

Track-Structure Interaction to UIC774-3

For LUSAS version:	17.0
For software product(s):	LUSAS <i>Bridge</i>
With product option(s):	Nonlinear, Rail Track
Note: The example exceeds the limits of the LUSAS Teaching and Training Version.	

Description

This example examines the track-structure interaction between a braking train and a single span bridge and considers the cases where the trainset is just about to enter the left-side side of structure through to the front of the train being 90m beyond the right-hand side. It approximates (as far as the original test data allows) testcase E1-3 which can be found in Appendix D.1 of the UIC774-3 Code of Practice.

Objectives

The output requirements of the analysis are:

- Maximum relative displacement between the track and the structure in the longitudinal direction (relative railbed displacement).

- Peak axial rail stresses.
- Peak longitudinal reactions at the abutments.

Keywords

UIC774-3, Track-Structure Interaction, TSI, Rail, Railbed

Associated Files

- UIC_Template.xlsx** or **UIC_Template.xls** UIC774-3 Microsoft Excel input spreadsheet (unpopulated) for copying to a projects folder and using with this worked example.

The following files are also provided in the **<LUSAS Installation Folder>\Examples\Modeller** folder and are intended for copying to a projects folder if results processing only and not spreadsheet data input is of interest:

- UIC E1-3 Analysis.xlsx** or **UIC E1-3 Analysis.xls** UIC774-3 Microsoft Excel input spreadsheet populated with data defined in this example. If used, continue at the section *Modelling / Running an Analysis*.
- UIC E4-6 Analysis.xlsx** or **UIC E4-6 Analysis.xls** UIC774-3 Microsoft Excel input spreadsheet populated with data defined in this example. This is for use for a further investigation with the same model as built by the preceding spreadsheet.

Defining Model Data

The LUSAS Rail Track Analysis software option automatically builds LUSAS models suitable for track/structure interaction analysis. It does so from data defined in Excel spreadsheets.

If you wish to build the model used in the worked example from a predefined populated spreadsheet continue at the section titled *Modelling / Running an Analysis*.

Otherwise, to see the processes involved in defining data to build a model from scratch:

- Copy the Microsoft Excel spreadsheet named **UIC_Template.xlsx** (use **UIC_Template.xls** if using an older version of Microsoft Excel) from the **<LUSAS Installation Folder>\Programs\Scripts\User** folder to a working projects folder (such as **<LUSAS Installation Folder>\Projects>** where the track-structure interaction model is to be built).
- Rename the spreadsheet to **UIC E1-3 Analysis.xlsx** if using Microsoft Excel 2007 and above or rename to **UIC E1-3 Analysis.xls** if the other file was copied and you are using an older version of Microsoft Excel.
- Open the spreadsheet in Microsoft Excel.

The modelling spreadsheet contains six worksheets titled:

- **Decks, Tracks and Embankment**
- **Structure Definition**
- **Geometric Properties**
- **Material Properties**
- **Interaction and Expansion Joint**
- **Loading**

Note. Data should only be entered into the yellow regions of the Microsoft Excel spreadsheet to define the modelling and analysis requirements. Numeric values in the white cells are automatically populated according to data entered in other worksheets. These cells are protected from editing or user input. Data tips and other details relating to cells can often be seen by hovering over a cell.

Note. Whilst it is recommended that an unpopulated spreadsheet is used with this example, populated spreadsheets are supplied for those not wishing to enter all details as listed or for use if any errors are encountered with user-input into the general spreadsheet that cannot easily be fixed. Populated spreadsheets can be found in the **\<LUSAS Installation Folder>\Examples\Modeller** folder. A spreadsheet compatible for an installed version of version of Microsoft Excel should be copied to the working folder where the track-structure interaction example model is to be created.

Defining Decks, Tracks and Embankment Lengths

- Pick the **Decks, Tracks and Embankment** worksheet.
- Enter **1** for the **Number of Decks**.
- Enter **1** for the **Number of Tracks**.
- The UIC774-3 Code of Practice specifies the embankment lengths for the test cases to be **300m**. Enter **300** for both the **Left Embankment Length** and **Right Embankment Length**.

Decks, Tracks and Embankment			
A	B	C	D
1	Decks, Tracks and Embankment	Units : m	
2			
3	Number of Decks	1	
4	Number of Tracks	1	
5	Left Embankment Length	300	
6	Right Embankment Length	300	
7	Length of Decks Only / Total Length (m)	60	660
8			

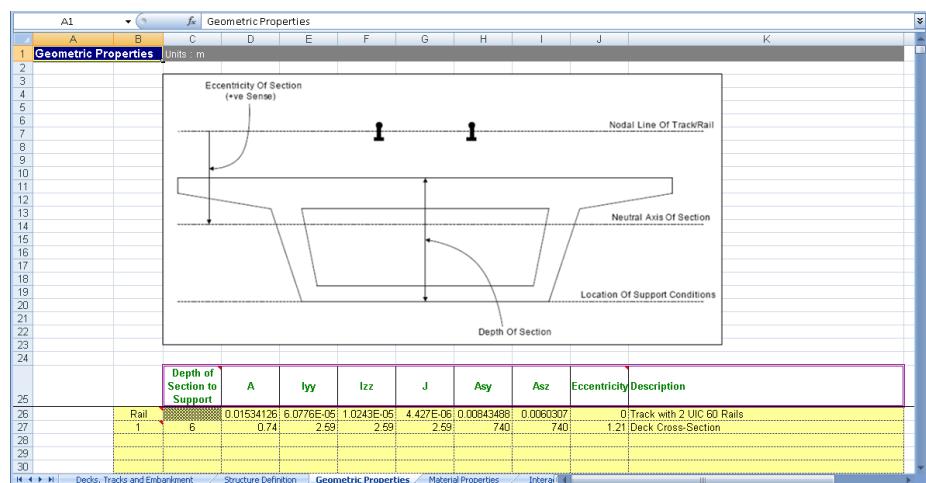
Note that the Length of Decks Only and Total Length cells are populated using data on this and another worksheet. These cells are protected on this worksheet.

Defining the Structure

- Pick the **Structure Definition** worksheet.
- The left abutment has a stiffness of **600000kN/m** according to test case E1-3. Enter **600** for the **Spring Support for each Abutment/Pier** for the left end of the deck because the units for the worksheet entry are **kN/mm**.

- No bearing behaviour is modelled in the E1-3 test case so enter **R** for the **Bearing Springs on Top of each Pier** for the left end of the deck.
- The first and only span of the deck has a free support in the longitudinal direction and can be specified through either no restraint in the spring support for the abutment / pier or through no restraint in the bearing springs. For this example the condition has been modelled using no restraint in the bearing springs.
- Enter **R** for the **Spring Support for each Abutment/Pier** for the first span of the deck.
- Enter **F** for the **Bearing Springs on Top of each Pier** for the first span of the deck.
- Enter **60** for the **Span Length**.
- Enter **1** for the **Geometric Assignment**. This ID will match a geometric definition in the **Geometric Properties** worksheet covered next.
- Enter **1** for the **Material Assignment**. This ID will match a material definition in the **Material Properties** worksheet covered later.

The worksheet should look like this:


A1		Structure Definition										
		B	C	D	E	F	G	H	K	L	M	
1	Structure Definition	Units	Pier Height : m	Bearing springs on top of each pier : kN/mm, Span Length : m								
4				Spring Support for each Abutment /Pier	Pier Height	Pier Geo. Assign.	Pier Mat. Assign	Bearing Springs on Top of each Pier	Span Length	Geo. Assign.	Mat. Assign.	
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15	Deck 1	Left End	600					R	60	1	1	
16		Span 1	R									
17		Span 2										
18		Span 3										
19		Span 4										
20		Span 5										
21		Span 6										
22		Span 7										
23		Span 8										
24		Span 9										
25		Number of Supports for the Deck / Length	2					2	60			
26	Deck 2	Left End										
27		Span 1										
28		Span 2										
29		Number of Supports for the Deck / Length	0					0	0			
30		Left End										
31		Span 1										
32		Span 2										

Note. If more spans were present in the deck or the structure consisted of multiple decks this information would be entered into this worksheet.

The UIC774-3 fundamental tests do not incorporate modelling of the piers of the structure, so are not included in this example. However, LUSAS offers two methods of modelling piers when this is required to be done. The first method represents the pier through the equivalent stiffness which should be entered into the **Spring Support for each Abutment/Pier** entry and is calculated in accordance with Clause 1.3.2.2 in the UIC774-3 Code of Practice. The second method physically includes the pier in the finite element model and requires additional data entry into the columns for the **Pier Height**, **Pier Geometric Assignment** and **Pier Material Assignment**. For further details see the *Rail Track Analysis User Manual*.

Defining the Geometric Properties for the Structure

- Pick the **Geometric Properties** worksheet.

The first line of data should always be called **Rail** and contains the geometric properties for the rail track. All other lines define the geometric properties for the unique IDs used in the **Structure Definition** worksheet.

The details of the rail used in the UIC774-3 test cases are not provided so it has been assumed that the track is formed of two UIC 60 rails and for the purposes of this example the properties are obtained by doubling the values from the LUSAS section library to give the total value per track. Enter the following values for the rail track:

- Enter **0.01534126** for the area (**A**) in m^2 of the two rails of the track.
- Enter **6.07756E-05** for the second moment of inertia about the horizontal y-axis (**Iyy**) in m^4 .

- Enter **1.024324E-5** for the second moment of inertia about the vertical z-axis (**Izz**) in m^4 .
- Enter **4.42698E-6** for the torsional constant (**J**) in m^4 .
- Enter **8.43488E-3** for the shear area for the y-direction (**Asy**) in m^2 .
- Enter **6.0307E-3** for the shear area for the z-direction (**Asz**) in m^2 .
- Enter **0** for the **Eccentricity** in the rail in m.
- Enter **Track with 2 UIC 60 Rails** in the **Description** for the rails.

Note. The UIC774-3 Code of Practice assumes that a 2D analysis is performed where the longitudinal and vertical behaviours of the track and structure are of interest. The current rail track analysis also assumes a 2D analysis but for its solution it requires the features of an element type which is only available in 3D in LUSAS. The properties entered into the worksheet therefore require geometric properties for all freedoms of the 3D element and the lateral behaviour and torsion the properties for two rails have been assumed to be twice those of the single rail. This will be discussed further in the **Modelling Discussion** section that follows.

Some of the properties for the 2D bending behaviour of the deck are provided in Appendix D.1 of the code of practice. As for the track rails, while the analysis is 2D the elements used are 3D so dummy properties have been included for the lateral behaviour and torsion of the deck although these will not affect the results obtained. In the model it has therefore been assumed that these properties are equal to the values provided for the vertical behaviour. Enter the following values for the deck:

- Enter **1** for the ID in the first column to match the geometric assignment ID for the deck in the **Structure Definition** worksheet.
- Enter **6** for the **Depth of Section** in m.
- Enter **0.74** for the area (**A**) in m^2 .
- Enter **2.59** for the second moment of inertia about the horizontal y-axis (**Iyy**) in m^4 .
- Enter **2.59** for the second moment of inertia about the vertical z-axis (**Izz**) in m^4 .
- Enter **2.59** for the torsional constant (**J**) in m^4 .
- Enter **740** for the shear area for the y-direction (**Asy**) in m^2 . The UIC774-3 test cases do not indicate whether shear deformations were included in the calculation of the target results so these have been ignored by setting the shear area to $1000*A$ in accordance with the *Element Reference Manual*.
- Enter **740** for the shear area for the z-direction (**Asz**) in m^2 .

- Enter **1.21** for the **Eccentricity** in the deck in m. The UIC774-3 test cases assume that the track is at the top surface of the section and the neutral axis ordinate specified is from the base of the section. The depth of the section is 6m and the neutral axis ordinate is 4.79m giving an eccentricity of $6 - 4.79 = 1.21$ m.
- Enter **Deck Cross-Section** in the **Description** for the deck.

Modelling Discussion

While the UIC774-3 Code of Practice treats the track-structure interaction as a 2D problem the rail track analysis software uses 3D thick beam elements for the modelling of this problem but restrains the out of plane behaviour thus reducing it back to an equivalent 2D analysis. In the definition of the geometric properties for the track rails and structure the rail track analysis software therefore requires all of the 3D geometric properties to be defined for the worksheet. The properties entered for I_{zz} , J and A_{sy} will be used in the analysis but these will not affect the results. They should however be set to similar magnitudes to the properties in I_{yy} and A_{sz} which are used for the bending deflection and shear deflection in the geometric properties to avoid mechanisms.

The properties for a single UIC 60 rail were taken from the LUSAS KS Rails section library. Since only the vertical bending of the track is considered the combined geometric section properties for the two rails of the track can be calculated by doubling the values for the single rail. These combined values are the ones entered into the **Rail** properties section of the Geometric Properties worksheet

Note. The doubling of the I_{zz} , J and A_{sy} properties could be considered to be inappropriate but since these properties are not used in the effective 2D analysis their doubling is considered acceptable.

Defining the Material Properties for the Structure

Material Properties						
1	Material Properties	Units : N, mm, kg				
3		E	v	P	α	Description
4	Rail	210000	0.3	0	1.20E-05	Rails
5	1	210000	0.3	0	1.00E-05	Deck
6						
7						
8						
9						
10						
11						

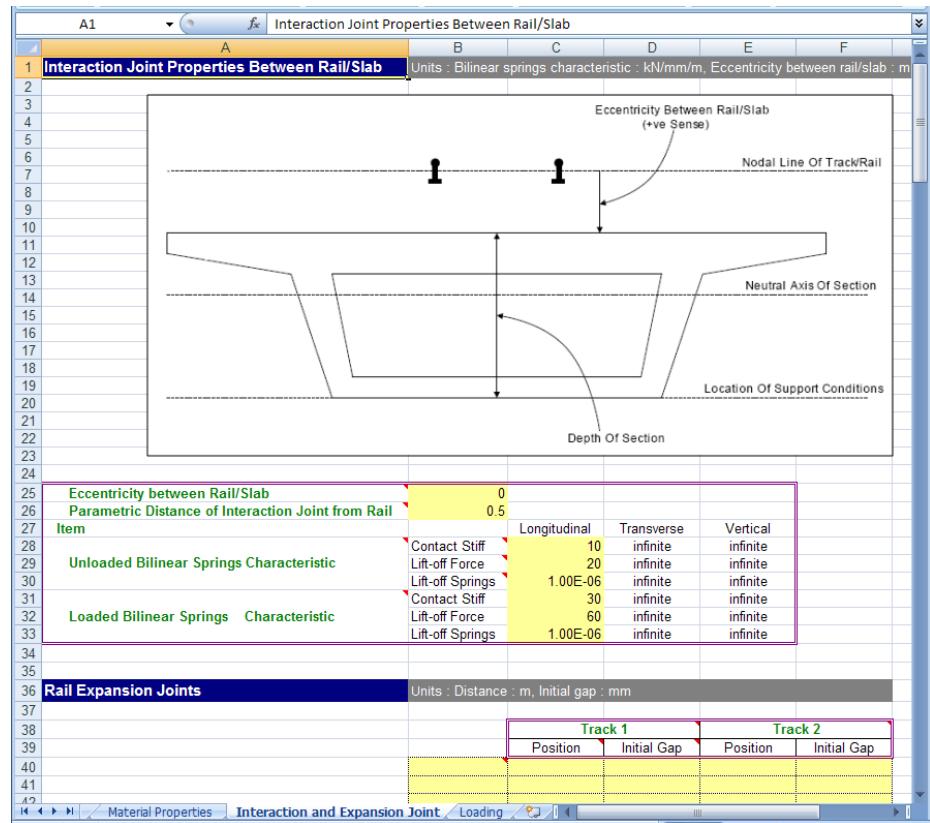
- Pick the **Material Properties** worksheet.

The first line of data should always be called **Rail** and contains the material properties for the rail track. All other lines define the material properties for the unique IDs used in the **Structure Definition** worksheet.

Enter the following values for the rail:

- Enter **210000** for the Young's modulus (**E**) in N/mm² which is equivalent to a value of 210 GPa.
- Enter **0.3** for the Poisson's ratio (**v**).
- Enter **0** for the mass density (**ρ**). Setting this to the representative value allows the self-weight deflections to be calculated for the structure and track system if they are required but it is not used for the track-structure interaction analysis.
- Enter **1.20E-5** for the coefficient of thermal expansion (**α**) – see note below.
- Enter **Rails** in the **Description** for the rails.

Enter the following values for the deck:


- Enter **1** for the ID in the first column to match the material assignment ID for the deck in the **Structure Definition** worksheet.
- Enter **210000** for the Young's modulus (**E**) in N/mm².
- Enter **0.3** for the Poisson's ratio (**v**).
- Enter **0** for the mass density (**ρ**).
- Enter **1.0E-5** for the coefficient of thermal expansion (**α**).
- Enter **Deck** in the **Description** for the material properties.

Note. The documentation accompanying the UIC774-3 test cases does not mention the exact material properties that were used for the rail track in the target solutions and also does not mention the Poisson's ratio or coefficient of thermal expansion used for the track / deck. The Poisson's ratio has therefore been assumed to be identical for both and the coefficient of thermal expansion used for the deck is identical to the value mentioned in Example 1 in Appendix C.1 of the UIC774-3 Code of Practice and mentioned elsewhere within the Code of Practice.

From the temperature behaviour of a restrained bar it can, however, be back calculated that the coefficient of thermal expansion for the track was 1.2E-5 to obtain a target compressive stress of 126 MPa in the track alone under thermal loading. To replicate the exact test case the example has therefore used this coefficient of thermal expansion and accurate UIC60 track properties.

Defining the Track-Structure Interaction and Expansion Joint Properties for the Structure

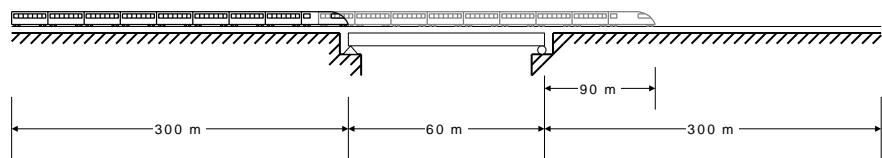
- Pick the **Interaction and Expansion Joint** worksheet.
- Enter **0** for the eccentricity between the rail and slab as the UIC774-3 test cases in Appendix D.1 are assumed to have their centre of gravity coincident with the top of the reinforced concrete slab of the deck.
- Enter **0.5** for the **Parametric Distance of Interaction Joint from Rail**. For modelling with no eccentricity between the rail and the slab this parameter is not used but they are placed halfway between the rail and slab by default for eccentric track if entry is blank.

Note. The UIC774-3 test cases assume that the track is ballasted without specifying the exact interaction properties that are to be used. It is therefore assumed that the value

of u_0 in the test cases is equal to 2mm which is the representative value for a sleeper in ballast (as opposed to ‘frozen’ ballast track) indicated in Clause 1.2.1.2.

- Enter **10** for the **Unloaded Contact Stiffness** in the longitudinal direction in kN/m/mm. The resistance parameter for the unloaded track is 20kN/m in the test and this gives a stiffness of $20\text{kN/m} / 2\text{mm} = 10\text{kN/m/mm}$ (see note above).
- Enter **20** for the **Unloaded Lift-off Force** in the longitudinal direction in kN/m.
- Enter **1.0E-6** for the **Unloaded Lift-off Springs** in the longitudinal direction in kN/m/mm.
- Enter **30** for the **Loaded Contact Stiffness** in the longitudinal direction in kN/m/mm. The resistance parameter for the unloaded track is 60 kN/m in the test and this gives a stiffness of $60\text{kN/m} / 2\text{mm} = 30\text{kN/m/mm}$ (see note above).
- Enter **60** for the **Loaded Lift-off Force** in the longitudinal direction in kN/m.
- Enter **1.0E-6** for the **Loaded Lift-off Springs** in the longitudinal direction in kN/m/mm.

Note. The interaction springs are modelled using nonlinear joints with elastic-perfectly plastic behaviour in the longitudinal direction. This is achieved using the elasto-plastic uniform tension and compression material where the lift-off force is equivalent to the yield force and the lift-off spring is equivalent to the hardening stiffness. The lift-off spring should always be set to a very small value to avoid numerical instabilities.


- Ensure that there is no data specified in the **Rail Expansion Joints** region of the worksheet.

Defining the Trainset Loading for the Structure

Loading										
Units : Temperature : Celsius , Load Position/Length : m , Load : kN/m										
For Deck		Amount								
For Deck		Temperature								
		35								
For Deck		Temperature								
		50								
For Deck		Number of Track Loading Locations								
		16								
For Rails		Loading Type	Track Selection to be Loaded	Parametric Starting Position for Loadings	Parametric End Position for Loadings	Amount (per unit length)	Loaded Length	Starting Location of Loading for First Analysis	Finishing Location of Loading for Last Analysis	Location Increment for each Analysis
		Braking	1	0	300	20	300	0	150	10
		Vertical	1	0	300	80	300	0	150	10

- Pick the **Loading** worksheet.
- Enter **35** for the **Temperature** variation of the deck in $^{\circ}\text{C}$.
- Enter **50** for the **Temperature** variation of the rail tracks in $^{\circ}\text{C}$.

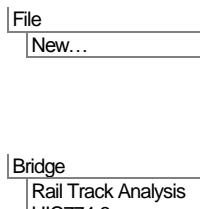
For the UIC774-3 E1-3 test case the 300m long trainset travels from the left-hand abutment of the 60m long deck to 90m past the right-hand abutment of the deck, a total distance of 150m. For the example this trainset passage will be broken up into 10m increments.

- Enter **16** for the **Number of Track Loading Locations** based on the formula $\text{Number of track loading locations} = \text{Travel} / \text{Increment} + 1$ giving $150 / 10 + 1 = 16$.

- Enter **Braking** for the **Loading Type** in the first row of loading.
- Enter **1** in the **Track Selection to be Loaded** since there is only a single track in the analysis.
- Enter **0** for the **Parametric Starting Position for Loadings** (in m) to indicate the left-hand limit of the trainset loading.
- Enter **300** for the **Parametric End Position for Loadings** (in m) to indicate the right-hand limit of the trainset loading. The train is 300m long in the test case.
- Enter **20** for the **Amount (per unit length)** to apply 20kN/m horizontal braking forces acting to the right for the trainset moving from left to right.
- Enter **0** for the **Starting Location of Loading for First Analysis** to place the trainset in a location where it is just about to enter the deck structure for the first analysis, recalling that the left-hand embankment is 300m long.
- Enter **150** for the **Finishing Location of Loading for Last Analysis** to place the right-hand extent of the trainset 90m past the 60m deck span for the last analysis.
- Enter **Vertical** for the **Loading Type** in the second row of loading.
- Enter **1** in the **Track Selection to be Loaded** since there is only a single track in the analysis.
- Enter **0** for the **Parametric Starting Position for Loadings** (in m) to indicate the left-hand limit of the trainset loading.
- Enter **300** for the **Parametric End Position for Loadings** (in m) to indicate the right-hand limit of the trainset loading. The train is 300m long in the test case.
- Enter **80** for the **Amount (per unit length)** to apply 80 kN/m vertically downwards for the trainset.
- Enter **0** for the **Starting Location of Loading for First Analysis** to place the trainset in a location where it is just about to enter the deck structure for the first analysis, recalling that the left-hand embankment is 300m long.
- Enter **150** for the **Finishing Location of Loading for Last Analysis** to place the right-hand extent of the trainset 90m past the 60m deck span for the last analysis.
- **Save** the spreadsheet and close the Microsoft Excel application.

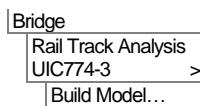
Note. The horizontal and vertical loading of the trainset in the test cases have identical configurations. More complex trainset loading configurations and acceleration loading can be also specified (see the *Rail Track Analysis User Manual* for more information).

Modelling / Running an Analysis

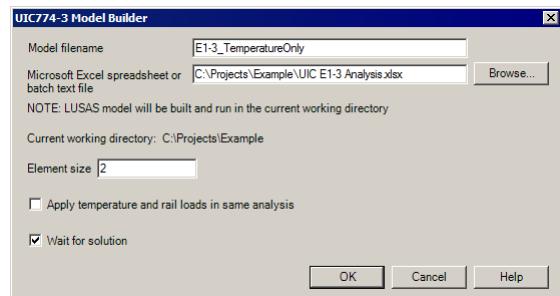

All of the model construction and analysis is automatically performed by the Rail Track Analysis software option but, to do so, a blank LUSAS model must be initially created or a suitable existing LUSAS model (that was created by the Rail Track Analysis option) must be opened.

Running LUSAS Modeller

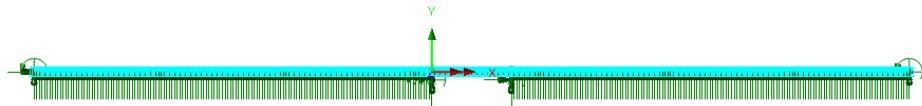
For details of how to run LUSAS Modeller see the heading **Running LUSAS Modeller** in the *Introduction to LUSAS Worked Examples* document.


Creating a Temperature-only Model

An initial temperature-only analysis can form the basis for carrying out more than one track-structure interaction analysis with different trainset loading configurations being used. For large analyses time savings can result from not having to re-run a temperature analysis for each trainset loading.



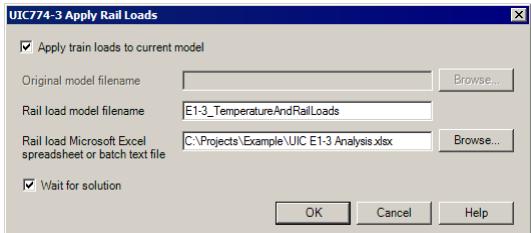
- Enter **UIC774_testcase** for the model name and click OK.


This model is created solely to allow the Rail Track Analysis option to be selected. It is not used after the option has been run.

- Enter **E1-3_TemperatureOnly** for the **Model filename**.
- Enter the filename of the Microsoft Excel spreadsheet created for the model building and analysis (e.g. UIC E1-3 Analysis.xlsx) or browse for it using the **Browse...** button in the **Microsoft Excel spreadsheet or batch text file** input. If the full folder information is not entered it will be assumed that the Microsoft Excel spreadsheet is in the current working folder which is reported in the dialog.
- Ensure an **Element size** of **2** is specified which will create elements of a maximum length of 2m in the LUSAS model.
- Ensure that the **Apply temperature and rail loads in same analysis** option is not selected.
- Ensure the **Wait for solution** option is selected and click the **OK** button.

Assuming that there have been no errors in the input for the Microsoft Excel spreadsheet the Rail Track Analysis software option will automatically generate a LUSAS model (shown below) from the spreadsheet data and run a rail track analysis for temperature-only loading.

If the Rail Track Analysis software option detected errors with modelling data these will be reported and must be corrected prior to re-running the Rail Track Analysis option.



Note. If the intention was to only perform this analysis and investigate the thermal effects then post-processing could be performed on the results of the analysis. In addition, if the **Apply temperature and rail loads in same analysis** option was selected the combined temperature and rail track loading results would now be available. For this example we will however be using this temperature only analysis as a starting point for more than one track-structure interaction analysis so no post-processing will be performed at this stage.

Applying Trainset Rail Loading to the Temperature Model

The temperature only model will now be used as the starting point for the application of the trainset rail loading that needs to be considered for the track-structure interaction analysis.

- Select the **Apply train loads to current model** option as we have just performed the temperature only analysis and will use this model as the base model for the application of the trainset rail loading.

- Enter **E1-3_TemperatureAndRailLoads** as the **Rail load model filename**.
- Enter the **UIC E1-3 Analysis.xlsx** (or **UIC E1-3 Analysis.xls**) filename of the Microsoft Excel spreadsheet created for the analysis or browse for it using the **Browse...** button in the **Microsoft Excel spreadsheet or batch text file** input. If the full folder information is not entered it will be assumed that the Microsoft Excel spreadsheet is in the current working folder.
- Ensure the **Wait for solution** option is selected.

- Click the **OK** button and choose **No** to saving the changes to the current model as no manual changes have been made.

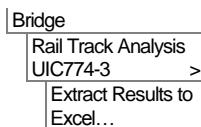
Assuming that there have been no errors in the trainset loading input for the Microsoft Excel spreadsheet the Rail Track Analysis software option will now automatically generate a LUSAS model with a separate analysis for each train position being considered (16 in total) and run a track-structure analysis for the combined temperature and trainset rail loading using the trainset loading information defined in the spreadsheet.

Note. If both the temperature and trainset rail loads were applied to the original model the program would detect this and report that the original model is not a valid temperature-only model. If this were to happen, repeat the model building process above before reattempting to apply the trainset rail loading to the analysis.

If errors were detected...

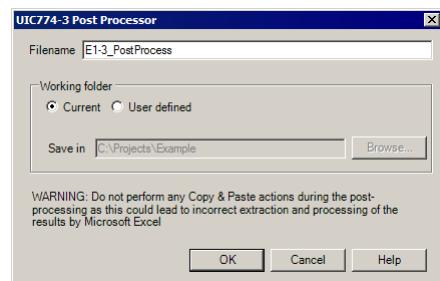
If errors were detected with the modelling data, or the post-processing in the next section gives different results, the values in the spreadsheet should be corrected before re-selecting the previous Rail Track Analysis menu item. If it proves impossible for you to correct the errors reported a populated spreadsheet file is provided to enable you to create the model and run an analysis successfully.

UIC E1-3 Analysis.xlsx (.xls) is a populated spreadsheet containing all input data for the example.


A spreadsheet compatible for an installed version of Microsoft Excel should be copied to the working project folder where the track-structure interaction example model is to be created, and the **Bridge > Rail Track Analysis UIC774-3 > Apply Rail Loads** menu item re-selected.

Viewing the Results

If the analyses were run from within LUSAS Modeller with the **Wait for solution** option the results for each train position analysis considered will be added to the Treeview.


Automatic Extraction of Results into Microsoft Excel

The Rail Track Analysis option provides a post-processing tool that automatically extracts the results of the analyses into tabular form in Microsoft Excel and generates commonly required graphs and tables of quantities that can be compared against prescribed limits for the track-structure interaction.

- Enter **E1-3_PostProcess** for the **Filename**. Note that no *.xlsx or *.xls extension is required.
- Ensure the **Working folder** is set to **Current** to place the post-processing Microsoft Excel spreadsheet into the same folder as the analyses.

Prior to clicking the **OK** button please note the following cautions:

Caution. You should not have any other Microsoft Excel windows open while the post-processing is carried out. Starting Microsoft Excel or opening another Microsoft Excel spreadsheet while the post-processing is running will break the connection between Modeller and Microsoft Excel resulting in an error and termination of the post-processing.

Caution. Do not carry out any Copy or Paste actions in any application whilst results are being extracted during the post-processing process as this could lead to incorrect extraction and processing of the results by Microsoft Excel.

- Click the **OK** button.
- Click on **Yes** when asked whether envelopes are to be created in Microsoft Excel.

The automatic Rail Track Analysis post-processor will now extract the results from the loaded analysis results and generate the Microsoft Excel spreadsheet in the working folder.

Note. An estimate of the time to complete the post-processing for each worksheet can be obtained by watching the progress bar at the bottom of the Modeller window. Post-processing of all the results will occupy the LUSAS licence for this time.

- Open the spreadsheet **E1-3_PostProcess** in Microsoft Excel.

Because the creation of envelopes was specified earlier the results spreadsheet will contain seven worksheets that contain the results from the analyses. Note that some versions of Excel may only show the tabs for the last created worksheets, and hide the previous worksheets. If this is the case, other worksheets can be seen by pressing the 'back' arrow at the bottom of the worksheet window.

The worksheets created are titled:

- **Track 1**
- **Decks**
- **Envelope – Track 1**

- Envelope – Decks
 - Railbed Check
 - Longitudinal Reactions Check
 - Rail Stresses Check

Peak Relative Railbed Displacement

For a continuously welded rail (CWR) track the typical criteria to be met for the relative railbed displacements is quoted in Clause 1.5.3 of UIC774-3 which states that:

“The maximum permissible displacement between rail and deck or embankment under braking and/or acceleration forces is 4 mm”

To permit checking of this criteria rail bed displacements are included in the **Track 1** worksheet which reports all of the relative railbed displacements calculated for the track-structure interaction model.

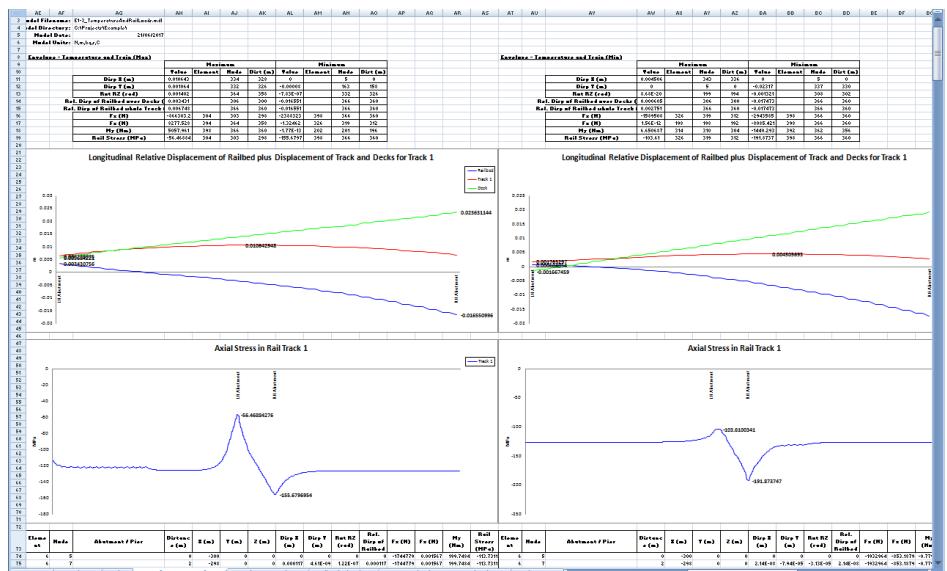
- Click on the **Track 1** worksheet tab.

Maximum and minimum values are reported in the summaries at the top of the sets of results, values over the structure are graphed in the top chart, and individual values along the length of the track are reported in tabular form – as shown below.

Because the option to create envelopes in Microsoft Excel was chosen when the post-processor was run the spreadsheet includes additional post-processing of the relative

railbed displacement in the form of envelopes and a table of peak values for each trainset position.

For the envelopes worksheet the output is identical to the tabular and chart output for the individual results in the analyses. Six envelopes are generated by the post-processor, namely:


- Envelope - Temperature Only (Max)**
- Envelope - Temperature Only (Min)**
- Envelope - Temperature and Train (Max)**
- Envelope - Temperature and Train (Min)**
- Envelope - All Configurations (Max)**
- Envelope - All Configurations (Min)**

Note. The **All Configurations** envelope provides an envelope over all loading configurations that are present in the analysis which in this case is temperature only and combined temperature and train loading. If valid basic combinations were also present an additional maximum / minimum envelope would be presented for these results and the results from these basic combinations would be included within the **All Configurations** envelope.

Concentrating on the envelopes for the combination of the temperature and trainset loading, these are illustrated in the following figure.

- Click on the **Envelope - Track 1** worksheet tab.

Zooming into the summary tables at the top of the columns of results and charts (see images that follow) allows the extraction of the peak relative railbed displacements of +0.00343 m movement of the track to the right relative to the base of the ballast over the deck, +0.00675 m movement of the track to the right relative to the base of the ballast over the whole track length and -0.01747 m movement of the track to the left relative to the base of the ballast over the whole track length and deck.

	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD
1											
2											
3											
4											
5											
6											
7											
8	Envelope - Temperature and Train (Min)										
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											

The peak relative railbed displacement is therefore -0.01747 m which compares well with the UIC774-3 E1-3 test case published result of -1.73E-2 m with a difference of +0.98%.

In addition to the envelope worksheet, the peak relative railbed displacement can also be found in the **Railbed Check** worksheet as shown below.

- Click on the **Railbed Check** worksheet tab

This shows that the peak relative railbed displacement occurs when the braking trainset is placed at the 5th position when the front of the 300 m long trainset is just over half way across the 60 m deck. This is highlighted in bold blue text in the worksheet.

Check of Longitudinal Relative Displacement of Railbed (Relative Displacement between Rails and Deck)							
Analysis ID	Results Filename	Loading Type	Distance from Left End of the Model to the Starting Position of the	Distance from Left End of the Model to the Finishing Position of the	Peak Relative Longitudinal Displacement between Rail and Deck	Track Number with Peak Displacement	Distance from Left End of Structure for Peak Displacement
1	1 E1-3_TemperatureAndRailLoads	Temperature Only	0	300	0.01550995	1	60 RH Abutment
2	1 E1-3_TemperatureAndRailLoads Position 1.mys	Braking	0	300	0.015837662	1	60 RH Abutment
3	1 E1-3_TemperatureAndRailLoads Position 2.mys	Braking	10	310	0.015837662	1	60 RH Abutment
4	1 E1-3_TemperatureAndRailLoads Position 3.mys	Braking	20	320	0.01747405	1	60 RH Abutment
5	5 E1-3_TemperatureAndRailLoads Position 5.mys	Braking	40	340	0.017472607	1	60 RH Abutment
6	6 E1-3_TemperatureAndRailLoads Position 6.mys	Braking	60	360	0.01680388	1	60 RH Abutment
7	7 E1-3_TemperatureAndRailLoads Position 7.mys	Braking	60	370	0.017253113	1	60 RH Abutment
8	8 E1-3_TemperatureAndRailLoads Position 8.mys	Braking	80	380	0.017356951	1	60 RH Abutment
9	9 E1-3_TemperatureAndRailLoads Position 9.mys	Braking	90	390	0.017332500	1	60 RH Abutment
10	10 E1-3_TemperatureAndRailLoads Position 10.mys	Braking	100	400	0.017324495	1	60 RH Abutment
11	11 E1-3_TemperatureAndRailLoads Position 11.mys	Braking	110	410	0.017324495	1	60 RH Abutment
12	12 E1-3_TemperatureAndRailLoads Position 12.mys	Braking	120	420	0.017317705	1	60 RH Abutment
13	13 E1-3_TemperatureAndRailLoads Position 13.mys	Braking	130	430	0.017317705	1	60 RH Abutment
14	14 E1-3_TemperatureAndRailLoads Position 14.mys	Braking	140	440	0.017316507	1	60 RH Abutment
15	15 E1-3_TemperatureAndRailLoads Position 15.mys	Braking	150	450	0.017316507	1	60 RH Abutment
16	16 E1-3_TemperatureAndRailLoads Position 16.mys	Braking	150	450	0.017316507	1	60 RH Abutment

Note. The peak relative railbed displacement in test case E1-3 is 0.01747 m or 17.47 mm which would be greater than the limit stated in Clause 1.5.3 of the UIC774-3 code of practice. All of the test cases in Appendix D.1 of the code of practice exceed this limit.

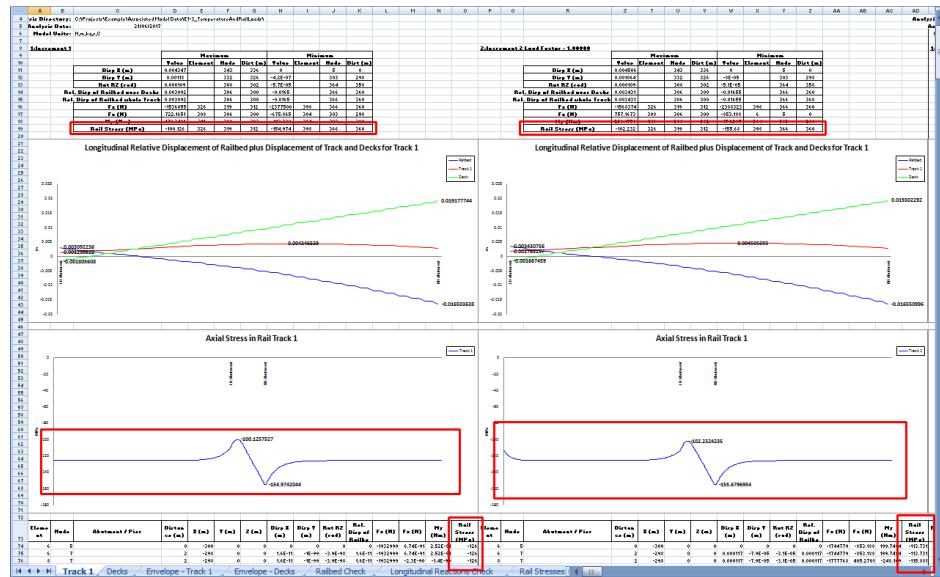
Peak Axial Rail Stresses

For a continuously welded rail track with UIC 60 rails the typical criteria to be met for the rail stress are quoted in Clause 1.5.2 of UIC774-3 which states that:

“The maximum permissible additional compressive rail stress is 72 N/mm²”

and

“The maximum permissible additional tensile rail stress is 92 N/mm²”


To permit checking of these criteria rail axial stress values are included in the **Track 1** Microsoft Excel worksheet.

- Click on the **Track 1** worksheet tab.

Maximum and minimum values are reported in the summaries at the top of the sets of results, values over the track length are graphed in the bottom chart, and the individual values along the length of the track are reported in tabular form – as highlighted in the following figure.

For the temperature-only loadcase (Increment 1) the maximum and minimum stresses observed in the rail track were -100.13MPa in compression and -154.97MPa in compression (lower graph). This most compressive value compares well with the value of -156.67MPa from the E1-3 test case (equal to -126MPa from the temperature in the rail and -30.67MPa from the temperature in the deck) with a percentage difference of

-1.08%. For the temperature and trainset rail loading loadcase (Increment 2) for the first position of the train loading the maximum and minimum stresses observed in the rail track were -102.23MPa in compression and -155.68MPa in compression (lower graph), not to dissimilar to the temperature only results since the train loading is only just entering the bridge for this position.

Now, concentrating on the envelopes for the combination of the temperature and trainset loading to find the worst effects of all train loading positions:

- Click on the **Envelope - Track 1** worksheet tab.

Maximum and minimum stresses observed in the rail track were -56.47MPa in compression and -191.87MPa in compression. The value of -191.87MPa compares well with the UIC774-3 E1-3 test case published results of -182.4MPa to -190.07MPa with a difference of between 0.95% and 5.19% (depending upon the calculation method).

Track-Structure Interaction to UIC774-3

	AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO
1											
2											
3											
4											
5											
6											
7											
8			Envelope - Temperature and Train (Max)								
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											

	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD
1											
2											
3											
4											
5											
6											
7											
8			Envelope - Temperature and Train (Min)								
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											

In addition to the envelope worksheet, the peak axial stresses in the rails can also be found in the **Rail Stresses Check** worksheet.

- Click on the **Rail Stresses Check** worksheet tab.

This worksheet shows that the peak most compressive axial stress of 191.87MPa occurs when the braking trainset is placed at the 9th position when the front of the 300m long trainset is 20m past the right-hand abutment side of the deck. The peak most tensile axial stress occurs at the 7th position. Both peaks are highlighted in bold blue text in the worksheet.

1	B	C	D	E	F	G	H	I	J	K
Analysis ID	Results Filename	Loading Type	Track 1 Braking Position Left End of the Model to the Starting Position of the	Distance from Left End of the Model to the Finishing Position of the	Peak Most Tensile Axial Stress in Rail (MPa)	Track Number with Peak Most Tensile Stress	Distance from Left End of Structure for Peak Most Tensile Stress	Description of peak location	Peak Most Compressive Axial Stress of Rail (MPa)	Tr with Co
10	1 E1-3_TemperatureAndRailLoad\Position 1.mys	Temperature Only	-100.1257527	1	-154.3742044	1	-154.3742044	1 Right Deck 1	-154.3742044	
11	1 E1-3_TemperatureAndRailLoad\Position 1.mys	Braking	0	300	-102.2334235	1	102.2334235	1 Right Deck 1	-156.6793954	
12	1 E1-3_TemperatureAndRailLoad\Position 2.mys	Braking	10	310	-103.3044207	1	103.3044207	1 Right Deck 1	-157.7351578	
13	1 E1-3_TemperatureAndRailLoad\Position 3.mys	Braking	20	320	-103.3935936	1	103.3935936	1 LH Embankment	-161.7885230	
14	1 E1-3_TemperatureAndRailLoad\Position 4.mys	Braking	30	330	-78.1942256	1	78.1942256	1 LH Embankment	-166.3983607	
15	1 E1-3_TemperatureAndRailLoad\Position 5.mys	Braking	40	340	-67.98736253	1	67.98736253	1 LH Embankment	-172.309564	
16	1 E1-3_TemperatureAndRailLoad\Position 6.mys	Braking	50	350	-68.00000000	1	68.00000000	1 LH Embankment	-177.0000000	
17	1 E1-3_TemperatureAndRailLoad\Position 7.mys	Braking	60	360	-56.46884276	1	-56.46884276	1 LH Embankment	-181.3981432	
18	1 E1-3_TemperatureAndRailLoad\Position 8.mys	Braking	60	360	-56.46884276	1	-56.46884276	1 LH Embankment	-183.2054442	
19	1 E1-3_TemperatureAndRailLoad\Position 9.mys	Braking	60	360	-56.46884276	1	-56.46884276	1 LH Embankment	-184.4444444	
20	1 E1-3_TemperatureAndRailLoad\Position 10.mys	Braking	70	370	-58.66442572	1	-58.66442572	1 LH Embankment	-191.3533324	
21	1 E1-3_TemperatureAndRailLoad\Position 11.mys	Braking	80	380	-58.67515274	1	-58.67515274	1 LH Embankment	-191.3526283	
22	1 E1-3_TemperatureAndRailLoad\Position 12.mys	Braking	90	390	-58.67515274	1	-58.67515274	1 LH Embankment	-191.3526283	
23	1 E1-3_TemperatureAndRailLoad\Position 13.mys	Braking	100	400	-58.67515274	1	-58.67515274	1 LH Embankment	-191.3526283	
24	1 E1-3_TemperatureAndRailLoad\Position 14.mys	Braking	110	410	-58.67515274	1	-58.67515274	1 LH Embankment	-191.3526283	
25	1 E1-3_TemperatureAndRailLoad\Position 15.mys	Braking	120	420	-58.34943346	1	-58.34943346	1 LH Embankment	-191.0334043	
26	1 E1-3_TemperatureAndRailLoad\Position 16.mys	Braking	130	430	-58.14513374	1	-58.14513374	1 LH Embankment	-191.055887	
27	1 E1-3_TemperatureAndRailLoad\Position 17.mys	Braking	140	440	-58.14344446	1	-58.14344446	1 LH Embankment	-191.0087419	
28	1 E1-3_TemperatureAndRailLoad\Position 18.mys	Braking	150	450	-58.14344823	1	-58.14344823	1 LH Embankment	-191.0061271	

Peak Longitudinal Reactions at the Abutments

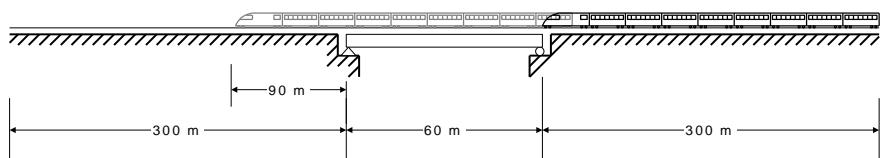
The left-hand abutment provides all of the longitudinal restraint to the deck of the structure and the peak longitudinal reactions at this abutment are now investigated.

When post-processing, the option to create the envelopes in Microsoft Excel was chosen which caused an additional worksheet tabulating the peak longitudinal reactions for all of the analyses to be created.

- Click on the **Longitudinal Reactions Check** worksheet tab.

The first row shows a longitudinal reaction for the left hand abutment under temperature only loading of 695.8kN. This compares well with the E1-3 test case published value of 700.12kN with a difference of -0.62%.

The worksheet also shows the longitudinal reactions for all of the train loading positions and indicates that the peak longitudinal reaction occurs when the braking trainset is placed at the 9th position (highlighted in bold blue text in the worksheet) when the front of the 300m long trainset is 20m past the right-hand abutment side of the deck. This trainset position gives a reaction of 929.1kN which compares well with the UIC774-3 E1-3 test case published result of 874.42kN with a difference of +6.25%.


B	C	D	E	F	G	H
1	Check of Longitudinal Reactions					
2						
3	Job Title: UIC 774-3 Model: E1-3_TemperatureAndRailLoads					
4	Analysis Filename: E1-3_TemperatureAndRailLoads"Position 1 --> E1-3_TemperatureAndRailLoads"Position 16					
5	Model Directory: C:\Projects\Example					
6	Analysis Date: 21/06/2017 -> 21/06/2017					
7	Model Units: N,m,kg,s,C					
Analysis ID	Results Filename	Loading Type	Distance from Left End of the Model to the Starting Position of the Loading (m)	Distance from Left End of the Model to the Finishing Position of the Loading (m)	Peak Longitudinal Reaction (N)	Abutment / Pier Number with Peak Reaction
11	E1-3_TemperatureAndRailLoads"Position 1.mys	Temperature Only			695795.7944	1H Abutment
12	E1-3_TemperatureAndRailLoads"Position 1.mys	Braking	0	300	647787.7739	1H Abutment
13	E1-3_TemperatureAndRailLoads"Position 2.mys	Braking	10	310	634918.2367	1H Abutment
14	E1-3_TemperatureAndRailLoads"Position 3.mys	Braking	20	320	726055.4141	1H Abutment
15	E1-3_TemperatureAndRailLoads"Position 4.mys	Braking	30	330	823514.9025	1H Abutment
16	E1-3_TemperatureAndRailLoads"Position 5.mys	Braking	40	340	874241.0395	1H Abutment
17	E1-3_TemperatureAndRailLoads"Position 6.mys	Braking	50	350	860909.3369	1H Abutment
18	E1-3_TemperatureAndRailLoads"Position 7.mys	Braking	60	360	807346.0805	1H Abutment
19	E1-3_TemperatureAndRailLoads"Position 8.mys	Braking	70	370	903780.1651	1H Abutment
20	E1-3_TemperatureAndRailLoads"Position 9.mys	Braking	80	380	929089.9928	1H Abutment
21	E1-3_TemperatureAndRailLoads"Position 10.mys	Braking	90	390	928539.6467	1H Abutment
22	E1-3_TemperatureAndRailLoads"Position 11.mys	Braking	100	400	920614.2933	1H Abutment
23	E1-3_TemperatureAndRailLoads"Position 12.mys	Braking	110	410	919192.8348	1H Abutment
24	E1-3_TemperatureAndRailLoads"Position 13.mys	Braking	120	420	918622.1261	1H Abutment
25	E1-3_TemperatureAndRailLoads"Position 14.mys	Braking	130	430	918400.2098	1H Abutment
26	E1-3_TemperatureAndRailLoads"Position 15.mys	Braking	140	440	918314.9418	1H Abutment
27	E1-3_TemperatureAndRailLoads"Position 16.mys	Braking	150	450	918282.3555	1H Abutment

- Close the Microsoft Excel application.

Alternative Analyses with Same Temperature Only Model

If further studies are required on the same structure for identical temperature conditions but with different trainset loading the Rail Track Analysis option can make use of the temperature only analysis from a previous analysis for a new one. For small structures the time saving from avoiding the reconstruction of an identical track-structure interaction model will generally not be significant but where the structure is very long and has many decks and spans this time saving can become significant.

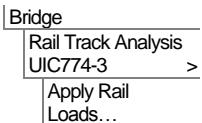
Applying Alternative Trainset Rail Loading

UIC774-3 test case E4-6 (shown above) is very similar to the one for test case E1-3. The only difference between the two tests is the direction that the braking trainset is travelling. As a result the temperature only model from test case E1-3 can and will be used as the starting point for the application of the alternative trainset rail loading that needs to be considered for the E4-6 track-structure interaction analysis.

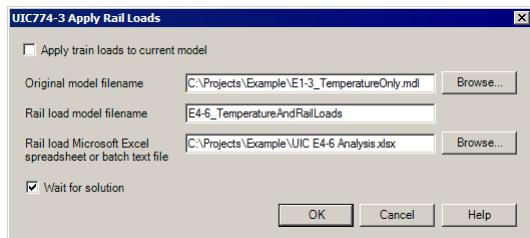
Defining the Trainset Loading for the Structure

If you wish to use the predefined populated spreadsheet for this part of the examples continue at the section entitled *Applying the Trainset Rail Loading to the Analysis*.

Otherwise:


- Copy the **UIC E1-3 Analysis.xlsx** (or **UIC E1-3 Analysis.xls**) Microsoft Excel spreadsheet created for the E1-3 test case and save it as a new Microsoft Excel spreadsheet with the filename **UIC E4-6 Analysis.xlsx** (or **UIC E4-6 Analysis.xls**).
 - Open the spreadsheet in Microsoft Excel.

A1		Loading																							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
For Deck		Amount																							
Temperature		35																							
Temperature		50																							
Number of Track Loading Locations		16																							
For Rails		Loading Type	Track Selection to be Loaded	Parametric Starting Position for Loadings	Parametric End Position for Loadings	Amount (per unit length)	Loaded Length	Starting Location of Loading for First Analysis	Finishing Location of Loading for Last Analysis	Location Increment for each Analysis															
Braking		1	0	300	-20	300	360	210	-10																
		Vertical	1	0	300	80	300	360	210	-10															


- Pick the **Loading** worksheet.
 - Enter **-20** in the **Amount (per unit length)** for the trainset braking loading to indicate that the braking load is now acting to the left for a trainset that is travelling from right to left.
 - Enter **360** for the **Starting Location of Loading for First Analysis** of both the **Braking** and **Vertical** loading to place the trainset in a location where it is just about to enter the deck structure for the first analysis, recalling that the left-hand embankment is 300m long and the deck is 60m long.
 - Enter **210** for the **Finishing Location of Loading for Last Analysis** of both the **Braking** and **Vertical** loading to place the left-hand extent of the trainset 90m past the 60m deck span for the last analysis.
 - Save the spreadsheet and close the Microsoft Excel application.

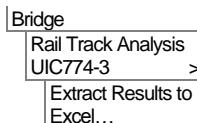
Applying the Trainset Rail Loading to the Analysis

The E1-3 temperature only model can now be specified along with the updated rail load spreadsheet containing the revised trainset loading for the Rail Track Analysis software option to carry out an analysis for this test case.

- Ensure that the **Apply train loads to current model** option is not selected. The current model loaded is a combined temperature and trainset rail loads model for the E1-3 analysis and should not be used.
- Enter **E1-3_TemperatureOnly.mdl** for the **Original model filename** which holds the temperature only analysis from the previous section or browse for it using the **Browse...** button. If the full folder is not specified then it will be assumed that the model is in the current working folder.
- Enter **E4-6_TemperatureAndRailLoads** as the **Rail load model filename**.
- Enter the **UIC E4-6 Analysis.xlsx** (or **UIC E4-6 Analysis.xls**) filename of the Microsoft Excel spreadsheet created for the analysis or browse for it using the **Browse...** button in the **Microsoft Excel spreadsheet or batch text file** input. If the full folder information is not entered it will be assumed that the Microsoft Excel spreadsheet is in the current working folder.
- Ensure the **Wait for solution** option is selected.
- Click the **OK** button and choose **No** when asked to save the changes to the current model since there have been no manual changes to it.

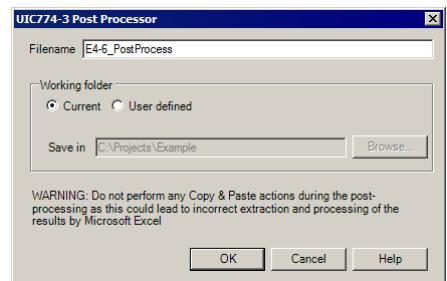
Assuming that there have been no errors in the input for the Microsoft Excel spreadsheet the Rail Track Analysis software option will automatically generate a LUSAS model from the spreadsheet data and run a rail track analysis for the alternative trainset positions defined by the spreadsheet data.

If errors were detected...


If errors were detected with the modelling data or the post-processing in the next section gives different results the values in the spreadsheet should be corrected before re-selecting the previous Rail Track Analysis menu item. If it proves impossible for you to correct the errors reported a populated spreadsheet file is provided to enable you to create the model and run an analysis successfully.

□ UIC E4-6 Analysis.xlsx (.xls) is a populated spreadsheet containing all input data for this stage of the example.

A spreadsheet compatible for an installed version of Microsoft Excel should be copied to the working folder where the track-structure interaction example model is to be created, and the **Bridge > Rail Track Analysis UIC774-3 > Apply Rail Loads** menu item re-selected.


Automatic Extraction of Results into Microsoft Excel

- Enter **E4-6_PostProcess** for the **Filename**.
- Ensure the **Working folder** is set to **Current** to place the post-processing Microsoft Excel spreadsheet into the same folder as the analyses.

Caution. As previously noted earlier in this example, prior to clicking the **OK** button ensure that no Excel applications are open and no copying and pasting of data in any application is done whilst the post-processing is carried out.

- Click the **OK** button and click on **Yes** when asked whether envelopes are to be created in Microsoft Excel.

The automatic post-processor will now extract the results from the loaded analysis results and generate the Microsoft Excel spreadsheet in the working folder.

- Open the spreadsheet in Microsoft Excel.
- If necessary pressing the 'back' arrow at the bottom of the worksheet window to see all the worksheets created.

Peak Relative Railbed Displacement

- Click on the **Railbed Check** worksheet tab.

Track-Structure Interaction to UIC774-3

	B	C	D	E	F	G	H	I	J
1	Check of Longitudinal Relative Displacement of Railbed (Relative Displacement between Rails and Deck)								
2	Job Title: UIC 774-3 Model: E4-6_TemperatureAndRailLoads								
3	Analysis Filename: E4-6_TemperatureAndRailLoads"Position 1->E4-6_TemperatureAndRailLoads"Position 16								
4	Model Directory: C:\Project\Example								
5	Analysis Date: 21/06/2017 -> 21/06/2017								
6	Model Units: M, m, kN, C								
7									
8									
9									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									
21									
22									
23									
24									
25									
26									
27									

From this worksheet the peak relative railbed displacement is shown to be 0.01731m when the braking trainset is placed at the 6th position where it is 10 m from the left-hand abutment of the deck. This peak relative railbed displacement compares well with the UIC774-3 E4-6 test case published result of 1.78E-2 m with a difference of -2.75%.

Peak Axial Rail Stresses

- Click on the Rail Stresses Check worksheet tab.

	B	C	D	E	F	G	H	I	J	K	L
1	Check of Axial Rail Stress										
2	Job Title: UIC 774-3 Model: E4-6_TemperatureAndRailLoads										
3	Analysis Filename: E4-6_TemperatureAndRailLoads"Position 1->E4-6_TemperatureAndRailLoads"Position 16										
4	Model Directory: C:\Project\Example										
5	Analysis Date: 21/06/2017 -> 21/06/2017										
6	Model Units: M, m, kN, C										
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											
26											
27											

From this worksheet the peak axial rail stress is shown to be -164.55MPa when the braking trainset is placed at the 6th position where it is 10 m from the left-hand abutment of the deck. This peak rail stress compares well with the UIC774-3 E4-6 test case published result of -162.06 MPa with a difference of 1.5%.

Peak Longitudinal Reactions at the Abutments

- Click on the Longitudinal Reactions Check worksheet tab.

Alternative Analyses with Same Temperature Only Model

	B	C	D	E	F	G	H	
1	Check of Longitudinal Reactions							
2	Job Title: UIC 774-3 Model: E4-6_TemperatureAndRailLoads							
3	Analysis Filename: E4-6_TemperatureAndRailLoads"Position 1 --> E4-6_TemperatureAndRailLoads"Position 16							
4	Model Directory: C:\Projects\Example							
5	Analysis Date: 21/06/2017 --> 21/06/2017							
6	Model Units: N.m.kgs.C							
7								
8								
9								
10								
11	Analysis ID		Results Filename		Loading Type		Track 1	
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								
24								
25								
26								
27								

From this worksheet the peak reaction is shown to be 2428.01kN when the braking trainset is placed at the last position where the front of it is 90m past the left-hand abutment of the deck. This peak reaction compares well with the UIC774-3 E4-6 test case published result of 2196.1kN with a difference of +10.56% which is within the 20% limit specified in the code of practice. The maximum reaction is also comparable with the alternative calculation method which gives 2373.47kN (+2.3% difference).

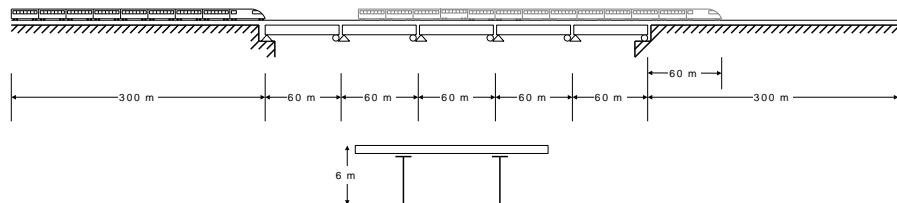
- Close the Microsoft Excel application.

This completes the example.

A general discussion follows, along with information about how to model a structure with multiple decks.

General Modelling Discussion and Accuracy of Results

The modelling of the structure and approach embankments in this example is relatively crude to ensure that the track-structure analysis is carried out within a reasonable length of time. As a result the accuracy of some results, such as the rail stresses, may have been reduced slightly.


Refinement of the modelling will improve the accuracy of the solution at the cost of increased computer memory requirements and increased modelling / analysis and post-processing time. The following table shows the improvement of accuracy for the two test cases when element sizes of less than 2m and trainset location increments of less than 10m are used. For the UIC774-3 code of practice the computed values should be within -10% and +20% (if on the safe side) and based on this all results pass the criterion when compared against the UIC774-3 global / complete analyses results.

Description	Test Case	Railbed Displacement	Reaction	Rail Stress
2m Elements 16 Location Increments of 10m	E1-3	0.01747 m +0.98%	929.09 kN +6.25%	-191.87 MPa +5.19%
	E4-6	0.01731 m -2.75%	2428.0 kN +10.56%	-164.55 MPa +1.54%
1m Elements 16 Location Increments of 10m	E1-3	0.01747 m +0.98%	927.45 kN +6.06%	-193.06 MPa +5.84%
	E4-6	0.01732 m -2.70%	2428.1 kN +10.56%	-165.37 MPa +2.04%
2m Elements 31 Location Increments of 5m	E1-3	0.01748 m +1.04%	929.09 kN +6.25%	-191.87 MPa +5.19%
	E4-6	0.01733 m -2.64%	2428.0 kN +10.56%	-165.04 MPa +1.84%
1m Elements 31 Location Increments of 5m	E1-3	0.01748 m +1.04%	927.45 kN +6.06%	-193.06 MPa +5.84%
	E4-6	0.01733 m -2.64%	2428.1 kN +10.56%	-165.78 MPa +2.30%
2m Elements 151 Location Increments of 1m	E1-3	0.01748 m +1.04%	929.64 kN +6.32%	-191.92 MPa +5.22%
	E4-6	0.01733 m -2.64%	2428.0 kN +10.56%	-165.04 MPa +1.84%
1m Elements 151 Location Increments of 1m	E1-3	0.01748 m +1.04%	927.61 kN +6.08%	-193.07 MPa +5.85%
	E4-6	0.01733 m -2.64%	2428.1 kN +10.56%	-165.80 MPa +2.31%
0.5m Elements 301 Location Increments of 0.5m	E1-3	0.01748 m +1.04%	927.00 kN +6.01%	-193.65 MPa +6.17%
	E4-6	0.01733 m -2.64%	2428.1 kN +10.56%	-166.23 MPa +2.57%

In the previous table the meshing and increment size can be seen to have a less significant effect on the railbed displacement and reactions obtained than on the rail stress values. This is because the Finite Element solution is a displacement method and reactions should be in equilibrium with the applied load which is constant. All element sizes shown can be seen to satisfy the accuracy of the rail stresses against the fundamental test cases in UIC774-3 but a refinement of both the mesh and the train position incrementation potentially allows a more accurate capture of the value of the maximum stress and location of the trainset where the maximum rail stress occurs but at the cost of analysis time. All results in the table are very similar, however, for the range of element sizes presented from 0.5 m up to the UIC774-3 maximum recommended element size of 2.0 m.

Modelling a Structure with Multiple Decks

To model a structure with multiple decks spreadsheet data similar to that shown on the following pages would need to be defined.

Decks, Tracks and Embankment			
	A	B	C
1	Decks, Tracks and Embankment	Units : m	
2			
3	Number of Decks	5	
4	Number of Tracks	1	
5	Left Embankment Length	300	
6	Right Embankment Length	300	
7	Length of Decks Only / Total Length (m)	300	900
8			
9			

Track-Structure Interaction to UIC774-3

A1		Structure Definition							
1	B	Units : Pier Height : m ; Beating springs on top of each pier : kN/mm ; Span Length : m							
2		Spring Support for each Abutment / Pier	Pier Height	Pier Geo. Assign.	Pier Mat. Assign	Beating Springs on Top of each Pier	Span Length	Geo. Assign.	Mat. Assign.
3									
4	Deck 1	Left End	1200			R			
5		Span 1	1200			F	60	1	1
6		Span 2							
7		Span 3							
8		Span 4							
9		Span 5							
10		Span 6							
11		Span 7							
12		Span 8							
13		Span 9							
14	Deck 2	Number of Supports for the Deck / Lens			2		2	60	
15		Left End	1200			R			
16		Span 1	1200			F	60	1	1
17		Span 2							
18		Span 3							
19		Span 4							
20		Span 5							
21		Span 6							
22		Span 7							
23		Span 8							
24	Deck 3	Number of Supports for the Deck / Lens			2		2	60	
25		Left End	1200			R			
26		Span 1	1200			F	60	1	1
27		Span 2							
28		Span 3							
29		Span 4							
30		Span 5							
31		Span 6							
32		Span 7							
33		Span 8							
34	Deck 4	Number of Supports for the Deck / Lens			2		2	60	
35		Left End	1200			R			
36		Span 1	1200			F	60	1	1
37		Span 2							
38		Span 3							
39		Span 4							
40		Span 5							
41		Span 6							
42		Span 7							
43		Span 8							
44	Deck 5	Number of Supports for the Deck / Lens			2		2	60	
45		Left End	1200			R			
46		Span 1	1200			F	60	1	1
47		Span 2							
48		Span 3							
49		Span 4							
50		Span 5							
51		Span 6							
52		Span 7							
53		Span 8							
54		Span 9							

Geometric Properties

Units : m

Eccentricity Of Section (+ve Sense)

Nodal Line Of TrackRail

Neutral Axis Of Section

Location Of Support Conditions

Depth Of Section

Depth of Section to Support

A

lyy

Izz

J

Asy

Asz

Eccentricity

Description

Depth of Section to Support	A	lyy	Izz	J	Asy	Asz	Eccentricity	Description
Rail	0.01534126	6.0776E-05	1.0243E-05	4.427E-06	0.00843498	0.0060307	0	Track with 2 UIC 60 Rails
1	6	0.74	2.59	2.59	740	740	1.21	Deck Cross-Section

Material Properties						
Material Properties		Units : N, mm, kg				
		E	v	p	α	Description
4	Rail	210000	0.3	0	1.20E-05	Rails
5	1	210000	0.3	0	1.00E-05	Deck
6						
7						
8						
9						
10						

A1 Interaction Joint Properties Between Rail/Slab

1 Interaction Joint Properties Between Rail/Slab Units : Bilinear springs characteristic : KN/mm/m, Eccentricity between rail/slab : m

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 Eccentricity between Rail/Slab 0

26 Parametric Distance of Interaction Joint from Rail 0.5

27 Item Longitudinal Transverse Vertical

28 Unloaded Bilinear Springs Characteristic Contact Stiff 10 infinite infinite

29 Lift-off Force 20 infinite infinite

30 Lift-off Springs 1.00E-06 infinite infinite

31 Loaded Bilinear Springs Characteristic Contact Stiff 30 infinite infinite

32 Lift-off Force 60 infinite infinite

33 Lift-off Springs 1.00E-06 infinite infinite

34

35

36 Rail Expansion Joints Units : Distance : m, Initial gap : mm

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

12310

12311

12312

12313

12314

12315

12316

12317

12318

12319

12320

12321

12322

12323

12324

12325

12326

12327

12328

12329

12330

12331

12332

12333

12334

12335

12336

12337

12338

12339

12340

12341

12342

12343

12344

12345

12346

12347

12348

12349

12350

12351

12352

12353

12354

12355

12356

12357

12358

12359

12360

12361

12362

12363

12364

12365

12366

12367

12368

12369

12370

12371

12372

12373

12374

12375

12376

12377

12378

12379

12380

12381

12382

12383

12384

12385

12386

12387

12388

12389

12390

12391

12392

12393

12394

12395

12396

12397

12398

12399

123100

123101

123102

123103

123104

123105

123106

123107

123108

123109

123110

123111

123112

123113

123114

123115

123116

123117

123118

123119

123120

123121

123122

123123

123124

123125

123126

123127

123128

123129

123130

123131

123132

123133

123134

123135

123136

123137

123138

123139

123140

123141

123142

123143

123144

123145

123146

123147

123148

123149

123150

123151

123152

123153

123154

123155

123156

123157

123158

123159

123160

123161

123162

123163

123164

123165

123166

123167

123168

123169

123170

123171

123172

123173

123174

123175

123176

123177

123178

123179

123180

123181

123182

123183

123184

123185

123186

123187

123188

123189

123190

123191

123192

123193

123194

123195

123196

123197

123198

123199

123200

123201

123202

123203

123204

123205

123206

123207

123208

123209

123210

123211

123212

123213

Track-Structure Interaction to UIC774-3