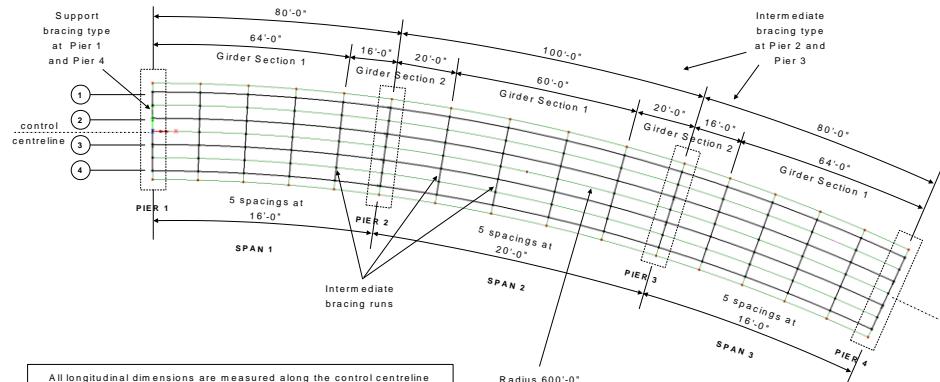
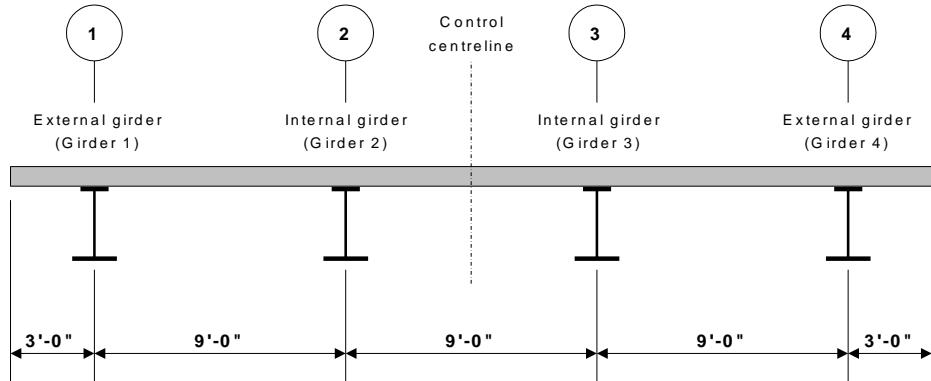


Composite Bridge


Deck Design to

AASHTO 8th Edition

For LUSAS version:	19.0
For software product(s):	LUSAS Civil & Structural or LUSAS Bridge.
With product option(s):	Composite Bridge Deck Design, Nonlinear.
Note: This example exceeds the limits of the LUSAS Teaching and Training Version.	


Description

This example shows how to carry out design of composite bridge deck members in accordance with the AASHTO LRFD 8th Ed. (2017) design code. The example uses a supplied model, initially created by the Steel Composite Bridge Wizard, that also includes staged construction modelling and vehicle loading in preparation for a design check to be done.

The bridge consists of three spans of length 80 feet, 100 feet and 80 feet. The bridge follows a radius of 600 feet along the control centreline and all supports are along

radials. There are four girders across the width of the deck with stiffeners and bracing provided at supports and fifth point intervals along the span lengths. The deck cross-section is shown below. This example considers the design of one of these girders – Girder 2 along with the design of stiffeners.

Girder and slab thickness are as follows:

	External girder section 1	Internal girder section 1	External girder section 2	Internal girder section 2
Slab width	7'6"	9'0"	7'6"	9'0"
Slab thickness	8"	8"	8"	8"
Slab height of haunch	1.5"	1.5"	1.5"	1.5"
Slab offset to web	-9"	0"	-9"	0"
Top flange width	18"	18"	18"	18"
Top flange thickness	0.75"	0.75"	1.0"	1.0"
Web depth	4'0"	4'0"	4'0"	4'0"
Web thickness	0.5"	0.5"	0.5"	0.5"
Bottom flange width	24"	24"	24"	24"
Bottom flange thickness	1"	1"	1.5"	1.5"

Loading

For reasons of brevity and simplicity, in the in-service condition this example is limited to consideration of dead loads and traffic loads only and in the case of limit states is limited to Strength I, Service II and Fatigue I. Traffic loads for a 30'-0" wide carriageway are generated using the Vehicle Load Optimisation facility. Construction stages are considered, with a uniform construction load applied to the wet and hardened areas of concrete.

The following loads are considered in addition to the self-weight of the steel beams:

Item	Loading
Wet concrete slab	0.10 kip/ft²
Construction load	0.02 kip/ft²
Parapet	0.225 kip/ft
Surfacing	0.023 kip/ft²

Note due to the modelling method used, the wet concrete slab and construction load are assigned to the model as appropriate line loads per unit length, and not as a surface load per unit area.

Load combinations considered:

- Constructability 1.4 (DC + C)
- Strength I 1.25 (DC) + 1.5 (DW) + 1.75 (LL)
- Service II DC + DW + 1.3 (LL)
- Fatigue I 1.75 (LL)

where DC = dead load: components and attachments

DW = dead load: wearing surface and utilities

C = construction load

LL = vehicle live load

Units used are kip,ft,kslug,s,F throughout.

Objective

To carry out design checks to AASHTO 8th edition and confirm the suitability of the member sizes.

Keywords

3D, Steel, Concrete, Composite, Bridge, Structural, Design code checks, AASHTO 8th, Bridge Deck Grillage, Design Member, Design Attribute, VLO, Staged Construction, Load Combinations, Branched Analysis, Member Utilisation Ratio, Member Report, Reporting, Steel Composite Bridge Wizard

Associated Files

- composite_bridge_deck_design_sections.csv** This file contains the geometric sections referenced by the supplied preliminary model file. It should be copied to the same folder where the supplied model is saved and renamed to be **sections.csv**.
- composite_bridge_deck_design_ready.mdl** includes the definition of design members, staged construction modelling and loading. To be used as a starting model for this example.

Associated Examples

- The worked example 'Steel Composite Bridge Wizard' shows how to create a 3-span bridge model using the Steel Composite Bridge Wizard.
- The worked example 'Staged construction modelling of a 3-span bridge deck' shows how to model the staged construction process included in this Composite Bridge Deck Design example.

Design Code Checking

Design code checking is carried out in LUSAS as a results processing operation following the solving of an analysis model. To enable a design check to take place, design attributes are assigned to members to provide design related information (as provided in the supplied model). Since the assigned design attributes have no impact on the structural analysis they can be assigned either before or after the analysis has been run. Changes can be made to a design attribute (for example, changing a grade of steel, or a plate thickness) without re-running the structural analysis.

Modelling

Running LUSAS Modeller

For details of how to run LUSAS Modeller, see the heading **Running LUSAS Modeller** in the *Introduction to LUSAS Worked Examples* document.

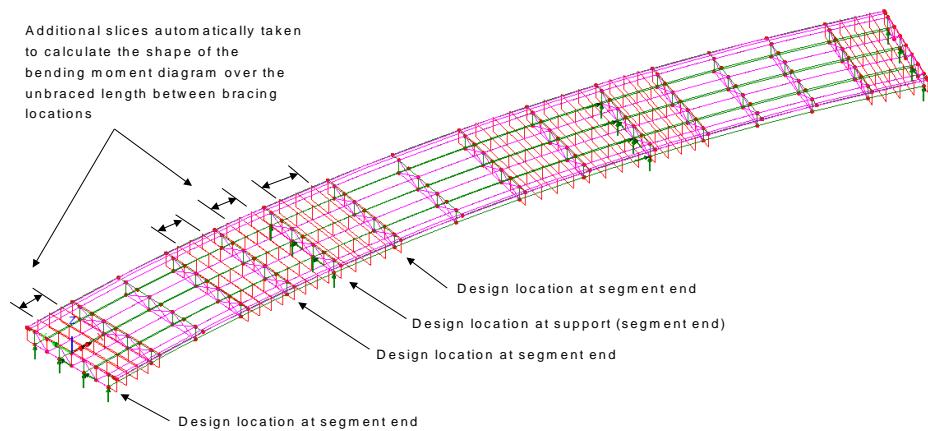
Loading the supplied starting model

The supplied starting model is based on the geometry used in the worked example ‘Steel Composite Bridge Wizard’ and includes staged construction modelling and loading as described in the worked example ‘Staged Construction of 3-Span Bridge Deck’.

File _____
Open...

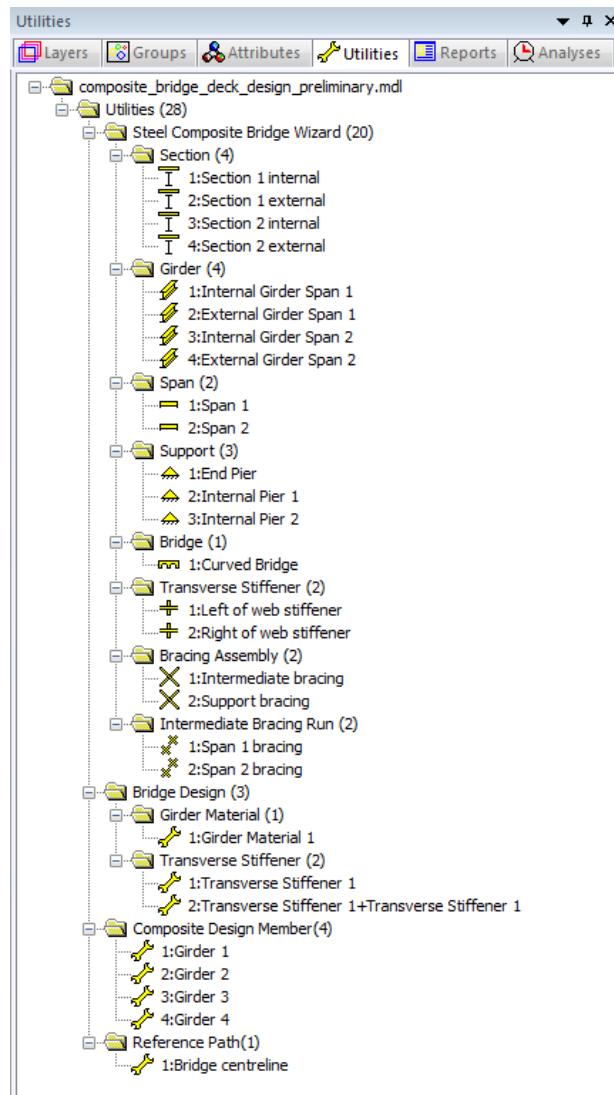
- To load the model, open the read-only file **composite_bridge_deck_design_ready.mdl** located in the \<LUSAS Installation Folder>\Examples\Modeller directory.

Depending upon your access rights it may be necessary to copy this file to another folder before it can be opened, and remove the read-only protection before it can be saved to the new folder. Once opened:


- If necessary, select the isometric button.
- Toggling the Fleshing button on and off will show the steelwork and slab arrangement.
- In the treeview turn off the display of the mesh layer.

Composite design members

When composite design members are created using the Steel Composite Bridge Wizard, design locations (as identified by the red slice planes seen on the following image) are automatically created at segment ends. Note that segments will always occur within spans and that each support forms a segment end.


For each design location other slice locations are also defined with reference to the positions of the nearest bracing locations and the quarter points between them. These additional slice locations are used to determine the shape of the bending moment diagram over the unbraced length as well to compute the maximum lateral bending in the flanges.

Other design locations can be specified, but for the model that is loaded these are the initial design locations and additional slices created:

Viewing the utilities created by the Bridge wizard

- Select the Utilities tab to see the utilities created and used by the steel composite bridge design wizard to create the model geometry, the attributes seen in the Attributes treeview and their assignments to relevant features in the model.

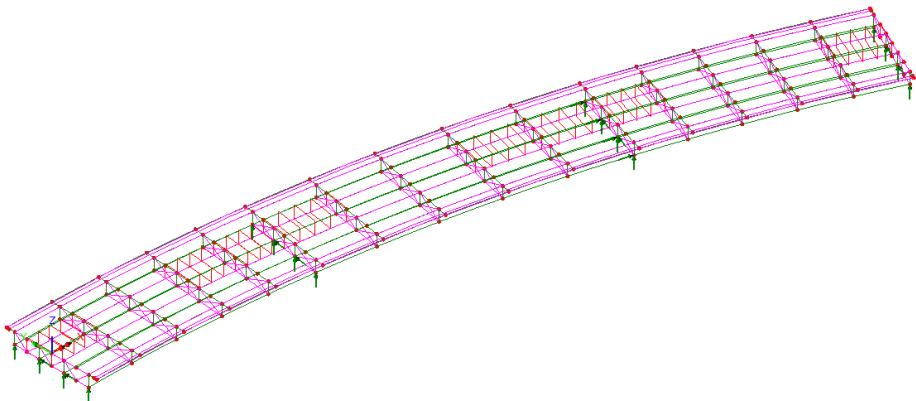
Save the model

File
Save As

- Save the model file to a new working folder on the local PC where you have read and write permission, and save the model with the new name of **composite_bridge_deck_design.mdl**

Copying the supplied geometric sections file

A supplied file containing the geometric sections that are referenced by the supplied preliminary model file should be copied to the same folder where the model has been saved and then be renamed.


- From the <Lusas installation folder> Examples > Modeller > Examples folder, copy the file **composite_bridge_deck_design_sections.csv** to the same folder where the supplied model was saved. Rename the file to be **sections.csv**

Simplifying the model

Design members are created automatically if models are created using the Steel Composite Bridge Wizard. The design members for this bridge are present in the Composite Design Member folder in the treeview.

Carrying out a full bridge design check for all bridge members at all locations in a model can be computationally and memory intensive, and is not required for training purposes. For this example, the design of a single bridge girder (Girder 2) will be considered at a number of selected locations to demonstrate the methodology.

- In the treeview delete the Composite Design Members named **Girder 1**, **Girder 3** and **Girder 4**.

- In the treeview turn-off the display of the **Utilities** layer.

Allowing editing of the Bridge Wizard-created model

Note that attributes automatically created from the bridge wizard utilities (that were created from running Steel Composite Bridge Wizard in order to create this model) are protected from being assigned, deassigned, edited or deleted unless the protection is overridden as follows:

- On the Model Properties dialog, select the **Attributes** tab and check (tick) the **Allow modification of LUSAS-generated attributes** option. Click **OK**.

Editing a Design Member

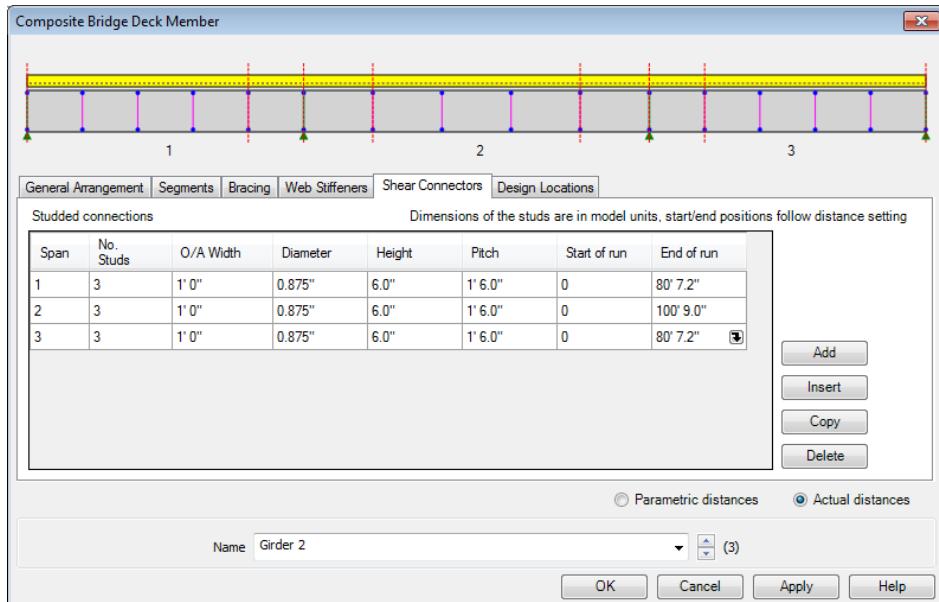
Much of the information required to carry out the design of a girder is already populated in the design member utility. However details of shear connectors must be defined. Other details such as materials, bracing or stiffeners for design can also be modified.

- In the treeview double-click on **Girder 2**.
- On the **General Arrangement** tab the actual span length of each girder can be seen. These lengths will be used when defining shear connectors.

Note. If a model has not been created using the bridge wizard, design members can be created using the **Utilities> Bridge Design> Composite Design Member** menu option.

- Click on the **Segments, Bracing** and **Web Stiffeners** tabs in turn to see the values created by running the Bridge Wizard.

Shear connectors

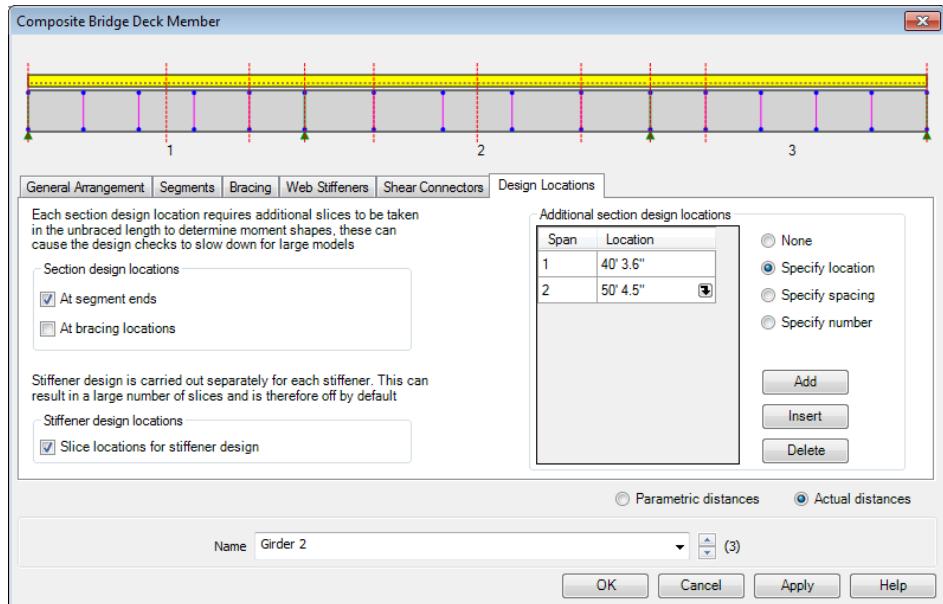

Shear connectors will be added over the full length of the girder.

Note. In this example, model units were specified as feet, but some values (such as stud diameter) are best entered in inches. To signify inches, " needs to be appended to the value entered. Alternatively the Unit convertor could be used.

- Select the **Shear Connectors** tab and click the **Add** button.
- For Span 1, enter 3 for the number of studs.
- Click in the O/A Width cell and enter a value of 1 (see note below).
- In the Diameter cell enter a value of **0.875"**
- In the Height cell enter a value of **6"**
- In the Pitch cell enter a value of **18"**
- In the Start of run cell enter a value of **0**
- In the End of run cell enter a value of **80'7.2"** (the value that is stated for Span 1 on the General Arrangement tab)
- Click the **Copy** button twice.
- On the second row change the Span to **2**. Change the End of run value to **100'9"**
- On the third row change the Span to **3**

- Click in any cell to update the schematic diagram.

Shear connectors are represented on the schematic design member by dotted horizontal purple lines within the slab showing the length over which they apply.


Note. The O/A Width value is required for other supported design codes, and is ignored and not used in the AASHTO design checks.

Design locations

For this example, design checks are required at segment ends (these are automatically created), and also at the mid-span of span 1 and span 2, and at all stiffener locations. To define these:

- Click on the **Design locations** tab.
- In the ‘Section design locations’ panel, ensure that the **At segment ends** option is selected.
- In the ‘Additional section design locations’ panel, select the **Specify location** option.
- Click **Add** twice.
- On the first row in the Location cell for Span 1, enter a value of **40'3.6”**.
- On the second row in the Location cell, change the span number to be Span 2 and in the Location cell enter a value of **50'4.5”**.

- In the ‘Stiffener design locations’ panel, select the **Slice locations for stiffener design** check box.
- Click **OK**.

Design locations for segment ends and bracing locations are represented on the schematic design member by vertical red dotted lines. Bracing locations are shown by blue circles. Stiffener locations are shown by magenta lines.

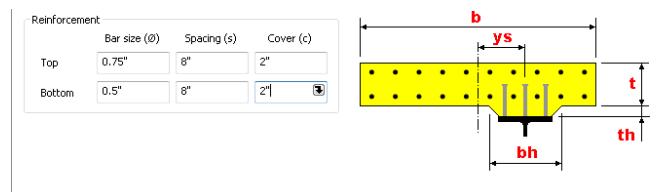
Note. When additional section or stiffener design locations are specified or requested, additional influence locations are automatically added to the treeview.

Geometric Attributes explained

- Click on the treeview tab.

The geometric line folder in the treeview contains assigned and unassigned attributes that were created by running the Steel Composite Bridge design wizard.

- ❑ The assigned attributes (denoted by a coloured icon) are automatically assigned to features in the model by the wizard and are used in an analysis.
- ❑ The unassigned bridge deck (grillage) geometric attributes (denoted by a grey coloured icon) are not used in an analysis. However, these unassigned attributes are used as part of a design check and require slab reinforcement to be specified.


Caution. If a bridge model has been generated by the Steel Composite Bridge Wizard, unassigned bridge deck (grillage) geometric attributes created by the wizard should never be assigned to features in the model otherwise incorrect properties will be used. Unassigned bridge deck (grillage) geometric attributes are created for and used only by a code-specific design check.

Editing the Unassigned Geometric Attributes

For this example, because design checks are only to be carried out for an internal girder (Girder 2), only the unassigned internal geometric attributes need to be edited to include rebar details for a design check..

Section 1 internal

- In the treeview double click on the geometric attribute name of **Section 1 internal (Bridge Design Section)**.
- Select the **Slab** tab. Slab details for this section can be seen.
- In the reinforcement panel for the top reinforcement set the Bar size (ϕ) as **0.75"**, the Spacing (s) as **8"** and the Cover (c) as **2"**.
- In the reinforcement panel for the bottom reinforcement set the Bar size (ϕ) as **0.5"**, the Spacing (s) as **8"** and the Cover (c) as **2"**.

- Click **OK**.

Section 2 internal

- In the treeview double click on the geometric attribute name of **Section 2 internal (Bridge Design Section)**, and enter the same reinforcement values for the slab as for Section 1 internal, and click **OK**.

This completes the initial design settings required.

Construction and loading phases considered

The following modelling / analysis phases are included in the supplied model:

- Slab construction stages**
- Phase 1 - Steel only**

- Phase 2 - Permanent and long term loading (Parapet and surfacing loads)
- Phase 3 - Variable or short-term loading (Vehicle loading)

Running the Analysis

With the model loaded:

Select the **Solve Now** button from the toolbar and click **OK** to run the analyses.

A LUSAS datafile will be created from the model information. The LUSAS Solver uses this datafile to perform the analysis.

If the analysis is successful...

Analysis loadcase results are added to the Treeview

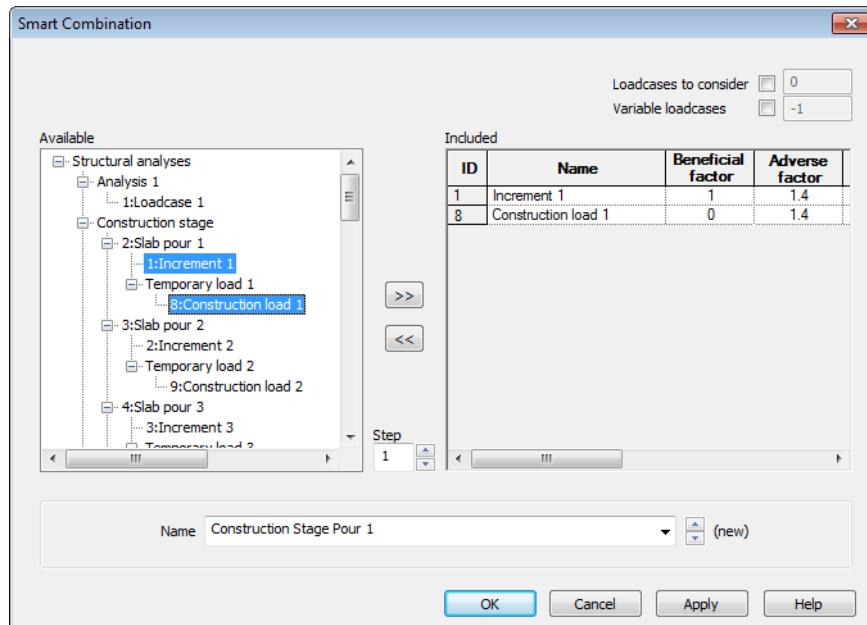
In addition, files will be created in the directory where the model file resides, including:

- composite_bridge_deck_design.out** this output file contains details of model data, assigned attributes and selected statistics of the analysis.
- composite_bridge_deck_design.mys** this is the LUSAS results file which is loaded automatically into the Treeview to allow results processing to take place.

If the analysis fails...

If the analysis fails, information relating to the nature of the error encountered can be written to an output file in addition to the text output window. Select **Yes** to view the output file. Any errors listed in the text output window should be corrected in LUSAS Modeller before saving the model and re-running the analysis

Viewing the Results


Analysis loadcase results are present in the Treeview.

Appropriate load combinations must now be defined in preparation for a design check.

Defining load combinations

First define the Construction Stage combinations.

- In the ‘Available’ loadcase panel, in the Construction stage analysis, select **Increment 1** and **Construction load 1** and click the button to add the loadcases to the combination dataset.
- Change the beneficial factor for ‘Construction load 1’ to **0** and the adverse factor for both to **1.4**.

- Change the combination name to be **Construction Stage Pour 1** and click **Apply**. A ‘Max’ and ‘Min’ loadcase entry will be added to the treeview.
- In the ‘Included’ panel select **Increment 1** and **Construction load 1** and click the button to remove them from the panel.
- In the ‘Available’ loadcase panel select **Increment 2** and **Construction load 2** and click the button to add the loadcases to the combination dataset.
- Change the beneficial factor for ‘Construction load 2’ to **0** and the adverse factor for both to **1.4**.
- Change the combination name to be **Construction Stage Pour 2** and click **Apply**.
- Repeat, separately, removing then adding the remaining construction stage loadcases.

Loadcase Name	Beneficial factor	Adverse factor	Combination name
Increment 3	1	1.4	Construction Stage Pour 3
Construction load 3	0	1.4	
Increment 4	1	1.4	Construction Stage Pour 4
Construction load 4	0	1.4	
Increment 5	1	1.4	Construction Stage Pour 5
Construction load 5	0	1.4	

Next, define the In Service Loadcase combinations

Analyses
Smart Combination...

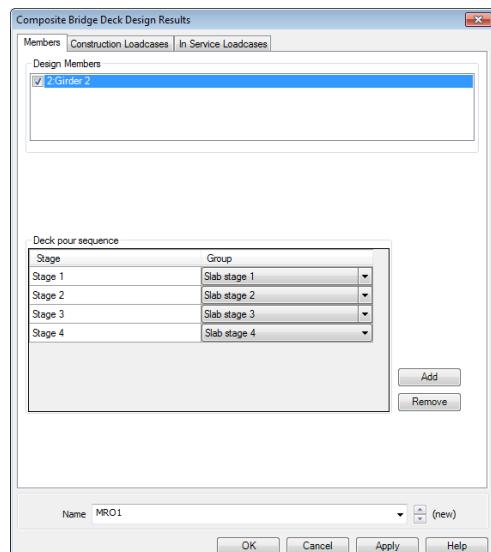
- In the ‘Available’ loadcase panel, in the Phase 2 analysis, select **Parapet** and **Surfacing** and click the button to add the loadcases to the combination dataset, and leave all factors as their default values of 1.
- Change the combination name to be **(DC + DW) (Service)** and click **Apply**.
- Change the Adverse factor for the Parapet loadcase to **1.25**
- Change the Adverse factor for the Surfacing loadcase to **1.5**
- Change the combination name to **(1.25DC + 1.5DW) (Strength)** and click **Apply**.
- In the ‘Included’ panel select **Parapet** and **Surfacing** and click the button to remove them from the panel..
- In the ‘Available’ loadcase panel, in the Phase 1 (Steel only) analysis, select **Steel SW** and **Wet Slab** and click the button to add the loadcases to the combination.
- Change the combination name to **Steel (Service)** and click **Apply**.
- Change the Adverse factor for both loads to **1.25**.
- Change the name to **Steel (Strength)** and click **OK**.

Initializing Composite Deck Design

Design
Composite Bridge Deck Design...

- On the Design Code dropdown select **AASHTO LRFD 8th Ed. (2017)**.
- Check (tick) the option **Supports are skewed less than 20 degrees**.
- Accept the default settings for all other parameters and click **OK**.

Note. The ‘Cross bracing is contiguous and parallel to supports’ option is left unchecked even though the bracing used in this example meets these criteria. This will provide conservative results.

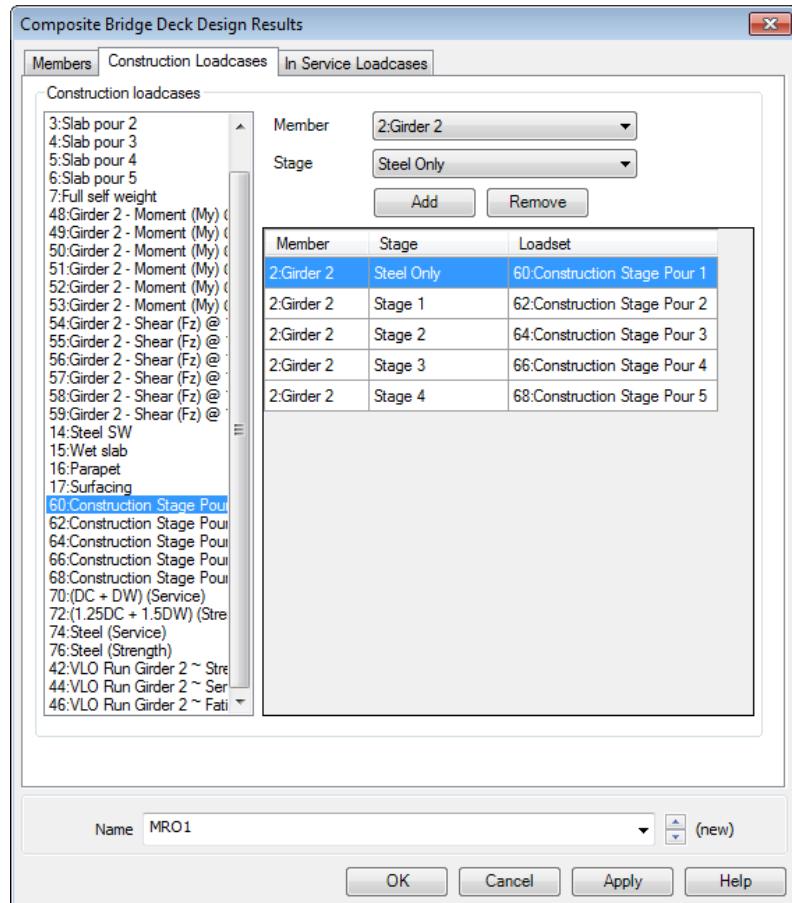

Defining a Composite Deck Design Results Utility

Prior to carrying out a design check, design members need to be associated with particular stages of construction for selected deck pours, and construction and in-service loadcases. This is done by defining a Composite Bridge Deck Design results utility.

Specifying members of interest

- With the **Members** tab active, in the Design Members panel select the check box for **Girder 2**.
- Click the **Add** button four times to add four stages to the Deck pour sequence panel.
- In the ‘Deck pour sequence’ panel, from the Group dropdown select **Slab stage 1** for Stage 1.
- Similarly, select **Slab stage 2** for Stage 2, **Slab stage 3** for Stage 3 and **Slab stage 4** for stage 4.

Note that there is no need to add Stage 5 because design checks in the construction stage are only carried out at locations where the slab is not present.


Specifying construction loadcases

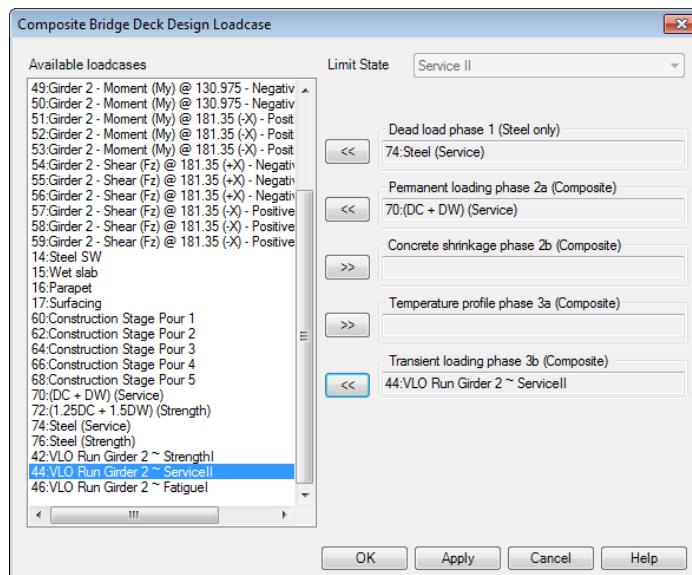
- Click on the **Construction Loadcases** tab.

By default the Member dropdown will be set to **Girder 2** and the Stage will be set to **Steel Only**.

- From the ‘Construction loadcases’ panel select **Construction Stage Pour 1**. (It will be the lowest numbered ‘Construction Stage’ entry in the set available.)
- Click the **Add** button to add a row to the grid that references these 3 selections of Member, Stage and Loadset (as shown on the following image).
- Next, from the ‘Construction loadcases’ panel select **Construction Stage Pour 2**.

- Change the Stage dropdown to be **Stage 1** and click the **Add** button to add these selections to a row in the grid.
- Repeat for the remaining concrete stages to create rows for Member, Stage and Loadset as shown on the following image.

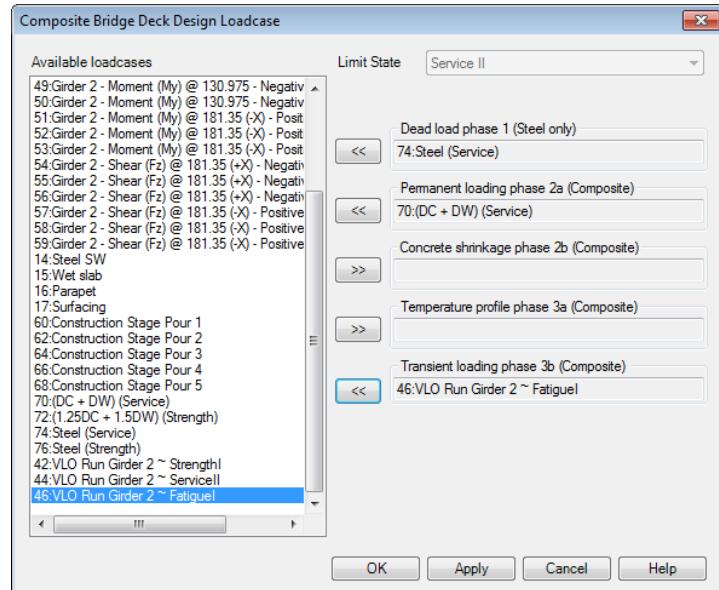
Note, again, that there is no need to add Stage 5 because design checks in the construction stage are only carried out at locations where the slab is not present.


Specifying in service loadcases

- Click on the **In Service Loadcases** tab.

Three limit states are considered - Service, Fatigue and Strength, and appropriate loadcases (with the correct factors applied to those loadcases) must be assigned to each limit state. Press the **Help** button for this dialog for more details.

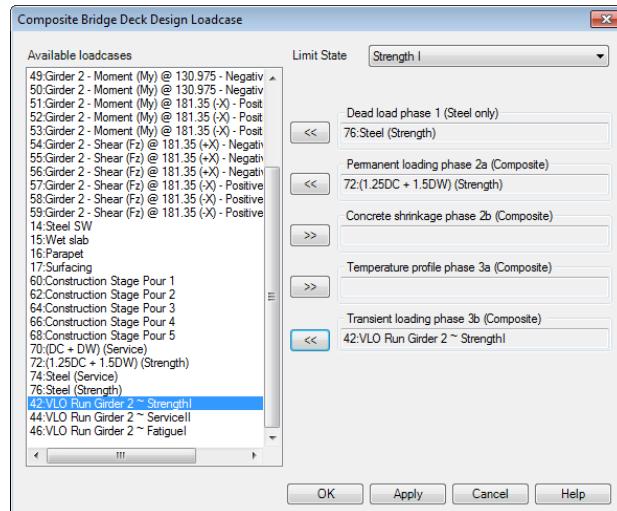
Service loadcases


- In the ‘Service loadcases’ panel, click the **Add** button.
- From the list of available loadcases select **Steel (Service)** and click the ‘Add to’ button to add the loadcase to **Dead load phase 1 (Steel only)**.
- Then select loadcase **(DC + DW) (Service)** and click the ‘Add to’ button to add the loadcase to **Permanent loading phase 2a (Composite)**.
- Lastly select loadcase **VLO run Girder 2 ~ Service II** and click the ‘Add to’ button to add the loadcase to **Transient loading phase 3b (Composite)**.

- Click **OK** to return to the parent dialog.

Fatigue loadcases

- In the ‘Fatigue loadcases’ panel, click the **Add** button.
- From the list of available loadcases select **Steel (Service)** and click the ‘Add to’ button to add the loadcase to **Dead load phase 1 (Steel only)**.
- Then select loadcase **(DC + DW) (Service)** and click the ‘Add to’ button to add the loadcase to **Permanent loading phase 2a (Composite)**.
- Lastly select loadcase **VLO run Girder 2 ~ Fatigue I** and click the ‘Add to’ button to add the loadcase to **Transient loading phase 3b (Composite)**.



- Click **OK** to return to the parent dialog.

Strength loadcases

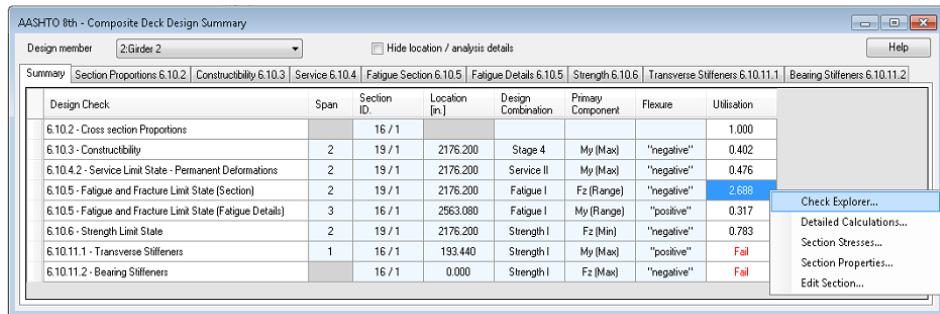
- In the ‘Strength loadcases’ panel, click the **Add** button.
- From the list of available loadcases select **Steel (Strength)** and click the ‘Add to’ button to add the loadcase to **Dead load phase 1(Steel only)**.
- Then select loadcase **(1.25DC + 1.5DW) (Strength)** and click the ‘Add to’ button to add the loadcase to **Permanent loading phase 2a (Composite)**.
- Lastly select loadcase **VLO run Girder 2 ~ Strength I** and click the ‘Add to’ button to add the loadcase to **Transient loading phase 3b (Composite)**.

Composite Bridge Deck Design to AASHTO 8th Edition

- Click **OK** to return to the parent dialog, where the settings made should look like this:

- Lastly change the design results name to be **Girder 2 Design** and click **OK**.

A Composite Deck Design Results entry is then added to the treeview.


Comparison of design code and LUSAS loading phases

AASHTO 8th Edition (6.10.1.1.1a)	Equivalent LUSAS loading phases
Steel section	Phase 1 is the loading applied to the steel structure before it acts compositely with the deck slab. Typically this is the weight of the steel and the weight of the wet concrete. These forces are carried by the steelwork alone.
Long-term composite section	<p>Phase 2 is the permanent or long term loading that is carried by the composite section. It is split into two sub phases:</p> <ul style="list-style-type: none"> • Phase 2a represents the permanent loading acting on the composite section • Phase 2b represents the permanent effects induced by shrinkage of the concrete
Short term composite section	<p>Phase 3 is the variable or short term loading that is carried by the composite section. It is split into two sub phases:</p> <ul style="list-style-type: none"> • Phase 3a represents temperature effects. • Phase 3b represents transient short term loading, such as traffic and wind.

Viewing results

From the Composite Deck Design Results entry in the treeview, the design check results can be viewed and tables of results can be obtained.

- In the treeview right-click on the **Girder 2 Design** results entry and select **Show Results**. This will take several minutes to compute the design checks.
- With the **Summary** tab selected, it can be seen that utilisation values of greater than 1 are present for the Fatigue and Fracture Limit State (Section) and that both the Transverse Stiffeners and Bearing Stiffeners fail the design checks:

More information can be obtained on these utilisation values by right-clicking on a previously selected row in the table and selecting the appropriate context menu item:

- Check Explorer** shows basic details of calculations carried out.
- Detailed Calculations** provides full details of all calculations carried out.
- Section Stresses** shows the stress profiles of the various load phases.
- Section Properties** shows the section dimensions and properties used in the design check.
- Edit Section** allows for editing of section dimensions and having the design check calculations re-evaluated instantly based on the new section data and using the previously solved results from the model.

Fatigue check

- In the Design Summary table, left-click on the Utilisation value for the Fatigue and Fracture Limit State (Section), then right-click and choose **Detailed Calculations...**
- In the left-hand panel, click on the **6.10.5.1 – Shear connector fatigue** results entry for the reported exceeded utilisation.

Design Calculation Viewer

AASHTO LRFD 8th Ed. (2)

2 design checks

Analysis Results

6.10.5.1 - Shear connector fatigue

Location = 2.1762E3
Utilisation = 2.688

6.10.5.3 - Special Fatigue Requirements

Location = 2.1762E3
Utilisation = 0.351

Longitudinal fatigue shear range

$$= \frac{V_f \cdot Q}{7.95796} \cdot (18.7451 - 8.0/2) = 1.6008813 \text{ in}^3$$

Radial fatigue shear range

$$V_{fat} = \frac{V_f \cdot Q}{I} = \frac{109.301 \cdot 1.60088E3}{91.9178E3} = 1.88622 \text{ ksf}$$

Effective length of deck panel taken as 48.0 in. when not at end panels

Radial fatigue shear range 1

$$F_{fat1} = \frac{A_{bot} \cdot \sigma_{flg} \cdot I_p}{w \cdot R} = \frac{36.0 \cdot -1.60249 \cdot 241.8}{48.0 \cdot 7.254E3} = 0.0420623 \text{ kip/in}$$

Note: Structure has skewed supports less than 20 degrees therefore $F_{fat2} = 0$

Radial fatigue shear range

$$F_{fat} = \text{Max}(F_{fat1}, F_{fat2}) = \text{Max}(0.0420623, 0.0) = 0.0420623 \text{ kip/in}$$

Horizontal fatigue shear range per unit length

$$V_{sr} = \sqrt{(V_{fat})^2 + (F_{fat})^2} = \sqrt{(1.88622)^2 + (0.0420623)^2} = 1.88669 \text{ kip/in}$$

Required pitch

$$p \leq \frac{n \cdot Z_r}{V_{sr}}$$

$$= \frac{3.0 \cdot 4.21094}{1.88669} = 6.69576$$

18.0 > 6.69576

*Required pitch NOT satisfied
Utilisation = 2.68827*

6.6.1.2.2 - Shear stud weld stresses

It can be seen that the required pitch of stiffeners is not satisfied. The use of a larger stud and/or a closer pitch locally by the failure zone (by the internal supports) would give the required capacity. This is covered at the end of the example.

Transverse and Bearing stiffener check

- In the Design Summary table, left-click on the 'Fail' cell for the Transverse Stiffeners row, then right-click and choose **Detailed Calculations...**
- In the left-hand panel, click on the **6.10.11.1.2 – Projecting Width for transverse stiffener** entry.

AASHTO LRFD 8th Ed. (2017) - 6.10.11.1 - Transverse Stiffeners

Section: 16 / 1 @ location 1, (193.44 in)
 Combination: Strength 1
 Primary component: M_y (Max)
 Units: kip.in, ksfinch,s,f

6.10.11.1.2 - Projecting Width

Width of stiffener outstand $b_t = 8.0$ in
 Thickness of stiffener outstand $t_p = 0.375$ in
 Width of compression flange at stiffener $b_f = 18.0$ in
 Depth of web at stiffener $D = 48.0$ in

Width limit 1 $b_t \geq 2.0 + \frac{D}{30}$
 $= 2.0 + \frac{48.0}{30} = 3.6$
 $8.0 > 3.6$

Width limit 2 $b_t \leq 16 \cdot t_p$
 $= 16 \cdot 0.375 = 6.0$
 $8.0 > 6.0$

Width limit 3 $b_t \geq \frac{b_f}{4}$
 $= \frac{18.0}{4} = 4.5$
 $8.0 > 4.5$

- In the Design Summary table, left-click on the 'Fail' cell for the Bearing Stiffeners row, then right-click and choose **Detailed Calculations...**
- In the left-hand panel, click on the **6.10.11.2.2 - Projecting Width** entry.

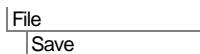
AASHTO LRFD 8th Ed. (2017) - 6.10.11.2 - Bearing Stiffeners

Section: 16 / 1 @ location 0, (0.0 in)
 Combination: Strength 1
 Primary component: F_z (Max)
 Units: kip.in, ksfinch,s,f

6.10.11.2.2 - Projecting Width

Projecting width

$$b_t \leq 0.48 \cdot t_p \sqrt{\frac{E}{F_{yz}}}$$


$$= 0.48 \cdot 0.375 \sqrt{\frac{29.0E3}{50.0}} = 4.33497$$

$$8.0 > 4.33497$$

Projecting width NOT satisfied

It can be seen that, for both stiffener types, the Projecting Width check is not satisfied. This can be resolved by increasing the thickness of the stiffeners. This is covered at the end of the example.

Save the model

 Save the model file.

This completes the example.

Changes required to pass the design check

Fatigue check

To pass the fatigue check the diameter and /or the pitch of the shear connectors need to be modified. This is done by revisiting the Composite Design Member.

- In the treeview, inside the Composite Design Member folder, double-click on **Girder 2**.
- Select the **Shear Connectors** tab.
- For each span row, in the Diameter cell change the value to **1"**
- For each span row, in the Pitch cell change the value to **8"** and click **OK**.

To save time, the design check will only be carried out once all changes are made.

Transverse stiffener and bearing stiffener check

To overcome the “Projecting width not satisfied” design check, the stiffener thickness must be increased. In this example the same stiffener types are used as web stiffeners and as bearing stiffeners, as stated on the Composite Design Member dialog on the Web stiffeners tab.

- In the treeview, inside the Transverse Stiffener folder, double-click on **Transverse Stiffener 1**
- Change the value for **Thickness, t** to **0.75"** and click **OK**
- In the treeview, inside the Transverse Stiffener folder double-click on **Transverse Stiffener 1 + Transverse Stiffener 1**
- Change the value for **Thickness, t** to **0.75"** and click **OK**

Viewing updated design results

- In the treeview right-click on the **Girder 2 Design** results entry and select **Show Results**. This may take several minutes to compute design checks.

Composite Bridge Deck Design to AASHTO 8th Edition

- With the **Summary** tab selected, it can be seen that utilisation values of less than 1.0 are present for all entries, and the Transverse stiffeners are shown to have passed.

AASHTO 8th - Composite Deck Design Summary								
Design member	2.Girder 2	Hide location / analysis details			Help			
Summary	Section Proportions 6.10.2	Constructibility 6.10.3	Service 6.10.4	Fatigue Section 6.10.5	Fatigue Details 6.10.5	Strength 6.10.6	Transverse Stiffeners 6.10.11.1	Bearing Stiffeners 6.10.11.2
Design Check	Span	Section ID	Location [m]	Design Combination	Primary Component	Flexure	Utilisation	
6.10.2 - Cross section Proportions	16 / 1						1.000	
6.10.3 - Constructibility	2	19 / 1	2176.200	Stage 4	My (Max)	"negative"	0.402	
6.10.4.2 - Service Limit State - Permanent Deformations	2	19 / 1	2176.200	Service II	My (Max)	"negative"	0.476	
6.10.5 - Fatigue and Fracture Limit State (Section)	2	19 / 1	2176.200	Fatigue I	Fz (Range)	"negative"	0.915	
6.10.5 - Fatigue and Fracture Limit State (Fatigue Details)	3	16 / 1	2563.080	Fatigue I	My (Range)	"positive"	0.317	
6.10.6 - Strength Limit State	2	19 / 1	2176.200	Strength I	Fz (Min)	"negative"	0.783	
6.10.11.1 - Transverse Stiffeners	1	16 / 1	193.440	Strength I	My (Max)	"positive"	Pass	
6.10.11.2 - Bearing Stiffeners		19 / 1	2176.200	Strength I	Fz (Max)	"negative"	0.560	

Save the model

Save the model file.

This completes the example.