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1. Introduction 

In modelling soil, the approach most intuitive to structural engineers is where soil is 

represented by a subgrade reaction model ("Winkler springs"). 

However, using a spring stiffness to approximate soil behaviour is a major 

simplification.  In general, Winkler models are reasonable if structural load effects 

(e.g. wall BM, SF, prop loads) are the main quantities of interest.  Continuum models 

are required where soil movements (e.g. assessment of the likely damage to existing 

adjacent structures) are critical. 

2. Description 

2.1 Definition of modulus of subgrade reaction, k 

The modulus of subgrade reaction is a conceptual relationship between applied 

pressure and deflection for a plate resting on an elastic support system.  The defining 

equation is k=q/ where q=pressure, =deflection and k is known as the modulus of 

subgrade reaction (units F/L
3
) –sometimes called Winkler spring constant. 

2.2 Problems obtaining k-values 

In the field, the k-value is determined using data obtained from a plate loading test 

(typically 1ft by 1ft square).  The load is applied to a stack of 1-inch thick plates until 

a specified pressure (q) or displacement () is reached.  Then k=q/. 

Unfortunately, for a specified displacement level, when plate size is increased, the 

computed k-value decreases.  Teller and Sutherland (1943) investigated the effect of 

plate sizes on the k-value, concluding 

1. It is necessary to limit the specified displacement to a magnitude comparable 

to those expected in the final foundation 

2. It is of great importance to use a bearing plate of size appropriate to the 

foundations being assessed. 

In essence, the engineer must know the size of the foundation (and expected 

deflection) in order to undertake an appropriate test to determine k-values to enter in 

his foundation calculations.  This cyclical logic underlines the problems in 

determining k from field testing.  Furthermore, it is difficult to make a plate-load test 

except for very small plates because of the reaction load required and therefore 

necessary to assess a suitable value from a small-scale test. 

Thus plate loading tests (and theoretical derivations) show that as the loaded area 

increases, the computed k-value decreases.  A k-value is not a fundamental property 

of soil; a k-value must be calculated specific to the foundation in question. 

2.3 Notes on k-value for vertical springs representing subgrade 

Terzaghi (1955) suggested relating the k-value derived from a plate loading test to the 

k-value for a "real" foundation in a number of formulae considering both cohesive and 

cohesionless soils.  While this is useful, k-value derived from a plate test is found also 

to be sensitive to: 
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1. Load (or displacement) magnitude 

2. Moisture content 

3. Loading rate in cohesive saturated soils 

Nonetheless Terzaghi's fomulae and typical values are still widely used and are 

outlined below: 




1sk modulus of vertical subgrade reaction for a square plate 1ft x 1ft 

This value is taken from field tests (can compare to typical values for reassurance), 

then converted to ks1 and finally ks for use in design calculations. 

2.3.1 Stiff clays 

Typical values (after Terzaghi, 1955) 

 Stiff Very stiff Hard 

Undrained shear 

strength, Cu 

100-200 kPa 200-400 kPa >400 kPa 




1sk range 
15-30 MN/m³ 30-60 MN/m³ >60 MN/m³ 


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1sk recommended 
23 MN/m³ 45 MN/m³ 90 MN/m³ 
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2.3.2 Cohesionless soils 

Typical values (after Terzaghi, 1955) 

 Loose Medium Dense 




1sk dry/moist 
5-20 MN/m³ 20-90 MN/m³ 90-300 MN/m³ 




1sk recommended 
12 MN/m³ 40 MN/m³ 150 MN/m³ 




1sk submerged 
8 MN/m³ 25 MN/m³ 100 MN/m³ 
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2.4 Relating k to E 

Terzaghi's formula are still widely used but there has been interest in other possible 

means of determining k.  Subsequent work, notably by Vesic (1963, 1970) has 
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suggested relating k to E.  Timoshenko & Goodier (1970) give a solution for the 

average displacement of a square flexible footing resting on a homogeneous isotropic 

linear elastic solid, carrying a vertical load.  From it we deduce  

)1(95.0

1
2 


h

Eq
k  (for a loaded plate of side h) 

Again this indicates that k is not constant but depends on the size of the loaded area.  

Furthermore an appropriate k-value for a foundation analysis would depend on the 

loading location (edge of foundation, corner of foundation etc). 

2.5 Other approximations 

Since values of E are often unavailable, other approximations are also useful.  Section 

9-6 of JE Bowles‟ "Foundation Analysis and Design" 5th Edition (McGraw-Hill) 

entitled "modulus of subgrade reaction" includes approximations based on allowable 

bearing capacity, general solutions for horizontal/lateral modulus of subgrade reaction 

and a worked example.  Based on allowable bearing pressure, qa:  

ks=40*safety factor*qa 

where safety factor would typically be 3 and qa from the ultimate settlement of about 

0.0254m 

e.g.  ks=120*qa=40*q_ult 

Note that site-specific data is always essential when considering soil parameters and a 

geotechnical expert should be consulted. 

2.6 Fundamental problem with k 

In the Winkler model, displacement at a point is proportional to the applied pressure 

at that point ( =q/k), and this is visualised as springs of stiffness, k.  There is no shear 

transmission between adjacent springs. 

In reality the deflection of a point in the subgrade occurs not just as a result of the 

stress acting at that particular point but is influenced to a progressively decreasing 

extent by stresses at points distant.  By not replicating this fundamental behaviour, the 

Winkler model is lacking and attempts to determine suitable values for k point to the 

deficiency in the concept. 

The Timoshenko & Goodier (1970) solution for displacement of a square flexible 

footing carrying a vertical load P over an area A on a homogeneous isotropic linear 

elastic (HILE) solid also indicates that k is not constant but depends on the size of the 

loaded area. (see above) 

We can conclude that a HILE solid needs at least 2 parameters to define it (E and v or 

G and K) so attempting to describe behaviour with just one parameter can be expected 

to lead to difficulties – in particular when attempting to select an appropriate value for 

a given practical problem.  Being thus dependant on the size (and shape) of the 

structure being considered, subgrade modulus cannot be regarded as a fundamental 

material parameter. 
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2.7 Limitations & uses 

The limitations of the Winkler (subgrade reaction) approach may be summarised: 

 no prediction of soil movements at a distance from the foundation element is 

given. 

 no shear transmission between adjacent springs, therefore no prediction of 

differential settlement (no "dished" profiles under uniform load) 

 difficulty determining spring stiffness (k) leading to uncertainty in predicted 

total or average settlements 

Terzaghi (1955) stated that „the theories of subgrade reaction should not be used for 

the purpose of estimating settlement or displacements‟.  However: 

 For an infinite beam under a line load settlements are proportional to k
-3/4

, 

while bending moments are proportional to k
-1/4

.  Therefore BM not so 

sensitive to inaccuracy in k-value. 

 Westergaard (1926) showed increase of k-value 4:1 = only minor changes in 

critical stresses for pavement design. 

 Vesic (1961) suggested that it was possible to select a k-value so as to obtain a 

good approximation of both bending stresses and deflections of a beam resting 

on a soil, provided the beam is sufficiently long.   

In general, continuum models are far better suited to the prediction of ground 

movements adjacent/ under the structure and remote from the structure.  Winkler is 

still widely used in the determination of structural load effects. 

2.8 Beam on elastic foundations 

A general solution for a “Beam on elastic foundations” was derived using the Winkler 

spring analogy long before the advent of digital computers. 

From beam theory  

M=EId
2
v/dx

2
 

S=dM/dx 

From vertical equilibrium on a small length of beam 

dS/dx + Bq =Bkv 

From this is derived the governing equation 

d
4
v/dx

4
 + Bk.v/EI = Bq/EI 

The general solution to this equation (Hetenyi, 1946) is 

V = C1 e
x

 cosx + C2 e
x

 sinx + C3 e
x

 cosx + C4 e
x

 sinx 
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Where 4

EI

Bk s , a relative stiffness term crucial to behaviour.  C1, C2, C3, C4 are 

constants determined by the boundary conditions.  1/ has units of length and defines 

a “characteristic length” for the problem. 

For an infinite beam under a line load all quantities are negligible when x>1.5 

hence  

1. there is no interaction when loads are further apart than x=1.5* / and  

2. Hetenyi infinite beam solution is valid when L > 3* 

2.9 Laterally loaded piles 

The governing equation of a laterally loaded pile:  d
4
v/dx

4
 + Bk.v/EI = 0 

An analytical solution similar to the classic BOEF solution by Hetenyi may be found.  

The main differences are that the pile is vertical, load may only be applied at the head, 

and the elastic (soil) medium exists on both sides.  Assuming that the pile is long and 

the soil modulus is independent from depth, the pile deflection is of the form 

V = C1 e
x

 cosx + C2 e
x

 sinx 

 is a relative stiffness term crucial to behaviour.  C1 and C2 are constants determined 

by the boundary conditions.  1/ has units of length and defines a “characteristic 

length” for the problem. 
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