)

Figure 47: Deck Worksheet Vertical and Rotational Displacement Graphs for Results of Analysis (2 of 4)

Rail Track Analysis Results Spreadsheet

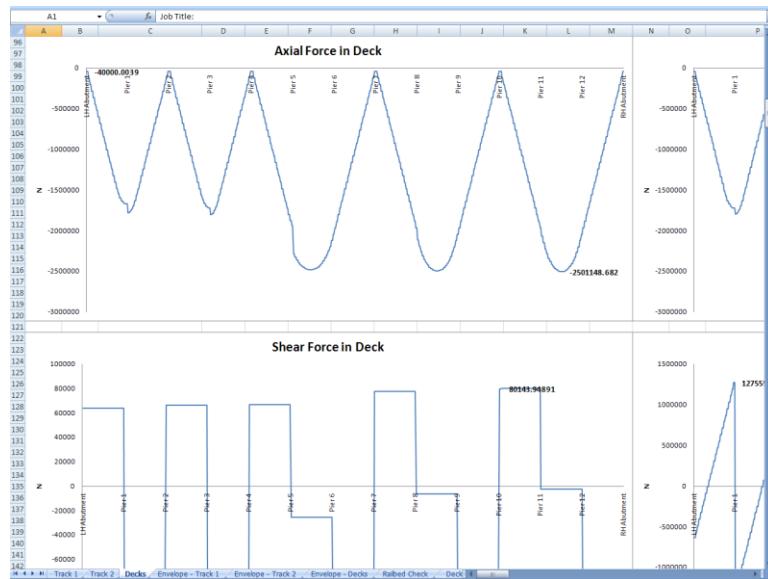


Figure 48: Deck Worksheet Axial and Shear Force Graphs for Results of Analysis (3 of 4)

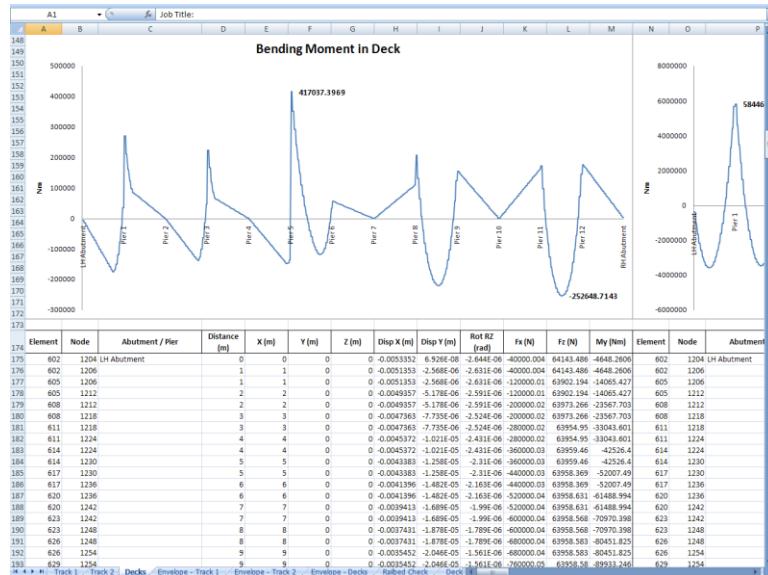
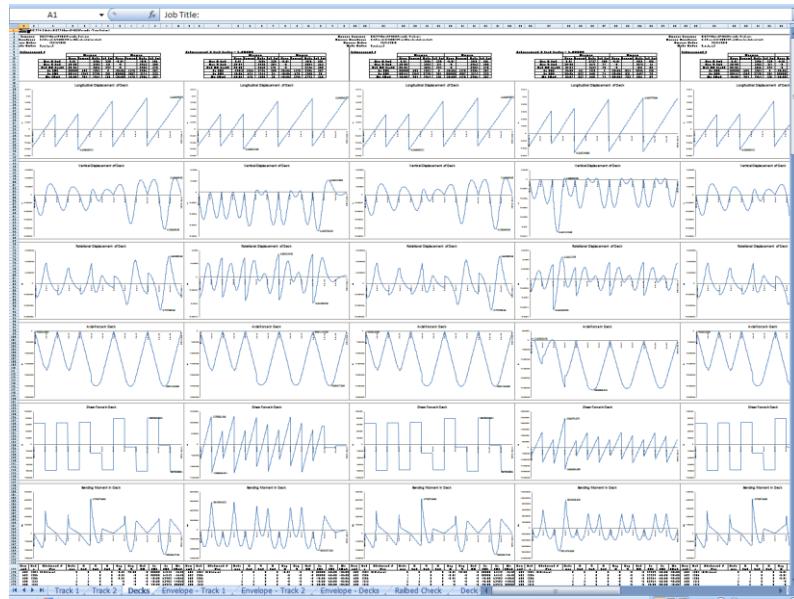



Figure 49: Deck Worksheet Bending Moment Graph and Tabulated Output for Results of Analysis (4 of 4)

Figure 50: Deck Worksheet for Multiple Results Files

If valid basic combinations or envelopes that match the criteria described in **Post-processing of automatically defined groups** are present in the model then additional results for these will be tabulated into the Microsoft Excel worksheets for the decks. For basic combinations a warning will be added at the top of the extracted results indicating that basic combinations of nonlinear results are not strictly valid. For envelopes all quantities will be calculated for the decks but the results from the LUSAS envelopes will be excluded from any enveloping carried out in Microsoft Excel.

Additional Results from Enveloping in Microsoft Excel

If more than one results file is loaded, basic combinations are defined in the model that may be post-processed (see the restrictions under the **Post-processing of automatically defined groups** section) and enveloping in Microsoft Excel has been selected then additional envelope results output is generated by the post-processor in separate worksheets in Microsoft Excel. These additional worksheets include envelopes of the raw results and summary tables for key results that are required for checking against the UIC774-3 code. The track and deck envelopes produce the same summary tables, graphs and results highlighted in the previous two sections for the following envelopes:

- Maximum and minimum envelopes for temperature loading only**
- Maximum and minimum envelopes for temperature and trainset rail loading**
- Maximum and minimum envelopes for all of the basic combinations defined in the model (if valid basic combinations are present)**

- Maximum and minimum envelopes for all loading (an envelope of all of the above results)**

The additional UIC774-3 summary tables output by the post-processor are dependent upon the configuration of the model (the number of tracks and the number of decks in the structure) but will include some or all of the following tables:

- Longitudinal Relative Displacement of Railbed (Relative Displacement between Rails and Deck)**
- Longitudinal Relative Displacement between Ends of Decks (Axial)**
- Longitudinal Relative Displacement between Ends of Decks (End Rotations)**
- Longitudinal Relative Displacement between Ends of Decks (Total Effects)**
- Vertical Relative Displacement between Ends of Decks**
- Longitudinal Reactions**
- Axial Rail Stress**

Note. The 'total effect' longitudinal relative displacement between the ends of the decks is the sum of the axial movement of the deck support position and the movement of the top of the deck from the rotation of the deck about this support position.

Sample tables are shown in the following figures which provide the peak values, the track that the peak is occurring in (if appropriate), the distance from the left end of the structure of the peak and also a description of where the peak is occurring. In all of the worksheets the worst effects are highlighted in bold and blue text to allow the quick determination of which analysis is causing the worst effects for each of the checks that need to be performed.

Rail Track Analysis User Manual

A1	B	C	D	E	F	G	H	I	J	K	L	M
Check of Longitudinal Relative Displacement of Railbed (Relative Displacement between Rails and Deck)												
Analysis ID	Results Filename	Loading Type	Distance from Left End of the Model to the Starting Position of the Rail	Distance from Left End of the Model to the Finishing Position of the Rail	Loading Type	Distance from Left End of the Model to the Starting Position of the Rail	Distance from Left End of the Model to the Finishing Position of the Rail	Peak Relative Longitudinal Displacement between Ends of Rail (in)	Track Number	Distance from Left End of the Structure for Peak Displacement	Description of peak location	
1	UCL744wash010Param_Pos1.msp	Braking	0	300	Temperature Only	300	600	0.007303904	1	325	At Abutment	
2	UCL744wash010Param_Pos2.msp	Braking	6.25	306.25	Accelerating	306.25	602.25	0.007303931	2	325	At Abutment	
3	UCL744wash010Param_Pos3.msp	Braking	12.5	312.5	Accelerating	312.5	604.5	0.007303931	3	325	At Abutment	
4	UCL744wash010Param_Pos4.msp	Braking	18.75	318.75	Accelerating	318.75	609.75	0.007303931	4	325	At Abutment	
5	UCL744wash010Param_Pos5.msp	Braking	25	325	Accelerating	325	615	0.007303931	5	325	At Abutment	
6	UCL744wash010Param_Pos6.msp	Braking	31.25	331.25	Accelerating	331.25	619.5	0.007303931	6	325	At Abutment	
7	UCL744wash010Param_Pos7.msp	Braking	37.5	337.5	Accelerating	337.5	615.5	0.007303931	7	325	At Abutment	
8	UCL744wash010Param_Pos8.msp	Braking	43.75	343.75	Accelerating	343.75	620.5	0.007303931	8	325	At Abutment	
9	UCL744wash010Param_Pos9.msp	Braking	50	350	Accelerating	350	626	0.007303931	9	325	At Abutment	
10	UCL744wash010Param_Pos10.msp	Braking	56.25	356.25	Accelerating	356.25	632.5	0.007303931	10	325	At Abutment	
11	UCL744wash010Param_Pos11.msp	Braking	62.5	362.5	Accelerating	362.5	638.5	0.007303931	11	325	At Abutment	
12	UCL744wash010Param_Pos12.msp	Braking	68.75	368.75	Accelerating	368.75	644.5	0.007303931	12	325	At Abutment	
13	UCL744wash010Param_Pos13.msp	Braking	75	375	Accelerating	375	650	0.007303931	13	325	At Abutment	
14	UCL744wash010Param_Pos14.msp	Braking	81.25	381.25	Accelerating	381.25	642.25	0.007303931	14	325	At Abutment	
15	UCL744wash010Param_Pos15.msp	Braking	87.5	387.5	Accelerating	387.5	648.5	0.007303931	15	325	At Abutment	
16	UCL744wash010Param_Pos16.msp	Braking	93.75	393.75	Accelerating	393.75	653.75	0.007303931	16	325	At Abutment	
17	UCL744wash010Param_Pos17.msp	Braking	100.5	400.5	Accelerating	400.5	659.75	0.007303931	17	325	At Abutment	
18	UCL744wash010Param_Pos18.msp	Braking	106.25	406.25	Accelerating	406.25	655.25	0.007303931	18	325	At Abutment	
19	UCL744wash010Param_Pos19.msp	Braking	112.5	412.5	Accelerating	412.5	661	0.007303931	19	325	At Abutment	
20	UCL744wash010Param_Pos20.msp	Braking	118.75	418.75	Accelerating	418.75	667.5	0.007303931	20	325	At Abutment	
21	UCL744wash010Param_Pos21.msp	Braking	125	425	Accelerating	425	673.5	0.007303931	21	325	At Abutment	
22	UCL744wash010Param_Pos22.msp	Braking	131.25	431.25	Accelerating	431.25	680.5	0.007303931	22	325	At Abutment	
23	UCL744wash010Param_Pos23.msp	Braking	137.5	437.5	Accelerating	437.5	686.5	0.007303931	23	325	At Abutment	
24	UCL744wash010Param_Pos24.msp	Braking	143.75	443.75	Accelerating	443.75	692.5	0.007303931	24	325	At Abutment	
25	UCL744wash010Param_Pos25.msp	Braking	150	450	Accelerating	450	698.5	0.007303931	25	325	At Abutment	
26	UCL744wash010Param_Pos26.msp	Braking	156.25	456.25	Accelerating	456.25	705.5	0.007303931	26	325	At Abutment	
27	UCL744wash010Param_Pos27.msp	Braking	162.5	462.5	Accelerating	462.5	711.5	0.007303931	27	325	At Abutment	
28	UCL744wash010Param_Pos28.msp	Braking	168.75	468.75	Accelerating	468.75	717.5	0.007303931	28	325	At Abutment	
29	UCL744wash010Param_Pos29.msp	Braking	175	475	Accelerating	475	723.5	0.007303931	29	325	At Abutment	
30	UCL744wash010Param_Pos30.msp	Braking	181.25	481.25	Accelerating	481.25	729.5	0.007303931	30	325	At Abutment	
31	UCL744wash010Param_Pos31.msp	Braking	187.5	487.5	Accelerating	487.5	735.5	0.007303931	31	325	At Abutment	
32	UCL744wash010Param_Pos32.msp	Braking	193.75	493.75	Accelerating	493.75	741.5	0.007303931	32	325	At Abutment	
33	UCL744wash010Param_Pos33.msp	Braking	200	500	Accelerating	500	747.5	0.007303931	33	325	At Abutment	
34	UCL744wash010Param_Pos34.msp	Braking	206.25	506.25	Accelerating	506.25	753.5	0.007303931	34	325	At Abutment	
35	UCL744wash010Param_Pos35.msp	Braking	212.5	512.5	Accelerating	512.5	759.5	0.007303931	35	325	At Abutment	
36	UCL744wash010Param_Pos36.msp	Braking	218.75	518.75	Accelerating	518.75	765.5	0.007303931	36	325	At Abutment	
37	UCL744wash010Param_Pos37.msp	Braking	225	525	Accelerating	525	771.5	0.007303931	37	325	At Abutment	
38	UCL744wash010Param_Pos38.msp	Braking	231.25	531.25	Accelerating	531.25	777.5	0.007303931	38	325	At Abutment	
39	UCL744wash010Param_Pos39.msp	Braking	237.5	537.5	Accelerating	537.5	783.5	0.007303931	39	325	At Abutment	
40	UCL744wash010Param_Pos40.msp	Braking	243.75	543.75	Accelerating	543.75	789.5	0.007303931	40	325	At Abutment	
41	UCL744wash010Param_Pos41.msp	Braking	250	550	Accelerating	550	795	0.007303931	41	325	At Abutment	
42	UCL744wash010Param_Pos42.msp	Braking	256.25	556.25	Accelerating	556.25	801.5	0.007303931	42	325	At Abutment	
43	UCL744wash010Param_Pos43.msp	Braking	262.5	562.5	Accelerating	562.5	807.5	0.007303931	43	325	At Abutment	
44	UCL744wash010Param_Pos44.msp	Braking	268.75	568.75	Accelerating	568.75	813.5	0.007303931	44	325	At Abutment	
45	UCL744wash010Param_Pos45.msp	Braking	275	575	Accelerating	575	819.5	0.007303931	45	325	At Abutment	
46	UCL744wash010Param_Pos46.msp	Braking	281.25	581.25	Accelerating	581.25	825.5	0.007303931	46	325	At Abutment	
47	UCL744wash010Param_Pos47.msp	Braking	287.5	587.5	Accelerating	587.5	831.5	0.007303931	47	325	At Abutment	
48	UCL744wash010Param_Pos48.msp	Braking	293.75	593.75	Accelerating	593.75	837.5	0.007303931	48	325	At Abutment	
49	UCL744wash010Param_Pos49.msp	Braking	300	600	Accelerating	600	843.5	0.007303931	49	325	At Abutment	
50	UCL744wash010Param_Pos50.msp	Braking	306.25	606.25	Accelerating	606.25	849.5	0.007303931	50	325	At Abutment	
51	UCL744wash010Param_Pos51.msp	Braking	312.5	612.5	Accelerating	612.5	855.5	0.007303931	51	325	At Abutment	
52	UCL744wash010Param_Pos52.msp	Braking	318.75	618.75	Accelerating	618.75	861.5	0.007303931	52	325	At Abutment	
53	UCL744wash010Param_Pos53.msp	Braking	325	625	Accelerating	625	867.5	0.007303931	53	325	At Abutment	
54	UCL744wash010Param_Pos54.msp	Braking	331.25	631.25	Accelerating	631.25	873.5	0.007303931	54	325	At Abutment	
55	UCL744wash010Param_Pos55.msp	Braking	337.5	637.5	Accelerating	637.5	879.5	0.007303931	55	325	At Abutment	
56	UCL744wash010Param_Pos56.msp	Braking	343.75	643.75	Accelerating	643.75	885.5	0.007303931	56	325	At Abutment	
57	UCL744wash010Param_Pos57.msp	Braking	350	650	Accelerating	650	891.5	0.007303931	57	325	At Abutment	
58	UCL744wash010Param_Pos58.msp	Braking	356.25	656.25	Accelerating	656.25	897.5	0.007303931	58	325	At Abutment	
59	UCL744wash010Param_Pos59.msp	Braking	362.5	662.5	Accelerating	662.5	903.5	0.007303931	59	325	At Abutment	
60	UCL744wash010Param_Pos60.msp	Braking	368.75	668.75	Accelerating	668.75	909.5	0.007303931	60	325	At Abutment	
61	UCL744wash010Param_Pos61.msp	Braking	375	675	Accelerating	675	915.5	0.007303931	61	325	At Abutment	
62	UCL744wash010Param_Pos62.msp	Braking	381.25	681.25	Accelerating	681.25	921.5	0.007303931	62	325	At Abutment	
63	UCL744wash010Param_Pos63.msp	Braking	387.5	687.5	Accelerating	687.5	927.5	0.007303931	63	325	At Abutment	
64	UCL744wash010Param_Pos64.msp	Braking	393.75	693.75	Accelerating	693.75	933.5	0.007303931	64	325	At Abutment	
65	UCL744wash010Param_Pos65.msp	Braking	400	700	Accelerating	700	939.5	0.007303931	65	325	At Abutment	
66	UCL744wash010Param_Pos66.msp	Braking	406.25	706.25	Accelerating	706.25	945.5	0.007303931	66	325	At Abutment	
67	UCL744wash010Param_Pos67.msp	Braking	412.5	712.5	Accelerating	712.5	951.5	0.007303931	67	325	At Abutment	
68	UCL744wash010Param_Pos68.msp	Braking	418.75	718.75	Accelerating	718.75	957.5	0.007303931	68	325	At Abutment	
69	UCL744wash010Param_Pos69.msp	Braking	425	725	Accelerating	725	963.5	0.007303931	69	325	At Abutment	
70	UCL744wash010Param_Pos70.msp	Braking	431.25	731.25	Accelerating	731.25	969.5	0.007303931	70	325	At Abutment	
71	UCL744wash010Param_Pos71.msp	Braking	437.5	737.5	Accelerating	737.5	975.5	0.007303931	71	325	At Abutment	
72	UCL744wash010Param_Pos72.msp	Braking	443.75	743.75	Accelerating	743.75	981.5	0.007303931	72	325	At Abutment	
73	UCL744wash010Param_Pos73.msp	Braking	450	750	Accelerating	750	987.5	0.007303931	73	325	At Abutment	
74	UCL744wash010Param_Pos74.msp	Braking	456.25	756.25	Accelerating	756.25	993.5	0.007303931	74	325	At Abutment	
75	UCL744wash010Param_Pos75.msp	Braking	462.5	762.5	Accelerating	762.5	1000	0.007303931	75	325	At Abutment	
76	UCL744wash010Param_Pos76.msp	Braking	468.75	768.75	Accelerating	768.75	1006.5	0.007303931	76	325	At Abutment	
77	UCL744wash010Param_Pos77.msp	Braking	475	775	Accelerating	775	1013.5	0.007303931	77	325	At Abutment	
78	UCL744wash010Param_Pos78.msp	Braking	481.25	781.25	Accelerating	781.25	1020.5	0.007303931	78	325	At Abutment	
79	UCL744wash010Param_Pos79.msp	Braking	487.5	787.5	Accelerating	787.5	1027.5	0.007303931	79	325	At Abutment	
80	UCL744wash010Param_Pos80.msp	Braking	493.75	793.75	Accelerating	793.75	1034.5	0.007303931	80	325	At Abutment	
81	UCL744wash010Param_Pos81.msp	Braking	500	800	Accelerating	800	1041.5	0.007303931	81	325	At Abutment	
82	UCL744wash010Param_Pos82.msp	Braking	506.25	806.25	Accelerating	806.25	1048.5	0.007303931	82	325	At Abutment	
83	UCL744wash010Param_Pos83.msp	Braking	512.5	812.5	Accelerating	812.5	1055.5	0.007303931	83	325	At Abutment	
84	UCL744wash010Param_Pos84.msp	Braking	518.75	818.75	Accelerating	818.75	1062.5	0.007303931	84	325	At Abutment	
85	UCL744wash010Param_Pos85.msp	Braking	525	825	Accelerating	825	1069.5	0.007303931	85	325	At Abutment	
86	UCL744wash010Param_Pos86.msp	Braking	531.25	831.25	Accelerating	831.25	1076.5	0.007303931	86	325	At Abutment	
87	UCL744wash010Param_Pos87.msp	Braking	537.5	837.5	Accelerating	837.5	1083.5	0.007303931	87	325	At Abutment	
88	UCL744wash010Param_Pos88.msp	Braking	543.75	843.75	Accelerating	843.75	1090.5	0.007303931	88	325	At Abutment	
89	UCL744wash010Param_Pos89.msp	Braking	550	850	Accelerating	850	1097.5	0.007303931	89	325	At Abutment	
90	UCL744wash010Param_Pos90.msp	Braking	556.25	856.25	Accelerating	856.25	1104.5	0.007303931	90	325	At Abutment	
91	UCL744wash010Param_Pos91.msp	Braking	562.5	862.5	Accelerating	862.5	1111.5	0.007303931	91	325	At Abutment	
92	UCL744wash010Param_Pos92.msp	Braking	568.75	868.75	Accelerating	868.75	1118.5	0.007303931	92	325	At Abutment	
93	UCL7											

Rail Track Analysis Results Spreadsheet

Check of Longitudinal Relative Displacement between Ends of Decks (End Rotations)													
Analysis ID	Results Filename	Track 1						Track 2					
		Loading Type	Distance from Left End of the Model to the Starting	Distance from Left End of the Model to the Finishing	Loading Type	Distance from Left End of the Model to the Starting	Distance from Left End of the Model to the Finishing	Peak Relative Displacement between Ends of Decks	Positive Displacement	Peak Number	Supporting Decks with Peak		
1	UIC774Model.UIC774Anal0Param_TrainPosition01	Temperature Only	0	300	Accelerating	300	600	0.00043773	Pw 7				
2	UIC774Anal0Param_Pos1.mps	Braking	6.25	306.25	Accelerating	303.25	603.25	0.00043927	Pw 7				
3	UIC774Anal0Param_Pos2.mps	Braking	12.5	302.5	Accelerating	300.25	600.25	0.00043877	Pw 7				
4	UIC774Anal0Param_Pos3.mps	Braking	18.75	298.75	Accelerating	303.75	609.75	0.00043204	Pw 7				
5	UIC774Anal0Param_Pos4.mps	Braking	25	295	Accelerating	301	611	0.00043493	Pw 7				
6	UIC774Anal0Param_Pos5.mps	Braking	31.25	291.25	Accelerating	302.25	626.25	0.00043773	Pw 7				
7	UIC774Anal0Param_Pos6.mps	Braking	37.5	297.5	Accelerating	318.5	618.5	0.00051381	Pw 2				
8	UIC774Anal0Param_Pos7.mps	Braking	43.75	343.75	Accelerating	322.75	622.75	0.00062228	Pw 2				
9	UIC774Anal0Param_Pos8.mps	Braking	50	290	Accelerating	329	620	0.00051381	Pw 2				
10	UIC774Anal0Param_Pos9.mps	Braking	56.25	396.25	Accelerating	329.25	628.25	0.00079428	Pw 2				
11	UIC774Anal0Param_Pos10.mps	Braking	62.5	362.5	Accelerating	332.5	632.5	0.00080265	Pw 2				
12	UIC774Anal0Param_Pos11.mps	Braking	68.75	368.75	Accelerating	335.75	635.75	0.00080265	Pw 2				
13	UIC774Anal0Param_Pos12.mps	Braking	75	375	Accelerating	339	639	0.00081089	Pw 2				
14	UIC774Anal0Param_Pos13.mps	Braking	81.25	381.25	Accelerating	342.25	642.25	0.00075232	Pw 2				
15	UIC774Anal0Param_Pos14.mps	Braking	87.5	387.5	Accelerating	345	645	0.00081089	Pw 2				
16	UIC774Anal0Param_Pos15.mps	Braking	93.75	393.75	Accelerating	348.75	648.75	0.00085227	Pw 4				
17	UIC774Anal0Param_Pos16.mps	Braking	100	400	Accelerating	352	652	0.00079581	Pw 4				
18	UIC774Anal0Param_Pos17.mps	Braking	106.25	406.25	Accelerating	355.25	655.25	0.00085227	Pw 4				
19	UIC774Anal0Param_Pos18.mps	Braking	112.5	412.5	Accelerating	358.5	658.5	0.00085986	Pw 4				
20	UIC774Anal0Param_Pos19.mps	Braking	118.75	418.75	Accelerating	361.75	661.75	0.00086228	Pw 4				
21	UIC774Anal0Param_Pos20.mps	Braking	125	425	Accelerating	365	665	0.00087842	Pw 4				
22	UIC774Anal0Param_Pos21.mps	Braking	131.25	431.25	Accelerating	368.25	668.25	0.00088025	Pw 2				
23	UIC774Anal0Param_Pos22.mps	Braking	137.5	437.5	Accelerating	371.5	671.5	0.00088471	Pw 2				
24	UIC774Anal0Param_Pos23.mps	Braking	143.75	443.75	Accelerating	374.75	674.75	0.00088471	Pw 2				
25	UIC774Anal0Param_Pos24.mps	Braking	150	450	Accelerating	378	678	0.00089607	Pw 4				
26	UIC774Anal0Param_Pos25.mps	Braking	156.25	456.25	Accelerating	381.25	681.25	0.00089607	Pw 4				
27	UIC774Anal0Param_Pos26.mps	Braking	162.5	462.5	Accelerating	384	684	0.00089607	Pw 4				
28	UIC774Anal0Param_Pos27.mps	Braking	168.75	468.75	Accelerating	387.5	687.5	0.00089723	Pw 4				
29	UIC774Anal0Param_Pos28.mps	Braking	175	475	Accelerating	390.75	690.75	0.00089723	Pw 4				
30	UIC774Anal0Param_Pos29.mps	Braking	181.25	481.25	Accelerating	394	694	0.00089723	Pw 4				
31	UIC774Anal0Param_Pos30.mps	Braking	187.5	487.5	Accelerating	397.5	697.5	0.00089723	Pw 4				
32	UIC774Anal0Param_Pos31.mps	Braking	193.75	493.75	Accelerating	400.75	700.75	0.00089723	Pw 4				
33	UIC774Anal0Param_Pos32.mps	Braking	200	500	Accelerating	404	704	0.00090141	Pw 10				
34	UIC774Anal0Param_Pos33.mps	Braking	206.25	506.25	Accelerating	407.25	707.25	0.00090141	Pw 10				
35	UIC774Anal0Param_Pos34.mps	Braking	212.5	512.5	Accelerating	410.5	710.5	0.00090141	Pw 10				
36	UIC774Anal0Param_Pos35.mps	Braking	218.75	518.75	Accelerating	413.75	713.75	0.00094495	Pw 7				
37	UIC774Anal0Param_Pos36.mps	Braking	225	525	Accelerating	417	717	0.00095739	Pw 7				
38	UIC774Anal0Param_Pos37.mps	Braking	231.25	531.25	Accelerating	420.25	720.25	0.00095739	Pw 7				
39	UIC774Anal0Param_Pos38.mps	Braking	237.5	537.5	Accelerating	423.75	723.75	0.00095739	Pw 7				
40	UIC774Anal0Param_Pos39.mps	Braking	243.75	543.75	Accelerating	426.75	726.75	0.00095739	Pw 7				
41	UIC774Anal0Param_Pos40.mps	Braking	249.75	549.75	Accelerating	426.75	726.75	0.00095739	Pw 7				

Figure 53: Longitudinal Deck End Displacement due to End Rotation Effects Check Worksheet for Multiple Results Files

Check of Longitudinal Relative Displacement between Ends of Decks (Total Effects)													
Analysis ID	Results Filename	Track 1						Track 2					
		Loading Type	Distance from Left End of the Model to the Starting	Distance from Left End of the Model to the Finishing	Loading Type	Distance from Left End of the Model to the Starting	Distance from Left End of the Model to the Finishing	Peak Relative Displacement between Ends of Decks	Positive Displacement	Peak Number	Supporting Decks with Peak	Peak Number	Supporting Decks with Peak
1	UIC774Model.UIC774Anal0Param_TrainPosition01	Temperature Only	0	300	Accelerating	300	600	-0.0443727	Pw 10				
2	UIC774Anal0Param_Pos1.mps	Braking	6.25	306.25	Accelerating	303.25	603.25	-0.0444103	Pw 10				
3	UIC774Anal0Param_Pos2.mps	Braking	12.5	302.5	Accelerating	300.25	600.25	-0.0444103	Pw 10				
4	UIC774Anal0Param_Pos3.mps	Braking	18.75	298.75	Accelerating	303.75	609.75	-0.0444496	Pw 10				
5	UIC774Anal0Param_Pos4.mps	Braking	25	305	Accelerating	301	611	-0.0444938	Pw 10				
6	UIC774Anal0Param_Pos5.mps	Braking	31.25	312.25	Accelerating	308.25	618.25	-0.0444938	Pw 10				
7	UIC774Anal0Param_Pos6.mps	Braking	37.5	318.75	Accelerating	315.75	625.75	-0.0444938	Pw 10				
8	UIC774Anal0Param_Pos7.mps	Braking	43.75	343.75	Accelerating	322.75	622.75	-0.0446005	Pw 10				
9	UIC774Anal0Param_Pos8.mps	Braking	50	300	Accelerating	325	630	-0.0446005	Pw 10				
10	UIC774Anal0Param_Pos9.mps	Braking	56.25	306.25	Accelerating	329.25	629.25	-0.0446005	Pw 10				
11	UIC774Anal0Param_Pos10.mps	Braking	62.5	362.5	Accelerating	332.5	632.5	-0.0446005	Pw 10				
12	UIC774Anal0Param_Pos11.mps	Braking	68.75	368.75	Accelerating	335.75	635.75	-0.0446005	Pw 10				
13	UIC774Anal0Param_Pos12.mps	Braking	75	375	Accelerating	339	639	-0.0446005	Pw 10				
14	UIC774Anal0Param_Pos13.mps	Braking	81.25	381.25	Accelerating	342.25	642.25	-0.0446005	Pw 10				
15	UIC774Anal0Param_Pos14.mps	Braking	87.5	387.5	Accelerating	345.75	645.75	-0.0446005	Pw 10				
16	UIC774Anal0Param_Pos15.mps	Braking	93.75	393.75	Accelerating	349.25	649.25	-0.0446005	Pw 10				
17	UIC774Anal0Param_Pos16.mps	Braking	100	400	Accelerating	352	652	-0.0446005	Pw 10				
18	UIC774Anal0Param_Pos17.mps	Braking	106.25	406.25	Accelerating	355.25	655.25	-0.0446005	Pw 10				
19	UIC774Anal0Param_Pos18.mps	Braking	112.5	412.5	Accelerating	358.5	658.5	-0.0446005	Pw 10				
20	UIC774Anal0Param_Pos19.mps	Braking	118.75	418.75	Accelerating	361.75	661.75	-0.0446005	Pw 10				
21	UIC774Anal0Param_Pos20.mps	Braking	125	425	Accelerating	365	665	-0.0446005	Pw 10				
22	UIC774Anal0Param_Pos21.mps	Braking	131.25	431.25	Accelerating	368.25	668.25	-0.0446005	Pw 10				
23	UIC774Anal0Param_Pos22.mps	Braking	137.5	437.5	Accelerating	371.5	671.5	-0.0452304	Pw 7				
24	UIC774Anal0Param_Pos23.mps	Braking	143.75	443.75	Accelerating	374.75	674.75	-0.0452304	Pw 7				
25	UIC774Anal0Param_Pos24.mps	Braking	150	450	Accelerating	378	678	-0.0452304	Pw 7				
26	UIC774Anal0Param_Pos25.mps	Braking	156.25	456.25	Accelerating	381.25	681.25	-0.0452304	Pw 7				
27	UIC774Anal0Param_Pos26.mps	Braking	162.5	462.5	Accelerating	384.5	684.5	-0.0452304	Pw 7				
28	UIC774Anal0Param_Pos27.mps	Braking	168.75	468.75	Accelerating	387.75	687.75	-0.0452304	Pw 7				
29	UIC774Anal0Param_Pos28.mps	Braking	175	475	Accelerating	391	691	-0.0452304	Pw 7				
30	UIC774Anal0Param_Pos29.mps	Braking	181.25	481.25	Accelerating	394.25	694.25	-0.0452304	Pw 7				
31	UIC774Anal0Param_Pos30.mps	Braking	187.5	487.5	Accelerating	397.5	697.5	-0.0452304	Pw 7				
32	UIC774Anal0Param_Pos31.mps	Braking	193.75	493.75	Accelerating	400.75	700.75	-0.0452304	Pw 7				
33	UIC774Anal0Param_Pos32.mps	Braking	200	500	Accelerating	404	704	-0.04600741	Pw 10				
34	UIC774Anal0Param_Pos33.mps	Braking	206.25	506.25	Accelerating	407.25	707.25	-0.04600741	Pw 10				
35	UIC774Anal0Param_Pos34.mps	Braking	212.5	512.5	Accelerating	410.5	710.5	-0.04600741	Pw 10				
36	UIC774Anal0Param_Pos35.mps	Braking	218.75	518.75	Accelerating	413.75	713.75	-0.04646004	Pw 7				
37	UIC774Anal0Param_Pos36.mps	Braking	225	525	Accelerating	417	717	-0.04646004	Pw 7				
38	UIC774Anal0Param_Pos37.mps	Braking	231.25	531.25	Accelerating	420.25	720.25	-0.04646004	Pw 7				
39	UIC774Anal0Param_Pos38.mps	Braking	237.5	537.5	Accelerating	423.75	723.75	-0.04646004	Pw 7				
40	UIC774Anal0Param_Pos39.mps	Braking	243.75	543.75	Accelerating	426.75	726.75	-0.04713265	Pw 10				

Figure 54: Longitudinal Deck End Displacement due to Total Effects Check Worksheet for Multiple Results Files

Rail Track Analysis User Manual

Check of Longitudinal Relative Displacement between Ends of Decks (Vertical Loading)											
Analysis ID	Results Filename	Loading Type	Track 1			Track 2			Peak Relative Longitudinal Displacement of Deck Positions	Pile Number Supporting Decks with Peak Displacement	
			Distance from Left End of the Model Station Position of the Loading (m)	Distance from Left End of the Model Station Position of the Loading (m)	Distance from Left End of the Model Station Position of the Loading (m)	Distance from Left End of the Model Station Position of the Loading (m)	Distance from Left End of the Model Station Position of the Loading (m)	Distance from Left End of the Model Station Position of the Loading (m)			
10	UCT774-3Model.UCT774-3ModelPParam_TrainPosition1	Temperature Only	0	300	300	300	300	600	-0.000000E+00	Pile 1	
11	UCT774-3Model.UCT774-3ModelPParam_Pos1	Braking	6.25	306.25	306.25	306.25	306.25	603.25	-0.000000E+00	Pile 1	
12	UCT774-3Model.UCT774-3ModelPParam_Pos2	Braking	12.5	312.5	312.5	312.5	312.5	608.5	-0.000000E+00	Pile 1	
13	UCT774-3Model.UCT774-3ModelPParam_Pos3	Braking	18.75	318.75	318.75	318.75	318.75	609.75	-0.000000E+00	Pile 1	
14	UCT774-3Model.UCT774-3ModelPParam_Pos4	Braking	25	325	325	325	325	613	-0.000000E+00	Pile 1	
15	UCT774-3Model.UCT774-3ModelPParam_Pos5	Braking	31.25	331.25	331.25	331.25	331.25	618.25	-0.000000E+00	Pile 1	
16	UCT774-3Model.UCT774-3ModelPParam_Pos6	Braking	37.5	337.5	337.5	337.5	337.5	619.5	-0.000000E+00	Pile 1	
17	UCT774-3Model.UCT774-3ModelPParam_Pos7	Braking	43.75	343.75	343.75	343.75	343.75	621.75	-0.000000E+00	Pile 1	
18	UCT774-3Model.UCT774-3ModelPParam_Pos8	Braking	50	350	350	350	350	625	-0.000000E+00	Pile 1	
19	UCT774-3Model.UCT774-3ModelPParam_Pos9	Braking	56.25	356.25	356.25	356.25	356.25	629.25	-0.000000E+00	Pile 1	
20	UCT774-3Model.UCT774-3ModelPParam_Pos10	Braking	62.5	362.5	362.5	362.5	362.5	635	-0.000000E+00	Pile 1	
21	UCT774-3Model.UCT774-3ModelPParam_Pos11	Braking	68.75	368.75	368.75	368.75	368.75	640.75	-0.000000E+00	Pile 1	
22	UCT774-3Model.UCT774-3ModelPParam_Pos12	Braking	75	375	375	375	375	645	-0.000000E+00	Pile 1	
23	UCT774-3Model.UCT774-3ModelPParam_Pos13	Braking	81.25	381.25	381.25	381.25	381.25	650.25	-0.000000E+00	Pile 1	
24	UCT774-3Model.UCT774-3ModelPParam_Pos14	Braking	87.5	387.5	387.5	387.5	387.5	655.5	-0.000000E+00	Pile 1	
25	UCT774-3Model.UCT774-3ModelPParam_Pos15	Braking	93.75	393.75	393.75	393.75	393.75	661.75	-0.000000E+00	Pile 1	
26	UCT774-3Model.UCT774-3ModelPParam_Pos16	Braking	100	400	400	400	400	668	-0.000000E+00	Pile 1	
27	UCT774-3Model.UCT774-3ModelPParam_Pos17	Braking	106.25	406.25	406.25	406.25	406.25	674.25	-0.000000E+00	Pile 1	
28	UCT774-3Model.UCT774-3ModelPParam_Pos18	Braking	112.5	412.5	412.5	412.5	412.5	680.5	-0.000000E+00	Pile 1	
29	UCT774-3Model.UCT774-3ModelPParam_Pos19	Braking	118.75	418.75	418.75	418.75	418.75	687.75	-0.000000E+00	Pile 1	
30	UCT774-3Model.UCT774-3ModelPParam_Pos20	Braking	125	425	425	425	425	695	-0.000000E+00	Pile 1	
31	UCT774-3Model.UCT774-3ModelPParam_Pos20.25	Braking	125	425	425	425	425	697.5	-0.000000E+00	Pile 1	
32	UCT774-3Model.UCT774-3ModelPParam_Pos21	Braking	131.25	431.25	431.25	431.25	431.25	703.25	-0.000000E+00	Pile 1	
33	UCT774-3Model.UCT774-3ModelPParam_Pos21.5	Braking	131.25	431.25	431.25	431.25	431.25	704.5	-0.000000E+00	Pile 1	
34	UCT774-3Model.UCT774-3ModelPParam_Pos22	Braking	137.5	437.5	437.5	437.5	437.5	711.5	-0.000000E+00	Pile 1	
35	UCT774-3Model.UCT774-3ModelPParam_Pos22.5	Braking	137.5	437.5	437.5	437.5	437.5	713	-0.000000E+00	Pile 1	
36	UCT774-3Model.UCT774-3ModelPParam_Pos23	Braking	143.75	443.75	443.75	443.75	443.75	719.75	-0.000000E+00	Pile 1	
37	UCT774-3Model.UCT774-3ModelPParam_Pos23.5	Braking	143.75	443.75	443.75	443.75	443.75	721.5	-0.000000E+00	Pile 1	
38	UCT774-3Model.UCT774-3ModelPParam_Pos24	Braking	150	450	450	450	450	725	-0.000000E+00	Pile 1	
39	UCT774-3Model.UCT774-3ModelPParam_Pos24.25	Braking	150	450	450	450	450	726.5	-0.000000E+00	Pile 1	
40	UCT774-3Model.UCT774-3ModelPParam_Pos25	Braking	156.25	456.25	456.25	456.25	456.25	732.5	-0.000000E+00	Pile 1	
41	UCT774-3Model.UCT774-3ModelPParam_Pos25.5	Braking	156.25	456.25	456.25	456.25	456.25	734	-0.000000E+00	Pile 1	
42	UCT774-3Model.UCT774-3ModelPParam_Pos26	Braking	162.5	462.5	462.5	462.5	462.5	739.5	-0.000000E+00	Pile 1	
43	UCT774-3Model.UCT774-3ModelPParam_Pos26.25	Braking	162.5	462.5	462.5	462.5	462.5	740.5	-0.000000E+00	Pile 1	
44	UCT774-3Model.UCT774-3ModelPParam_Pos27	Braking	168.75	468.75	468.75	468.75	468.75	746.75	-0.000000E+00	Pile 1	
45	UCT774-3Model.UCT774-3ModelPParam_Pos27.5	Braking	168.75	468.75	468.75	468.75	468.75	748.5	-0.000000E+00	Pile 1	
46	UCT774-3Model.UCT774-3ModelPParam_Pos28	Braking	175	475	475	475	475	755	-0.000000E+00	Pile 1	
47	UCT774-3Model.UCT774-3ModelPParam_Pos28.25	Braking	175	475	475	475	475	756.5	-0.000000E+00	Pile 1	
48	UCT774-3Model.UCT774-3ModelPParam_Pos29	Braking	181.25	481.25	481.25	481.25	481.25	762.5	-0.000000E+00	Pile 1	
49	UCT774-3Model.UCT774-3ModelPParam_Pos29.5	Braking	181.25	481.25	481.25	481.25	481.25	764.5	-0.000000E+00	Pile 1	
50	UCT774-3Model.UCT774-3ModelPParam_Pos30	Braking	187.5	487.5	487.5	487.5	487.5	770.5	-0.000000E+00	Pile 1	
51	UCT774-3Model.UCT774-3ModelPParam_Pos30.25	Braking	187.5	487.5	487.5	487.5	487.5	771.5	-0.000000E+00	Pile 1	
52	UCT774-3Model.UCT774-3ModelPParam_Pos31	Braking	193.75	493.75	493.75	493.75	493.75	777.5	-0.000000E+00	Pile 1	
53	UCT774-3Model.UCT774-3ModelPParam_Pos31.5	Braking	193.75	493.75	493.75	493.75	493.75	779	-0.000000E+00	Pile 1	
54	UCT774-3Model.UCT774-3ModelPParam_Pos32	Braking	200	500	500	500	500	785	-0.000000E+00	Pile 1	
55	UCT774-3Model.UCT774-3ModelPParam_Pos32.25	Braking	200	500	500	500	500	786.5	-0.000000E+00	Pile 1	
56	UCT774-3Model.UCT774-3ModelPParam_Pos33	Braking	206.25	506.25	506.25	506.25	506.25	792.5	-0.000000E+00	Pile 1	
57	UCT774-3Model.UCT774-3ModelPParam_Pos33.5	Braking	206.25	506.25	506.25	506.25	506.25	794	-0.000000E+00	Pile 1	
58	UCT774-3Model.UCT774-3ModelPParam_Pos34	Braking	212.5	512.5	512.5	512.5	512.5	799.5	-0.000000E+00	Pile 1	
59	UCT774-3Model.UCT774-3ModelPParam_Pos34.25	Braking	212.5	512.5	512.5	512.5	512.5	801.5	-0.000000E+00	Pile 1	
60	UCT774-3Model.UCT774-3ModelPParam_Pos35	Braking	218.75	518.75	518.75	518.75	518.75	807.5	-0.000000E+00	Pile 1	
61	UCT774-3Model.UCT774-3ModelPParam_Pos35.5	Braking	218.75	518.75	518.75	518.75	518.75	809.5	-0.000000E+00	Pile 1	
62	UCT774-3Model.UCT774-3ModelPParam_Pos36	Braking	225	525	525	525	525	815	-0.000000E+00	Pile 1	
63	UCT774-3Model.UCT774-3ModelPParam_Pos36.25	Braking	225	525	525	525	525	816.5	-0.000000E+00	Pile 1	
64	UCT774-3Model.UCT774-3ModelPParam_Pos37	Braking	231.25	531.25	531.25	531.25	531.25	822.5	-0.000000E+00	Pile 1	
65	UCT774-3Model.UCT774-3ModelPParam_Pos37.5	Braking	231.25	531.25	531.25	531.25	531.25	824.5	-0.000000E+00	Pile 1	
66	UCT774-3Model.UCT774-3ModelPParam_Pos38	Braking	237.5	537.5	537.5	537.5	537.5	830.5	-0.000000E+00	Pile 1	
67	UCT774-3Model.UCT774-3ModelPParam_Pos38.25	Braking	237.5	537.5	537.5	537.5	537.5	831.5	-0.000000E+00	Pile 1	
68	UCT774-3Model.UCT774-3ModelPParam_Pos39	Braking	243.75	543.75	543.75	543.75	543.75	837.5	-0.000000E+00	Pile 1	
69	UCT774-3Model.UCT774-3ModelPParam_Pos39.5	Braking	243.75	543.75	543.75	543.75	543.75	839.5	-0.000000E+00	Pile 1	
70	UCT774-3Model.UCT774-3ModelPParam_Pos40	Braking	250	550	550	550	550	845	-0.000000E+00	Pile 1	
71	UCT774-3Model.UCT774-3ModelPParam_Pos40.25	Braking	250	550	550	550	550	846.5	-0.000000E+00	Pile 1	
72	UCT774-3Model.UCT774-3ModelPParam_Pos41	Braking	256.25	556.25	556.25	556.25	556.25	852.5	-0.000000E+00	Pile 1	
73	UCT774-3Model.UCT774-3ModelPParam_Pos41.5	Braking	256.25	556.25	556.25	556.25	556.25	854.5	-0.000000E+00	Pile 1	
74	UCT774-3Model.UCT774-3ModelPParam_Pos42	Braking	262.5	562.5	562.5	562.5	562.5	860.5	-0.000000E+00	Pile 1	
75	UCT774-3Model.UCT774-3ModelPParam_Pos42.25	Braking	262.5	562.5	562.5	562.5	562.5	861.5	-0.000000E+00	Pile 1	
76	UCT774-3Model.UCT774-3ModelPParam_Pos43	Braking	268.75	568.75	568.75	568.75	568.75	867.5	-0.000000E+00	Pile 1	
77	UCT774-3Model.UCT774-3ModelPParam_Pos43.5	Braking	268.75	568.75	568.75	568.75	568.75	869.5	-0.000000E+00	Pile 1	
78	UCT774-3Model.UCT774-3ModelPParam_Pos44	Braking	275	575	575	575	575	875	-0.000000E+00	Pile 1	
79	UCT774-3Model.UCT774-3ModelPParam_Pos44.25	Braking	275	575	575	575	575	876.5	-0.000000E+00	Pile 1	
80	UCT774-3Model.UCT774-3ModelPParam_Pos45	Braking	281.25	581.25	581.25	581.25	581.25	882.5	-0.000000E+00	Pile 1	
81	UCT774-3Model.UCT774-3ModelPParam_Pos45.5	Braking	281.25	581.25	581.25	581.25	581.25	884.5	-0.000000E+00	Pile 1	
82	UCT774-3Model.UCT774-3ModelPParam_Pos46	Braking	287.5	587.5	587.5	587.5	587.5	890.5	-0.000000E+00	Pile 1	
83	UCT774-3Model.UCT774-3ModelPParam_Pos46.25	Braking	287.5	587.5	587.5	587.5	587.5	891.5	-0.000000E+00	Pile 1	
84	UCT774-3Model.UCT774-3ModelPParam_Pos47	Braking	293.75	593.75	593.75	593.75	593.75	897.5	-0.000000E+00	Pile 1	
85	UCT774-3Model.UCT774-3ModelPParam_Pos47.5	Braking	293.75	593.75	593.75	593.75	593.75	901.5	-0.000000E+00	Pile 1	
86	UCT774-3Model.UCT774-3ModelPParam_Pos48	Braking	300	600	600	600	600	907.5	-0.000000E+00	Pile 1	
87	UCT774-3Model.UCT774-3ModelPParam_Pos48.25	Braking	300	600	600	600	600	908.5	-0.000000E+00	Pile 1	
88	UCT774-3Model.UCT774-3ModelPParam_Pos49	Braking	306.25	606.25	606.25	606.25	606.25	914.5	-0.000000E+00	Pile 1	
89	UCT774-3Model.UCT774-3ModelPParam_Pos49.5	Braking	306.25	606.25	606.25	606.25	606.25	915.5	-0.000000E+00	Pile 1	
90	UCT774-3Model.UCT774-3ModelPParam_Pos50	Braking	312.5	612.5	612.5	612.5	612.5	921.5	-0.000000E+00	Pile 1	
91	UCT774-3Model.UCT774-3ModelPParam_Pos50.25	Braking	312.5	612.5	612.5	612.5	612.5	922.5	-0.000000E+00	Pile 1	
92	UCT774-3Model.UCT774-3ModelPParam_Pos51	Braking	318.75	618.75	618.75	618.75	618.75	928.5	-0.000000E+00	Pile 1	
93	UCT774-3Model.UCT774-3ModelPParam_Pos51.5	Braking	318.75	618.75	618.75	618.75	618.75	929.5	-0.000000E+00	Pile 1	
94	UCT774-3Model.UCT774-3ModelPParam_Pos52	Braking	325	625	625	625	625	935	-0.000000E+00	Pile 1	
95	UCT774-3Model.UCT774-3ModelPParam_Pos52.25	Braking	325	625	625	625	625	936.5	-0.000000E+00	Pile 1	
96	UCT774-3Model.UCT774-3ModelPParam_Pos53	Braking	331.25	631.25	631.25	631.25	631.25	942.5	-0.000000E+00	Pile 1	
97	UCT774-3Model.UCT774-3ModelPParam_Pos53.5	Braking	331.25	631.25	631.25	631.25	631.25	943.5	-0.000000E+00	Pile 1	
98	UCT774-3Model.UCT774-3ModelPParam_Pos54	Braking	337.5	637.5</td							

Rail Track Analysis Results Spreadsheet

A1	B	C	D	E	F	G	H	I	J	K
1	2	3	4	5	6	7	8	9	10	11
Analysis ID	Results Filename	Loading Type	Distance from Left End of the Model to the Starting Position	Distance from Left End of the Model to the Finishing	Loading Type	Distance from Left End of the Model to the Starting Position	Distance from Left End of the Model to the Finishing	Peak Longitudinal Reaction	Absentee / Pier Number with Peak Reaction	
1	UIC774v4s010PParam_Pos1.msp	Braking	0	300	Accelerating	300	600	304644.4271	Pier 5	
2	UIC774v4s010PParam_Pos2.msp	Braking	6.25	306.25	Accelerating	303.25	603.25	2456.7444		
3	UIC774v4s010PParam_Pos3.msp	Braking	12.5	312.5	Accelerating	306.5	606.5	23890.3571		
4	UIC774v4s010PParam_Pos4.msp	Braking	18.75	318.75	Accelerating	303.75	603.75	23890.3571		
5	UIC774v4s010PParam_Pos5.msp	Braking	25	325	Accelerating	313	613	-308773.4236	Pier 1	
6	UIC774v4s010PParam_Pos6.msp	Braking	31.25	331.25	Accelerating	305.25	618.25	319750.4629	Pier 1	
7	UIC774v4s010PParam_Pos7.msp	Braking	37.5	337.5	Accelerating	303.5	603.5	308000.4271	Pier 1	
8	UIC774v4s010PParam_Pos8.msp	Braking	43.75	343.75	Accelerating	322.75	622.75	307059.7352	Pier 1	
9	UIC774v4s010PParam_Pos9.msp	Braking	50	350	Accelerating	326	626	326505.2071	Pier 1	
10	UIC774v4s010PParam_Pos10.msp	Braking	56.25	356.25	Accelerating	323.25	623.25	309900.4271	Pier 1	
11	UIC774v4s010PParam_Pos11.msp	Braking	62.5	362.5	Accelerating	323.5	623.5	-309900.5137	Pier 1	
12	UIC774v4s010PParam_Pos12.msp	Braking	68.75	368.75	Accelerating	325.75	635.75	-450981.8234	Pier 3	
13	UIC774v4s010PParam_Pos13.msp	Braking	75	375	Accelerating	335	635	-527000.4271	Pier 3	
14	UIC774v4s010PParam_Pos14.msp	Braking	81.25	381.25	Accelerating	342.25	642.25	-59882.338	Pier 3	
15	UIC774v4s010PParam_Pos15.msp	Braking	87.5	387.5	Accelerating	345.5	645.5	-445874.9055	Pier 3	
16	UIC774v4s010PParam_Pos16.msp	Braking	93.75	393.75	Accelerating	348.75	648.75	-707000.4271	Pier 3	
17	UIC774v4s010PParam_Pos17.msp	Braking	100	400	Accelerating	352	652	-76382.5931	Pier 3	
18	UIC774v4s010PParam_Pos18.msp	Braking	106.25	406.25	Accelerating	355.25	655.25	-76380.4010	Pier 3	
19	UIC774v4s010PParam_Pos19.msp	Braking	112.5	412.5	Accelerating	355.5	655.5	-400000.4271	Pier 3	
20	UIC774v4s010PParam_Pos20.msp	Braking	118.75	418.75	Accelerating	361.75	661.75	-81050.0981	Pier 3	
21	UIC774v4s010PParam_Pos21.msp	Braking	125	425	Accelerating	365	665	632430.0355	Pier 3	
22	UIC774v4s010PParam_Pos22.msp	Braking	131.25	431.25	Accelerating	365.25	665.25	844000.4271	Pier 3	
23	UIC774v4s010PParam_Pos23.msp	Braking	137.5	437.5	Accelerating	371.5	671.5	-87650.4271	Pier 3	
24	UIC774v4s010PParam_Pos24.msp	Braking	143.75	443.75	Accelerating	374.75	674.75	-788107.72	Pier 3	
25	UIC774v4s010PParam_Pos25.msp	Braking	150	450	Accelerating	378	678	-880000.4271	Pier 3	
26	UIC774v4s010PParam_Pos26.msp	Braking	156.25	456.25	Accelerating	382.5	682.5	-40451.5761	Pier 3	
27	UIC774v4s010PParam_Pos27.msp	Braking	162.5	462.5	Accelerating	394.5	694.5	-90746.4237	Pier 3	
28	UIC774v4s010PParam_Pos28.msp	Braking	168.75	468.75	Accelerating	397.75	697.75	-82293.257	Pier 3	
29	UIC774v4s010PParam_Pos29.msp	Braking	175	475	Accelerating	399	699	-82293.257	Pier 3	
30	UIC774v4s010PParam_Pos30.msp	Braking	181.25	481.25	Accelerating	394.25	694.25	-93342.9973	Pier 3	
31	UIC774v4s010PParam_Pos31.msp	Braking	187.5	487.5	Accelerating	397.5	697.5	-30985.2722	Pier 3	
32	UIC774v4s010PParam_Pos32.msp	Braking	193.75	493.75	Accelerating	401.75	701.75	-24540.4271	Pier 3	
33	UIC774v4s010PParam_Pos33.msp	Braking	200	500	Accelerating	404	704	-25420.2504	Pier 3	
34	UIC774v4s010PParam_Pos34.msp	Braking	206.25	506.25	Accelerating	407.25	707.25	-30943.4601	Pier 3	
35	UIC774v4s010PParam_Pos35.msp	Braking	212.5	512.5	Accelerating	413.5	713.5	-30943.4601	Pier 3	
36	UIC774v4s010PParam_Pos36.msp	Braking	218.75	518.75	Accelerating	413.75	713.75	-94762.3383	Pier 3	
37	UIC774v4s010PParam_Pos37.msp	Braking	225	525	Accelerating	417	717	-80020.035	Pier 3	
38	UIC774v4s010PParam_Pos38.msp	Braking	231.25	531.25	Accelerating	420.5	720.5	-97850.4271	Pier 3	
39	UIC774v4s010PParam_Pos39.msp	Braking	237.5	537.5	Accelerating	423.5	723.5	-94856.5	Pier 5	
40	UIC774v4s010PParam_Pos40.msp	Braking	243.75	543.75	Accelerating	426.75	726.75	-80095.7917	Pier 5	

Figure 57: Longitudinal Reaction Check Worksheet for Multiple Results Files

Figure 58: Axial Rail Stress Check Worksheet for Multiple Results Files

Rail Track Analysis User Manual

If valid basic combinations or envelopes that match the criteria described in **Post-processing of automatically defined groups** are present in the model then additional results for these will be tabulated into the Microsoft Excel summary worksheets underneath the results for the temperature only and combined temperature and trainset rail loading results. A separate set of the peak results within these basic combinations will be highlighted in bold blue text as illustrated in the figures below for the railbed displacement and reaction results for a model that includes valid basic combinations.

1	B	C	D	E	F	G	H	I	J	K	L	M	
2	Job Title:	UC774HsB04P05ParamRail_PostImp	3	Job Type:	UC774HsB04P05ParamRail_PostImp	4	4	5	5	6	7	8	
9	Analysis ID:	UC774HsB04P05ParamRail_PostImp	10	Physics Model:	UC774HsB04P05ParamRail_PostImp	11	Model Director:	C:\Programs\J2004\Track\Structure\exetion	12	13	14	15	16
17	Analysis Date:	07/09/2013	18	Model Units:	Nm,Pa,kg,C	19	20	21	22	23	24	25	26
27	Results File Name / Combination Name	28	29	30	31	32	33	34	35	36	37	38	
39	Analysis ID	39	40	41	42	43	44	45	46	47	48	49	
50	Results File Name / Combination Name	50	51	52	53	54	55	56	57	58	59	60	
61	Analysis ID	61	62	63	64	65	66	67	68	69	70	71	
72	Results File Name / Combination Name	72	73	74	75	76	77	78	79	80	81	82	
83	Analysis ID	83	84	85	86	87	88	89	90	91	92	93	
94	Results File Name / Combination Name	94	95	96	97	98	99	100	101	102	103	104	
105	Analysis ID	105	106	107	108	109	110	111	112	113	114	115	
116	Results File Name / Combination Name	116	117	118	119	120	121	122	123	124	125	126	
127	Analysis ID	127	128	129	130	131	132	133	134	135	136	137	
138	Results File Name / Combination Name	138	139	140	141	142	143	144	145	146	147	148	
149	Analysis ID	149	150	151	152	153	154	155	156	157	158	159	
160	Results File Name / Combination Name	160	161	162	163	164	165	166	167	168	169	170	
171	Analysis ID	171	172	173	174	175	176	177	178	179	180	181	
182	Results File Name / Combination Name	182	183	184	185	186	187	188	189	190	191	192	
193	Analysis ID	193	194	195	196	197	198	199	200	201	202	203	
204	Results File Name / Combination Name	204	205	206	207	208	209	210	211	212	213	214	
215	Analysis ID	215	216	217	218	219	220	221	222	223	224	225	
226	Results File Name / Combination Name	226	227	228	229	230	231	232	233	234	235	236	
237	Analysis ID	237	238	239	240	241	242	243	244	245	246	247	
248	Results File Name / Combination Name	248	249	250	251	252	253	254	255	256	257	258	
259	Analysis ID	259	260	261	262	263	264	265	266	267	268	269	
270	Results File Name / Combination Name	270	271	272	273	274	275	276	277	278	279	280	
281	Analysis ID	281	282	283	284	285	286	287	288	289	290	291	
292	Results File Name / Combination Name	292	293	294	295	296	297	298	299	300	301	302	
303	Analysis ID	303	304	305	306	307	308	309	310	311	312	313	
314	Results File Name / Combination Name	314	315	316	317	318	319	320	321	322	323	324	
325	Analysis ID	325	326	327	328	329	330	331	332	333	334	335	
336	Results File Name / Combination Name	336	337	338	339	340	341	342	343	344	345	346	
347	Analysis ID	347	348	349	350	351	352	353	354	355	356	357	
358	Results File Name / Combination Name	358	359	360	361	362	363	364	365	366	367	368	
369	Analysis ID	369	370	371	372	373	374	375	376	377	378	379	
380	Results File Name / Combination Name	380	381	382	383	384	385	386	387	388	389	390	
391	Analysis ID	391	392	393	394	395	396	397	398	399	400	401	
402	Results File Name / Combination Name	402	403	404	405	406	407	408	409	410	411	412	
413	Analysis ID	413	414	415	416	417	418	419	420	421	422	423	
424	Results File Name / Combination Name	424	425	426	427	428	429	430	431	432	433	434	
435	Analysis ID	435	436	437	438	439	440	441	442	443	444	445	
446	Results File Name / Combination Name	446	447	448	449	450	451	452	453	454	455	456	
457	Analysis ID	457	458	459	460	461	462	463	464	465	466	467	
468	Results File Name / Combination Name	468	469	470	471	472	473	474	475	476	477	478	
479	Analysis ID	479	480	481	482	483	484	485	486	487	488	489	
490	Results File Name / Combination Name	490	491	492	493	494	495	496	497	498	499	500	
501	Analysis ID	501	502	503	504	505	506	507	508	509	510	511	
512	Results File Name / Combination Name	512	513	514	515	516	517	518	519	520	521	522	
523	Analysis ID	523	524	525	526	527	528	529	530	531	532	533	
534	Results File Name / Combination Name	534	535	536	537	538	539	540	541	542	543	544	
545	Analysis ID	545	546	547	548	549	550	551	552	553	554	555	
556	Results File Name / Combination Name	556	557	558	559	560	561	562	563	564	565	566	
567	Analysis ID	567	568	569	570	571	572	573	574	575	576	577	
578	Results File Name / Combination Name	578	579	580	581	582	583	584	585	586	587	588	
589	Analysis ID	589	590	591	592	593	594	595	596	597	598	599	
599	Results File Name / Combination Name	599	600	601	602	603	604	605	606	607	608	609	
610	Analysis ID	610	611	612	613	614	615	616	617	618	619	620	
621	Results File Name / Combination Name	621	622	623	624	625	626	627	628	629	630	631	
632	Analysis ID	632	633	634	635	636	637	638	639	640	641	642	
643	Results File Name / Combination Name	643	644	645	646	647	648	649	650	651	652	653	
654	Analysis ID	654	655	656	657	658	659	660	661	662	663	664	
665	Results File Name / Combination Name	665	666	667	668	669	670	671	672	673	674	675	
676	Analysis ID	676	677	678	679	680	681	682	683	684	685	686	
687	Results File Name / Combination Name	687	688	689	690	691	692	693	694	695	696	697	
698	Analysis ID	698	699	700	701	702	703	704	705	706	707	708	
709	Results File Name / Combination Name	709	710	711	712	713	714	715	716	717	718	719	
720	Analysis ID	720	721	722	723	724	725	726	727	728	729	730	
731	Results File Name / Combination Name	731	732	733	734	735	736	737	738	739	740	741	
742	Analysis ID	742	743	744	745	746	747	748	749	750	751	752	
753	Results File Name / Combination Name	753	754	755	756	757	758	759	760	761	762	763	
764	Analysis ID	764	765	766	767	768	769	770	771	772	773	774	
775	Results File Name / Combination Name	775	776	777	778	779	780	781	782	783	784	785	
786	Analysis ID	786	787	788	789	790	791	792	793	794	795	796	
797	Results File Name / Combination Name	797	798	799	800	801	802	803	804	805	806	807	
808	Analysis ID	808	809	810	811	812	813	814	815	816	817	818	
819	Results File Name / Combination Name	819	820	821	822	823	824	825	826	827	828	829	
830	Analysis ID	830	831	832	833	834	835	836	837	838	839	840	
841	Results File Name / Combination Name	841	842	843	844	845	846	847	848	849	850	851	
852	Analysis ID	852	853	854	855	856	857	858	859	860	861	862	
863	Results File Name / Combination Name	863	864	865	866	867	868	869	870	871	872	873	
874	Analysis ID	874	875	876	877	878	879	880	881	882	883	884	
885	Results File Name / Combination Name	885	886	887	888	889	890	891	892	893	894	895	
896	Analysis ID	896	897	898	899	900	901	902	903	904	905	906	
907	Results File Name / Combination Name	907	908	909	910	911	912	913	914	915	916	917	
918	Analysis ID	918	919	920	921	922	923	924	925	926	927	928	
929	Results File Name / Combination Name	929	930	931	932	933	934	935	936	937	938	939	
940	Analysis ID	940	941	942	943	944	945	946	947	948	949	950	
951	Results File Name / Combination Name	951	952	953	954	955	956	957	958	959	960	961	
962	Analysis ID	962	963	964	965	966	967	968	969	970	971	972	
973	Results File Name / Combination Name	973	974	975	976	977	978	979	980	981	982	983	
984	Analysis ID	984	985	986	987	988	989	990	991	992	993	994	
995	Results File Name / Combination Name	995	996	997	998	999	1000	1001	1002	1003	1004	1005	
1006	Analysis ID	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	
1017	Results File Name / Combination Name	1017	1018	1019	1020	1021	1022	1023	1024	1025	1026	1027	
1028	Analysis ID	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037	1038	
1039	Results File Name / Combination Name	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	
1050	Analysis ID	1050	1051	1052	1053	1054	1055	1056	1057	1058	1059	1060	
1061	Results File Name / Combination Name	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	
1072	Analysis ID	1072	1073	1074	1075	1076	1077	1078	1079	1080	1081	1082	
1083	Results File Name / Combination Name	1083	1084	1085	1086	1087	1088	1089	1090	1091	1092	1093	
1094	Analysis ID	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1104	
1105	Results File Name / Combination Name	1105	1106	1107	1108	1109	1110	1111	1112	1113	1114	1115	
1116	Analysis ID	1116	1117	1118	1119	1120	1121	1122	1123	1124	1125	1126	
1127	Results File Name / Combination Name	1127	1128	1129	1130	1131	1132	1133	1134	1135	1136	1137	
1138	Analysis ID	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	
1149	Results File Name / Combination Name	1149	1150	1151	1152	1153	1154	1155	1156	1157	1158	1159	
1160	Analysis ID	1160	1161	1162	1163	1							

Figure 59: Railbed Check Worksheet for Rail Track Analysis Results and Basic Combinations of these Results

Figure 60: Longitudinal Reaction Check Worksheet for Rail Track Analysis Results and Basic Combinations of these Results

Microsoft Excel Fails with Insufficient Resources when Enveloping

If Microsoft Excel fails to complete the post-processing successfully with a complaint of insufficient resources (with messages similar to those in the following figure) when performing the enveloping within Microsoft Excel the post-processing will need to be carried out using a different method. These memory limitations with Microsoft Excel are dependent upon both the size of the rail track model being post-processed and the number of results files loaded.

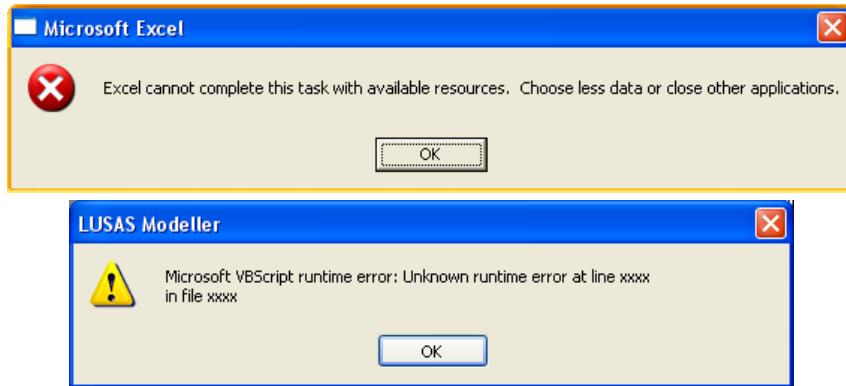


Figure 61: Insufficient Resources for Microsoft Excel to Complete the Post-Processing

Note. After the failure of a post-processing the Microsoft Excel application will still be dormant on the computer and must be terminated by ending the process in Windows Task Manager.

If there are insufficient resources for Microsoft Excel to carry out the enveloping of the analyses and it is not appropriate to increase the size of the elements used for the modelling of the analysis then two automatic post-processing options are generally available. The first option is to post-process the results files in smaller groups to minimise the amount of memory that Microsoft Excel needs for holding the data. The number of results files loaded can be altered by editing the **?????_Reload.vbs** VBScript file (and renaming it) in the working folder (where **?????** is the base name of the model) using a text editor and then running the file using the **File>Script>Run Script...** menu item.

Note. A copy of the original **?????_Reload.vbs** VBScript file should be kept in the working folder if the original file is overwritten.

The advantage of this first option is that it still allows the creation of the additional summary tables of derived quantities such as the relative railbed displacements. The second option is to perform the enveloping in Modeller itself which is illustrated below. The disadvantage of this method is the inability to envelope derived quantities such as the relative railbed displacements. Calculation of the relative railbed displacement from enveloped values of the displacement of the structure and the track will result in the incorrect value being reported and is therefore disabled.

The envelopes can be defined manually but for the number of results files that are generally used for the rail track analyses for analysing different trainset positions it is easier to define the envelopes using VBScript. Figure 62 shows an example of a VBScript file that will automatically generate the equivalent envelopes for 101 separate results files loaded on top of the model. If a different number of results files are to be

considered then the line that reads `numResFile = 101` can be changed to the number required. Alternatively if enveloping is always going to be performed over all of the results files loaded then this line can be replaced with `numResFile = database.countResultsFiles()`.

```
$ENGINE=VBScript
' Sample VBScript to define envelopes in Modeller equivalent to those carried out
' in Microsoft Excel
'
' The number of results files loaded on top of the model
numResFile = 101
' Define the envelope objects
Set envTempOnly = database.createEnvelope("Envelope of Temperature Only")
Set envTempTrain = database.createEnvelope("Envelope of Temperature and Train Loads")
Set envAllConfig = database.createEnvelope("Envelope of All Configurations")
' Loop over the results files
For ires = 1 To numResFile
  ' Add the temperature only results to the appropriate envelopes
  Call envTempOnly.addEntry(1, ires, -1, -1)
  Call envAllConfig.addEntry(1, ires, -1, -1)
  ' Add the temperature and train results to the appropriate envelopes
  Call envTempTrain.addEntry(2, ires, -1, -1)
  Call envAllConfig.addEntry(2, ires, -1, -1)
Next
' Release envelope objects
Set envTempOnly = Nothing
Set envTempTrain = Nothing
Set envAllConfig = Nothing
```

Figure 62: Example VBScript to Define Equivalent Envelopes in Modeller

If the envelopes in Modeller have been defined correctly then identical results will be obtained from the post-processor for the Modeller and Microsoft Excel enveloping methods. Generation of the envelopes in Modeller through VBScripting removes the potential for errors in the generation of these envelopes and is therefore recommended, particularly for large numbers of results files.

Figure 63 and Figure 64 show the results from the enveloping of the combined temperature and trainset loading for the track of a model. Comparison of the tables and graphs shows that the results are identical for both enveloping methods. In Figure 64 which shows the results for the track from enveloping in Modeller both the summary tables and the graphs have omitted the relative railbed displacement results because these cannot be calculated from the enveloping in Modeller.

Figure 65 and Figure 66 show the results from the enveloping of the combined temperature and trainset loading for the deck of a model. Comparison of the tables and graphs shows that the results are identical for both enveloping methods.

Rail Track Analysis Results Spreadsheet

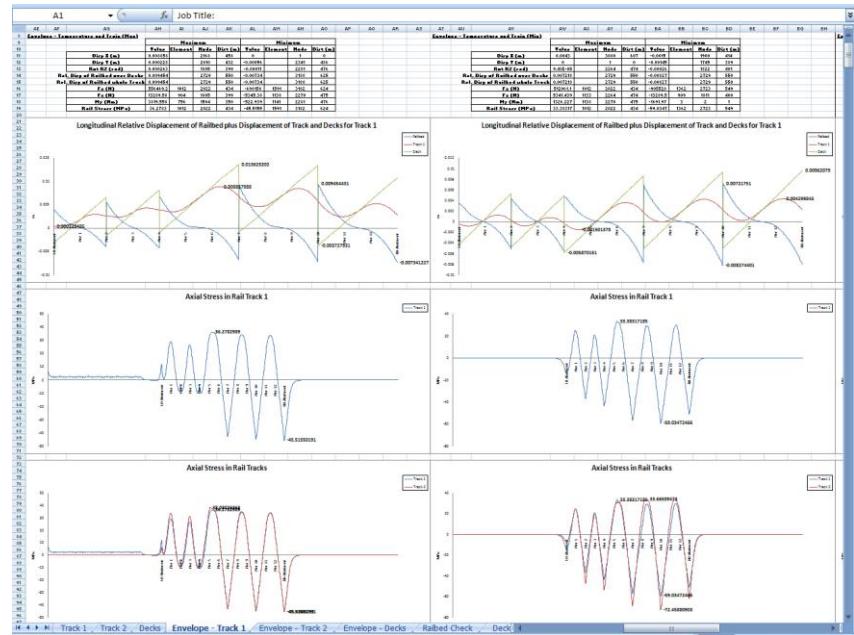


Figure 63: Track Envelopes Performed in Microsoft Excel

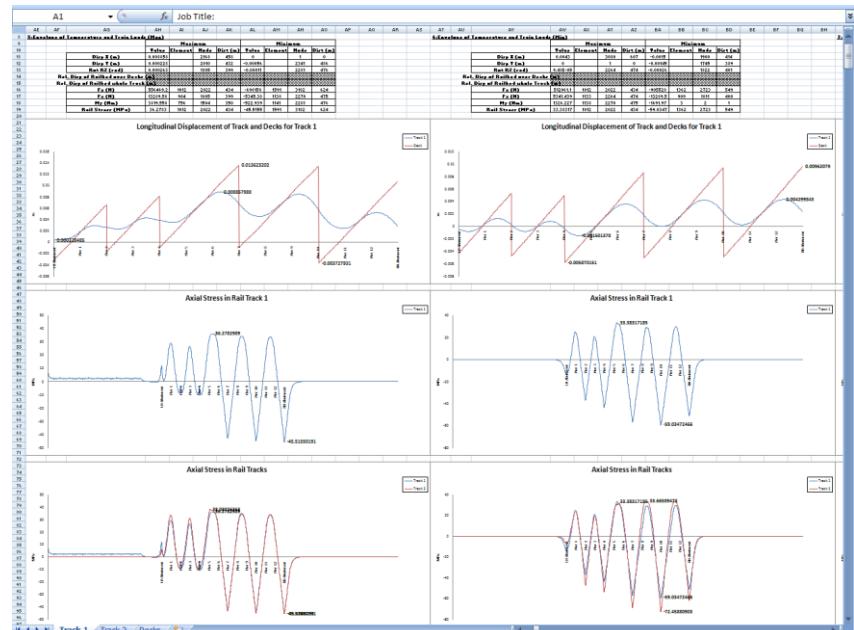


Figure 64: Track Envelopes Performed in Modeller

Rail Track Analysis User Manual

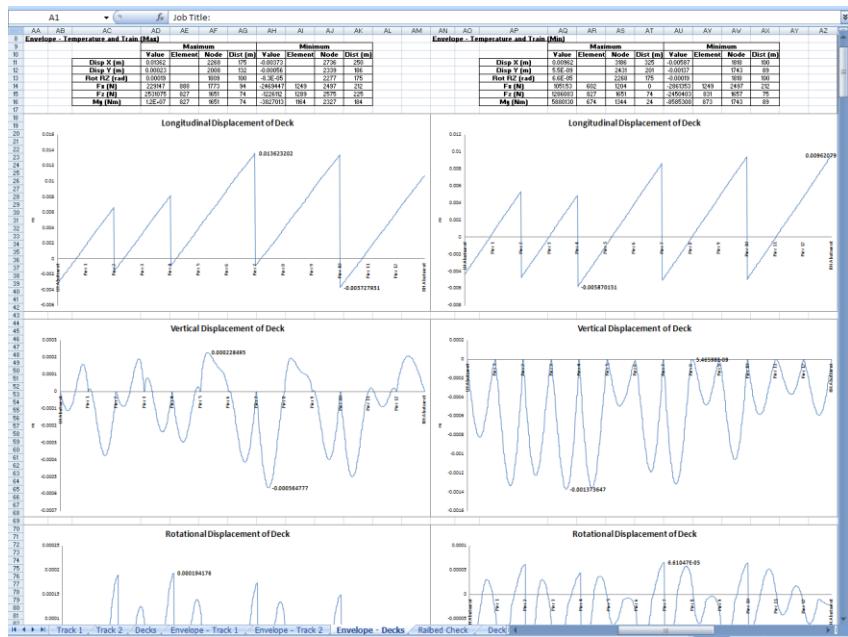
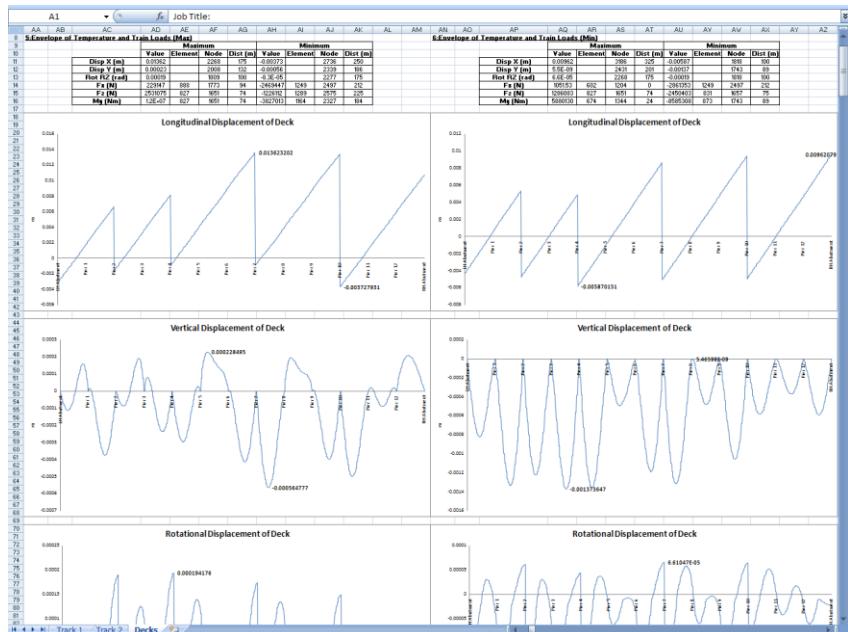
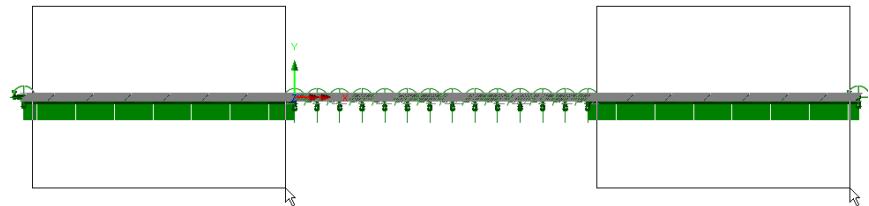
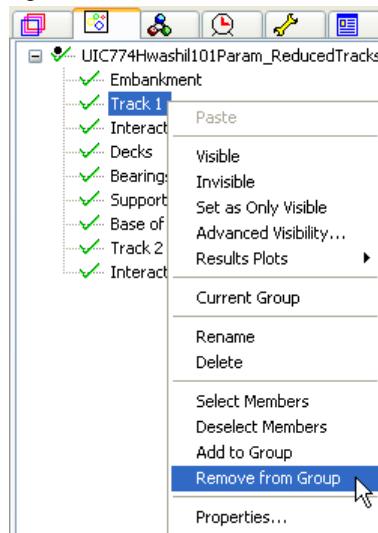


Figure 65: Deck Envelopes Performed in Microsoft Excel


Figure 66: Deck Envelopes Performed in Modeller

One final option available (that should be used with caution, particularly if there is a possibility for the peak behaviours in the track / railbed being observed over the embankments rather than over the structure) is the reduction of the track/rail groups in the model so that they contain the bare minimum of features/mesh over the embankments plus all of the track/rail over the structure. Any modifications of this sort should be done in a copy of the rail track analysis model so the original models are not corrupted in any way and can be recovered. The procedure is described below:

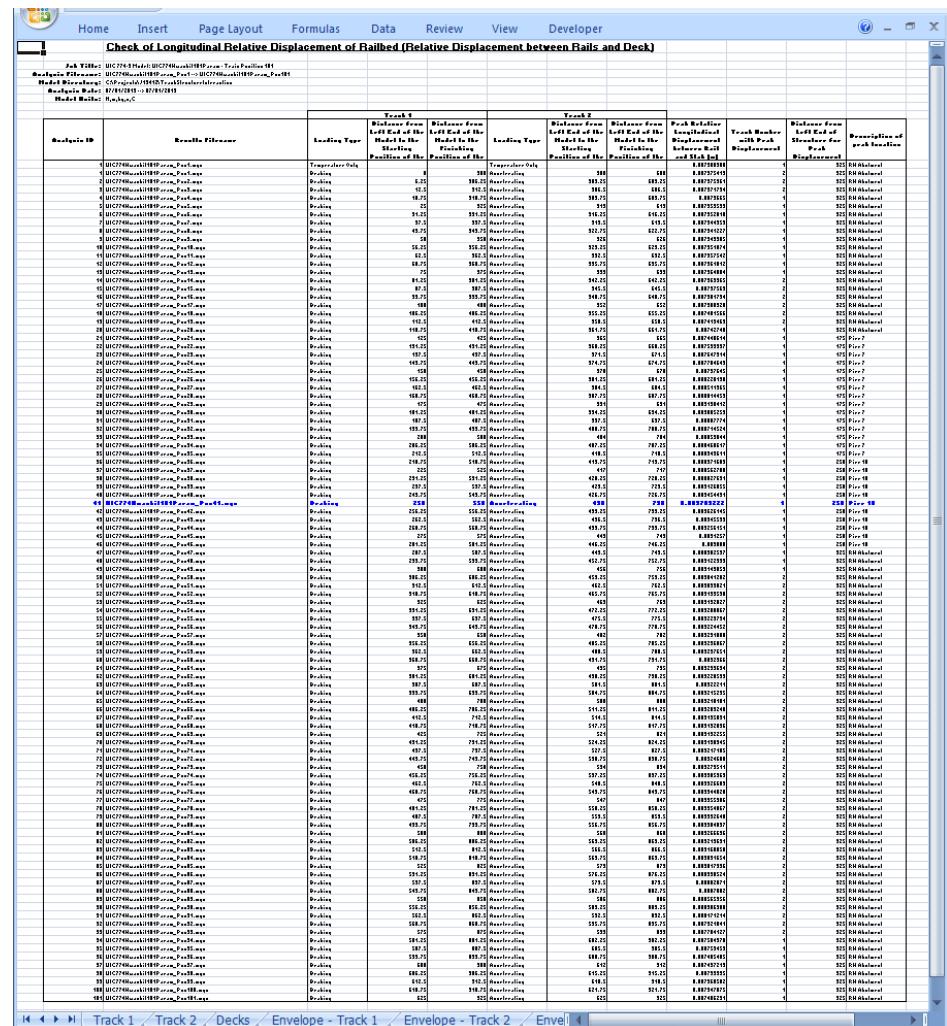
- Using any of the automatically generated models containing the loading required, save the model with a different filename,
- Ensure the whole model is visible and that the selection allows the selection of any geometry and mesh features with the **Select All** cursor
- Select the track features and mesh to be removed from the post-processing as illustrated below ensuring that the extremes of the embankments are not selected,

- Remove the selected features and mesh from the **Track 1** group by right-clicking on the **Track 1** group in the **Groups Treeview** and choosing the **Remove from Group** option as illustrated below,

- If there is more than one track, repeat the removing of the features and mesh from the **Track 2** group,

- Save the model,
- Ensure that the results files are loaded using the automatically generated VBScript file (?????_Reload.vbs where ???? was the original analysis name) and post-process the model as before.

In the example below the post-processing of the 101 parametric trainset positions initially failed due to insufficient resources in Microsoft Excel. On removing 93% of each of the two embankments the full 101 parametric trainset positions could be post-processed successfully in Microsoft Excel.


Note. This approach may not always work and is generally more applicable when the lengths of the embankments are similar to the length of the structure. If the embankment lengths are significantly smaller than the length of the structure minimal change in the computer memory usage by Microsoft Excel will be observed.

Caution. The extremes of the track/rail over the embankments must be left within the track groups to ensure that the post-processing is carried out correctly. Errors may be observed and inaccurate results obtained if this is not the case.

Caution. Excluding the embankments from the track could give misleading results if the peak behaviours actually occur over the embankments rather than over the structure. Judgement should be exercised before accepting the results after exclusion of the embankments.

Figure 67: Railbed Enveloped Results for 101 Parametric Trainset Positions in Microsoft Excel

Post-processing of selected track / rail nodes

If spot checks need to be performed at specific locations on the tracks, the nodes of the track/rail can be post-processed individually. To perform the post-processing the selection in the LUSAS model created by the Rail Track Analysis spreadsheet must contain nodes that are part of the track/rail. If nodes from other parts of the model are

selected then these nodes will be ignored. All other selected objects will also be ignored.

Figure 68 shows sample output from the post-processing of a track. For each results file that is loaded the axial stress at the node(s) will be reported in a separate worksheet for each node.

Check of Axial Rail Stress for Track 1, Node 1396 X=32.0 Y=0.0 Z=0.0								
Analysis ID	Results Filename	Loading Type	Distance from Left End of the Model to the Starting Position of the Loading (m)	Distance from Left End of the Model to the Finishing Position of the Loading (m)	Loading Type	Distance from Left End of the Model to the Starting Position of the Loading (m)	Distance from Left End of the Model to the Finishing Position of the Loading (m)	Axial Stress of Rail for Track 1, Node 1396 (MPa)
1	UIC774Hwashi\P403b\ParamRail_Pos1.mys	Temperature Only	0	300	Temperature Only	270	570	15.45927412
2	UIC774Hwashi\P403b\ParamRail_Pos1.mys	Braking	81.25	383.75	Braking	353.75	653.75	14.97434693
3	UIC774Hwashi\P403b\ParamRail_Pos1.mys	Braking	162.5	462.5	Braking	432.5	732.5	16.3366784
4	UIC774Hwashi\P403b\ParamRail_Pos4.mys	Braking	243.75	543.75	Accelerating	513.75	813.75	16.61410048
5	UIC774Hwashi\P403b\ParamRail_Pos5.mys	Braking	325	625	Accelerating	595	895	16.77846393

Figure 68: Sample Output from an Individual Track/Rail Node

Note. The stresses reported in the track/rail node worksheets are the averaged nodal stresses. The stresses reported previously in the post-processing performed on the UIC774-3 groups is the unaveraged nodal stresses and therefore the values will differ slightly. The averaged nodal stresses can be obtained for the post-processing of the UIC77-3 groups by averaging the values reported for the elements either side of the node.

Post-processing of selected lines if groups are missing

If the model does not contain the expected rail track model group names (“Track 1”, “Track 2” and “Decks”) or expected group contents then post-processing can be carried out on a line by line basis. To use this option the selection must contain lines that have 3D Thick Beam elements assigned. All other lines and objects will be ignored by the post-processor.

When post-processing selected lines it is assumed that these lines define a single path which travels in the direction of increasing line ID number. The lines will therefore be post-processed in increasing line ID order and the lowest line ID start point will be assumed to provide the reference position for the x-coordinate used to calculate the distances reported.

The output is almost identical to the output that is generated for the decks group with a summary table and tabulated output reported for all of the elements associated with the lines that have been selected. No graphs are generated for the post-processing of the selected lines since the distances may not be sequential if lines of the tracks / rails or decks have been omitted from the selection as illustrated in Figure 69 where there is a jump between distances of 10 and 32 m. Results are output for the temperature only (Increment 1) and the combined temperature and trainset loading (Increment 2) with additional results files tabulated from left to right in the worksheet. If basic combinations or envelopes have been defined in the LUSAS model the results from these will also be output to the worksheet if they can be post-processed.

A1	Job Title:																										
1	Job Title:	UIC 774HwashiP403bParamRail - Train Position 1																									
2																											
3	Analysis Filename: UIC774HwashiP403bParamRail_Pos1.mys																										
4	Analysis Directory: C:\Projects\12504\TrackStructure\Interaction\																										
5	Analysis Date: 12/11/2010																										
6	Model Units: N,m,kg,s,C																										
7																											
8	1\Increment 1																										
9																											
10	2\Increment 2 Load Factor = 1.00000																										
11																											
12	Maximum																										
13	Value	Element	Node	Dist (m)	Value	Element	Node	Dist (m)	Value	Element	Node	Dist (m)	Value	Element													
14	Disp X (m)	0.00967877	3186	325	-0.0053382	1204	0		Disp Y (m)	2.045E-05	3102	311	-4.151E-05	2962	288												
15	Disp Y (m)	2.045E-05			-3.616E-06				Rot RZ (rad)	4.25E-06	2563	223	-3.616E-06	2926	282												
16	Rot RZ (rad)	4.25E-06				Fx (N)	-40000.004	602	1204	Fx (N)	-2563	223	-2501148.7	1478	287												
17	Fx (N)	-40000.004				Fz (N)	80060.1119	1381	2762	Fz (N)	255	-80725.682	1587	3174	323												
18	Fz (N)	80060.1119				My (Nm)	225001.593	831	1657	My (Nm)	75	-252648.71	1478	2956	287												
19	My (Nm)	225001.593				Element	Node	Distance (m)	X (m)	Y (m)	Z (m)	Disp X (m)	Disp Y (m)	Rot RZ (rad)	Fx (N)	Fz (N)	My (Nm)	Element	Node	Distance (m)							
20	602	1206	0	0	0	0	-0.0053353	6.9261E-08	-2.644E-06	-40000.004	64143.4859	-4648.2606	602	1204													
21	605	1206	1	1	0	0	-0.0053353	-2.568E-06	-2.631E-06	-40000.004	64143.4859	-4648.2606	602	1206													
22	605	1212	1	1	0	0	-0.0053353	-2.568E-06	-2.631E-06	-120000.01	63902.194	-14065.427	605	1206													
23	608	1212	2	2	0	0	-0.0049363	-5.178E-06	-2.591E-06	-120000.01	63902.194	-14065.427	605	1212													
24	608	1218	2	2	0	0	-0.0049363	-5.178E-06	-2.591E-06	-200000.02	63973.2656	-23567.703	608	1218													
25	611	1218	3	3	0	0	-0.0047363	-7.735E-06	-2.524E-06	-200000.02	63973.2656	-23567.703	608	1218													
26	611	1224	4	4	0	0	-0.0045372	-1.021E-06	-2.431E-06	-280000.02	63954.5505	-33043.601	611	1224													
27	614	1224	4	4	0	0	-0.0045372	-1.021E-06	-2.431E-06	-360000.03	63959.4601	-42526.4	614	1224													
28	614	1230	5	5	0	0	-0.0043383	-1.258E-06	-2.31E-05	-360000.03	63959.4601	-42526.4	614	1230													
29	617	1230	5	5	0	0	-0.0043383	-1.258E-06	-2.31E-05	-440000.03	63958.369	-5207.49	617	1230													
30	617	1236	6	6	0	0	-0.0041396	-1.482E-05	-2.163E-05	-440000.03	63958.369	-5207.49	617	1236													
31	620	1236	6	6	0	0	-0.0041396	-1.482E-05	-2.163E-05	-520000.04	63958.3111	-61488.994	620	1236													
32	620	1242	7	7	0	0	-0.0039443	-1.689E-05	-1.99E-06	-520000.04	63958.3111	-61488.994	620	1242													
33	623	1242	7	7	0	0	-0.0039443	-1.689E-05	-1.99E-06	-600000.04	63958.3583	-7070.398	623	1242													
34	623	1248	8	8	0	0	-0.0037431	-1.878E-05	-1.789E-05	-600000.04	63958.3583	-7070.398	623	1248													
35	626	1248	8	8	0	0	-0.0037431	-1.878E-05	-1.789E-05	-680000.04	63958.3584	-80451.825	626	1248													
36	626	1254	9	9	0	0	-0.0035452	-2.046E-05	-1.561E-05	-680000.04	63958.3584	-80451.825	626	1254													
37	629	1254	9	9	0	0	-0.0035452	-2.046E-05	-1.561E-05	-760000.05	63958.3584	-8993.246	629	1254													
38	629	1260	10	10	0	0	-0.0033476	-2.189E-05	-1.307E-05	-760000.05	63958.3584	-8993.246	629	1260													
39	699	1394	32	32	0	0	-0.0096211	1.2263E-05	6.6804E-05	-140000.11	77841.185	70756.2004	699	1394													
40	699	1400	33	33	0	0	-0.00115841	1.2822E-05	4.5012E-07	-140000.11	77841.185	70756.2004	699	1400													
41	702	1400	33	33	0	0	-0.00115841	1.2822E-05	4.5012E-07	-132000.01	77841.212	72655.002	702	1400													
42	702	1406	34	34	0	0	-0.00135493	1.3168E-05	2.4465E-07	-132000.01	77841.212	72655.002	702	1406													

Figure 69: Sample Output from Post-Processing of Selected Lines when the Groups are Missing or Invalid

If more than one results file is loaded, basic combinations are defined in the model that may be post-processed (see the restrictions under the **Post-processing of automatically defined groups** section) and enveloping in Microsoft Excel has been

selected then the Microsoft Excel spreadsheet will contain an additional worksheet that holds these enveloping results. The envelopes generated will be the same as those for the tracks and decks:

- Maximum and minimum envelopes for temperature loading only**
- Maximum and minimum envelopes for temperature and trainset rail loading**
- Maximum and minimum envelopes for all of the basic combinations defined in the model (if valid basic combinations are present)**
- Maximum and minimum envelopes for all loading (an envelope of the above results)**

Limitations of Use

- ❑ Since the analysis is two-dimensional (even though three-dimensional elements are used) the offsets are not modelled for the bearing/section centrelines nor for the section/rail centrelines (see figure below). Currently all track centrelines are coincident with the centreline of the deck.
- ❑ Curved bridges cannot be modelled.
- ❑ Only up to two tracks can be considered.
- ❑ Thermal loading for mixed steel and concrete bridges in the same model cannot be generated through the input spreadsheet. The model can however be modified to include these different thermal loads if no rail loading is applied when the model is built and the resulting LUSAS model modified manually. Care should be taken carrying this out and generally only additional temperature loading attributes should be defined and assigned to the model.

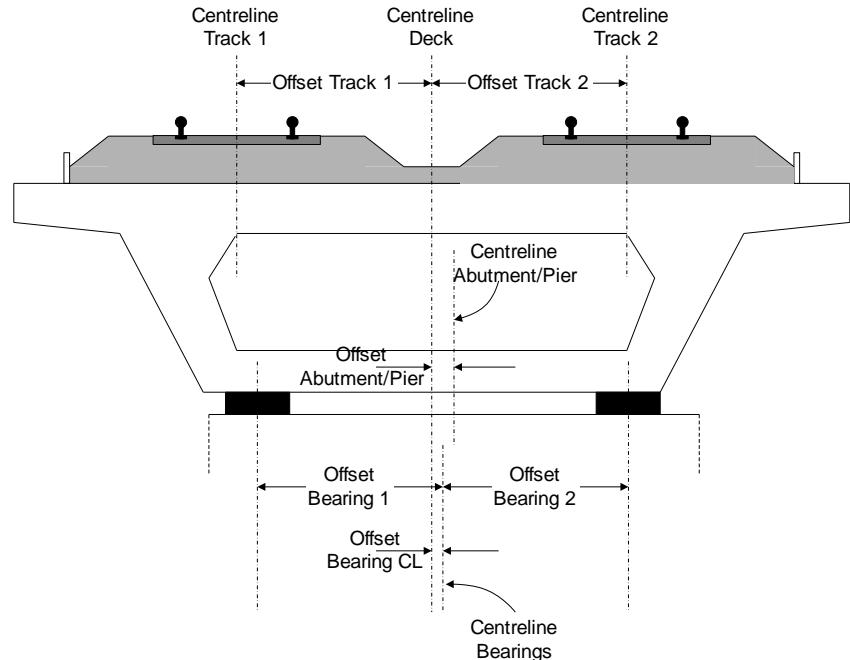


Figure 70: Offsets of Tracks/Bearings/Piers from Centreline Of Deck

Appendix A: Verification Testing

Introduction

This appendix includes some background to the calculation of the UIC774-3 track/bridge interaction analyses in LUSAS. It explains why results from running a LUSAS nonlinear analysis that considers all thermal and train effects for the test cases in question in one analysis does not over-predict the rail stresses occurring under the combined thermal and rail loading - unlike results from simplified hand calculations or from results from other finite element analysis software systems where thermal and train effects are carried out by running separate nonlinear analyses.

From the verification testing carried out we can say that...

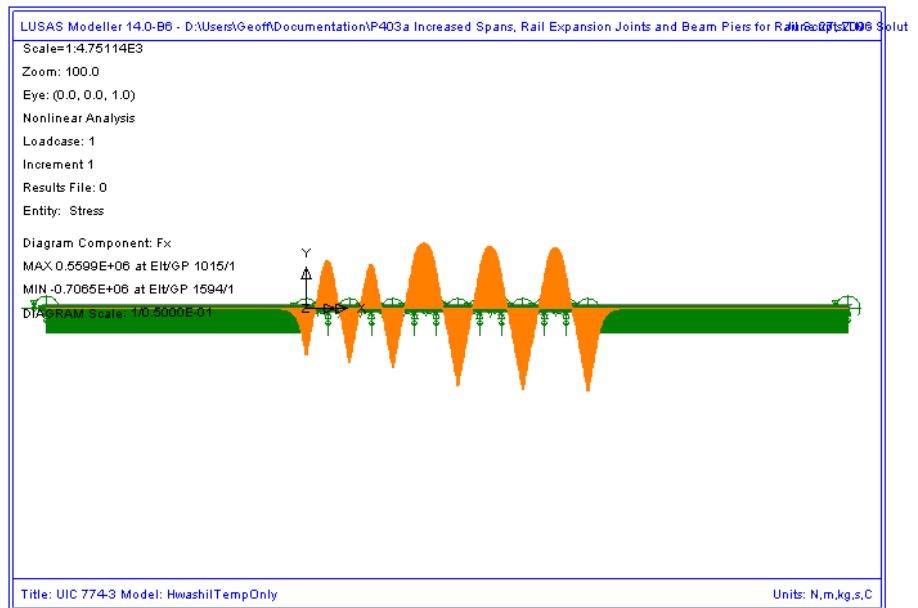
Even though a computer program may be validated against the standard test cases in the UIC774-3 code of practice, in situations when combined thermal and train loading from separate analyses gives track-structure interaction forces that exceed the stated yield resistance of the track-restraint system (i.e. the ballast) then the separate analysis method will potentially over predict the rail stresses unless the loaded track yield surface is reduced by the mobilised track resistance over the extent of the train loading. Rail stress over-predictions of up to 30% have been seen when thermal and train loading results are combined from separate analyses.

Description

The rail track analysis (UIC774-3) option in LUSAS allows the construction and solution of finite element models to study the interaction between the rail track and a bridge. This forms an essential part of the design process as the stresses within the rails of the tracks must remain within specified limits based upon the design and the state of maintenance. A number of calculation methods are available and each of these can lead to a slightly different solution for the combined thermal and rail loading condition. Each of these methods (except the hand calculation) has been investigated in this technical note prior to carrying out the analysis in LUSAS using the rail track analysis option.

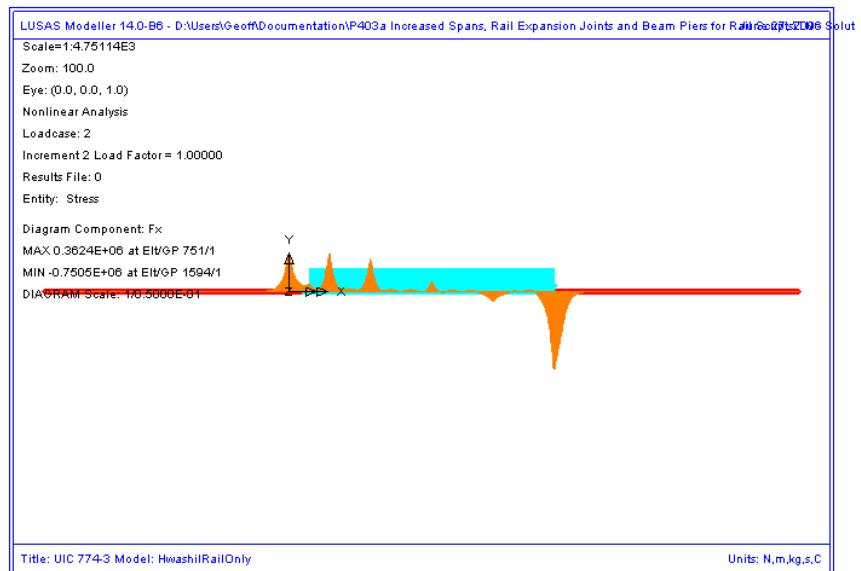
The Hwashil Viaduct, a railway bridge in South Korea, has been used for this testing with continuous welded rail (CWR) and thermal effects only present in the structure for the following analyses:

- Combination of Separate Thermal And Rail Loading**
- Analysis Of Combined Thermal And Rail Loading (One Step)**
- Analysis Of Combined Thermal And Rail Loading Taking Account Of Effects Of Material Change Under Rail Loading**


In addition, two of the UIC standard test cases have also been reinvestigated to demonstrate that these results can be matched even if the analysis type is potentially invalid prior to providing guidance and conclusions on this type of analysis. These analyses were:

- Revisit Of UIC774-3 Test E1-3 Using The Separate And LUSAS Methods Of Analysis**
- Revisit Of UIC774-3 Test H1-3 Using The Separate And LUSAS Methods Of Analysis**

Combination of Separate Thermal and Rail Loading


In this form of analysis two or more separate analyses are carried out with each analysis considering a different loading regime to the structure. This is the simplest form of analysis of the track/bridge interaction as it assumes that superposition is valid for a nonlinear system and, according to the UIC774-3 code of practice, can generally overestimate the rail stresses with percentage errors up to 20 to 30% be it through hand calculation or computer methods.

This analysis procedure is replicated in LUSAS by performing two separate nonlinear analyses. The first considers only the thermal effects and uses the unloaded resistance bilinear curve for modelling the interaction between the track and bridge. The results of this analysis are identical for the two tracks in the model and so only the results for the first track are presented in the following figure.

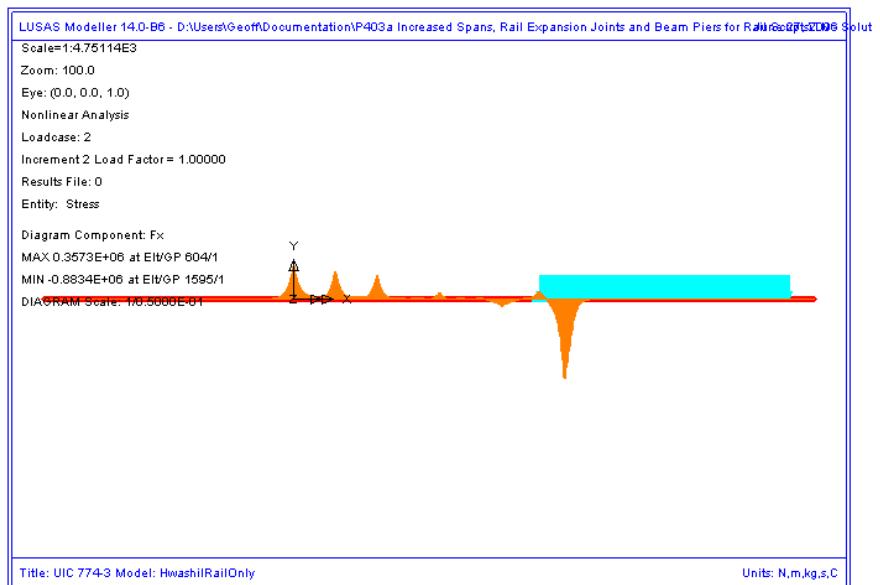


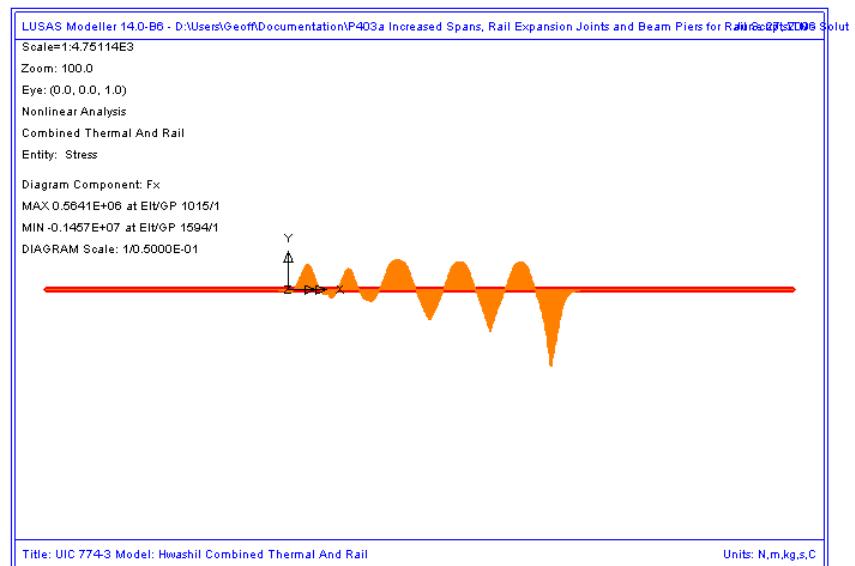
Figure 71: Axial Force In Rails Due To Thermal Effects Only

These thermal effects give a peak compressive rail stress of 46.06 N/mm^2 ($F/A = 0.7065E+06/0.0153389$). Having carried out the thermal analysis the rail loading will be considered in a separate analysis (both horizontal and vertical loading) for the ‘worst’ conditions. This rail load analysis is again a nonlinear analysis but it has no knowledge of the history from the thermal effects and therefore assumes a zero strain initial state prior to the application of the load. In addition to this unstrained condition, the loaded resistance bilinear curve is used underneath the locations of the rail loading while the unloaded lengths of track use the unloaded resistance bilinear curve. The results from the rail loading analyses are presented in the following two figures, the first being the track that has the braking train loading and the second being the track that has the accelerating train loading.

Figure 72: Axial Force In Rails Due To Braking Train Loads On Track 1

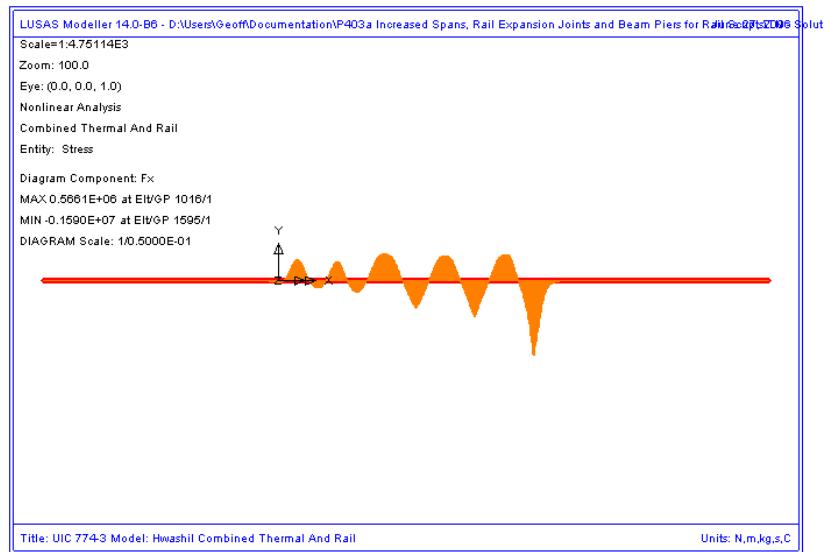
Figure 73: Axial Force In Rails Due To Accelerating Train Loads On Track 2

From these results the peak compressive rail stresses for the two tracks are as follows:


Track 1:	48.93 N/mm²
-----------------	-------------------------------

Track 2:	57.59 N/mm²
-----------------	-------------------------------

A basic combination of the loading can be defined to add the results from the thermal and rail loading analyses together which gives the following track peak compressive stresses (see following figures):


Track 1:	94.99 N/mm²
-----------------	-------------------------------

Track 2:	103.66 N/mm²
-----------------	--------------------------------

Figure 74: Axial Force In Rails Due To Combined Thermal And Train Loads In Track

1

Figure 75: Axial Force In Rails Due To Combined Thermal And Train Loads In Track

2

Inspection of the two plots shows that there is a reduction in the axial force / rail stresses over the first two span transition piers towards the left end of the structure for track 1 only (subjected to the braking train). The following figures show zoomed plots of the rail axial force for this location with the thermal diagram showing identical values either side of these piers for all of the spans in the model. The reason for the reduction in the axial force becomes clear from the axial force diagram for the train braking load alone, Figure 77, where the axial force has a positive peak over the span transition piers which is not symmetrical. Looking at the transition from the first span to the second (2nd pier from left abutment) the axial force in the rail over the end of the first span is equal to a tension force of 362.4 kN while the axial force over the start of the second span is equal to a tension force of 344.7 kN. Like for like comparison of the elements a certain distance from the pier for each span shows that the second span is consistently lower and this difference has caused the non-symmetric nature of the combined axial force / rail stress diagram over the span transition piers.

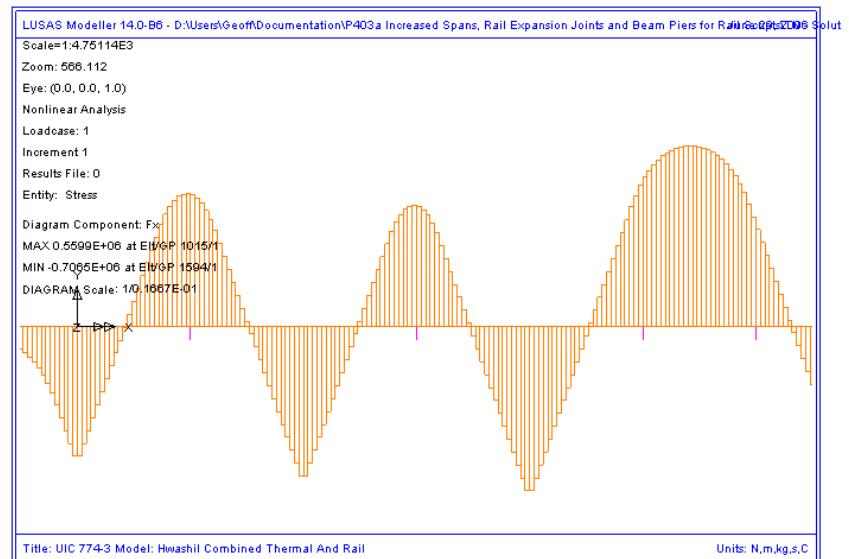


Figure 76: Zoomed Axial Force In Rails Due To Thermal Effects Only

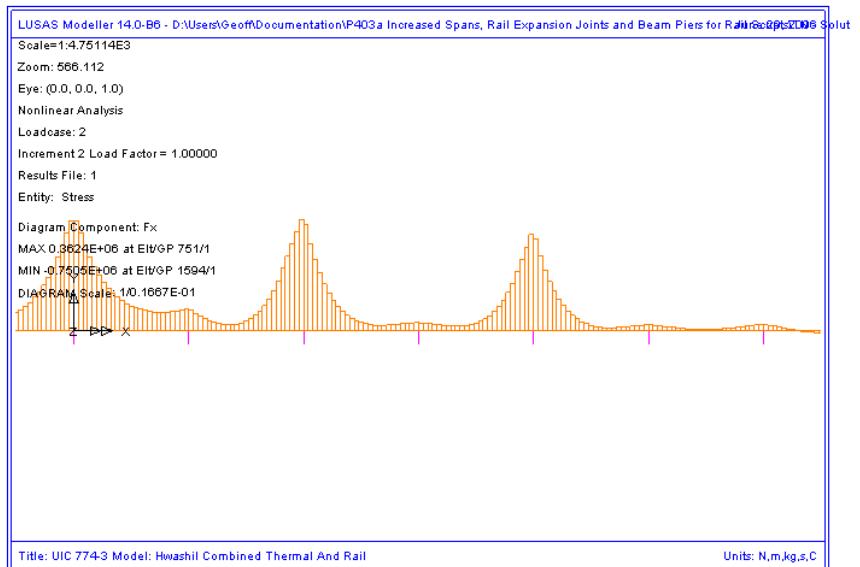
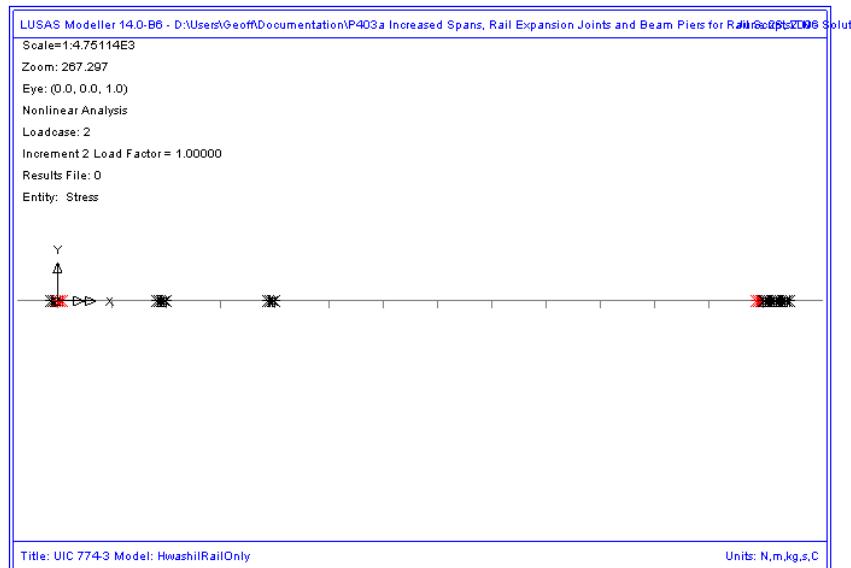



Figure 77: Zoomed Axial Force In Rails Due To Braking Train Loads On Track 1

NOTE: When viewing this axial force diagram it should be recognised that while the first two spans (2*25m each) have identical geometry and pier/bearing properties, the first span segment of the first span does not carry any of the braking train load and this is contributing to the difference in the behaviours observed over the piers.

Looking at the yield in the track/bridge interaction for this track, Figure 78, the reason for the differences in axial force either side of the pier becomes clear as yielding has occurred to the left but not to the right of the span transition pier for these first two spans.

Figure 78: Yield In Track/Bridge Interaction Due To Train Braking Load On Track 1

Looking now at the second track where the accelerating train is at the right-hand end of the structure, the interaction remains unloaded and so the rail axial force / stress observed is basically due to the bending of the bridge deck due to the action of the braking train load on the other track. Because there is no direct loading to the track then the axial force in the rail displays a continuous variation over the span transition piers and therefore no reduction is observed in the combined diagram for this track.

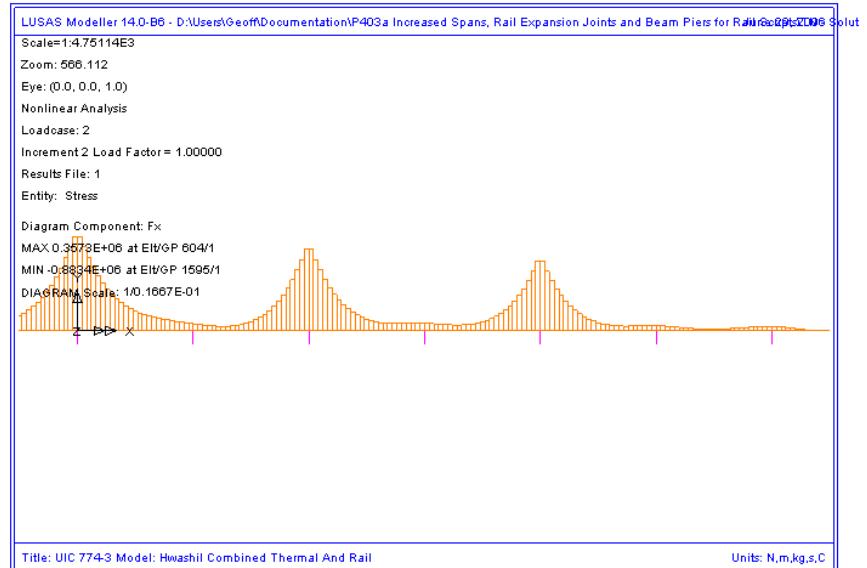
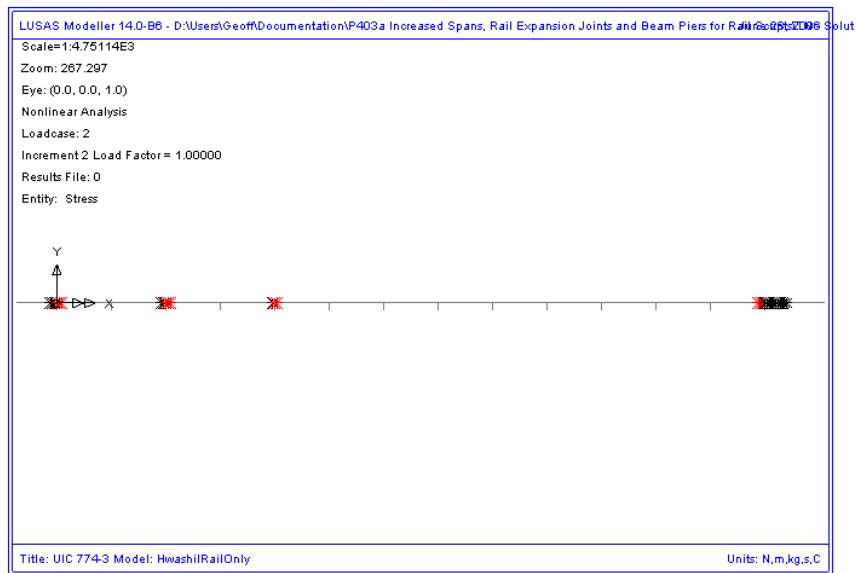
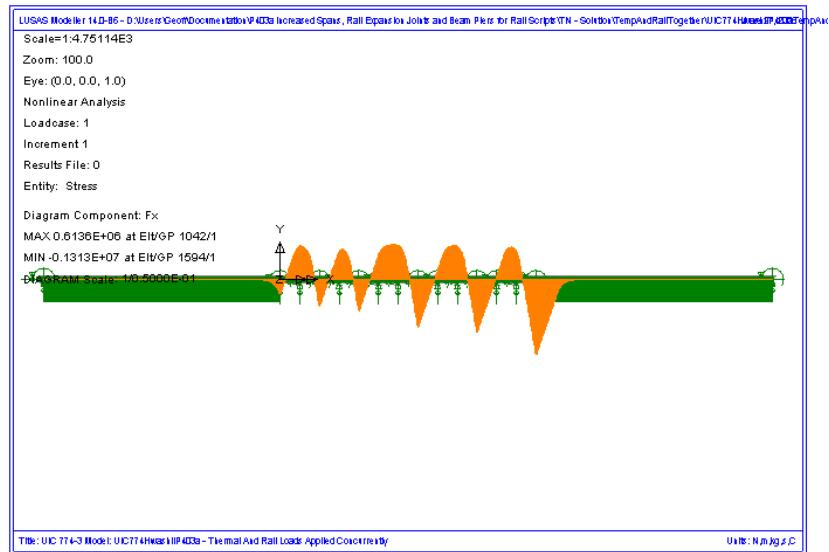



Figure 79: Zoomed Axial Force In Rails Due To Accelerating Train Loads On Track 2

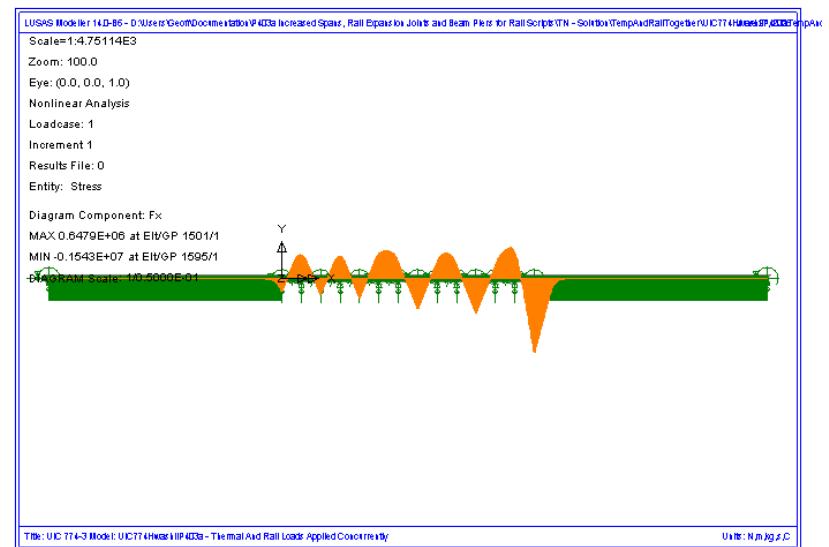
Looking again at the yielding, Figure 80, the difference between this track and the one with the braking train becomes obvious as, without the action of any train load over the span transition for this track, the yield is roughly symmetrical and occurring across the transition between spans – colour change indicates changing yield direction. This yield over the whole region of the span transition is the whole reason why a smooth behaviour is observed in the rail force / stress in the second track as opposed to the first track that has the braking train load.

Figure 80: Yield In Track/Bridge Interaction Due To Train Acceleration Load On Track 2

Analysis of Combined Thermal and Rail Loading (One Step)


In this form of analysis a single nonlinear analysis is carried out where the thermal and rail loading are applied concurrently to the model. In terms of the track/bridge interaction, the resistance bilinear curves used in the modelling are determined by the positioning of the rail loading so that loaded properties are used where the rail loading is applied and unloaded properties everywhere else. As with the separate method highlighted above, this analysis ignores any initial straining of the track/bridge interaction under pure thermal loading and therefore assumes that the loaded resistance properties are active under the thermal loading over the extent of the train loading.

The results from the analysis are shown in the following figures and give the following results for the track peak compressive stresses:


Track 1: 85.6 N/mm^2

Track 2: 100.6 N/mm^2

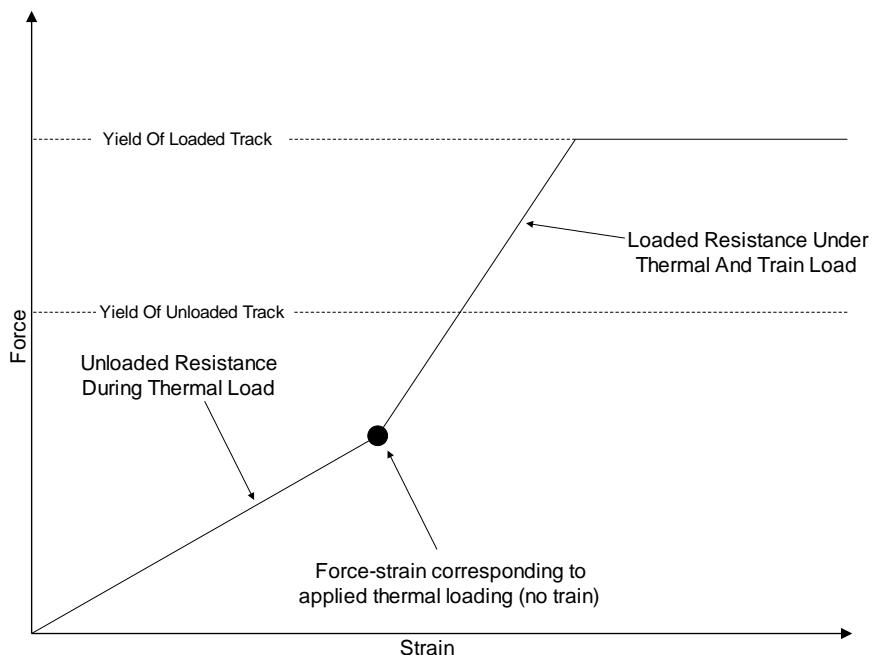
NOTE: For this analysis the reduction in axial force / rail stress is not observed at the span discontinuities towards the left end of the structure.

Figure 81: Axial Force In Rails Due To Combined Thermal And Train Loads In Track 1 (One Step)

Figure 82: Axial Force In Rails Due To Combined Thermal And Train Loads In Track 2 (One Step)

Analysis of Combined Thermal and Rail Loading Taking Account of Effects of Material Change Under Rail Loading

The previous two analysis methods fail to take account of the train rail loading being applied to the rail when it has already undergone movement/stresses due to thermal effects alone. In this current form of analysis (implemented into LUSAS) the initial thermal effects are considered prior to the application of the train rail loading and the behaviour under this rail loading takes account of this history.


To illustrate the analysis, consider the following:

When the train is not on the track the stresses in the rails are governed purely by the thermal effects. For the Hwashil Viaduct the thermal effects due to the bridge only are considered and therefore the action of this causes the structure to move thus inducing relative movement between the track and the bridge and therefore an associated stress in the rail. For this condition the unloaded resistance properties apply across the whole extent of the track

As the train load arrives over a particular part of the bridge the initial relative movement of the track/bridge from the thermal effects remains and therefore the application of the train load changes the resistance state from unloaded to loaded without the loss of this initial rail stress caused by the relative movement

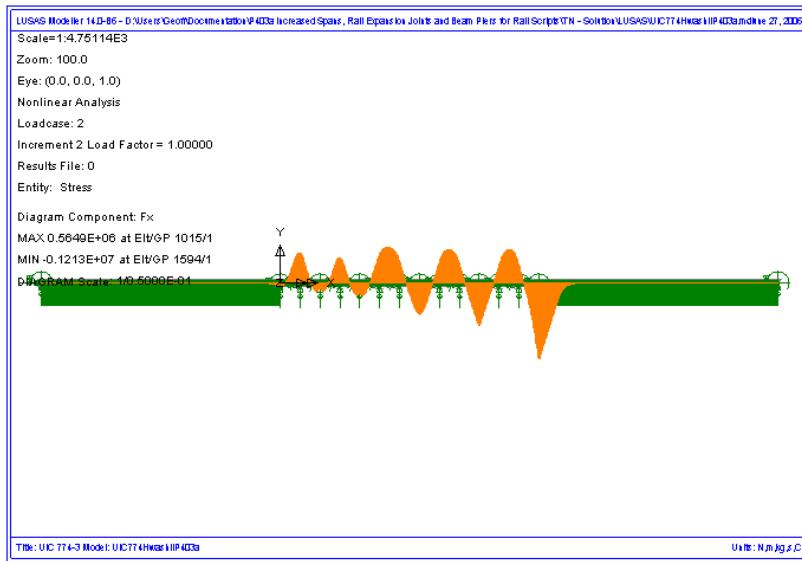
The train load causes increased slip of the interaction based on the loaded resistance with the end of the force-displacement curve for the unloaded resistance used as the starting point for the loaded resistance

If it was modelled, the departure of the train load would change the resistance state back to unloaded

Figure 83: Representation of Transition From Unloaded To Loaded In LUSAS

The key is that the interaction resistance switches from unloaded to loaded the moment the rail load arrives thereby 'locking in' any initial movement that has occurred under the thermal loading until that rail load departs. The results from this form of analysis are shown in the following figures which give peak compressive rail stresses of:

Track 1 and 2 (Thermal Only):	46.06 N/mm²
--------------------------------------	-------------------------------


Track 1 (Thermal and Train):	79.08 N/mm²
-------------------------------------	-------------------------------

Track 2 (Thermal and Train):	92.58 N/mm²
-------------------------------------	-------------------------------

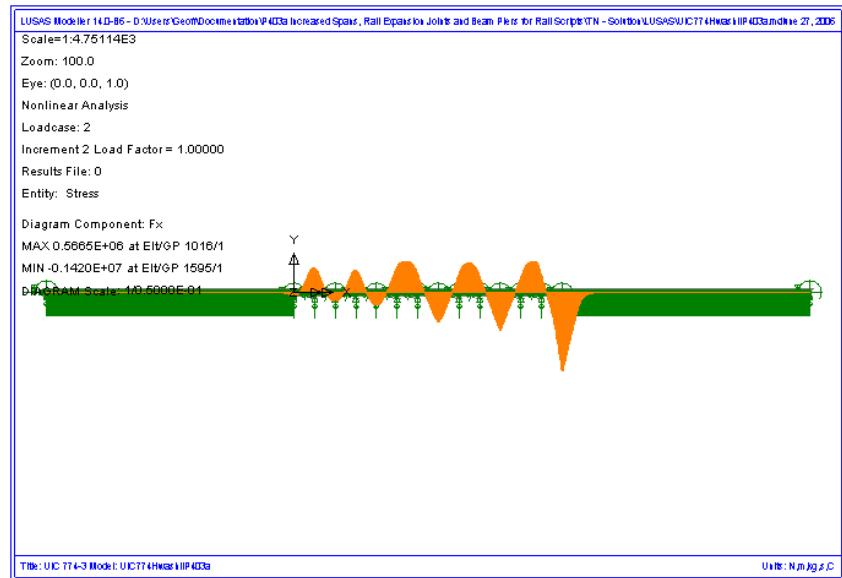
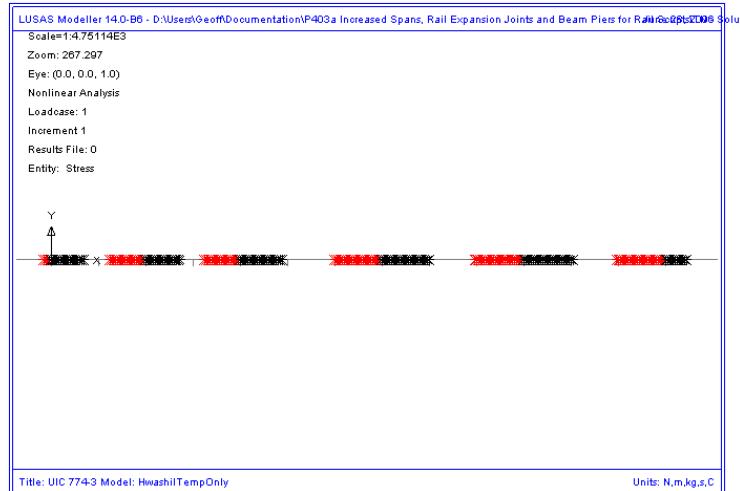

Rail Track Analysis User Manual

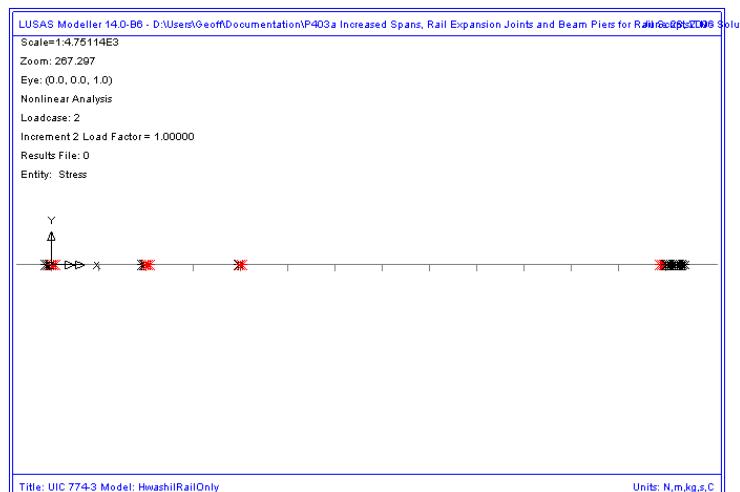
Figure 84: Axial Force In Rails Due To Thermal Only

Figure 85: Axial Force In Rails Due To Combined Thermal And Train Loads In Track

Figure 86: Axial Force In Rails Due To Combined Thermal And Train Loads In Track 2


The analyses produced using this method can give a lower peak compressive stress in the rails than observed using the other approaches but agrees closely with the published test cases using rigorous methods in UIC774-3 as observed in the following sections for test E1-3 and H1-3.

Discussion


The peak compressive stresses in track/rail 2 which has the accelerating load and track/rail 1 that is subjected to the braking train show differences in the peak compressive stress in the rails based on the position of the train loads used in the analysis. As the loading and geometry of the models are identical the differences can only be associated with the track resistance modelling/behaviour. It has been noted previously in Section 0 above that the transition from unloaded resistance to loaded resistance is only incorporated into the LUSAS modelling so this track resistance is investigated by looking at the yield under the effects of the rail loading.

Looking first at the second track/rail that has the accelerating load, the yielding occurring from the three analyses are shown in the following figures. Comparing the yield layout for the LUSAS analysis (Figure 90) and the concurrent thermal/train loading analysis (Figure 89) shows that the overall yield behaviour is almost identical, hence the similarity in the peak compressive rail stresses obtained albeit with the LUSAS value slightly lower. Looking now at the separate analysis, the yield layout for both the LUSAS and concurrent thermal/train loading analyses are comparable with the

yield layout for thermal effects alone (Figure 87) with very little yield associated with the accelerating rail load analysis (Figure 88). This is primarily due to the accelerating train only just entering the bridge with the majority of the loads over the right approach embankment which are vertical not horizontal.

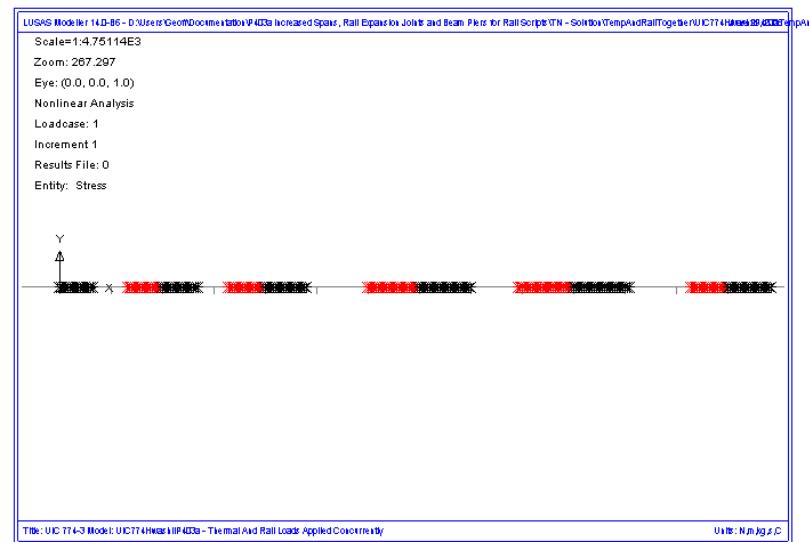


Figure 87: Track/Rail 2 Yield Due To Thermal Load On Track Alone



Figure 88: Track/Rail 2 Yield Due To Accelerating Train Loads On Track 2 – Separate Analysis

Analysis of Combined Thermal and Rail Loading Taking Account of Effects of Material Change Under Rail Loading

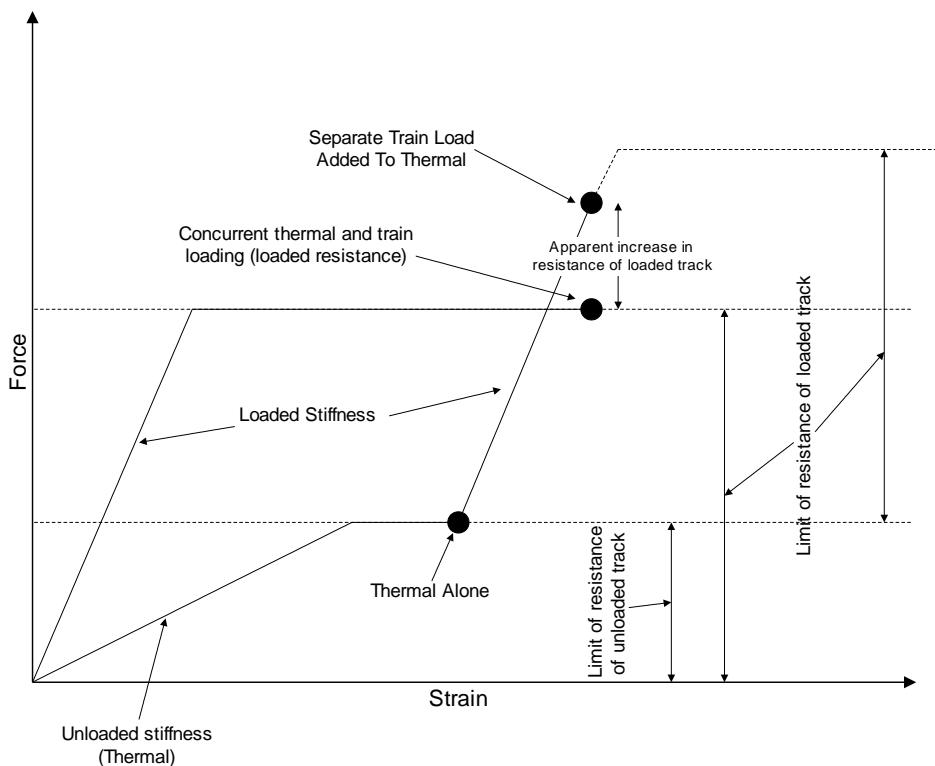


Figure 89: Track/Rail 2 Yield Due To Accelerating Train Loads On Track 2 - Thermal And Rail Applied Concurrently

Figure 90: Track/Rail 2 Yield Due To Accelerating Train Load On Track 2 - LUSAS Combined Analysis

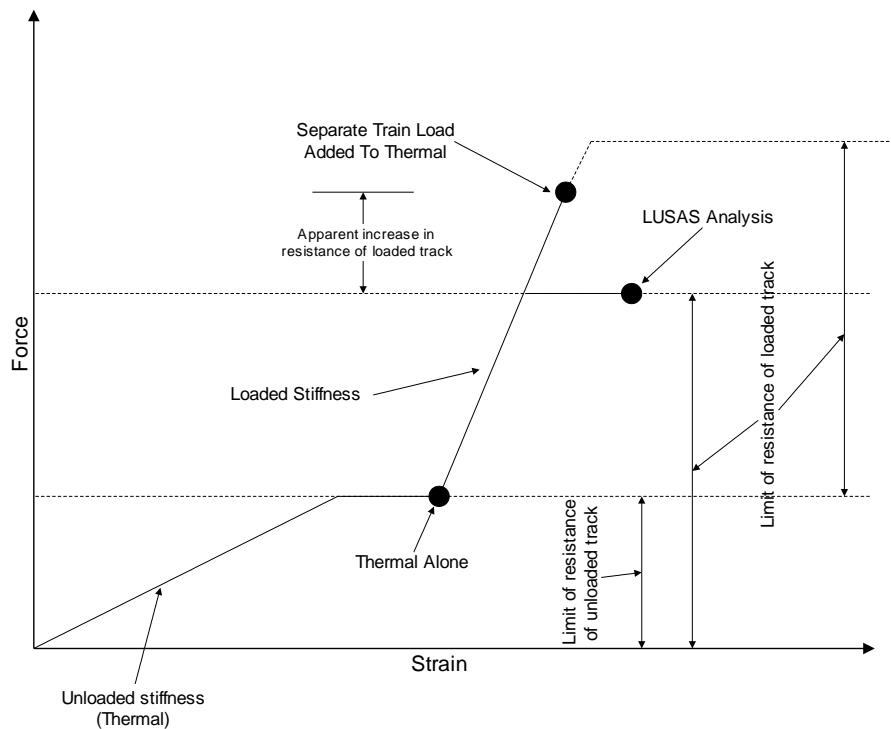
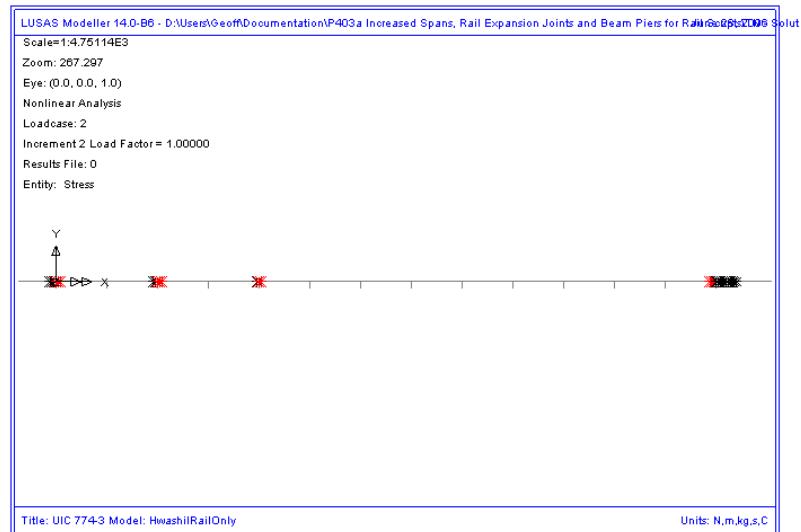

Looking at what is effectively happening in these analyses, Figure 91, the concurrent loading analysis uses the loaded resistance throughout the analysis and follows the loaded stiffness curve from the origin and potentially gives the location indicated on the plastic part of this curve as illustrated with a force in the interaction limited to the resistance of the loaded track. For the separate analysis, the thermal effects use the unloaded curve and the behaviour of this part of the analysis is limited by the resistance of the unloaded track. Under these conditions the analysis may give a location indicated by the 'Thermal Alone' point on the unloaded curve. Separate consideration of the train loading effectively places the origin of the loaded bilinear curve at this 'Thermal Alone' position and any loading could potentially give the location indicated by the 'Separate Train Load Added To Thermal' position. This could give an apparent increase in the resistance of the track and therefore increase rail stresses in the loaded track.

Figure 91: Illustration Of Behaviour Of Separate Analysis Vs. Concurrent Thermal And Rail Loading

Similar comparisons can be made between the separate analysis and the LUSAS analysis - Figure 92. While both of these effectively use the 'Thermal Alone' location as an origin for the loaded resistance curve, the key difference between the two approaches is that the LUSAS analysis enforces the track resistance at which plasticity occurs instead of allowing the potential for an apparent increase in the track resistance equal up to the unloaded plus the loaded track resistance.

These differences have affected the peak compressive rail stresses in the track subjected to accelerating train loads with all three analyses predicting stresses in the range of 93 to 103 N/mm².

Figure 92: Illustration Of Behaviour Of Separate Analysis Vs. LUSAS Analysis


Looking now at the track/rail that has the braking train on it, the following figures show the same yield plots for this track/rail resistance. The immediate observation is the different yield behaviour observed for the LUSAS analysis. Looking initially at the separate analysis and the concurrent thermal and rail loading analysis the yielding observed in the thermal alone for the separate analysis (Figure 93) shows close similarity to the yielding observed when the thermal and train loading are applied concurrently (Figure 95) – minimal yielding is observed under the action of the train load alone in the separate analysis (Figure 94).

Concentrating on the LUSAS analysis, the front of the braking train load is just over the right end of the structure and the carriages cover most of the remaining bridge. This has the effect, unlike the accelerating track, of changing nearly all of the resistance from unloaded to loaded for this track over the bridge and therefore the interaction is no longer under yield because the loaded resistance now governs plastic yield. The LUSAS analysis however does not display the possible apparent increase in the resistance of the track that can be observed with the separate analysis method. This means the track interaction around the front of the braking train resisting the movement of the rails cannot sustain the same level of loading and therefore yield to a larger extent than observed in the separate analysis, thereby reducing the compressive stress in the rails underneath the train – compare Figure 94 and Figure 96 where the yielding underneath the braking train is greater for the LUSAS analysis than in the separate rail load analysis.

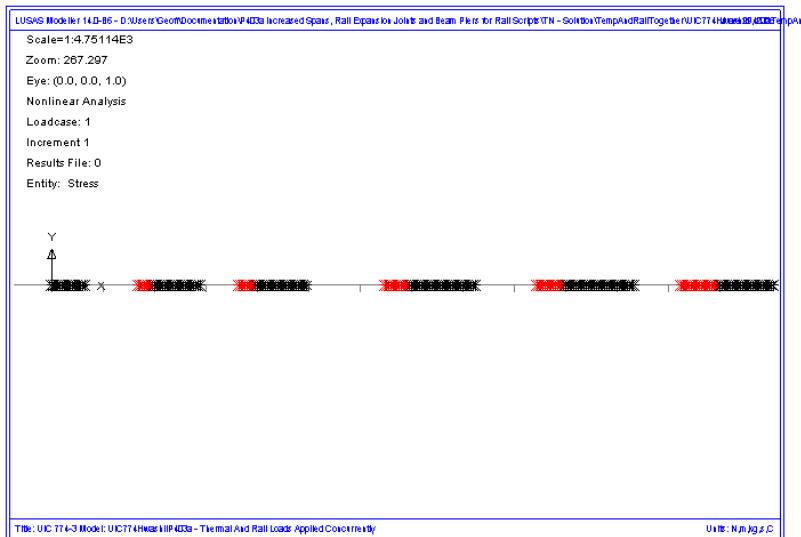


Figure 93: Track/Rail 1 Yield Due To Thermal Load On Track Alone

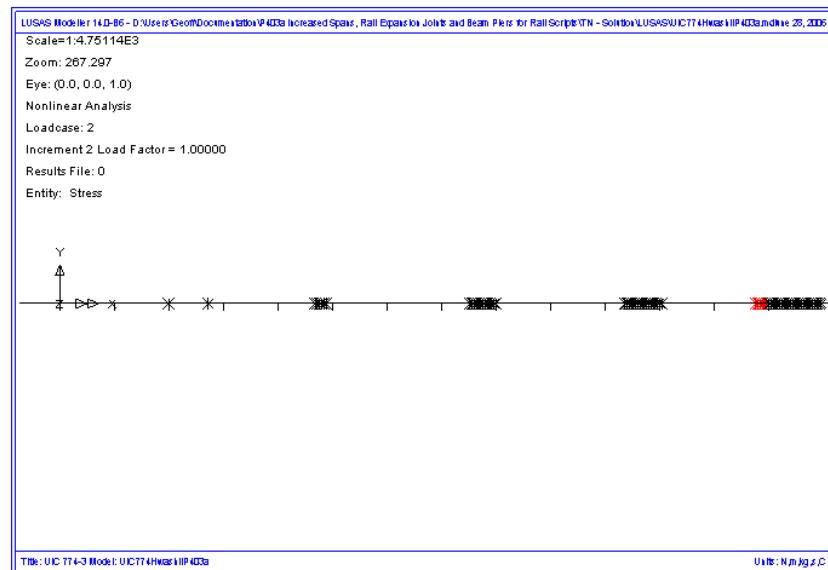
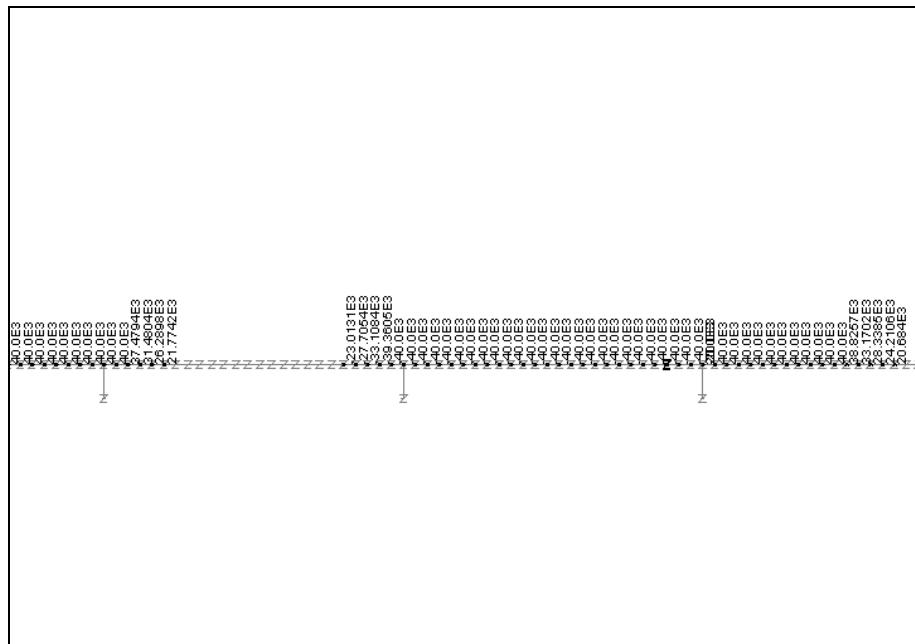
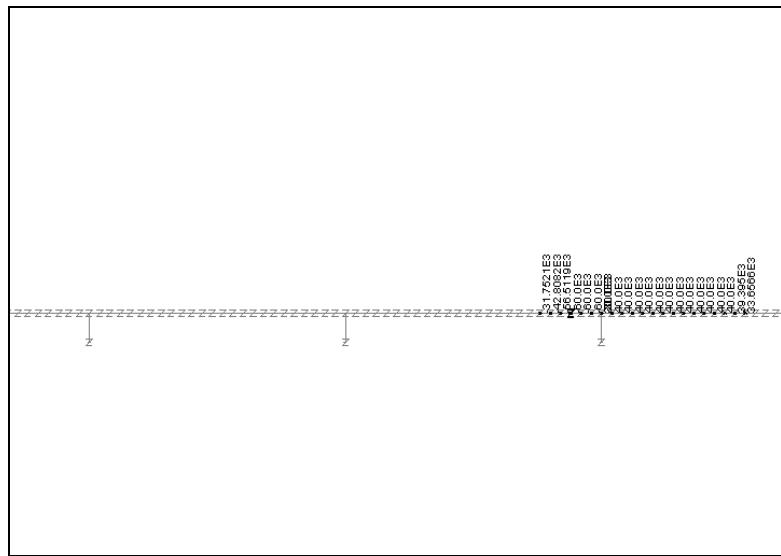

Analysis of Combined Thermal and Rail Loading Taking Account of Effects of Material Change Under Rail Loading

Figure 94: Track/Rail 1 Yield Due To Braking Train Loads On Track 1 – Separate Analysis


Figure 95: Track/Rail 1 Yield Due To Braking Train Loads On Track 1 - Thermal And Rail Applied Concurrently


Figure 96: Track/Rail 1 Yield Due To Braking Train Load On Track 1 - LUSAS Combined Analysis

Looking at the behaviour of the track interaction for the separate analysis we can plot the values of the force per metre length for the track subjected to the braking train loads. Figure 97 and Figure 98 show the forces per metre length for the thermal loading and the train braking loading for the separate analyses. Clearly, near the right-hand abutment, the force per metre length under the thermal loading is equal to 40kN/m and due to the train loading is equal to 60kN/m. Combination of these two results means that the track interaction has mobilised 100kN/m in this region when it is actually only able to mobilise 60kN/m based on the loaded track resistance bilinear curve – the separate analysis method is giving an apparent increase in the loaded track resistance that can be mobilised before plastic yielding occurs. This apparent increase in the loaded track resistance has the consequence of allowing the rail stresses to increase beyond the value that would occur if the true loaded track resistance was used as in the LUSAS modelling where the track resistance is correctly limited to the loaded value of 60kN/m – Figure 99.

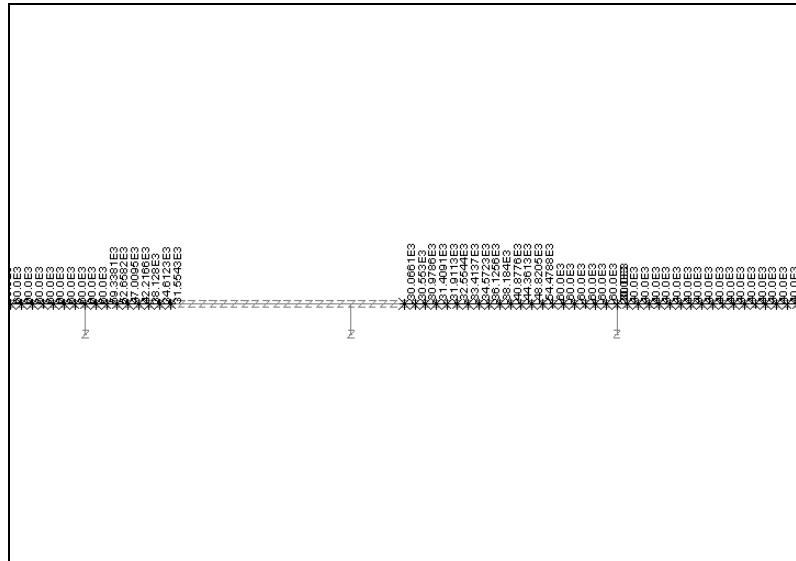

NOTE: This difference in the amount of track resistance that can be mobilised in the loaded condition is the main reason for the differences in the solutions obtained for the separate and LUSAS methods and demonstrates that the correct modelling of the interaction is critical to the solution.

Figure 97: Force In Interaction At Right-Hand End Of Structure Where Peak Compressive Stresses Occur In The Rail - Track 1 – Separate Thermal Loading (N/m length)

Figure 98: Force In Interaction At Right-Hand End Of Structure Where Peak Compressive Stresses Occur In The Rail - Track 1 - Separate Train Loading (N/m length)

Figure 99: Force In Interaction At Right-Hand End Of Structure Where Peak Compressive Stresses Occur In The Rail - Track 1 – LUSAS Nonlinear (N/m length)

Revisit of UIC774-3 Test E1-3 Using the Separate and LUSAS Methods of Analysis

The standard UIC774-3 test E1-3 has been reanalysed using the following two approaches:

- Separate analysis of thermal and rail loading effects
- LUSAS full nonlinear analysis

The results of these two analyses are presented in the following sections and then discussed briefly.

Separate Analyses

The analysis of the thermal effects due to the temperature in the bridge and rail are presented in the following figure. These two thermal effects give a peak compressive rail stress of 150.21 N/mm² which compares well with the code of practice value of 156.67 N/mm² (allowing for slight differences in material properties which have been estimated).

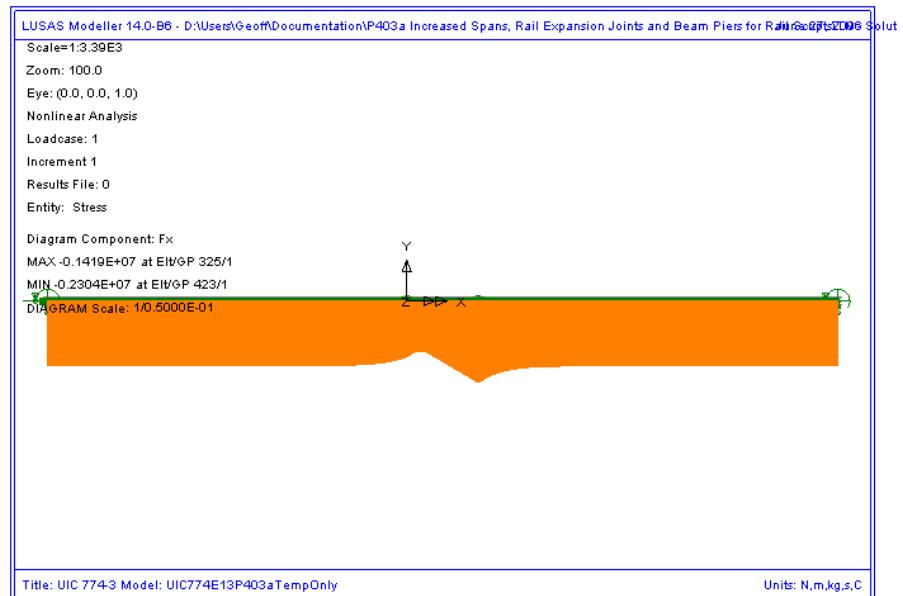
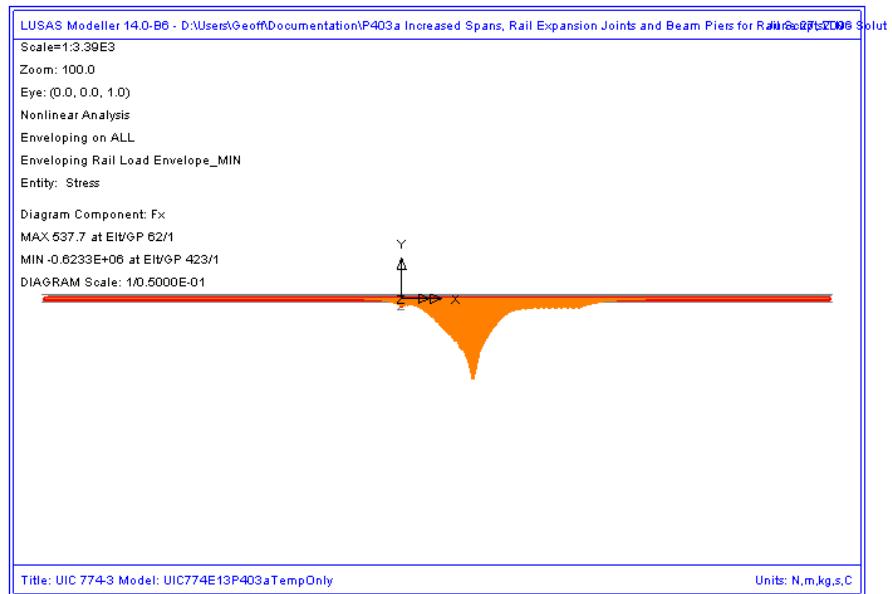
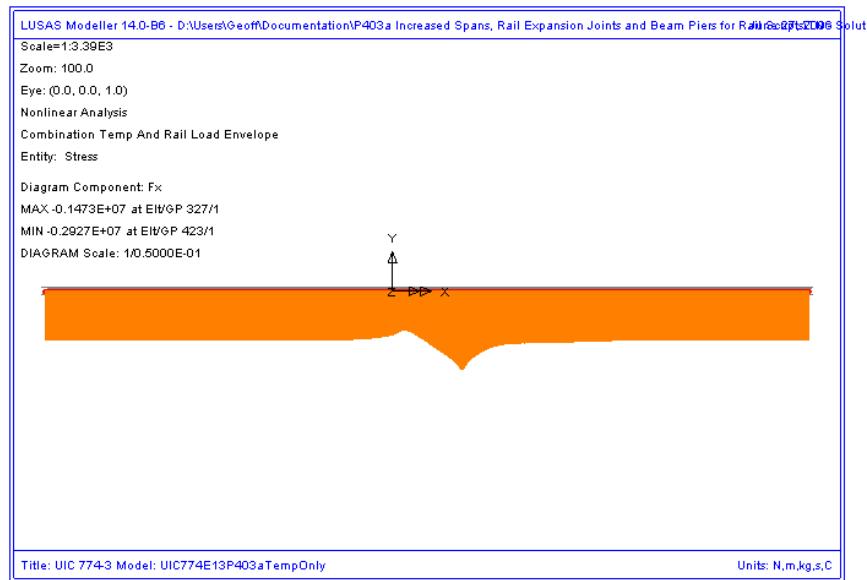



Figure 100: Axial Force In Rails Due To Temperature In Bridge And Rail


To determine the worst location of the train load for compressive rail stresses the bridge has been analysed with the rail loading at 31 separate locations (starting from the left abutment of the bridge and finishing 90m from the right abutment of the bridge – train moving from left to right) and these results enveloped. The results of this

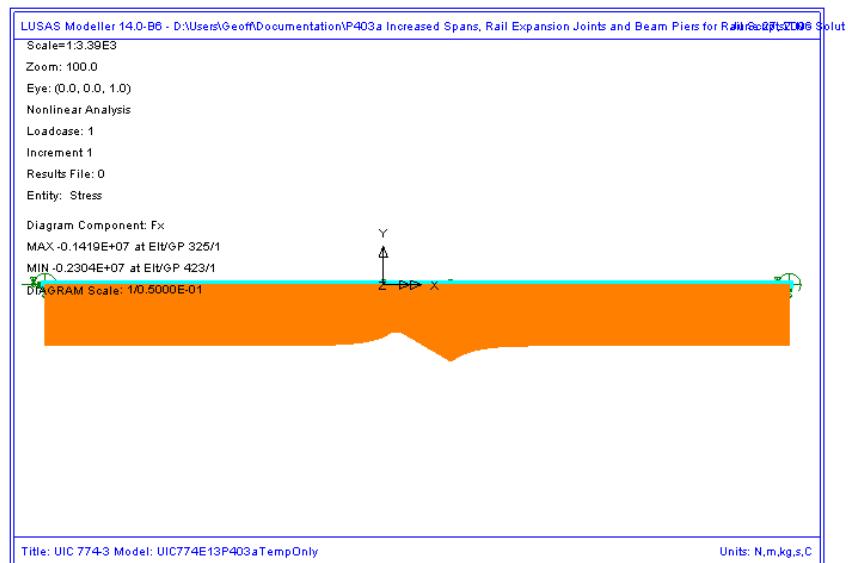
analysis are presented in the following figure which give a peak compressive rail stress of 40.64 N/mm².

Figure 101: Envelope Of Axial Force In Rails Due To Rail Loading

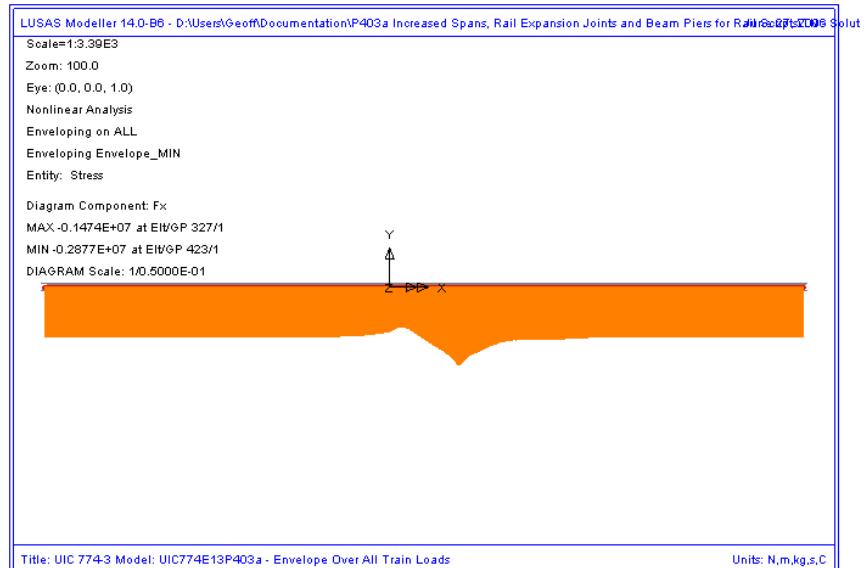
Manual combination of the peaks would give a peak compressive rail stress of 190.85 N/mm² (ignoring locations of the peaks) and combination of the results in LUSAS gives 190.82 N/mm².

Figure 102: Axial Force In Rails Due To Combined Temperature And Rail Loading

Comparison of these results with the UIC774-3 code of practice test results shows that the result compares directly with the 190.07 N/mm² compressive rail stress from the simplified analysis in the test case (which is based on evaluating the effect of each part of the loading separately) and are close to the rigorous answer of 182.4 N/mm².


LUSAS Nonlinear Analysis

The UIC774-3 E1-3 test case has been reanalysed using the LUSAS rail option and gives the following peak compressive rail stress for the thermal loading alone and the combined thermal and rail loading:


Thermal: 150.21 N/mm²

Thermal & Rail: 187.56 N/mm²

Comparison of the results shows that the rail stresses are in excellent agreement for both parts of the analysis with the compressive rail stress having a percentage error of 2.83% when compared against the target rigorous solution of 182.4 N/mm².

Figure 103: Axial Force In Rails Due To Temperature In Bridge And Rail

Figure 104: Axial Force In Rails Due To Combined Temperature And Enveloped Rail Loading

Discussion

For this test case the difference in the results due to the track resistance modelling between the two methods is minimal. Combining the results of two nonlinear analysis, while invalid, gives almost identical results to the LUSAS analysis which correctly represents the transition from unloaded to loaded resistance on arrival of the train load. The train load position that gives the worst compressive stress in the rail does however differ slightly between the two analyses with the separate analysis giving a train front position of 75m from the left abutment of the bridge and the LUSAS combined analysis giving a train front position of 80m from the left abutment of the bridge.

Looking at the yield behaviour it becomes clear why the two methods agree so closely for this UIC774-3 standard test case and not for the Hwashil Viaduct. For both analyses, the rail stresses and interaction yield over the single span bridge due to thermal loading are identical – Figure 105. On consideration of the train loading, the right-hand end of the structure (roller bearing) where the peak compressive rail stresses are observed shows no sign of yield with yield only occurring over the left end and embankment – Figure 106 and Figure 107. This indicates that the separate analysis, while invalid due to the linear combination of two nonlinear analyses, is giving the correct result and this only occurs because the interaction over the structure at this location is nowhere near yield.

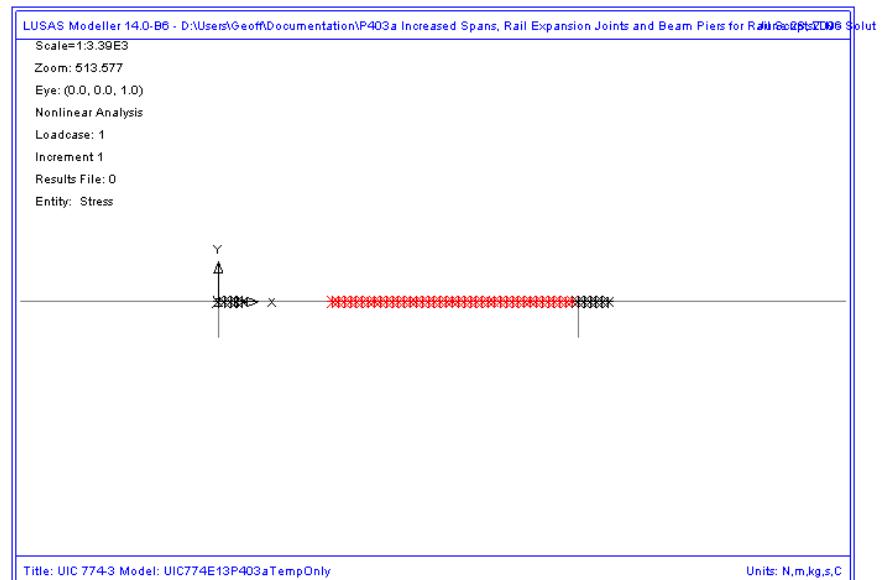
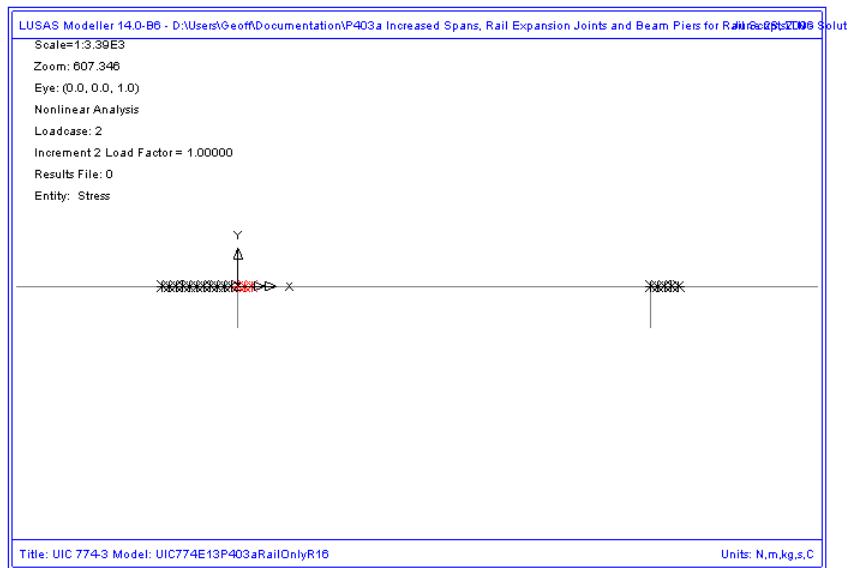
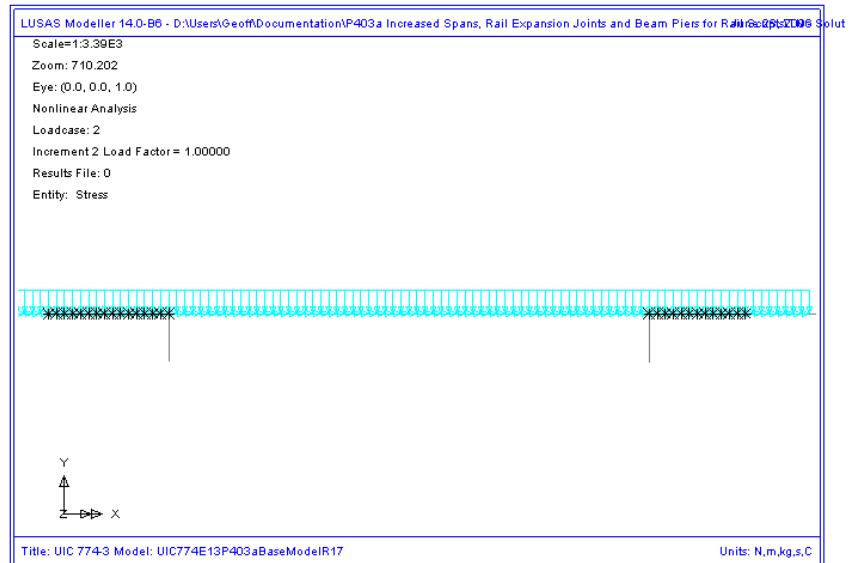




Figure 105: Yield Layout For Thermal Loading Only

Figure 106: Yield Layout For Train Loading Only From Separate Analysis

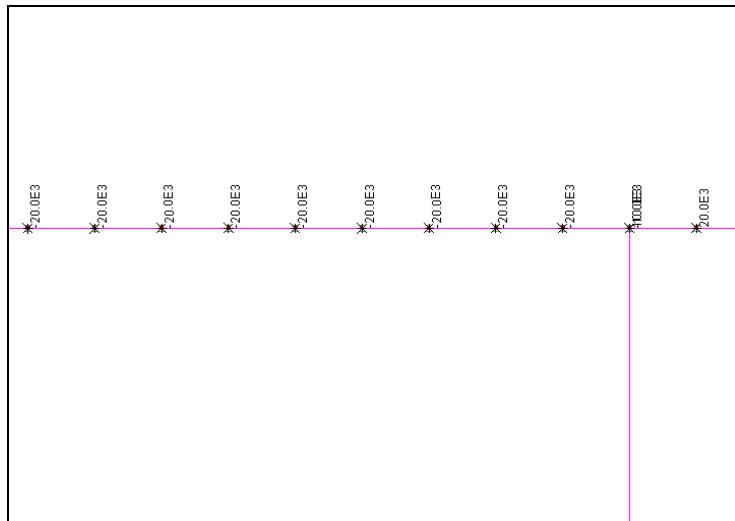
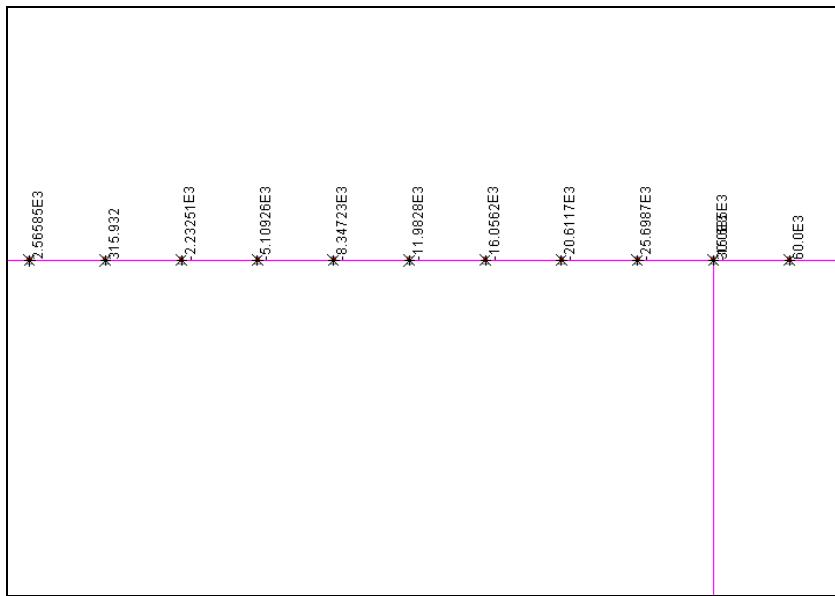


Figure 107: Yield Layout For Combined Thermal And Train Loading From LUSAS Nonlinear Analysis


The following two plots show the forces in the interaction joints for the thermal and train loads from the separate analysis. The thermal loading has caused yielding of the unloaded track interaction with a value of 20 kN/m in accordance with the unloaded resistance but the train loads have only induced up to about 25.7 kN/m over the structure. Combining these two results means that the total force per unit length for the separate analysis is 45.7 kN/m which is comparable to the LUSAS nonlinear solution of 40.4 kN/m – see Figure 110. Because the interaction is well below yield for the loaded interaction resistance of 60 kN/m the two solution method effectively have identical solutions and their behaviour can be visualised in Figure 111.

If, however, the train loading had induced interaction forces in the region of 40 kN/m (taking account of the track resistance already mobilised by the thermal loading) instead of the observed 25.7 kN/m then significant differences could be observed in the two analysis methods as the separate method would still allow a further 20 kN/m track resistance to be mobilised before the onset of plastic yielding and the separate analysis would potentially over predict the rail stresses occurring. This potentially means that...

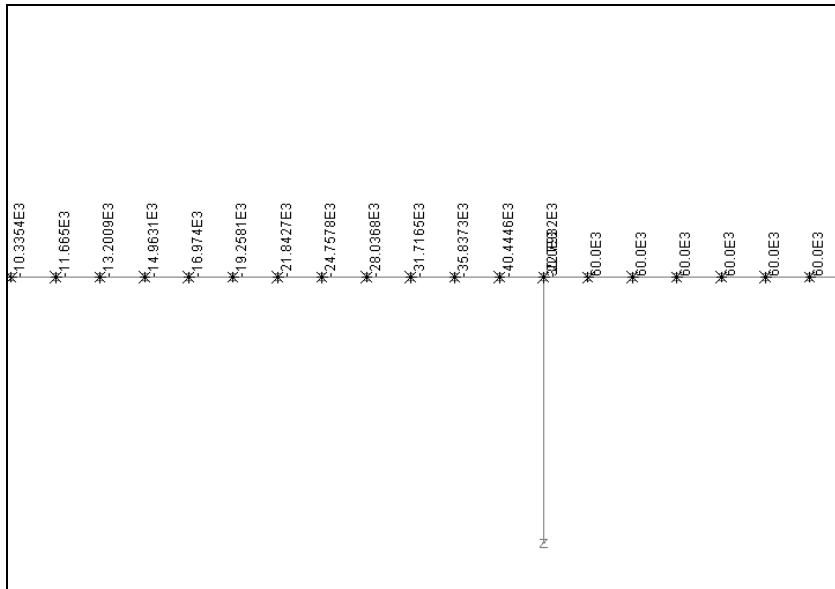
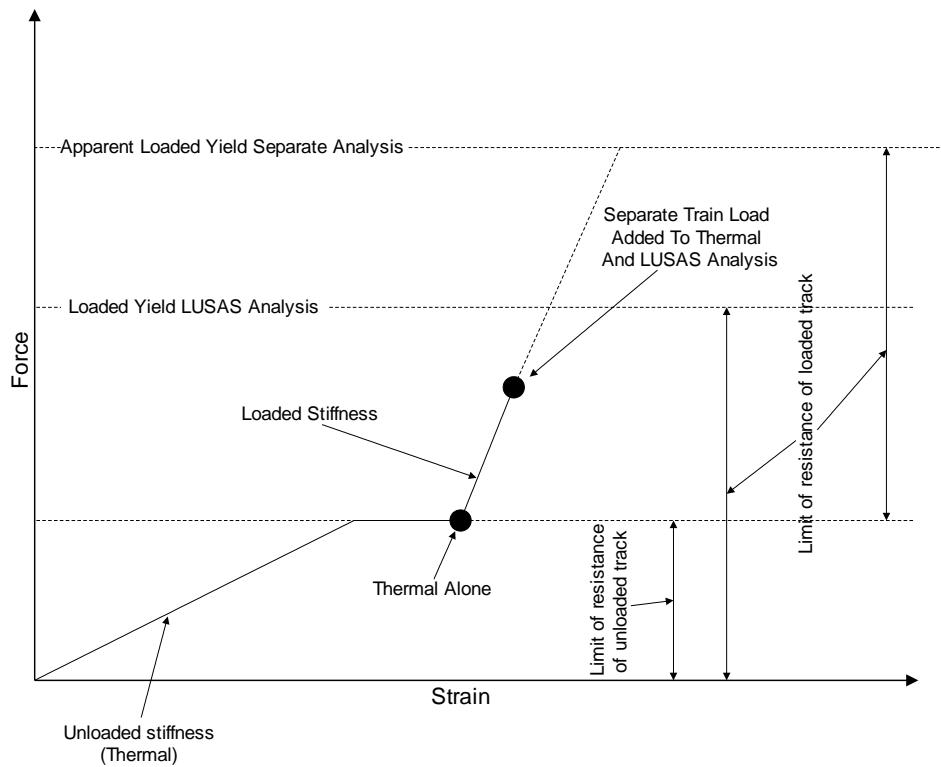
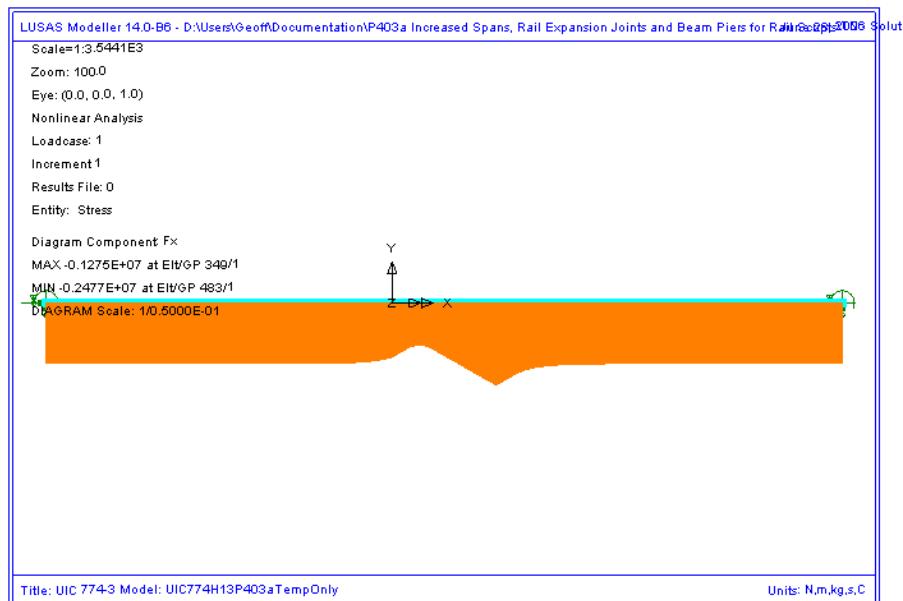

...even though a computer program is validated against the standard test cases in the UIC774-3 code of practice, it may be predicting excessive rail stresses if it does not correctly take account of the loaded track resistance that can be mobilised.

Figure 108: Force Per Metre Length In Interaction From Thermal Loading - Separate Analysis

Figure 109: Force Per Metre Length In Interaction From Train Loading - Separate Analysis

Figure 110: Force Per Metre Length In Interaction From Combined Loading - LUSAS Analysis




Figure 111: Illustration Of Behaviour For UIC774-3 Standard Test E1-3 For Separate And LUSAS Analyses

Revisit of UIC774-3 Test H1-3 Using the Separate and LUSAS Methods of Analysis

The previous test case (E1-3) is one of the key test cases that must be matched for computer programs carrying out this form of analysis with the results for both the separate method and the LUSAS method being in close agreement to the results required. The deck type for this test is however a concrete slab underlain by I-section steel beams which does not compare with the deck being used for Hwashil Viaduct. For this reason the H1-3 test is also revisited and solved using the two methods of analysis.

Separate Analyses

The analysis of the thermal effects due to the temperature in the bridge and rail are presented in the following figure. These two thermal effects give a peak compressive rail stress of 161.48 N/mm² which compares well with the code of practice value of 169.14 N/mm² (allowing for slight differences in material properties which have been estimated).

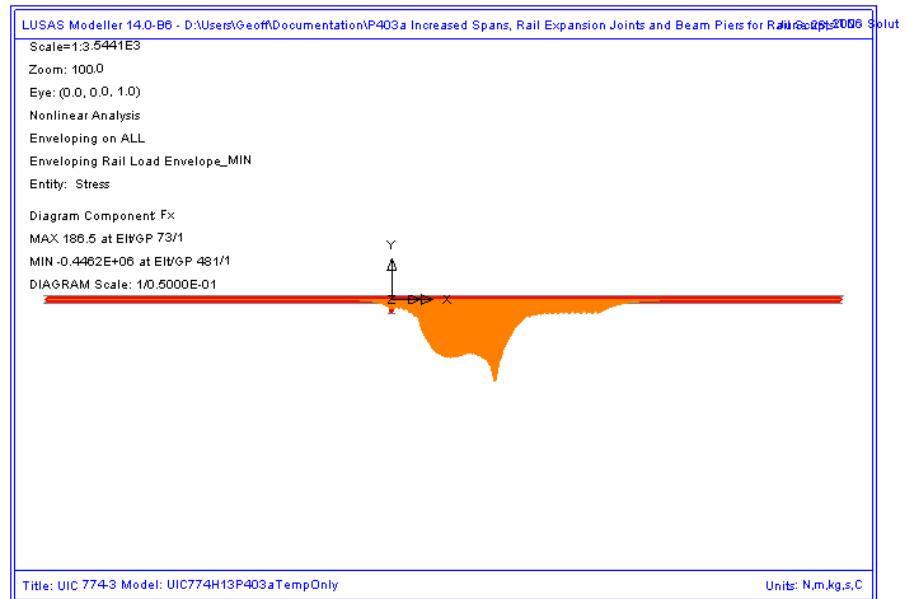
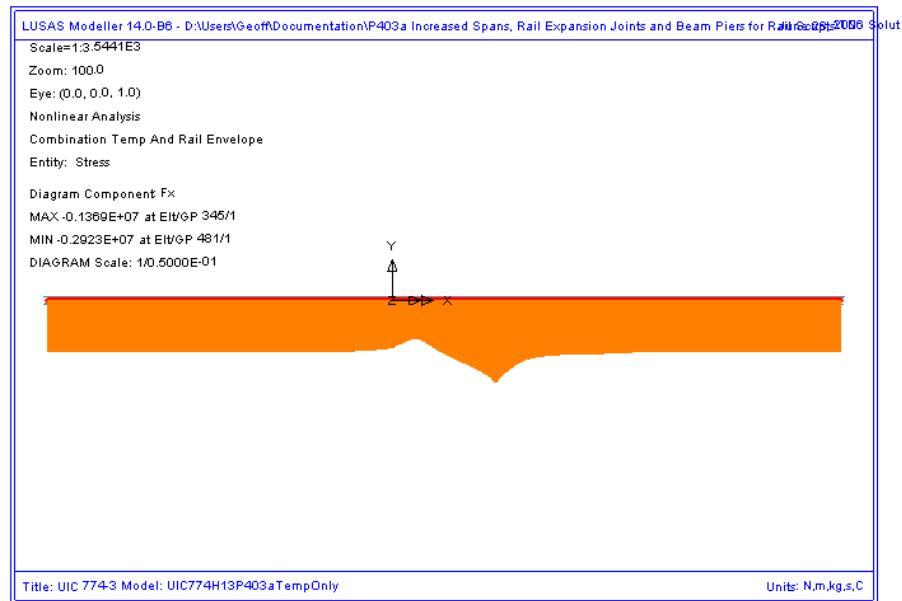


Figure 112: Axial Force In Rails Due To Temperature In Bridge And Rail

To determine the worst location of the train load for compressive rail stresses the bridge has been analysed with the rail loading at 37 separate locations (starting from the left abutment of the bridge and finishing 90m from the right abutment of the bridge – train moving from left to right) and these results enveloped. The results of this


Revisit of UIC774-3 Test H1-3 Using the Separate and LUSAS Methods of Analysis

analysis are presented in the following figure which give a peak compressive rail stress of 29.09 N/mm².

Figure 113: Envelope Of Axial Force In Rails Due To Rail Loading

Manual combination of the peaks would give a peak compressive rail stress of 190.57 N/mm² (ignoring locations of the peaks) and combination of the results in LUSAS gives 190.56 N/mm².

Figure 114: Axial Force In Rails Due To Combined Temperature And Rail Loading

Comparison of these results with the UIC774-3 code of practice test results shows that the result compares well with the 188.23 N/mm² compressive rail stress from the complex analysis in the test case.

LUSAS Nonlinear Analysis

The UIC774-3 H1-3 test case has been reanalysed using the LUSAS rail option and gives the following peak compressive rail stress for the thermal loading alone and the combined thermal and rail loading:

Thermal: 161.48 N/mm²

Thermal & Rail: 189.65 N/mm²

Comparison of the results shows that the rail stresses are in excellent agreement for both parts of the analysis with the compressive rail stress having a percentage error of 0.75% when compared against the target solution of 188.23 N/mm².

Revisit of UIC774-3 Test H1-3 Using the Separate and LUSAS Methods of Analysis

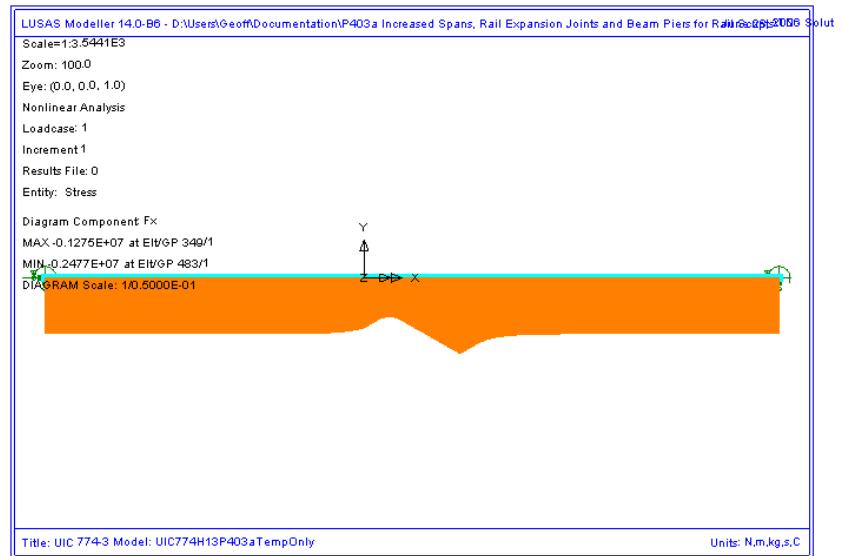
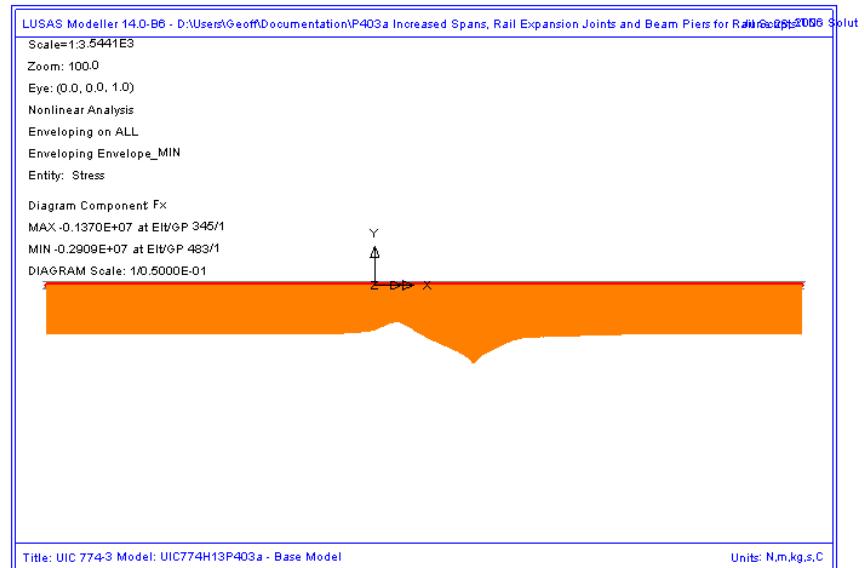
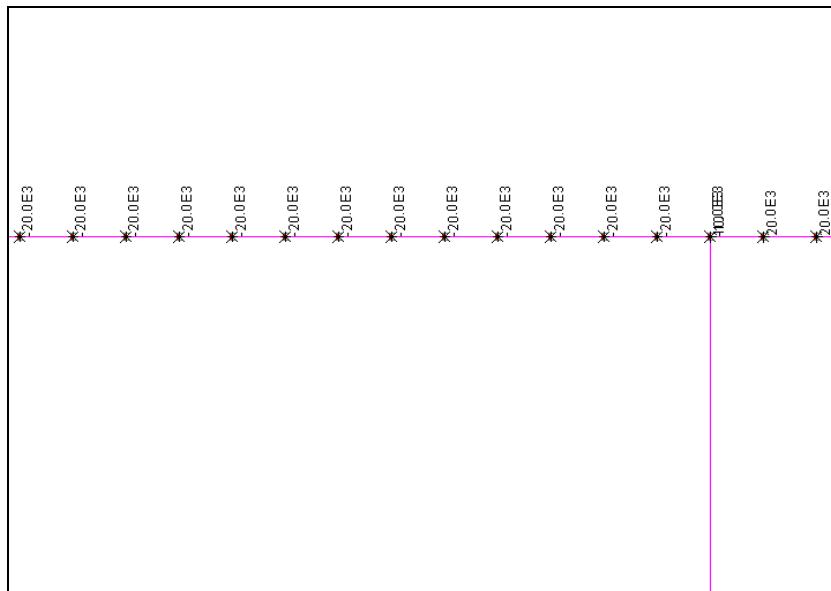


Figure 115: Axial Force In Rails Due To Temperature In Bridge And Rail




Figure 116: Axial Force In Rails Due To Combined Temperature And Enveloped Rail Loading

Discussion

As with the previous E1-3 test case, the difference in the results due to the track resistance modelling between the two methods is minimal. Combining the results of two nonlinear analysis, while invalid, gives almost identical results to the LUSAS analysis which correctly represents the transition from unloaded to loaded resistance on arrival of the train load. The train load position that gives the worst compressive stress in the rail does however differ slightly between the two analyses with the separate analysis giving a train front position of 100m from the left abutment of the bridge and the LUSAS combined analysis giving a train front position of 110m from the left abutment of the bridge.

Referring back to test E1-3, similar plots can be generated for the yield and forces in the interaction. These, as with the E1-3 test, show that the train loading is not bringing the force per metre length in the interaction close the loaded yield resistance of 60 kN/m and therefore the separate analysis and LUSAS analysis methods agree even though the separate method potentially allows more track resistance to be mobilised than is allowed when the thermal and rail results are combined.

Separate:	27.8 kN/m
LUSAS:	26.1 kN/m

Figure 117: Force Per Metre Length In Interaction From Thermal Loading - Separate Analysis

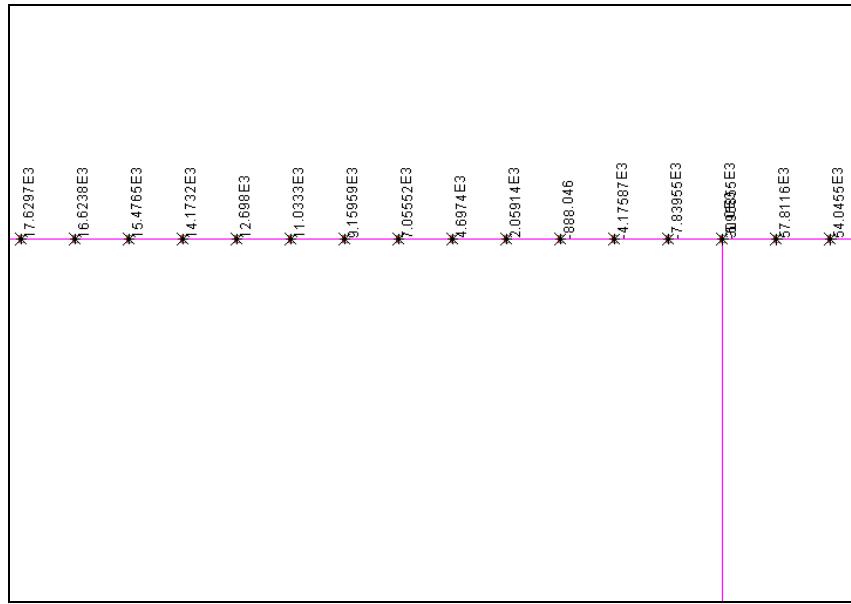


Figure 118: Force Per Metre Length In Interaction From Train Loading - Separate Analysis

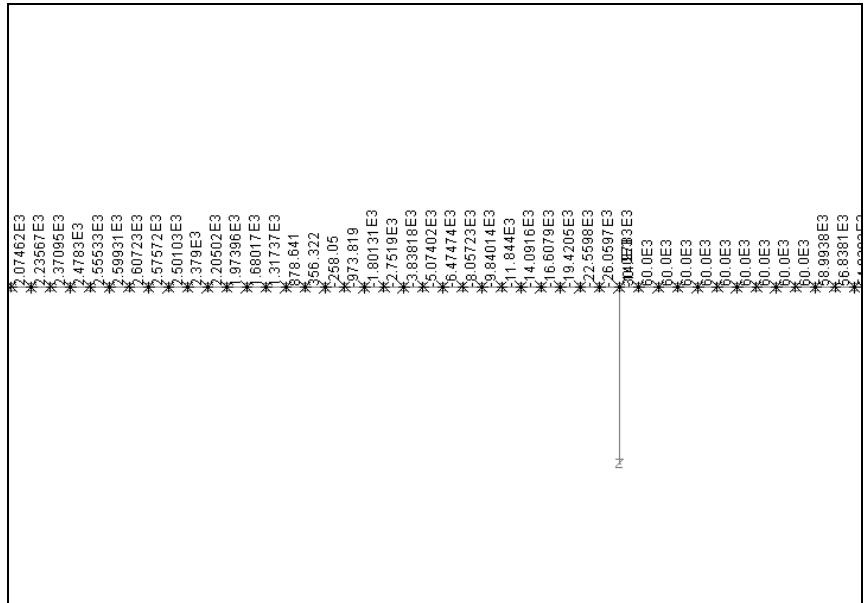


Figure 119: Force Per Metre Length In Interaction From Combined Loading - LUSAS Analysis

Conclusions

Three solution methods for carrying out the UIC track/bridge interaction analyses have been investigated and differences observed in the assumed behaviour and results highlighted. The key observations were as follows:

Separate Thermal and Rail Loading Analysis

- Correct unloaded track resistance used for thermal effects across whole model
- Correct yielding of unloaded ballast/frozen ballast-no ballast track under thermal effects
- Incorrect yielding of loaded ballast/frozen ballast-no ballast track assuming that thermal effects are present, only correct if there are no thermal effects
- Invalid combination of two nonlinear analyses results gives apparent increase in the resistance of the track due to stresses in ballast/frozen ballast-no ballast track from the unloaded thermal effects being ignored in the ultimate yield of the loaded analysis – to correctly model the reduction of the resistance of the track before yielding occurs under loaded conditions, the yield resistance for the loaded condition should be reduced by the amount of resistance already mobilised due to the thermal effects
- Separate analysis ignores the movement that has already occurred under the thermal effects when the load from the train acts on the rails

Concurrent Thermal and Rail Loading Analysis

- Incorrect loaded track resistance used for thermal effects under location of train loads
- Incorrect yielding of ballast/frozen ballast-no ballast track under thermal effects as loaded track resistance used
- Correct track resistance for yielding under the train loading
- Movement due to thermal effects alone only approximated

LUSAS Nonlinear Thermal and Rail Analysis with Material Change

- Correct unloaded track resistance used for thermal effects across whole model
- Correct yielding of unloaded ballast/frozen ballast-no ballast track under thermal effects
- Correct yielding of loaded ballast/frozen ballast-no ballast track under action of combined thermal and train loading effects as track resistance correctly modelled (yield occurs at the correct loading – no apparent increase in the yield value)
- Instantaneous change from unloaded to loaded track resistance correctly takes account of movement that has already occurred under thermal effects alone

Referring back to Figure 91 and Figure 92, the key issue with the separate analysis approach is the ability for the track resistance to be overestimated by the combination of the two nonlinear analyses and potentially cause the rail stresses to be overestimated. In the concurrent loading and LUSAS rail option analyses the limit of track resistance is correctly modelled as the value determined from the loaded bilinear curve and therefore this potentially leads to reduced rail stresses observed in the analyses. As the initial movement under pure thermal loading in the concurrent analysis uses the loaded track resistance this will give different results to the LUSAS rail option analysis. Referring back to the Hwashil Viaduct analyses, the rail stresses observed for the three analysis types are:

	Separate Analysis Of Thermal And Train Loading	Concurrent Thermal And Train Loading	LUSAS Nonlinear Thermal And Train Loading With Material Change
Track 1 (Braking)	94.99	85.6	79.08
Track 2 (Accelerating)	103.66	100.6	92.58

Table 2: Comparison Of Peak Compressive Rail Stresses (in N/mm²) For Different Analysis Methods

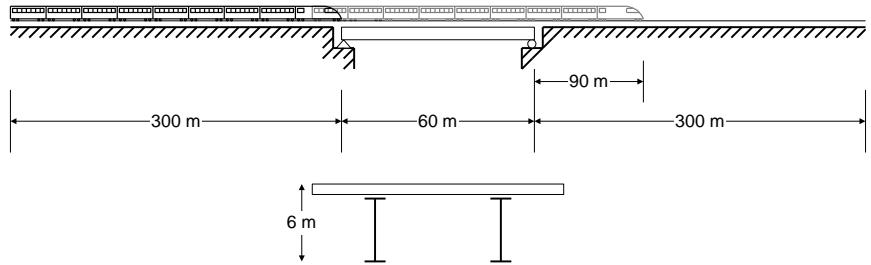
Comparison of the results for the separate and LUSAS analyses shows that the peak compressive stress for the separate analysis is 1.2 times that of the LUSAS analysis for track 1 and 1.12 times for track 2. It should be noted however that the separate analysis could be giving an apparent increase in track resistance of up to 1.6 times that of the loaded track due to the combination of the nonlinear results. The concurrent analysis gave results that are between the separate and LUSAS analysis as expected since the correct limit of loaded track resistance is modelled even though the thermal effects are only approximated.

One overall conclusion is obvious from these test case analyses and discussions made in this appendix:

When a combined thermal and train loading from a separate analysis gives interaction forces that exceed the stated yield resistance then the separate analysis method will potentially over predict the rail stresses unless the loaded track yield surface is reduced by the mobilised track resistance over the extent of the train loading.

References

U1 UIC Code 774-3 R. Track/bridge Interaction. Recommendations for Calculations (2001) Union Internationale des Chemins de fer, Paris, France



Worked Example: Track-Structure Interaction to UIC774-3

For software product(s):	LUSAS <i>Bridge</i>
With product option(s):	Nonlinear, Rail Track
Note: The example exceeds the limits of the LUSAS Teaching and Training Version.	

Description

This example examines the track-structure interaction between a braking train and a single span bridge and considers the cases where the trainset is just about to enter the left-side side of structure through to the front of the train being 90m beyond the right-hand side. It approximates (as far as the original test data allows) testcase E1-3 which can be found in Appendix D.1 of the UIC774-3 Code of Practice.

Objectives

The output requirements of the analysis are:

- Maximum relative displacement between the track and the structure in the longitudinal direction (relative railbed displacement).
- Peak axial rail stresses.
- Peak longitudinal reactions at the abutments.

Keywords

UIC774-3, track-structure interaction

Associated Files

- UIC_Template.xlsx** or **UIC_Template.xls** UIC774-3 Microsoft Excel input spreadsheet (unpopulated) for copying to a projects folder and using with this worked example.

The following files are also provided in the **<LUSAS Installation Folder>\Examples\Modeller** folder and are intended for copying to a projects folder if results processing only and not spreadsheet data input is of interest:

- UIC E1-3 Analysis.xlsx** or **UIC E1-3 Analysis.xls** UIC774-3 Microsoft Excel input spreadsheet populated with data defined in this example. If used, continue at the section Modelling / Running an Analysis.
- UIC E4-6 Analysis.xlsx** or **UIC E4-6 Analysis.xls** UIC774-3 Microsoft Excel input spreadsheet populated with data defined in this example. This is for use for a further investigation with the same model as built by the preceding spreadsheet.

Defining Model Data

The LUSAS Rail Track Analysis software option automatically builds LUSAS models suitable for track/structure interaction analysis. It does so from data defined in Excel spreadsheets.

If you wish to build the model used in the worked example from a predefined populated spreadsheet continue at the section titled *Modelling / Running an Analysis*.

Otherwise, to see the processes involved in defining data to build a model from scratch:

- Copy the Microsoft Excel spreadsheet named **UIC_Template.xlsx** (use **UIC_Template.xls** if using an older version of Microsoft Excel) from the **<LUSAS Installation Folder>\Programs\Scripts\User** folder to a working

projects folder (such as <LUSAS Installation Folder>|Projects> where the track-structure interaction model is to be built.

- Rename the spreadsheet to **UIC E1-3 Analysis.xlsx** if using Microsoft Excel 2007 and above or rename to **UIC E1-3 Analysis.xls** if the other file was copied and you are using an older version of Microsoft Excel.
- Open the spreadsheet in Microsoft Excel.

The modelling spreadsheet contains six worksheets titled:

- Decks, Tracks and Embankment**
- Structure Definition**
- Geometric Properties**
- Material Properties**
- Interaction and Expansion Joint**
- Loading**

Note. Data should only be entered into the yellow regions of the Microsoft Excel spreadsheet to define the modelling and analysis requirements. Numeric values in the white cells are automatically populated according to data entered in other worksheets. These cells are protected from editing or user input. Data tips and other details relating to cells can often be seen by hovering over a cell.

Note. Whilst it is recommended that an unpopulated spreadsheet is used with this example, populated spreadsheets are supplied for those not wishing to enter all details as listed or for use if any errors are encountered with user-input into the general spreadsheet that cannot easily be fixed. Populated spreadsheets can be found in the <LUSAS Installation Folder>|Examples|Modeller folder. A spreadsheet compatible for an installed version of Microsoft Excel should be copied to the working folder where the track-structure interaction example model is to be created.

Defining Decks, Tracks and Embankment Lengths

- Pick the **Decks, Tracks and Embankment** worksheet.
- Enter **1** for the **Number of Decks**.
- Enter **1** for the **Number of Tracks**.
- The UIC774-3 Code of Practice specifies the embankment lengths for the test cases to be 300m. Enter **300** for both the **Left Embankment Length** and **Right Embankment Length**.

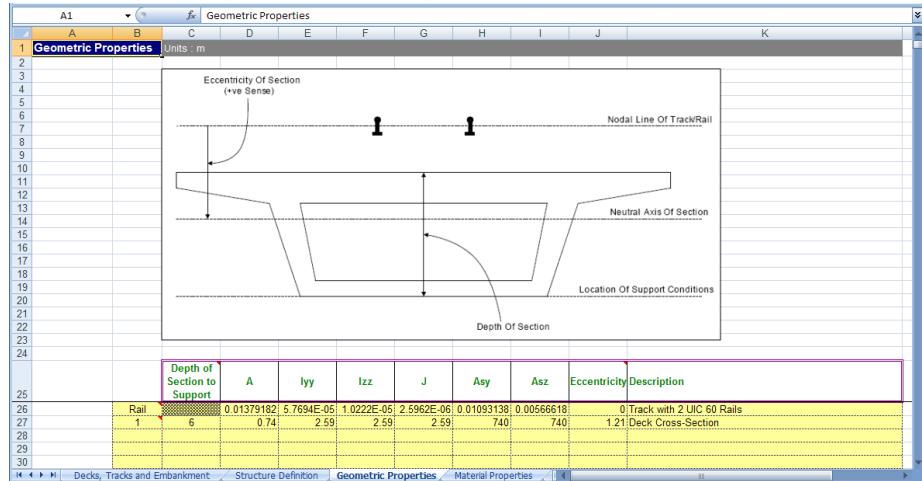
A1	Decks, Tracks and Embankment	Units : m
1	Decks, Tracks and Embankment	
2		
3	Number of Decks	1
4	Number of Tracks	1
5	Left Embankment Length	300
6	Right Embankment Length	300
7	Length of Decks Only / Total Length (m)	60 660
8		

Note that the Length of Decks Only and Total Length cells are populated using data on this and another worksheet. These cells are protected on this worksheet.

Defining the Structure

- Pick the **Structure Definition** worksheet.
- The left abutment has a stiffness of 600000kN/m according to test case E1-3. Enter **600** for the **Spring Support for each Abutment/Pier** for the left end of the deck because the units for the worksheet entry are kN/mm.
- No bearing behaviour is modelled in the E1-3 test case so enter **R** for the **Bearing Springs on Top of each Pier** for the left end of the deck.
- The first and only span of the deck has a free support in the longitudinal direction and can be specified through either no restraint in the spring support for the abutment / pier or through no restraint in the bearing springs. For this example the condition has been modelled using no restraint in the bearing springs.
- Enter **R** for the **Spring Support for each Abutment/Pier** for the first span of the deck.
- Enter **F** for the **Bearing Springs on Top of each Pier** for the first span of the deck.
- Enter **60** for the **Span Length**.
- Enter **1** for the **Geometric Assignment**. This ID will match a geometric definition in the **Geometric Properties** worksheet covered next.
- Enter **1** for the **Material Assignment**. This ID will match a material definition in the **Material Properties** worksheet covered later.

The worksheet should look like this:


A1		Structure Definition									
A		B									
1		Structure Definition									
3											
4	Deck 1	Left End	600								
5		Span 1	R								
6		Span 2									
7		Span 3									
8		Span 4									
9		Span 5									
10		Span 6									
11		Span 7									
12		Span 8									
13		Span 9									
14	Number of Supports for the Deck / Length		2					2	60		
15	Deck 2	Left End									
16		Span 1									
17		Span 2									
18		Span 3									
19		Span 4									
20		Span 5									
21		Span 6									
22		Span 7									
23		Span 8									
24		Span 9									
25	Number of Supports for the Deck / Length		0					0	0		
26	Deck 3	Left End									
27		Span 1									
28		Span 2									

Note. If more spans were present in the deck or the structure consisted of multiple decks this information would be entered into this worksheet.

The UIC774-3 fundamental tests do not incorporate modelling of the piers of the structure, so are not included in this example. However, LUSAS offers two methods of modelling piers when this is required to be done. The first method represents the pier through the equivalent stiffness which should be entered into the **Spring Support for each Abutment/Pier** entry and is calculated in accordance with Clause 1.3.2.2 in the UIC774-3 Code of Practice. The second method physically includes the pier in the finite element model and requires additional data entry into the columns for the **Pier Height**, **Pier Geometric Assignment** and **Pier Material Assignment**. For further details see the *Rail Track Analysis User Manual*.

Defining the Geometric Properties for the Structure

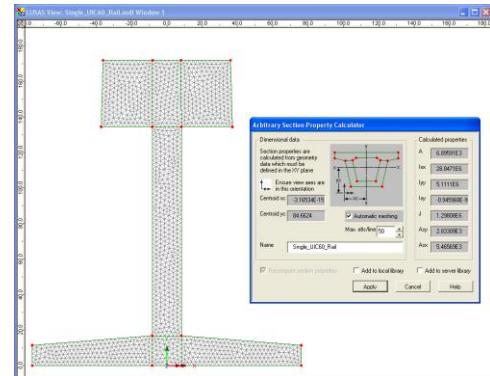
- Pick the **Geometric Properties** worksheet.

The first line of data should always be called **Rail** and contains the geometric properties for the rail track. All other lines define the geometric properties for the unique IDs used in the **Structure Definition** worksheet.

The details of the rail used in the UIC774-3 test cases are not provided so it has been assumed that the track is formed of UIC 60 rails and for the purposes of this example the properties are approximated. Enter the following values for the rail:

- Enter **0.01379182** for the area (**A**) in m^2 of the two rails of the track (This value is the total area per track for a track comprising of two UIC 60 rails).
- Enter **5.76942E-5** for the second moment of inertia about the horizontal y-axis (**Iyy**) in m^4 .
- Enter **1.02222E-5** for the second moment of inertia about the vertical z-axis (**Izz**) in m^4 .
- Enter **2.59616E-6** for the torsional constant (**J**) in m^4 .
- Enter **0.01093138** for the shear area for the y-direction (**Asy**) in m^2 .
- Enter **0.00566618** for the shear area for the z-direction (**Asz**) in m^2 .
- Enter **0** for the **Eccentricity** in the rail in m.
- Enter **Track with 2 UIC 60 Rails** in the **Description** for the rails.

Note. The UIC774-3 Code of Practice assumes that a 2D analysis is performed where the longitudinal and vertical behaviours of the track and structure are of interest. The current rail track analysis also assumes a 2D analysis but for its solution it requires the features of an element type which is only available in 3D in LUSAS. The properties entered into the worksheet therefore require geometric properties for all freedoms of the 3D element and the lateral behaviour and torsion the properties for two rails have been assumed to be twice those of the single rail. This will be discussed further in the **Modelling Discussion** section that follows.


Some of the properties for the 2D bending behaviour of the deck are provided in Appendix D.1 of the code of practice. As for the track rails, while the analysis is 2D the elements used are 3D so dummy properties have been included for the lateral behaviour and torsion of the deck although these will not affect the results obtained. In the model it has therefore been assumed that these properties are equal to the values provided for the vertical behaviour. Enter the following values for the deck:

- Enter **1** for the ID in the first column to match the geometric assignment ID for the deck in the **Structure Definition** worksheet.
- Enter **6** for the **Depth of Section** in m.
- Enter **0.74** for the area (**A**) in m^2 .
- Enter **2.59** for the second moment of inertia about the horizontal y-axis (**I_{yy}**) in m^4 .
- Enter **2.59** for the second moment of inertia about the vertical z-axis (**I_{zz}**) in m^4 .
- Enter **2.59** for the torsional constant (**J**) in m^4 .
- Enter **740** for the shear area for the y-direction (**A_{sy}**) in m^2 . The UIC774-3 test cases do not indicate whether shear deformations were included in the calculation of the target results so these have been ignored by setting the shear area to $1000*A$ in accordance with the *Element Reference Manual*.
- Enter **740** for the shear area for the z-direction (**A_{sz}**) in m^2 .
- Enter **1.21** for the **Eccentricity** in the deck in m. The UIC774-3 test cases assume that the track is at the top surface of the section and the neutral axis ordinate specified is from the base of the section. The depth of the section is 6m and the neutral axis ordinate is 4.79m giving an eccentricity of $6 - 4.79 = 1.21$ m.
- Enter **Deck Cross-Section** in the **Description** for the deck.

Modelling Discussion

While the UIC774-3 Code of Practice treats the track-structure interaction as a 2D problem the rail track analysis software uses 3D thick nonlinear beam elements for the modelling of this problem but restrains the out of plan behaviour thus reducing it back to an equivalent 2D analysis. In the definition of the geometric properties for the track rails and structure the rail track analysis software therefore requires all of the 3D geometric properties to be defined for the worksheet. The properties entered for I_{zz} , J and A_{sy} will be used in the analysis but these will not affect the results. They should however be set to similar magnitudes to the properties in I_{yy} and A_{sz} which are used for the bending deflection and shear deflection in the geometric properties to avoid mechanisms.

The properties (in units of mm) for a single UIC 60 rail of simplified cross-section were calculated in LUSAS using the arbitrary section property calculator. Since only the vertical bending of the track is considered the combined geometric section properties for the two rails of the track can be calculated by doubling the values calculated for the single rail. These combined values are the ones entered into the **Rail** properties section of the Geometric Properties worksheet

Note. The doubling of the I_{zz} , J and A_{sy} properties could be considered to be inappropriate but since these properties are not used in the effective 2D analysis their doubling is considered acceptable.

Defining the Material Properties for the Structure

Material Properties					
Units : N, mm, kg					
		E	v	p	Description
Rail	1	210000	0.3	0	0.00001 Rails
		210000	0.3	0	0.00001 Deck

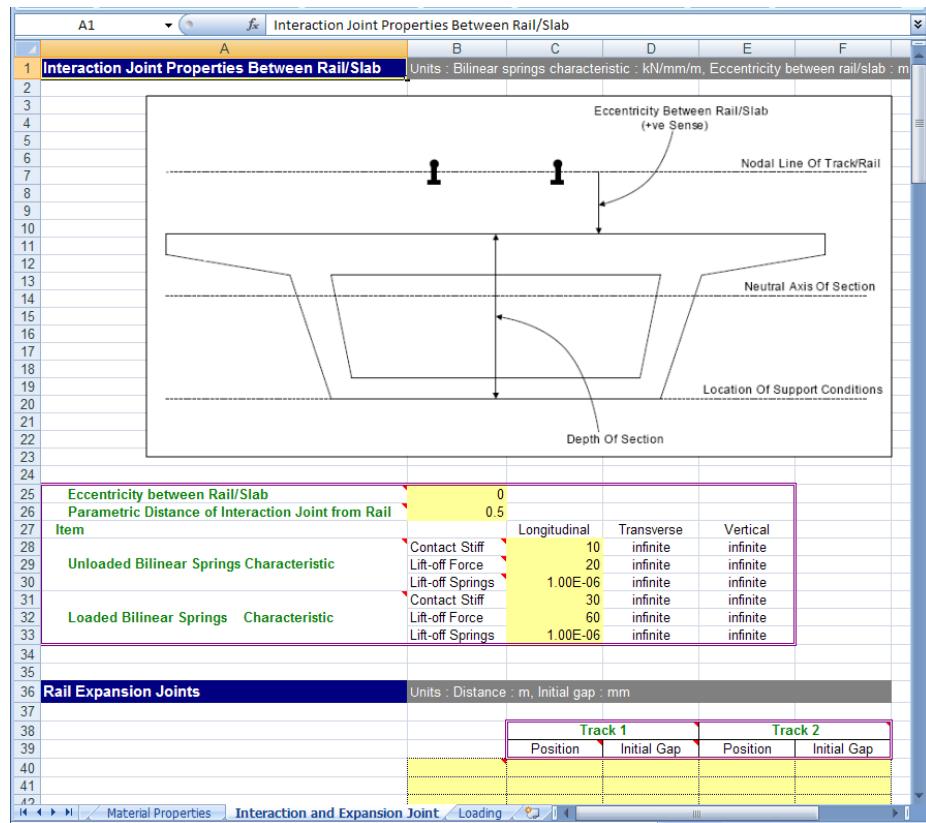
- Pick the **Material Properties** worksheet.

The first line of data should always be called **Rail** and contains the material properties for the rail track. All other lines define the material properties for the unique IDs used in the **Structure Definition** worksheet.

Enter the following values for the rail:

- Enter **210000** for the Young's modulus (**E**) in N/mm² which is equivalent to a value of 210 GPa.
- Enter **0.3** for the Poisson's ratio (**v**).
- Enter **0** for the mass density (**p**). Setting this to the representative value allows the self-weight deflections to be calculated for the structure and track system if they are required but it is not used for the track-structure interaction analysis.
- Enter **1.0E-5** for the coefficient of thermal expansion (**α**).
- Enter **Rails** in the **Description** for the rails.

Enter the following values for the deck:


- Enter **1** for the ID in the first column to match the material assignment ID for the deck in the **Structure Definition** worksheet.
- Enter **210000** for the Young's modulus (**E**) in N/mm².
- Enter **0.3** for the Poisson's ratio (**v**).
- Enter **0** for the mass density (**p**).
- Enter **1.0E-5** for the coefficient of thermal expansion (**α**).
- Enter **Deck** in the **Description** for the material properties.

Note. The documentation accompanying the UIC774-3 test cases does not mention the exact material properties that were used for the rail track in the target solutions and also does not mention the Poisson's ratio or coefficient of thermal expansion used for the track / deck. These material properties have therefore been assumed to be identical for both and the coefficient of thermal expansion used is identical to the value mentioned in Example 1 in Appendix C.1 of the UIC774-3 Code of Practice.

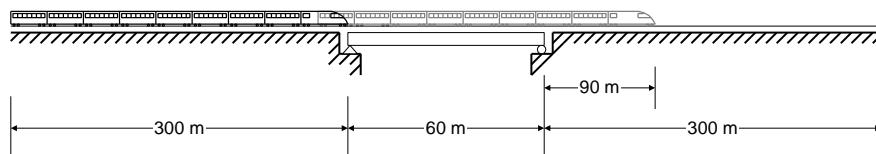
From the temperature behaviour of a restrained bar it can, however, be back calculated that the coefficient of thermal expansion was more likely 1.2E-5 to obtain a compressive stress of 126 MPa in the track alone under thermal loading. To replicate the exact test case the example should potentially have this coefficient of thermal expansion and accurate UIC60 track properties.

Defining the Track-Structure Interaction and Expansion Joint Properties for the Structure

- Pick the **Interaction and Expansion Joint** worksheet.
- Enter **0** for the eccentricity between the rail and slab as the UIC774-3 test cases in Appendix D.1 are assumed to have their centre of gravity coincident with the top of the reinforced concrete slab of the deck.
- Enter **0.5** for the **Parametric Distance of Interaction Joint from Rail**. For modelling with no eccentricity between the rail and the slab this parameter is not used but they are placed halfway between the rail and slab by default for eccentric track if entry is blank.

Note. The UIC774-3 test cases assume that the track is ballasted without specifying the exact interaction properties that are to be used. It is therefore assumed that the value of u_0 in the test cases is equal to 2mm which is the representative value for a sleeper in ballast (as opposed to 'frozen' ballast track) indicated in Clause 1.2.1.2.

- Enter **10** for the **Unloaded Contact Stiffness** in the longitudinal direction in kN/m/mm. The resistance parameter for the unloaded track is 20kN/m in the test and this gives a stiffness of $20\text{kN/m} / 2\text{mm} = 10\text{kN/m/mm}$ (see note above).
- Enter **20** for the **Unloaded Lift-off Force** in the longitudinal direction in kN/m.
- Enter **1.0E-6** for the **Unloaded Lift-off Springs** in the longitudinal direction in kN/m/mm.
- Enter **30** for the **Loaded Contact Stiffness** in the longitudinal direction in kN/m/mm. The resistance parameter for the unloaded track is 60 kN/m in the test and this gives a stiffness of $60\text{kN/m} / 2\text{mm} = 30\text{kN/m/mm}$ (see note above).
- Enter **60** for the **Loaded Lift-off Force** in the longitudinal direction in kN/m.
- Enter **1.0E-6** for the **Loaded Lift-off Springs** in the longitudinal direction in kN/m/mm.


Note. The interaction springs are modelled using nonlinear joints with elastic-perfectly plastic behaviour in the longitudinal direction. This is achieved using the elasto-plastic uniform tension and compression material where the lift-off force is equivalent to the yield force and the lift-off spring is equivalent to the hardening stiffness. The lift-off spring should always be set to a very small value to avoid numerical instabilities.

- Ensure that there is no data specified in the **Rail Expansion Joints** region of the worksheet.

Defining the Trainset Loading for the Structure

- Pick the **Loading** worksheet.
- Enter **35** for the **Temperature** variation of the deck in $^{\circ}\text{C}$.
- Enter **50** for the **Temperature** variation of the rail tracks in $^{\circ}\text{C}$.

For the UIC774-3 E1-3 test case the 300m long trainset travels from the left-hand abutment of the 60m long deck to 90m past the right-hand abutment of the deck, a total distance of 150m. For the example this trainset passage will be broken up into 10m increments.

- Enter **16** for the **Number of Track Loading Locations** based on the formula Number of track loading locations = Travel / Increment + 1 giving $150 / 10 + 1 = 16$.

- Enter **Braking** for the **Loading Type** in the first row of loading.
- Enter **1** in the **Track Selection to be Loaded** since there is only a single track in the analysis.
- Enter **0** for the **Parametric Starting Position for Loadings** (in m) to indicate the left-hand limit of the trainset loading.
- Enter **300** for the **Parametric End Position for Loadings** (in m) to indicate the right-hand limit of the trainset loading. The train is 300m long in the test case.
- Enter **20** for the **Amount (per unit length)** to apply 20kN/m horizontal braking forces acting to the right for the trainset moving from left to right.
- Enter **0** for the **Starting Location of Loading for First Analysis** to place the trainset in a location where it is just about to enter the deck structure for the first analysis, recalling that the left-hand embankment is 300m long.
- Enter **150** for the **Finishing Location of Loading for Last Analysis** to place the right-hand extent of the trainset 90m past the 60m deck span for the last analysis.
- Enter **Vertical** for the **Loading Type** in the second row of loading.
- Enter **1** in the **Track Selection to be Loaded** since there is only a single track in the analysis.
- Enter **0** for the **Parametric Starting Position for Loadings** (in m) to indicate the left-hand limit of the trainset loading.
- Enter **300** for the **Parametric End Position for Loadings** (in m) to indicate the right-hand limit of the trainset loading. The train is 300m long in the test case.
- Enter **80** for the **Amount (per unit length)** to apply 80 kN/m vertically downwards for the trainset.
- Enter **0** for the **Starting Location of Loading for First Analysis** to place the trainset in a location where it is just about to enter the deck structure for the first analysis, recalling that the left-hand embankment is 300m long.
- Enter **150** for the **Finishing Location of Loading for Last Analysis** to place the right-hand extent of the trainset 90m past the 60m deck span for the last analysis.
- **Save** the spreadsheet and close the Microsoft Excel application.

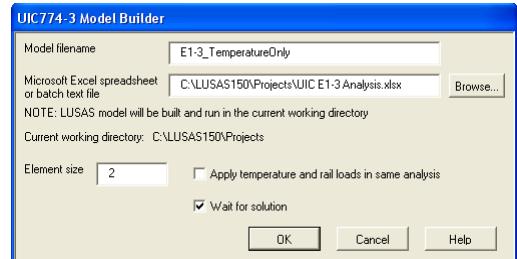
Note. The horizontal and vertical loading of the trainset in the test cases have identical configurations. More complex trainset loading configurations and acceleration loading can be also specified (see the *Rail Track Analysis User Manual* for more information).

Modelling / Running an Analysis

All of the model construction and analysis is automatically performed by the Rail Track Analysis software option but, to do so, a blank LUSAS model must be initially created or a suitable existing LUSAS model (that was created by the Rail Track Analysis option) must be opened.

Running LUSAS Modeller

For details of how to run LUSAS Modeller see the heading **Running LUSAS Modeller** in the Examples Manual Introduction.


Creating a Temperature-only Model

An initial temperature-only analysis can form the basis for carrying out more than one track-structure interaction analysis with different trainset loading configurations being used. For large analyses time savings can result from not having to re-run a temperature analysis for each trainset loading.

- Enter **UIC774_testcase** for the model name and click OK.

This model is created solely to allow the Rail Track Analysis option to be selected. It is not used after the option has been run.

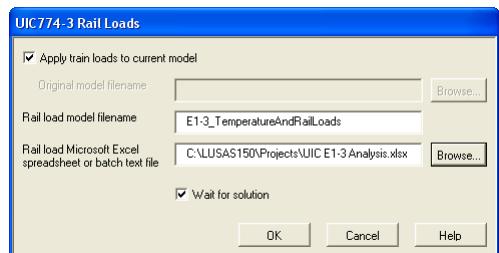
- Enter **E1-3_TemperatureOnly** for the **Model filename**.
- Enter the filename of the Microsoft Excel spreadsheet created for the model building and analysis (e.g. UIC E1-3 Analysis.xlsx) or browse for it using the **Browse...** button in the

Microsoft Excel spreadsheet or batch text file input. If the full folder information is not entered it will be assumed that the Microsoft Excel spreadsheet is in the current working folder which is reported in the dialog.

- Ensure an **Element size** of **2** is specified which will create elements of a maximum length of 2m in the LUSAS model.
- Ensure that the **Apply temperature and rail loads in same analysis** option is not selected.
- Ensure the **Wait for solution** option is selected and click the **OK** button.

Assuming that there have been no errors in the input for the Microsoft Excel spreadsheet the Rail Track Analysis software option will automatically generate a LUSAS model (shown below) from the spreadsheet data and run a rail track analysis for temperature-only loading.

If the Rail Track Analysis software option detected errors with modelling data these will be reported and must be corrected prior to re-running the Rail Track Analysis option.


Note. If the intention was to only perform this analysis and investigate the thermal effects then post-processing could be performed on the results of the analysis. In addition, if the **Apply temperature and rail loads in same analysis** option was selected the combined temperature and rail track loading results would now be available. For this example we will however be using this temperature only analysis as a starting point for more than one track-structure interaction analysis so no post-processing will be performed at this stage.

Applying Trainset Rail Loading to the Temperature Model

The temperature only model will now be used as the starting point for the application of the trainset rail loading that needs to be considered for the track-structure interaction analysis.

- Select the **Apply train loads to current model** option as we have just performed the temperature only analysis and will use this model as the base model for the application of the trainset rail loading.
- Enter **E1-3_TemperatureAndRailLoads** as the **Rail load model filename**.
- Enter the **UIC E1-3 Analysis.xlsx** (or **UIC E1-3 Analysis.xls**) filename of the Microsoft Excel spreadsheet created for the analysis or browse for it using the **Browse...** button in the **Microsoft Excel spreadsheet or batch text file** input. If the full folder information is not entered it will be assumed that the Microsoft Excel spreadsheet is in the current working folder.
- Ensure the **Wait for solution** option is selected.
- Click the **OK** button and choose **No** to saving the changes to the current model as no manual changes have been made.

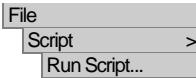
Assuming that there have been no errors in the trainset loading input for the Microsoft Excel spreadsheet the Rail Track Analysis software option will now automatically generate a LUSAS model for each train position being considered (16 in total) and run

a track-structure analysis for the combined temperature and trainset rail loading using the trainset loading information defined in the spreadsheet.

Note. If both the temperature and trainset rail loads were applied to the original model the program would detect this and report that the original model is not a valid temperature-only model. If this were to happen, repeat the model building process above before reattempting to apply the trainset rail loading to the analysis.

If errors were detected...

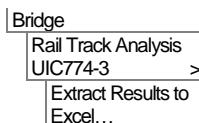
If errors were detected with the modelling data, or the post-processing in the next section gives different results, the values in the spreadsheet should be corrected before re-selecting the previous Rail Track Analysis menu item. If it proves impossible for you to correct the errors reported a populated spreadsheet file is provided to enable you to create the model and run an analysis successfully.



□ UIC E1-3 Analysis.xlsx (.xls) is a populated spreadsheet containing all input data for the example.

A spreadsheet compatible for an installed version of Microsoft Excel should be copied to the working project folder where the track-structure interaction example model is to be created, and the **Bridge > Rail Track Analysis UIC774-3 > Apply Rail Loads** menu item re-selected.

Viewing the Results


If the analyses were run from within LUSAS Modeller with the **Wait for solution** option the last created model (for train position 16) will be loaded and the results for each analysis and train position considered for that model will be added to the Treeview.

 If the results from the analyses were not automatically loaded then these should be loaded manually using the VBScript file created by the program in the working folder.

- To load the results on top of the current model, select the file **E1-3_TemperatureAndRailLoads_Reload.vbs** located in the folder where the models were generated and the analysis performed.

Automatic Extraction of Results into Microsoft Excel

The Rail Track Analysis option provides a post-processing tool that automatically extracts the results of the analyses into tabular form in Microsoft Excel and generates commonly required graphs and tables of quantities that can be compared against prescribed limits for the track-structure interaction.

- Enter **E1-3_PostProcess** for the **Filename**. Note that no *.xlsx or *.xls extension is required.
- Ensure the **Working folder** is set to **Current** to place the post-processing Microsoft Excel spreadsheet into the same folder as the analyses.

Prior to clicking the **OK** button please note the following cautions:

Caution. You should not have any other Microsoft Excel windows open while the post-processing is carried out. Starting Microsoft Excel or opening another Microsoft Excel spreadsheet while the post-processing is running will break the connection between Modeller and Microsoft Excel resulting in an error and termination of the post-processing.

Caution. Do not carry out any Copy or Paste actions in any application whilst results are being extracted during the post-processing process as this could lead to incorrect extraction and processing of the results by Microsoft Excel.

- Click the **OK** button.
- Click on **Yes** when asked whether envelopes are to be created in Microsoft Excel.

The automatic Rail Track Analysis post-processor will now extract the results from the loaded analysis results and generate the Microsoft Excel spreadsheet in the working folder.

Note. An estimate of the time to complete the post-processing for each worksheet can be obtained by watching the progress bar at the bottom of the Modeller window. Post-processing of all the results will occupy the LUSAS licence for this time.

- Open the spreadsheet **E1-3_PostProcess** in Microsoft Excel.

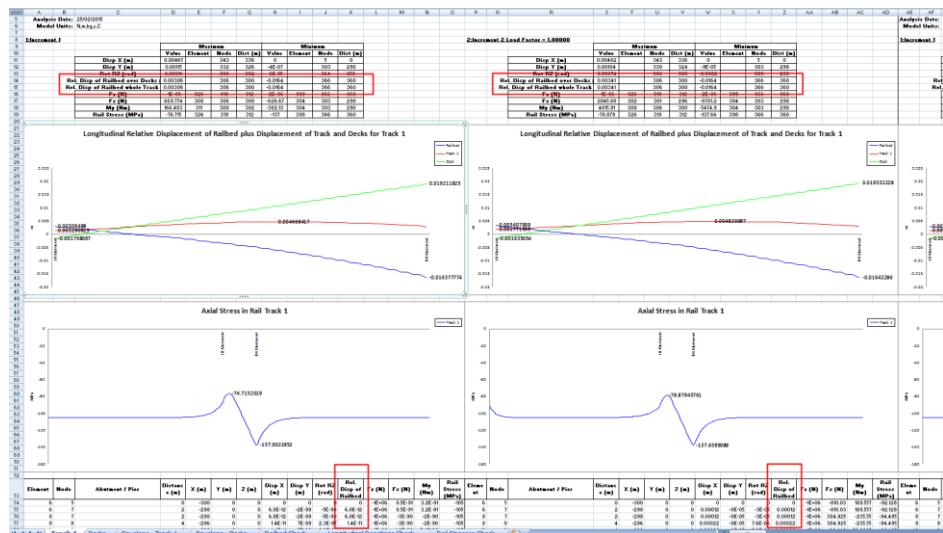
Because the creation of envelopes was specified earlier the results spreadsheet will contain seven worksheets that contain the results from the analyses. Note that some versions of Excel may only show the tabs for the last created worksheets, and hide the previous worksheets. If this is the case, other worksheets can be seen by pressing the 'back' arrow at the bottom of the worksheet window.

The worksheets created are titled:

- Track 1**
- Decks**
- Envelope – Track 1**
- Envelope – Decks**

- Railbed Check**
- Longitudinal Reactions Check**
- Rail Stresses Check**

Peak Relative Railbed Displacement

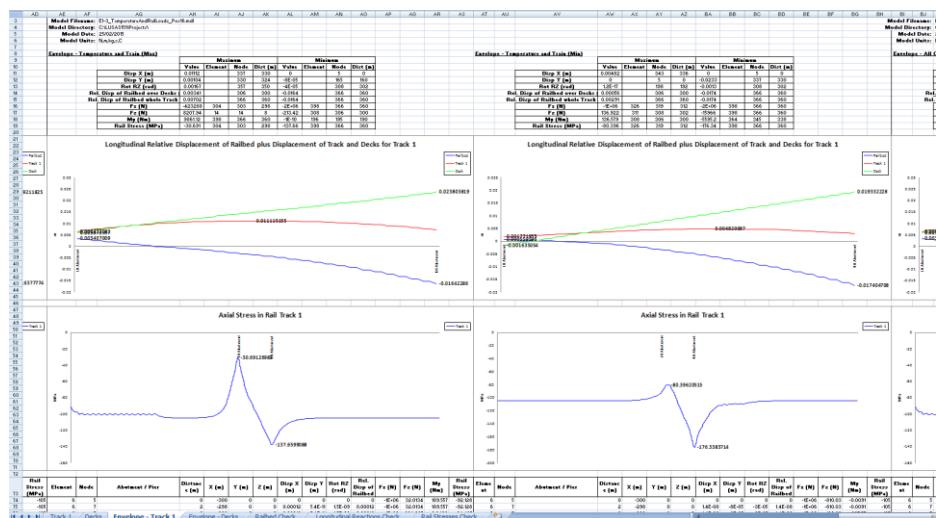

For a continuously welded rail (CWR) track the typical criteria to be met for the relative railbed displacements is quoted in Clause 1.5.3 of UIC774-3 which states that:

“The maximum permissible displacement between rail and deck or embankment under braking and/or acceleration forces is 4 mm”

To permit checking of this criteria rail bed displacements are included in the Track 1 worksheet which reports all of the relative railbed displacements calculated for the track-structure interaction model.

- Click on the **Track 1** worksheet tab.

Maximum and minimum values are reported in the summaries at the top of the sets of results, values over the structure are graphed in the top chart, and individual values along the length of the track are reported in tabular form – as shown below.


Because the option to create envelopes in Microsoft Excel was chosen when the post-processor was run the spreadsheet includes additional post-processing of the relative railbed displacement in the form of envelopes and a table of peak values for each trainset position.

For the envelopes worksheet the output is identical to the tabular and chart output for the individual results in the analyses. Six envelopes are generated by the post-processor, namely:

- Envelope - Temperature Only (Max)
- Envelope - Temperature Only (Min)
- Envelope - Temperature and Train (Max)
- Envelope - Temperature and Train (Min)
- Envelope - All Configurations (Max)
- Envelope - All Configurations (Min)

Concentrating on the envelopes for the combination of the temperature and trainset loading, these are illustrated in the following figure.

- Click on the **Envelope - Track 1** worksheet tab.

Zooming into the summary tables at the top of the columns of results and charts (see images that follow) allows the extraction of the peak relative railbed displacements of +0.00341 m movement of the track to the right relative to the base of the ballast over the deck, +0.007 m movement of the track to the right relative to the base of the ballast over the whole track length and -0.0174 m movement of the track to the left relative to the base of the ballast over the whole track length and deck.

Rail Track Analysis User Manual

	AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO
1											
2											
3			Model Filename: E1-3_TemperatureAndRailLoads_Pos16.mdl								
4			Model Directory: C:\USAS151\Projects\								
5			Model Date: 25/02/2015								
6			Model Units: N,m,kg,s,C								
7											
8	Envelope - Temperature and Train (Max)										
9											
10											
11			Disp X (m)	0.01111516	337	330	0	5	0		
12			Disp Y (m)	0.00103986	330	324	-0.00008	165	160		
13			Rot RZ (rad)	-0.00167082	357	350	-4.037E-05	308	302		
14			Rel. Disp of Railbed over Decks (m)	0.00340701	306	300	-0.0164229	366	360		
15			Rel. Disp of Railbed whole Track (m)	0.00702325	366	360	-0.0164229	366	360		
16			Fx (N)	-423288.47	304	303	298	-1898580.7	398	366	360
17			Fz (N)	8207.94165	14	14	8	-213.41596	308	306	300
18			My (Nm)	9861.12479	398	366	360	-1.376E-10	196	195	190
19			Rail Stress (MPa)	-30.69127	304	303	298	-137.65991	398	366	360
20											

	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD
1											
2											
3											
4											
5											
6											
7											
8	Envelope - Temperature and Train (Min)										
9											
10											
11			Disp X (m)	0.00482009	343	336	0	5	0		
12			Disp Y (m)	0	5	0	-0.0233259	337	330		
13			Rot RZ (rad)	1.1506E-17	198	192	-0.0033341	308	302		
14			Rel. Disp of Railbed over Decks (m)	0.0005596	306	300	-0.0174047	366	360		
15			Rel. Disp of Railbed whole Track (m)	0.00290937	366	360	-0.0174047	366	360		
16			Fx (N)	-1108810	326	319	312	-2432027.1	398	366	360
17			Fz (N)	136.921562	311	308	302	-15965.772	398	366	360
18			My (Nm)	136.579019	308	306	300	-5595.1698	364	345	338
19			Rail Stress (MPa)	-80.396205	326	319	312	-176.33837	398	366	360
20											

The peak relative railbed displacement is therefore -0.0174 m which compares well with the UIC774-3 E1-3 test case published result of -1.73E-2 m with a difference of +0.6%.

In addition to the envelope worksheet, the peak relative railbed displacement can also be found in the Railbed Check worksheet as shown below.

- Click on the **Railbed Check** worksheet tab.

This shows that the peak relative railbed displacement occurs when the braking trainset is placed at the 5th position when the front of the 300 m long trainset is just over half way across the 60 m deck. This is highlighted in bold blue text in the worksheet.

A	B	C	D	E	F	G	H	I	J
Check of Longitudinal Relative Displacement of Railbed (Relative Displacement between Rails and Deck)									
Job Title: UIC 774-3 Model: E1-3_TemperatureAndRailLoads - Train Position 16									
Analysis Filename: E1-3_TemperatureAndRailLoads_Pos1 -> E1-3_TemperatureAndRailLoads_Pos16									
Model Directory: C:\UIC774-3\Projects									
Analysis Date: 01/02/2013 -> 25/02/2013									
Model Units: N.m/kg/c									

Rail Track Analysis User Manual

Now, concentrating on the envelopes for the combination of the temperature and trainset loading:

- Click on the **Envelope - Track 1** worksheet tab.

Maximum and minimum stresses observed in the rail track were -30.7MPa in compression and -176.32MPa in compression. The value of -176.32MPa compares well with the UIC774-3 E1-3 test case published results of -182.4MPa with a difference of -3.4%.

	AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO
1											
2											
3	Model Filename:	E1-3_TemperatureAndRailLoads_Pos16.mdl									
4	Model Directory:	C:\LUSAS151\Projects\									
5	Model Date:	25/02/2015									
6	Model Units:	N,m,kg,s,C									
7											
8	Envelope - Temperature and Train (Max)										
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											

In addition to the envelope worksheet, the peak axial stresses in the rails can also be found in the Rail Stresses Check worksheet.

- Click on the **Rail Stresses Check** worksheet tab

This worksheet shows that the peak most compressive axial stress of 176.32MPa occurs when the braking trainset is placed at the 9th position when the front of the 300m long trainset is 20m past the right-hand abutment side of the deck. The peak most tensile axial stress occurs at the 7th position. Both peaks are highlighted in bold blue text in the worksheet.

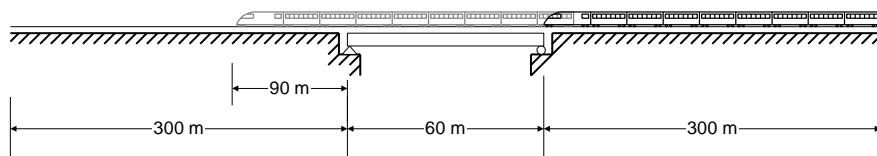
Peak Longitudinal Reactions at the Abutments

The left-hand abutment provides all of the longitudinal restraint to the deck of the structure and the peak longitudinal reactions at this abutment are now investigated.

When post-processing, the option to create the envelopes in Microsoft Excel was chosen which caused an additional worksheet tabulating the peak longitudinal reactions for all of the analyses to be created.

- Click on the **Longitudinal Reactions Check** worksheet tab

This worksheet shows that the peak longitudinal reaction occurs when the braking trainset is placed at the 9th position (highlighted in bold blue text in the worksheet) when the front of the 300m long trainset is 20m past the right-hand abutment side of the deck and gives a reaction of 861.667 N which compares well with the UIC774-3 E1-3 test case published result of 874.42kN with a difference of -1.5%.


Check of Longitudinal Reactions						
Analysis ID	Results Filename	Loading Type	Distance from Left End of the Model to the Starting Position of the Loading (m)	Distance from Left End of the Model to the Finishing Position of the Loading (m)	Peak Longitudinal Reaction (N)	Abutment / Pier Number with Peak Reaction
11	1 E1-3_TemperatureAndRail.loads_Pos1.mys	Temperature Only			682446.8823	UH Abutment
12	1 E1-3_TemperatureAndRail.loads_Pos1.mys	Braking	0	300	634770.9302	UH Abutment
13	2 E1-3_TemperatureAndRail.loads_Pos2.mys	Braking	10	310	616973.5098	UH Abutment
14	3 E1-3_TemperatureAndRail.loads_Pos3.mys	Braking	20	320	697145.6265	UH Abutment
15	4 E1-3_TemperatureAndRail.loads_Pos4.mys	Braking	30	330	780625.6404	UH Abutment
16	5 E1-3_TemperatureAndRail.loads_Pos5.mys	Braking	40	340	819331.8812	UH Abutment
17	6 E1-3_TemperatureAndRail.loads_Pos6.mys	Braking	50	350	798769.5728	UH Abutment
18	7 E1-3_TemperatureAndRail.loads_Pos7.mys	Braking	60	360	740216.4803	UH Abutment
19	8 E1-3_TemperatureAndRail.loads_Pos8.mys	Braking	70	370	836027.4427	UH Abutment
20	9 E1-3_TemperatureAndRail.loads_Pos9.mys	Braking	80	380	869308.4841	UH Abutment
21	10 E1-3_TemperatureAndRail.loads_Pos10.mys	Braking	90	390	869308.4841	UH Abutment
22	11 E1-3_TemperatureAndRail.loads_Pos11.mys	Braking	100	400	854041.941	UH Abutment
23	12 E1-3_TemperatureAndRail.loads_Pos12.mys	Braking	110	410	852112.0578	UH Abutment
24	13 E1-3_TemperatureAndRail.loads_Pos13.mys	Braking	120	420	852346.2982	UH Abutment
25	14 E1-3_TemperatureAndRail.loads_Pos14.mys	Braking	130	430	852175.0698	UH Abutment
26	15 E1-3_TemperatureAndRail.loads_Pos15.mys	Braking	140	440	852112.7412	UH Abutment
27	16 E1-3_TemperatureAndRail.loads_Pos16.mys	Braking	150	450	852090.1494	UH Abutment

- Close the Microsoft Excel application.

Alternative Analyses with Same Temperature Only Model

If further studies are required on the same structure for identical temperature conditions but with different trainset loading the Rail Track Analysis option can make use of the temperature only analysis from a previous analysis for a new one. For small structures the time saving from avoiding the reconstruction of an identical track-structure interaction model will generally not be significant but where the structure is very long and has many decks and spans this time saving can become significant.

Applying Alternative Trainset Rail Loading

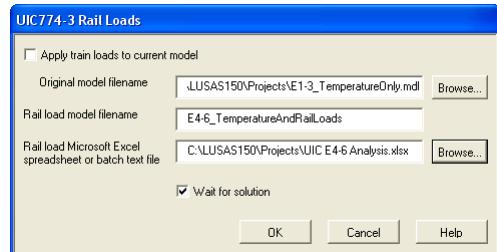
UIC774-3 test case E4-6 (shown above) is very similar to the one for test case E1-3. The only difference between the two tests is the direction that the braking trainset is travelling. As a result the temperature only model from test case E1-3 can and will be used as the starting point for the application of the alternative trainset rail loading that needs to be considered for the E4-6 track-structure interaction analysis.

Defining the Trainset Loading for the Structure

If you wish to use the predefined populated spreadsheet for this part of the examples continue at the section entitled *Applying the Trainset Rail Loading to the Analysis*.

Otherwise:

- Copy the **UIC E1-3 Analysis.xlsx** (or **UIC E1-3 Analysis.xls**) Microsoft Excel spreadsheet created for the E1-3 test case and save it as a new Microsoft Excel spreadsheet with the filename **UIC E4-6 Analysis.xlsx** (or **UIC E4-6 Analysis.xls**).
- Open the spreadsheet in Microsoft Excel.


- Pick the **Loading** worksheet.
- Enter **-20** in the **Amount (per unit length)** for the trainset braking loading to indicate that the braking load is now acting to the left for a trainset that is travelling from right to left.
- Enter **360** for the **Starting Location of Loading for First Analysis** of both the **Braking** and **Vertical** loading to place the trainset in a location where it is just about to enter the deck structure for the first analysis, recalling that the left-hand embankment is 300m long and the deck is 60m long.

- Enter **210** for the **Finishing Location of Loading for Last Analysis** of both the **Braking** and **Vertical** loading to place the left-hand extent of the trainset 90m past the 60m deck span for the last analysis.
- Save the spreadsheet and close the Microsoft Excel application.

Applying the Trainset Rail Loading to the Analysis

The E1-3 temperature only model can now be specified along with the updated rail load spreadsheet containing the revised trainset loading for the Rail Track Analysis software option to carry out an analysis for this test case.

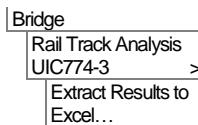
- Ensure that the **Apply train loads to current model** option is not selected. The current model loaded is a combined temperature and trainset rail loads model for the E1-3 analysis and should not be used.

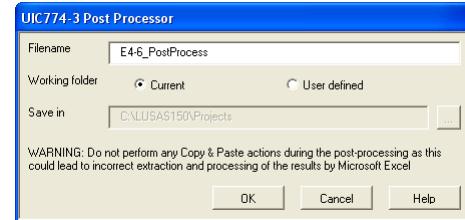
- Enter **E1-3_TemperatureOnly.mdl** for the **Original model filename** which holds the temperature only analysis from the previous section or browse for it using the **Browse...** button. If the full folder is not specified then it will be assumed that the model is in the current working folder.
- Enter **E4-6_TemperatureAndRailLoads** as the **Rail load model filename**.
- Enter the **UIC E4-6 Analysis.xlsx** (or **UIC E4-6 Analysis.xls**) filename of the Microsoft Excel spreadsheet created for the analysis or browse for it using the **Browse...** button in the **Microsoft Excel spreadsheet or batch text file** input. If the full folder information is not entered it will be assumed that the Microsoft Excel spreadsheet is in the current working folder.
- Ensure the **Wait for solution** option is selected.
- Click the **OK** button and choose **No** when asked to save the changes to the current model since there have been no manual changes to it.

Assuming that there have been no errors in the input for the Microsoft Excel spreadsheet the Rail Track Analysis software option will automatically generate a LUSAS model from the spreadsheet data and run a rail track analysis for the alternative trainset positions defined by the spreadsheet data.

If errors were detected...

If errors were detected with the modelling data or the post-processing in the next section gives different results the values in the spreadsheet should be corrected before


re-selecting the previous Rail Track Analysis menu item. If it proves impossible for you to correct the errors reported a populated spreadsheet file is provided to enable you to create the model and run an analysis successfully.


- **UIC E4-6 Analysis.xlsx (.xls)** is a populated spreadsheet containing all input data for this stage of the example.

A spreadsheet compatible for an installed version of Microsoft Excel should be copied to the working folder where the track-structure interaction example model is to be created, and the **Bridge > Rail Track Analysis UIC774-3 > Apply Rail Loads** menu item re-selected.

Automatic Extraction of Results into Microsoft Excel

- Enter **E4-6_PostProcess** for the **Filename**.
- Ensure the **Working folder** is set to **Current** to place the post-processing Microsoft Excel spreadsheet into the same folder as the analyses.

Caution. As previously noted earlier in this example, prior to clicking the **OK** button ensure that no Excel applications are open and no copying and pasting of data in any application is done whilst the post-processing is carried out.

- Click the **OK** button and click on **Yes** when asked whether envelopes are to be created in Microsoft Excel.

The automatic post-processor will now extract the results from the loaded analysis results and generate the Microsoft Excel spreadsheet in the working folder.

- Open the spreadsheet in Microsoft Excel.
- If necessary pressing the 'back' arrow at the bottom of the worksheet window to see all the worksheets created.

Peak Relative Railbed Displacement

- Click on the **Railbed Check** worksheet tab.

	A	B	C	D	E	F	G	H	I	J
Check of Longitudinal Relative Displacement of Railbed (Relative Displacement between Rails and Deck)										
Analysis ID: E4-3 Model E4-5_TemperatureAndRailLoad - Train Position 16										
Analysis Filename: E4-3_TemperatureAndRailLoad_Post-> E4-5_TemperatureAndRailLoad_Post16										
Model Directory: C:\USAS\50\9\Projects										
Analysis Date: 07/09/2013 -> 07/09/2013										
Model Units: NMg.s.C										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										
26										
27										
28										
29										

From this worksheet the peak relative railbed displacement is shown to be 0.01722m when the braking trainset is placed at the 6th position where it is 10 m from the left-hand abutment of the deck. This peak relative railbed displacement compares well with the UIC774-3 E4-6 test case published result of 1.78E-2 m with a difference of -3.4%.

Peak Axial Rail Stresses

- Click on the Rail Stresses Check worksheet tab.

	A	B	C	D	E	F	G	H	I	J	K	L	M	N
Check of Axial Rail Stress														
Analysis ID: E4-3 Model E4-5_TemperatureAndRailLoad - Train Position 16														
Analysis Filename: E4-3_TemperatureAndRailLoad_Post-> E4-5_TemperatureAndRailLoad_Post16														
Model Directory: C:\USAS\50\9\Projects														
Analysis Date: 07/09/2013 -> 07/09/2013														
10														
11														
12														
13														
14														
15														
16														
17														
18														
19														
20														
21														
22														
23														
24														
25														
26														
27														
28														
29														

From this worksheet the peak axial rail stress is shown to be -147.13 MPa when the braking trainset is placed at the 6th position where it is 10 m from the left-hand abutment of the deck. This peak rail stress compares well with the UIC774-3 E4-6 test case published result of -162.06 MPa with a difference of -10.15% which is just outside the 10% limit specified in the code of practice due to the coarseness of the modelling.

Peak Longitudinal Reactions at the Abutments

- Click on the Longitudinal Reactions Check worksheet tab.

Alternative Analyses with Same Temperature Only Model

A	B	C	D	E	F	G	H
Check of Longitudinal Reactions							
Analysis ID	Results Filename	Loading Type	Distance from Left End of the Model to the Starting Position of the Loading (m)	Distance from Left End of the Model to the Finishing Position of the Loading (m)	Peak Longitudinal Reaction (kN)	Abutment / Pier Number with Peak Reaction	
1	E4-6_TemperatureAndRailLoads_Pos1.mys	Temperature Only	360	660	682104.516	LH Abutment	
2	E4-6_TemperatureAndRailLoads_Pos2.mys	Braking	350	650	708415.0784	LH Abutment	
3	E4-6_TemperatureAndRailLoads_Pos3.mys	Braking	340	640	855688.4237	LH Abutment	
4	E4-6_TemperatureAndRailLoads_Pos4.mys	Braking	330	630	1093686.474	LH Abutment	
5	E4-6_TemperatureAndRailLoads_Pos5.mys	Braking	320	620	1745558.294	LH Abutment	
6	E4-6_TemperatureAndRailLoads_Pos6.mys	Braking	310	610	2058547.705	LH Abutment	
7	E4-6_TemperatureAndRailLoads_Pos7.mys	Braking	300	600	2295263.075	LH Abutment	
8	E4-6_TemperatureAndRailLoads_Pos8.mys	Braking	290	590	2376466.005	LH Abutment	
9	E4-6_TemperatureAndRailLoads_Pos9.mys	Braking	280	580	2392342.349	LH Abutment	
10	E4-6_TemperatureAndRailLoads_Pos10.mys	Braking	270	570	2396699.952	LH Abutment	
11	E4-6_TemperatureAndRailLoads_Pos11.mys	Braking	260	560	2398082.641	LH Abutment	
12	E4-6_TemperatureAndRailLoads_Pos12.mys	Braking	250	550	2398378.332	LH Abutment	
13	E4-6_TemperatureAndRailLoads_Pos13.mys	Braking	240	540	2398374.15	LH Abutment	
14	E4-6_TemperatureAndRailLoads_Pos14.mys	Braking	230	530	2398775.453	LH Abutment	
15	E4-6_TemperatureAndRailLoads_Pos15.mys	Braking	220	520	2398799.866	LH Abutment	
16	E4-6_TemperatureAndRailLoads_Pos16.mys	Braking	210	510	2398805.895	LH Abutment	

From this worksheet the peak reaction is shown to be 2398.81kN when the braking trainset is placed at the last position where the front of it is 90m past the left-hand abutment of the deck. This peak reaction compares well with the UIC774-3 E4-6 test case published result of 2196.1kN with a difference of +8.4% which is within the 20% limit specified in the code of practice. The maximum reaction is also comparable with the alternative calculation method which gives 2373.47kN.

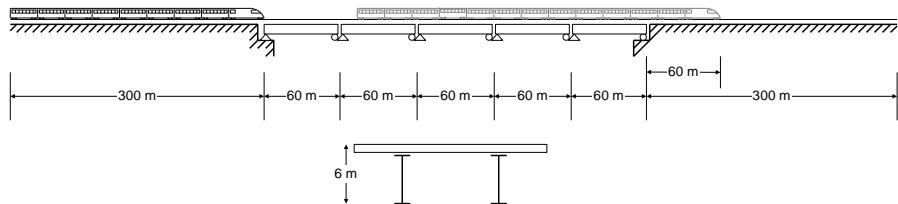
- Close the Microsoft Excel application.

This completes the example.

A general discussion follows, along with information about how to model a structure with multiple decks.

General Modelling Discussion and Accuracy of Results

The modelling of the structure and approach embankments in this example is relatively crude to ensure that the track-structure analyses is carried out within a reasonable length of time. As a result the accuracy of some results, such as the rail stresses, has been reduced and some results (for test case E4-6) are outside the permitted accuracy stated in UIC774-3.

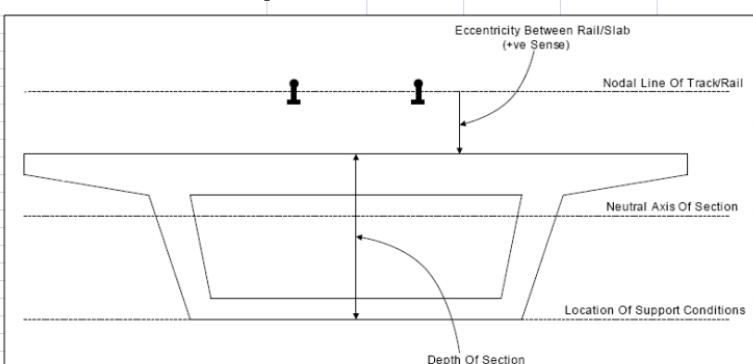

Refinement of the modelling will improve the accuracy of the solution at the cost of increased computer memory requirements and increased modelling / analysis and post-processing time. The following table shows the improvement of accuracy for the two test cases when element sizes of less than 2m and trainset location increments of less than 10m are used. For the UIC774-3 code of practice the computed values should be within -10% and +20% (if on the safe side) and based on this criterion all results with the exception of those from the 2m element analysis pass the criterion.

Description	Test Case	Railbed Displacement	Reaction	Rail Stress
2m Elements 16 Location Increments of 10m	E1-3	0.01740 m +0.6%	861.67 kN -1.5%	-176.32 MPa -3.4%
	E4-6	0.01722 m -3.4%	2398.81 kN +8.4%	-147.13 MPa -10.15%
1m Elements 16 Location Increments of 10m	E1-3	0.01740 m +0.6%	860.41 kN -1.6%	-177.63 MPa -2.7%
	E4-6	0.01722 m -3.4%	2398.76 kN +8.4%	-148.04 MPa -9.5%
1m Elements 31 Location Increments of 5m	E1-3	0.01741 m +0.6%	860.41 kN -1.6%	-177.63 MPa -2.7%
	E4-6	0.01723 m -3.3%	2398.76 kN +8.4%	-148.50 MPa -9.1%
1m Elements 151 Location Increments of 1m	E1-3	0.01741 m +0.6%	860.72 kN -1.6%	-177.66 MPa -2.7%
	E4-6	0.01724 m -3.2%	2398.76 kN +8.4%	-148.51 MPa -9.1%
0.6m Elements 251 Location Increments of 0.6m	E1-3	0.01741 m +0.6%	860.00 kN -1.7%	-178.18 MPa -2.4%
	E4-6	0.01724 m -3.2%	2398.81 kN +8.5%	-148.90 MPa -8.8%
0.5m Elements 301 Location Increments of 0.5m	E1-3	0.01741 m +0.6%	859.86 kN -1.7%	-178.31 MPa -2.3%
	E4-6	0.01724 m -3.2%	2398.86 kN +8.5%	-149.00 MPa -8.8%
0.3m Elements 501 Location Increments of 0.3m	E1-3	0.01741 m +0.6%	859.73 kN -1.7%	-178.58 MPa -2.1%
	E4-6	0.01724 m -3.2%	2398.98 kN +8.5%	-149.20 MPa -8.6%

In the previous table the meshing and increment size can be seen to have a less significant effect on the railbed displacement and reactions obtained than on the rail stress values. This is because the Finite Element solution is a displacement method and reactions should be in equilibrium with the applied load which is constant. An element size of 1m can be seen to satisfy the accuracy of the rail stresses against the fundamental test cases in UIC774-3 but a refinement of the incrementation will allow more accurate capture of the value of the maximum stress and location of the trainset where the maximum rail stress occurs.

Modelling a Structure with Multiple Decks

To model a structure with multiple decks spreadsheet data similar to that shown on the following pages would need to be defined.


Decks, Tracks and Embankment		Units : m
1	Number of Decks	5
2	Number of Tracks	1
3	Left Embankment Length	300
4	Right Embankment Length	300
5	Length of Decks Only / Total Length (m)	300 900
6		
7		
8		
9		

Rail Track Analysis User Manual

A1		Structure Definition									
1	Structure Definition	Units: Pier Height : m; Bearing springs on top of each pier: kN/mm; Span Length : m									
2		Spring Support for each Abutment	Pier Height	Pier Geo. Assign.	Pier Mat. Assign.	Bearing Springs on Top of each Pier	Span Length	Geo. Assign.	Mat. Assign.		
3											
4	Deck 1	Left End	1200			R					
5		Span 1	1200			F					
6		Span 2									
7		Span 3									
8		Span 4									
9		Span 5									
10		Span 6									
11		Span 7									
12		Span 8									
13		Span 9									
14		Number of Supports for the Deck 1 / Len	2				2	60			
15	Deck 2	Left End	1200			R					
16		Span 1	1200			F					
17		Span 2									
18		Span 3									
19		Span 4									
20		Span 5									
21		Span 6									
22		Span 7									
23		Span 8									
24		Span 9									
25		Number of Supports for the Deck 2 / Len	2				2	60			
26	Deck 3	Left End	1200			R					
27		Span 1	1200			F					
28		Span 2									
29		Span 3									
30		Span 4									
31		Span 5									
32		Span 6									
33		Span 7									
34		Span 8									
35		Span 9									
36		Number of Supports for the Deck 3 / Len	2				2	60			
37	Deck 4	Left End	1200			R					
38		Span 1	1200			F					
39		Span 2									
40		Span 3									
41		Span 4									
42		Span 5									
43		Span 6									
44		Span 7									
45		Span 8									
46		Span 9									
47		Number of Supports for the Deck 4 / Len	2				2	60			
48	Deck 5	Left End	1200			R					
49		Span 1	1200			F					
50		Span 2									
51		Span 3									
52		Span 4									
53		Span 5									
54		Span 6									
55		Span 7									
56											

Geometric Properties																						
A1		Geometric Properties																				
1	Geometric Properties	Units: m																				
2																						
3																						
4																						
5																						
6																						
7																						
8																						
9																						
10																						
11																						
12																						
13																						
14																						
15																						
16																						
17																						
18																						
19																						
20																						
21																						
22																						
23																						
24																						
25																						
26																						
27																						
28																						
29																						
30																						
31																						
32																						
33																						
34																						
35																						
36																						
37																						
38																						
39																						
40																						
41																						
42																						
43																						
44																						
45																						
46																						
47																						
48																						
49																						
50																						
51																						
52																						
53																						
54																						
55																						
56																						
57																						
58																						
59																						
60																						
61																						
62																						
63																						
64																						
65																						
66																						
67																						
68																						
69																						

Material Properties						
1 Material Properties		Units : N, mm, kg				
		E	v	P	α	Description
	Rail	210000	0.3	0	0.00001	Rails
1		210000	0.3	0	0.00001	Deck

Interaction Joint Properties Between Rail/Slab																																						
Units : Bilinear springs characteristic : kN/mm/m, Eccentricity between rail/slab : m																																						
<p>Eccentricity Between Rail/Slab (+ve Sense)</p> <p>Nodal Line Of Track/Rail</p> <p>Neutral Axis Of Section</p> <p>Location Of Support Conditions</p> <p>Depth Of Section</p>																																						
<table border="1"> <tr> <td>Eccentricity between Rail/Slab</td> <td>0</td> </tr> <tr> <td>Parametric Distance of Interaction Joint from Rail</td> <td>0.5</td> </tr> <tr> <td>Item</td> <td>Longitudinal</td> <td>Transverse</td> <td>Vertical</td> </tr> <tr> <td>Unloaded Bilinear Springs Characteristic</td> <td>Contact Stiff</td> <td>10</td> <td>infinite</td> </tr> <tr> <td></td> <td>Lift-off Force</td> <td>20</td> <td>infinite</td> </tr> <tr> <td></td> <td>Lift-off Springs</td> <td>1.00E-06</td> <td>infinite</td> </tr> <tr> <td>Loaded Bilinear Springs Characteristic</td> <td>Contact Stiff</td> <td>30</td> <td>infinite</td> </tr> <tr> <td></td> <td>Lift-off Force</td> <td>60</td> <td>infinite</td> </tr> <tr> <td></td> <td>Lift-off Springs</td> <td>1.00E-06</td> <td>infinite</td> </tr> </table>							Eccentricity between Rail/Slab	0	Parametric Distance of Interaction Joint from Rail	0.5	Item	Longitudinal	Transverse	Vertical	Unloaded Bilinear Springs Characteristic	Contact Stiff	10	infinite		Lift-off Force	20	infinite		Lift-off Springs	1.00E-06	infinite	Loaded Bilinear Springs Characteristic	Contact Stiff	30	infinite		Lift-off Force	60	infinite		Lift-off Springs	1.00E-06	infinite
Eccentricity between Rail/Slab	0																																					
Parametric Distance of Interaction Joint from Rail	0.5																																					
Item	Longitudinal	Transverse	Vertical																																			
Unloaded Bilinear Springs Characteristic	Contact Stiff	10	infinite																																			
	Lift-off Force	20	infinite																																			
	Lift-off Springs	1.00E-06	infinite																																			
Loaded Bilinear Springs Characteristic	Contact Stiff	30	infinite																																			
	Lift-off Force	60	infinite																																			
	Lift-off Springs	1.00E-06	infinite																																			
<table border="1"> <tr> <th colspan="2">Rail Expansion Joints</th> <th colspan="2">Units : Distance : m, Initial gap : mm</th> </tr> <tr> <th colspan="2"></th> <th>Track 1</th> <th>Track 2</th> </tr> <tr> <th>Position</th> <th>Initial Gap</th> <th>Position</th> <th>Initial Gap</th> </tr> </table>							Rail Expansion Joints		Units : Distance : m, Initial gap : mm				Track 1	Track 2	Position	Initial Gap	Position	Initial Gap																				
Rail Expansion Joints		Units : Distance : m, Initial gap : mm																																				
		Track 1	Track 2																																			
Position	Initial Gap	Position	Initial Gap																																			
<table border="1"> <tr> <th colspan="2"></th> <th>Track 1</th> <th>Track 2</th> </tr> <tr> <th>Position</th> <th>Initial Gap</th> <th>Position</th> <th>Initial Gap</th> </tr> <tr> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td></td> <td></td> <td></td> <td></td> </tr> </table>									Track 1	Track 2	Position	Initial Gap	Position	Initial Gap																								
		Track 1	Track 2																																			
Position	Initial Gap	Position	Initial Gap																																			

Rail Track Analysis User Manual

A1		Loading																							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
1 Loading		Units : Temperature : Celsius , Load Position/Length : m , Load : kN/m																							
2 For Deck																									