

LUSAS Programmable Interface (LPI)
Developer Guide

LUSAS Version 17.0 : Issue 1

LUSAS
Forge House, 66 High Street, Kingston upon Thames,
Surrey, KT1 1HN, United Kingdom

Tel: +44 (0)20 8541 1999
Fax +44 (0)20 8549 9399
Email: info@lusas.com
http://www.lusas.com

Distributors Worldwide

Copyright ©1982-2018 LUSAS
All Rights Reserved.

Table of Contents

Creating dialogs using VB.NET

LUSAS via COM

LUSAS Material Model Interface

Table of Contents

Introduction 1
INEFOTUCTION ...ttt e e 1
Topics covered iN thiS QUIAEccoiiiiiiie e 2
LUSAS Progammable Interface (LPI) Customisation and Automation Guide.......... 2

Choosing a development eNVIFONMENTccuvviiiiiiee e
Downloading and installing Visual Studio Community
Creating @ LUSAS di@l00.......ciiieieiiiiieeeiie ettt
Module Manager
Creating a new module ...
Running Visual Studio......
Build the project..........
Run the project................
Adding dialog CONTIOIS........evieiiiiiieiie e
Defining @ LISTBOXvveiiiiiiieiiiee it
Defining a Delete Button
Defining a Cancel BUONcuuiiiiiiee et
[E=TaTo 1T a o =T o o) £ RSP RR
General considerations
Basic dialog design
BasiC dialog CONIOISccoiiiiiiiieie e
Code design considerations..............
Multiple Dialogs in a single module
Translation considerations
VB.NET online tutorials
VB.NET dialog exercise....
VB.NET dialog SOIULION....ccciiiiiiiiiiiie et e e

Component TECANOIOYccoivriiiiiiiieiee e
ApPlCAtion EXAMPIEoviiiiie e

Create @ NEW PrOJECT.......evi ittt e e e e
Interfacing to LUSAS USING CH.ciuuiiieiiiic e ciee et e etree e sntae e e snnaa e

Introduction

Introduction

Introduction

LUSAS software is highly customisable. The built-in LUSAS Programmable Interface
(LPI) allows the customisation and automation of modelling and results processing
tasks and creation of user-defined menu items, dialogs and toolbars as a means to
access those user-defined resources. It can also be used for transferring data between
LUSAS and other software applications, and to control other programs from within
LUSAS Modeller, or control LUSAS Modeller from other programs.

LUSAS User Interface

LUSAS Session file

LUSAS LPI

8

LUSAS Modeller

]
1
1]
\ VBScript :
]
| 1
1 1
1]
1 .NET :
: (c#/vB.NET) W Q
]
1
! |
! 1
! 1
1 \
! |
! 1

Any other COM
compatible
language

LUSAS LPI
LUSAS Extension Modules 3rd Party Software
(Plug-ins) Applications

With LPI, any user can automate the creation of complete structures, either in LUSAS
or from third-party software, carrying out design checks, optimising members and
outputting graphs, spreadsheets of results and custom reports. Because everything
carried out by a user is recorded in a LUSAS Modeller session file, anything that
LUSAS can do, can also be controlled by another application via the LUSAS
Programmable Interface. This means that you can view and edit a recorded session,

1

Introduction

parameterise those commands, turn them into sub-routines, add loops and other
functions to the scripts and create a totally different application or program - using the
proven core technology of LUSAS.

In addition to the accessing and customising LUSAS Modeller via the LUSAS
Programmable Interface, user-defined material models (written in Fortran) can be
compiled and built into a customised LUSAS Solver executable by using the LUSAS
Material Model Interface (LUSAS MMI).

Topics covered in this guide

The aim of this guide is to help you use the more advanced facilities available to
customise LUSAS and interface with other applications. The guide covers:

O Creating dialogs using VB.NET
0 LUSAS via COM
O LUSAS Material Model Interface

LUSAS Progammable Interface (LPI) Customisation and

Automation Guide

A separate LUSAS Programmable Interface (LPI) Customisation and Automation
Guide is also available covering more basic topics:

U Getting started with the LUSAS Programmable Interface (LPI)
U Identifying LPI Functions

U Customising the interface

O Getting started with VBS

O A simple example script

O Creating your own menus

Choosing a development environment

Creating dialogs
using VB.NET

A dialog is a window that appears on the display screen to neatly present information
or request input from the user. Creating dialogs, and some other advanced features,
such as object oriented programming, is a more advanced topic, and some
programming skills are required.

VBScript belongs to the group of interpreted languages, meaning that there is no need
for compilers to be used. This is because the implementations execute directly, line by
line. Examples of other interpreted languages are JavaScript, Python and Perl.

To create a dialog you will need to use a compiled programming language. Examples
of compiled languages are Visual Basic .NET (VB.NET), C#, Java, C++. For this
example VB.NET will be used, because although it is a different language to VBScript,
it uses the same syntax, and you should be already familiar with it. Also, and more
importantly, you do not need to be familiar with COM programming, as you would if
C++ was used instead.

Advantages of VB.NET over VVBScript include

e Better user-interface creation
e Debugging with break points
e More extensible. Allows Object Oriented Programming (OOP)

e Multiple functions saved into one .dll file. Easier to share across the company
than multiple .vbs script files

e Easier to do testing

Choosing a development environment

To use VB.NET a compiler needs to be installed. Both Visual Studio Express and
Visual Studio Community are free to use and could be used but the Visual Studio
Community edition, which is a fully featured and extensible Integrated Development
Environment (IDE) is the application recommended by LUSAS and the application that
is documented in this guide. This is used in preference to the more limited Visual

3

Creating dialogs using VB.NET

Studio Express version, which is a closed IDE that cannot use any Visual Studio
extensions.

Visual Studio Community is free for individual developers, open source projects,
academic research, education, and small professional teams. Users should be aware of
the licensing terms under which it is supplied.

Downloading and installing Visual Studio Community

Visual Studio Community is free to use and can be downloaded from:

https://www.visualstudio.com/downloads

Note. Problems can be experienced when installing Visual Studio Community from
a downloaded exe file (relating to the installation being unable to locate the package
source as a result of you attempting to install the software when you are part of a
company network). To overcome this issue, download the .iso file instead and burn it
onto a DVD. Then install it from the DVD (or alternatively virtually mount the iso
image).

Visual Studio Community can take a long time to install.

Creating a LUSAS dialog

To create a LUSAS dialog, you will need to add a new Module to LUSAS. Modules
are like plugins.

1. Run LUSAS.

2. All the installed modules can be seen by selecting the menu item Help >
About LUSAS Modeller and checking “Show all installed components”

https://www.visualstudio.com/downloads

Creating a LUSAS dialog

About LUSAS Modeller (=234

LUSAS Copyright 2015 Finite Element Analysis Ltd.

for 32-bit Windows ¥P, Vista, 7, 8, 8.1, 10

LUSAS Sales Suppart
66, High Street
Tel: +44 (0)20 8541 1999 Tel: +44 (0)20 8549 9229
Kingston Upon Thames & © & ©
Surrey, KT1 1HM, UK Fanc: +44 (0)20 8549 9399 Fax: +44 (0)20 8549 9399
www.lusas. com email: info@usas. com email: support@lusas. com
Kit wersion; 15,1-2c1 Install date: 16/12/2015
Installed components
File Name Version Description i
ﬂ LusasRes2? 15.1.1617.22304 LUSASres2 Dynamic Link Library
Madules M
ﬂ Arbitrary Section Property Calculator 15.1,1617.22304 Arbitrary Section Property Calculator -LUL..
ﬂ Composite Library 15.1.1617.22304 Composite Library - LUSAS Extension Module
ﬂ Construction Table 15.1.1617.22304 Construction Table - LUSAS Extension Mo...
ﬂ Crack Widths 15.1.1617.22304 Crack Widths - LUSAS Extension Module o

I |¥] show all installed components I P —

Key info...

Currently using 1043.6MB of a possible 4095.9MB (3052, 3MB free) Build infa...

Release reserved memory. ..] 3rd party licenses. ..

K

Creating dialogs using VB.NET

Module Manager

LUSAS Modeller’s Modules are controller by the Module Manager and the Module
Manager dialog can be displayed by following the steps below.

1.

3.
4,

Open the file C:\<LUSAS Installation Folder>\Programs\Modules\LUSAS.Iml
into a text file editor.

Search for the text ModuleManager

Enable it by changing false to true as shown below

Save the file.

_————
105(0) » LUSAS152 » Programs » Modules » | (" -
[CALUSAS152\Programs\Modules\LUSAS.Iml - Notepad-++

Burn

Mew folder

"

m

Mame

. VLO
%) ArbitrarySectionPropertyCalculator.dll
%] CompositeLibrary.dil
(%] ConstructionTable.dll
CrackWidths.dll
Delete Loadcases 2.dll
&] Delete Loadcases 2.pdb

| Delete Loadcases 2xml

1]
3]

%) Delete Loadcases.dll

& Delete Loadcases.pdb

| Delete Loadcases.xml

|| Delete Loadcases_stub.lml
\%| DesignFactors.dll

%] ExportPontiEC4.dIl

%) Grillage.dll

) IMDPlus.dll

|| LUSAS.Iml

|| LUSASM_01.err

% MaterialLibrary.dll

% MovingLeadGenerator.dll
%] Renumbering.dil

%) SlabDesigner.dll

%) SliceResultants.dll

File Edit Search VYiew Encoding Language Settings Macre R
o = 2 @ & O | | dh Bg | & 2
[= LUSASIml l
170 <keys />
7 <verified />
<options>

<preload>false</preload>
<exactrtrue</exact>
<library>true</library>
</options>
</module:>

<module name="foduleManagexf >

<assembly>

<path>%interopbindiri</path>
<file>ModuleController.dll</file>
<class>Lusas.ModuleController.ModuleMa

</assembly>
<identity>

<friendlyname>Module Manager</friendly
<description>*Module Manager - LUSAS ex

</identity>
<keys />
<verified />
<optionsy
<forcertrue</force>
I <enabled>true</enabled> I
</options>
</module>

<madnle name="Tua=as TTtilams

From now on, when you run LUSAS Modeller you will see the Modules menu:

Running Visual Studio

dl Window 1]

s Utilities Bridge Composite Window Help Modules

& lorz:m-8r- @ Asrm:ene
...... 00 . F % 10020

o Utilties | [E] Reports . -\ L

m

~ 20

Creating a new module

e Copy the LusasModule<version_number>.zip file from the LUSAS
installation directory C:\<LUSAS Installation Folder>\Programs to the Visual
Studio project template folder. For instance: Libraries\Documents\Visual
Studio 2015\Templates\ProjectTemplates\Visual Basic

|
@@v| .|>|L\brarias » Documents » Visual Studic 2015 » Templates » ProjectTemplates » Visual Basic » I

Organize » Share with + Burn MNew folder

' Favorites Documents library
Visual Basic
4l Libraries E— =
3 Documents
& Music I 1) LusasModule15_2.zip I
[/ Pictures
- S VE

Running Visual Studio
e Open Visual Studio and select File> New Project

e In Visual Studio select the LUSAS Module<version nhumber> template for
your version of LUSAS).

e The dialog example that will be covered in this guide creates a new module to
delete loadcases, therefore enter the name DeleteLoadcases (without any
space) and click OK.

Note. Itisimportant to use a sensible name as this propagates throughout the
/ automatically generated code.

Creating dialogs using VB.NET

Note. Spaces can be used within Module names, but LUSAS generally avoids the
use of spaces in its own scripted file names.

Dd Start Page - Microsoft Visual Studio
Edit View Debug Team Tools Test Analyze Window Help

* |3 Project...

Ctrl+ Shift« N

Close 1 Team Project..
s New Project N < |
= b Recent NET Framework 452 ~ Sortby: Default - = Search Installed Templates (Ctrl+E) 0 ~
Save ems A
4 Installed e A .
W Save All R eﬁé! Class Library (Portable) Visual Basic Type: Visual Basic
Export Template. 4 Templates v LUSAS Extension Module
4 Visual C# @ Silverlight Application Visual Basic
Source Control
b Windows
e VB N
Page Setug Web engg Silverlight Class Library Visual Basic
Print Android
v
Account Settings... Cloud @ VCF Service Application Visual Basic
Extensibility
> Ny
- ios € GetMicrosoft Azure SDK for NET Visual Basic
Recent Silverlight
Test @ﬁ Azure Weblob Visual Basic
WCF
iotdlos ED Azure Mobile Service Visual Basic
Visual F# —vE N
Activity Librat Visual Basic
b Visual C++ [T} y Library
v
SQL Server @5 WCF Workflow Service Application Visual Basic
Pythen
b JavaSeript O
veberp 84l LUsAS Module 152 Visual Basic
b TypeScript [&
Game S
Rusild B ralaratar v
® Online Click here to go online and find templates.
Name: Deletel oadcases
Location: X studio 2015\Proj -
Solution name: DeleteLoadcases

Create directory for solution
[] Add to Source Control

e

Note. If more than one version of LUSAS is installed on your machine you should
check the version number of LUSAS that is being referenced by Visual Studio and

ensure that this number is what is required. This can be done by checking the path to
the Lusaslnterop dll.

e Ifthisis required, on the Solution Explorer double-click on My Project and
visually check the path for Lusasinterop.dll

DeleteLoadcases & X [EIALRER]

Application
e N/A N
Compile
Debu
References:
Reference Name Type Version CopyLecal Path
Resourees
Lusas.Interop NET 152163323526 True ALUSAS152\Programs\Lusas.interop.dil
Services System.Drawing NET 2000 False [E ~\ NE 050727\ System.Di dil o Lu
Settings SystemWindowsForms NET 2000 False cawingd T 05072NSyst fows Forms.dil o Syst
Signing Syt
b FE Deletele
My Extensions -
Code Analy 8 lusas.m
[) Imported namespaces:

Running Visual Studio

e |f the wrong version of LUSAS is being referenced, click Add and search for
the Lusas.Interop.dll file in the right version path,

Carrying on:

e In the Solution Explorer right-click on DeleteLoadcases and choose Properties

YB £ | Quik

Pl & x
signin [

Help

Solution Explorer
@o-s¢FBd|p=

slugolution Explorer (Ctrl+,

Solution ‘Deleteloadcases' (1 project)
% Build 4 [@ Deleteloadcases

Rebuild & My Project
b =m References

Clean b [Z] DeleteloadcasesDialog.vb
View » b VB DeleteLoadcasesModulevb
Analyze »

Scope to This

B New Solution Explorer View

Add »
Manage NuGet Packages...
£ Setas StartUp Project

Debug »
Source Control »
b Cut Ctrl+X
X Remove Del
Rename

Unload Project

Open Folder in File Explorer

F Properties

Solution Explorer [SIS

Alt+Enter e

Delete laadcases Proiect Pranerties

e On the Application page set the Target framework to .NET Framework 2.0

DQ DeleteLoadcases - Microsoft Visual Studio
File Edit View Project Build Debug Team Tools Test Analyze Window Help
Q- B2 WM « O - | Debug ~ AnycCPU - B Start - | 59

? Deletel oadcases” + X
i
o lication
5 -
3 Compile
= Debug Assembly name: Root namespace:
% References Lusas.DeleteLoadcases
2
Resources Target framework: Application type:
Services NET Framework 2.0 v | | Class Library v
Settings Startup object: lcon:
Signing (None) V| (Defaultlcon
My Extensions
Code Analysis Assembly Information...
v
v

Creating dialogs using VB.NET

Note. For LUSAS v15.2, NET Framework 2.0 is needed. Later versions of LUSAS
will require a different target framework to be set.

e Onthe Compile page browse and change the build output path to C:\<LUSAS
Installation Folder>\Programs\Modules\

o Delete Loadcases - Microsoft Visual Studio
File Edit View Project Build Debug Tesm Tools Test Analyze Window Help
©-0[B-2 M| | Debug - AnyCPU - b st e| g

Delete Loadcases™ + X

Application
@ Configuration: | Active (Debug) v Platform: |Active (Any CPU) v
Debug Build output path:
References CALUSAS152\Programs\Modules\
Resources Compile Options:
Services

Option explicit: Option strict:
Setti
ings = Sl v
Signing
Option compare: Option infer:
My Extensions
Binary v/ |on v
Code Analysis
Target CPU:
AnyCPU v

Warning configurations:

Condition

Notification
Implicit conversion None v
Late binding: call could fail at run time None v

e From the Solution Explorer right-click on Solution ‘DeleteLoadcases’ and
select Add > Existing Project

Sign in

Ml Solution Explorer

H Loadcases' (1 project)

¥ Build Solution Ctrl+Shift+B dcases
Rebuild Solution ect
Clean Solution pes
LoadcasesDialog.vb
Option strict: Analyze * | oadcasesModulevb
v off Configuration Manager...

@ Manage NuGet Packages for Solution...
Option infer: B

v| On

Restore NuGet Packages
B New Solution Explorer View

Calculate Code Metrics

4 New Project... | Add 3
£} Set StartUp Projects...
New Web Site... *4 Add Solution to Source Control...
| Existing Web Site... Paste Chrl+V
- 0 Newltem... Ctrl+Shift*A | @ Rename
'a Bsting tem... Shift+Alt+A | & Open Folder in File Explorer
%4 New Solmionf?lc‘lle‘r K Properties Alt+Enter

e Onthe Add > Existing Project dialog browse for the location of the version
of LUSAS that you wish to run and press Open

10

Running Visual Studio

(| Add Existing Project “
@ * 4 | » ThisPC 'I Local Disk (C:) » LUSAS152 » Programs I AN Search Programs y-l
Organize New folder =~ [@
& Downloads 2 Narme : Date modified Type Size ~
%l Recent places . Online_Help File folder
\ scripts File folder
@ OneDrive | Shaders File folder
L Liils File folder
*& Homegroup . zh-CM File folder
A msdn_oo # autoloader.exe Application 320 KB
"% CrashSender1401.exe Application 860 KB
1% This PC [DosSplit.exe Application 40 KB
i Deskiop B eposeee Application 832 KB
£/ Documents Bl felusas.exe 12016 10:55 Application 752 KB
& Downloads 4 IMDPlus.exe 21/12/2015 14:44 Application 1,788 KB
& Music B lusas moxe | 28/04/2016 16:05 Application 52,836 KB
| Pictures 4 Lusas_S.exe 26/04/2016 22:34 Application 32,392 KB
B Videos A LUSASenv.exe 27/04/2016 12:38 Application 240 KB
&y Local Disk (C) v Bgluspat.exe 27/04/2016 10:57 Application 676 KB v
File name: | lusas_m.exe v | |All Project Files (*.csproj;*.vbprn »

e

¢ Inthe Solution Explorer right-click on the lusas_m entry and select Set as
Startup Project.

w: |:| =
ol Solution Explorer * 0 X
@ o-2a® &R
Search Solution Explorer (Ctrl+;) Pl

fa] Solution 'Deleteloadcases’ (2 projects)

~ 4 [Deleteloadcases

Browse... & My Project

[Deletel oadcasesDialog.vb
[VB Deletel cadcasesModulevb

v] £F Setas StartUp Project
Debug »
v] 3 & Properties

e In the Solution Explorer right-click on the lusas_m entry and select
Properties, and set the Debugger type to Mixed

11

Creating dialogs using VB.NET

MN/A

N/A

CALUSAS152\Programs™lusas_m exe

No

Connection Local Debugger
I Debugger Type Mixed I
Environmertt Default

Machine
5L Debug Engine

Build the project

MODELLER19
No

W e-Fo
Search Solution Explorer (C
a1 Solution ‘Delete Load:
4[] Delete Loadcases 2
& My Project
4 Delete_Loadcas
p VB Delete Loadcas
52 lusas.m
L} Setas StartUp Projet
Debug

¢ Inthe Solution Explorer right-click on the DeleteLoadcases entry and select

Build.

Al Solution Explorer

-1

M e-2a@ &R

Search Solution Explorer (Ctrl+;)

Build

Fe

Rebuild

Run Code Analysis

Scope to This

Bl Mew Solition Funlorer View

b DeleteloadcasesDialog.vb
b wB DeleteloadcasesModulevb

% lusas_m

Note. In Visual Studio you can also press F7 to build the project.

Details of the build will appear in the output window.

Deleteloadcases -»> c:\LUSAS5151\Programsi\Modules\Deleteloadcases.dll
========== Build: 1 succeeded, @ failed, @ up-to-date, 8 skipped

Run the project

e Press the F5 Key in Visual Studio to run (or click on start button)

dio
am

g

Tools Test Analyze Window Help
- b Start - 5

~| | Any CPU

12

Running Visual Studio

LUSAS Modeller should start.

e Opena LUSAS model or create a new one.
e Open the Module Manager

ite WWindow Help I Mndulesl

& - Module Manager I &l ek - E
20.0 -18.0 -16.0 -14.0 -12.0
e Click Add new module
LUSAS Madule Manager @

Configured LUSAS modules

Mame Description Wersion State |+
Aibitramy tion Property ... Arbitrary Section Property ...
Composzite Libram Composite Librany - LUSAS | 151161722304 Running
Construction Table Construchion Table - LUSA. . | 151161722304 Running
Crack “Widths Crack ‘widths - LUSAS Ext... [151161722304 Running =
Design Factors Design Factors - LUSAS . [151161722304 Running
Export Ponti EC4 Export Ponti EC4 - LUSAS | 151161722304 Running
Grillage \wizard Grillage "Wizard - LUSAS E.. [151161722304 Running
IMOPluz IMOPIuz - LUSAS Extensio.. | 151161722304 Running
IMDPlus Common Functions | IMDPlus - LUSAS Extensio.. | Unavailable Unloaded
LUISAS Utility LP1 wWiapper | LUSAS LPI Wrapper - LU ... | Unawailable Unloaded
Module Manager Module Manager - LUSAS [151161722304 Running
LIISAS Ltiliey Library LUSAS Utiities - LUSAS ... | Unavailable Unloaded
Prestress \Wizard Prestress Wizard - LUSAS ... | Unavailable Unloaded e
Send command Canfiguration Madule [] Push verbasity
Apnotates ectionProperties v] I[Add new madule]I ’ FReload module] [7] Reload controller
wpoz a3 System.Double [Edit module config] ’ Unload madule] [Cloze

e Browse on the Add Module dialog for C:\<LUSAS Installation
Folder>\Programs\Modules\Deletel oadcases.dll and click OK

13

Creating dialogs using VB.NET

Add Module (23]
Look in: J Modules - @ ? s S FFF g
T Name ’ Date modified Type =
';'y i LVLO 16/12/2015 11:06 File fol
RecentPlaces o) p pitrarySectionPropertyCalculator.dl 30/10/201515:53 Applic
%] CompositeLibrany.dll 30/10/201515:53 Applic
|%| ConstructionTable.dll 30/10/201515:53 Applic|=
| CrackWidths.dll 30/10/201515:53 Applic
08/02/201615:49 Applic
_ %) DesignFactors.dll 30/10/201515:53 Applic
Libraries %] ExportPontiEC4.dIl 30/10/201515:53 Applic
% Grillage.dll 30/10/201515:53 Applic
L&] IMDPlus.dil 30/10/201515:53 Applic
Computer %] LusasInterop.dll 30/10/201516:01 Applic
o %] LusasModule3.dll 04/02/2016 14:26 Applic
i“; ‘.'1‘4'5. MaterialLibrarv.dil = 30,"1[]["2015 15:53 Annlic i
Metwork
File: name: Deleteloadcases2 dl -
Files of type: [mery Files v] [Cancsl]

The LUSAS Module Configuration Editor dialog will appear. This permits (amongst
many other features) restricting the Module to only work with a particular LUSAS
version or licence key. No additional settings should be made on this dialog for this
example.

LUSAS Module Configuration Editor)
Module assembly Module controller options
Assembly path %ModulesDir% V| Load with Modeller (required for event subscription)
Assembly filename DeleteLoadcases.dl | Use encryption to protect code
Instance class Lusas.DeleteLoadcases. LusasModt 9] Sllow advancec 90ing of runkime exrors
[¥] Report verbose/debug information in text window
COM class CLSID i
[¥] Enable module
Module manager identity Use [ClassFactory support for unmanaged code
Friendly name PDelete Loadcases 7] Load as library (without ILusasModule interface)
Short description Delete Loadcases - LUSAS Extensi "] Disable for kward interop ili
[Attempt to load regardless of interop
Required licences Verified interop versions == .
[] Search bly path for missing references
| AdvGeometry - 15.0
Analyst 151 3
AutoLoader Module configuration
[Bioe L Module identifier [DeleteLoadcases -
| CADToolkit
| Covil Company name DeleteLoadcases. AutoConfig
| Compostes
| FastSolver Configuration version 1.0.0.0
| Geotechnical
| ion

Press the Save button and then Close

14

Running Visual Studio

From now on, you will see the Delete Loadcases item in the modules menu.

= Composite Window Help
- -3~ Module Manager for @ - v R

Deletel cadcases
ﬂ E '
= _

e Choose the DeleteLoadcases menu item. A blank window is displayed,
because you have not yet added any controls or written any code.

Module Manager {or & - . . E? k@] kﬁ k‘j @
5 [[oetweromscrer]

Deletel padcasesDialog @

e Click on Stop Debugging in Visual Studio to close LUSAS Modeller and
amend the project.

‘indows Desktop
TEST WINDOW HELP

A_nwd

ﬁi&p Debugging (Shift+F5) |

15

Creating dialogs using VB.NET

Adding dialog controls

e In Visual Studio double-click on DeleteL.oadcasesDialog.vb to open a blank
dialog.

1;0 eletel oadcases - Microsoft Visusl Studio Express 2012 for Windows Desktop Quick Launch (Ctri+Q p - B x
| FILE EDIT VIEW PROJCT BULD DEBUG TEAM TOOLS TEST WINDOW HELP
lie- R P Stat - Debug - Maed Platforms - M _ . 0. €2 @ A
(
Toolbox ~ 8 X [Formlyb(Design] # X Deleteloadcases® B8 5oition Explorer ~ 8 x
{,.‘- x p- ® o-208B +R
b All Windows Forms - & Forml o l@|= s xplorer (Ctri+ P~

a4 Common Controls

R 3] Solution Deletel oadcases’ (2 projects)
) 4[] Deletel osdcases
(@ suon % My Project

B CheckBox D[DeleteLoadcasesDialog.vb

= CheckedlistBox P VB DeletecadcasesModulevb
| B ComboBox L b B Formlab

B DsteTimePicker Hf tosas.m
I A Label
f A Linksbe
1 [LstBox
' Lstview

(. MaskedTenBox Popetes TR

MonthCalendar
I MorahCulend DeleteLoadcases Project Properties
ke Notifyicon
e, £

B NumericUpDown ol 7
| B PictureBox 8 Misc
N Project File Deleteloadcases.vbproj

e Add a ListBox and two Buttons

L

a Search Toolbox R~
{ I All Windows Forms - Delete loadcase Dialog = @
4 Common Controls

k Pointer

CheckBox

B= CheckedListBox
B ComboBox
DateTimePicker
A Label
A LinkLabel

= ListView

(). MaskedTextBox
Bd MonthCalendar
ke Motifylcon

[B MumericUpDown
=

E=

@

PictureBox
Delete Cancel

ProgressBar

RadicButton

e Select each of the controls to modify its properties (Name, location, size...)

16

Running Visual Studio

P Start - Uebug - xiib M-S able View ~ [i I B E Sy |

LusasMedulel Dialog.vb [Design]® + X LusasModulel = R T -0 x
-

RN
Delete loadcase Dialog [E=rE=] @ = ? =

Search Selution Explerer (Ctrl+;) P~

mo 51 Solution 'Deletel oadcases' (2 projects)

T latBarct 4 Deletel oadcases

K My Project
3 Deletel oadcasesDialog.vb
b VB DeleteloadcasesModulexb
> Formlvb

&5 tusas m
> 1 x
ListBox1 System.Windows.Forms ListBox -
-
ListBox1
GenerateMember True
d 5 Locked False
Modifiers Friend
Delete I l Cancel B Focus
CausesValidation True
~ |8 Layout
Anchor Top, Left
B3 DefaultErrorProvider %7 ModuleBindingSource Dock None
Location 32,35
Margin 3,3,3,3
Al MavimumSize non -
Errar lict > 0 x

e For Button 1 define its Name to be btnDelete with Text: Delete

btnDelete System.Windows.Forms.Button - btnDelete System.Windows.Forms.Button -
o [D]F
- Imagelist (none) -
RightToLeft Mo
btnDelete | | Texd Delete |
GenerateMember True TextAlign MiddleCenter
Locked False TextlmageRelation Overlay
Medifiers Friend UseMnemonic True
B Focus UseVisualStyleBackCol True
CausesValidation True UseWaitCursor False
El Layout El Behavior
Anchor Top, Left - AllowDrop False -

e For Button 2 define its Name to be btnCancel with Text: Cancel

e For the ListBox define the Selection Mode to be MultiExtended (This will
allow selection of multiple items in the listbox).

17

Creating dialogs using VB.NET

ListBoxl Systern.Windows.Forms.ListBox -
N (D) F
IntegralHeight True =
ItermHeight 13
MultiColurmn False
ScrollAlwaysVisible False
| selectionMode MultiExtended |
Sorted Falze
TabIndex 3
TabStop True
UseTabStops True
Visible True
Defining a ListBox
All the loadsets (Loadcases, Combinations and Envelopes) are to be listed in the

ListBox

e Double-click on the form to create an event handler for the form load event

= Private Sub Delete_LoadcasesDialog Load(sender As Object, e As EventArgs) Handles MyBase.Load

End Sub
Modify the code as shown below:

Tip. Open the PDF file for this guide and copy and paste the script text required.
& Take care to ensure that any unwanted line breaks are removed.

Private Sub Delete LoadcasesDialog Load(sender As Object, e As
EventArgs) Handles MyBase.Load

Call PopulatelListBox ()
End Sub

Private Sub PopulateListBox ()

'Delete previous items from listbox

18

Running Visual Studio

ListBoxl.Items.Clear ()

'Add loadsets to the listbox

Dim LoadsetsArray = moduleObject.Modeller.db.getLoadsets ("A11l",

"ALL"M)
For i = 0 To UBound (LoadsetsArray)
ListBoxl.Items.Add (LoadsetsArray (i) .getName ())
Next
End Sub

Defining a Delete Button
The selected loadsets of the list box need to be deleted when pressing this button, so:
e Double-click on the button Delete to create an event handler for this button’s
click event.
e Modify it by typing the following:

Tip. Rather than type the lines of VB Script required, open the PDF file for this
guide and for the remainder of this section of the Guide copy and paste the script code
where needed. Take care to ensure that any unwanted line breaks are removed.

Private Sub btnDelete Click(sender As Object, e As EventArgs)
Handles btnDelete.Click

'Delete loadsets that are selected in the listbox
For Each Item In ListBoxl.SelectedItems
Call moduleObject.Modeller.database.deleteloadset (Item)

Next

Call PopulateListBox ()

End Sub

19

Creating dialogs using VB.NET

Defining a Cancel Button

To cause the dialog to close:

e Double-click on the button Cancel to create an event handler for this buttons
click even and modify it to:

Private Sub btnCancel Click(sender As Object, e As EventArgs)
Handles btnCancel.Click

Close ()

End Sub

¢ Now build the project by pressing the F7 key and run it by pressing the F5
key.

e In LUSAS Modeller select the menu item Modules> DeleteLoadcases, then
select which loadcase to delete and press the Delete button.

q% LUSAS Bridge Plus - [LUSAS View: Delete Loadcases.mdl Window 1]
B4 File Edit View G y Attributes Analyses Utilties Bridge Composite Window Help [Modules |
! l Ded & = B X 922~ & ‘ Ovw/+«~ &~ i Module Manaaer

T Deletel oadcases|

| e
BIE &0 1B s
S IERE] Oclete Loadcases.md |

o
o

p -4 Structural analyses Deletel oadcasesDialog oll@]| =)
- -5 Analysis 1
{ - () Geometric
&L Material Loadcase 1 =
D Q 1:Loadcase 1 Loadcase 1
r +-() 2:Loadcase 2 Loodcaseg o
J @-(%1 3:Loadcase 3 Loadcase 1
(%) 4:loadcase 4 Loadoses 4
Loadcase 5
@-(Y) S:loadcase 5 Loadcase 6
@-(*) 6:Loadcase 6 Loadcase 7
#-(5) 7:Loadcase 7 Loadcase §
&%) 8:Loadcase 8 m“’ 9
L) g se 10
* 9:Loadcase 9 Loadcase 11
#-(X) 10:Loadcase 10 Loadcase 12
@-(*) 11:Loadcase 11 Loadcase 13
B-(% 12:Loadcase 12 Loadcase 14
CRE Loadcase 15
®-(13:Loadcase 13 Loodcase 16 w
4-() 14:Loadcase 14 Loadcase 17
#1-(%) 15:Loadcase 15 Loadcase 18
@-(%) 16:Loadcase 16 |Loadcase 19 =
@~ 17:Loadcase 17
®-(*) 18:Loadcase 18 Delete I [Cancel l
#-(5) 19:Loadcase 19)
®-L %) 20:Loadcase 20 :
S04 210 Andraes 21 ,.! I

Running Visual Studio

You may have noticed that if you try to delete all loadcases you get the following:

Deletel padcases Dialog @
p— Unhandled exception has occurred in @ component in your
i | application. If you click Continue, the application will ignore this error
¥ and attempt to continue.

Cannot delete the only remaining loadcase.

This is because Modeller has raised an exception as there must always be at least one
loadcase. You can handle or catch the exception so you get a meaningful message
saying “Cannot delete the only remaining loadcase”

Handling errors

The code will be modified to handle this situation. Add the following code at the
beginning of the btnDelete_Click function.

21

Creating dialogs using VB.NET

Private Sub btnDelete Click(sender As Object, e As EventArgs) Handles
btnDelete.Click

Dim loadcaseArray =
moduleObject.Modeller.database.getLoadsets ("Loadcase", "AIll")

Try
'Delete loadsets that are selected in the listbox
For Each Item In ListBoxl.SelectedItems
Call moduleObject.Modeller.database.deletelLoadset (Item)

Next

Catch ex As Exception

Call moduleObject.Modeller.AfxMsgBox (ex.Message ())

End Try

Call PopulateListBox ()

End Sub

Now, if you try to delete all loadcases you get the following ‘cleaner’ message:

22

General considerations

LUSAS Modeller

l . Cannot delete the only remaining loadcase

General considerations

Basic dialog design

Use the ToolBox to create controls
Double-click on the control in the toolbox to create the control at standard size

Drag and drop to desired position using grid lines to line up with other
controls

Name the controls in Properties using standard naming convention (See basic
dialog controls prefixes below e.g. txt, btn, opt, chk)

Set FormBorderStyle = FixedDialog
Set Localizable = True

Basic dialog controls

TextBox (txt) — string of input or output

Button (btn) — activate an event

ComboBox (cbo) — choice of preset input

CheckBox (chk) — true or false

RadioButton (opt) — choice of a number of options
NumericUpDown (spn) — Integer or decimal within specified range
PictureBox (img) — display images on dialog

GroupBox (grp) — groups radio buttons

Label (Ibl) — add text to dialog

Panel (pnl)- invisible group, enable/disable multiple controls

23

Creating dialogs using VB.NET

Code design considerations

e Only code relating to the dialog should be contained in the dialog class
<projectname>Dialog.vb — e.g. Events, data check functions, change label
text etc. (Access to the module code is achieved by using
moduleObject.<function>)

e Place all worker code in module class <projectnameModule.vb> (access to
Modeller LPI functions is achieved using Modeller.<LPIfunction>")

e All variables must be allocated a Type. Modeller has a number of
predefined data types e.g. IFPoint, IFLine. All Modeller data types start with
IF and a full list is automatically displayed in Visual Studio when the type is
being declared.

e Use access modifiers to restrict the scope of functions as much as possible.
Only make the function public if it is required outside the module.

e Private only available to routines in this module

e Protected only available within class and derived classes

e Friend only available within the assembly (Dialog to module)
e Public visible globally and outside of the assembly

e Itisagood idea to comment all functions, classes, modules etc using the
standard XML comment blocks. Note: Typing three quotes (' ' ') on the
line immediately above the function name will automatically present the
standard html template with the parameters included.

Multiple Dialogs in a single module

By default the LUSAS module template is set up to handle a single dialog. It is possible
for a module to provide multiple dialogs and provide multiple menu entries. It is good
practice to keep all related functionality in a single module.

When a module creates a new menu item, Modeller will return a unique id for that
menu item, these id’s should be stored in “member” variables within the module.
Modules can create new menu items in the onRefreshMainMenu function as shown
below:

Private m dialogl ID As Integer
Private m dialog2 ID As Integer
Private m dialog3 ID As Integer

T

<summary>

24

Multiple Dialogs in a single module

Called when Modeller is redrawing the Main Menu.

'Y</ summary>

<remarks>

''"'" Allows custom modules to append and maintain their own menus.
""" </remarks>

Protected Overrides Sub onRefreshMainMenu ()

Dim myModuleMenu As IFMenu = menu.appendMenu ("My Test Module™)

m dialogl ID = myModuleMenu.appendItem("Launch dialog 1...",
"textwin.writeLine (""Test Dialog 1"")")

m dialog2 ID = myModuleMenu.appendItem("Launch dialog 2...",
"textwin.writeLine (""Test Dialog 2"")")

m dialog3 ID = myModuleMenu.appendItem("Launch dialog 3...",
"textwin.writeLine (""Test Dialog 3"")")
End Sub

When the user clicks these menu items all modules will be called with the id of the
menu item. It is the responsibility of the module to listen for any menu ids it creates
and respond accordingly.

Modules | My Test Module

‘ - Launch dialeg1... |

0, 20 Launch dialeg 2... —

L 1 c

Launch dialeg 3...

Notes:
e The modules are called via the onMenuClick function
e The module should respond when it is called with the correct menu ID.

e For each menu id the moduleDialog should be set to a new instance of the
correct dialog before the runModule function is called. This way the correct
dialog will be shown, as below.

<summary>
Called when the user clicks on a menu entry.

'Y </summary>

""" <param name="menulID">ID of the menu that has been clicked.</param>
""" <param name="edittingObj">Object that is being edited (nothing when
creating a new object) .</param>

'''" <param name="clientData">Data that was provided to Modeller when

defining edittingObj.</param>

25

Creating dialogs using VB.NET

<returns>true if the click event was handled by this
Module.</returns>

' <remarks>

LUSAS expects the a Module handling the event to execute itself

(typically using runModule()) .

</remarks>
Function onMenuClick (ByVal menulD As Integer, ByVal edittingObj As
Object, Optional ByVal clientData As Object = Nothing) As Boolean

If (m dialogl ID = menulID) Then
moduleDialog = New myDialogl (Me)
runModule ()

Return True

End If

If (m_dialog2 ID = menuID) Then
moduleDialog = New myDialog2 (Me)
runModule ()

Return True

End If

If (m_dialog3 ID = menuID) Then
moduleDialog = New myDialog3 (Me)
runModule ()

Return True

End If

Return False

End Function

26

Multiple Dialogs in a single module

e Menu items maybe enabled or disabled in the onMenuUpdate event

"' <summary>

'''" Called when a menu entry needs to be drawn.

''"'" Allows the Module to specify whether the menu item should be disabled
or checked.

'Y</ summary>

''' <param name="menulID">ID of the menu that has been clicked.</param>
""" <param name="edittingObj">0Object that is being edited (nothing when
creating a new object) .</param>

''' <param name="enable">Set to true to enable the menu item.</param>

'''" <param name="checked">

'"' Set to 0 to show an 'off' tickbox next to the menu.

'''" Set to 1 to show an 'on' tick mark by the side of the menu.

''"' Set to 2 to show an indeterminate check.

''"' Set to 3 to show no tick at all.

</param>

'''" <param name="clientData">Data that was provided to Modeller when
defining edittingObj.</param>

''"'" <returns>true if the update event was handled by this
Module.</returns>

''"'" <remarks>

'''" Only when a Module handles an menu update event are the changed
values of enable/checked respected.

""" </remarks>

Function onMenuUpdate (ByVal menulD As Integer, ByVal edittingObj As
Object, ByRef enable As Boolean, ByRef checked As Integer, Optional ByVal
clientData As Object = Nothing) As Boolean

If (m_dialogl ID = menulID) Then

enable = (Modeller.db.countSurfaces () > 0)
Return True
End If

If (m _dialog2 ID = menulD) Then
enable = True
Return True
End If
Return False
End Function

Note. All dialogs must inherit from LusasModuleDialog. When adding a new dialog
you should change the code in the dialog designer to inherit from LusasModuleDialog
rather than System.Windows.Forms.Form

27

Creating dialogs using VB.NET

o Desig
*3 Form - | 8BE (Dedlarations) i @l e-2ndn
1 B <Glu}?al.Mi:ros?ft.VisualEasic.CempilarServi:Es.Designe'Gene'ated()) _ — Sesrch Solution Explorer (Ctrl-)
2 |Partial Class Forml -
3 Inherits System.Windows.Forms.Form LusasModule4
4 b & My Project
5 "Form overrides dispose to clean up the component list. b =B References
6 <System.Diagnostics.DebuggerionlserCode()> _ b obi
7 Protected Overrides Sub Dispose(ByVal disposing As Boolean))
5 Try 4 Forml.vb
9 If disposing AndAlso components IsMot Mothing Then > 73 Forml Designervb
18 components.Dispose() b ¥z Forml
11 End If 3 LusasModuledDialog.vb
12 Finally b vB LusasModuledModulevb
13 MyBase.Dispose(disposing)
an End Teu
Forml.Designervh™ £ X
“iz Form1 - | B (Declarations) = @ o-2uda
1 [Fl«Global.Microsoft.visualBasic.CompilerServices.DesignerGenerated()> +
. o P =8 0> _ 4 Search Solution Explorer (Ctrl+;)
2 | Partial Class Forml S
3 Inherits LusasModuleDialog| [E LusasModuled
4 P & MyProject
5 'Form overrides dispose to clean up the component list. b References
6 [l <System.Diagnostics.DebuggerionUserCode()> _ b obi
7 Protected Overrides Sub Dispose(Byval disposing As Boolean) .
s Try 4 Forml.vb
9 If disposing AndAlso components IsNot Nothing Then P " Formil Designervb
1@ components.Dispose() b #y Forml
11 End I 13 LusasModule4Dialog.vb
12 Finally P vB LusasModuledModulevb
13 MyBase.Dispose(disposing)
14 End Try
15 End Sub

Translation considerations

e The default language should always be English. All strings should be defined
in the Resources.resx file. To access the Resources.resx file pick the Show All
Files button in the Solution Explorer.

ql

Solution Explorer

Search Solution Explorer (Ctrl+;) P~

bk

fa] Solution 'Delete Loadcases' (1 project) =
4 Delete Loadcases

P VB Application.myapp

P VB Assemblylnfo.vb

b O Resources.resx

b i} Settings.settings

3 References

b bin

b obj

[Delete_LoadcasesDialog.vb

P VB Delete LoadcasesModulevh -

Double clicking on the Resources.resx will display a window to name and define the
strings.

28

VB.NET online tutorials

Note. If languages other than English are to be supported the dialog property
Localizable property should be set to be True and the Language should be changed
to the translation language, as for example for Chinese (Simplified) This will
automatically create a new resource file for the dialog where the translated string
should be defined and allow the labels to be translated and the size and position of the
controls to be customised. Changing the Language back to Default will display the
English labels with the controls set to in their original size and position.

H lcon 25| ween) =- CH Nofused
ImeMode NeControl - 7] obj
IsMdiContainer False 18] Enums.vb
KeyPreview False 1 =-8[E] FsteelDesignDialog.vb
Language Chinese (Simplified) 3 ..@%] FSteelDesignDialog.Designer.vb
Localizable True ..m%] FSteelDesignDialog.resx
Location 0,0 .. #%] FSteelDesignDialog.zh-CHS.resx
Locked False -3 18] FsteelDesignModulevh
e e e . . = . .

By using this approach any strings which do not have a translation will be displayed in
English and an Language for which translation is not supported will show English
labels and strings.

VB.NET online tutorials
VB.NET online tutorials are widely available. Here are some examples:
English:

https://www.youtube.com/watch?v=hkcO M9gcNw&index=1&Ilist=PL42055376AE25
291E

English: https://www.youtube.com/watch?v=AJpTbPasJgl&list=PLS1QuIWo1RIYLp
gVN_CpXbkOQoYJTIltzg

Chinese: https://channel9.msdn.com/Series/Visual-Basic-Fundamentals-for-

Absolute-Beginners/01

29

https://www.youtube.com/watch?v=hkcO_M9gcNw&index=1&list=PL42055376AE25291E
https://www.youtube.com/watch?v=hkcO_M9gcNw&index=1&list=PL42055376AE25291E
https://www.youtube.com/watch?v=AJpTbPasJqI&list=PLS1QulWo1RIYLpgVN_CpXbkOQoYJTItzg
https://www.youtube.com/watch?v=AJpTbPasJqI&list=PLS1QulWo1RIYLpgVN_CpXbkOQoYJTItzg
https://channel9.msdn.com/Series/Visual-Basic-Fundamentals-for-Absolute-Beginners/01
https://channel9.msdn.com/Series/Visual-Basic-Fundamentals-for-Absolute-Beginners/01

Creating dialogs using VB.NET

VB.NET dialog exercise
Colour Line

Colour Index 0 =

[ok][Camcel |[seoty |

The preceding dialog is required to allow a user to change the colour of all Lines in a
model. The dialog should be activated from the menu item My Menu> Colour Line

Write the code to enable this to take place.

The solution is shown on the next page.

30

VB.NET dialog solution

VB.NET dialog solution
1. In Dialog Class:

Private Sub btnOK Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnOK.Click

Call btnApply Click(sender, e)
Call btnCancel Click(sender, e)

End Sub

Private Sub btnApply Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnApply.Click

moduleObject.ColourLines (spnColourIndex.Value)

End Sub

Private Sub btnCancel Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnCancel.Click

Me.Close ()

End Sub

2. In Module Class, in existing function onRefreshMainMenu change:

If rootMenu.exists ("Modules") Then

modMenu = rootMenu.getSubMenu ("Modules")
Else

modMenu = rootMenu.appendMenu ("Modules")
End If
to:

31

Creating dialogs using VB.NET

Dim menuName As String = "My Menu"

If rootMenu.exists (menuName) Then

modMenu = rootMenu.getSubMenu (menuName)

Else

modMenu = rootMenu.appendMenu (menuName)

End If

3. Add function

<summary>
Routine to colour lines
</summary>

<param name="colour">colour index</param>

Public Sub ColourLines (ByVal colour)

Dim lines As Object = Modeller.database.getObjects ("Lines",

"ALLM™)
For Each line As IFLine In lines
line.setPen (colour)
Next
End Sub

32

Component Technology

LUSAS via COM

Component Technology

The LUSAS Programmable Interface allows interfacing with other compatible
Windows programs through a Component Object Model (COM) interface. This defines
a set of rules by which two programs can communicate and allows controlling those
programs as if they were part of LUSAS Modeller. LUSAS can also be used as a
component of another system (running transparently if required) providing modelling
capabilities, analysis solutions and results viewing and processing options for that
application.

In order to drive LUSAS from a standalone application via COM (Component Object
Model), LUSAS must be installed and licenced. When creating a COM instance of
LUSAS a licence will be used. The licence will be in use for the lifetime of the instance
and must be properly disposed of to release the licence.

Application Example

To illustrate the process involved, a stand-alone application called SimpleBeam will be
created. The application will accept two parameters, length and load. The application
will use LUSAS to analyse the beam and return the results for the maximum bending
moment.

Create a new project

e In Visual Studio create a new Windows Application called SimpleBeam.

33

LUSAS via COM

Project types:

Templates:

(it e S)

=- Visual Basic
-Windows
- Starter Kits
-Web
Visual C#

- Visual J#

- Visual C++

Visual Studio installed templates
@Wlndows Application
(= Console Application
(5% ASP.NET Web Application
My Templates
ZA LUSAS Module 15.0

@ Class Library
@Windows Control Library
M ASP.NET Web Service Application

.j Search Online Templates...

- Intel(R) Fortran
[Other Project Types

LUSAS extensicn module and its QA test project

Narne: SimpleBeam
Location: Ci\Users\rob\Desktop'.MET Training - Browse..
Solution: Create new Solution '] Create directory for solution

Solution Name: SimpleBeam

] Add to Subyersion

e Add a reference to LUSAS Modeller.

e In Solution Explorer, click Show All Files

e Right-click on References and select Add reference

e Inthe COM tab select LUSAS Modeller ActiveX Script Language 15.1
(later versions of LUSAS will require a different selection)

Solution Explorer
@l o-2ndm| # M@
Search Solution Explorer (Ctrl+;)

SimpleBeam

B S My Project
4 @l References
u-0 Lusashl5 1
o0 Systern
u-B System.Data
=B Systern.Deployment
5B Systern.Drawing
5B Systemn.Windows.Forms
=0 Systern.Xml

34

Application Example

e Create the following dialog:

N =)

Beam length 10.0

Uniform loading 5.0

| Maxdmum Bending =

[Quit] ’ Calculate

For simplicity all code is placed in the dialog as follows

Imports LusasM15 1

Public Class Forml

Private m_lusas As LusasM15_ 1.LusasWinApp' Reference to Lusas
Modeller

Private Sub btnCalculate Click(sender As System.Object, e As
System.EventArgs) Handles btnCalculate.Click

analyseBeam ()

End Sub

Private Sub analyseBeam()
' Get the params
Dim length As Double = Double.Parse (txtLength.Text)

Dim loading As Double = Double.Parse (txtLoading.Text)

35

LUSAS via COM

' Create an instance of modeller

m_lusas = New LusasM1l5 1.LusasWinApp

' Create a new model
m_lusas.newDatabase ()

' Set the vertical axis

m lusas.db.setLogicalUpAxis ("Z")
' Set the unit system

m_lusas.db.setModelUnits ("kN,m,t,s,C")

' *** Create a line ***

' Get the geometry data object

Dim geomData As IFGeometryData = m_lusas.geometryData ()
' Set the defaults

geomData.setAllDefaults ()

' Set the coordinates of the first point
geomData.addCoords (0, 0, 0)

' Set the coordinates of the second point
geomData.addCoords (length, 0, 0)

' Create the line object

Dim linesDBop As IFObjectSet = m lusas.db.createlLine (geomData)
' Get the lines

Dim lines () = linesDBop.getObjects ("Lines", "All")

' Get a reference to the created line

36

Application Example

Dim beamLine As IFLine = lines(0)

' *** Create a mesh attribute ***

Dim meshAttr As IFMeshLine = m_lusas.db.createMeshLine ("Beam
Mesh")

' Set the element type and number of elements (lm elements here)

meshAttr.setNumber ("BMS3", length)

' *** Create a geometric attribute ***

Dim geomAttr As IFGeometriclLine =
m lusas.db.createGeometricLine ("Beam Geometry")

' Set the element type
geomAttr.setValue ("elementType", "3D Thick Beam")
' Set the beam properties

geomAttr.setBeam(0.0125, 0.0004573, 0.00002347, 0.0, 0.00000121,
0.00532608, 0.00755776, 0.0, 0.0, 0)

' *** Create a material attribute ***

Dim materialAttr As IFMateriallsotropic =
m lusas.db.createlsotropicMaterial ("Steel", 209000000.0, 0.3, 7.8)

' *** Create a support attribute (fixed) ***

Dim fixedSupport As IFSupportStructural =

37

LUSAS via COM

m lusas.db.createSupportStructural ("Fixed")
' set the freedoms

fixedSupport.setStructural ("R", "R", "R", "E", "F", "EF", "F",
npn, wpn)

' *** Create a support attribute (pinned) ***
Dim pinnedSupport As IFSupportStructural =
m lusas.db.createSupportStructural ("Pinned")
' set the freedoms
pinnedSupport.setStructural ("¥", "R", "R", "F", "F", "p", "¥",

nEn, "EM)

' *%* Create a load attribute ***

Dim loadAttr As IFLoadingGlobalDistributed =
m lusas.db.createLoadingGlobalDistributed ("UDL")

' Set the parameters

loadAttr.setGlobalDistributed("Length", 0.0, 0.0, -loading, 0.0,
0.0, 0.0, 0.0, 0.0)

' *** Assign the attributes to the geometry ***

' get the assignment object

Dim assignment As IFAssignment = m lusas.assignment ()
' set the defaults

assignment.setAllDefaults ()

38

Application Example

' Assign the mesh

meshAttr.assignTo (beamlLine, assignment)
' Assign the geometry
geomAttr.assignTo (beamlLine, assignment)
' Assign the material
materialAttr.assignTo (beamLine, assignment)

' Assign the loading

loadAttr.assignTo (beamLine, assignment)

' Assign the supports to the points of the line
' get the points - Lower Order Features

Dim pointsArray() = beamLine.getLOFs ()

' Assign the fixed support to the first point
fixedSupport.assignTo (pointsArray(0), assignment)
' Assign the pinned support to the last point

pinnedSupport.assignTo (pointsArray(l), assignment)

' Set the mesh

m_lusas.db.updateMesh ()

' The model is ready to be solved - get the temporary file path

Dim tempFilePath As String = System.IO.Path.GetTempPath ()

' Get the solverOptions object and set the defaults

39

LUSAS via COM

Dim solverOptions As IFLusasRunOptionsObj =
m lusas.solverOptions ()

solverOptions.setAllDefaults ()

Get the exporter object that will export the model to solver
Dim solverExport As IFTabulateDataObj = m_lusas.solverExport ()
' Set the defaults

solverExport.setAllDefaults ()

'

Set a filename

solverExport.setFilename (tempFilePath &
"beam.dat") .setSearchAreaFileOn ()

Export the model as a solver data file (.dat)

Dim returnCode As Integer = m lusas.db.exportSolver (solverExport,
solverOptions)

If (returnCode <> 0) Then

If the export fails we cannot run the analysis
MsgBox ("The tabulation failed")
Return

End If

Save the model before solving

m lusas.db.saveAs (tempFilePath & "beam.mdl")

If we sucessfully exported the .dat file we can run the
analysis

returnCode = m lusas.solve (tempFilePath & "beam.dat",
solverOptions)

If (returnCode <> 0) Then

' If the analysis fails we cannot access the results

40

Application Example

MsgBox ("The analysis failed")
Return

Else

' if the analysis is sucessfull load the results
m lusas.database.openResults (tempFilePath & "beam.mys")

m lusas.database.getResultsCache () .calculateNow ()

End If

' *** Successful analysis - Process the results to determine the

max bending ***
Dim maxMom As Double
Dim nodeNum As Integer
' Get the results at each node to determine the max
For Each element As IFElement In beamLine.getElements ()
For Each node As IFNode In element.getNodes|()

' Extract the nodal result for the required Entity and

Component

Dim my As Double = node.getResults ("Force/Moment - Thick
3D Beam", "My")

' Save the minimum (sagging) momnet
If my < maxMom Then

maxMom = my

nodeNum = node.getID()
End If

Next

41

LUSAS via COM

Next

Get the units of the current model for display

Dim forceUnit As String =
m lusas.db.getModelUnits () .getForceShortName ()

Dim lengthUnit As String =
m lusas.db.getModelUnits () .getLengthShortName ()

' Set the dialog label
1blMaxMom.Text = m_ lusas.convertToString (maxMom) & forceUnit &

lengthUnit ' String.Format("{0:0.000}{1}{2}", maxMom, forceUnit,
lengthUnit)

' Quit the application and free the licence
m lusas.quit ()

End Sub

Private Sub btnClose Click(sender As System.Object, e As
System.EventArgs) Handles btnQuit.Click

For Each p As Process In
System.Diagnostics.Process.GetProcessesByName ("Lusas m")

Try
p.Kill ()
p.WaitForExit ()

Catch ex As Exception

42

Interfacing to LUSAS using C++

End Try

Next

Me.Close ()

End Sub

End Class

Interfacing to LUSAS using C++

N

Generally, LUSAS recommends that you use VB or any other language that natively
supports COM interfaces. C++ does not natively support COM interfaces, thus COM
programming in C++ is much more complex, and results in code which is more likely
to contain bugs and is harder to read. However, it is possible for experienced C++
programmers to interface to Modeller. A simple example follows:.

#import “C:\LUSAS152\programs\Lusas m.exe"

// create a modeller
pModeller = IFModellerPtr ("LUSAS.Modeller.15.2");
// create and return a database
IFDatabasePtr db = pModeller->newDatabase();
// create and return a line
IFLinePtr 1 = db->createlLineByCoordinates (0, 0, 0, 5, 5, 5);
// calculate line length

double len = l->getLineLength();

Note. The LPI functions often return a base class pointer which often needs to be
downcast to the desired type (e.g. attribute -> material). VB will do this for you, but
C++ will not. Therefore you must explicitly cast, and catch any exceptions that may
result

Note. LPI functions often have VARIANT inputs and outputs. VB will handle
conversion between simple data types (integers, strings, objects) and VARIANTS, but

43

LUSAS via COM

C++ will not. Therefore you must be familiar with the use of the VARIANT type. If in
doubt, consult Microsoft documentation.

44

LUSAS Material Model Interface

LUSAS Material Model Interface

In addition to the accessing and customising LUSAS Modeller via the LUSAS
Programmable Interface, user-defined material models (written in Fortran) can be
compiled and built into a customised LUSAS Solver executable by using the LUSAS
Material Model Interface (LUSAS MMI).

Any other COM
compatible

.NET

S (C#/VB.NET) Fortran

U U

language

LUSAS Programmable Interface(LPI)

$
pEs—
U 3

I

I

I

I

I

I

I

I

I

I

I
L I

I

I

I

! —_—

I f
-

I

The use of LUSAS MMI is beyond the scope of this manual. Please contact LUSAS
Technical Support for more information.

45

LUSAS via COM

46

'
',
. .
|

2L
=y
® |
= CR|
| ©AE ~ |
A =
E 4 ‘!:
: - +
i 2 —
i = |
-~ = 2=
- T
e - 4=
K =) '1.E
- BT s B :
=
Ll 3 (= %ﬁ el
= e :
e wTH.
= o
G -

€S, SUrT
@lusas.comai

	Introduction
	Introduction
	Topics covered in this guide
	LUSAS Progammable Interface (LPI) Customisation and Automation Guide

	Creating dialogs using VB.NET
	Choosing a development environment
	Downloading and installing Visual Studio Community
	Creating a LUSAS dialog
	Module Manager
	Creating a new module

	Running Visual Studio
	Build the project
	Run the project
	Adding dialog controls
	Defining a ListBox
	Defining a Delete Button
	Defining a Cancel Button
	Handling errors

	General considerations
	Basic dialog design
	Basic dialog controls
	Code design considerations

	Multiple Dialogs in a single module
	Notes:

	Translation considerations
	VB.NET online tutorials
	VB.NET dialog exercise
	VB.NET dialog solution

	LUSAS via COM
	Component Technology
	Application Example
	Create a new project

	Interfacing to LUSAS using C++
	LUSAS Material Model Interface

