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Example 1.1.1 

Linear Static Analysis Of A Curved Cantilever (using 4 

elements) 

Keywords 

Curved Beam 

Description 

Determine the tip displacements for a quarter circle cantilever with the dimensions, properties 

and subject to the loading as given below. Neglect the effect of shear deformations but include 
the effect of axial deformations on the displacements. 

 

Discretisation 

Model with four equal length curved BM3 beam elements which, being thin beam elements, 

explicitly exclude the effects of shear deformations. 

Geometric properties 

Radius, mm 
Cross-section breadth 

(b), mm 
Cross-section depth 

(d), mm 

200 10 10 
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Material properties 

Young’s modulus 200 x103 N/mm2  

 

Loading 

Point load at tip in X 
direction (PX), N 

Point load at tip in Y 
direction (PY), N 

Concentrated moment 
at tip (MZ), Nm 

200 200 20 

 

Theory 

The following equations for the tip displacements may be derived using the unit load method. 

 
Point load at tip in X 

direction, PX 
Point load at tip in Y 

direction, PY 
Concentrated moment 

at tip, MZ 

u 
 

3

x x
P R 3 8 P R

4 E I 4 E A


  

3

y yP R P R

2 E I 2 E A
   

 
2

zM R 2

2 E I

 
  

v 
3

x xP R P R

2 E I 2 E A
   

3

y yP R P R

4 E I 4 E A

 

  
 
 

 
2

zM R

E I
 


 

2

xP R 2

2 E I

 
  

2

yP R

E I
 

zM R

2 E I
  

 

Comparison 

Load Result source u v 

Point load at tip in 

X direction, PX 

LUSAS 3.42023 -4.79880 -0.0273976 

Theory 3.42104 -4.799 -0.0273982 

Point load at tip in 

Y direction, PY 

LUSAS -4.79880 7.54071 0.048 

Theory -4.799 7.54139 0.048 

Concentrated 

moment at tip, MZ 

LUSAS -2.73976 4.8 0.0376988 

Theory -2.73982 4.8 0.0376991 
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References 

1. Timoshenko, S.P., and Gere, J.W., Mechanics of materials, Van Nostrand Reinhold, 1972. 

Input data 

X01D11A.DAT 
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Example 1.1.2 

Linear Analysis Of A Curved Cantilever (using 16 Elements) 

Keywords 

Curved Beam 

Problem Description 

Determine the tip displacements for a quarter circle cantilever with the dimensions, properties 

and subject to the loading as given below. Neglect the effect of shear deformations but include 

the effect of axial deformations, on the displacements. 

 

Discretisation 

Model with 16 equal length curved BEAM elements. Use a large shear area to ensure negligible 

shear deformations. 

Geometric properties 

Radius, mm 
Cross-section breadth 

(b), mm 
Cross-section depth 

(d), mm 

200 10 10 
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Material properties 

Young’s modulus 200 x103 N/mm2  

 

Loading 

Point load at tip in X 
direction (PX), N 

Point load at tip in Y 
direction (PY), N 

Concentrated moment 
at tip (MZ), Nm 

200 200 20 

 

Theory 

The following equations for the tip displacements may be derived using the unit load method. 

 
Point load at tip in X 

direction, PX 
Point load at tip in Y 

direction, PY 
Concentrated moment 

at tip, MZ 

u 
 

3

x x
P R 3 8 P R

4 E I 4 E A


  

3

y yP R P R

2 E I 2 E A
   

 
2

zM R 2

2 E I

 
  

v 
3

x xP R P R

2 E I 2 E A
   

3

y yP R P R

4 E I 4 E A

 

  
 
 

 
2

zM R

E I
 


 

2

xP R 2

2 E I

 
 

2

yP R

E I


zM R

2 E I
 

 

Comparison 

Load Result source u v 

Point load at tip in 

X direction, PX 

LUSAS 3.42298 -4.79707 -0.0274258 

Theory 3.42104 -4.799 -0.0273982 

Point load at tip in 

Y direction, PY 

LUSAS -4.79707 7.52627 0.0479422 

Theory -4.799 7.54139 0.048 

Concentrated 

moment at tip, MZ 

LUSAS -2.74258 4.79422 0.0376840 

Theory -2.73982 4.8 0.0376991 
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References 

2. Timoshenko, S.P., and Gere, J.W., Mechanics of materials, Van Nostrand Reinhold, 1972. 

Input data 

X01D12A.DAT 
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Example 1.1.3 

Linear Static Stress Analysis Of A Plane Frame Using Beam 

Elements 

Keywords 

Plane Frame 

Problem Description 

To determine the bending moments and shear forces when the plane frame shown in Figure 1 is 
subjected to the following load cases; 

 Three horizontal point loads of 25 KN (Figure 2). 

 Three vertical point loads of 50, 60 and 70KN along with three udl loads of 10, 10 and 20 
KN/m (Figure 3). 

 A combination of load cases (1) and (2) with a scaling factor of 0.9 and 1.4 respectively 
(Figure 4). 

 A combination of load cases (1) and (2) with a scaling factor of 1.4 (Figure 5). 

Finite Element Model 

The frame is made up of 11 BEAM elements with the element and nodal numbering detailed in 

Figure 6. 

Geometric properties 

Members Area (m
2
) I (m

4
) Shear area (m

2
) 

1-6,10 0.1 0.00133 0.1 

7,8 0.3 0.00399 0.3 

9,11 0.2 0.00266 0.2 

 

Material properties 

Young’s modulus 30 x106 kN/m2  

Poisson’s ratio 0.3 
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Boundary conditions 

The left hand column (node 1) is fully restrained in both translation and rotation while the centre 

(node 2) and right hand columns (node 3) are only restrained in translation. 

Theory 

A number of methods exist for the solution of plane frames, e.g. moment distribution and slope 
deflection methods of analysis, which are described in [1]. 

Modelling Hints 

The four load cases defined above may be specified in the LUSAS data file in the following way: 

The horizontal and vertical load conditions (cases 1 and 2) are declared as two separate LOAD 

CASE’s using CONCENTRATED LOAD (CL) and ELEMENT LOADS (ELDS) respectively. 

A number of combinations of the previously defined separate LOAD CASE’s may be analysed 

by using the LOAD COMBINATION card. In addition the ENVELOPE facility may be used to 

compute the maximum loads of the combined load cases (i.e. worst conditions). The form in 
which the commands have been implemented is shown in the input data file listing. 

References 

1. Steel Designers' Manual (Constrado) Granada publishing 1983. 

Input data 

X01D13A.DAT 



Example 1.1.3 

9 

 

 



Verification Manual 

10 

 



Example 1.1.3 

11 

 

 



Verification Manual 

12 

Example 1.1.4 

Temperature Dependent Properties Constant Strain 

Cantilever 

Keywords 

Constant Strain, Temperature Dependent Properties, Beam 3D 

Problem Description 

A cantilever of length 10392mm, width 200mm and depth 100mm is subject to a variable 

temperature loading such that the product of the coefficient of thermal expansion and the 
temperature rise at any point is constant. Figures 1 and 2 show the geometry of the cantilever. 

Discretisation 

The cantilever beam is modelled using two meshes, each of three elements. The finite element 
discretisation is shown in figure 3. 

Mesh 1 - three BS4 elements 

Mesh 2 - three BSX4 elements 

Material properties 

The material properties assumed for the analysis are as follows: 

Young's modulus = 200000 N/mm2 

Poisson's ratio = 0.3 

Thermal expansivity (variable) * Temperature 

= Constant 

= 2.4 

Boundary conditions 

One end of the beam is fully restrained while the other is free. 
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Theory 

The structure is only restrained to prevent rigid body motions so that stress free, thermal 

expansion may occur. For load case 1, with constant temperature throughout the section, the 

strain at any point is constant and is the product of the coefficient of thermal expansion and the 
temperature at that point:- 

Strain =  * T = 2.4     (0.0.1) 

Where  is the coefficient of thermal expansion and T is the temperature rise. 

For load cases 2 and 3, a linear variation is used such that the top and bottom fibre temperature 

strains are 120 and -120 respectively. Therefore the resulting strain will be pure bending with a 

value of: 

(1 2 0 ) ( 1 2 0 )
S tra in 2 .4

1 0 0

 
      (0.0.2) 

Comparison 

A constant strain condition (of 2.4) is achieved for all the cases analysed. 

References 

1. Roark.R, Young.W 'Formulae for stress and strain: Fifth Edition', McGraw-Hill Publishing 
Company (1975). 

Input Data 

X01D14A.DAT 

X01D14B.DAT 
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Example 1.2.1 

Linear Elastic Static Fracture Analysis Of A Three-Point 

Bend Specimen 

Keywords 

Fracture, Stress Intensity 

Problem Description 

In the specialised field of fracture mechanics a number of small scale tests are used extensively 

in determining the quality of a material. One such test is the three-point bend specimen. A typical 
arrangement is shown in Figure 1. 

The test specimen is supported at positions A and B while a CONCENTRATED LOAD is 

applied at point C. The stress intensity factor may then be evaluated for the initial crack length 

ao. 

Discretisation 

As the test piece and loading conditions are symmetric, only half the specimen need be analysed. 

The finite element discretisation is shown in Figure 2, consisting of 126 eight-noded plane strain 

membrane elements (QPN8) and two crack tip elements (QNK8). 

Material properties 

Young’s modulus, E 214x106 Pa 

Poisson’s ratio,  0.3 

 

Loading condition 

A concentrated load (P) of 2000 N applied at position C. 

Theory 

Griffith's criterion  
1 U

G
t a





    (0.0.3) 
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Irwin's relation: 

 

2

I
2

G E
K

1



 

     (0.0.4) 

where 

a Crack length 

E Young's modulus 

G Energy release rate 

KI Stress intensity factor (mode I) 

t Thickness 

U Strain energy 

 Poisson’s ratio 

 

 

Figure 1.  Three-point bend specimen. 
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Figure 2. (a) Mesh discretisation (b) Effective crack extension. 
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Modelling Hints 

In this example the load is applied at position A in the form of a reaction P/2. There exist a 

number of methods for determining the value of the stress intensity factor, the method adopted 
here is the energy balance approach. 

The user conducts a linear elastic static analysis with an initial crack length ao. A second analysis 

may then be done after repositioning the crack tip to give a new crack length, ao + a. The change 
in energy may then be used to compute the value of KI . 

Solution Comparison 

(1) Crack length ao 

Displacement at the point of application of the reaction 

uB  = 0.513712 mm 

Strain energy 

U1 = P/2 * uB = 0.513712 Nm 

(2) Crack length ao + a 

Displacement at the point of application of the reaction 

uB = 0.553229 mm 

Strain energy 

U2 = P/2 * uB = 0.553229 Nm 

Energy release rate 

G = (0.553229 - 0.513712)/0.0005 = 79.036 Nm/m2 

As symmetry has been considered this value of G must be multiplied by a factor of 2. Therefore: 

G = 158.072 Nm/m2 

This value of G, the energy release rate, may now be inserted into Irwin's relation (0.0.4) to give 
the stress intensity factor: 

KI
2= 158.072*214x109/0.91= 3.717x1013 

KI = 6.097 MN/m3/2 

An alternative method to the energy balance approach is the displacement extrapolation 

technique [1]. The analytical expressions for the displacement variations along radial lines 

emanating from the crack tip, in terms of the stress intensity factor are as follows: 

KI  [(2k-1)cos/2 - cos3/2] = 4(2/r)1/2      (u) 

KI  [(2k+1)sin/2 - sin3/2] = 4(2/r)1/2      (v) 
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where: 

u  x displacement component 

v  y displacement component 

r  radial distance from nodal point to crack tip. 

 shear modulus 

k  3-4y for plane strain 

  angle between radial path chosen and the crack path ahead of the crack tip. 

If we assume  = 90, then we are considering the radial path of nodes vertically from the crack 

tip i.e. nodes 9 to 553 (Figure 3). In this particular instant we shall only consider nodes 26, 43, 

77, 11, 145,179, 213, 247, 281, 315, 349, 383, 417, 451, 485, 519, and 553. The corresponding 

nodal displacements in the x-direction have been substituted into the above equation and the 

values of K computed. The results have been plotted and are shown in Figure 7. By discarding 

points close to the crack tip the solutions can be extrapolated to r=0[1]. In this case the result is 
approximately that obtained by the energy balance method. 

References 

1. Owen, D.R.J and Fawkes, A.J.  Engineering Fracture Mechanics Numerical Methods and 

Applications. Pineridge Press Ltd. 1983. p43 

Input Data 

X01D21A.DAT 
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Example 1.2.3 

Connecting Incompatible Models Using Constraint 

Equations 

Keywords 

Incompatible Models, Curvilinear Coordinates, Shape Functions 

Problem Description 

A study of the localised stresses at the root and tip of a cantilever beam, details of which are 

shown in Figure 1, is to be carried out. To save on computer resources, the central portion of the 

cantilever is to be modelled with a coarse mesh while finer meshes are to be used at the tip and 

the root. Derive the constraint equations relating the nodal variables at the interfaces between the 

fine meshes at the root and tip and the coarse mesh of the central portion. Analyse the cantilever 

when subject to a shear load of 135 MN at the tip. Compare the results for the tip displacements 

and the stress distributions for each Cartesian stress component with the results obtained using a 
fine mesh over the whole cantilever. 

 

Figure 1 - Problem geometry and material properties 

Discretisation 

As the problem is essentially two dimensional, a finite element model using plane membrane 

elements is appropriate. The higher order, 8-noded plane membrane element, QPM8, is used and 

the mesh adopted for the analysis is shown in Figure 2. The full, fine mesh used for comparison 
purposes is shown in Figure 3. 

Material properties 

Young’s modulus 200.0x109 Pa 
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Poisson’s ratio 0.3 

 

Theory 

The variables at nodes 22, 39, 73, 90, 30, 47, 81 and 98 are required to be constrained to the 

edges of element 8, see Figure 1c. The displacement variation at any point in element 8 is given 
by: 

m

i i

i 1

u N u



        (0.0.5) 

where u is the displacement vector at any point, Ni are the shape or interpolation functions for 

nodal point i, u the displacement vector for nodal point i and m the total number of nodes for the 

element. 

Using the plane membrane finite element QPM8, with m = 8, the interpolation functions are 

given by: 

For corner nodes:- 

     1
i o o o o4

N 1 1 1             (0.0.6) 

For midside nodes:- 

when 
i 0  ,    

21
i o2

N 1 1        (0.0.7) 

when 
i 0  ,    

21
i o2

N 1 1        (0.0.8) 

0 i  
; 0 i   

     (0.0.9) 

The, curvilinear co-ordinate system for an 8-noded element is shown in Figure 4b. Comparing 

this with element 8, see Figure 4a, enables the co-ordinates of nodes 22, 39, 73, 90, 30, 47, 81 

and 98 in the curvilinear co-ordinate system of element 8 to be determined. These are given in 
columns 2 and 3 of Table 1. 

 

a) Element 8                             b)  Mapping domain 

Figure 4 
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The required constraint equations are of the form: 

 
8

nu u         (0.0.10) 

where the superscript 8 refers to element 8, the subscript n refers to the node (22, 39, 73, 90, 30, 

47, 81 or 98) and , are the curvilinear co-ordinates of node  with respect to element 8. Using 

(0.0.5), equations (0.0.6) to (0.0.9) may be written as: 

8

8

i i n

i 1

N u u 0



       (0.0.11) 

Substituting the , co-ordinates of each node in turn into equations (0.0.6)-(0.0.9) yields the Ni  

values, which are tabulated in cols 4 - 11 in Table 1. 

Table 1: Interface node curvilinear co-ordinates and shape functions 

Node   N1 N2 N3 N4 N5 N6 N7 N8 

22 -1 -2/3 +5/9 0 0 0 0 0 -1/9 +5/9 

39 -1 -1/3 +2/9 0 0 0 0 0 -1/9 +8/9 

73 -1 +1/3 -1/9 0 0 0 0 0 +2/9 +8/9 

90 -1 +2/3 -1/9 0 0 0 0 0 +5/9 +5/9 

30 +1 -2/3 0 0 +5/9 +5/9 -1/9 0 0 0 

47 +1 -1/3 0 0 +2/9 +8/9 -1/9 0 0 0 

81 +1 +1/3 0 0 -1/9 +8/9 +2/9 0 0 0 

98 +1 +2/3 0 0 -1/9 +5/9 +5/9 0 0 0 

 

The displacement vector at any point for the plane membrane family of elements is given by: 

U
u

V

 
  

 

      (0.0.12) 

where U and V are the displacement components in the global X and Y directions respectively. 

Using a subscript to denote the node number and noting the correspondence between the node 

numbering of the mapping domain, Figure 4b, and element 8, Figure 4a, the constraint conditions 
of (0.0.11) may be written explicitly as: 
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5 51
5 1 0 7 5 6 2 29 9 9

5 51
5 1 0 7 5 6 2 29 9 9

82 1
5 1 0 7 5 6 3 99 9 9

5 81
5 1 0 7 5 6 3 99 9 9

81 2
5 1 0 7 5 6 7 39 9 9

81 2
5 1 0 7 5 6 7 39 9 9

5 51
5 1 0 7 5 6 9 09 9 9

5 51
5 1 0 7 5 6 9 09 9 9

5 5
1 3 6 49 9

U U U U 0

V V V V 0

U U U U 0

V V V V 0

U U U U 0

V V V V 0

U U U U 0

V V V V 0

U U

   

   

   

   

    

    

    

    

 
1

1 1 5 3 09

5 5 1
1 3 6 4 1 1 5 3 09 9 9

82 1
1 3 6 4 1 1 5 4 79 9 9

82 1
1 3 6 4 1 1 5 4 79 9 9

81 2
1 3 6 4 1 1 5 8 19 9 9

81 2
1 3 6 4 1 1 5 8 19 9 9

5 51
1 3 6 4 1 1 5 9 89 9 9

5 51
1 3 6 4 1 1 5 9 89 9 9

U U 0

V V V V 0

U U U U 0

V V V V 0

U U U U 0

V V V V 0

U U U U 0

V V V V 0

 

   

   

   

    

    

    

    
    (0.0.13) 

Equations (0.0.13) are now in the form required for input to LUSAS. 

Comparison 

1.   Tip displacements at node 17. 

 Fine mesh Coarse mesh with Constraint Equations 

u 0.0228175 0.0228031 

v -0.107897 -0.107364 

 

2.   Stress distributions. 

Figures 5 to 10 show the stress distributions as plotted with MYSTRO. 

Note 

The displacement field for the structure is relatively unaffected by the use of a single element to 

model the central half of the cantilever. Stress distributions at the tip and the root are also 
relatively unaffected by the use of a single element to model the central half of the cantilever. 
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Input data 

X01D23A.DAT 

X01D23B.DAT 
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FIGURE 6 : Sigma X contours for full fine mesh
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FIGURE 8 : Sigma Y contours for full fine mesh
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Example 1.2.4 

Plane Membrane Analysis - Perforated Sheet Under Pure 

Tension 

Keywords 

Plane Stress, Stress Concentration Factor 

Problem Description 

A thin rectangular sheet with a central perforation is subjected to a tensile loading. The objective 

is to investigate the longitudinal stress distribution and to evaluate the stress intensity factor. 

The geometry of the structure is as follows: 

Length, l 240 mm 

Width, w 180 mm 

Thickness, t 5 mm 

Radius of central opening, r 30 m 

Discretisation 

One quarter of the structure is discretised using 27 isoparametric plane stress elements (QPM8). 

The mesh is graded towards the central opening in order gain a better approximation to the stress 

concentration expected in this region of the structure. The internal boundaries of the mesh are 

restrained according to the double symmetry conditions assumed. The external boundaries of the 
mesh are unrestrained. 

The uniform tensile load is modelled by the application of a series of nodal point loads acting in 

the Y direction along the bottom edge of the structure (note that in order to obtain a uniform 

distribution the nodal point loads are applied in the ratio 1:4:1 to the first corner, midside and 

second corner nodes of the element face respectively). The total load applied to the bottom edge 
of the structure is 36,000N. 

Material properties 

The material properties assumed in the analysis are as follows: 
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Young’s modulus 207x103 N/mm2  

Poisson’s ratio 0.3 

 

Theory 

The uniform stress distribution in the absence of the central opening may be calculated from 
elastic theory. 

Total applied load F = 36,000 N 

Total section area  Ay = 5mm * 180mm  = 900mm  

Stress   Sy = F/A =  (36,000/900) = 40 N/mm2 (0.0.14) 

The presence of the central opening will change this uniform stress distribution to form a 

concentration of tensile stress in the proximity of the opening [1]. From Saint-Venant's principal 

it may be concluded that at distances which are large compared to the dimensions of the opening 

its effect on the stress distribution will be negligible. The expected distribution of longitudinal 

stress is therefore in the form of a decay from high tensile stresses at the opening towards the 

normal stress level at the edge of the plate. The concentration factor may be obtained from the 
mean stress (equation (0.0.14)) and the computed stress (at the opening) as 

stress concentration factor = computed stress / mean stress 

Comparison 

The LUSAS results for the stress in the Y direction are given below. ((*) denotes the stress value 
is the average from the contributing nodes): 

Node LUSAS 

13 143.431 

26 111.922 

39(*) 81.6375 

52 69.7183 

65(*) 57.2874 

78 51.7408 

91(*) 46.0919 

104 38.1439 

117 29.5542 

 

Stress concentration factor =  143.4/40.0  =  3.585 
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References 

1. 'Theory of Elasticity', Second edition, S.Timoshenko, J.N.Goodier, Publisher. McGraw-Hill 

Book Co.Ltd. (1951) 
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Perforated Sheet Subject to Tensile Load (Plane Membrane) Deformed Configuration 
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Example 1.3.1 

 Orthotropic Plate Under Pressure Load 

Keywords 

Plate, Orthotropic, Anisotropic 

Problem Description 

A simply supported square plate is analysed to verify the plate behaviour when the material is 
anisotropic and the plate is subjected to a uniform pressure load. 

Finite Element Model 

Allowing for symmetry only one quarter of the plate need be analysed. The model consists of a 
4*4 element mesh with 8-noded elements. 

The problem is solved using both data cards, MATERIAL PROPERTIES, ORTHOTROPIC and 
ANISOTROPIC. 

Geometric Properties 

Thickness   0.015 m 

Length 0.3 m 

Material properties 

Anisotropic Orthotropic Isotropic 

Exx 1.38x1010 N/m2 Ex 1.3555 x1010 N/m2 E 2.0 x1011 N/m2 

Exy 5.31 x108 N/m2 Ey 1.1290 x109 N/m2  0.3 

Eyy 1.15 x109 N/m2 xy 0.4619   

Gxy 1.17 x109 N/m2 yx 0.03848   

  Gxy 1.1700 x109 N/m2   

 

Boundary Conditions 

Simply supported around the plate edges. 
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Loading Conditions 

A uniformly distributed pressure load p = 1000 N/ m2 

Theory 

The expression for the deflection w in the z-direction takes the following form; 

m n

m 1,3 ,5 n 1,3 ,5

m x n y
w a s in s in

a b
 

    
    

   
     (0.0.15) 

where the coefficient m na  and a full description of the theory is given in [1]. 

Solution Comparison 

The solutions obtained from the LUSAS orthotropic and anisotropic analysis are presented 

below, and are shown in the following figures. A principal stress plot for the isotropic case is 

included for comparison. 

Vertical Deflection w (m) 

Location Theory LUSAS (Anisotropic) LUSAS (Orthotropic) 

C 3.543E-04 3.545E-04 3.545E-04 

E 2.529E-04 2.531E-04 2.531E-04 

F 1.925E-04 1.939E-04 1.937E-04 

 

Bending Moments (Nm/m) 

Location Theory LUSAS (Anisotropic) LUSAS (Orthotropic) 

C MX=37.49 MX=38.21 MX=38.21 

 MY=3.685 MY=3.710 MY=3.710 

E MX=28.44 MX=29.27 MX=29.27 

 MY=2.680 MY=2.690 MY=2.690 

 

References 

1. Timoshenko, S.P. and Woinowsky-Krieger, S.,'Theory of Plates and Shells, Second Edition, 

McGraw-Hill, 1959. 

Input data 

X01D31A.DAT 

X01D31B.DAT 
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X01D31C.DAT 

 

 

Quarter model of simply supported square plate 

 

Vertical deflection under loading 

MYSTRO: 11.2-0 DATE: 21-10-94

TITLE: ISOTROPIC PLATE UNDER PRESSURE LOAD

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

19

1
21

3
23

5
25

7
27

9

37

39

41

43

45

55

57

59

61

63

73

75

77

79

81

ORTHOTROPIC THICK PLATE
X

Y

Z



Verification Manual 

40 

 

 

 

MYSTRO: 11.2-0 DATE: 21-10-94

TITLE: ORTHOTROPIC PLATE UNDER PRESSURE LOAD

F

G

D

E

H

I

D

G

E

C

B

F

B
C

D

A

E

B

C

A
X

Y

Z

CONTOURS OF MMax

A

B

C

D

E

F

G

H

I

J

K

L

M

N

-3.517

-2.397

-1.277

-0.1572

0.9629

2.083

3.203

4.323

5.443

6.563

7.683

8.803

9.923

11.04

ORTHOTROPIC THICK PLATE
PRINCIPAL STRESSES



Example 1.3.2 

41 

Example 1.3.2 

 Static Linear Analysis Of A Thick Circular Plate 

Keywords 

Plate, Linear 

Problem Description 

A clamped circular plate is subjected to a transverse uniformly distributed load. The dimensions 
of the plate are as follows: 

Radius, a 0.5 inches 

Thickness, h 0.1 inches 

 

Discretisation 

The structure is idealised using the thick plate flexure elements QTF8 and TTF6. By using the 

CARTESIAN SETS and TRANSFORMED FREEDOM facilities it is only necessary to idealise 

a small segment of the total structure. In this example a 30 degree segment is analysed. The outer 
boundaries of the circular plate are assumed to be fully restrained. 

The material properties are as follows 

Young’s modulus 10.92 lb/in2 

Poisson’s ratio 0.3 

 

Theory 

The linear elastic thick plate solution may be obtained by combining the ‘thin' plate solution with 
a correction for out of plane transverse shearing effects. 

The thin plate solution is obtained by the solution of the biharmonic plate equation [1] 

r

0

d 1 d d w 1
r r q r d r

d r r d r d r D

  
  

  
     (0.0.16) 

Differentiating with respect to r and dividing by r yields 



Verification Manual 

42 

1 d d 1 d d w q
r r

r d r d r r d r d r D

   
    

   

    (0.0.17) 

where 

 

3

2

E h
D

1 2 1



 

      (0.0.18) 

Triple integration of (0.0.17) enables the deflection profile  w f r  to be obtained as: 

4 2
q r A r r

w B lo g C
6 4 D 4 a

        (0.0.19) 

where A, B and C are the constants of integration. By applying the deflection and slope 
conditions associated with the clamped periphery of the plate, (0.0.19) may be simplified as: 

 
2

2 2q
w a r

6 4 D
       (0.0.20) 

The maximum displacement occurs at the centre of the plate (r=0) and is given by the expression 
– 

4

m ax

q a
w

6 4 D
       (0.0.21) 

The deflection profile defined by (0.0.20) was derived under the conditions of pure bending. The 

effects of transverse shear may be included by the addition of a shear correction term to yield the 
deflection profile [1] 

 

2
2 2 2 2q 4 h

w (a r ) ( a r )
6 4 D 1

 

    
  
 

   (0.0.22) 

and the maximum deflection relationship (at r=0) 

 

2 2
4q 4 h a

w a
6 4 D 1

 

  
  
 

     (0.0.23) 

Comparison 

The LUSAS results for the maximum deflection are compared to the thin and thick plate 
solutions below: 

h h/2a Thin Plate Theory Thick Plate Theory LUSAS results 

0.1 0.1 -0.97656 -1.19966 -1.15480 
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References 

1. S.P.Timoshenko, S.Woinowsky-Kreiger, 'Theory of Plates and Shells', Second edition, 

Publisher. McGraw-Hill Book Co. Ltd (1959). 

Input data 

X01D32A.DAT 
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Clamped Circular Plate subject to uniform load deformed configuration and Displacement 

Contours 
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Example 1.3.3 

Eccentric Ribbed Plate 

Keywords 

Plate, Linear, Eccentric 

Problem Description 

A cantilevered eccentric ribbed plate is subjected to an end moment. The dimensions of the plate 
are as follows: 

 

Discretisation 

The structure is idealised using 4 thick shell elements QTS4 modelling the plate and 2 eccentric 

stiffeners BMS3 modelling the web. The plate is supported as a cantilever fully restrained at one 
end with a constant moment of 1000 KNm applied to the free end. 

Material properties 

Young’s modulus 100.0 x 106 KN/m2 

Poisson’s ratio 0.0 

 

Theory 

The position of the neutral axis from the bottom of the section is calculated as: 
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1 1 2 2
n

1 2

A y A y
y 4 m

A A


 


     (0.0.24) 

The moment of inertia about the neutral axis is: 

3 3
2 2 41 1 2 2

yy 1 1 2 2

b d b d
I A y A y 6 4 m

1 2 1 2
        (0.0.25) 

Stress on the top surface: 

y 2

t

yy

M
2 3 1.2 5  K N /m

I
        (0.0.26) 

Stress on the bottom surface: 

y 2

b

yy

M
4 6 2.5  K N /m

I
        (0.0.27) 

Comparison 

The LUSAS results for the stresses compared to theoretical results. Plate output for nodes at 
fixed end: 

Top stress = 31.267 KN/m (average) 

Beam output for nodes at fixed end: 

Axial force = 250.018 KN 

Moment      = 167.424 KNm 

Moment of inertia for beam: 

3
4

y y

b d
I 1 0 .6 6 7 m

1 2
       (0.0.28) 

Bottom Stress: 

y 2

b

M yF
6 2.6 4  K N /m

A Iyy
        (0.0.29) 

Input Data 

X01D33B.DAT 
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Example 1.4.1 

Static Stress Analysis Of A Cantilever Subjected To 

Multiple Load Cases 

Keywords 

Three Dimensional Beam, Loading 

Problem description 

Determine the tip displacements, moments and flexural strains for a straight cantilever. The 
geometry of the cantilever is as follows: 

Length, l 5.0 

Breadth, b 0.25 

Depth, d 1.0 

 

Discretisation 

The cantilever is modelled using one or two beam BMI21 (with Residual Bending Flexibility 
correction), BMI31 or BS4 elements. The material properties are as follows: 

Young’s modulus 30000.0 

Poisson’s ratio 0.3 

Density 0.283 

Coefficient of thermal expansion 0.0003 

 

The fixed end of the cantilever is assumed to be fully restrained. 

Theory 

The cantilever is subjected to the following load cases: 
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Case Loading Description of load case 

1 CL End concentrated load -30 in Y direction 

2 CL End concentrated load 30 in X direction 

3 CL End anticlockwise moment (positive) 30 

4 UDL Uniformly distributed load 15 in local x direction 

5 UDL Uniformly distributed load -16 in local y direction 

6 CBF Constant body forces 154  in global X direction 

7 CBF Constant body forces -164 in global Y direction 

8 CBF Centrifugal forces 15 about global Y axis 

9 CBF Centrifugal forces 15 about global X axis 

10 TEMP Uniform temperature rise 50 at nodes  

11 TEMP Flexural temperature gradient       = 10 at nodes  

12 BFP Constant nodal body force 15*4 and -16*4 at nodes in global X and Y 

directions 

13 SSI Initial stress resultant 15 at nodes in local x direction 

14 SSI Initial strains -0.002 at nodes in local x direction 

15 SSIG Initial stress resultant 15 at Gauss points in local x direction 

16 SSIG Initial strains -0.002 at Gauss points in local x direction 

17 BFP Body force potential 15 in local x direction 

18 BFP Body force potential -16 in local y direction 

19 COMB Combination of 2 * case (1) + 2 * case (2) 

 

Theory and Solution Comparison 

Load case Quantity Theoretical solution LUSAS 

 

1 

Displacement 

Moment 

Strain 

v =-PI3/3EI       = -2.00 

M = P(x-1)       =  150.0 

    = M/EI          = 0.24 

-2.0 (-2.062*) 

150.0 

0.24 (0.12†) 

 

2 

Displacement 

Axial Force 

Strain 

u = PI/EA         = 0.02 

FX P                 = 30.0 

= P/EA              = 0.004 

0.02 

30.0 

0.004 

 

3 

Displacement 

Moment 

Strain 

v = M12/2EI      = 0.60 

M = M               = -30.0 

    = M/EI          = -0.048 

0.60 

-30.0 

-0.048 
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Load case Quantity Theoretical solution LUSAS 

 

4 

Displacement 

Moment 

Strain 

d = WI2/2EA                = 0.025 

Fx = W(1-x)                  = 75.0 

     = Fx/EA                   = 0.01 

0.025 

75.0 

0.01 (0.005†) 

 

5 

Displacement 

Moment 

Strain 

d = WI3/8EI                  = -2.0 

M = WI2/2                    = 200.0 

    = M/EI                      = 0.32 

-2.0 (-2.083*) 

191.67 (200†) 

0.3067 (0.1067†) 

6  See load case (4)  

7  See load case (5)  

8 Displacement 

Axial force 

Strain 

u = w2l3/3E                 = 0.08843 

Fx = w2Al2/2               = 198.98         

w2l2/2E                        = 0.02653 

0.088437 

207.3 (199.0†) 

0.02764 (0.01769†) 

 

9 

Displacement 

Moment 

Strain 

v = Fyl4/8EI                =  0.99487 

M = Fyl2/2                  =  -99.492 

    =  M/EI                    =  0.1592 

0.9949 (1.036*) 

-95.347 (-99.492†) 

-0.1526 (-0.0531†) 

 

10 

Displacement 

Strain 

u = TI                          = 0.075 

   = u/l                          = 0.015 

0.075 

0.015 

 

11 

Displacement 

Strain 

v = (dT/dy) l2/2            = 0.0375 

   = (dT/dy)                   = 0.003 

-0.0375 

0.003 

12  See load case (4) & (5) 

combined 

 

 

13 

Displacement 

Strain 

u = Fl / EA                       = -0.01 

   =  u/l                            = -0.002 

-0.01 

-0.002 

 

14 

Displacement 

Strain 

u =   1                               = -0.01 

   =                                  = -0.002 

-0.01 

-0.002 

15  See load case (13)  

16  See load case (14)  

17  See load case (4)  

18  See load case (5)  

 

19 

Displacement 

Axial Force 

Strain 

See load case (2)  =  0.06 

See load case (2)  =  90.0 

See load case (2)  =  -0.012 

0.06 

90.0 

-0.012 

* Displacements in brackets are results from thick beam elements BMI21/BMI31 if 
different from thin beam element BS4. 
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† Moments and strains in brackets are results from BMI21 if different from BMI31 and 
BS4. 

References 

1. Roark, R.J. Young, C.T. 'Formulas for stress and strain: Fifth edition', McGraw-Hill 
Publishing Company. 

Input Data 

X01D41A.DAT 

X01D41B.DAT 

X01D41C.DAT 
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Example 1.5.1 

Linear Elastic Stress Analysis Of A Compact Tension 

Fracture Specimen 

Keywords 

Compact Tension Specimen, Three Dimensional Continuum, Solid 

Problem Description 

Determine the opening displacement and linear elastic stress distribution in a compact tension 
fracture specimen. 

The compact tension test consists of a plane sheet loaded at either side of the crack by two 
loading pins (figure 1). The dimensions of the test specimen are as follows: 

Height, h 120.0 mm 

Width , w 100.0 mm 

Thickness , t 3.0 mm 

 

The loading pins are positioned at 55 mm centres and have a diameter of 25 mm. The stress 

concentration required for crack propagation is achieved by a pointed notch 50 mm long and 6 

mm wide cut into the specimen. At the point of the notch a cut is made into the specimen to a 
further depth of 21.6mm. 

The crack opening displacement is measured by a clip gauge mounted across the notch directly 
in line with the applied loading. 

Discretisation 

The full test specimen is modelled using three dimensional continuum (HX20 and PN15) 
elements. 

The loading pins are included in the finite element model and assumed to behave as a rigid 

bodies compared to the test specimen. This is in an attempt to reduce localised effects around the 
loading pins and hence more accurately model the physical test conditions. 

The following material properties are assumed in the analysis: 
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Young’s modulus 210.915 kN/mm2 

Poisson’s ratio 0.33 

 

Theory and Loading 

Previous experimental and numerical investigations of this specimen have established the stress 

concentration around the notch, and have indicated that localised plastification occurs around this 

point prior to the unstable propagation of the crack throughout the specimen [1-3].  The structure 

is known to behave linearly until a load of approximately 10 KN. In the finite element model the 

loading is applied to the structure via point loads acting at the centre of the rigid pins. 

Solution 

The results obtained from the LUSAS three-dimensional analysis are presented in figures 2-4. 

References 

1. Bleackley, M.H. Luxmoore, A.R. 'Comparison of finite element solutions with analytical 

and experimental data for elastic-plastic cracked problems'. International Journal of Fracture 
(in press) 

2. Bleackley, M.H. 'A numerical study of energy criteria in fracture mechanics'. PhD. Thesis, 
University of Wales, (1981). 

3. Owen, D.R.J., Fawkes, A.J., 'Engineering fracture mechanics: Numerical methods and 
applications'. Publisher. Pineridge Press Ltd, Swansea, U.K. (1983). 

  

Input data 

X01D51A.DAT 

 



Example 1.5.1 

53 

 

Figure 1: Dimensions of compact tension fracture specimen. 

 

 

Figure 2: Finite element mesh for compact tension fracture specimen. 

 

MYSTRO: 11.2-0 DATE: 21-10-94

TITLE: COMPACT TENSION SPECIMEN (3-D ANALYSIS)
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COMPACT TENSION FRACTURE SPECIMEN : DIMENSIONS
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Figure 3: Defomed mesh under loading. 

 

 

Figure 4: Contours of principal stress. 
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Example 1.6.1 

A Simply Supported Twin Box Beam Under Concentrated 

Loads 

Keywords 

Box Beam 

Problem description 

A simply supported twin box beam with trapezoidal cross-section is subjected to two 

symmetrical point loads near the centre span (Figure 1). The beam is made of thin mild steel 
plates with the following thicknesses: 

Top flange thickness 0.5 cm 

Web thickness 0.3 cm 

Bottom flange thickness 0.3 cm 

 

Loading condition 

Two point loads of 20KN are applied at a position 7/16 of the span section over the inner webs 

(Figure 1). 

Finite Element Model 

The discretisation consists of 264 SHI4 elements. Due to the non-symmetric loading case the 

whole beam must be included in the discretisation. 

Material properties 

Young’s modulus, E 19620 KN/cm2 

Poisson’s ratio,  0.27 

 

Boundary conditions 

The beam is simply supported at each end along the bottom flange. 
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Theory 

Structural design of spine-beam bridges presents many difficulties because of the complex nature 

of the interaction of individual elements. A number of analysis methods exist; however, the 
reader is referred to publications by Maisel and Roll [1,2] for further information. 

Solution Comparison 

The problem investigated in this example is one that was performed experimentally by Zhang [3] 

at The City University London. The experimental results obtained have been compared to those 

of LUSAS in Figures 3 and 4. 

References 

1. Maisel, B.I. Review of Literature Related to the Analysis and Design of Thin-Walled 
Beams, Technical Report TRA 440, Cement and Concrete Association London, July 1970. 

2. Maisel, B.I. and Roll, F. Methods of Analysis and Design of Concrete Boxbeams with Side 

Cantilevers, Technical Report 42.494, Cement and Concrete Association London, 
November 1974. 

3. Zhang, S.H.  The Finite Element Analysis of Thin-Walled Box Spine Beam Bridges, PhD 
thesis, The City University, London February 1982. 

Input data 

X01D61A.DAT 
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TITLE: SIMPLY-SUPPORTED TWIN-BOX BEAM
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Figure 2. Twin Box beam model finite element idealisation using

flat thin shell box elements.
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(a) Mesh of half top flange (plan view)

(b) Mesh of half bottom flange and webbs (plan view)

(c) Cross - section

Figure 2. Twin-box beam model finite element idealisation
using flat thin shell box elements.
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Example 1.6.2 

Static Stress Analysis Of A Shallow Spherical Shell 

Keywords 

Shallow Spherical Shell 

Problem Description 

Determine the central deflection of a shallow spherical shell under a central point load and an 
eccentric patch load (see figure 1). 

Discretisation 

The analysis is performed with two different element meshes. The first model uses 6 BXS3 

axisymmetric shell elements (see figure 2). This models one radian of the structure and 

consequently is only applicable to the central point load case. The second model uses 5 X 12 

QSI4 and 1 X 12 TS3 incompatible flat shell elements (see figure 3). This models half of the 

structure and can therefore be applied to both load cases. It should be noted that a one radian 

section of 12 QSI4 and 1 TS3 flat shell elements would have been sufficient to model the central 
point load case. 

Geometry 

The geometry of the shallow spherical shell structure is shown in figure 1. 

Material properties 

Young’s modulus 70000 N/mm2 

Poisson’s ratio 0.3 

 

Boundary conditions 

The axisymmetric model is fully restrained at the base, node 1, and restrained from translation or 

rotation across the line of symmetry, node 13. The thin shell model is fully restrained at the base, 

nodes 7 to 91 in steps of 7, and restrained from translation or rotation across the line of 
symmetry, nodes 1 to 6 and nodes 86 to 90. 
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Theory 

The fundamental theory for the central deflection of a shallow spherical shell under central point 

load is given in page 477 of [1]. 

Results 

Table 1 gives the results for the central deflection due to a central point load for theory, 
axisymmetric model and thin shell model. 

Analysis Central deflection (mm) 

Theory -0.9514 

BXS3 -0.8961 

QSI4/TS3 -0.9495 (figure 4) 

 

The central deflection due to the eccentric patch load is +0.0235 mm and the deflections at nodes 
3 and 4 under the patch load are 0.473 mm and 0.458 mm (figure 5). 

References 

1. R. J. Roark and W. C. Young, "Formulas for Stress and Strain", Fifth edition. McGraw-Hill, 

1975. 

Input data 

X01D62A.DAT 

X01D62B.DAT 

1. Axisymmetric shell analysis, central point load 

2. Thin shell analysis, central point load and patch load 
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Thin shell model of shallow
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Figure 4.

Deformation of a shallow spherical shell
under a point load.
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MYSTRO: 11.2-0 DATE: 25-10-94

TITLE: SHALLOW SPHERICAL SHELL ANALYSIS
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Figure 5.

Deformation of shallow spherical shell
under a patch load.
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Example 1.6.3 

Graphite/Epoxy Resin Laminated Orthotropic Square Plate 

Keywords 

Composite Analysis, Laminated Plate 

Problem Description 

The composite/laminated material comprises 9 graphite/epoxy resin material layers. Each layer is 

arranged so that its principal directions of orthotropy form a 0/90/0/90/0/90/0/90/0 sequence with 

respect to the global reference axes. The layup sequence is shown in figure 1. Owing to the 

different thicknesses of each of the layers in the parallel and perpendicular pairs, the plate is 

orthotropic with respect to both the material laminates and the resulting composite material. The 
plate is loaded with a udl and the central deflection of the plate is computed. 

Discretisation 

A symmetric quarter of the plate is modelled using a fine mesh of 6*6 Semiloof shell elements, 

figure 2. The composite construction of the material is modelled using 9 orthotropic material 
layers. 

Geometry 

      The geometry of the plate is as follows: 

      Side length (a)   = 10cm 

      Thickness (t)     = 0.1cm 

      Span/Thickness   = 100 

      Load Intensity (q) = 100 N/mm2 

Material properties 

The orthotropic material properties are as follows: 

      Young's modulus   E1     = 40E6 N/cm2 

      Young's modulus   E2     = 1E6 N/cm2 

      Poisson's ratio 12              = 0.25 
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      Shear Modulus     G12   = 0.6 E6 N/cm 

      Orthotropy        E1/E2  = 40 

The material lay-up sequence for the laminated plate is as follows (note that the LUSAS 

convention is sequential from the bottom to the top of the material, and that the orientations are 
defined as that of the principal direction of orthotropy to the global x-axis: 

Position Layer Thickness Orientation 

Bottom 1 0.01 0 

 2 0.0125 90 

 3 0.01 0 

 4 0.0125 90 

 5 0.01 0 

 6 0.0125 90 

 7 0.01 0 

 8 0.0125 90 

Top 9 0.01 0 

Boundary Conditions 

The external and internal plate boundary conditions are specified simply supported and 
symmetric respectively. 

Theory 

The non-dimensional central deflection of the plate may be obtained from the expression (see 
first reference): 

3

2

4

E t
w w 1 0 0 0

P a

 

  
 
 

     (0.0.30) 

LUSAS results 

Analysis method Reference Finite element mesh Deflection w 

Theory (2) N/A -4.486 

LUSAS  6*6 QSl8 -4.526 

FE2000 (1) Laminated solid 6*6*1 -4.480 

 

LUSAS results for on-axis lamina stresses in layers 7, 8 & 9 are displayed in figure 3. 
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References 

1. Razzaque,A. Mathers,M.D., 'Layered solid elements for non-linear analysis of composite 

structure', Quality assurance in Finite Element Technology (1988) 

2. Noor,A.K., Mathers,M.D., 'Shear flexible models of laminated composite plates', NASA-TN 
D-8044 (1975) 

Input data 

X01D63A.DAT 

 

Figure 1  Layup Sequence for the Laminated Graphic/Epoxy Resin Orthotropic Plate 
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Example 1.7.1 

Axisymmetric Analysis Of A Clamped Circular Plate 

Keywords 

Circular Plate, Axisymmetric Solid, Axisymmetric Sheet 

Problem Description 

The problem considered in this example is a clamped circular plate subject to a uniform pressure 
load. Figure 1 shows the dimensions and material properties of the problem under consideration. 

 

Discretisation 

Four axisymmetric elements are used to model the circular plate. Figures 2 & 3 show the finite 

element mesh for QAX8 and BXS3 elements respectively. 

Material properties 

Young’s modulus 10.0x106 N/m2 

Poisson’s ratio,  0.3 

 

Boundary conditions 

The edge of the plate is fully fixed against translation or rotation. 
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Theory 

3

2

E t
D

1 2 (1 )



 

      (0.0.31) 

 
2

4 2 2
q a a r

w
6 4 D



      (0.0.32) 

where 

               w = downward deflection 

               q = uniform pressure 

               r = distance measured radially from centre of plate 

               a = radius of plate 

               D = flexural rigidity of plate 

               E = Young's Modulus 

                = Poisson's Ratio 

               t = thickness of plate 

For further information see [2]. 

Solution comparison 

Radius, 
m 

Displacement 
Theory, m 

Rotation 
Theory, 
radians 

Displacement 
BXS3, m 

Rotation 
BXS3, 

radians 
Displacement 

QAX8, m 

0 -0.17063 0 -0.17080 0 -0.16237 

2.5 0.14996 0.01599 -0.15004 0.01597 -0.14212 

5.0 -0.09598 0.02559 -0.09603 0.02558 -0.08970 

7.5 -0.03266 0.02239 -0.03269 0.02239 -0.02891 

 

Although only one element is modelled through the thickness the LUSAS results compare 

favourably with the theory. 

References 

1. M.E. Honnor, ‘Axisymmetric thin shell element', FEAL internal report FEAL503, 10th 
December 1985. 

2. S.P. Timoshenko and S.Woinowsky-Krieger, 'Theory of plates and shells', pp. 55-56, 
McGraw-Hill, 1970. 
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Input data 

X01D71A.DAT 
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Example 1.7.2 

 Axisymmetric Thin-Walled Pressure Vessel 

Keywords 

Pressure Vessel, Axisymmetric Solid, Axisymmetric Shell, Axisymmetric Sheet 

Problem Description 

The analysis of a thin-walled, cylindrical and hollow pressure vessel is considered in this 

example. Three different element types are utilised together with three different load cases. 

Axisymmetry about the X & Y axes is also considered for one set of the meshes. The element 
types are utilised as follows:- 

a) Axisymmetric eight-noded solid elements QAX8 

b) Axisymmetric thin shell element BXS3 

c) Axisymmetric sheet element BXM3 

The three load cases considered are: 

Case 1) Uniform axial load per unit length of 6 N/m 

Case 2) Uniform radial pressure of 10 Pa 

Case 3) Linearly varying radial pressure from zero at the bottom to 100Pa at the top. 

Figure 1 shows the dimensions and material properties of the problem under consideration. 

Discretisation 

Four elements are used along the length of the wall. The finite element mesh for QAX8 is shown 
in Figure 2. Figure 3 shows the mesh for BXS3 and BXM3. 

Material properties 

Young’s modulus 200x103 Pa 

Poisson’s ratio 0.3 
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L = 100m,  R = 50m,  t = 1.25m,  E = 0.2E6 Pa   = 0.3 

  

Boundary Conditions 

The bottom end of the cylinder is restrained against rotation and movement in the meridional 

direction but free to move radially. 

Theory 

Notation: 

E    Young's Modulus 

L    Length of cylinder 

p    Axial load per unit length 

q    Uniform pressure per unit area 

r    Radial displacement at top end 

R    Radius of cylinder 

t    Thickness of cylinder 

y    Meridional displacement at top end 

    Poisson's Ratio 


m   Meridional stress at top end 


e   Circumferential stress top end 

    Rotation of a meridian 
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 Case 1 Case 2 Case 3 
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p

t
 0 0 
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q R
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2

q R

E tL
 

 

For more information see [1]. 

LUSAS Results 

Load case 1 Theory QAX8 BXS3 BXM3 

Meridional stress (Pa) 4.8 4.8 4.8 4.8 

Circumferential stress (Pa) 0.0 0.0104 0.0 0.0 

Radial displacement at end (m) -3.5x10-4 -3.6x10-4 -3.6x10-4 -3.6x10-4 

Meridional displacement at end (m) 2.4x10-3 2.4x10-3 2.4x10-3 2.4x10-3 

Rotation (radians) 0.0 - 0.0 - 

 

Load case 1 Theory QAX8 BXS3 BXM3 

Meridional stress (Pa) 0.0 0.0 0.0 0.0 

Circumferential stress (Pa) 400.0 400.0 400.0 400.0 

Radial displacement at end (m) 0.1 0.09998 0.1 0.1 

Meridional displacement at end (m) -0.06 -0.06 -0.06 -0.06 

Rotation (radians) 0.0 - 0.0 - 

 

Load case 1 Theory QAX8 BXS3 BXM3 

Meridional stress (Pa) 0.0 -0.0058 0.0  

Circumferential stress (Pa) 4000.0 4000.2 4000.0 4000.0 
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Load case 1 Theory QAX8 BXS3 BXM3 

Radial displacement at end (m) 1.0 0.9999 0.9999 1.0 

Meridional displacement at end (m) -0.3 -0.3 -0.3 -0.3 

Rotation (radians) -0.01 - -0.0099 - 

 

References 

1. R.Roark and W.Young,'Formulas for stresses and strains', pp.448. LUSAS Results 

Input data 

X01D72A.DAT 

X01D72B.DAT 

X01D72C.DAT 

X01D72D.DAT 

(axisymmetry about the Y-axis) 
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Figure 2.

Finite element mesh showing element numbers.
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Example 1.7.3 

 Cooling Tower Subject To Wind Loading 

Keywords 

Fourier, Semiloof Shell, Face Loading, Curve Definitions, Curve Assignment, 

Cartesian Set Cylindrical, Wind Loading 

Problem Description 

The effect of wind load on a cooling tower is modelled by a static analysis. For comparison, the 

analysis is performed using both the solid Fourier ring element QAX8F and the Semiloof shell 

element QSL8. 

The pressure of the wind varies circumferentially, but is taken to be independent of the height 

above ground. The distribution of the load is symmetric about the diameter 0-180R. This 

simplifies the solution since only symmetric harmonics need be considered for the Fourier 

analysis, and only half the cooling tower need be meshed by the QSL8 elements. The load 
variation around the circumference is given in Figure 3. 

Discretisation 

The Fourier analysis utilises 10 elements to model the cooling tower length with 5 and then 10 

harmonics taken to expand the variation of the load circumferentially. 10 QSL8 elements are also 

used to model the tower length, whilst 6 elements are used to model the circumferential section 0 

to 180R. 

Geometry 

The shell mid-surface is defined by the parabolic equation: 

2 2
x y 2 7 0

1
8 4 2 0 9 .6 6 1

   
 

   
   

     (0.0.33) 

The overall height of the cooling tower is 330ft (100.584m) and has a constant wall thickness of 

0.5833ft (0.1778m). The outside radii at the bottom and top of the tower are 136.96ft (41.745m) 
and 87.4ft (26.64m) respectively. 
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Boundary Conditions 

The cooling tower is encastre at the base. Symmetry boundary conditions are applied to the 

QSL8 mesh in cylindrical co-ordinates using transformed freedoms. Tangential displacements 
and loof rotations are restrained. 

Material properties 

Young’s modulus 
4.320x108 psf, 

20.68x109 Pa 

Poisson’s ratio 0.15 

 

Theory 

The original problem was solved using a finite difference solution of the shell differential 

equations, with the circumferential variations modelled using a Fourier expansion. A fuller 
description is given in [1,2]. 

Note: the load was applied as a USER curve rather than using the Fourier coefficients given in 
[2] to allow a fairer comparison between the two analysis types. 

LUSAS Results 

Figures 1 & 2 show both the initial mesh and the final deformed shape from perspective and 

elevation views respectively. Figure 3 depicts the radial displacements for a node at the top of the 

tower; the crosses represent results from the Fourier analysis, the solid line corresponds to the 

shell analysis. The QSL8 radial displacements (Table 1) were obtained using option 115 to 

output displacements and reactions in transformed directions. Figure 3 also details the variation 

of wind load with circumference. Note that a positive face load acts in towards the surface. 

Solution type Radial displacement at the top edge 

QAX8F (5 terms) -0.2564  (Node 42, =0) 

QAX8F (10 terms) -0.2565  (Node 42, =0) 

QSL8 -0.2493  (Node 21) 

 

References 

1. Program Verification and Qualification Library, ASME Pressure Vessel and Piping 
Division, Committee on Computer Technology, 1972. 

2. Albasiny, E.L. and Martin, D.W.,Bending and Membrane Equilibrium in Cooling Towers, 
Jour. Eng. Mech. Div., ASCE, EM3, 1967. 

Input Data 

X01D73A.DAT 

X01D73B.DAT 
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X01D73C.DAT 

Note: The different results for taking 5, 10 terms of the Fourier expansion can be obtained by 
changing the range of the harmonic series defined in the FOURIER CONTROL data chapter. 
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Figure 2 

 

Figure 3 
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Example 2.2.1 

 Groundwater Seepage Problem 

Keywords 

Groundwater, Seepage, Cofferdam 

Problem Description 

The problem considered in this example is the flow of groundwater beneath a cofferdam using a 

potential formulation approach. Figure 1 shows the dimensions of the problem under 
consideration.  

Finite Element Model 

The finite element mesh is shown in Figure 2, where 180 regular quadrilateral elements are used. 

The thickness of the sheet pile wall has not been modelled as this is assumed negligible 

compared to the overall dimensions of the problem. The sheet pile wall is represented by a 

boundary where no flow occurs. 

Material properties 

Permeability    KX  = KY  =  0.864  m/day 

Boundary conditions 

It is assumed that the boundary ABC (see Figure 1) is impermeable as is the sheet pile wall EFG. 

The pressure head in this case is the difference in height between AG and DF which is 3.0 m. 

Arbitrarily setting  = zero along DF, since the flow velocities depend only on the gradient of   

then  = 3.0 along AG. Along ABC and on either side of the sheet pile wall it is required that 

/n = 0 (see theory section). Also symmetry conditions along CD require /n = 0. 

The total flow rate may be obtained by summing the nodal reactions across section AG or DF on 
which the value of is prescribed. 

Theory 

The steady state behaviour of many physical phenomena can be described in 2-dimensions by the 
following quasi-harmonic equation: 

X Y

X X Y Y

( K ) ( K ) Q 0
   

  
   

    (0.0.34) 
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where  is the unknown function and Kx, Ky and Q are material parameters which can be 

functions of x and y. A number of field problems are governed by (0.0.34) and the physical 
interpretations of Kx, Ky and Q are listed on page 2.31 of the LUSAS User Manual. 

Two main types of boundary condition are of interest; 

(a) The value of the unknown to be specified at the nodal points on the boundary, 

p          (0.0.35) 

(b)  That a boundary loading exists of the form, 

x x y y aK L K L q ( ) 0
x y

 
       

 

   (0.0.36) 

in which q, and  a  are constants and Lx, Ly are the direction cosines between the outward 

normal, n, and the x and y axes respectively. 

Three different cases are now defined for boundary condition (b) assuming Kx = Ky = K. 

Case 1. q =   = 0  





n
0      (0.0.37) 

which implies the temp (/flow etc) gradient in a direction normal to the surface is zero i.e. this 
portion of the surface is perfectly insulated (/impermeable). 

Case 2.  = 0  K



 

n
q     (0.0.38) 

This states that a specified quantity of heat(/fluid), q, flows into the body per unit area of the 

surface. Also known as the 'flux' boundary condition. 

Case 3. q = 0  K



  

n
a

  ( )    (0.0.39) 

The flow of heat (/fluid) from any point on the surface is directly proportional to the difference in 

the temperature (/potential) and the ambient temperature (/potential) a. Also known as the 

convection boundary condition. 

Groundwater flow is given by: 

d V
( K x ) ( K y ) S 0

x x y y d t

   
   

   

   (0.0.40) 

where S is the rate fluid is injected into an element per unit volume and dV/dt is the rate of 

change in volume/unit volume in the element during flow. As stated previously (Case 1) the flow 

velocity in the direction normal to an impermeable boundary is equal to zero. From (0.0.34) and 

(0.0.40) we see a potential analysis problem reduces to a solution of the quasi-harmonic equation 
with: 

Q = S - dV/dt      (0.0.41) 
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although S and dV/dt have no physical interpretation in ideal fluid flow. 

Solution comparison 

 Flow rate value qm3/day 

Theory 8.6 

LUSAS 8.4 

 

Figure 3 shows a contour plot of the pressure head variation, thus each contour line is a line of 
equal potential or equipotential line. 

References 

1. Hinton, E. and Owen, D.R.J.  'An introduction to Finite Element Computations', Pineridge 
Press, 1981. 

Input Data 

X02D21A.DAT 

 

Figure 1.  Groundwater flow beneath a coffer dam. 
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Figure 2.
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Example 2.2.2 

Steady State Thermal Analysis Of An Underground Tunnel 

Keywords 

Field, Steady State, Thermal Conduction, Tunnel 

Problem Description 

To determine the steady state temperature distribution in the rock strata surrounding an 
operational underground rail tunnel. 

Figure (1) shows a section of the Channel Tunnel at a distance of 32 km from the Dover 

entrance. The surrounding rock mass consists of chalk, chalk/marl and clay, the tunnel itself 
being confined by the chalk/marl stratum. 

The heat generated within the tunnel is assumed to act as a line heat source to the rock mass. The 

origins of this heat source are considered to be the result of turbulent frictional contact at the 

train/air and air/tunnel boundaries, increased air pressure within the tunnel, and the operating 

temperature of the train itself. 

In addition it is assumed that the sea bed is environmentally controlled at a temperature of 10.1 

degrees, and that a geothermal gradient of 0.036 degrees per metre exists at this latitude. 

Discretisation 

The section through the rock mass is discretised using quadrilateral field elements (QDF8). The 

finite element mesh is graded towards the tunnel opening in order to accurately model the local 

temperature gradient anticipated in this region. The boundaries of the mesh are considered to be 
sufficiently removed from the tunnel so as to be subject to environmental conditions only. 

The material properties for the rock strata are as follows: 

 Kx Ky C 

Chalk 10.58 7.958 2178 

Chalk/Marl 7.642 7.642 2267 

Clay 7.988 7.988 2353 
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Boundary Conditions 

Prescribed temperature conditions are imposed on the upper (sea bed) and lower mesh limits. 

Free conditions are imposed at the vertical mesh boundaries in order to impose a zero 
temperature gradient at these limits. 

Theory 

The heat flux input resulting from an operational tunnel is calculated on the basis of twelve trains 

per 24 hours [1]. The total heat generated per metre of tunnel in this time is 10,500 KJ. 

Two heat flux input conditions are considered. The first (gross heat flux) assumes that all the 

heat generated within the tunnel is available to increase the temperature of the surrounding rock. 

The second (net heat flux) assumes that a percentage of the total heat generated will be 

responsible for an increase in the train operating temperature. The net heat flux condition is 

calculated as a function of the number, type, and mass of each carriage, and the initial train and 

tunnel lining temperatures [1]. 

Gross heat flux condition  q = 19.89 KJ per hr, per sq.m. 

Nett heat flux condition   q = 8.999 KJ per hr, per sq.m. 

The steady state temperature distribution is governed by the two dimensional quasi-harmonic 

equation [2] 

x y

d d T d d T
0 K K Q

d x d x d y d y

  
    

   

    (0.0.42) 

where 

Kx, Ky are the orthogonal thermal conductivities 

C    is the material heat capacity 

T    is the local temperature variable 

A simplified analytical solution may be obtained by the 'mirror image method' [1]. The steady 

state temperature at a point P which is at distances R1 and R2 from the heat sink and source 
respectively may be calculated from the expression: 

P O

Q R 1
T ln T

2 k R 2

  
   

   

     (0.0.43) 

where 

TP        is the steady state temperature at point P 

 TO        is the steady state temperature at the boundary 
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Comparison 

The temperature distributions (in degrees Celsius) obtained from the LUSAS steady state thermal 

analyses (gross and net heat flux input in the absence of a geothermal gradient) are compared to 
the analytical solution below. 

 Gross Heat Flux Nett Heat Flux 

Node Distance(X) Analytical 
temp 

LUSAS temp Analytical 
temp 

LUSAS temp 

42 20.0 24.118 24.997 16.487 17.791 

44 60.0 15.606 17.179 12.592 14.252 

46 160.0 11.401 13.231 10.688 12.465 

48 280.0 10.556 12.313 10.310 12.050 

50 400.0 10.334 12.074 10.206 11.942 

52 700.0 10.177 11.956 10.131 11.888 

  
Note: The analytical solution does not account for any stratification in the surrounding rock 
mass. 

References 

1. Kent,A.J. 'The English Channel Tunnel : An investigation of rock and lining temperatures', 

Internal thesis CP/838/83, Dept. Civil Engineering, University, College of Swansea, U.K. 
(1983). 

2. Hinton, E. Owen, D.R.J. A simple guide to finite elements' Publisher. Pineridge press, 
Swansea, U.K. 

  

Input Data 
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Example 2.2.3 

Conductance Between A Plate And Half Cylinder 

Keywords 

Conductance, Thermal Surfaces, Environmental Nodes, Field  

Description 

Heat flows across the gap between a half cylinder and a plate, figure 1.The gap conductance is a 

linear function of gap opening and heat is allowed to flow to the environment. The problem is 

analysed with and without the use of environmental nodes for comparison. The first case 
corresponds to an infinite heat sink surrounding the structures and the second to an enclosure. 

Discretisation 

The plate and cylinder are modelled with QFD4 plane field elements and the element mesh is 

shown in figure 2. 

Geometry 
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Boundary conditions 

The internal surface of the cylinder is at 400 degrees and the bottom of the plate at 100 degrees. 

Material properties 

Solid conductivity = 80 W/m/degrees 

Gap conductance 

Conductance for closed gap ko = 100 W/m/degrees 

Variation of conductance with gap opening, dk/dL = -12.5 W/m/m/degrees 

Maximum limit for thermal link length, Lmax = 8 m 

Surface properties 

Conductance to environment = 2.0 W/m/degrees 

Environmental temperature  = 0.0 degrees 

LUSAS results 

Smooth temperature profiles should result with hot spots occurring at the point of closest 
approach of the plate to the half cylinder. 

Figures 3 and 4 show the temperature distribution of the analysis with and without the 

environmental nodes. It is noticeable that the point at which the links from the plate intersect 
with the cylinder results in a fluctuation in the isotherm. 

Figure 5 illustrates the change in element connectivity when environmental nodes are included in 

the solution. Introducing these environmental nodes has the effect of increasing the surface area 

of the cylinder which is at the temperature of the inner surface. That is, they have the effect of 

insulating the surface. This is expected since heat cannot be lost from the solution, but must flow 

from the cylinder to the plate via the environmental nodes (the temperature distribution is seen to 

be slightly different in Figure 4 which shows that more of the cylinder remains at a higher 

temperature).The heat flows through the plate for the different analyses are: 

Without environmental nodes = 39418 W 

With environmental nodes = 43967 W 

For this example, the introduction of environmental nodes increases the heat flow by 

approximately 10% 

Input data 

X02D23A.DAT 

X02D23B.DAT 
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Figure 4  Temperature distribution with 2 environmental nodes 
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Figure 5  Thermal link formation 
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Example 2.3.1 

Cylinder With Temperature Dependent Conductivity 

Keywords 

Steady State, Conductivity 

Description 

This problem involves a hollow cylinder with prescribed temperatures around the inner and outer 

circumferences. It is required to find the steady state temperatures at intervals of 1/5 of the 

cylinder thickness. The convergence rate and CPU time for HF8 and QXF8 element 

discretisations using both MNR and NR solution procedures are also compared. This problem is 

an application of LUSAS to solve steady state heat conduction problems with temperature 
dependent materials. 

Discretisation 

15 Solid HF8 elements are used to model a 15R slice of the cylinder, figure 3. 5 QXF8 elements 
are used for the axisymmetric analysis, figure 2. 

Geometry 

 

Figure 1 

Inner radius, a 0.041666 ft 

Outer radius, b 0.083333 ft 



Example 2.3.1 

97 

Material properties 

C0 50.0 BTU/hr.ft. F 

C1 0.5 BTU/hr.ft. F 

K(t) C0 +C1 t 

 

Boundary conditions 

Prescribed temperature T=100RF around inner circumference r=a, and T=0RF, around outer 
circumference r=b. 

Reference 

1. Schneider, P. J.,Conduction Heat Transfer, Addison-Wesley Publishing Co., Inc., Reading, 
Mass., USA, 2nd Printing, 1957. 

LUSAS results 

 Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 

REFERENCE 100.0 79.2 59.6 40.2 20.8 0.0 

HF8 100.0 79.222 59.567 40.298 20.720 0.0 

QXF8 100.0 79.190 59.490 40.206 20.665 0.0 

 

Comparison of NR and MNR 

 NR CPU MNR CPU 

HF8 4 67.46 10 88.02 

QXF8 4 20.70   

 

The QFX8 element solution failed to converge using MNR after 20 iterations. At the time of 

ceasing computation the MNR solution appeared to be exhibiting a very slow rate of 
convergence. 

Input Data 

X02D31A.DAT  

X02D31B.DAT 
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Figure 2 
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Example 3.1.1 

Frequency Analysis Of A Simply Supported Beam 

Keywords 

Eigenvalue 

Description 

Determine the first three fundamental frequencies of the following simply supported beam. 

Length, l 2.032 m  

Area, A 2.58x10-3 m2 

 

 

Discretisation 

Model the complete beam to include both symmetric and non-symmetric modes. 

Geometric properties 

Moment of inertia, I 0.55497E-06 m4 
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Material properties 

Young's modulus, E 30 x106 kN/m2  

Poisson's ratio,  0.3 

Density,  7780 kg/m3 

 

Theory 

The fundamental frequencies may be determined from the following relationships; 

   
2 4

n nK E I / m l    n
nf =

2




   (0.0.44) 

 
n n

e ig en v a lu e 
2

 

K n
n
 

 

m m ass u n it len g th A /   

Comparison 

Mode Exact LUSAS 

f1 28.763 28.7663 

f2 115.05 115.400 

f3 258.86 263.016 

References 

1. W.C. Hurty and M.F. Rubinstein, Dynamics of structures, Prentice-Hall, 1964. Chap. 5, p 
203. 

Input data 

X03D11A.DAT 
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Example 3.1.2 

 Frequency Analysis Of A Sprung Mass 

Keywords 

Eigenvalue 

Description 

Determine the natural frequency of vibration (f) of a mass, m, set on a rubber mount system with 
a stiffness K. 

Mass (m) = 0.00647668 lb-sec2 /in. 

Stiffness of mount (K) = 48.0 lb/in. 

 

Discretisation 

Model with single joint element 

Theory 

The natural frequency may be determined from the following relationships; 

K

m
    freq u en cy

2





   (0.0.45) 

  
2

e ig en v a lu e  
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Comparison 

 Exact LUSAS 

Frequency (Hz) 13.7014 13.7014 

 

References 

1. W.C. Hurty and M.F. Rubinstein, Dynamics of structures, Prentice-Hall, 1964. 

Input data 

X03D12A.DAT 
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Example 3.1.3 

Linear Buckling Analysis Of A Simple Portal Frame 

Keywords 

Linear Buckling 

Problem Description 

Determine the first two critical buckling loads for the rigid jointed portal frame shown in Figure 
1. Compare the first in-plane critical load with a theoretical solution. 

Discretisation 

Model the rigid jointed portal frame using a coarse mesh of three BM3 beam elements and a 
finer mesh of nine BM3 or 18 BMI21 elements. 

Geometry 

The vertical members of the portal frame are 10m in length while the horizontal member is 8m in 
length (see Figure 1). 

Geometric properties 

All members have a 0.1m square, solid section.. The sections properties of the members are 

listed in the following table. 

Cross-sectional area 0.01 m2 

Second moments of area (Iyy, Izz) 8.33333x10-6 m4 

Torsional constant 14.0833x10-6 m4 

Effective shear areas (Asy, Asz) 8.33333x10-3 m2 

Material properties 

All members have steel material properties (UK, BD2101), as listed below. 

Young’s modulus 20.0x109 N/m2 

Poisson’s ratio 0.3 

Density 7.85x103 Kg/m3 
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Figure 1: Rigid jointed portal frame used in linear buckling analysis. Loads P are unit loads.  

Loading 

The portal frame is subjected to unit loads applied to the ends of the vertical members in the 
vertical direction (Figure 1). 

Boundary conditions 

The portal frame is rigidly supported at the base nodes (Figure 1). 

Theory 

The theoretical solution for the in-plane critical buckling load, Pcr, is [1] 

2

c r 1P k E I       (0.0.46) 

where I1 is the second moment of area of the horizontal member. The term k is found by solving 

the following equation. 

1

2

k l l I
6

ta n ( k l) b I
       (0.0.47) 

where l is the length of vertical member, b the length of horizontal member and I2 the second 
moment of area of the vertical member. 

With the material and geometric properties used in this example, the critical buckling load using 

equation (0.0.47) is  

3

c rP 1 3 2 .6 x1 0 N        

8m 

10m 

P P 
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Comparison 

The results from the theory, the coarse mesh and the fine meshes are listed in the table below 

Analysis  Pcr(N) 

Theory  132.6x103 

Coarse mesh BM3 147.9 x103 

Fine mesh BM3 132.8 x103 

 BMI21 135.3 x103 

 

References 

1. S.P. Timoshenko and J. M. Gere, "Theory of Elastic Stability."2nd ed. McGraw-Hill 
Kogakusha Ltd., 1961, pp 149-150 

 

Input data 

Coarse mesh (BM3) : X03D13A.DAT 

Fine mesh (BM3)  : X03D13B.DAT 

Fine mesh (BMI21) : X03D13C.DAT 
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Example 3.3.1 

 Cantilevered Thin Square Plate 

Keywords 

Eigenvalue, Guyan Reduction 

Description 

A square plate with side length 10m and uniform thickness 0.05m is restrained against translation 

and rotation along the X=0 edge, figure 1. It is required to find the lowest 6 eigenmodes of the 

plate (shown in figures 2 to 7) using: 

i) Subspace iteration 

ii) Guyan reduction with 12 automatic master freedoms 

iii) Guyan reduction with 20 automatic master freedoms 

iv) Guyan reduction (with automatic masters) as a first approximation to the subspace 

iteration vectors 

v) Guyan reduction with 20 specified master freedoms 

vi) Guyan reduction (with specified masters) as a first approximation to the subspace 

iteration vectors 

This example compares the convergence of Guyan reduced solutions with that of full subspace 

iteration analysis as master density is increased. Further, it illustrates the use of a Guyan reduced 
solution as a starting point for subspace iteration analyses. 

Discretisation 

The whole plate is discretised using a regular mesh of 16 (4*4) quadrilateral 8-noded Semiloof 

shell elements (QSL8). 

Material properties 

Young’s modulus 200.0x106 N/m2 

Poisson’s ratio,  0.3 

Mass density,  8000 Kg/m3 
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Theory 

Thin plate predictions of the natural frequencies of a cantilevered square plate of side length (a) 

and thickness (t) are given by the following relationship: 

1 / 22 2
ij

i j 2 2

E t
f

2 a 1 2 (1 )

 
  

     

    (0.0.48) 

For a Poisson’s ratio of 0.3, the values tabulated below may be obtained: 

Mode 
ij

2  f H z
ij

( )  

1 3.494 0.421 

2 8.546 1.029 

3 21.440 2.582 

4 27.460 3.306 

5 31.169 3.753 

6 54.440 6.555 

Lusas results 

The results obtained from the LUSAS analyses are presented below, and are compared with 
those given in [2]: 

Mode Number 1 2 3 4 5 6 

Reference solution 0.421 1.029 2.582 3.306 3.753 6.555 

Subspace iteration eigenvalue evaluation 0.415 1.013 2.502 3.233 3.684 6.422 

Guyan reduction 12 automatic masters 0.416 1.025 2.797 3.552 4.121 9.399 

Guyan reduction 20 automatic masters 0.415 1.014 2.583 3.293 3.908 7.336 

Guyan reduction with automatic master 

approximation 
0.415 1.013 2.501 3.233 3.684 6.422 

Guyan reduction 20 specified asters 0.415 1.014 2.519 3.274 3.746 6.762 

Guyan reduction with specified master 

approximation 
0.415 1.013 2.502 3.233 3.684 6.422 

 

Note 

1. The relatively poor solutions obtained using automatic master selection with Guyan 
reduction are due to the fact that the K/M ratios are constant for all internal nodes. 

2. The subspace iteration procedure converges in less iterations when the eigenvectors of the 
Guyan reduction analysis are used as starting iteration vectors. 
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References 

1. Abbassian,F., Dawswell,D.J., Knowles,N.C. "Free Vibration Benchmarks", Tests 73 and 74, 

NAFEMS Report FVB, EAD 6.11.87, (November 1987), Report prepared by W.S.Atkins 
Engineering Science for National Agency for Finite Element Methods and Standards. 

2. Blevins, R.D., "Formulas for Natural Frequency and mode shape", Publishers Van-
Nostrand, (1979). 

3. LEISSA,A.W., "Vibration of plates", National Aeronautical and Space Administration, 
N.A.S.A Report SP-160, (1969) 

Input Data  

X03D31A.DAT 

X03D31B.DAT 

X03D31C.DAT 

X03D31D.DAT 

X03D31E.DAT 

X03D31F.DAT 
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Figure 2 

 

Figure 3 
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Figure 4 

 

Figure 5 
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Figure 6 
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Example 3.4.1 

 Bifurcation Of A Double Arch 

Keywords 

Total Lagrangian, Large Rotation, Eigenvectors Of Stiffness Matrix 

Description 

Two orthogonal arches, joined at their crowns, are subject to a point load applied in the vertical 

direction. The structure is loaded to close to its critical load and the eigenvectors corresponding 

to the buckling modes are evaluated. 

Finite Element Model 

The arches are modelled by 60 BTS3 beams, which are pinned at the supports. 

 

Geometry 

Radius of the arch        = 5 

Angle subtended by arch   = 180 degrees 

Beam geometric properties 
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Area     = 0.1 

2nd moment of area about y-axis  Iyy = 0.4E-5 

2nd moment of area about z-axis  Izz = 0.8E-5 

Torsion stiffness KT  = 0.1406x10-4 

Shear area Asy   = 0.1 

Neutral axis eccentricity  ez  = 0.0 

Material properties 

Young’s modulus 210.0x109 

Poisson’s ratio 0.0 

 

Load 

Load applied in (downwards) vertical direction at joint of arches in three 

Steps 

step 1  -  1.5*105 

step 2  -  3.0*105 

step 3  -  4.042*105 

Boundary Conditions 

Beam ends are free to rotate but are restrained against translations in the x, y and z directions. 

Solution Comparison 

The eigenvalues extracted at near the critical load are: 

Mode Eigenvalue 

1 -0. 398217 

2 -0. 398217 

3 1025.41 

4 13100.2 

5 13347.1 

6 14828.8 
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At a critical load corresponding to a bifurcation or limit point, the determinant of the stiffness 

matrix is zero or equivalently one or more of the eigenvalues of the stiffness matrix are zero. The 

negative eigenvalues indicate that the load applied is slightly above the critical buckling load but 

these numbers are close enough to zero to assume that the buckling load is given by the load 

applied. The eigenvector corresponding to the lowest eigenvalue is the buckling mode. In this 

instance, the double symmetry of the combined arches leads to a compound bifurcation involving 
two buckling modes as shown in figure 1. Further higher modes are also presented in figure 1. 

Input Data 

X03D41A.DAT 

 

Figure 1  Eigenmodes of Double Arch 
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Example 3.5.1 

Natural Frequency Analysis Of A Solid Cantilever 

Keywords 

Eigenvalue, Natural Frequency 

Description 

To determine the first four natural frequencies of the cantilevered beam shown in Figure 1. 

Finite Element Model 

The cantilevered beam consists of four HX20 3-D solid elements with the element and node 
numbering detailed in Figure 2. 

Material properties 

Young’s modulus 30.0x103 N/m 

Mass density 5.0 kg/m 

 

Boundary conditions 

All nodes in the y-z plane at x=0 are fully restrained resulting in an encastre support condition. 

Theory 

The natural frequencies of beams with various end constraints can be found in [1]. The natural 
frequencies, w, of a cantilevered beam may be determined from the following equation: 

 
2

n n 4

E I
w B1

m l

 
  

 

     (0.0.49) 

where the Bl factors for the first four natural frequencies are given by 

Bl1  = 1.872 

Bl2  = 4.694 

Bl3  = 7.855 
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Bl4  = 10.9955 

The other terms appearing in the equation for the natural frequencies are, for this particular 
example 

E  = Young's modulus  = 30,000 N/m2 

I  = second moment of inertia = 8.33333E-02 m4 

m  = mass per unit length  = 5.00 Kg/m 

l  = beam length   = 10 m 

Modelling Hints 

This simple example has been chosen for two main reasons. The first is to enable a comparison 

to be made with theoretical values, and the second is to highlight LOCAL CARTESIAN 

COORDINATES, COPY NODES and EIGENVALUE CONTROL facilities. Comments on the 
use of these commands have been included in the data file printout. 

The first side of the beam is defined by using QUADRILATERAL SPACING and SIDE 

POINTS. The mid-height and full height nodes are described by defining a LOCAL 

CARTESIAN COORDINATE system about these heights and using COPY NODES to copy a 

repetitive pattern of nodes to a new position and orientation. In this case from the lower surface 

to the mid-height and full height. These coordinates are then transformed to the global system by 
using the command GLOBAL CARTESIAN COORDINATES. 

It must be noted that because of the regular geometry, a more convenient method of generating 
the nodal coordinates, would be by using the INCREMENTAL line generation facility. 

      e.g.       NODE COORDINATES 

                   FIRST  1   0         0     0 

                   INC      1   0         0     0.5    3 

                   INC      3   0         0.5          (3) 

                   INC      9   0.125                 (9) 

Solution Comparison 

Mode 1 2 3 4 

Theory 0.6179 0.6179 24.27 24.27 

LUSAS 0.6168 0.6168 24.00 24.00 

 

Note: 

The coefficients (Bl ) and (Bl ) defined in the theory section refer to modes in 2-D, and are 

repeated in the 3-D case. So modes 1 and 2 in 2-D correspond to modes 1, 2, 3 and 4 respectively 
in 3-D. 
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References 

1. Hurty, W.C. and Rubinstein, M.F., 'Dynamics of Structures', Prentice-Hall Inc. 

Input data 

X03D51A.DAT 

 

 

Figure 1.  Cantilever beam made up of 4 HX20 type elements. 
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Example 3.6.1 

 Buckling Analysis Of A Rectangular Panel 

Keywords 

Buckling, Eigenvalue, Semiloof  

Description 

Determine the critical buckling load for a rectangular panel subject to in-plane compressive 
loading.  The dimensions of the panel are as follows: 

Length, a 2 m 

Width, b 0.5 m 

Thickness, t 0.001 m 

 

The panel is subjected to an in-plane compressive load acting along the short 

edges. 

Discretisation 

The whole structure is discretised using 16 Semiloof shell elements (QSL8) and is simply 

supported on all sides. The in-plane compressive loading is applied as a series of concentrated 

loads acting in the plane of the structure parallel to its long sides. A total load of 24 N is applied 
to each loaded edge. 

Material properties 

Young’s modulus 70x109 

Poisson’s ratio 0.3 

 

Theory 

For a given integer side length ratio (a/b) and number of half waves in the buckled configuration 
(m), the critical buckling load is given by the expression 
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22

x c rit 2

D b 1 a
N m

a m bb

  
  

 

    (0.0.50) 

For 4 half waves and a side length ratio of 4, (0.0.50) therefore reduces to 

2 2

x c rit 2

4 D
N

b


       (0.0.51) 

Where 

 

3

2

E t
D

1 2 1



 

      (0.0.52) 

The critical buckling stress is given by the expression 

x crit
x c rit

N

t
        (0.0.53) 

or, combining (0.0.51)-(0.0.53) by 

 

2 3

x c ri t
2 2

4 E t

1 2 b 1 t


 

 

     (0.0.54) 

Comparison 

The results obtained from the LUSAS analysis are compared to the theoretical results. From 
(0.0.54) the theoretical critical buckling stress is given by the expression 

2

x c ri t

t
3 .6 2 E

b

 
   

 

 

or 


x crit

m 1 0 1 3
2

. / M N  

Results from the LUSAS analysis were as follows: 

 

Eigenvalues after 11 iterations 

Mode Eigenvalue Load factor Error norm 

1 19.1316 19.1316 0.678980E-01 

 

The critical buckling load and corresponding stress are 
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N
xcrit

 19 1316 24 459 184. * .  N
 


x crit

A rea m  4 5 9 1 5 8 4 4 5 9 1 5 8 4 0 5 0 0 0 1 0 9 1 8 3 1 6
2

. / ( ) . / ( . * . ) . / M N  

References 

1. 'Formulas for stress and strain', Fourth Edition, R.J.Roark, Publisher. McGraw-Hill Book 

Co. Kogakusha Co. Ltd. Tokyo (1965). 

Input data 

X03D61A.DAT 
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Example 3.7.1 

 Eigen-Analysis Of A Cooling Tower 

Keywords 

Fourier, Semiloof Shell, Eigenvalue  

Description 

The first four modes of a cooling tower are extracted. Both Fourier and Semiloof elements are 
used and the results compared. 

Discretisation 

The cooling tower is modelled initially by 10 QAX8F Fourier elements. The circumferential 

number of harmonics is varied from 0 to 6 with an eigenvalue analysis performed for each 
harmonic. 

The QSL8 elements are utilised with two meshes; 10 elements are used in both to model the 

length of the cooling tower, whilst 12 and 48 elements respectively are used to represent coarse 
and fine modelling of the circumference. 

Geometry 

The shell mid-surface is defined by the parabolic equation, 

2 2
x y 2 7 0

1
8 4 2 0 9 .6 6 1

   
 

   
   

     (0.0.55) 

The overall height of the cooling tower is 330ft (100.584m) and has a constant wall thickness of 

0.5833ft (0.1778m). The outside radii at the bottom and top of the tower are 136.96ft (41.745m) 
and 87.4ft (26.64m) respectively. 

Boundary Conditions 

The cooling tower is assumed to be encastre at the base. 

Material properties 

Young’s modulus 432.0 x106 psf, 20.68x109 Pa 

Poisson’s ratio 0.15 
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Mass density 8000 lb ft-3, 128,147.7 kg m-3 

 

Theory 

The eigenvalues obtained from the two analysis types are compared. 

LUSAS results  

Figures 1 and 2 show the first four eigenvectors from the coarse and fine shell analyses 
respectively.  The extracted frequencies from the Fourier analysis are detailed in Table 1 below. 

Table 1: Fourier frequencies 

Eigenvalue Harmonic Number  

Number 0 1 2 3 4 5 6 

1 0.1855 0.0788 0.0423 0.0332 0.0296 0.0283 0.0333 

2 0.2805 0.1633 0.0889 0.0483 0.0360 0.0378 0.0387 

3 0.2978 0.2544 0.1683 0.1052 0.0679 0.0514 0.0530 

 

The eigenvalues obtained from the Fourier analyses indicate that the lowest four modes 

correspond to the n= 5,4,3,6 harmonics. However, the frequencies obtained from the coarse shell 

analysis (see Table 2) produce higher frequencies and ordered the harmonics as n=4,3,5,6. The 

inability of the structure to deform into its true eigenmodes is due to the coarse mesh 

discretisation and the resulting stiffer structural response. A refined QSL8 mesh produces 

answers that are in closer agreement with the Fourier analyses and predict a harmonic order of n= 
5,4,3,6. 

Table 2: Frequency comparison 

Harmonic Number Fourier Course shell Fine shell 

n=3 0.03318 0.03423 0.03356 

n=4 0.02958 0.03319 0.02994 

n=5 0.02829 0.03637 0.02871 

n=6 0.03333 0.03788 0.03394 

 

Using the QSL8 elements, two repeated eigenvalues are obtained for each mode which are out-

of-phase with each other (not always by 90 degrees). For a cylindrical structure there are an 

infinite number of eigenvectors for each harmonic, but all can be modelled by two out-of-phase 

eigenvectors. Relative solution times for the analyses are detailed in Table 3, from which it may 
be seen that the Fourier analysis compares favourably with the shell analyses. 

Table 3: Solution times 
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Fourier (QAX8F) QSL8(coarse) QSL8(fine) 

1 7 52 

 

The mode number n can sometimes be very large for thin shell structures, and in these instances, 

the Fourier solution quickly provides a sweep of selected harmonics n. If the precise eigenvalues 

from a shell analysis are required, the knowledge provided from the Fourier analysis can be used 

to decide on the mesh discretisation for a complete model of the structure or on the selection of a 

segment of the shell to which symmetric and asymmetric boundary conditions can be applied in 

turn. 

References 

1. Program Verification and Qualification Library, ASME Pressure Vessel and Piping 

Division, Committee on Computer Technology, 1972. 

2. Albasiny, E.L. and Martin, D.W., Bending and Membrane Equilibrium in Cooling Towers, 
Jour. Eng. Mech. Div., ASCE, EM3, 1967. 

Input Data 

X03D71A.DAT 

X03D71B.DAT 

X03D71C.DAT 

X03D71D.DAT 

X03D71E.DAT 

X03D71F.DAT 

X03D71G.DAT 

X03D71H.DAT 

X03D71I.DAT 

 

Note: The different results for taking 0,1,2..  terms of the Fourier expansion can be obtained by 
changing the range of the harmonic series defined in the FOURIER CONTROL data chapter. 
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MYSTRO: 11.2-0 DATE: 28-10-94

TITLE: COOLING TOWER EIGENMODES

MODE 1 MODE 2

MODE 3 MODE 4

FIGURE 1. Lowest four modes for course shell cooling tower analysis

MYSTRO: 11.2-0 DATE: 31-10-94

TITLE: COOLING TOWER EIGENMODES

MODE 1 MODE 2

MODE 3 MODE 4

FIGURE 1. Lowest four modes for course shell cooling tower analysisFIGURE 2 : Lowest four modes for the fine shell cooling tower analysis
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Example 4.1.1 

Geometrically Nonlinear Analysis Of A Cantilevered Beam 

Keywords 

Updated Lagrangian, Geometric Nonlinearity 

Description 

Determine the large deformation response of the thin, cantilevered strip, shown in Figure 1, 
subject to a point load at the tip. 

Discretisation 

Model the cantilever using eight, equal length, two dimensional BM3 beam elements (see Figure 
1). 

Geometry 

The cantilever has a width of 1 inch, a depth of 0.1 inches and the nodal line is assumed to 

coincide with the centroid of the cross section. Thus, each element has the following geometric 
properties; 

Cross-sectional area   = 0.1 inch2 

Second moment of area about the local z axis  = 0.8333E-4 inch4 

First moment of area about the local z axis = 0.0 inch3 

Material properties 

Young’s modulus 120.0x106 lb/in2 

Poisson’s ratio 0.3 

 

Boundary conditions 

The cantilever is rigidly supported at node 1 (see Figure 1). 
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Theory 

This problem is one of the classical elastic problems which have analytical solutions based on 

elliptical integrals. Reference 1 gives further details on this method of solution and also presents 
a table of tip displacements and rotations for various load levels. 

Comparison 

A comparison of the theoretical and LUSAS results is given in Figure 2. Theta is the rotation at 

the tip in radians.  Figure 3 shows the deformed configurations for various PL**2/EI values. 

References 

1. TIMOSHENKO, S.P. and GERE, J.M. Mechanics of materials. Van Nostrand Reinhold Co., 
S.I. ed., 1973. 

Input Data 

X04D11A.DAT 
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Figure 1.
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TITLE: STRAIGHT CANTILEVER WITH POINT LOAD, UPDATED LAGRANGIAN GNL

FIGURE 3.
GNL ANALYSIS OF CANTILEVER WITH POINT LOAD AT TIP
FIGURE 3.
GNL ANALYSIS OF CANTILEVER WITH POINT LOAD AT TIP
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Example 4.1.2 

 Bifurcation Of Simple Bar-Spring System 

Keywords 

Bar, Spring, Bifurcation 

Description 

The bar-spring system shown in Figure 1 is subjected to an axial load. The system is stable until 

the horizontal load reaches the buckling load. At this point, the solution is forced to branch on to 

an unstable path and the end of the bar that is attached to the spring begins to move vertically. By 

continuing the solution further, the vertical displacement of the end of the bar reaches a peak and 

then reduces towards zero. The bifurcation path is followed until a second bifurcation point is 
encountered, Figure 2. 

 

Figure 1: Bar-spring system 

Discretisation 

The system consists of a horizontal bar element BAR2 with area A=1.0 connected to a vertical 
spring element JNT3 at one end. 

Material properties 

BAR3: Young’s Modulus  = .5E8 KN/m2 

Poisson’s ratio  = 0.0 

JNT3: Spring stiffnesses  = 0.0 (x direction) 

= 1.5 (y direction) 
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Theory 

The equilibrium equations for the system can be written as: 

F E A / L 0 u

0 0 k N / L w

     
    

      

    (0.0.56) 

where L is the length of the bar and N the axial force in the bar; the vertical spring stiffness is k. 

u and w are increments in the displacements shown in Figure 1. The bar-spring system is 

stable until the stiffness matrix becomes singular. This occurs when N = -Lk, which is equal to 

3750 for the parameters used in this problem. As the axial force in the bar is given by F=EA/L*u, 
the axial displacement at the loaded end at the bifurcation point can be computed as u=0.1875. 

Comparison 

Figure 2 shows the stable primary solution path which was obtained by carrying out a nonlinear 

analysis with bracketing. It can be seen that the vertical displacement was zero along this path. 

The bifurcation point that was bracketed is shown to be at the point F=3749.7, w=0, u=0.187506 

which agrees very closely with the theoretical values. The unstable secondary (or bifurcated) 

path is also shown in the figure and it can be seen that the vertical displacement peaks at a value 

of just under 2500 while the horizontal load varies between values of +/- 3750. This path was 

obtained after a restart analysis by utilising the branching option within the nonlinear control data 

section of the data file. The solution is continued along the unstable path until a second 

bifurcation point is encountered, Figure 2. It is only possible to bracket one bifurcation point 
therefore the solution along this unstable path cannot progress any further. 

References 

1. Non-linear Finite Element Analysis of Solids and Structures (volume 1), M.A. Crisfield. 

John Wiley & Sons Ltd., England (1991). 

Input Data 

X04D12A.DAT 
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Example 4.3.1 

 Free Vibration Analysis Of A Rotating Blade. 

Keywords 

Centripetal Stiffening, Rotating Machinery, Total Lagrangian, Geometric 

Nonlinearity 

Description 

Determine the free vibration response of a cantilevered plate rotating at 20000 rpm. The 
dimensions and details of the blade are shown in Figure 1. 

Discretisation 

Model the blade structure using four BSL4 Semiloof beam elements (see Figure 2). 

Geometry 

The blade structure has the following geometric properties for each element 

Cross-sectional area   = 6.4516E-5 m2 

Second moment of area about the local y axis  = 3.46859E-11 m4 

Second moment of area about the local z axis  = 3.46859E-9  m4 

Torsional constant    = 3.50327E-9 m4 

First moment of area about the local y axis = 0.0 m3 

First moment of area about the local z axis = 0.0 m3 

Product moment of area   = 0.0 m4 

Material properties 

Young’s modulus 72.4072x109  N/m2 

Poisson’s ratio 0.3 

Density 2726.0 kg/m3 
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Boundary conditions 

The blade is rigidly supported at the root, node 1 (see Figure 2). 

Theory 

To analyse this problem correctly a nonlinear solution procedure is adopted to account for the 

large displacements [1]. These geometric nonlinearities are handled via the Total Lagrangian 

formulation. In addition to the usual large displacement and initial stress stiffness matrices a 

further contribution to the tangential stiffness due to centripetal acceleration is included. This 

additional stiffness matrix is called a load correction stiffness matrix. 

Comparison 

Table 1 compares the natural frequencies of the fundamental mode for various element meshes 

for an angular velocity of zero, 20000 rpm and 20000 rpm with the load correction stiffness 

matrix due to centripetal acceleration neglected (Lusas Solver option 102). As can be seen from 

Table 1, the effect of neglecting the load correction stiffness matrix due to centripetal 

acceleration results in errors of approximately 20% in the calculation of the natural frequency of 
the fundamental mode of vibration. 

Table 1: Natural Frequencies of vibration 

  Frequency, Hz 

Element Integration rule 

=0 

Load 
correction 
stiffness 
included 

=20,000 rpm 

Load 
correction 
stiffness 
neglected 

=20,000 rpm Mesh Type 
Mass 
matrix 

Stiffness 
matrix  

4 x 1 HX16 2 x 2 x 2 2 x 2 x 2 225 380 458 

4 x 1 QSL8 5 point 5 point 208 358 440 

5 x 2 HX20 3 x 3 x 3 3 x 3 x 3 216 345 454 

5 x 2 QSL8 5 point 5 point 211 366 447 

5 x 2 HX20 2 x 2 x 2 2 x 2 x 2 216 375 454 

4 BSL4 3 3 209 367 448 

10 BSL4 3 3 209 367 448 

5 x 2 HX20 3 x 3 x 3 3 x 3 x 3 219 347 456 

 

References 

1. M. E. Honnor and P. Lyons, "Free Vibrations in Rotating Machinery.", Finite Element 

Analysis Ltd Internal Report No. FEAL401, 1984. 
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Input data 

X04D31.DAT 

 

Figure 1     Problem Geometry and Material properties 
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Figure 2     Finite Element Mesh 
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Example 4.3.2 

Curved Cantilever Under Concentrated End Load 

Keywords 

Nonlinear, Co-Rotational, Total Lagrangian 

Description 

A curved cantilever is subjected to a transverse concentrated load applied at the free end. This 

problem involves a three dimensional response to a geometrically nonlinear problem. Large 

displacements and rotations occur in this example and the beam element used, BTS3, is based on 

a co-rotational formulation. The beam is also modelled with continuum elements where a Total 
Lagrangian formulation is used. Linear material properties are assumed. 

Discretisation 

The curved cantilever is modelled with: 

i)  8 straight linear BTS3 elements of equal length. 

ii) 16 HX8M solid elements of equal length and unit square cross section. 

Geometry 

Figure 1 shows the initial geometry of the beam P=0.0 

Radius of curvature = 100.0 

Co-ordinates for centre of curvature = (0.0, 0.0, 100.0) 

The co-ordinates at the ends of the beam centre line are: 

Fixed end = (0.0, 0.0, 0.0) 

Free end  = (70.71, 0.0, 29.29) 

Sectional properties for beam elements: 

Axx  = 1.0 

Asy  = 1.0 

Asz  = 1.0 
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Iyy  = 8.3333E-2 

Izz  = 8.3333E-2 

Kt   = 14.06E-2 

The cantilever is of unit square cross section and Kt is evaluated from: 

Kt   = 0.1406a4 

where a is the length of the sides of the cross section. 

Boundary conditions 

Fully fixed at one end. 

Material properties 

Young’s modulus 10x106 

Poisson’s ratio 0.0 

 

Loading 

For the beam elements, total concentrated loads of 300, 450 and 600 are applied incrementally at 

the free end. For the solid elements, the total load of 600 is applied in 12 equal steps. The loads 
are applied in the vertical (Y) direction. 

Lusas Results 

Figure 1 shows the deformation of the beam elements for the loading considered. A table of tip 

displacements is given below including a comparison with the reference solutions. For the 
HX8M elements the average of the 4 end node displacements is quoted. 

Tip displacement (u,v,w) for curved cantilever 

 Load level 

 300 450 600 

Simo and Vu-Quoc -11.87,40.08,-6.96 -18.39,48.39,-10.67 -23.48,53.37,-13.50 

Cardona and Geradin -12.07,40.35,-7.15 -18.60,48.59,-10.91 -23.67,53.50,-13.74 

BTS3 -12.16,40.47,-7.16 -18.78,48.76,-10.93 -23.91,53.71,-13.77 

HX8M -11.83,40.05,-7.06 -18.29,48.29,-10.79 -23.30,53.20,-13.60 

 

Comparison 

The results obtained for this example are very sensitive to the value taken for the torsional 

constant Kt. The actual value used for executing this test is seldom given in published results. 
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The effective value of Kt for the solid elements is slightly higher than that used for the beam 

elements; this results in a stiffer response when using HX8M elements. For the analysis 

involving BTS3 elements, large load steps were taken to demonstrate the robustness of the 

consistent co-rotational formulation. Load steps of this size can cause negative pivots to occur 

during the iterative solution procedure. However, these negative pivots are not present when a 

solution has converged. In practise, smaller load steps should be used to ensure a more stable 
sequence of iterations. 

References 

1. SIMO,J.C. and Vu-Quoc, L., A Three Dimensional Finite Strain Rod Model. Part II: 

Computational Aspects, Comp. Meth. in Appl. Mech. and Engineering, Vol 58, pp 79-116, 
1986. 

2. CARDONA,A., GERADIN, M. A Beam Finite Element Non-Linear Theory with Finite 
Rotations. Int. Journ. for Num. Meth. in Eng., Vol 26, pp 2403-2438, 1988. 

Input data 

X04D32A.DAT 

 

 

MYSTRO: 11.2-1 DATE: 5-12-94

TITLE: CURVED CANTILEVER WITH 45 DEGREE BEND
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Figure 1.
Deformed shape under load

P = 0
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Example 4.5.1 

Hinged Cylindrical Shell Under Central Point Load. 

Keywords 

Total Lagrangian, Geometric Nonlinearity, Snap Through 

Description 

Determine the nonlinear load/displacement response of a cylindrical shell of the form shown in 
Figure 1, when it is subjected to a point load acting vertically downwards at its centre. 

Discretisation 

As the loading and boundary conditions are symmetric, only 1/4 of the shell is analysed, using a 
4x4 mesh of QSL8 Semiloof shell elements (see Figure 1). 

Geometry 

The geometry of the hinged cylindrical shell is shown in Figure 1. 

Material properties 

Young’s modulus 3103 N/mm2 

Poisson’s ratio 0.3 

 

Boundary conditions 

The shell structure is hinged along the left-hand side, nodes 1 to 9, restrained from crossing and 

rotating about the yz plane, nodes 73 to 80, restrained from crossing and rotating about the xz 

plane, nodes 18, 27, 36, 45, 54, 63 and 72, and totally restrained at its centre, node 81. The z 

direction is restrained to permit the application of prescribed displacements. 

Theory 

This example is commonly referred to as a snap through problem which has been studied by 

Sabir and Lock [1]. Due to the large displacements and this snap through effect the problem must 

be analysed nonlinearly using the Total Lagrangian geometric nonlinearity formulation. 
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Comparison 

A Comparison of the results obtained by LUSAS with those of [1] are shown in Figure 2. 

References 

1. Sabir, A.B., Lock, A.C.'The Application of Finite Elements to the Large Deflection 

Geometrically Nonlinear Behaviour of Cylindrical Shells'. Variational Methods in 
Engineering. Ed. Brebbia et al. Pub. Soton. Univ. Press. 1972. 

Input data 

X04D51A.DAT 
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Figure 4 : Hinged cylindrical shell under central point load
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Example 4.5.2 

 Clamped Spherical Cap Subject To A Point Load 

Keywords 

Total And Updated Lagrangian, Axisymmetric Solid, Axisymmetric Shell 

Description 

This geometrically non-linear example consists of a clamped spherical cap subject to a point load 

at the apex. Figure 1 shows the geometry and loading of the problem under consideration. For 

each mesh the analysis is performed using a total Lagrangian formulation and an updated 
Lagrangian formulation. 

  

Figure 1. 

Discretisation 

The spherical cap is modelled with five QAX8 elements for the first mesh and twelve BXS3 

elements for the second mesh. Figures 2 and 3 show the mesh for QAX8 and BXS3 elements 
respectively. 
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Material properties 

Young’s modulus 10.0x106 N/m2 

Poisson’s ratio 0.3 

 

Boundary conditions 

The edge of the cap is fully fixed against translation and rotation. 

Theory 

See [2]. 

Solution comparison 

Apex 
Deflection 

Load P QAX8 
Updated 

Lagrangian (N) 

Load P BXS3 
Total 

Lagrangian (N) 

0.01 9.576 9.689 

0.02 14.00 14.28 

0.03 16.75 17.06 

0.04 19.29 19.53 

0.05 22.02 22.17 

0.06 25.01 25.09 

0.07 28.18 28.20 

0.08 31.34 31.37 

0.09 34.28 34.42 

0.10 36.83 37.16 

0.11 38.94 39.46 

0.12 40.81 41.32 

0.13 43.30 43.21 

0.14 48.40 46.56 

0.15 59.18 54.13 

0.16 78.58 69.32 

References 

1. M.E. Honnor, 'Axisymmetric thin shell element', FEAL internal report FEAL503. 

2. W.E. Haisler, J.A. Stricklin and F.J. Stebbins, 'Development and evaluation of solution 

procedures for geometrically nonlinear structural analysis by the direct stiffness method', 
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AIAA/ASME 12th Structures Struct. Dynamics and Materials Conference, Anahein, 
California. 

Input Data 

X04D52A.DAT 

X04D52B.DAT 

Input data for axisymmetry about the Y-axis: 

Note: Include OPTION 47 for axisymmetry about the X-axis. 

Note: Include OPTION 47 for axisymmetry about the X-axis 
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FIGURE 2
Finite element mesh showing
element and node numbers.
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FIGURE 3
Finite element mesh showing
element and node numbers.
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Example 4.5.3 

 Large Displacement Of A Hyperbolic Paraboloid 

Keywords 

Total Lagrangian, Large Rotation, Warped Elements 

Description 

The hyperbolic paraboloid tests the large rotational and translational behaviour of a structure 

with an initial mesh of distorted and warped elements. The paraboloid is supported on two 

inwardly sloping rollers about which concentrated moments are applied. The sloping supports 
provide membrane restraint only, but allow large rigid body motion under the moment loading. 

Finite Element Model 

Taking advantage of symmetry only one quarter of the paraboloid is modelled. Symmetry 

conditions are imposed along two of the edges while the third edge is free. The paraboloid is 

supported on inwardly sloping hinged rollers as shown below. A 12x4 graded mesh (see Figure 
1) comprising QTS4 elements compares directly with the results presented in [1]. 

 

Figure 1 
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Geometry 

The full problem geometry is: 

 

Material properties 

Young’s modulus 10.0x103 

Poisson’s ratio 0.0 

 

Boundary Conditions 

Roller supports allowing rotation about and translation along the transformed axes. 

Solution Comparison 

LUSAS results are detailed for node 13. The deformed shape is shown in Figure 2. 

 

Support displacement along transformed freedom 

Load 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Ref. 1.8567 5.1118 9.0081 12.8471 15.9420 17.8904 19.4014 20.2423 

LUSAS 1.8574 5.1081 8.9973 12.8238 15.9011 17.8400 19.3280 20.1348 
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Support rotation 

Load 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Ref. 34.32 74.49 116.85 160 207.55 244.00 292.43 352.79 

LUSAS 34.36 74.54 116.43 160.83 207.23 243.54 291.02 346.95 

 

References 

1. Stander N, Matzenmiller A, and Ramm E. An assessment of assumed strain methods in 
finite rotation shell analysis. Engineering Computations, Vol. 6, pp58-66, 1989. 

Input Data 

X04D53A.DAT 

 

 

Grading of Mesh for Hyperbolic Parabaloid 
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Figure 2  Deformation of hyperbolic paraboloid 
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Example 4.5.4 

 Large Displacement Of A Hemispherical Shell 

Keywords 

Co-Rotational Geometric Nonlinearity, Large Rotations 

Description 

A hemispherical shell is subjected to point loads as shown in Figures 1 and 2. In addition to rigid 

body rotations, both membrane and bending strains contribute significantly to the radial 
displacement at the loading points. 

Finite Element Model 

Taking advantage of symmetry only one quarter of the hemisphere is modelled. Symmetry 

conditions are imposed along two of the edges while the other edges are free. The hemisphere is 
discretised with TSR6 facet shell elements as shown in Figure 1. 

 

Figure 1 
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Geometry 

The full problem geometry is: 

 

Figure 2 

Material properties 

Young’s modulus, E 68.25x106 

Poisson’s ratio,  0.3 

 

Boundary Conditions 

Due to the symmetry of the problem only ¼ of the hemisphere is modelled. Two of the edges are 
free while symmetry is imposed at the other two edges. 
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Solution Comparison 

LUSAS results are compared with [1] in the following figures; the final deformed mesh is shown 

in Figure 6. 

References 

1. Stander N, Matzenmiller A, and Ramm E. An assessment of assumed strain methods in 
finite rotation shell analysis. Engineering Computations, Vol. 6, pp58-66, 1989. 

Input Data 

X04D54.DAT 

 

 

Figure 3 
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Figure 4 

 

Figure 5 
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Figure 6 
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Example 4.5.5 

 Optimisation of cable forces in cable stayed bridge 

Keywords 

Geometric Nonlinearity, Optimisation, Target value 

Description 

A geometrically nonlinear cable stayed bridge is optimised to minimise the cable forces subject 

to limits in the tower sway and deck displacement under self weight loading. Additionally, The 

force in a pair of cables is specified using the target value loading type. 

The horizontal movement at the top of the tower UA is limited to a displacement of 1cm whilst 

the vertical displacements at WB and WC must be greater than or equal to zero.Finally, the cable 
forces in the pair of cables labelled T1 is set to 38,000kN. 

Finite Element Model 

The simple cable stayed bridge is shown in figure 1. 

 

Figure 1 

UA 

WB 
WC 

UA ≤ 0m 

WB ≥ 0m 

WC ≥ 0m 

T1=38,000kN 

 

x 
y 

T1 
T2 

 

T3 

z 
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Geometry 

The problem geometry is: 

 

Figure 2 

Material properties 

Young’s modulus, E 210 x106 kN 

Poisson’s ratio,  0.3 

Density, ρ 7850 kg/m3 

 

Boundary Conditions 

The base of the towers are fully restrained and the ends of the spans are supported in the veritical 
direction. 

Solution Comparison 

Value Target LUSAS 

UA ≤0 -0.0013 

WB ≥0 0.0041 

WC ≥0 -0.66x10-18 

T1 38,000 38,000 

 

10m 10m 10m 10m 

10m 

10m 

1m 
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References 

Input Data 

X04D55.DAT 
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Example 5.1.1 

 Elastoplastic Analysis Of A Cantilever Bar 

Keywords 

Elastoplasticity, Strain Hardening, Load Cycling 

Description 

The cantilever bar shown in Figure 1a is subjected to a uniaxial load which alternates from 

tension to compression. The nonlinear behaviour of the material is given in Figure 1b as the 

stress/strain relationship with strain hardening. The required output is the load/displacement 

history. 

Finite element model 

A single BAR2 element is used to model the complete cantilever. The bar is assumed to be 
perfectly straight and is not subject to buckling or any other geometrically nonlinear effects. 

Geometric properties 

Length 10 mm 

Cross-sectional area 1 mm2 

 

Material properties 

Young’s modulus, E 1.0x105 N/mm2 

Plasticity modulus, Ep 2.0x104 N/mm2 

Yield stress 400 N/mm2 

 

Loading condition 

A displacement condition at end 2 of u2 (Figure 1a) is prescribed using load type PDSP. This 

displacement varies from + 0.14 mm to -0.08 mm. 

Solution Comparison 

The results in the form of the load/displacement curve are given in figure 2, where R
x

1

 is the 

reaction at node 1 and the positions marked on the graph are the displacement increments with 

the corresponding values of R
x

1

 and u given in Table 1. This example of a uniaxial load shows 
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how the solution converges to the exact value instantaneously. It should also be noted how if the 

loading/ unloading procedure were continued within the limits stated above, the model would 

converge to its linear elastic form, represented by the line 9-13 of the graph in Figure 2, as 

further strain hardening occurs. 

Input Data 

X05D11A.DAT 

 

(a) 

 

(b) 

Figure 1.  (a) Cantilever beam subjected to an extension (b) Nonlinear stress/strain relation for 

material model. 
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Figure 2. Load/displacement curve for cantilever beam. 

MYSTRO: 11.2-1 DATE: 30-11-94

TITLE:
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FIGURE 2.
Load / displacement curve for cantilever beam.
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Example 5.1.2 

Uniaxial Tension/ Compression Cycling 

Keywords 

Modified Von Mises 

Description 

A bar is subjected to cycling under uniaxial stress conditions, which causes yield in both tension 

and compression. The material is modelled by a Modified von Mises yield criterion which allows 

for different yield properties in tension and compression. Additionally, both the compressive and 
tensile strain hardening characteristics may be different. 

Finite Element Model 

One plane stress element. 

Geometry 

Length  = 10 

Width  = 1       P 

Depth  = 1 

 

Material properties 

Young's modulus = 2000 

Poisson's ratio  = 0.0 

Yield stress  c

y ,0 30  , t

y ,0 20   

Hardening  Hc = 150    Ht  = 100 
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Boundary Conditions 

Free to pull-in at laterally supported end 

Solution Comparison 

The load/displacement relationship is calculated by prescribing the load which uniquely 

determines the plastic strain developed to sustain it. As the plastic strain is accumulated, the yield 

stress in both tension and compression is changed according to the hardening characteristics of 

the material in each sector. 

The plastic stress multiplier, , is given by: 

p

1 2
T

ˆ ˆ

 
 

 
       
   

 

P p M P p 

    (0.0.57) 

where: 

p
   effective plastic strain =  

  

y t y
H

, ,
/

0e j , where H


 is the hardening gradient and 




y t,
 the current yield stress and  may be the tension or compression value. 

P  deviatoric components of the yield function 

2 1 1

3 3 3

1 2 1

3 3 3

1 1 2

3 3 3

0 0 0

0 0 0

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

  
 

  
 

  
 

 

 

 

 
 

P    

 (0.0.58) 

p̂  pressure dependent components of the yield function 

1

3

1

3

1

3
ˆ

0

0

0

 

 

 

 

 

 

 

 

 

 
 

p      (0.0.59) 

  current stress vector 
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and 

c t

y , t y , t     ,  1

2

1

2

1

2

1

1

1

 

 

 

 

 

 

 

 

 

 
 

M    

 (0.0.60) 

When considering the  x x  component of the stress vector to be the only non-zero value, the 

denominator of (0.0.57) reduces to: 

 
2T

2 c t2 1
x x y , t y , t3 3

ˆ ˆ            
   

P p M P p    (0.0.61) 

The incremental plastic strain vector is then computed from: 

p
ˆ     

 
P p       (0.0.62) 

Using equations (0.0.57), (0.0.61) and (0.0.62) the computation of the x x   component of  �  

reduces to: 

  

 

P c t1
x x y,t y ,t2p

x x 1 2
2

2 c t1
x x y,t y ,t2


      

  

 
     
 

    (0.0.63) 

The compressive and tensile yield stresses are a function of the plastic strain, which may be 
calculated for one dimensional problems from 

t

x x y ,0p

t
H

  
   if x x  is tensile  (0.0.64) 

t

x x y ,0p

t
H

  
   if x x  is tensile  (0.0.65) 

The yield stresses are then computed from: 

c c c p

y,t y,0 H          (0.0.66) 

t t t p

y,t y,0 H         (0.0.67) 

Summing the elastic and plastic strain components, the total axial strain is, 
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n n

p pT e x x
x x x x x x ,i x x ,i

i 1 i 1
E

 


              (0.0.68) 

The results can be calculated by using (0.0.64) or (0.0.65) to calculate the total plastic strain. 

Once the plastic strain is known, the yield stresses are defined using (0.0.66) and (0.0.67). The 
axial plastic strain is then given by (0.0.63) and the total strain by (0.0.68). 

Load 

x x  

p
  p

   c

y , t  
t

y , t  
p

x x   
p

x x   
T

x x  

20.000 0.0000 0.0000 30.000 20.000 0.0000 0.0000 0.0100 

25.000 0.0500 0.0500 37.500 25.000 0.0589 0.0589 0.0714 

30.000 0.1000 0.0500 45.000 30.000 0.0589 0.1178 0.1329 

29.000 0.1000 0.0000 45.000 30.000 0.0000 0.1178 0.1324 

-45.000 0.1000 0.0000 45.000 30.000 0.0000 0.1178 0.0954 

-65.000 0.2333 0.1333 65.000 43.333 -0.1081 0.0097 -0.0228 

-64.000 0.2333 0.0000 65.000 43.333 0.0000 0.0097 -0.0223 

43.333 0.2333 0.0000 65.000 43.333 0.0000 0.0097 0.0314 

50.000 0.3000 0.0667 75.000 50.000 0.0786 0.0883 0.1133 

 

Exact agreement is obtained from LUSAS. The load/displacement history is shown on figure 1. 

To prevent convergence difficulties, the stress is relaxed from the yield surface prior to applying 
a large stress reversal. 

Input Data 

X05D12A.DAT 
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MYSTRO: 11.2-1 DATE: 30-11-94

TITLE:
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FIGURE 4. Cyclic Behaviour of Modified von Mises Material
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Example 5.1.3 

Uniaxial Cycling Elastic-Damage Analysis 

Keywords 

Damage, Cyclic Loading 

Description 

A bar of elastic material is subjected to uniaxial compressive load cycling with an increasing 

stress level. A damage criterion for the material is specified so that progressive degradation of 

the elastic Young's modulus takes place as the analysis proceeds. As an elastic material is 

defined, zero strains are produced when the bar is stress free. Under this stress free state the 
stress/strain curve returns to the origin. 

Discretisation 

A single BAR2 element of length 10mm and unit cross section is used to represent the bar. 

Material properties 

Young’s modulus   = 2E3 N/mm2 

Poisson’s ratio   = 0.0 

Damage property data (Simo [1,2]): 

Initial damage threshold,  r0  = 0.44 

Constants, A = B   = 1.0 

Boundary conditions 

Fully fixed at one end, lateral displacements restrained at the other. 

Loading 

Cyclic vertical compressive load at the free end. 

Theory 

The damage parameter, d, for the Simo [1,2] model is given by: 
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   0 tB r r0

t

r 1 A
d 1 A e

r


       (0.0.69) 

Using the specified damage properties this reduces to: 

 t0 .4 4 r
d 1 e


       

 (0.0.70) 

For the uniaxial case, the complementary energy norm, rt , reduces to: 

1 2
2

tr
E

 
  

  

      (0.0.71) 

The axial strain is then given by: 

E


 


  where  E 1 d E     

 (0.0.72) 

More information on the damage models available in LUSAS can be found in the LUSAS 
Theory Manual. 

Solution comparison 

Using the above equations strains can be computed for each step of the analysis: 

 Load  rt d 

Loading 20 20 0.447214 0.007188 0.010072 

 30 30 0.670820 0.206118 0.018894 

 40 40 0.894427 0.365189 0.031505 

Unloading 30 30 0.894427 0.365189 0.023629 

 20 20 0.894427 0.365189 0.015753 

 0 0 0.894427 0.365189 0.000000 

Loading 40 40 0.894427 0.365189 0.031505 

 60 60 1.341641 0.594097 0.073909 

Unloading 50 50 1.341641 0.594097 0.061591 

 0 0 1.341641 0.594097 0.000000 

Loading 60 60 1.341641 0.594097 0.073909 

 80 80 1.788854 0.740463 0.154120 

 85 85 1. 900658 0. 767916 0. 183124 

 90 90 2. 012461 0. 792466 0. 216832 
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Unloading 85 85 2. 012461 0. 792466 0. 204786 

 0 0 2. 012461 0. 792466 0. 000000 

The theoretical assumptions for this damage model are such that, after the onset of damage, no 

further damage can occur until the maximum stress previously attained is exceeded. Hence the 

table shows that the damage parameter remains constant during unloading and reloading until a 

stress higher than the previous maximum is attained. The results for the LUSAS analysis 
reproduce these values exactly and are plotted in Figures 1 and 2.  

References 

1. Simo, J.C. and JU, J.W. Strain- and stress-based continuum damage models - I. 
Formulations. Int. Journ. Solids and Structures, Vol. 23, No. 7, pp821-840, 1987. 

2. Simo, J.C. and JU, J.W. Strain- and stress-based continuum damage models - II. 
Computational aspects. Int. Journ. Solids and Structures, Vol. 23, No. 7, pp841-869, 1987. 

Input Data 
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Figure 2.  Loading/unloading stages plotted separately. 
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Example 5.1.4 

Uniaxial Cycling of a Piecewise Multi-Linear Elastic 

Material 

Keywords 

Multi-linear Material, Cyclic Loading 

Description 

A bar comprising a multi-linear elastic material is subjected to three different loading sequences: 

1. Increasing monotonic 

2. Decreasing monotonic 

3. Random cyclic sequence 
 

The material model is such that stress/strain behaviour is completely recoverable. 

Discretisation 

A single BAR2 element of length 100 and unit cross section is used to represent the bar. 

Material properties 

The piecewise linear material properties are defined by a series of stress/strain points which 
results in a segmental curve defining a seris of Young’s moduli, Table 1. 

Strain -0.01 0.00 0.02 0.025 0.065 

Stress -15.00 -10.00 10.00 20.00 30.00 

Table 1  Stress/strain input data defining piecewise E values 
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Figure 1  Stress/strain input data defining piecewise E values 

Boundary conditions 

Fully fixed at one end, lateral displacements restrained at the other. 

Loading 

The three loading sequences described above are applied via an axial concentrated load at the 

free end as shown in Table 2: 

 Increment number 

Loading 

sequence 
1 2 3 4 5 6 7 

1 -17.50 -15.00 -12.50 -10.00 -6.25 -1.25 0.00 

2 
35.00 30.00 25.00 20.00 15.00 10.00 5.00 

3 
35.00 -10.00 30.00 25.00 -15.00 20.00 15.00 

 

 Increment number (cont’d) 

Loading 

sequence 
8 9 10 11 12 13 14 

1 
5.00 10.00 15.00 20.00 25.00 30.00 35.00 

2 0.00 -1.25 -6.25 -10.00 -12.50 -15.00 -17.50 

3 -17.50 -6.25 5.00 -12.50 -1.25 10.00 0.00 

Table 2  Load sequences for applied concentrated load 
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Results 

 

 Load ascending order 

Results 1 2 3 4 5 6 7 

Stress -17.50 -15.00 -12.50 -10.00 -6.25 -1.25 0.00 

Strain -0.01500 -0.01000 -0.00500 0.00000 0.00375 0.00875 0.01000 

 

 Load ascending order (cont’d) 

Results 8 9 10 11 12 13 14 

Stress 5.00 10.00 15.00 20.00 25.00 30.00 35.00 

Strain 0.01500 0.02000 0.02250 0.02500 0.04500 0.06500 0.08500 

Table 3 Stress/strain results for all tests 

 

Each test yielded identical results for stress/strain, convergence was achieved in 1 or 2 iterations, 
results are displayed in Table 3 and have been verified via hand calculations. 

 

Input Data 

X05D14A.DAT 

X05D14B.DAT 

X05D14C.DAT 
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Example 5.2.1 

Buried Pipe With Soil-Pipe Interface Modelled Using 2d 

Interface Model 

Keywords 

Elasto-Plastic, Friction 

Description  

This example (figure 1) consists of an elastic pipe buried in a homogeneous and elastic soil.  The 

interface between the pipe and soil is modelled using an elasto-plastic interface material.  Three 
cases of interface friction are considered:- 

   (i) frictionless slip (tan = 0.001), 

  (ii) stick (tan = 2), 

 (iii) frictional slip (tan = 0.25). 

Discretisation  

The discretisation (figure 2) is similar to that used in [1].  QPM8 elements are used to discretise 
the pipe, soil and interface. 

Theory  

The interaction between the soil and pipe is governed by a frictional type law i.e. bond between 

the pipe and soil is maintained by a frictional force and once this is overcome debonding and slip 

will occur.  This friction/slip behaviour is modelled using an elasto-plastic interface model, with 
yielding (slip) defined using the Mohr-Coulomb criterion [2] defined as 

c tan           (0.0.73) 

where  maximum shear stress, 

 stress normal to the soil/pipe interface, 

c   cohesion, 

 friction angle. 

Comparison  

Figure 3 is the deformed mesh for the frictionless slip analysis.   A large amount of sliding is 
visible in the interface. Figure 4 shows the shear stress distribution along the pipe-soil interface. 
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References  

1. DESAI,C.S., ZAMAN,M.M., LIGHTNER,J.G. and SIRIWARDANE,H.J. Thin-layer 

element for interfaces and joints. Int. J. Num. Anal. Meth. Geomech., Vol.8, 19-43, 1984. 

2. OWEN,D.R.J. and HINTON,E. Finite elements in plasticity: theory and practice. Pineridge 
Press, Swansea, UK, 1980. 

3. KATONA,M.G. A simple contact-friction interface element with applications to buried 
culverts. Int. J. Num. Anal. Meth. Geomech., Vol.7, 371-384, 1983. 

Input data 

X05D21A.DAT 

 

Figure 1 Buried Pipe Example 
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Figure 2 Finite Element Mesh 

 

Figure 3  Deformed Mesh Showing Sliding on 

Interface 
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Example 5.2.2 

Elasto-Plastic Analysis Of A Thick Cylinder Under Internal 

Pressure 

Keywords 

Plane Strain, Cylinder, Elasto-Plastic, Pressure 

Description 

An infinitely long thick cylinder of internal and external radii 100 mm and 200 mm respectively 

subject to an increasing internal pressure 

Discretisation 

Plane strain conditions are idealised, the global Z axis being coincident with the axis of the 

cylinder.  One symmetric quarter of the structure is idealised using 30 quadrilateral plane strain 

(QPN8) elements. Symmetric conditions are specified on the straight line boundaries, and the 

curved internal and external surfaces are unrestrained. The finite element discretisation is shown 
in Figure (1). 

The nonlinear material behaviour is modelled using a Von-Mises yield criterion and a perfectly 
plastic post-yield response.  The material properties are as follows: 

Young's Modulus  = 21000dN/mm2 

Poisson's ratio  =  0.25 

Yield stress  =  24 dN/mm2 

Theory 

An increasing internal pressure is applied to the structure.  The cylinder deforms elastically until 

an internal pressure of approximately 12dN/mm2 is reached. Beyond this pressure level the 

cylinder behaves elasto-plastically. The spread of plastic deformation through the thickness of 
the cylinder can be seen from the distribution of the hoop stress component with increasing load. 

LUSAS Results 

The progressive deformation of the cylinder is shown in Figure (2). Figure (3) shows the von 
Mises stress distribution obtained from LUSAS as the internal pressure is increased. 
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Input Data 

X05D22A.DAT 

Note: The load incrementation may alternatively be defined automatically using the following 
NONLINEAR CONTROL INCREMENTATION and TERMINATION cards: 

C                 Ref.factor    Max.Factor change    Iterative variation 

INCREMENTATION        1              0.25                   0 

C                 Max.Factor    Max.No.Increments 

TERMINATION           0               5 

 

 

Figure 1 
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Figure 2 

 

 

Figure 3 
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Example 5.2.3 

Nonlinear Stress Analysis Of A Two Span Reinforced 

Concrete Beam 

Keywords 

Plane Stress, Concrete, Reinforcement, Cracking 

Description 

Nonlinear plane stress analysis of a reinforced concrete beam. The dimensions of the beam are as 
follows: 

Total Length 1800 mm 

Effective Length 1680 mm 

Span 840 mm 

Depth 80 mm 

Breadth 60 mm 

 
Reinforcement is provided at the upper and lower faces of the beam with an average cover of 3 

mm. Both the upper and lower reinforcement arrangements consist of 4 bars with a total cross-

sectional area of 50.4 sq.mm. 

The beam is simply supported at its ends and centre, and a concentrated vertical load is applied at 
each midspan point. 

Details of the geometry and steel arrangement are shown in Figures (1) and (2). 

 

4 2 0  m m  4 2 0  m m  8 4 0  m m  

8 4 0  m m  8 4 0  m m  

6 0  m m  

8 0  m m  

C ro s s  - s e c tio n  

R e in fo rc e m e n t  

P /2  P /2  

 

Figure 1: Geometry of reinforced concrete two span beam, also showing beam cross-section. 
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4 2 0  m m  4 2 0  m m  

8 0  m m  

C e n tre  

lin e  
P /2  

 

Figure 2: Dimensions of left hand span of reinforced concrete beam. Symmetry means that only 

one span of the beam needs to be analysed. 

Discretisation 

Owing to its symmetrical nature only one span of the beam is discretised.  The finite element 

mesh consists of 112 elements; 84 plane stress (QPM8) elements to represent the concrete, and 
28 bar (BAR3) elements to represent the two layers of steel reinforcement. 

 

The plane stress elements are integrated using a 9 point Gaussian integration scheme. 

Material properties 

The constitutive behaviour of the reinforced concrete beam is modelled using the LUSAS 

nonlinear von-Mises material model (model 72) for the reinforcement and the Multi-crack 

concrete material model (model 82) or the Multi-crack concrete with crushing material model 
(model 84) for the concrete [1,2]. 

Reinforcement: Nonlinear von-Mises material model, model 71. 

Young’s modulus 196.0 kN/mm2 Heat fraction 0.0 

Poisson’s ratio 0.3 Reference temperature 0.0 

Density 0.0 Yied stress 579.0 N/mm2 

Thermal Expansion 0.0 Hardening gradient 1.0 

Mass damping 0.0 Plastic strain limit 100.0 

Stiffness samping 0.0   

 

Concrete material 1: Nonlinear multi-crack concrete material model, model 82. 

Young’s modulus 16.68 kN/mm2 Tensile strength 1.67 N/mm2 

Poisson’s ratio 0.0 End of tensile softening 0.0035 

Load – P/2 

Supports Supports 
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curve 

Density 0.0 Fracture energy 0.0 

Thermal Expansion 0.0 
Post fracture friction 

coefficient 
1.5 

Mass damping 0.0 
Post fracture dilatancy 

coefficient 
0.0 

Stiffness damping 0.0 
Shear/tensile strength 

ratio 
2.5 

Heat fraction 0.0 
Reduction factor for 

shear plastic strain 
0.5 

Reference temperature 0.0   

 

Concrete material 2: Nonlinear multi-crack concrete with crushing material mode1, model 84. 

Young’s modulus 16.68 kN/mm2 Compressive strength 32.0 N/mm2 

Poisson’s ratio 0.0 Tensile strength 1.67 N/mm2 

Density 0.0 Peak compressive strain 0.0027 

Thermal Expansion 0.0 
End of compressive 

softening curve 
0.0035 

Mass damping 0.0 
End of tensile softening 

curve 
0.0035 

Stiffness damping 0.0 Fracture energy 0.0 

Heat fraction 0.0 
Yield/peak compressive 

stress ratio 
1.0 

Reference temperature 0.0   

 

Support Conditions 

Node Support Type 
Prescribed Boundary 

Conditions 

1 Roller FR 

365 Restrained RR 

366-377 Symmetric (C/L) RF 

 

Notes: 

The flexural steel reinforcement is represented by bar elements of equivalent cross sectional 

areas. It should be noted that the superposition of the nodal degrees of freedom at the 

steel/concrete interface assumes that a perfect bond exists between the two components. 

Any deformation resulting from the self weight of the beam is neglected as being small 
compared to that resulting from the applied load. 
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The effects of the shear reinforcement are not considered in the analysis. 

Theory 

The reinforced concrete beam analysed here formed part of an experimental investigation 

undertaken by Duddeck et al [3]. Under load the beam exhibits both flexural and shearing 

deformation, and progressses from a well distributed cracking pattern to a local material failure 

under the loads and at the middle support. The beam has been used as a benchmark test by many 
research workers in the field of nonlinear concrete analysis [4]. 

LUSAS results 

Figure (4) shows the load deflection responses obtained from linear and nonlinear analyses of the 

beam.  Figure (5) shows contours of principal stress at the initial loading stage and clearly 

demonstrates the areas of tensile stress.  Figure (6) shows the progression of the cracks through 
the section of the beam as the load is increased. 

References 

1. The LUSAS User's Manual Finite Element Analysis Ltd. Forge House, 66 High Street, 
Kingston Upon Thames, London, U.K. 

2. LUSAS Internal Report, 'Nonlinear Concrete Model 24', FEAL703, Finite Element Analysis 
Ltd. Forge House, 66 High Street, Kingston Upon Thames, London, U.K. 

3. Duddeck, H. Griebenow, Schaper, G. 'Material and time dependent nonlinear behaviour of 

cracked reinforced concrete slabs' IASS symposium, Nonlinear behaviour of reinforced 

spatial structures, Vol.1, 103-133, (July 1978). 

4. Abdel-Rahman, H.H. 'Computational models for the nonlinear analysis of reinforced 

concrete flexural slab systems'. Ph.D. thesis, University of Wales, Department of Civil 
Engineering, Swansea, (1982). 

Input data 

X05D23B.DAT 

X05D23C.DAT 
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Figure 3: LOAD-DEFLECTION CURVE FOR DUDDECK’S REINFORCED CONCRETE 

BEAM 

 

Figure 4: DUDDECK’S REINFORCED CONCRETE TWO SPAN BEAM. PRINCIPLE 

STRESS CONTOURS AT FIRST INCREMENT. 
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Figure 5: Crack pattern across one span of reinforced concrete beam. Load P=2.5kN. Crack 

pattern from multi-crack concrete material mode 82. 

 

Figure 6: Crack pattern across one span of reinforced concrete beam. Load P=5.0kN. Crack 

pattern from multi-crack concrete material mode 82. 

 

Figure 7: Crack pattern across one span of reinforced concrete beam. Load P=10.0kN. Crack 

pattern from multi-crack concrete material mode 82. 

 

Figure 8: Crack pattern across one span of reinforced concrete beam. Load P=12.5kN. Crack 

pattern from multi-crack concrete material mode 82. 

 

Figure 6: Crack pattern across one span of reinforced concrete beam. Load P=17.5kN. Crack 

pattern from multi-crack concrete material mode 82. 
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Example 5.2.4 

Uniaxial Cycling Elasto-Plastic Damage Analysis 

Keywords 

Damage, Cyclic Loading, Plasticity 

Description 

A bar of elasto-plastic material is subjected to uniaxial compressive/ tensile load cycling with an 

increasing stress level. A damage criterion for the material is specified so that progressive 

degradation of the elastic Young's modulus takes place as the analysis proceeds. The damage 

model due to Oliver [1] is invoked which allows different damage thresholds to be specified for 
tension and compression. 

Discretisation 

A single QPM4 element of length 10mm and unit width and depth is used to represent the bar. 

Material properties 

Young’s modulus,  E = 2E3 N/mm2 

Poisson’s ratio,   = 0.0 

Initial yield stress,  yo  = 22 N/mm2 

Hardening gradient, h = 100 N/mm2 

Damage property data (Oliver): 

Initial damage threshold, r0 = 0.44 

Constant,   A = 0.44 

Ratio of initial stresses that cause damage in compression/tension = 




d

c

d

t
n  2  

Boundary conditions 

The boundary conditions are such that lateral displacements are unrestrained while longitudinal 
displacements are fixed at one end, Figure 1. 

Loading 

Cyclic vertical compressive/tensile load at the free end, Figure 1. 
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Theory 

The damage parameter, d, for the Oliver [1] model is given by: 

0 t

t 0

r r
d 1 e x p A 1

r r

  
     

   

    

 (0.0.74) 

Using the specified damage properties this equation becomes: 

t

t

r0 .4 4
d 1 ex p 0 .4 4 1

r 0 .4 4

  
    

  

    (0.0.75) 

For this example, the complementary energy norm, rt , reduces to: 

1 2
2

yy

tr
E

 
  
 
 

      (0.0.76) 

The parameter, , is defined as: 

1

n

  
   

 

      (0.0.77) 

where for this example: 

y y

y y



 



 with 
yy yy

yy

yy

( 0 )

0 ( 0 )

    
   

   

  (0.0.78) 

The plastic strain, 
p

yy , is computed using: 

p

yy yo yy h          (0.0.79) 

The axial strain, yy, is then given by: 

yy p

yy yy
E


   


 where  E 1 d E     (0.0.80) 

More information on the damage models available in LUSAS can be found in the LUSAS 
Theory Manual. 

Solution comparison 

Using the above equations strains can be computed for each step of the analysis: 
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Load yy  rt d 
y

p
 

yy  

20 20 1.0 0.447213 0.023202 0.000 0.010238 

22.5 22.5 1.0 0.503115 0.178941 0.005 0.018702 

25 25 1.0 0.559017 0.301322 0.030 0.047888 

27.5 27.5 1.0 0.614919 0.399285 0.055 0.077889 

30 30 1.0 0.670820 0.479282 0.080 0.108806 

32.5 32.5 1.0 0.726722 0.545470 0.105 0.140751 

35 35 1.0 0.782624 0.600883 0.130 0.173847 

37.5 37.5 1.0 0.838525 0.647744 0.155 0.208228 

40 40 1.0 0.894427 0.687714 0.180 0.244044 

42.5 42.5 1.0 0.950329 0.722063 0.205 0.281456 

45 45 1.0 1.006230 0.751776 0.230 0.320644 

44.9999 49.9999 1.0 1.006230 0.751776 0.230 0.320644 

0 0 1.0 1.006230 0.751776 0.230 0.230000 

-20 -20 0.5 1.006230 0.751776 0.230 0.189714 

-50 -50 0.5 1.006230 0.751776 0.180 0.079285 

-60 -60 0.5 1.006230 0.751776 0.080 -0.040859 

-70 -70 0.5 1.006230 0.751776 -0.020 -0.161001 

-80 -80 0.5 1.006230 0.751776 -0.120 -0.281145 

-90 -90 0.5 1.006230 0.751776 -0.220 -0.401288 

-100 -100 0.5 1.118030 0.800230 -0.320 -0.570288 

-99.9999 -99.999 0.5 1.118030 0.800230 -0.320 -0.570288 

0 0 1.0 1.118030 0.800230 -0.320 -0.320000 

 

The theoretical assumptions for this damage model are such that after the onset of damage, no 

further damage can occur until the maximum stress previously attained is exceeded. The Oliver 

damage model also allows some control over the damage threshold (by specification of the n 

parameter), depending on whether the material is in tension or compression. For this example, it 

can be seen from the table that the damage parameter remains constant between loads of -20 and 

-90 as a result of specifying n=2. The results for the LUSAS analysis reproduce these values 
exactly and are plotted in Figure 2. 

References 

1. Oliver, J., Cervera, M., Oller, S. and Lubliner, J. Isotropic damage models and smeared 

crack analysis of concrete. Computer Aided Analysis and Design of Concrete Structures, 
Edited by, Bicanic, N. and Mang, H., Vol. 2, 4th-6th April 1990. 
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Input Data 

X05D24A.DAT 

 

Figure 1.  Supports and Loading condition 

 

 

Figure 2.  Stress v total strain - Sky components. 
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Example 5.2.5 

Thermally Induced Creep Of Internally Pressurised Hollow 

Sphere 

Keywords 

Implicit, Creep, Viscous 

Description 

An internally pressurised sphere with a linear variation of temperature through its thickness is 

allowed to creep over a period of 1010. The creep is defined using a variant of the eigth parameter 
law. 

Finite Element Model 

10 axisymmetric elements are used to model the through thickness variation. 

Geometry and loads 

Internal radius  200 

External radius  500 

 

Face load of 30 

Temperature gradient along sphere radius of T=333(1+100/R) 
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Material properties 

Young's modulus = 10000 

Poisson's ratio = 0.25 

Eight parameter law  (specialised form of) 

 


A q t e
n m h T( / )

 

where  A=3E-6,  n=5.5,  m=1,  h=12500,  T=temperature 

Boundary conditions 

Free to displace along radius of centre of sphere 

Solution Comparison 

The effective stresses at time 1010  at various radii are compared below with the NAFEMs target 

solution. The solution is fully automatic with the initial step size evaluated from the first (static) 

stress solution. Further time steps are calculated using criterion which limit the change in creep 
strain across an increment. Figure 1 shows the variation of stresses with respect to time. 

Radius NAFEMS LUSAS 

205 11.47 11.54 

350 17.61 17.81 

495 21.10 21.07 

References 

1. NAFEMS selected benchmarks for material non-linearity (to be published) 

Input Data 

X05D25A.DAT 
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Example 5.2.6 

 Combined Plasticity And Creep Of Bar 

Keywords 

Implicit, Creep, Viscous, Plastic 

Description 

A bar is loaded from yield to a value of twice the initial yield stress and then unloaded back to 

the original yield stress. The unloading takes place in the elastic regime so that there is no 

additional plastic flow. However, the bar continues to creep since it is subject to stress. 

Finite Element Model 

A single plane stress element 

Geometry 

Bar length           = 10 

cross sectional area =  1 

 

            P 

 

Material properties 

Young's modulus  = 2x105 

Poisson's ratio = 0.3 

Hardening = 100 

Power hardening law - time dependent form   A t
N m

 

where    A=1E-7,  n=5,  m=0.5 
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Boundary Conditions 

The element is restrained at one end in the axial direction, but it is allowed to pull-in to relieve 

stress in the orthogonal direction. 

Solution Comparison 

Since the area of the bar is unity, the uniaxial stress s is equivalent to the applied load P. The 

stress varies linearly, initially increasing to twice the yield stress over a period of 1 second and 

then reducing back to the yield stress in 0.5 seconds. 

   P t 2 0 t 1     0 t 1     

 (0.0.81) 

   P t 4 0 4 0 t 1    1 t 1 .5     

and the stress history is therefore, 

  o 1t t       0 t 1     

 (0.0.82) 

  1 2t t       1 t 1 .5    (0.0.83) 

Where 1 o 1      since t 1  and assuming 1  is constant. 

Considering the period for 0<t<1, the rate of creep strain is 

 
c n m 1

o 1A m t t


          (0.0.84) 

and integrating with respect to time, gives the creep strain as, 

 
t

c n m 1

o 1
0

A m t t d t


         (0.0.85) 

The plastic strain is evaluated from the strain hardening definition as, 

p 1 t

h


        (0.0.86) 

and the elastic strain is 

e o 1 t

E

  
        (0.0.87) 

Summing the components, the total strain over the period 0<t<1 is then, 
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T e p c

1 2 5 4 3 2 2 4 4 5 50 1 5 51 1
0 0 1 0 1 0 1 13 9 1 1

t t
= A t t 2 t t t

E h

      

   
              
 

 (0.0.88) 

 

For the period  1<t<1.5 the prescribed stresses decrease. The new creep strain rate is then 

 
5c 1 2

1 2A t 1 t


      
 

    (0.0.89) 

For simplicity the rate of decrease of stress 2  has been set to the minus of the maximum 

attained stress 1 . Integrating the creep strain over the period 1<t<1.5 yields, 

c 5 1 2 2 3 4 5 5

2 1 1

8 0 4 0 1 0 1 1 1 5 3 1
A t 3 2 t 1 6 t t t t A

3 7 9 1 1 6 9 3

 
         

 
 

 (0.0.90) 

and the total strain for the period  1<t<1.5 is, 

 1 2T 2 c1
o 2

t 1 4 6 7 2
= A

E h 6 9 3

    
         (0.0.91) 

Note: the solution produces strains of over 3 which are invalid in the context of linear 

deformations. However, the purpose of the example is simply to demonstrate the integration of 

combined creep and plastic material behaviour and to compare with an analytical solution 
derived from the same assumptions as the implemented theory. 

The LUSAS results are shown in Figure 1 and compare exactly with those computed by 
equations (0.0.88) and (0.0.91). 

Input Data 

X05D26A.DAT 
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Example 5.2.7 

 Extension Of A Double Notched Specimen 

Keywords 

Incompatible Elements, Plasticity 

Description 

A notched bar is stretched until the limiting load, following yield, is attained. Standard 

(compatible) displacement based elements produce a load- deflection curve which increases 

monotonically beyond the limit load, whilst the incompatible elements are able to capture the 
true behaviour. 

Finite Element Model 

A rectangular mesh of 15*5 elements models one quarter of the structure. The bar is considered 

to be in a state of plane strain. 

Geometry 

Length 30.0 

Width 10.0 
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Material properties 

Young’s modulus 70.0  

Poisson’s ratio 0.3 

Yield stress 0.243 

Hardening 0.0 

 

Boundary Conditions 

Symmetry boundary conditions are applied along the edges. The notch is modelled by freeing the 
displacements along its length. 

Solution Comparison 

The theoretical limit load is  5.94 x yield stress = 1.4434. Two solutions are illustrated, one for 

the standard displacement elements and the other for the incompatible elements. The applied load 

is calculated by the summation of the reactions along the extended edge. From symmetry, the 
expected load is half that calculated for the full plate. 

The initial mesh and support conditions are shown in the top diagram of figure 1. The two other 

diagrams of figure 1 shown the distribution of yield and the equivalent von Mises stress at the 

end of the final loadstep, for the incompatible elements. Figure 2 displays the corresponding 

yield and equivalent stress plots for the standard displacement elements. The yield zone for the 

standard elements is less localised than that of the incompatible elements and is capable of 
sustaining a larger load as is shown in figure 3. 

References 

1. Simo J.C., Rifai, M.S., A class of mixed assume strain methods and the method of 
incompatible modes,Int. J. Num. Meth. Eng., 31, 385-405, 1991. 

Input Data 

X05D27A.DAT 

The data file for the standard elements is obtained by substituting the element type QPN4 for 

QPN4M in the above data file. 
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Figure 1  Failure of Notched Bar (1) 

 

 

Figure 2   Failure of Notched Bar (2) 
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Figure 3  Load/Displacement Behaviour of Notched Bar
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Example 5.2.8 

Plane Strain Limit Load Analysis of Granular Material 

Keywords 

Elasto-Plastic, Volumetric Crushing, Drucker-Prager, Mohr-Coulomb 

Description 

A strip of granular material compressed by a rigid footing is analysed to determine its limit load. 
Details of the problem can be found in Figure 9.  

 

8 .8 4  m  8 .8 4  m  8 .8 4  m  8 .8 4  m  

3 .6 6  m  

1 .5 2  m  1 .5 2  m  
R ig id  fo o tin g  

S tr ip  o f  g ra n u la r  m a te r ia l  

R e g io n  in  w h ic h  s ig n if ic a n t 

p la s tic  d e fo rm a tio n  o c c u rs  

Figure 9: Dimensions of the granular material for which the limit load analysis is carried out. The 

dark shaded area is considered the region where significant plastic deformation takes place. 

The strip of granular material is in fact considered to be infinitely long, so the vertical boundaries 

at the edge of the specimen have been positioned such that their presence has a minimal effect on 
the results. 

The performance of three material models is examined – the Drucker-Prager material model, the 
Mohr-Coulomb material model and the Volumetric Crushing material model. 

Discretisation 

Utilising symmetry about the centre plane, only one half of the problem in Figure 9 is meshed. 

The strip itself is modelled using quadratic plane strain elements, QPN8. The finite element mesh 

can be found in Figure 10. 
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Figure 10: Finite element mesh for the granular material limit load analysis, showing supports 

and loading. 

Material properties 

The material properties of the strip are defined using the Drucker-Prager material model in one 

test, the Mohr-Coulomb material model in a second test and the Volumetric Crushing material 
model in a third. Table 1 gives the Mohr-Coulomb material properties for this test. 

Table 1: Mohr-Coulomb material properties for granular material limit load verification test. 

Young’s modulus, E Poisson’s ratio,  Angle of friction,  Cohesion, c 

206.8 MPa 0.3 20o 68.94 KPa 

 

Mohr-Coulomb material properties 

The Mohr-Coulomb material properties can be found in Table 1. 

Drucker-Prager material properties 

In order to determine the appropriate Drucker-Prager parameters to use in this test it is useful at 

this stage to probe the relationship between the Drucker-Prager and Mohr-Coulomb material 

models. 

The general form of the Drucker-Prager yield function is given by 

F     J   k1 2 , b g   I     (0.0.92) 

where I1  is the first stress invariant, J 2  is the second stress invariant and   and k  are 

constants that define the yield surface.  

I       1 x x y y zz          (0.0.93) 

J   
1

2
                2 x x m y y m z z m x y y z z x     

L
NM

O
QP

          b g d i b g2 2 2

 (0.0.94) 

Supports

S
u
p
p
o
rts

Prescribed displacement loading
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where  m 1  
1

3
I       

 (0.0.95) 

The LUSAS Drucker-Prager material model has its yield criteria coincide with the outer apices 
of the Mohr-Coulomb material model (see Figure 11). In this case, the yield function is given by 

F   

  

I   J   

  
1 2 ,

s in

s in

c o s

s in









b g

b g b g




 



2

3 3

6

3 3

c  (0.0.96) 

where   is the angle of friction and c  is the cohesion. 

   

    

D ru c k e r -P ra g e r  

o u te r  c o n e  

M o h r-C o u lo m b  
D ru c k e r -P ra g e r  

in n e r  c o n e  

 

Figure 11: The two forms of the Drucker-Prager material model. The outer cone coincides with 

the outer apices of the Mohr-Coulomb model while the inner cone coincides with the inner apices 

of the Mohr-Coulomb model. 

There is another form of the Drucker-Prager material model that coincides with the inner apices 
of the Mohr-Coulomb model (Figure 11). This given by 

F   

  

I   J   

  
1 2 ,

s in

s in

c o s

s in









b g

b g b g




 



2

3 3

6

3 3

c  (0.0.97) 

It is possible to modify the outer Drucker-Prager cone in Figure 11 so that it coincides with the 

inner apices of the Mohr-Coulomb model. This is achieved by modifying the angle of friction 

and the cohesion used in (5) so that yield function for the outer cone form simulates the inner 

form.  

The first step is to compute values for   and k  that represent the inner cone. Comparing the 

inner cone formulation in (6) with the more general form in (1), leads to 





in t   

  





2

3 3

s in

s inb g
 and k   

  
in t 



6

3 3

c o s

s in



b g
c  (0.0.98) 
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Next, by comparing the outer cone formulation in (5) with (1),  in t  and k in t  can then be used 

to derive an angle of friction and a cohesion that simulates the inner cone. They are given by  

s in   
3

2   

in t

in t










3

3
     (0.0.99) 

c   
k 3   s in

6 co s

in t


3 



b g
     (0.0.100) 

In the computation of the cohesion in (9) the value of   computed from (8) is used.  

Applying this technique to the problem being investigated here, the angle of friction and the 

cohesion that will simulate the inner cone form of the Drucker-Prager material model, using the 
data in Table 1, are 

   1 6 .2  and c  54  927  P a    (0.0.101) 

It can be seen that the difference between the material properties in Table 1 and those in equation 

(10) is quite significant. 

Having shown how the LUSAS Drucker-Prager yield function can be adjusted to take different 

forms, we can proceed to make a further adjustment for plane strain. A proposed modification, 
corresponding to an adjustment of failure loads, is based on the following. 




  s in
3

  and k   c  cos     (0.0.102) 

Using (1), (5) and (11), the angle of friction and cohesion that should be used in the LUSAS 
Drucker-Prager model for plane strain are 

   1 5 .9
o  and c  53  007  P a    (0.0.103) 

A summary of material properties to use with the Drucker-Prager material model is given in 
Table 2. 

Table 2: Material properties to be used with the LUSAS Drucker-Prager material model. 

 Young’s 
modulus, E 

Poisson’s ratio, 



Angle of 

friction, 

Cohesion, c 

Outer cone form 206.8 MPa 0.3 20o 68 940 Pa 

Inner cone form 206.8 MPa 0.3 16.2o 54 927 Pa 

Proposed plane 

strain 
206.8 MPa 0.3 15.9o 53 007 Pa 
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Volumetric crushing material properties 

The Volumetric Crushing material properties are computed to match the Drucker-Prager 
properties. The yield function for the Volumetric Crushing material model is given by 

  
1

2
  a   a p  a p0 1 2   S LS

T 2e j    (0.0.104) 

where S  is the deviatoric stress vector, L  is given by 

L   

L

N

M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

   (0.0.105) 

p  is the volumetric pressure and a 0 , a 1 , a 2  are user defined constants. If the following 

applies 

 
a   a p   a p   0 1 2 o  

2


     (0.0.106) 

then the yield function in (13) resembles the basic von Mises yield criterion, where  o  is the 

uniaxial yield stress. If we also assume infinitesimal strains then the volumetric pressure, p , is 

defined as 

p      xx yy zz   1
3
  d i     (0.0.107) 

When both (15) and (16) apply the Volumetric Crushing yield criteria can be re-expressed as 

J   3 a   a I   a I   2
1

9 0 1 1 2 1

2
   e j 0     (0.0.108) 

Taking the square of (1) we have for the Drucker-Prager yield function 

 J   k   2 k I   I   02 1 1

2
   

2 2
 e j     (0.0.109) 

By equating the Volumetric Crushing yield function in (17) with the squared Drucker-Prager 

yield function in (18) the constants for the Volumetric Crushing model are given by 

a   k0 
2 , a   6 k1   , a   92  

2   (0.0.110) 

If the inner cone form of the Drucker-Prager model is to be matched, then (6) should be used to 

compute   and k  while if the plane strain form is to be matched then (11) should be used. 
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The Volumetric Crushing constants can then be computed from (19) using these values of   

and k . 

The remaining material properties for the Volumetric Crushing model are 

 Bulk modulus : K   
E

3 1 2
  1 .7 2 5   1 0  P a


 

b g
8

 

 Shear modulus : G   
E

2 1
  7 .9 6 2   1 0  P a


 

b g
7

 

The tension cut off, p c , is defined as a large number, 1   1 0  P a
9

. 

A summary of the material properties for the Volumetric Crushing material model can be found 

in Table 3. To enable a comparison with the Drucker-Prager material model, the pressure-

logarithm of relative volume curve is defined as linear, see Table 3: Material properties for the 

Volumetric Crushing material model that simulate the plane strain adjusted Drucker-Prager 

material model. 

 

Table 3: Material properties for the Volumetric Crushing material model that simulate the plane 

strain adjusted Drucker-Prager material model. 

Drucker-
Prager 
match 

Bulk 
Modulus, 

K 

Shear 
Modulus, 

G
Constant 

a0
Constant 

a1 
Constant 

a2 
Tension 

cut off, pc 

Inner cone 172.5 MPa 79.62 MPa 4.509 GPa 47.61 KPa 0.1257 1.0 GPa 

Plane strain 172.5 MPa 79.62 MPa 4.192 GPa 45.10 KPa 0.1213 1.0 GPa 

 

 

Table 4: Data for the pressure-logarithm of relative volume curve. 

 ln (V/V0) p

Start point 0 0 

End point -1 x 10 -4 17.25 KPa 

 

Loading 

A compressive prescribed displacement is applied to the node at the centre of the rigid footing in 

the vertical direction. This is shown on the mesh in Figure 10. This vertical displacement is then 

linked to remainder of the nodes underneath the footing via constraint equations. In this way 
perfect roughness is ensured. A total prescribed displacement of 1.25m is applied. 
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LUSAS Results 

Figure 12 shows results that are obtained from the Mohr-Coulomb, the Drucker-Prager and the 

Volumetric Crushing material models. On the same graph are limit analysis solutions from 

Terzaghi and Prandtl. The graph shows that all three material models have produced limit loads 

that lie within or are close to the boundaries of the two analytical solutions. The models have 
therefore returned acceptable limit loads. 

In this test the outer cone form of the Drucker-Prager model produced a limit load of 

approximately 2.5 MPa. Both the inner cone form and the plane strain adjusted form produce 

results that are much closer to the analytical solutions. Since the outer cone form represents 

triaxial compression this illustrates that care is needed in identifying the dominant stress state and 
adjusting the Drucker-Prager material parameters accordingly.  

Comparing the adjusted LUSAS Drucker-Prager results with those from the LUSAS Mohr-

Coulomb model shows that the plane strain adjustment has brought the results closer to the 

Mohr-Coulomb results, but indicates that adjustment could be refined further for this particular 

problem, However, since the stress combination in this test is not simple, further refinement may 
not be feasible or straightforward.  

Considering the Volumetric Crushing material model, results from both the inner cone and the 

plane strain matched models lie closer to the Mohr-Coulomb results than the Drucker-Prager 

results do. However, the Volumetric Crushing model produces results that are softer than both 

models. The latter is due to the non-associative flow rule that the Volumetric Crushing model 
uses. 

Input Data  

Drucker-Prager  : X05D28E.DAT, X05D28F.DAT, X05D28G.DAT 

Mohr-Coulomb  : X05D28H.DAT 

Volumetric crushing : X05D28I.DAT, X05D28J.DAT 
 

References 

1. A. Mouazen, M. Nemenyi. ‘Tillage tool design by the finite element method: Part1. Finite 

element modelling of soil plastic behaviour’. J. Agric. Engng. Res, Volume 72, pp.37-51 
(1999).  

2. D.R.J. Owen, E. Hinton . ‘Finite elements in plasticity: Theory and Practice’. Pineridge 
Press Limited, Swansea, UK. (1980). 

3. G. Duffett, G. Jelinc, P. Lyons. ‘A study of the material models in LUSAS for the analysis 

of geotechnical materials’. In Computational Plasticity: Fundamentals and Applications, 

Barcelona 1995, Editors D.R.J. Owen, E. Onate. Pineridge Press Limited, Swansea, UK. 

(1995). 

4. Theory Manual, LUSAS v13. LUSAS, Kingston-upon-Thames, UK (2001). 

5. LUSAS internal report SDR/LUSAS/061. ‘Crushable foam material model’, LUSAS, 

Kingston-upon-Thames, UK (1994). 

6. LUSAS internal report SDR/LUSAS/255a. ‘Verification of the LUSAS Drucker-Prager 
material model’, LUSAS, Kingston-upon-Thames, UK (2001). 
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Figure 12: Variation of pressure underneath the footing against applied displacement. Volumetric 

crushing key: ps – matched with plane strain Drucker-Prager, inner – matched with Drucker-

Prager inner cone. 
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Example 5.2.9 

Plane Strain Analysis Of Slope Stability Limit 

Keywords 

Elasto-Plastic, Mohr-Coulomb, Associative/non-associative Flow 

Description 

In this analysis gravity is increased in value until the slope collapses. The larger the final value 

above the actual value of gravity the safer the slope. The problem is modelled using plane strain 

elements. The analysis is run twice, once using associative plastic flow properties and then for 

non-associative plastic flow.The non-symmetric solver is used for the non-associative flow 
solution. 

 

Figure 13: Dimensions of slope. 

The strip of granular material is in fact considered to be infinitely long, so the vertical boundaries 

at the edge of the specimen have been positioned such that their presence has a minimal effect on 
the results. 

Discretisation 

The strip itself is modelled using quadratic plane strain elements, QPN8. The finite element mesh 

can be found in Figure 14. 
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Figure 13: Finite element mesh showing supports. 

Material properties 

The material properties of the strip are defined using the Modified Mohr-Coulomb material 
model. Table 1 gives the material properties for this test. 

Table 5: Modified Mohr-Coulomb material properties for granular material limit load 

verification test. 

Young’s modulus, E Poisson’s ratio,  Angle of friction,   Cohesion, c 

2x104 KPa 0.49 20° 50 KPa 

 

Anglee of dilation   Density     

Test 1. 20° 

Test 2. 10° 
2039 Kg/m3   

 

Loading 

The soil weight due to gravity is increased using the arclength method until the soil fails. 

LUSAS Results 

If the slope angle   is greater than the angle of internal friction   the slope will collapse when 

the ratio N reaches a critical value 
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 (5.2.39) 

where h is the slope height and   the specific weight of the soil 

     (5.2.40) 

and   is the soil density,  g the gravitational acceleration. The critical value of N, for the present 

geometry is tabulated [1] as 

         (5.2.41) 

The load factor    applied to gravitational acceleration at collapse is therefore 

   
  

 
 

   

   
       (5.2.42) 

Figure 15 shows the increase in the gravity load factor until failure. The displacement plotted is 
for the total displacement at point A as shown on figure 13. 

Both the associative and non-associative material models slightly overpredict the ultimate failure 
load.  

The contours of effective stress at failure are shown in figure 16. 

 

Figure 15 Load v. total displacement at point A 
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Figure 16 Contours of effective stress at failure (Associative flow) 

 

Input Data  

Associative flow        : X05D29A.DAT 

Non-associatve flow                : X05D29B.DAT 
 

References 

1 de Souza Neto EA, Peric D. and Owen DRJ, Computational Methods  for Plasticity, 
John Wiley and Sons Ltd, 2008. 
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Example 5.4.1 

Buried Pipe With Soil-Pipe Interface Modelled Using 3d 

Interface Model 

Keywords 

Soil Structure Interaction, Interface Model, Elasto-plastic, Friction  

Description  

This example (figure 1) consists of an elastic pipe buried in a homogeneous and elastic soil.  The 

interface between the pipe and soil is modelled using an elasto-plastic interface material.  Three 
cases of interface friction are considered:- 

   (i) frictionless slip (tano = 0.001), 

  (ii) stick (tano = 2), 

 (iii) frictional slip (tano = 0.25). 

Discretisation  

The discretisation (figure 2) is similar to that used in [1].  HX20 elements are used to discretise 
the pipe, soil and interface.   The model is totally restrained from moving in the z-direction. 

Theory  

The interaction between the soil and pipe is governed by a frictional type law i.e. bond between 

the pipe and soil is maintained by a frictional force and once this is overcome debonding and slip 

will occur.  This friction/slip behaviour is modelled using an elasto-plastic interface model, with 
yielding (slip) defined using the Mohr-Coulomb criterion [2] defined as 

c tan           (0.0.111) 

where  maximum shear stress, 

 stress normal to the soil/pipe interface, 

c   cohesion, 

 friction angle. 

Comparison  

Figure 3 is the deformed mesh for the frictionless slip analysis. A significant amount of sliding is 
visible in the interface. Figure 4 shows the shear stress distribution along the pipe-soil interface. 
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References  

1. DESAI,C.S., ZAMAN,M.M., LIGHTNER,J.G. and SIRIWARDANE,H.J. Thin-layer 

element for interfaces and joints. Int. J. Num. Anal. Meth. Geomech., Vol.8, 19-43, 1984. 

2. OWEN,D.R.J. and HINTON,E. Finite elements in plasticity: theory and practice. Pineridge 
Press, Swansea, UK, 1980. 

3. KATONA,M.G. A simple contact-friction interface element with applications to buried 
culverts. Int. J. Num. Anal. Meth. Geomech., Vol.7, 371-384, 1983. 

Input data 

X05D41A.DAT 

 

 

Figure 1  Buried Pipe Example 
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Figure 2 Finite Element Mesh 

 

 

Figure 3  Deformed Mesh Showing Sliding on Interface 
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Example 5.4.2  

Elasto-Plastic Analysis of a Thick Porous Cylinder Under 

Internal Pressure 

Keywords 

Cylinder, Drained, Plasticity, Porous, Undrained 

Description 

An infinitely long thick porous cylinder of internal and external radii 100 mm and 200 mm 
respectively is subjected to an increasing internal pressure. 

Geometry, boundary and loading conditions 

The cylinder is idealised into both plane strain and 3D problems.  The global Z axis is coincident 

with the axis of the cylinder.  In the 3D analysis, one symmetric quarter of the structure with a 

length of 80mm is considered, as shown in Figure 1; boundary and loading conditions are also 

shown in the figure.  Symmetric conditions are specified on the straight boundaries; the curved 

internal surface (which has a pressure loading) and external surface are unrestrained.  The plane 

strain idealisation is a projection of the 3D idealisation in the Z-direction. 

Discretisation 

The 3D finite element discretisation with 120 hexahedral (HX20P) elements is shown in Figure 

2. In the plane strain analysis, 30 quadrilateral (QPN8P) elements are used without discretisation 

in the Z-direction.  

Material properties 

The nonlinear material behaviour is modelled using a von Mises yield criterion and a perfectly 
plastic post-yield response.  The material properties are as follows: 

Fully drained analysis: 

Young’s modulus   E = 21000dN/mm2 

Poisson’s ratio    = 0.3 

Yield stress   ys = 24dN/mm2 
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Undrained analysis:  

Young’s modulus of the soil skeleton E= 17830.2 dN/mm2 

Poisson’s ratio of the soil skeleton  = 0.1038 

Bulk modulus of the pore fluid Kw = 104 

Porosity      = 1  

Theory 

Under fully drained conditions, geotechnical elements give identical results to their counterpart 

continuum elements using drained properties. Furthermore, following the principle of effective 

stress, if an undrained analysis is performed with soil and pore fluid properties being chosen so 

as to correspond to the drained material parameters, the obtained displacement and strain results 

(but not stresses or pore pressures) are comparable to those obtained by the fully drained 

analysis. Slight difference may occur due to a two-field (displacement and pressure) interpolation 
employed in the undrained analysis. 

With the increase of the applied internal pressure, the cylinder deforms elastically until an 

internal pressure of approximately 12dN/mm2 is reached; beyond this pressure level the cylinder 

behaves elasto-plastically. The spread of plastic deformation through the thickness of the 

cylinder can be seen from the distribution of the hoop stress component with increasing load in 
5.2.2. 

LUSAS Results 

For the current materially non-linear, but geometrically linear analysis, the progressive radial 
displacements of the internal circumference against the internal pressure are: 

Internal pressure 8 10 12 14 16 18 

 

 

ur 

Target 
QPN8 0.0721 0.0901 0.1116 0.1399 0.1823 0.2566 

HX20 0.0726 0.0908 0.1115 0.1398 0.1828  0.2622 

LUSAS 

fully drained 

QPN8P 0.0721       0.0901 0.1116 0.1399       0.1823 0.2566 

KX20P 0.0726 0.0908 0.1115 0.1398 0.1828  0.2622 

LUSAS 

undrained 

QPN8P 0.0721      0.0901 0.1116 0.1399  0.1821 0.2565 

KX20P 0.0726 0.0908 0.1115 0.1398 0.1826 0.2623 

 

From the above table, 3D drained/undrained results agree favourably with 2D analysis. However, 

the 3D analysis reproduces better axisymmetry of the problem than the plane strain analysis. The 

following table gives the pore pressure on the inner and outer faces of the cylinder obtained by 
the 3D undrained analysis: 
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Internal pressure 8 10 12 14 16 18 

Pore pressure 
inner -1.3206 -1.6508 -1.3847 -0.0732 0.9772 2.1293 

outer -1.3206 -1.6508 -2.0188 -2.4936 -3.1749 -4.3960 

 

As the deformation is small, similar results have been obtained with the consideration of 

geometric nonlinearity. A difference in pore pressure between the inner and outer surfaces can be 
seen at an internal pressure of 12 when the material has yielded. 

References 

1. Owen, D.R.J., Hinton, E. Finite Elements in Plasticity: Theory and Practice Publisher. 

Pineridge Press Ltd. Swansea, U.K. 1980. ISBN 0-906674-05-2 

2. Zienkiewicz, O.C... The Finite Element Method, 3rd Edition. Publisher. McGraw Hill Ltd, 
London, U.K. 1977. ISBN 0-07-084072-5 

3. FEAL internal Report 'Plane Strain', FEAL708, Finite Element Analysis Ltd. Forge House, 
66 High Street, Kingston Upon Thames, Surrey KT1 1HN. 1986. 

4. Hodge, P.G., White, G.N. A quantitative comparison of flow and deformation theories of 
plasticity. J. Applied Engineering Mechanics, Vol.17, 180-184, 1950. 

Input Data 

X05D42A.DAT  (Plane strain) 

X05D42B.DAT  (3D continuum) 

Note: The load incrementation may alternatively be defined automatically using NONLINEAR 
CONTROL INCREMENTATION and TERMINATION cards as in 5.2.2. 

 

Figure 1 

 

x 

y z 

100 
100 

free boundary 

w = 0, p free 

v = 0, p free 

u = 0, p free 

Internal pressure,     p 

free 100 



Verification Manual 

218 

 

Figure 2 
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Example 5.5.1 

Cylindrical Shell Subject To Self Weight 

Keywords  

Anisotropic, Elasto-Plastic 

Description  

This example (figure 1) consists of a cylindrical shell subjected to a uniformly distributed load 

over the outer surface. The shell has a length of 7.6m, a radius of 7.6m and a thickness of 
0.076m. The angle subtended by the arc of the shell at the centre of the circle is 80 degrees. 

Discretisation  

Because of symmetry conditions only a quarter of the shell is modelled. A 4*4 mesh of QSL8 
(Semiloof shell) elements are used to discretise the shell; this is shown is figure 1. 

Material properties 

This problem is geometrically linear but the non-linear Hill criterion for anisotropic plasticity is 

used to model the material. The following values are used to describe the yield surface for each 
of the anisotropic property definitions: 

1. Isotropic 

1 1 2 2 3 3            (0.0.112) 

1 2 2 3 1 3

1

3

            (0.0.113) 

2. Anisotropic 

1 1 2         (0.0.114) 

2 2 3 3           (0.0.115) 

1 2 2 3 1 3

1

3

            (0.0.116) 



Verification Manual 

220 

3. Anisotropic 

1 1        (0.0.117) 

2 2 2         (0.0.118) 

3 3        (0.0.119) 

1 2 2 3 1 3

1

3

            (0.0.120) 

Here   is the reference yield stress (=4200 kN/m2). Note that even though the shell formulation 

is based on the plane stress hypothesis, the complete yield surface must be defined for the 

material. No hardening is present in this problem. The Elastic modulus, E = 21E6 kN/m2 and a 
Poisson's ratio of zero are used to define the elastic behaviour of the material. 

Comparison  

Figure 2 shows the load-displacement curves at the point A. These results agree exactly with the 

results in the reference solution [1]. It can be seen that anisotropic properties allow a much 
higher limiting load to be sustained (an increase of approximately 25%). 

References  

1. De BORST, R. and FEENSTRA, P.H. Studies in Anisotropic Plasticity with Reference to 
the Hill Criterion. Int. J. Num. Meth. Eng., v29, pp315-336, 1990. 

2. LUSAS Theory Manual. Finite Element Analysis Ltd, Forge House, 66 High Street, 
Kingston-upon-Thames, Surrey, KT1 1HN. 

Input Data  

X05D51A.DAT 

 

 Figure 1   Geometry of cylindrical shell 
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Figure 2   Load-displacement curve at point A of the cylindrical shell for isotropic and anisotropic 

material properties and using 4*4 Semiloof elements. 
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Example 5.6.1 

Axisymmetric analysis of sand under compression 

Keywords 

Elasto-Plastic, Drucker-Prager, Mohr-Coulomb 

Description 

This example is a uniaxial strain test of McCormick Ranch sand, details of which can be found in 

Figure 13. A compressive load is applied to the sand sample and the resulting stress and strain 

characteristics are compared with experimental and other finite element solutions. 

The axisymmetric nature of the model means that the example is analysed as an axisymmetric 
problem. The line of axisymmetry passes through the centre of the sand sample in the y direction.  

 

 

1 2 .7  m m  

A  

A  

 

 

2 5 .4  m m  

1 2 .7  m m  

V e rtic a l p re s c r ib e d  

d is p la c e m e n t a p p lie d  

to  to p  o f  s a m p le  

x  

y  

 

Top view of sand 
sample 

Section through A-A 

Figure 14: The uniaxial McCormick Ranch sand test. Dimensions are not to scale. 
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Discretisation 

The finite element mesh is shown in Figure 14, where only one half of the cross-section 

illustrated in Figure 13 has been modelled. The sand is modelled using four linear enhanced 

strain axisymmetric elements QAX4M.  

 

 

S u p p o r ts  

 

Figure 15: Finite element mesh for the uniaxial McCormick Ranch sand test. A vertical 

compressive prescribed displacement is applied to the top set of nodes. 

Material properties 

The Drucker-Prager and Mohr-Coulomb material models are used to define the material 

properties of the sand. The material properties can be found in Table 5. For the Mohr-Coulomb 
material model, the dilation angle is set to the angle of friction. 

Table 6: Material properties for uniaxial McCormick Ranch sand test. 

Young’s Modulus, E Poisson’s Ratio,  Angle of friction,  Cohesion, c 

689 MPa 0.25 7.15 0.577 MPa 

Loading 

The top face of the sand sample is loaded by a compressive prescribed displacement in the y 

direction. The maximum vertical displacement is 0.8382 mm. In the full experimental test, the 
variation of the prescribed displacement is shown in Figure 15. 
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Figure 16: Variation of applied compressive prescribed displacement for the uniaxial McCormick 

Ranch sand test. The graph shows the full variation used for the experimental results. Only one 

set of results, from [1], is published for the reduction in displacement between increment numbers 

10 and 20, with very specific cap and tension cut off definitions. 

LUSAS Results 

Results for the test can be found Figure 16, which shows the variation of compressive stress with 

compressive strain in the direction of the applied displacement. In addition to the results from the 

LUSAS Drucker-Prager model, the graph also shows experimental results [1,2], results from the 

LUSAS Mohr-Coulomb model and finite element results from [1]. Results in [1] are from a 
Drucker-Prager model that has a cap and a tensions cut off.  

The graph in Figure 16 shows that the results from LUSAS are in good agreement with 

experimental results and results from other FE packages when compressing the sand specimen. 

Both LUSAS Drucker-Prager and Mohr-Coulomb material models produce identical results in 
this test.  

Experimental results have also been generated for the case when the prescribed displacement 

loading is reversed (see Figure 15 between sample numbers 10 and 20), shown by the reduction 

in compressive stress after its peak value. Reference [1] has been able to approximate these 

experimental results with a very specific cap definition and tension cut off.  
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Figure 17: Variation of compressive stress with compressive strain in the direction of the applied 

displacement. Graphs with D values represent results from Drucker-Prager models that have 

caps and tension cut offs, where D is used to define the cap. See [1]. MC – LUSAS Mohr-Coulomb 

material model, DP – LUSAS Drucker-Prager material model. 

 

Input Data  

Drucker-Prager : X05D61A.DAT 
Mohr-Coulomb : X05D61B.DAT 

References  

1. K.-J. Bathe, M.D. Snyder, A.P. Cimento, W.D. Rolph III. ‘On some current procedures and 

difficulties in finite element analysis of elastic-plastic response’. Computers and Structures, 
Volume 12, pp. 607-624 (1980). 

2. F.L. DiMaggio, I.S. Sandler. ‘Material model for granular soils’. Journal of the Engineering 

Mechanics Division ASCE 97, pp. 935-949 (1971). 
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Example 5.7.1 

Single joint test for lateral earth pressure 

Keywords 

Lateral Earth Pressure, Multi-linear 

Description 

This example models lateral earth pressures via a single joint. Displacements or forces are 

applied at one degree of freedom, while other degrees of freedom are fixed. The numerical 

response can then be compared with hand calculations. 

Geometry, Boundary and Loading Conditions 

A single joint is defined by 3 or 4 nodes 

node 1 2 3 4 

Coordinates 2.0, 0.0, 0.0 1.0, 0.0, 0.0 2.0, 1.0, 0.0 2.0, 1.0, -1.0 

For 2D joints, the 3rd node is used to define the local x-direction; for 3D joints, the 3rd and 4th 

nodes are used to define the local x-axis and local xy-plane respectively. 

Node 2 is fixed; the prescribed displacement ux at node 1 in the x-direction varies as   

ti 0.0 1.0 2.0 3.0 10.0 1.50 

f(ti) 0.0 0.016 0.1 0.016 -0.16 -0.2 

where ti and f(ti) are controlling variable time and curve factor, respectively. 

Discretisation 

The joint is discretised into one 2D or 3D joint element. 

Material properties 

The properties for active, at rest and passive lateral earth pressures are 

a = -0.016, fa = 66.6, 0 = 0.0, f0 = 100.0, p = 0.16, fp = 600.0 

in the lateral or horizontal direction; properties in all other directions are zero. 
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The corresponding properties for multi-linear elastic models with number of segments n = 1, 2 
and 3 are 

n f1 1 f2 2 f3 3 f4 4 r 

1 -600.0 -0.16 -66.6 0.016     0 

2 -600.0 -0.16 -100.0 0.0 -66.6 0.016   0 

3 -600.0 -0.16 -350.0 -0.08 -100.0 0.0 -66.6 0.016 0 

LUSAS results 

For all tests the obtained relationship between lateral earth pressure and relative joint 
deformation, as shown in Figure 1, was confirmed by  hand calculations. 

 

Figure 1 

Input data  

x05d71a (JNT3, coupled, n = 3) 

x05d71b (JNT3, uncoupled, n = 2) 

x05d71c (JNT3, coupled (USER), n = 2) 

x05d71d (JNT3, uncoupled (USER), n = 2) 

x05d71e (JNT4, coupled,  n = 2) 

x05d71f (JPH3, coupled, n = 2) 

x05d71g (JAX3, coupled n = 2) 

x05d71h (JF3, coupled, n = 2) 

x05d71i (JXS3, coupled, n = 2) 
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x05d71j (JL43, coupled, n = 2) 

x05d71k (JSH4, coupled, n = 2) 

x05d71l (JL46, coupled, n = 2) 

x05d71m (JSL4, coupled, n = 2) 
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Example 5.7.2 

Plastic hinge with axial force dependent moment-curvature 

relation 

Keywords 

Multi-linear, Plastic Hinge, Pushover 

Description 

This example models a plastic hinge with axial force dependent moment-curvature relationship, 

which is widely used in pushover analysis. Rotations or moments are applied at one degree of 

freedom, while other degrees of freedom are fixed. The numerical response can then be 
compared with hand calculations. 

Geometry, Boundary and Loading Conditions 

A single joint is defined by 3 or 4 nodes 

node 1 2 3 4 

Coordinates 2.0, 0.0, 0.0 1.0, 0.0, 0.0 2.0, 1.0, 0.0 2.0, 1.0, -1.0 

For 2D joints, the 3rd node is used to define the local x-direction; for 3D joints, the 3rd and 4th 

nodes are used to define the local x-axis and local xy-plane respectively. 

Node 2 is fixed; for the JPH3 element the prescribed rotation z at node 1 in the z-direction varies 

as: 

step z 

0 0. 

1 -0.1 

2 -5.0 

3 -5.1 

4 -10. 

5 -10.1 
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For the JSH4 element, the same z is applied at node 1 but in the positive direction. 

Discretisation 

The joint is discretised into one 2D or 3D joint element. 

Material properties 

The following multi-linear moment-curvature relationship is defined in the local direction, which 

corresponds to the global z-direction 

(0.0, 0.0), (0.0, 0.1), (10.0, 5.0), (0.0, 5.1), (5.0, 10.0), (0.0, 10.1), r = 0. at Fax = -10.0 

(0.0, 0.0), (20.0, 0.1), (20.0, 5.0), (10.0, 5.1), (5.0, 10.0), (0.0, 10.1), r = 0. at Fax = 10.0 

Properties in all other directions are zero. 

LUSAS results 

The variation of joint moment with curvature is shown in Figure 1, which is in agreement with 
the prescribed moment-curvature relation at Fax = 0. 

 

Figure 1 

Input data  

x05d72a (JPH3) 

x05d72b (JSH4) 
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Example 5.8.1 

Definition of soil-structure interface material parameters 

from experimental data 

Keywords 

Interface, friction, dilation 

Description 

This example shows how experimental data from a direct shear test may be input into the 

interface element material properties and how by including a variation of cohesion with 

tangential displacement the range of applicability of the interface under different normal stress 
may be extended. Experimental data is taken from tests by Hu and Pu [1]. 

Geometry, Boundary and Loading Conditions 

Two square plane strain QPN4 elements of unit dimension are connected by the interface 

element IPN4. A face load of 400kPa is applied to the upper surface and the blocks are then 
sheared by applying a horizontal displacement to the lower face of the upper block. 

 

Nodes 

3/5 
Nodes 

4/6 

Ps=400kP

a 
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Material properties 

Block Interface 

E 1x106 kPa Kn 2x106 kPa 

ν 0.0 Ps 400 kPa 

  C 0 kPa 

  t 1.0 m 

 

The variation of shear force and dilation with tangential displacement along interface under a 
normal pressure of 400 kPa is given in the table 

Tangential Displacement 

(mm) 
Shear force (kPa) Dilation (mm) 

0.0 0 0 

0.1 150 -*-  

0.25 225 -*- 

0.5 289 0 

0.75 330 -*- 

1.0 352 0.12 

1.25 365 -*- 

1.5 370 0.25 

2.0 367 0.38 

2.5 352 0.51 

3.0 337 0.61 

3.5 319 0.69 

4.0 301 0.76 

4.5 285 0.8 

5.0 272 0.84 

5.5 260 0.85 

6.0 254 0.86 
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6.5 252 0.87 

10.0 252 0.87 

 

A unit thickness of t is used so that the displacements input in the shear stress and dilation curves 
are equal to the physical displacements measured in the shear test.  

Discretisation 

2 QPN4 elements with 1 IPN4 interface element at their junction. 

Experimental Results 

Data from experiments of Hu and Pu showing the shear stress and normal displacement with 

respect to relative tangential displacement are shown in figure 1.  

 

Figure 1. Experimetnal results of direct shear test of Hu and Pu [1] 

 

LUSAS results 

Four runs are made with normal stresses of 50, 100, 200 and 400kPa. Results for each run are 

compared to the experimental data in figure 2. The data for the normal stress of 400kPa exactly 

reproduces the input curve. Peak shear stresses at the lower values of normal stress are not so 
well predicted. 
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Figure 2. Shear stresses at different normal stresses compared with experimental data 

 

We now modify the original solution data by including cohesion. At lower values of normal 

stress the effect of cohesion will have a greater effect on the results than at higher stress so we 

can improve the numerical model by adding a contribution from cohesion.  To do this we plot the 

displacement and experimental results for the 100kPa normal pressure at a larger scale as shown 

in figure 3. We then attribute the difference between the experimental data and the numerical 

solution to cohesion which allows us to define a function to represent the variation of cohesion 
with tangential displacement. 

  

experimental LUSAS 
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Figure 3. Evaluation of cohesion function from difference in numerical solution and 

experimental data 

The resulting function defining the cohesion is shown in figure 4. It is assumed that the cohesion 

is constant until the peak stress is reached at which point it declines rapidly as the displacement 
increases. 

 

Figure 4. Variation of cohesion with tangential displacement 

 

 

The numerical data are given in the following table. 

Difference between experimental data and 
numerical solution 
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Displacement (mm) Cohesion (kPa) Displacement (mm) Cohesion (kPa) 

0.0 31.42 2.66 7.08 

0.83 31.42 3.06 5.33 

1.43 20.25 3.47 4.1 

1.98 12.22 5.04 0 

2.23 9.82 10.0 0 

 

The shear tests are re-run with the new cohesion data. This time there is much better agreement 

at the lower normal pressures as shown in figure 5. 

 

Figure 5. Shear stresses at different normal stresses compared with experimental data 

using improved material data 

 

The dilation is not substantially affected by the normal pressure so the solution for only one 

normal pressure is shown below. 

experimental LUSAS 
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Figure 6. Variation of dilation at different normal stresses 

 

References  

3. Hu L. and Pu J., ‘Testing and modeling of soil-structure interface’, J.Geotech.Geoenv.Eng., 
ASCE, 851-860, (2004)  

Input data  

X05D81.DAT 
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Example 6.3.1 

Materially And Geometrically Nonlinear Encastre Beam 

Keywords 

Nonlinear, Plasticity, Updated Lagrangian Description 

Description 

An encastre beam of length 495mm, width 7.78mm, and depth 7.72mm is subjected to a central 

transverse concentrated load. The loading is applied in increments of 100N.  Figure 1 shows the 
dimensions of the beam, the boundary conditions and the position of the load. 

Discretisation 

Due to its symmetrical nature only a half of the beam is discretised using six curved beam 

elements (BSX4). The nodal positions and element numbers are shown in figure 2. Symmetrical 

and fully restrained boundary conditions are imposed on the central and encastre ends of the 
mesh respectively. 

Modelling 

The geometric nonlinearity is modelled using an updated Lagrangian description. The material 

nonlinear behaviour is modelled using a Von-Mises elasto-plastic model with the following 
material properties: 

Young’s modulus 197.3x103 N/mm2  

Poisson’s ratio 0.3 

Yield stress 248.0 N/mm2 

 

Comparison 

The LUSAS results are presented in the table below, and are compared to the experimental data 
[1] in the following load deflection graph. 

Applied Load, N Central Deflection BSX4 

100 1.059 

200 2.044 

300 2.921 

400 3.758 

500 4.609 
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Applied Load, N Central Deflection BSX4 

600 5.956 

 

References 

1. Campbell, T.I. Charlton, T.M. 'Finite defrmatio of a fully fixed beam comprised of a 

nonlinear material'. Int.Jou.Mechanical Science, Vol.15, No.5, 415-428. 

Input data 

X06D31A.DAT 
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Figure 1. 

 

 

Figure 2. 
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Example 6.5.1 

Elasto-Plastic Buckling Analysis Of A An Imperfect 

Rectangular Panel 

Keywords 

Buckling, Plasticity, Total Lagrangian, Nonlinear, Rectangular Panel 

Description 

Determine the buckling behaviour of an imperfect rectangular panel subject to an in-plane 
compressive loading. 

The dimensions of the panel are as follows: 

side length  a = 875 mm 

side length  b = 1000 mm 

thickness   t = 25 mm 

side length ratio  a/b = 0.875 

aspect ratio  b/t = 40 

In order to initiate a buckling mode of failure the panel is given an out of plane initial 

imperfection in the form of half of a sine wave. The semi sine wave imperfection acts over the 

entire plate surface and has a maximum amplitude of 0.001*b at the centre of the plate. 

0

x y
z d s in s in

a b

    
    

   

     (0.0.121) 

where d0  is the maximum amplitude. 

The panel is subjected to an in-plane compressive loading acting along its long edges. 

Discretisation 

A symmetric quarter of the panel is discretised using a uniform mesh of sixteen Semiloof shell 

(QSL8) elements. The nodal coordinates of the mesh are calculated so as to give an initial sine 
wave imperfection as described by (0.0.121). 

The external edges of the panel are assumed to be simply supported and the internal edges are 
subject to symmetry enforcing boundary conditions. 
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The geometrically nonlinear behaviour of the panel is recorded using a total Lagrangian 
approach. 

The material is assumed to behave in an elasto-plastic manner according to a Von Mises yield 
criterion. The assumed material properties of the panel are as follows: 

Young’s modulus 207.0x103 N/mm2  

Poisson’s ratio 0.3 

Yield stress 247.0 N/mm2 

 

The in-plane compressive loading is applied via prescribed displacements along the long edges 

of the panel. The results quoted were obtained by using the standard frontal equation solver. 

Theory 

The behaviour of the panel is represented in the form of a load versus shortening curve. Previous 

studies [1-2] have established that the lowest critical buckling strength occurs at a side length 
ratio of approximately 0.875. 

The squash load is calculated from the yield stress as 

0 y y

b
P A t 2 4 7 5 0 0 2 5 3 0 8 7 .5 k N

2

 
        

 

 

Similarly the strain at the squash load may be calculated as 

y

0 3

2 4 7 .0
0 .0 0 1 9 3 2

E 2 0 7 x1 0


     

Solution Comparison 

The results obtained from the nonlinear LUSAS analysis are compared to the linear solution and 
to the nonlinear solutions of [1]. 

Increment 

Displacement in 
X direction 

along line Y=0 

Average 
membrane 
strain in X 

direction (x10
3
) 

Strain/squash 

strain (0) 
Load in X 
direction 

Load/squash 
load (P0) 

1 0.261021 0.5966 0.5 1538.96 0.49891 

2 0.417633 0.9548 0.8 2458.54 0.79628 

3 0.469837 1.0739 0.9 2763.93 0.89519 

4 0.522041 1.1932 1.0 3020.4 0.97826 

5 0.574245 1.3124 1.1 3052.56 0.98868 

6 0.626449 1.4317 1.2 3039.9 0.98458 

7 0.678653 1.5512 1.3 3022.94 0.97908 
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Increment 

Displacement in 
X direction 

along line Y=0 

Average 
membrane 
strain in X 

direction (x10
3
) 

Strain/squash 

strain (0) 
Load in X 
direction 

Load/squash 
load (P0) 

8 0.730857 1.6706 1.4 3000.57 0.97184 

9 0.783062 1.7898 1.5 2972.4 0.96272 

10 0.835266 1.9092 1.6 2938.48 0.95173 

11 0.887470 2.0285 1.7 2899.49 0.93911 

12 0.939674 2.1411 1.8 2856.62 0.92522 

 

References 

1. Crisfield, M.A. 'Full range analyses of steel plates and stiffened plating under uniaxial 

compression'. Proc.Inst.Civil Engineers, Part 2, Volume 59, 595-624, (1975) 

2. Irving,D.J. 'Large deformation elasto-plastic finite element analysis of plates, shells and 

tubular joints using Semiloof shell elements', Ph.D. Thesis, Kingston Polytechnic, London, 
U.K. (1982). 

Input data 

X06D51A.DAT 
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Imperfect rectangular panel subject to in-plane compressive load 
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Nonlinear buckling analysis of imperfect rectangular panel (QSL8 elements) 
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Example 6.5.2 

Elasto-Plastic Analysis Of A Clamped Spherical Cap 

Keywords 

Spherical Shell, Total Lagrangian, Nonlinearity, Elasto-Plastic, 

Description 

Determine the load-deflection response of an elasto-plastic spherical shell cap. The geometry of 

the shell is formed from a truncated sphere of radius 4.758 inches. The cap has a base radius of 

0.9 inches, a central height of 0.085895 inches, and a thickness of 0.01576 inches. The shell is 
fully restrained at its base and is subject to an increasing concentrated transverse load at its apex. 

Discretisation 

Due to its doubly symmetric nature only a quarter of the structure is considered in the finite 

element model. The shell is discretised using 32 Semiloof shell (QSL8 and TSL6) elements. The 

initial geometry of the shell is formed using the LUSAS arc facility to generate the truncated 

portion of the sphere. Symmetric boundary conditions (restraint of the loof rotations and the 

appropriate lateral translations) are imposed on the internal boundaries of the mesh, and the 

nodes at the base of the structure are restrained against translation and rotation.  The nonlinear 

material behaviour is modelled by a Von-Mises elasto-plastic model with the following material 
properties: 

Young’s modulus 10.0x106 psi. 

Poisson’s ratio 0.3 

Yield stress 50.0x103 psi. 

 

Theory 

The maximum (apex) deflection for a fully restrained partial sphere is given by the expression 
[1] 

2

2A P R
y

1 6 D





      (0.0.122) 

Where 
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3

2

E t
D

1 2 (1 )



 

      (0.0.123) 

and in which  A2 is tabulated according to the parameter , where 

  
1 4

2 2

2

3 1 h

2

t

 

       (0.0.124) 

For the current sphere geometry the following values apply: 

 = 6.00            A  = 0.161           D = 3.584 

Hence for a total load of 50 lbs the maximum deflection is 

 y = - 0.036189 inches 

Comparison 

The results obtained from the LUSAS analysis are compared to the linear solution [1] and the 

axisymmetric nonlinear analysis of Wood [2,3]. 

Increment 
Number 

Displacement 
at Apex (ins) 

Total Force (lb)  
(Elastic) 

Total Force (lb) 
(Elastoplastic) 

1 0.01 9.50 9.40 

2 0.02 14.15 13.17 

3 0.03 16.94 15.07 

4 0.04 19.38 17.20 

5 0.05 21.98 19.70 

6 0.06 24.84 22.46 

7 0.07 27.90 25.26 

8 0.08 31.04 28.00 

9 0.09 34.09 30.60 

10 0.1 36.86 32.98 

11 0.11 39.18 35.18 

12 0.12 41.06 37.19 

13 0.13 42.86 38.77 

14 0.14 45.80 40.50 

References 

1. Roark,R.J. Young,W.C. 'Formulas for stress and strain : Fifth edition', McGraw-Hill 
Publishing Co. (1975) 
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2. Oliver, J. Onate, E. A total Lagrangian formulation for the geometrically nonlinear analysis 

of structures using finite elements: Part 1: Two dimensional problems: Plate and shell 
structures'. Int. Journ. Num. Mthds. in Eng. Vol.20. 2253-2281, (1981). 

3. Wood,R.D. 'The application of finite element methods to geometrically nonlinear structural 
analysis'. PhD.Thesis C/Ph/20/73, University of Wales, Swansea, U.K. 

Input Data 

Note: Load incrementation may alternatively be defined using the nonlinear control 
INCREMENTATION and TERMINATION control cards. 

X06D52A.DAT 

X06D52B.DAT 
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Load-deflection response for spherical shell under apex point load 
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Example 6.5.3 

Nonlinear Analysis Of A CHS Welded Tubular Joint 

Keywords 

Tubular Joint, Elasto-Plastic, Total Lagrangian Nonlinearity, Semiloof Shell, 

Three Dimensional Solid 

Description 

Determine the relationship between the applied axial load and the penetration for the welded 
tubular joint. 

The X-joint is formed by the right angled intersection of two circular section hollow tubes.  The 

intersection is secured by a fillet weld. The vertical tube is subjected to an axial load such that 

the horizontal tube is progressively penetrated. 

Discretisation 

Owing to the symmetrical nature of the problem only one half and one quarter of the vertical and 
horizontal tubes are modelled respectively. 

The hollow tubes are represented using 8 and 6 noded Semiloof shell (QSL8 and TSL6) 

elements, and the fillet weld by 15 noded solid wedge (PN15) elements. 

The vertical tube is axially compressed by means of prescribed displacement of its top edge. 

The nonlinear behaviour is modelled using a nonlinear Von-Mises elasto-plastic material model, 

and a total Lagrangian geometric description. 

Modelling Hints 

The solid wedge elements are numerically integrated using three pairs of two Gauss points 

located on the quadrilateral faces of the element. The Semiloof shell elements are integrated in 

plane using a 5 point integration rule, and through the thickness by a five point mid-ordinate rule. 

The configuration of the loof node rotations [1] allows the Semiloof shell element to model 

branched or intersecting shell geometries. In this case the intersection of the shell and three 

dimensional elements is achieved by coupling the global translational degrees of freedom of the 

two element types. The loof rotations however are unrestrained. Although theoretically this 

permits a rotation at the tube-weld interface, in practice the small size of the weld and the relative 

stiffness of the connection prevents the occurrence of any serious discretisation error. 
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Theory 

The welded tubular structure has been investigated experimentally and numerically by several 

authors [2-4]. 

The response of the structure is represented by a graph of applied axial load against the branch 

penetration (the branch penetration of the vertical tube is defined as the applied axial 

displacement minus any elastic compressional deformation).  Although somewhat inconclusive, 

the experimental results clearly show a limit point in this response at a load level of 
approximately 90 kN. 

Comparison 

The solution obtained from the LUSAS analysis (tabulated below) is compared to the 
experimental results [2]. 

Increment 
Number 

Prescribed 
Displacement 

Branch 
Penetration 

Axial Load 
(kN) 

1 -1 -0.9491 -54.326 

2 -2 -1.9086 -91.984 

3 -3 -2.8934 -101.263 

4 -4 -3.8908 -100.564 

5 -5 -4.8972 -97.096 

6 -6 -5.8944 -93.02 

7 -7 -6.8987 -89.329 

8 -8 -7.9019 -85.844 

9 -9 -8.9053 -82.676 

10 -10 -9.9084 -80.267 

11 -11 -10.911 -78.134 

12 -12 -11.9131 -76.631 

 

References 

1. Irons, B.M. 'The Semiloof shell element', Finite Elements for thin shells and curved 

members, Eds. Ashwell and Gallagher, Wiley (1976). 

2. Sparrow, K.D. 'Ultimate strength of welded joints in tubular steel structures', Ph.D. Thesis, 
Kingston Polytechnic, London (1979). 

3. Hoadley,P.W. Yura,J.A. 'Ultimate strength of tubular joints subjected to combined loads', 
Department of Civil Engineering, University of Texas at Austin, U.S.A. (1982). 

4. Holsgrove,S.C. Lyons,L.P.R. 'Nonlinear FEM analysis of CHS T/X joints under axial load, 

in plane bending, and out of plane bending', Safety Criterion in the Design of Tubular 
Structures, (1987). 
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Input data 

X06D53A.DAT 

 

Circular hollow section welded tubular joint finite element discretisation 

 

Detail of weld section 
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Deformed configuration (increment 3) magnification 20 

 

 

Load-penetration response for welded circular tube joint 
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Example 6.5.4 

 Large Deflection Of Orthotropic Spherical Cap 

Keywords 

Total Lagrangian, Large Displacement, Hill Yield Criterion 

Description 

A material which has yield stresses in the principle directions of 200, 200 and 100 is applied with 

the weak direction of the material aligning with the hoop, meridional and through thickness 

directions in turn. The orientation of the yield surface produces different responses as the cap 
snaps through under a point load applied at its vertex. 

Finite Element Model 

The cap is restrained to deform axisymmetrically and is modelled by a mesh of 8*1 

axisymmetric shell elements. 

Geometry 

Radius of sphere  = 4.758 

Angle subtended   = 21.8 degrees 

Shell thickness   = 0.01576 

 

Material properties 

Young's modulus in X direction =   1x105 
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Young's modulus in Y direction =   1x105 

Poisson's ratio  = 0.3 

Case 1 

  Yield stress in meridional direction        =  200 

  Yield stress in hoop direction              =  100 

  Yield stress in through-thickness direction =  200 

  Shear yield stress (not used) = 1 

Case 2 

  Yield stress in meridional direction        =  100 

  Yield stress in hoop direction              =  200 

  Yield stress in through-thickness direction =  200 

  Shear yield stress (not used) = 1 

Case 3 

  Yield stress in meridional direction        =  200 

  Yield stress in hoop direction              =  200 

  Yield stress in through-thickness direction =  100 

  Shear yield stress (not used) = 1 

Boundary Conditions 

Symmetry conditions are applied to the apex. The shell is hinged but fixed against translational 

motion. 

Solution Comparison 

Figure 1 illustrates the loading paths for the various material orientations. After buckling, three 

distinctly different responses occur. The apex displacement is detailed in figures 2 to 4, and 
figures 5 to 7 plot the development of the snap through for each case. 

The material is considered to be in a state of plane stress. However, the through thickness yield 

stress is significant and does effect the results as the out-of-plane plastic strain is related to the 

inplane plastic strains, by the constraint that there must be no change of volume following 

inelastic straining. 

It is important when considering orthotropic yield that all three yield stresses in the principle 

directions are known. On the other hand, the shear stresses are de-coupled, both from themselves 
and the direct stresses so only the relevant values need be input. 
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Input Data 

X06D54A.DAT 

X06D54B.DAT 

X06D54C.DAT 

 

The data files for cases 2 and 3 are obtained by changing the yield values on the STRESS 
POTENTIAL data command. 
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Figure 2  Yield stresses in Principle Directions 200 100 200 

 

Figure 3  Yield stresses in Principle Directions 100 200 300 



Example 6.5.4 

259 

 

Figure 4  Yield stresses in Principle Directions 200 200 100 

 

 

Figure 5  Deformation for yield stresses 200 100 200 
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Figure 6  Deformation for yield stresses 100 200 200 

 

 

Figure 7  Deformation for yield stresses 200 200 100 
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Example 7.1.1 

Transient Analysis With Radiation And Convection 

Keywords 

Radiation, Convection, Transient Analysis 

Description 

This problem involves an infinite slab subjected to combined radiation and convection and 

constitutes a two dimensional nonlinear transient analysis. The analysis involves computing 

temperature at the centre (Tc) and surface (Ts) of the slab as a function of time (t). This problem 

was chosen to demonstrate the iterative procedures available in LUSAS for solving problems 
involving nonlinear radiation and convection boundary conditions. 

Discretisation 

The analysis is performed using 20 QFD8 elements to model half the slab, figure 3. 

Geometry 

Infinite slab 

 

Figure 1 

Material properties 

Thermal conductivity K=0.01 Btu/ F.hr.in. 

Specific heat c=0.01 Btu/ F.in3 

Convective heat transfer coefficient hc =0.04 

Emissivity =1.0 

Stefan-Boltzmann's constant =0.118958E-10 Btu/in2 .hr.R4 
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Boundary conditions 

Initial temperature field Ti = 1498.1505 F 

Radiation to environment at T = 0 F at points B anc C 

Convection to environment at T = 0 F at points B and C 

Lusas results 

 t=0.04 hr t=0.66 hr t=3.66 hr 

Ts 681.448 191.611 1.899 

Tc 1497.62 636.820 6.300 

 

 

Figure 2 

References 

1. BATHE,K.J. KHOSHGOFTAAR,M.R. Finite Element Formulation and Solution of 

Nonlinear Heat Transfer J. Nuclear Engineering and Design, Vol.51, 389-901 

2. Haji-Sheikh, A. and Sparrow, E.M., The Solution of Heat Conduction Problems by 
Probability Methods, Trans. ASME, J. Heat Transfer, Vol. 39, pp. 121-131, 1967 

Input data 

X07D11A.DAT 
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Figure 3 
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Example 7.2.1 

Transient Field Analysis Of Heat Conduction Problem 

Keywords 

Transient Field Analysis, Heat, Conduction 

Description 

Determine the temperature distribution with time along an insulated bar, initially at zero degrees 
C, due to a unit temperature rise at one end (see Figure 1). 

Discretisation 

Model the bar using eight QFD4 plane field elements (see Figure 1). 

Geometry 

The geometry of the bar is shown in Figure 1. 

Material properties 

Coefficient of thermal conductivity     = 1.0 J/sec.m. C 

Coefficient of specific heat            = 1.0 J/m3 . C 

This value is computed from the product of the specific heat and the density which are 

          Specific heat                           = 1.0 J/kg. C 

          Density                                 = 1.0 kg/m3 

          Coefficient of convection heat transfer = 0.0 J/m2 .sec. C 

Boundary conditions 

The left-hand end of the bar, nodes 1 and 10, are restrained to remain at unit temperature. The 
top, bottom and right-hand surfaces are insulated. 

Theory 

The exact solution for a uniform initial temperature of zero is given in [1] as 
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2

k 1

4 ( 2 k 1) ( 2 k 1) x
1 ex p t s in

( 2 k 1) 8 8





 
       

       
       

  (0.0.125) 

The exponential factor decreases rapidly so that for practical purposes only the first few terms of 
the expansion need be considered. 

Comparison 

A comparison of the LUSAS results with the theoretical solution is presented in graphical form 

in Figure 2. 

References 

1. W. L. Wood and R. W. Lewis, "A Comparison of Time Marching Schemes for the Transient 
Heat Conduction Equations", Int. Jnl for Num. Methods in Eng., Vol 9, 1975, p679 

Input Data 

X07D21A.BAT 

 

Figure 1  Finite element mesh for heat conduction problem. 
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Figure 2  Temperature distribution in bar at times t=0.5s to 32s 



Example 7.2.2 

267 

Example 7.2.2 

2-D Solidification Of A Corner Region 

Keywords 

Transient, Nonlinear, Phase Change, Enthalpy 

Description 

This problem involves a transient nonlinear analysis with phase changes. A corner region, which 

is initially in a temperature field, has prescribed temperatures imposed along two of its 

boundaries. The temperatures at selected points in the region are computed as a function of time. 

This problem demonstrates facilities available in LUSAS for solving problems involving phase 

changes with the use of enthalpy averaging methods. The problem is solved for three different 

phase change intervals using a time step of t=0.05 sec. 

Discretisation 

The analysis is performed using 81 QFD4 elements. The element mesh is gradually refined 
towards the two sides of the corner where boundary temperatures are prescribed, Figure 2. 

Geometry 

 

Figure 1 

Material properties 

K =  1.08;   C =  1.0;   L = 70.26 
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Phase change temperature = -0.15 

where: 

K = Thermal conductivity 

 = Density 

C = Specific heat 

L = Latent heat 

 

The analytical solution is evaluated for a pure substance i.e. it is assumed that the phase change 

occurs instantaneously at T = -0.15. With the enthalpy formulation a phase change zone must be 

defined. LUSAS analyses were carried out using three different phase change zones: 

 

      1. Phase Change Zone = 0.5 C 

Temperature Conductivity   Specific Heat   Change of 
Total Enthalpy 

-45.0 1.08 1.0 0.0 

-0.40 1.08 1.0 44.6 

0.10 1.08 1.0 115.36 

10.1 1.08 1.0 125.36 

 

      2. Phase Change Zone = 1.0 C 

Temperature Conductivity   Specific Heat   Change of 
Total Enthalpy 

-45.0 1.08 1.0 0.0 

-0.65 1.08 1.0 44.35 

0.35 1.08 1.0 115.61 

10.35 1.08 1.0 125.61 

 

     3. Phase Change Zone = 1.5 C 

Temperature Conductivity   Specific Heat   Change of 
Total Enthalpy 

-45.0 1.08 1.0 0.0 

-0.90 1.08 1.0 44.10 

0.60 1.08 1.0 115.86 

10.60 1.08 1.0 125.86 
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Boundary conditions 

      Initial Temperature field T = 0RF 

      Prescribed temperature T = -45RF along AB and BC 

      AD and CD insulated 

Theory 

The transformation of a material between phases is accompanied by either liberation or 

absorption of latent heat in the phase transition zone, i.e. the enthalpy gradient is discontinuous. 

The most suitable methods for incorporation in standard finite element codes are the enthalpy or 
specific heat formulations (see [1]). 

Reference 

1. Morgan, K., Lewis, R.W., Zienkiewicz, O.C., An Improved Algorithm for Heat Conduction 
Problems with Phase Change, Int. J. Num. Meth. Eng., Vol.12, 1191-1195, 1978 

LUSAS results 

Comparison between LUSAS results and those in [1] are shown for the time variation of the 
point x=1m, y=1m (node 45). 

Input data 

X07D22A.DAT 
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Figure 2 
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Figure 3 - Temperature at coordinates (1,1) Vs Time for phase change zones 0.5, 1.0 and 1.5 
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Example 7.2.3 

Heat Conducting Plate With Sudden Cooling 

Keywords 

Transient, Heat, Conduction 

Description 

This example shows the LUSAS solution for heat transfer between two contacting surfaces of a 

structure. The problem is a nonlinear transient analysis with temperature dependant convective 

heat transfer coefficients. The problem is solved for t=0.35 hr using 20 steps. 

Discretisation 

Two analyses are performed using 10 QFD8 and 20 PF6 field elements respectively, figures 2 
and 3. 

Geometry 

 

Figure 1 

Note that the QFD8 element mesh forms an x-y plane between points 1 and 2, figure 2. 
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Material properties 

Density, r 800 lb/ft3 

Specific heat, C 0.83333 BTU/lb F 

Thermal conductivity, K 2.0 BTU/hr.ft F 

Convective heat transfer coefficient, h 0.04(TAB  +100)/2-2.0 BTU/hr.ft2  F 

 

Boundary conditions 

(i)  Initial temperature along the surface AB is T=500 F and along CD is T=100 F. 

(ii) Step change in environmental temperature on AB to T=100 F. 

Reference 

1. Kreith, F., Principles of heat transfer, International Textbook Co., Scranton, Pennsylvania, 

USA, 2nd Printing, 1959. 

Lusas results 

 Point 1 Point 2 

Reference 285.0 100.00 

QFD8 287.679 100.00 

*PF6 286.243 100.00 

 

* results for convection through triangular faces 

LUSAS results for change in temperature at point 1 with respect to time are plotted in figure 4. 

Input data 

X07D23A.DAT 

             LUSAS results for temperature at point 1  Vs  time. 

 

Figure 2 
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Figure 3 

 

Figure 4 - LUSAS results for temperature at point 1 Vs time. 
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Example 8.1.1 

Spectral Response Analysis Of A 2-D Frame Structure 

This example has now been retired. 
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Example 8.1.2 

Linear Dynamic Analysis Of A Spring/Mass/ Damping 

System 

Keywords 

Linear Dynamics, Damping 

Problem Description 

Determine the damped natural period (Td) and the ratio (R) between any two succesive 

amplitudes of a freely vibrating spring/mass/damping system. The mass is initially displaced and 
subsequently allowed to vibrate freely. 

Discretisation 

The spring/mass/damping system is modelled using a single joint (JNT3) element. The material 
properties are as follows: 

K1  = 30 lb/in    M1  = 0.0259 lb sec2 /in    C1  = 0.12 lb sec2 /in 

The system is fully restrained at node 1 and restrained in the Y direction at node 2, resulting in a 
single degree of freedom problem. An initial load of 30 lb is applied to the structure. 

Theory 

The undamped natural frequency of the system in radians per second is 

n

K
w

M
       (0.0.126) 

so that n

3 0
w 3 4 .0 3 3 ra d s / s e c

0 .0 2 5 9
      (0.0.127) 

The critical damping coefficient and damping factor are 

c nc 2 M w 1 .7 6 2 9 lb / in / sec      (0.0.128) 

c

c 0 .1 2
T 0 .0 6 8 0 7

c 1 .7 6 2 9
      (0.0.129) 
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The logarithmic decrement is 

2

2 T
d 0 .4 2 8 6

1 T

 



     (0.0.130) 

The amplitude ratio for any two consecutive cycles is 

d1

2

x
e 1 .5 3 5

x
       (0.0.131) 

The damped period is 

d

n

d
T 0 .1 8 5 sec s

T w
       (0.0.132) 

Comparison 

The LUSAS results are compared to the theoretical solution. 

Peak 1 2 3 4 

Maximum amplitude (in) 1.000 0.650 0.423 0.275 

Time (secs) 0.000 0.186 0.372 0.558 

 

Ratio R(1-2) R(2-3) R(3-4) 

Theory 1.535 1.535 1.535 

LUSAS 1.538 1.538 1.538 

Difference (percent) 0.195 0.195 0.195 

 

Damped natural Period Td(1-2) Td(2-3) Td(3-4) 

Theory 0.185 0.185 0.185 

LUSAS 0.186 0.186 0.186 

Difference (percent) 0.54 0.54 0.54 

 

References 

1. Thomson,W.T. 'Theory of vibration with applications', 2nd Edition, George Allen of Unwin. 

Input data 

X08D12A.DAT 
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Example 8.1.3 

Beam Subject To A Harmonic, Periodic And Step Load 

Keyword 

Linear Elastic, Periodic, Harmonic 

Description 

The response of a deep, simply supported beam to a harmonic, periodic and direct uniformly 

distributed load is presented in this example. The objectives are to establish the displacement and 

stress amplitudes at the midpoint of the beam. An initial eigenvalue analysis of the system is also 
performed. 

Discretisation 

The beam is modelled using 10 equal, two noded beam elements (BMS3). Boundary conditions 

are applied in the global X,Y,Z and jx directions at one of the beam extremities. The other 
extremity has Y and Z supports only. 

Geometry 

Consider a beam (see figure 1) of length 10m, square cross-section (b) of 2m and aligned with 

the global X-axis, for which the following sectional values are used: 

Iyy = Izz =  (b**4)/12 

Kt  = 0.1406*(b**4) 

Asy = Asz =  gA 

where: 

g = (10+10)/(12+11)          ( is Poisson's ratio) 

Material properties 

Young’s modulus 200x109 N/m2 

Poisson’s ratio 0.3 

Density 8000 Kg/m3 
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Loading 

The forcing function for the steady state harmonic loading is: 

F = 1E6 sin(Wt)     Nm-1 

where: 

 = 2f                   (0 < f < 70 Hz) 

Viscous damping of 0.02 is used with no structural damping. The first 16 modes are used to form 

the modal domain. This test is repeated with distributed viscous damping of approximately 0.02 
for mode 8 and viscous damping of 0.02 for all other modes and no structural damping. 

2. The forcing function for the steady state periodic loading is: 

F = 1E6 (sin(t) - sin(3t))    Nm-1 

where: 

 = 2f 

Rayleigh damping is used with:   = 5.36,  and  = 7.46E-5 

3. The forcing function for the direct loading is: 

F = 1E6  Nm-1 

Rayleigh damping is used with:  a = 5.36, and b = 7.46E-5 

LUSAS results 

Eigenvalue Analysis 

Figure 2 shows vibration modes 1, 6 and 9, whilst the table below gives the values obtained 
using Lusas: 

 Frequency 

Mode Lusas Reference
*
 

1 42.5363 42.65 

2 42.5363 42.65 

3 71.2751 71.20 

4 125.129 125.0 

5 144.220 148.15 

6 144.220 148.15 

7 215.587 213.61 

8 260.624 283.47 

9 260.624 283.47 
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* : A closed form solution 

 

Harmonic Loading Response 

Figure 3 shows the response of the beam in the frequency domain, whilst the table below 

compares the values obtained at the beam midpoint for both the peak displacement and the peak 
stress. 

 Lusas Target
*
 Reference

#
 

Frequency (Hz) 42.54 42.60 42.65 

Peak displacement at beam midpoint 12.48 13.44 13.45 

Peak stress at beam midpoint (Pa) 243.8E8 240.3E6 241.9E6 

 

# : Closed form analytical solution 

* : Value for engineer's beam (ignoring shear and rotary inertia) 

Periodic Loading Response 

Figure 4 shows the response of the beam in the time domain as the transient components die out, 

whilst the table below compares the values obtained at the beam midpoint for both the peak 

displacement and the peak stress. 

 Lusas Target
*
 Reference

#
 

Peak displacement (mm) 0.944 0.953 0.951 

Peak stress (Pa) 17.19E6 17.33E6 17.1E6 

 

# : Closed form analytical solution 

* : Value for engineer's beam (ignoring shear and rotary inertia) 

Direct Loading response 

Figure 4 shows the response of the beam in the time domain, whilst the table below compares the 

values obtained at the beam midpoint for both the peak displacement and the peak stress. Note 
that the peak occurs at t=0.0117 for both the Lusas and reference solutions. 

 Lusas Target
*
 Reference

#
 

Peak displacement (mm) 1.044 1.057 1.043 

Peak stress (Pa) 18.64E6 18.77E6 18.76E6 

Time (s) 0.0117 0.0117 0.0117 
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# : Closed form analytical solution 

* : Average of two codes:- 

     (i)  Value for engineer's beam (ignoring shear and rotary inertia) 

     (ii) Timoshenko beam (with shear and rotary inertia) 

Reference 

1. NAFEMS Report Number E1261/R002 

Input Data 

X08D13A.DAT 

X08D13B.DAT 

X08D13C.DAT 

X08D13D.DAT 

X08D13E.DAT 

 

Figure 1 
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Figure 2 
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Figure 3 

 

Figure 4 
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Example 8.1.4 

Large Deformation Dynamics of Stiff and Elastic Pendulum 

Keyword 

Large Deformation, Step-By-Step Dynamics  

Description 

The rotation of a pendulum is simulated by the generalized -method together with a co-

rotational formulation for large deformation. The pendulum can be stiff, undergoing  

approximate rigid-body rotation, or flexible, undergoing coupled rotation and axial vibration 

with medium strains. 

Stiff pendulum 

The geometry and material properties, boundary and initial conditions of the pendulum presented 

in Kuhl and Crisfield [2] and adopted by Bathe [1] are given in Figure 1. The pendulum is 

powered by the initial tangential velocity     = 7.72m/s. In order to obtain an equilibrium state at 

the initial time t0 = 0 the initial radial acceleration is calculated to     = 19.6m/s2. 

Elastic pendulum 

Following Kuhl and Crisfield [2] and Bathe [1], the stiffness of the truss element is reduced from 

EA0 = 1010 N to EA0 = 104 N, hence the element is now flexible and shows an axial vibration. 

Also, we now use the initial radial acceleration     = 0.0 m/s2. 

Discretisation 

The pendulum is modelled by one two-node bar or truss BAR2 or BRS2 element with a 
consistent mass matrix. The time step Δt = 0.01 s. 

Theory 

Stiff pendulum 

As a result of the large stiffness EA0 the motion of the truss is (approximately) a rigid-body 

rotation with the angular velocity    = 0.4036 1/s (Figure 1). The analytical rotational period is 

2.4777 s [1]. 

Elastic pendulum 

The period of axial vibration is 0.28 s [1]. 
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Comparison 

Stiff pendulum 

Kuhl and Crisfield [2] already report that the trapezoidal rule is unstable; the generalized -

method can be used to solve the problem with integration constant  = -0.4/1.6. The obtained 

time history of displacement, velocity and acceleration shown in Figure 2 agree with the 
theoretical solution, and are very close to the results given by Bathe [1]. 

Elastic pendulum 

The time step employed corresponds to 28 steps per cycle of the axial vibration, which is a 

reasonable time step size to capture this vibration. The obtained time history of displacement, 

velocity, acceleration and strain from BAR2 and BRS2 are the same (Figure 3), and close to the 

results given by Bathe [1]. The pendulum undergoes medium strains, which reach its maximum 
2.56% at t = 0.14s.  

References 

1. Bathe, K. J. ‘Conserving energy and momentum in nonlinear dynamics: A simple implicit 

time integration scheme’. Comput. Struct. 85: 437–445 (2007). 

2. Kuhl, D., Crisfield, M. A. ‘Energy-conserving and Decaying Algorithms in Non-linear 
Structural Dynamics’. Int. J. Numer. Meth. Engng. 45: 569-599 (1999). 

Input data 

x08d14a 

x08d14b 

x08d14c 
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Figure 1. Simple pendulum with boundary and initial conditions. 

 

x 

y 
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Figure 2. Variation of displacement, velocity and acceleration of the stiff pendulum in 1st cycle. 
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Figure 3. Variation of displacement, velocity, acceleration and strain of the elastic pendulum in 

1st cycle. 
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Example 8.1.5 

Free-Free Nearly Rigid Beam Undergoing Large Overall 

Motion 

Keywords 

Large Deformation, Step-By-Step Dynamics 

Description 

The free flight of a beam, which is affected by very small strains so that the motion is similar to a 

rigid body motion, is simulated by the generalized -method together with a co-rotational 

formulation for large deformation. The geometry, initial conditions and material properties, given 

in Figure 1, are the same as Crisfield et al. [1]. The principle axes of inertia of the cross-section 
are initially aligned with global coordinate axes X and Z.  

Discretisation 

The beam is divided into 4 linear BMI21 or quadratic BMI31 elements with a consistent mass 

matrix. The initial time step size is    = 0.2 s. 

Comparison 

The integration constant  = 0 is adopted by the generalized -method. The displacements of the 

lower end B in the first revolution are given in Figure 2. BMI21 and BMI31 elements give results 
identical to the BMS3R element of Crisfield et al. [1].  

References 

1. Crisfield, M. A., Galvanetto, U. and Jelenić, G., ‘Dynamics of 3-D co-rotational beams’. 
Comput Mech 20: 507-519 (1997). 

Input data 

x08d15a 

x08d15b 
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Figure 1. Free flight beam. 
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Material properties:    

E =     ,  = 0,  = 1 

Geometric properties: 

A = 1,     =     = 1/12 
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Figure 2. Time history of the displacements at the lower end B. 
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Example 8.2.1 

Linear Dynamic Analysis Of A Beam With Pressure Loading 

Keywords 

Step-By-Step Dynamics 

Description 

Determine the dynamic response of a cantilevered beam subject to a suddenly applied uniformly 
distributed load (see Figure 1). 

Discretisation 

Model the two-dimensional cantilevered structure using 8 QPM8 plane membrane elements (see 
Figure 1). 

Geometry 

The cantilevered structure has unit depth and breadth and is ten inches in length (see Figure 1). 

Material properties 

Young’s modulus 12000 lb/in2 

Poisson’s ratio 0.3 

Density 10x10-6 lb.sec2 /in2 

 

Boundary conditions 

The structure is fully restrained at nodes 1,18 and 35 forming a cantilevered condition. The 

pressure load is applied according to the load/time history graph in Figure 2. To allow for a zero 

initial displacement condition the structure is fully restrained at every node for the first load case 
and then freed accordingly for subsequent loads. 

LUSAS Results 

From the results of an eigenvalue extraction of this structure the following parameters were 
determined: 

Fundamental eigenvalue  = 0.1235E6 1/sec2 
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Natural frequency     = 55.93 Hz 

Period of response, T    = 0.01788 sec 

Increment of time for step-by-step, T/30 = 0.0006  sec 

The time-displacement response curve derived from the dynamic analysis results 

is shown in figure 3. 

References 

1. K.-J. BATHE, E. RAMM and E. L. WILSON, "Finite Element Formulations for Large 
Deformation Dynamic Analysis", Int. Jnl. Num. Mthd. Eng., VOL 9, pp 353-386, 1975. 

Input Data 

X08D21A.DAT 

X08D21B.DAT 

 

 

1.425 lb/in applied to the top and bottom faces 

 

Figure 1  Linear dynamic analysis of cantilevered beam. 
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Figure 2  Load/time history graph for cantilevered beam. 

 

 

Figure 3  Displacement time graph for cantilevered beam. 
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Example 8.6.1 

Nonlinear Dynamic Analysis Of A Clamped Spherical Shell 

Keywords 

Nonlinear Dynamics, Elasto-Plastic, Natural Frequency, Spherical Shell 

Description 

Determine the natural frequency and dynamic behaviour of a clamped spherical cap subject to a 

uniform lateral pressure over its outer surface. The shell geometry is in the form of a truncated 

sphere with a radius of 22.27 inches. The truncated spherical cap subtends a semi angle of 26.67 

degrees at the centre of the sphere, and has a thickness of 0.41 inches. The shell is fully clamped 

around its periphery, and is subject to a uniform external pressure. The geometry and loading of 
the shell are shown in figure 1. 

The finite element analysis is performed in four stages: 

Stage 1   Eigenvalue extraction for natural frequency analysis 

Stage 2   Linear elastic step-by-step dynamic stress analysis 

Stage 3   Elasto-plastic step-by-step dynamic stress analysis 

Stage 4   Geometrically nonlinear elasto-plastic step-by-step dynamic stress analysis 

Discretisation 

The shell structure is modelled using five curved axisymmetric shell elements (BXS3). The shell 

is assumed to be fully clamped at its supported base. The material properties used in the above 
analyses are as follows: 

i)  Eigenvalue extraction, and linear analysis 

Young’s modulus    = 10.5E6 lb/in2 

Poisson's ratio        = 0.3 

Mass density          = 2.45E-4 lbsec2/in4 

ii) Elasto-plastic analyses: Von-Mises elasto-plastic model 

Young’s modulus  = 10.5E6 lb/in2 

Poisson's ratio  = 0.3 
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Mass density  = 2.45E-4 lbsec2/in4 

Yield stress  = 0.024E6 lb/in2 

Hardening modulus  = 2.142E5 lb/in2 

The shell is assumed to be axisymmetric about its centre line and fully restrained against 

deflection and rotation at the nodes representing its clamped base.  Geometrically nonlinear 
effects are modelled using a total Lagrangian description. 

The dynamic analyses were performed using a time step of 0.000025 seconds. 

Results Comparison 

Stage 1: Eigenvalue analysis for Natural Frequency 

The natural frequency obtained from the LUSAS eigenvalue extraction analysis compares well 

with that obtained bt Bathe and Ozdenir in [1]. 

Lowest eigenvalue  = 0.132202 

Natural Frequency  = 1829.95 Hz 

Stages 2-4: Step-by-step Dynamic Analyses 

Figure 2 presents results of the LUSAS step-by-step dynamic analyses of the pressure loaded 
shell and compares each of the following cases : 

LE     - Linear elastic step-by-step analysis 

MNL    - Materially nonlinear analysis (elastoplastic) 

GMNL  - Geometrically and materially nonlinear analysis 

References 

1. Bathe,K.J. and Ozdemir,H. 'Elasto-plastic large deformation static and dynamic analyses', 
Computers and Structures, Volume 6, 81-92, 1976 

2. FEAL Internal Report FEAL503 'Axisymmetric thin shell element', Finite Element Analysis 
Ltd. Kingston upon Thames, (1985). 

Input data 

Total Lagrangian geometric nonlinearity is invoked by including OPTION 87. 

X08D61A.DAT 

X08D61B.DAT 

X08D61C.DAT 

X08D61D.DAT 
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Figure 1 

 

 

Figure 2  Clamped Spherical Cap 
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Example 9.1.1 

Quenching Of An Infinite Plate 

Keywords 

Coupled Analysis, Thermal Stress 

Description 

This example is an illustration of semi-coupled heat transfer and subsequent thermal stress 

analysis. Because a semi-analytic solution is available for the case (see [1]), the problem 

provides verification of this type of analysis. The purpose of the analysis is to predict the residual 

stresses caused by the quenching of a large, homogeneous plate in regions away from the edges 

of the plate. In this manner it can be treated as a plate of infinite extent in all but the thickness 

direction. The plate is made of an elastic, perfectly plastic material, with a yield stress that drops 

linearly with temperature above 121 C (250 F). Because the plate is assumed to be of infinite 

extent the problem is one-dimensional and the only gradient occurs through the thickness of the 

plate. The plate is initially at a uniform temperature near its melting point (when its yield stress is 

small). It is assumed to be stress free in this condition. The surface is then quenched by 

convective cooling to a medium at room temperature. Cooling is allowed to continue until all of 

the plate reaches room temperature. The analysis consists of a transient heat transfer analysis 

followed by a thermal stress analysis. During the heat transfer analysis the temperature-time 

history is used as input to the thermal stress analysis. The transient stresses are large enough to 

cause significant plastic flow, so that residual stresses will remain after the plate reaches room 

temperature. 

Discretisation 

Ten elements are used through the half thickness of the plate. The heat transfer mesh uses QXF8 

elements and the stress analysis QAX8 elements. 

Geometry 

The plate is 914.4mm (36in) thick. 

Material properties 

Young's modulus  206.8 GPa (30.0E6 lb/in2) 

Poisson's ratio  0.3 

Yield stress  248.2 MPa for j<121 C (36000 lb/in ,j<250 F) 
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248.2(1-(j-121)/1111.1) MPa, j>121 C 

(36000(1-(j-250)/2000) lb/in2 , j>250 F 

Density   7832 kg/m3  (0.283 lb/in3) 

Specific heat  0.6 kJ/kg C (0.1431 BThu/lb F) 

Thermal conductivity 58.8 W/m C (7.872E-4 BThu/in sec F) 

The film coefficient on the surface of the plate is 193.1 W/m. C (6.559E-5 BThu/in.sec F) 

Theory 

Equations for the determination of transient and residual stresses in plates subject to transient 

temperature distributions, based on the assumption of a viscoelastic, perfectly plastic material 

obeying a von Mises temperature-dependent yield condition are given in [1]. The analytical 

values for residual stress for this problem are given in [1] and are compared with LUSAS values 
in figure 2. 

Reference 

1. Landau,H.G., J.H. Weiner, E.E Zwicky, Jr., "Thermal Stress in a Viscoelastic-Plastic Plate 

with Temperature Dependent Yield Stress", Journal of Applied Mechanics, Vol.27, pp.297-

302 (1960). 

Input Data 

X09D11A.DAT 

X09D11B.DAT 

X09D11C.DAT 

X09D11D.DAT 

Figure 1 
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Figure 2 - Residual stresses in plate at room temperature. ‘    ‘ LUSAS results, ‘----‘ Reference.
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Example 9.1.2 

Coupled Temperature Displacement Analysis 

Keywords 

Coupled Analysis 

Description 

This example is an elementary nonlinear case of one dimensional, fully coupled, heat transfer 

and stress analysis. The model is shown in figure 1. A conductive rod is fixed at one end, A, and 

free at the other end B. Between the free end and an adjacent body, C, there is a gap, across 

which heat will be conducted. The heat transfer coefficient for the gap drops linearly as the 

clearance increases. The fixed end of the rod, A, and the wall, C, (which is also fixed in position) 

are both held at fixed temperatures, A and C. 

The objective is to predict the displacement, uB , and temperature, B ,  of the free end of the rod. 

For simplicity, all temperatures and displacements are measured from a standard, constant 

temperature position in which the gap distance is do. It is assumed that the strains are small and 

the behaviour of the rod is linear elastic with constant modulus and thermal expansion 

coefficient. We also assume that the gap never closes, so that the rod is always stress free. 

Discretisation 

The following element types are used: 

      (i)   Structural - 1 HX8 element and 4 JNT4 elements. 

      (ii)  Thermal - 1 HF8 element. 

      (iii) 4 LFS2 link elements. 
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Geometry 

 

Figure 1 

Material properties 

All specifications in consistent units 

E = Young's modulus = 3.0E6 

 = Poisson’s ratio  = 0.0 

 = expansion coefficient = 1.0E-5 

c = rod conductivity = 1.0 

Boundary conditions 

       (i)  Structural 

            at (a) restrained, at (b) free 

       (ii) Field 

            at (a) temperature A =400, at (c) temperature C =200 

Theory 

The exact solution to the problem is developed using the equilibrium and compatibility equations 

with the appropriate boundary conditions. Heat conduction in the rod is assumed to be governed 

by Fourier's Law: 

r

s

d
q K

d


       (0.0.133) 

where Kr  is the thermal conductivity of the rod and distance s is measured from A. 
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Heat conduction across the gap is given by: 

 g B Cq K         (0.0.134) 

and the thermal conductivity of the gap, Kg , decreases linearly as the clearance increases: 

B
g 0

1 0

U
K K 1

d d

 
  

 

     (0.0.135) 

where K0  and d1  are constants and UB  the displacement of B. 

For this problem the following values have been chosen: 

Kr = K0 – 1  

Kg = 2.0 when UB = 0.0  

Kg = 0.0 when UB = 0.02 

 d1 - d0 = 0.01 

For thermal equilibrium: 

d q
0

d s
      (0.0.136) 

Therefore, from (0.0.133) d/ds is constant in the rod, so that (0.0.133) may be expressed as: 

 r A Bq K         (0.0.137) 

The thermal expansion of the rod is given by: 

 B A B

L
U

2


         (0.0.138)  

For thermal equilibrium: 

   r A B g B CK K           (0.0.139)  

Substituting (0.0.135) and (0.0.138) in (0.0.139) yields a quadratic equation for B . The 

boundary values and chosen constants can be used in this equation to solve for B , where only 

one admissible positive root is obtained. Substitution of B  in (0.0.139) gives UB 

B  = 285.4       UB  = 3.427E-3 

Results 

Two approaches are implemented to allow a solution of this example. Firstly, if two analyses can 

be run concurrently, an iterative solution of the problem is possible. Secondly, if only one 

module can be run at once, a solution is obtained by the use of restart files. The temperature and 
displacement at point b computed by the two approaches are: 
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 Iteration 0 Iteration 1 Iteration 2 Itn. 3 

 Temp Disp Temp Disp Temp Disp Temp 

Method 1 

Thermal 

Structural 

300.0 3.5x10-3 285.084 3.425x10-3 285.206 3.426x10-3 285.208 

Method 2 

Thermal 

Structural 
300.0 3.5x10-3 284.936 3.425x10-3 285.213 3.426x10-3  

 

The slight differences with theoretical values are due to the use of a constant value for L in the 
manual calculations. 

Input Data 

X09D11c.DAT 

X09D11d.DAT 

Note that restart file X09D12C.RST is renamed to Z09D12C.RST 

Note that restart file X09D12D.RST is renamed to Z09D12D.RST 
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Example 9.2.1 

Compression Of An Angle Into A Corner 

Keywords 

Thermal Surfaces, Coupled Analysis, Nonlinear 

Description 

A poorly formed angle bracket, subtending an angle greater than 90 degrees, is pushed against a 

second right angle bracket, figure 1. Contact along the faces is progressive as the angles deform. 

A semi-coupled static structural/thermal analysis is carried out using thermal surfaces. The 

temperature at the interface between the angles is a function of the pressure at the contact point. 

Discretisation 

Each angle is meshed using the following two dimensional elements:  

Structural analysis - 36 QPM4 plane stress continuum elements.  

Thermal analysis - 36 QF4 plane field elements.  

The mesh at the initial configuration is shown in figure 2. 
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Geometry 

 

Figure 1 - Initial geometry 

Boundary conditions 

      Thermal: 

      Prescribed temperature 

        outer angle - outer surface temperature of  50 

        inner angle - outer surface temperature of 100 

      Structural: 

      Total prescribed displacements applied to end A 

        step 1   -0.12 

        step 2   -0.24 

        step 3   -0.25 

        step 4   -0.26 

        step 5   -0.27 
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Material properties 

      Thermal: 

        solid conductance = 101 

        thermal contact properties: 

        gap conductance   contact pressure 

               0                 0 

            1000               0.03 

      Structural: 

        E  = 100 

        Poisson's ratio = 0.0 

        Master surface stiffness = 0.1 

        Slave surface stiffness  = 0.1 

Loading 

      Structural: 

      Total prescribed displacements applied to end A 

        step 1   -0.12 

        step 2   -0.24 

        step 3   -0.25 

        step 4   -0.26 

        step 5   -0.27 

LUSAS results 

The results should show a uniform progression of contact with the hottest point indicating the 

point of greatest contact pressure. If the surfaces are in contact, but there is no contact pressure, 

heat will not flow between the surfaces. Figure 3 details the progression of contact as the end 

displacement of the inner angle is increased. Initial contact is at the top of the angles as shown in 

load case 1. A second contact point is predicted at the point of prescribed displacement as the 

outer angle bends to accommodate the inner angle. The largest stresses arise from bending. As 

loading is increased, load cases 2 to 4, the point of contact moves down the angles. Above the 

point of contact the angles are stress free. Finally, in load case 5, the inner angle is in a state of 

almost pure compression and the outer angle is restraining this load by a combination of bending 

and tension. Figure 4 mirrors the progression of contact with the heat flowing across the contact 
as expected. 
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Input data 

X09D21A.DAT 

X09D21B.DAT 

 

Figure 2 Mesh  in initial configuration 
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Figure 3  Stress contours and contact points (circled) 

 

Figure 4  Temperature contours and contact points (circled) 
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Example 9.2.2 

Upsetting Of A Cylindrical Billet 

Keywords 

Plasticity, Coupled Analysis, Plastic Work 

Description 

A cylindrical billet is compressed between two plattens so that its length is reduced by 52%. The 

rate at which the billet is compressed dictates the amount of heat developed as a result of plastic 

work done. This example compares the temperature distributions for a fast and slow rate of 
compression. 

The billet is 30mm long and of 10mm radius with all surfaces fully insulated. The initial and 

final configurations of the billet are shown in Figure 1. Symmetry of the problem allows an 

axisymmetric analysis to be performed. Elasto-plastic material properties are assumed for this 

metal forming example. The effects of applying the prescribed displacement loading at a rate of 

0.09 mm/sec and 90 mm/sec are compared. Note that inertia effects have been ignored and the 

time-step used in the thermal analysis dictates the rate at which the heat is developed. Data 

transfers are performed in parallel during the execution of this thermo- mechanical coupled 

analysis. 

Discretisation 

A mesh of 119 axisymmetric solid elements (QAX4) was used in the structural analysis, while 

the same number of QXF4 elements was used in the thermal analysis. The initial mesh is shown 
in Figure 1. 

Material properties 

Young’s modulus = 2E11 N/m2 

Poisson’s ratio = 0.3 

Thermal expansion coefficient = 1.2E-5 per  oC 

Initial yield stress = 7E8 N/m2 

Work hardening rate = 3E8 N/m2 

Specific heat = 586J/(Kg oC) 

Density = 7833 Kg/m3 
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Conductivity = 52J/(m-s- oC) 

Heat fraction hf  = 0.9 

Boundary conditions 

Structural: 

Symmetry conditions are applied along the axis and over the middle surface of the billet so that 

only half an axisymmetric segment is modelled. Nodes along the axis of symmetry are restrained 

horizontally but are free to move in the vertical direction. To simulate the loading platten, the 

nodes along the top surface are free to move in the horizontal direction but are restrained 

vertically solely to apply the prescribed displacements. Symmetry conditions for nodes on the 
middle surface require restraint in the vertical direction and freedom horizontally.  

Thermal 

All external surfaces are insulated. This is achieved by initialising the environmental temperature 

at the boundary to zero and defining a very low convective heat transfer coefficient at the 

external surface of the billet. An initial environmental load is applied to all element faces along 
the boundary to model this condition. 

Solution comparison 

The general response observed for both the rapidly loaded test and the slower case agrees with 

what would be expected for such analyses. The slow loading test shows that the temperatures 

have time to diffuse leading to a uniform temperature distribution throughout the billet, Figure 3; 

the temperatures in this case range between 121 and 122.8 degrees. The opposite is true for the 

faster loading case where higher temperatures are computed with a large temperature gradient 

occurring across the billet. The highest temperatures are located at the point where most plastic 
deformation occurs. Results for each case are compared in Figures 2 and 3. 

Input Data 

X09D22A.DAT 

X09D22B.DAT 

X09D22C.DAT 

X09D22D.DAT 

Note: 

This data file can be used for both the fast and slow cases. However, different data transfer file 
names should be used to avoid confusion. 

Note: 

For the slow rate of loading, the incrementation line in TRANSIENT CONTROL must be 
changed from 0.01/9 to 10/9. The data transfer file should also be renamed to avoid confusion. 
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Figure 1.  Deformed mesh plot at 52% upsetting 

 

Figure 2.  Temperature distributions for slow and fast rates of loading at 52% upsetting. 
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Figure 3.  Comparison of temperature distribution for slow and fast rates of loading at 52% 

upsetting 
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Example 10.1.1 

Plastic Bar Impact Against A Rigid Wall. 

Keywords 

Impact, Slideline, Plastic Flow 

Description 

This example consists of a cylindrical steel projectile striking perpendicular to a rigid boundary. 

Upon impact, the stress in the projectile at the impact point exceeds the elastic limit of the 

material, and a plastic front moves back through the projectile. Within the plastic zone the 
material flows radially and results in a shortening of the projectile. 

Wilkins [1] performed a series of experiments which illustrated that the final cylinder length is 

very sensitive to the yield strength of the material. Consequently, as the projectile undergoes 

finite strains, this example furnishes a worthwhile test for both elastoplastic algorithms and finite 

strain procedures in explicit dynamic analysis. 

Figures 1 and 2 illustrate the final configuration of the bar for an initial velocity of 252 m/s. The 

accuracy of the bar shortening predicted in the analysis is compared with the shortening observed 
experimentally [1]. 

Discretisation 

The projectile is modelled using 5x21 4-noded one point quadrature axisymmetric elements 

(QAX4E), figure 1. The boundary between the projectile and the rigid wall is represented using a 
penalty based slideline procedure [2]. 

Geometry 
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Material properties 

Young’s modulus, E 211.0x109 Pa  

Poisson’s ratio,  0.3 

Density,  7840.0 kg/m3 

Initial yield stress, 0 1.2x109 Pa 

Isotropic hardening parameter, HI1 1.0x106 Pa 

 

Default values for the hourglass viscosity and for the artificial viscosity coefficients are to be 
used. 

LUSAS results 

(i) The final length of the bar can be approximated as 19.87mm by considering the net 

displacement of the top and bottom surfaces; this is in good agreement with the experimental 

value of 19.76mm given in [1], figure 1. The configuration at the point of maximum deformation 
is given in figure 2. 

References 

1. WILKINS, M. L., GUINAN, M. W. Impact of Cylinders on a Rigid Boundary. J. Appl. 
Phys., Vol. 44, No. 3, pp1200-1207, March 1973. 

2. GOUDREAU, G. L., HALLQUIST, J. O. Recent Developments in Large-Scale Finite 

Element Lagrangian Hydrocode Technology. Comp. Meth. in Appl. Mech. and Eng., 33, 
pp725-757, 1982. 

Input data 

X10D11A.DAT 
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Figure 1 
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Figure 2 
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Example 10.1.2 

Cantilever Subject To Dynamic Loading. 

Keywords 

Impact, Tied Slideline 

Description 

This example consists of an elastic cantilever which is subjected to an instantaneously applied 

uniformly distributed load. A single tied slideline is used to enable refinement of the mesh near 

the fixed end. The free end displacements computed by the dynamic finite element analysis are 
compared with those given by static linear and nonlinear analyses. 

The free end displacements calculated by static analysis are: 

Linear solution                             = 0.36 

Geometrically nonlinear solution = 0.33 

Discretisation 

The beam is modelled with 36 HX8E elements, figure 3, arranged in the following manner: 

6 x 4 element mesh near the support 

4 x 3 element mesh for remainder 

Geometry 

 

Figure 1 
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Material properties 

Young’s modulus, E 12.0 x103 lb/in2  

Poisson’s ratio,  0.20 

Density,  1.0x10-6 lb sec2 /in4 

 

Default values for the hourglass viscosity and for the artificial bulk viscosity coefficients are to 

be used. 

Reference 

1. BATHE, K-J., RAMM, E., WILSON, E. L. Finite Element Formulations for Large 
Deformation Dynamic Analysis. Int. J. Num. Meth. Eng., Vol. 9, pp353-386, 1975. 

Lusas results 

Figure 2 shows the peak deflection computed by LUSAS compared with that given in [1]. The 

differences observed can be attributed to the use of different strain measures. In [1] a Total 

Lagrangian approach is used whereas the LUSAS solution is based on the Green-Naghdi stress 
rate and velocity strain. 

Taking further time steps confirms oscillation about the nonlinear static solution. The deformed 
mesh at peak deflection is shown in figure 3. 

Input data 

X10D12A.DAT 

 

Figure 2 
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Figure 3 
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Example 10.1.3 

Interference Fit Test 

Keywords 

Axisymmetric Solid, Elastic, Slideline, Implicit 

Description 

One range of problems which is of considerable interest to the Engineer is the assembly of 
components using interference fit techniques. 

This example consists of two cylinders of length 0.01m and outer and inner diameters of 

(0.10025, 0.08m) and (0.11, 0.09975m) respectively. An initial interference of 0.0005m is thus 

considered between the cylinders. The geometry of the initial configuration of the cylinders is 

shown below. The first phase of the analysis is a linear elastic solution to obtain the initial 

configuration as a result of the interference fit. The response of the structure to subsequent 

loading on the innermost diameter corresponding to a suddenly applied constant radial load is 

also investigated. 2% damping of the two lowest modes is applied to the structure for this 

secondary phase utilising the Rayleigh damping facility. The cylinders are modelled using a 10x2 
element mesh (see figure 1) with 4 noded axisymmetric solid elements (QAX4). 

Geometry 

  

 

Boundary conditions 

Top and bottom surfaces fully restrained in global Y only 
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Material properties 

 Cylinder 1 Cylinder 2 

Young’s modulus, E 150 x109 kN/m2  207 x109 kN/m2  

Poisson’s ratio,  0.25 0.3 

Density,  7470 Kg/m3 7470 Kg/m3 

 

2% critical damping of the lowest two vibration modes is also required. This will give the 

Rayleigh damping factors as (according to the primary eigen-frequencies of 8213 and 8383 Hz 
obtained from an initial eigenvalue analysis on the structure):- 

Rayleigh damping factor  104265 

Rayleigh damping factor  3.83598x10-7 

 

Loading 

A compressive radial loading is applied over the inner diameter of the inner cylinder as a 
concentrated step load of magnitude 2.5 GPa. 

Slideline Properties 

Stiffness scale 
factor, master 

surface 

Stiffness scale 
factor, slave 

surface 

Zonal contact 
detection 
parameter 

Slideline 
extension 

1.0 1.0 100.0 1.0 

 

Theory 

The Rayleigh damping factors may be computed from the following equation:- 

2


    


      (0.0.140) 

where z is the known modal damping factor, a and b are the Rayleigh damping factors and w is 

the circular frequency at which the modal damping factor is operative. The Rayleigh damping 
factors are thus computed as: 

2 1

2 2

2 1

2 (1 / )
1 0 4 2 6 5

(1 / 1 / )

   
  

  
    (0.0.141) 

And 
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72 1

2 2

2 1

2 ( )
3 .8 3 5 9 8 1 0

( )

   
   

  
   

 (0.0.142) 

The approximate analytical solution for the interface pressure (P) due to an initial interference fit 

and an internal pressure (Pi ) acting on the inside surface of the inner cylinder is given by the 
following: 

2

2 2

1
i

2 2 2 2

1 22 2 2 2
1 2

2 P a

b E ( b a )
P

1 a b 1 b c

E Eb a c b







    
       

       

   (0.0.143) 

where: 

 is the initial interference 

a is the inner diameter of the inner cylinder (0.08) 

b is the diameter of the interference fit     (0.10) 

c is the outer diameter of the outer cylinder (0.11) 

For the initial interference configuration without internal pressure loading, the analytical solution 
yields:- 

                P = 61.7 MPa 

whilst for the secondary case of superimposed internal loading of 2.5 GPa, the interface pressure 
is given as:- 

                P = 793.4 MPa 

Lusas Results 

The initial radial stress distribution over the cylinder cross-section is shown in Figure 3, from 

which the normal interface pressure obtained is 62.8 MPa. The effect of damping on the normal 

interface displacement for node 111, subsequent to the application of the internal pressure may 
be seen in Figure 2.  

The final radial stress distribution over the cylinder cross-sections for the damped response is 

shown in Figure 4. It may be seen that the final value for the interface pressure of 818 MPa 

represents a difference of 3% when compared with the approximate analytical solution of 793.4 

MPa. This analysis was also carried out using a statically applied load, figure 6, where the final 

interface pressure was found to be 820 MPa. A comparison of radial stresses at each side of the 

interface for the damped system is given in figure 5. This figure shows that as the analysis 

progresses a state is reached where the effects of loading the structure dynamically have 

effectively been damped. This leads to a final stress distribution very similar to that for the static 
analysis. 
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Reference 

1. Reismann,H.,Pawlik,P., Elasticity: Theory and Applications, J.Wiley and Sons, 1980 

Input Data 

X10D13A.DAT 

X10D13B.DAT 

X10D13C.DAT 

 

Figure 1  Initial and final configuration of cylinders 
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Figure 2  Comparison of damped and undamped response for Interface node 111 

 

 

Figure 3  Initial radial stress distribution for cylinders. 
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Figure 4  Final radial stress distribution for cylinders. 

 

 

Figure 5  Radial stresses on each side of interface. 
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Figure 6  Final radial stress distribution - static analysis 
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Example 10.1.4 

Cylinder Compression Between Platens 

Keyword 

Nonlinear, Contact, Implicit, Static, Slidelines 

Description 

The crushing of a long, straight pipe between two flat, frictionless anvils is presented in this 

example. The objectives are to establish the load deflection response of the pipe and to describe 

the overall deformation of the section. The example is a simple test for modelling contact 
problems involving deformable bodies and rigid, impenetrable surfaces. 

Geometry 

 

Discretisation 

The cylinder is modelled using 8x4x2 eight noded solid elements (HX8), whilst the platen 

utilises an 8x1x2 element mesh (Figure 1). The boundary between the outer cylinder surface and 

the platen face is represented using the frictionless slideline option (type 1). The boundary 

conditions are depicted in the preceeding diagram and loading is applied over 36 increments to 

the upper platen via a prescribed displacement to give a total relative displacement of -0.0315m. 
Note that there are two symmetry planes in this problem. 
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Material properties 

Young’s modulus, E 30 x106 kN/m2  

Poisson’s ratio,  0.3 

Density,  7800 Kg/m3 

Yield stress, o 241 N/m2 

 

where o  is the von Mises initial yield stress. The hardening curve is as follows:- 

Hardness, Ci (N/m
2
) Plastic strain,  

9.850x109 0.0035 

5.386x109 0.0083 

3.447x109 0.0133 

1.741x109 0.0281 

1.144x109 1.0000 

 

Slideline Properties 

Default values are specified for all slideline properties, except for the slideline extension where a 
value of 0.1 is used. 

Lusas results 

The undeformed mesh is shown in Figure 1, together with the deformed mesh at load increment 

36. Figure 2 shows the deformation history. The force displacement variation of total normal 

interface force corresponds well with the experimental curve given in [1]. Note that the relative 
displacement is plotted, i.e. twice the applied displacement. 

Reference 

1. Taylor,L.M., "A finite Element Analysis for Large Deformation Metal Forming Problems 

Involving Contact and Friction" TICOM report number 81-15, 1981 

Input Data 

X10D14A.DAT 
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Figure 1:  Deformation of cylinder at increment 36 

 

Figure 2:  Variation of normal interface force with total platen displacement (3D) 
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Example 10.2.1 

Propped Cantilever With Joint Elements And Contact/Gap 

Model 

Keywords 

Cantilever, Contact, Gap, Joint 

Description 

Determine the end deflection and reactions of point loaded cantilever beam fully restrained at 
one end and supported at its mid length by a sunken support. 

Discretisation 

The cantilever is modelled using two BS4 element.  The prop is modelled using one JSH4 

element and the nonlinear contact/gap model. 

Three support conditions are considered: 

1. Free cantilever 

Since the contact stiffness is only invoked by a downward (negative) deflection of the 

cantilever, a positive end load results in a free cantilever condition. 

2. Propped cantilever 

The propped cantilever condition is modelled using an initial gap of 0 mm and a large 

contact stiffness (10E16). The end load is applied in the negative Z direction. 

3. Cantilever with sunken prop 

The sunken propped cantilever is modelled using an initial gap of 1 mm and a large contact 
stiffness (10E16). The end load is applied in the negative Z direction. 

Geometry 

The dimensions and geometry of the cantilever are shown in figure 1. 

Length, L 40 mm 

Distance to prop, l 20 mm 

Second moment of area, I 833.3 mm4 
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Material properties 

Young’s modulus, E 2.0x106 

 

Loading 

The cantilever is subjected to a concentrated end load (P= 390609.3 N) designed to produce a 
free cantilever end deflection of 5 mm. The total load is applied in five equal increments: 

Increment Case 1 Case 2 Case 3 

1 0.2P -0.2P -0.2P 

2 0.4P -0.4P -0.4P 

3 0.6P -0.6P -0.6P 

4 0.8P -0.8P -0.8P 

5 1.0P -1.0P -1.0P 

Theory 

Case 1.  Free cantilever condition (Figure 2) 

The end deflection of a free cantilever subject to a transverse end load is given by the expression 
[1] 

3

m ax

P a 3 b
d 1

3 E I 2 a

 
  

 

     (0.0.144) 

Hence, since (a=L) and (b=0) 

3

m a x

P L
d

3 E I
       (0.0.145) 

Case 2. Propped cantilever condition (Figure 3) 

The end deflection of a propped cantilever is given by the expression 

 
3

2

D

P1
d 4 p 6 p q 3 p 3q

1 2 E I
        (0.0.146) 

and the reactions by the expressions 

A

3 P p
R

2
  and B

3 p
R P 1

2

 
   

 

   (0.0.147) 

where 
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a
p

l
   and 

b
q

l
    

 (0.0.148) 

Hence, since (a=l) and (b=0), therefore (p=1) and (q=0), and 

 
3 3

P l 7 P l
D 4 3

1 2 E I 1 2 E I
        (0.0.149) 

and 

A

3 P
R

2
  and B

5
R P

2

 
   

 

   (0.0.150) 

Case 3. Propped cantilever with sunken support 

The propped cantilever with the sunken mid support behaves as the free cantilever until the 

initial gap of 1 mm is closed. Following this deflection the stiff contact spring is invoked, the end 
deflection restricted, and the reaction at the prop progressively increased. 

1 A 2 Bf P K R K R       (0.0.151) 

where 

f is the load factor   (Total Load level = fP) 

K1  , K2    are the support reaction scaling factors 

Comparison 

The LUSAS results for the end deflection and the support reactions are compared to the 
theoretical solutions. 

Case 1.  Free Cantilever. 

Increment Load Level 

End Displacement 

Theory        LUSAS 

1 0.2P 1.000 0.9999 

2 0.4P 2.000 1.9999 

3 0.6P 3.000 2.9988 

4 0.8P 4.000 3.9988 

5 1.0P 5.000 4.9988 
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Case 2.  Propped Cantilever 

  End Displacement End Reaction RA Prop Reaction RB 

Inc. Load Theory  Lusas Theory  Lusas Theory  Lusas 

1 -0.2P -0.2187 -0.2187 -117182 -117183 195304 195305 

2 -0.4P -0.4374 -0.4375 -234365 -234366 390609 390609 

3 -0.6P -0.6562 -0.6562 -351548 -351548 585914 585914 

4 -0.8P -0.8749 -0.8749 -468730 -468731 781217 781219 

5 -1.0P -1.0937 -1.0937 -585913 -585913 976523 976523 

 

Case 3.  Cantilever with sunken prop. 

  End 
Displacement End Reaction RA Prop Reaction RB 

  

Inc. Load Theory  Lusas Theory  Lusas Theory  Lusas K1 K2 

1 -0.2P -0.2187 -0.2187 -117182 -117183 195304 195305 1.0 0.0 

2 -0.4P -0.4374 -0.4375 -234365 -234366 390609 390609 1.0 0.0 

3 -0.6P -0.6562 -0.6562 -351548 -351548 585914 585914 1.0 0.0 

4 -0.8P -0.8749 -0.8749 -468730 -468731 781217 781219 0.5 0.5 

5 -1.0P -1.0937 -1.0937 -585913 -585913 976523 976523 0.1 0.9 

 

References 

1. C.S.Gray et al. 'Steel Designers Manual : Second Edition', Crosby-Lockwood and Sons 
Publishers Ltd. (1960) 

Input Data 

X10D21A.DAT 

X10D21B.DAT 

X10D21C.DAT 
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Figure 3.  Theory of Propped Cantilever. 
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Example 11.1.1 

Eigenvalue Analysis Of Pinned Double Cross 

Keywords 

Superelements, Eigenvalue Analysis, Generalised Coordinates 

Description 

The eigenvalues of a pinned double cross are calculated using a full mesh. The structure is then 

partitioned into three superelements and the same analysis is repeated. Generalised coordinates 

are used to improve the solution. 

Finite Element Model 

Superelement 1 is defined by arms with node numbers 68-9, 1-9, and 35-9, superelement 2 by 

34-9 and 18-9 and superelement 3 by 51-9, 17-9, and 52-9. The master freedoms are those of 

node 9. 

 

Geometry 

Length of arms 5 m 

Arm cross-sectional area 0.125 m2 
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Material properties 

Young’s modulus 200.0 x109 

Density 8x103 kg/m3 

 

Boundary Conditions 

Pinned at each support. 

Solution Comparison 

The lowest 16 eigenvalues of the full mesh compared to [1] are: 

 Eigenvalue (Hz) 

Modes Reference                 Full mesh 

1 11.336 11.336 

2-3 17.687 17.687 

4-8 17.715 17.715 

9 45.477 45.477 

10-11 57.364 57.364 

12-16 57.683 57.683 

 

The problem has multiple and close eigenvalues for which the corresponding eigenvectors are 

detailed in Figure 1. Surprisingly, there is no symmetry associated with the multiple vectors at 

the higher modes. The structure is split into superelements which are connected at node 9. There 

are only three eigenvalues associated with the reduced structure. 

 Eigenvalue (Hz) 

Modes Full mesh 
Reduced mesh (master 

freedoms only) 

1 11.336 14.411 

2-3 17.687 175.866 

 

The eigenvalues of the reduced structure do not adequately describe the behaviour of the 

complete structure since only three degrees of freedom are used to simulate the complete 

structure. To improve the estimate, additional freedoms called generalised coordinates are 

introduced. Generalised coordinates are fictitious freedoms that are used to enhance the reduced 

stiffness and mass of the individual superelements by using the modes of vibration of the 
individual superelements.  
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Figure 2 details the three lowest modes of each of the superelements. In their calculation, node 9 

was fully restrained; therefore they correspond to the first mode of a beam which is simply 

supported at one end and encastre at the other. Superelement 2 has only two arms, thus the third 

mode corresponds to the next highest mode for the beam. Including generalised coordinates into 
the computations the lowest 9 modes are: 

 Eigenvalue (Hz) 

Modes Full mesh 

Reduced mesh  (master 
freedoms  + 3 

generalised coordinates) 

1 11.336 11.343 

2-3 17.687 17.687 

3  17.687 

4-8 17.715 17.715 

9 45.477 53.404 

 

There is a large improvement in the accuracy of the analysis. The best results are obtained for 

modes 4-8. In this instance node 9 is stationary and the generalised coordinates exactly represent 
the full eigenvectors. 

Superelement Analysis Sequence 

a) Solve with Master freedoms only 

  (i)   Generate superelements 1, 2, 3 

  (ii)  Combine superelements and solve eigen problem 

b) Solve with Master freedoms + Generalised coordinates 

  (i)  Generate superelements with modal freedoms defined 

  (ii) Combine superelements and solve eigen problem 

References 

1. Test No FV2, The Standard NAFEMS benchmarks, NAFEMS. 

Input Data 

X11D11A.DAT 

X11D11B.DAT 

X11D11C.DAT 

X11D11D.DAT 

X11D11E.DAT 

X11D11F.DAT 
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X11D11G.DAT 

X11D11H.DAT 

X11D11I.DAT 

a) Solve complete structure 

b) Use superelements with master freedoms only 

(i) Create superelement 1 

(ii) Create superelement 2 

(iii) Create superelement 3 

(iv) Solve eigenvalue analysis 

c) Use superelements with master freedoms and generalised coordinates 

(i) Create superelement 1 

Note for other superelements 2 and 3 include GENERALISED COORDINATES command 

(ii)  solve for eigenvalues of combined structure 

 

Figure 1  Eigenvectors of Pin-Ended Double Cross. 
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Figure 2 Generalised Coordinates. 
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Example 11.5.1 

Tip Loaded Cantilever Analysed Using Superelements 

Keywords 

Superelements, Static Analysis 

Description 

A cantilever is divided into two superelements, one modelling the root, the other the free end. 

The superelements are assembled and load is applied. Displacement and stresses of the 

superelements are then recovered using the restart file for the root and by re-defining the 
superelement data for the tip. 

Finite Element Model 

Elements 1 and 2 form the root superelement, whilst 3 and 4 constitute the tip superelement. 

 

Geometry 

Length 4 

Width 1 

Thickness 0.05 
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Material properties 

Young’s modulus 200.0x1011 

Poisson’s ratio 0.3 

 

Load 

Concentrated load of -1 applied at cantilever tip (total load=-2) 

Boundary Conditions 

Encastre at fixed end 

Solution Comparison 

Moment at restrained nodes = 4x-2/2 = -4 

Shear force     = 2/2    =  1 

Analysis Sequence 

(i)   Generate root superelement - use RESTART WRITE to save superelement data 

(ii) Generate tip superelement - RESTART WRITE is not used so a full solution is required to 

recover superelement data 

(iii) Solve superelement with applied concentrated loads 

(iv)  Recover root data using RESTART READ 

(v)   Recover tip data using full re-definition of problem 

Both superelements are stored in the same external file 

CANTLVR.SDA 

If a restart file is not saved, then data defining the elements comprising the superelement must be 
input in the data file. 

Input Data 

X11D51A.DAT 

(i) Create root superelement 

(ii) Create tip superelement 

(iii) Assemble root and tip superelement into cantilever and apply load 

(iv) Recover root stresses and displacements using restart file to define superelement 

(v) Recover tip stresses by re-defining superelement data input 
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Example 12.1.1  

1-D Soil Consolidation 

Keywords 

Consolidation, Linear, Nonlinear, Transient 

Description 

A soil column fixed along its base and subjected to uniform vertical load applied along its upper 

face is analysed by plane strain and 3D two phase elements. In order to establish 1D soil 
consolidation, proper horizontal constraints are applied to the column. 

Geometry, Boundary and Loading Conditions 

 

Figure  1 

The 3D model of the column is shown in Figure 1, together with boundary and loading 

conditions. In the plane strain analysis, only one xy section (projection of the 3D model in z-
direction) is considered. 

x 
y 

z 

u = 0, 

p free 
u = 0, 

p free 

distributed load q = 100, undrained conditions (p free) applied at time 0; 

drainage (p = 0) is provided in the subsequent time steps 

u, v, w = 0, p free 

w = 0, 

p free 

1 1 

12 
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Discretisation 

In the 3D analysis, the column is discretised by 96 hexahedral (HX20P) elements (four columns 

of 24 elements as shown in Figure 2); in the plane strain analysis, it is discretised by 48 

quadrilateral (QPN8P) elements (two columns of 24 elements) (without discretisation in the Z-
direction).  

 

Figure 2 

Material properties 

Linear material properties: 

Effective Young’s modulus of the soil E= 6.0103 

Poisson’s ratio    = 0.0 (1D deformation) 

Consolidation data: 

Bulk modulus of pore fluid  Kw = 2.21015 

Soil permeability factor  x = y = z = 0.02 

Porosity     = 1  

Unit weight of water  w = g = 10 

Mohr-Coulomb material properties:  

Cohesion of the soil skeleton  c = 20 

Angle of friction    = 6 

Theory 

Firstly, a linear analysis is carried out, then, the same linear problem is solved using non-linear 

solution facilities. The target results for these two cases are the Terzaghi 1D consolidation 

analytical solution. The results for the displacement at the top and the pore pressure at the bottom 

at specific times are (Craig, 1974): 
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Time (t) 0.0 0.1 0.5 1.0 1.999 

v(0, t) 0.0 0.02061 0.04607 0.06515 0.09208 

p(12, t) 100.0 100.0 99.8936 97.1388 83.3619 

 

Finally, the problem is solved using the non-linear Mohr-Coulomb material model; the final 

displacements, stresses and plastic strains should be the same as those obtained by their 
counterpart continuum elements using drained properties.  

All analyses are run for a total time of 2 units using a constant time step of length t = 0.1 units 

after the initial conditions have been established at time t = 0.001 units. 

Reference 

1. Craig, R.F. Soil Mechanics. Van Nostrand Reinhold Ltd., U.K., 1974. 

2. Norris, V.A. The elasto-plastic analysis of soil consolidation with special reference to 

kinematic hardening. Ph.D. Thesis, Department of Civil Engineering, University College of 
Swansea, 1980.   

LUSAS results 

Displacements and pore pressures from QPN8P and HX20P elements for the linear problem 
using linear (L) and nonlinear (NL) facilities (QPN8P gives identical results for the two cases)  

Time (t) 0.001 0.101 0.501 1.001 2.000 

v(0, t) QPN8P 0.0 0.01842 0.04497 0.06437 0.09149 

 HX20P(L) 0.0 0.01841 0.04493 0.06422 0.09097 

 HX20P(NL) 0.0 0.01842 0.04497 0.06437 0.09149 

p(12, t) QPN8P 100.0 99.9968 99.5893 96.5290 83.3734 

 HX20P(L) 99.9984 99.8649 99.0530 95.6493 82.1417 

 HX20P(NL) 100.000 99.9968 99.5893 96.5290 83.3734 

 

The above linear consolidation solutions by elements QPN8P and HX20P are satisfactory 

considering the coarse mesh adopted. A finer mesh at the permeable boundary and a smaller time 

step can further improve the accuracy of the solution. 

In 3D linear consolidation analysis, slight out-of-balance may occur, i.e. the reaction force 

becomes slightly different from the applied load. This effect becomes more serious with softer 

soils and when increasing the number of elements. This is because of the ill conditioning of the 

stiffness matrix due to the big difference in the amplitude of displacements and pressures, as also 

noticed by Norris (1980). This problem disappears when we solve the linear transient problem 
using nonlinear control. 

The results from QPN8P and KHX20P elements using a Mohr-Coulomb plasticity model are: 
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Time (t) 0.001 0.101 0.501 1.001 2.000 

v(0, t) QPN8P 0.0 0.01862 0.04556 0.06523 0.09273 

 HX20P 0.0 0.01862 0.04556 0.06523 0.09273 

p(12, t) QPN8P 100.0 99.9968 99.5902 96.5392 83.4284 

 HX20P 100.0 99.9968 99.5902 96.5392 83.4284 

 

They are close to the above linear solution; when using a non-linear material model, the final 

displacements are somewhat larger than the linear material model due to the onset of yielding. 

The final displacements, stresses and plastic strains agree well when compared with their 
counterpart continuum elements.  

Input data 

X12d11a.dat  (Plane strain, linear analysis) 

X12d11b.dat (Plane strain, linear problem with nonlinear control) 

X12d11c.dat (Plane strain, nonlinear material) 

X12d11d.dat (3D, linear analysis) 

X12d11e.dat (3D, linear problem with nonlinear control) 

X12d11f.dat (3D, nonlinear material) 
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Example 12.1.2  

Isothermal Drainage of Water from a Sand Column 

Keywords 

Consolidation, Geostatic, Nonlinear, Transient, Unsaturated 

Description 

This example simulates the experiment performed by Liakopoulos [1] on desaturation of a 

column of very fine Del Monte sand due to gravitational effects. Before the start of the 

experiment, water was continuously added from the top and allowed to drain freely at the bottom 

through a filter, until uniform flow (i.e. fully saturated) conditions were established. At the start 

of the experiment, the water supply ceased and water flows out from the bottom due to the 
desaturation process, and also to the squeezing effect of soil deformation. 

Geometry, Boundary and Loading Conditions 

In accordance with [2, 3], a column of soil with height 1m and width 0.1m is analysed. The 
boundary conditions are 

lateral surface qw = 0, u = 0 (impervious and constrained) 

top surface qw = 0, t > 0 

bottom surface pc = 0 (free water outflow) for t > 0, u = v = 0 

 

The initial conditions are: at t = 0, pc = 0 at all nodes (i.e. full saturation with water), which 

corresponds to a steady flow of water through the sand column. Furthermore, a state of 

mechanical equilibrium is assumed for t = 0. All the displacements are related to these initial 
displacements which correspond to the equilibrium state. 

Only gravity of soil and water is considered.  

Discretisation 

The column is discretised into 10 uniform 2D QPN8P or 3D HX20P (with thickness of 0.1m) 

elements along the height. 
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Material properties 

Deformable linear elastic soil and isotropic permeability are assumed. The porosity and hydraulic 

properties of Del Monte sand were measured by Liakopoulos [1] in an independent set of 
experiments. 

Young’s modulus* E = 1.3 MPa 

Poisson’s ratio*  = 0.4 

Solid grain density s = 2000 kg m-3 

Liquid density w = 1000 kg m-3 

Porosity n = 0.2975 

Intrinsic permeability  = 4.5×10-13 m2 

Water viscosity μw = 1×10-3 Pa s 

Air viscosity μg = 1.8×10-5 Pa s 

Gravitational acceleration g = 9.80665 m s-2 

Atmospheric pressure ( T = 293.15K) patm = 101 325 Pa 

Biot’s constant* b = 1 

Bulk modulus of solid grains* Ks = 1.0106MPa 

Bulk modulus of water* Kw = 2.0103MPa 

       (* These mechanical parameters adopted by Lewis and Schrefler [2] were not measured by 

Liakopoulos [1]) 

Liakopoulos [1] used the following saturation-capillary pressure and relative permeability-

saturation relationships in isothermal conditions, valid for water saturation Sw  0.91 

                   
       

                       

which can be fitted by the relationships of Valiantzas [4] with n = 3.207, w = 0.522 and hc = -

1.654; the maximum errors in Sw and    are 5.4% and -3.2%, respectively. 

Reference 

1. Liakopoulos, A.C. Transient flow through unsaturated porous media. PhD thesis, University 

of California, Berkeley (CA), USA, 1965. 

2. Lewis, R.W. and Schrefler, B.A. The finite element method in the static and dynamic 

deformation and consolidation of porous media. John Wiley & Sons Ltd, Chichester, 1998. 

3. Kolditz, O. and Shao, H. (Eds) OpenGeoSys developer-benchmark-book. OGS-DBB 5.04, 
UFZ Publisher, 2010. 
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4. Valiantzas, J.D. Combined Brooks-Corey/Burdine and van Genuchten/Mualem closed-form 

model for improving prediction of unsaturated conductivity. J. Irrig. Drain Eng. 137: 223-
233, 2011. 

LUSAS results 

We first carry out an initial (t = 0) nonlinear static (or Geostatic) analysis to the column under 

gravity with the given displacement condition and pw = 0 at all nodes to ensure an equilibrium 

geostatic stress field. The obtained effective stresses are transformed into initial stresses for the 
subsequent transient coupled pore diffusion/stress analysis from t > 0. 

The timestep size is controlled by the target change in water pressure and the target change in 

saturation. Up until 8 seconds the change in water pressure is critical afterwards the timestep is 

controlled by the change in saturation. The target change of pressure is set to 1Pa and the target 
change in saturation to 0.001. 3×3 full Gauss integration was adopted. 

Figure 1 shows the vertical displacement and water pore pressure versus height at different times 

obtained by QPN8P. The results from HX20P are identical to those from QPN8P. When the Sw – 

pc and    – Sw relationships of Liakopoulos are adopted (input in tabular form), the obtained 

results (solid lines in Figure 1) are the same as in the literature [2, 3]. If the deformability of the 

solid grains is considered, i.e. Ks = 106 MPa is used instead of an infinite value, the change in the 

results is negligible. However, when the fitted Valiantzas relationships [4] with n = 3.207, w = 

0.522 and hc = -1.654 are used, evident differences are noticed in the results (dash lines in Figure 
1), especially at intermediate stages, e.g. t = 5, 10 and 20m. 
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Figure 1 

Input data 

X12d12a.dat  (Plane strain QPN8P element) 

X12d12b.dat  (3D HX20P element) 
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Example 12.1.3  

Volumetric deformation of unsaturated soils 

Keywords 

Nonlinear, Unsaturated, Barcelona Basic Model 

Description 

Selected triaxial stress paths involving wetting, drying and increasing confining stress are 

modelled to demonstrate the capibilities of the Barcelona Basic Model (BBM) and agreement 
with the results originally presented in [1]. 

Geometry, Boundary and Loading Conditions 

A unit cube is restrained on three faces and loaded with face loads in each of the other faces to 

impose a uniform pressure. Pore water pressure is prescribed at all of the nodes with a pore water 

pressure degree of freedom. The face load and pore water pressure are then changed through the 

use of load curves to give different combinations of changes in suction and pressure. 

 

Figure  1 

The 3D hexahedral element (HX20P) is shown in Figure 1, together with boundary and loading 

conditions. In the plane strain analysis, only one xz section (projection of the 3D model in y-

direction) is considered using a quadrilateral (QPN8P) element.  

The pressure applied through face loads (P) and the suction (equal to the negative pore water 
pressure) (u) are varied using load curves as follows: 

P
 

x 

y 

z 

P 

P 

P 

1 
1 

1 

Fixed in z 

Fixed in x 

Fixed in y 
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Path u 
(MPa) 

P 
(MPa) 

u 
(MPa) 

P 
(MPa) 

u 
(MPa) 

P 
(MPa) 

u 
(MPa) 

P 
(MPa) 

Wetting 1 0.2 0.15 0.2 0.6 0.1 0.6 0.0 0.6 

Wetting 2 0.2 0.15 0.1 0.15 0.1 0.6 0.0 0.6 

Wetting 3 0.2 0.15 0.1 0.15 0.0 0.15 0.0 0.6 

Drying 1 0.0 0.15 0.0 0.6 0.1 0.6 0.2 0.6 

Drying 2 0.0 0.15 0.1 0.15 0.1 0.6 0.2 0.6 

Drying 3 0.0 0.15 0.1 0.15 0.2 0.15 0.2 0.6 

 

The wetting tests here begin at a net pressure (input as a residual stress) of 0.15MPa and a 

suction of 0.2MPa and are subsequently loaded and wetted through different paths until a final 

net pressure of 0.6MPa and a suction of 0MPa are reached. The drying tests also begin at 

0.15MPa but in a fully saturated and are dried and loaded until a final net pressure of 0.6MPa and 

a suction of 0.2MPa are reached. 

Material properties 

The following parameters are given in [1] 

                   ref    

1 10MPa 0.2 0.02 0.75 0.008 0.1MPa 0.1MPa 12.5MPa-1  

These have been adjusted to allow for use of Poisson’s ratio instead of shear modulus (although 

due to the applied boundary conditions this does not have any effect here). Additionally, to 

account for the bi-logarithmic definition of   and   they have been modified to the following. To 

exactly replicate the existing behaviour the semi-log parameters would be divided by the specific 

volume to get the bi-log parameters. As the void ratio changes, an average value which fits the 

data has been chosen. It can be seen in the following examples that this approach gives a good 
overall fit to the response. 

                   ref    

1 0.3 0.111 0.0111 0.75 0.00421 0.1MPa 0.1MPa 12.5MPa-1  

The initial yield surface position at zero suction is set at 0.2MPa and the movement of the LC 

curve can be seen as plastic yielding causes this to increase to 0.6MPa. The specific volume is set 
initially to 1.9.  

The tests are undertaken without any two phase material definition so that an effective stress is 
not calculated in order to replicate the behaviour seen in [1] which uses net stress. 

Reference 

1. Alonso, E. E., Gens, A. & Josa, A. A constitutive model for partially saturated soils 

Géotechnique 40, No. 3, 405-430 (1990). 
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LUSAS results 

The stress paths described above are plotted along with the development of the LC curve. The 

volumetric response is plotted on top of the behaviour in [1], it can be seen that excellent 
agreement is observed for all stress paths. 

Wetting and loading: 

 

 

Figure 2 
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Drying and loading: 

 

 

Figure 3 

The 2D and 3D elements yielded identical results so only one set of graphs are shown. 
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Input data 

E02N96.dat (2D wetting then loading of soil at u=0MPa) 

E02N102.dat (2D wetting, loading of soil at u=0.1 MPa and further wetting) 

E02N98.dat (2D loading of soil at u=0.2MPa and then wetting) 

E02N104.dat (2D drying and then loading of soil at u=0.2MPa) 

E02N105.dat (2D drying, loading of soil at u=0.1MPa and further drying) 

E02N106.dat  (2D loading of soil at u=0MPa and then drying) 

E18N46.dat (3D wetting then loading of soil at u=0MPa) 

E18N52.dat (3D wetting, loading of soil at u=0.1 MPa and further wetting) 

E18N48.dat (3D loading of soil at u=0.2MPa and then wetting) 

E18N54.dat (3D drying and then loading of soil at u=0.2MPa) 

E18N55.dat (3D drying, loading of soil at u=0.1MPa and further drying) 

E18N56.dat  (3D loading of soil at u=0MPa and then drying) 
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Example 13.1.1 

Coupled Hygro-Thermal-Mechanical Analysis 

Keywords 

Coupled Hygro-Thermal-Mechanical Analysis  

Description 

This example is a concrete reinforced beam under a constant sustained service load for a period 

in excess of 400 days, experimentally tested by Gilbert, [1, 2].  
The model is shown in Fig 1. Dimensions are in [mm]. 

        
Fig. 1 

Load and dimension of beam tested by Gilbert [1, 2]. D=348mm; bar diameter =16 mm;  

Case B1-a: P=18.6 kN,  (50% of ultimate load)  

Case B1-b: P=11.8 kN,  (30% of ultimate load) 

The properties of concrete at various ages after casting were measured from companion cylinders 

and prisms using standard test procedures and are give in Table 1. 

 
Table 1. Concrete properties 

The creep coefficient 
cc

  for concrete first loaded at age 14 days and the shrinkage strain 
sh



were measured on 300mm diameter cylinders and slab specimens 160 mm thick, respectively, 

and the values at various concrete ages are given in Table 2. At present, this data is not used in 

the analysis. 

 
Table 2. Creep coefficient and shrinkage strain (10-6) 
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The specimens were undisturbed in their moulds for 3 days. After the 3rd day the specimens were 

removed from the moulds and kept continuously moist by a thick and complete covering of wet 

hessian to minimise the loss of moisture from the specimens. After 14 days the covers and wet 

Hessian were removed, the demec strain targets were glued to the concrete surface and initial 

measurements were recorded. Beam specimens were subjected to two concentrated loads located 

at the third of the span and applied via steel channel beams. 

Discretisation 

A quarter of the beam is modelled by 2208 8-node solid elements HX8/HHT8 and 46 2-node bar 

elements BRS2/BFS2, Fig. 2.  

 

      
Fig. 2 

Model discretization 

Material properties 

Concrete hygro-thermal - main 

0T
k  Thermal conductivity [W/m.K]    =  2.0    (*) 

0s
C  Specific heat capacity of dry concrete [J/kg.K]  =  900   (*) 

0s
  Density of dry concrete [kg/m3]   = 2400   (*) 

0I
K  Permeability (intrinsic) [m2]    = 0.1E-18 (*) 

Vea Entrapped air volume ratio [-]   = 0.023  (*) 

Concrete hygro-thermal - advanced 

s
f  Tortuosity coefficient [ - ]    = 0.01   (*) 

v
H  Latent heat of evaporation [J/kg]   = 0.0  

1T
k  Change of thermal conductivity with temperature [ - ] = 0.01  (*) 

1s
C  Change of specific heat capacity with temperature [ - ] =   0.0   (*) 

1s
  Change of density with temperature [ - ]  =   0.0   (*) 

k
f  Check box ‘Thermal conductivity depends on water saturation’ =  0 or 1 

 

Properties that change with temperature are computed from: 

   0 1 refs s s
T T T      

   0 1 refs s s
C T C C T T    

   0 1 re f
( , ) 1

T w T T k w
k T S k k T T f S       

   
 

where: 

re f
T   Built-in reference temperature   = 20 C or 293.14 K, based on model units. 

 w
S  Built-in  function of the water saturation 

w
S  

Pz 
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Concrete hygro-thermal – Heat of Hydration 

Cement type        Type I (*) 

wcem  Mass of cement per unit volume [kg/m3] = 350   

wc  Water/Cementitious mass ratio [ - ]  = 0.45   

wslg  Mass of slag per unit volume [kg/m3]  = 0.0   (*) 

wpfa  Mass of fly ash per unit volume [kg/m3] = 0.0   (*) 

CaOpfa CaO content of fly ash [%]   = 0.0    (*) 

delay  Delay of heat of hydration    = 0.0   (*) 

 

Steel  bars  thermal  

T
k  Thermal conductivity [W/m.K]    =  45.0   

s
  Density [kg/m3]     = 7800  

s
C  Specific heat capacity [J/kg.K]   =  450  

 

Note:  Since the concrete and steel bars share the same volume it would be more accurate 

for the bars to have equivalent properties that are computed by subtracting the value of the 

concrete property from the corresponding steel property. Thus: 

*

T
k  Equivalent bar thermal conductivity [W/m.K]   =  45 – 2         = 43  

*

s
  Equivalent bar density [kg/m3]       = 7800 –2400 = 5400 

*

s
C  Equivalent bar specific heat capacity [J/kg.K]   7 8 0 0 4 5 0 2 4 0 0 9 0 0

2 5 0
5 4 0 0

  
 

  

 

Concrete mechanical - main 

E  Young's modulus [N/m2]    = 25.0E9  

 Poisson’s ratio     = 0.2 

  Mass density [kg/m3]    = 2400  

  Expansion coefficient    = 1.0E-5 

fc   Compressive strength [N/m2]    = 25.0E6  

ft   Tensile strength [N/m2]    = 2.24E6  

c  Strain at peak uniaxial compression   = 2.2E-3 (*) 

Gf  Fracture energy per unit area [N/m]   = 130  (*) 

 

ds  Coefficient of dry shrinkage    = 0.9E-3 (*) 

cs  Coefficient of chemical shrinkage   = 0.1E-3 (*) 

 

Concrete mechanical - advanced 

r Biaxial to uniaxial stress ratio    = 1.15 (*) 

o Initial relative position of yield surface     = 0.6 (*) 

 Dilatancy factor      = –0.1 (*) 

mg Constant in interlock state function    = 0.3  (*) 

mhi Contact multiplier on o     = 0. 5 (*) 

mful Final contact multiplier on o     = 5.0  (*) 
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r Shear intercept to tensile strength    =1.25 (*) 

 Slope of friction asymptote for damage    =0.8 (*) 

mcf  Multiplier on o  to define crack fixity strain   =0.5 (*) 

fpz  Fracture process zone width [m]    = 0.06  (*) 

itfx  No. of iterations after which cracks are fixed   = 2 (*) 

itmx Max. iterations for fracture strain update  = 2 (*) 

Rs Residual softening factor     = 0.001 (*) 

Ap Material constant Ap    = 0.6 (*) 

An Material constant An    = 0.75 (*) 

Z1 Contact sharpness Z1    = 8.0 (*) 

Z 2 Contact sharpness Z2    = 8.0 (*) 

CLM Limit of contact tension    = 3.0 (*) 

fmr   Multiplier on relaxation times     = 1.0 (*) 

fmc Creep factor multiplier    = 1.0 (*) 

fmp Pickett factor multiplier    = 1.0  (*) 

r , m in
  Degree of hydration  percolation    = 0.05 (*) 

r ,1
  Degree of hydration at 1st cure     = 0.5 (*) 

mp Moisture rate Pickett factor effect [sec-1]  =10.0E-12 (*) 

w d
S  Saturation start Pickett effect    = 0.85 (*) 

sh
   Short relaxation time [days or its equivalent]  = 10  (*) 

L 1
  1st long relaxation time [days or its equivalent]  = 150  (*) 

L 2
  2nd long relaxation time [days or its equivalent]  = 1100  (*) 

E
c  Logistic model coefficient for E   = 12.5 (*) 

fc
c  Power model coefficient for fc    = 3.0 (*) 

f t
c  Power model coefficient for ft    = 3.0 

T40 Temperature when degradation starts [oC]  =  40  (*) 

T80 Temperature when degradation stops [oC]  =  80  (*) 

rE
C  Finishing degradation coefficent for E   = 0.9 (*) 

rc
C  Finishing degradation coefficent for fc   = 0.8 (*) 

r t
C  Finishing degradation coefficent for ft   =  0.9 (*) 

 

(*)   Default property value 

 

Note: 

The true tensile strength ft is about 80% of the cylinder splitting strength [3]. Thus 

              ft (t=25days) = 0.8*2.8 = 2.24 MPa 

             ft (t=14days) = 0.8*2.0 = 1.60 MPa 

          To achieve ft(t=14days)=1.60MPa, 
f t

c  (default = 1) is set to 3.0 
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Steel  bars mechanical  

E  Young's modulus [N/m2]    = 200.0E9  

 Poisson’s ratio [-]     = 0.3 

  Mass density [kg/m3]    = 7800  

  Expansion coefficient [-]    = 11.0E-6 

Note:  Since the concrete and steel bars share the same volume it would be more accurate 

the bars to have an equivalent properties that are computed by subtracting the value of 

concrete property from the corresponding steel property. Thus: 

E  Equivalent bar Young's modulus [N/m2]  = 175.0E9  

  Equivalent bar mass density [kg/m3]  = 5400  

 

Boundary conditions 

(i) Hygro-thermal 

     Time 0.0  to time 14.0 days (wet Hessian cover) on all external surfaces: 

ENVT load:   Tenv = 20 C; 
T = 5.0 W/m2K 

TPDSP load: RH=1,  contact with water. 

     Time 40.0  to time 400 days. All external surfaces exposed to air. 

ENVT load:   Tenv = 20 C; 
T = 5.0 W/m2K;  RH=0.5; 

T = 1 

where:  

Tenv Environmental temperature 


T 

Convective heat transfer coefficient 

RH Relative humidity 


V 

Vapour mass transfer coefficient (negative - envokes Chiltern-Colburn analogy) 

 

(ii)  Structural 

       Support Z=0 along Y axis; Support X=0 on plane of symmetry. 

       Global distributed load along the half-width:  Pz = P/(½0.125)    

Case B1-a (P=18.6/ kN):  Pz =18.6/(½0.125) =  74.4 N/m 

Case B1-b (P=11.8 kN)    Pz =11.8/(½0.125) = 47.2 N/m 
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Time steps 

Hygro-thermal analysis 

A reduction of the time step at time 14 days is required when Hygro TPDSP is removed and 

replaced by ENVT. Time step of 1 day is used until the end of the simulation. Fig 3a 

 

 
 

Fig 3a 

Hygro-thermal analysis 

Variation of Time step [days]  vs Response time [days] 
 

Structural analysis 

The beam tests start at age 14 days. In the LUSAS analysis the self weight is applied at this age. 

After that, the sustained load is applied in 200 short time steps. After that, the load remains 

constant for 400 days. The time steps used up to day 60 are plotted in Fig. 3b. A constant time 

step of 3 days is used until the end of the simulation (Time=400 days). 

 

 
 

Fig 3b 

Structural analysis 

Variation of Time step [days]  vs Response time [days] 
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Theory 

LUSAS results are compared to experimental results [1, 2], wherever available. 

 

Reference 

1. Gilbert, R. I., Nejadi, S., (2004). An Experimental Study of Flexural Cracking in R.C. 

Members under Sustained Loads, UNICIV Report R-435, School of Civil & Env. Eng., 

University of New South Wales, Sydney, Australia, 

(http://www.civeng.unsw.edu.au/staff/ian_gilbert/). 

2. Gilbert, R. I. (2013). Time-Dependent Stiffness of Cracked Reinforced and Composite 

Concrete Slabs, Procedia Engineering 57, 19 – 34. 

3. Neville, A.M. (2013) Properties of Concrete, 5th ed., Pearson Education. 

 

Input Data 

X13D11a.DAT 

X13D11b.DAT 

 

LUSAS Results 

The computed maximum net deflection (i.e. the deflection due to self weight is subtracted) is 

compared to the experimentally measured one in Fig 4. When the load level is 30% of the 

ultimate load, test B1-b, LUSAS results agree very well with the experimental results. When 

the load level is 50% of the ultimate load, test B1-a, there is an 11% underestimation of the 

final deflection. 

 

 

Fig. 4 

Creep deflection.  

 

http://www.civeng.unsw.edu.au/staff/ian_gilbert/
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Temperature, degree of hydration and relative humidity distributions are shown in Figs. 5a, 5b 

and 5c, resp. 

 

 

Figure 5a 

Temperature distribution at time 0.5 days 

 

 

 
Figure 5.9b 

Degree of hydration at time 14.0 days 

 

 

 
 

Figure 5.9b 

Relative humidity at time 28.0 days 
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LUSAS time history hygro-thermal results at the beam centre are given in Fig. 6.   

 
 

Fig. 6 

Hygro-thermal results at beam centre 

T  – temperature 

Sw  – water saturation 

Hr  – relative humidity 

DH  – degree of hydration 

Por  – porosity 

 

There are no experimental hygro-thermal results to compare with. 

 

 

The experimental data for the crack widths in beams B1-a and B1-b is given in Gilbert’s Table 7, 

shown below: 
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LUSAS crack distribution and crack width, CWmax, contour plot for test B1-a at Time=14 days 

(i.e. just after loading) and Time=400 days, are presented in Figs 7a and 7b, resp. 

 

 

Fig. 7a 

Test B1-a:  Crack distribution and crack widths at time 14 days, i.e. at first loading 

A – LUSAS:       CWmax=0.14 mm 

B – Experiment;  CWmax=0.13mm 

 

 

  
 

 

 
 

Fig. 7b 

Test B1-a: Crack distribution and crack widths at time 400 days: 

A – LUSAS:       CWmax=0.27 mm.  Number of cracks along half length   10. 

B – Experiment;  CWmax=0.38mm.  Number of cracks along full length   14 

 A 

 B 
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LUSAS crack distribution and crack width, CWmax, contour plot for test B1-b at Time=14 days 

(i.e. just after loading) and Time=400 days, are presented in Figs 8a and 8b, resp. 

 

 

 

Fig. 7b 

Test B1-b:  Crack distribution and crack widths at time 14 days, i.e. at first loading 

A – LUSAS:       CWmax=0.01 mm 

B – Experiment;  CWmax=0.05mm 

 

 

   

 
 

 
 

Fig. 8b  

 Test B1-b: Crack distribution and crack widths at time 400 days: 

A – LUSAS:       CWmax=0.236 mm;  No of cracks along half length   7. 

B – Experiment; CWmax=0.18mm (at crack 4). No of cracks along full length   13 

 

 

 A 

 B 



Index 

373 

Index 

A 
ANISOTROPIC, 37, 219 

AXISYMMETRIC SHEET, 67, 70 

AXISYMMETRIC SHELL, 70, 141 

AXISYMMETRIC SOLID, 67, 70, 141, 

327 

B 
BAR, 128 

BEAM 3D, 12 

BIFURCATION, 128 

BOX BEAM, 55 

BUCKLING, 118, 241 

C 
CANTILEVER, 337 

CARTESIAN SET CYLINDRICAL, 75 

CENTRIPETAL STIFFENING, 131 

CIRCULAR PLATE, 67 

COFFERDAM, 79 

COMPACT TENSION SPECIMEN, 51 

COMPOSITE ANALYSIS, 63 

CONCRETE, 178 

CONDUCTANCE, 91 

CONDUCTION, 264, 272 

CONDUCTIVITY, 96 

CONSTANT STRAIN, 12 

CONTACT, 334, 337 

CONVECTION, 261 

CO-ROTATIONAL, 135 

COUPLED ANALYSIS, 304, 307, 311, 

316 

COUPLED HYGRO-THERMAL-

MECHANICAL ANALYSIS, 362 

CREEP, 188, 191 

CURVE ASSIGNMENT, 75 

CURVE DEFINITIONS, 75 

CURVED BEAM, 1, 4 

CURVILINEAR COORDINATES, 23 

CYCLIC LOADING, 165, 169, 184 

D 
DAMAGE, 165, 184 

DAMPING, 276 

DRUCKER-PRAGER, 199, 222 

E 
ECCENTRIC, 45 

EIGENVALUE, 99, 101, 106, 115, 118, 

121 

EIGENVALUE ANALYSIS, 342 

EIGENVECTORS OF STIFFNESS 

MATRIX, 112 

ELASTIC, 327 

ELASTO-PLASTIC, 172, 175, 199, 207, 

211, 219, 222, 247, 251, 301 

ELASTOPLASTICITY, 157 

ENTHALPY, 267 

ENVIRONMENTAL NODES, 91 

F 
FACE LOADING, 75 

FIELD, 83, 91 

FOURIER, 75, 121 

FRACTURE, 15 

FRICTION, 172, 211 

G 
GAP, 337 

GENERALISED COORDINATES, 342 

GEOMETRIC NONLINEARITY, 125, 

131, 138 

GROUNDWATER, 79 

GUYAN REDUCTION, 106 
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H 
HARMONIC, 279 

HEAT, 264, 272 

HILL YIELD CRITERION, 255 

I 
IMPACT, 320, 324 

IMPLICIT, 188, 191, 327, 334 

INCOMPATIBLE ELEMENTS, 195 

INCOMPATIBLE MODELS, 23 

INTERFACE MODEL, 211 

J 
JOINT, 337 

L 
LAMINATED PLATE, 63 

LARGE DISPLACEMENT, 255 

LARGE ROTATION, 112 

LARGE ROTATION,, 145 

LINEAR, 41, 45 

LINEAR BUCKLING, 103 

LINEAR DYNAMICS, 276 

LINEAR ELASTIC, 279 

LOAD CYCLING, 157 

LOADING, 47 

M 
MODIFIED VON MISES, 160 

MOHR-COULOMB, 199, 207, 222 

N 
NATURAL FREQUENCY, 115, 301 

NONLINEAR, 135, 238, 241, 267, 311, 

334 

NONLINEAR DYNAMICS, 301 

NONLINEARITY, 247 

O 
ORTHOTROPIC, 37 

P 
PERIODIC, 279 

PHASE CHANGE, 267 

PLANE FRAME, 7 

PLANE STRESS, 32, 178 

PLASTIC, 191 

PLASTIC FLOW, 320 

PLASTIC WORK, 316 

PLASTICITY, 184, 195, 238, 241, 316 

PLATE, 37, 41, 45 

PRESSURE, 175 

PRESSURE VESSEL, 70 

R 
RADIATION, 261 

RECTANGULAR PANEL, 241 

REINFORCEMENT, 178 

ROTATING MACHINERY, 131 

S 
SEEPAGE, 79 

SEMILOOF, 118 

SEMILOOF SHELL, 75, 121, 251 

SHAPE FUNCTIONS, 23 

SLIDELINE, 320, 327 

SLIDELINES, 334 

SNAP THROUGH, 138 

SOIL STRUCTURE INTERACTION, 211 

SOLID, 51 

SPHERICAL SHELL, 247, 301 

SPRING, 128 

STATIC, 334 

STATIC ANALYSIS, 347 

STEADY STATE, 83, 96 

STEP-BY-STEP DYNAMICS, 298 

STRESS CONCENTRATION FACTOR, 

32 

STRESS INTENSITY, 15 

SUPERELEMENTS, 342, 347 

T 
TEMPERATURE DEPENDENT 

PROPERTIES, 12 

THERMAL CONDUCTION, 83 

THERMAL STRESS, 304 

THERMAL SURFACES, 91, 311 
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THREE DIMENSIONAL BEAM, 47 

THREE DIMENSIONAL CONTINUUM, 

51 

THREE DIMENSIONAL SOLID, 251 

TIED SLIDELINE, 324 

TOTAL AND UPDATED 

LAGRANGIAN, 141 

TOTAL LAGRANGIAN, 112, 131, 135, 
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	The creep coefficient   for concrete first loaded at age 14 days and the shrinkage strain  were measured on 300mm diameter cylinders and slab specimens 160 mm thick, respectively, and the values at various concrete ages are given in Table 2. At presen...
	/
	Table 2. Creep coefficient and shrinkage strain ((10-6)
	The specimens were undisturbed in their moulds for 3 days. After the 3rd day the specimens were removed from the moulds and kept continuously moist by a thick and complete covering of wet hessian to minimise the loss of moisture from the specimens. Af...
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	Time 0.0  to time 14.0 days (wet Hessian cover) on all external surfaces:
	ENVT load:   Tenv = 20 (C; (T = 5.0 W/m2K
	TPDSP load: RH=1,  contact with water.
	Time 40.0  to time 400 days. All external surfaces exposed to air.
	ENVT load:   Tenv = 20 (C; (T = 5.0 W/m2K;  RH=0.5; (T = (1
	where:
	Tenv Environmental temperature
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	RH Relative humidity
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	Hygro-thermal analysis
	A reduction of the time step at time 14 days is required when Hygro TPDSP is removed and replaced by ENVT. Time step of 1 day is used until the end of the simulation. Fig 3a
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	The computed maximum net deflection (i.e. the deflection due to self weight is subtracted) is compared to the experimentally measured one in Fig 4. When the load level is 30% of the ultimate load, test B1-b, LUSAS results agree very well with the expe...
	Fig. 4
	Creep deflection.
	Temperature, degree of hydration and relative humidity distributions are shown in Figs. 5a, 5b and 5c, resp.
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	Figure 5a
	Temperature distribution at time 0.5 days
	/
	Figure 5.9b
	Degree of hydration at time 14.0 days
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	Figure 5.9b
	Relative humidity at time 28.0 days
	LUSAS time history hygro-thermal results at the beam centre are given in Fig. 6.
	Fig. 6
	Hygro-thermal results at beam centre
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	DH  – degree of hydration
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