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1. Introduction 

The stress resultant beam model is based on a yield surface, which has been derived for 
rectangular solid sections and circular hollow sections. Other cross-sections may be 
treated as a combination of these. The yield criteria have been derived using the following 
initial assumptions: 
 

• The von Mises yield criterion is used as the basis of the model.  
 

• The stress-strain curve is linear elastic/perfectly plastic (i.e. zero hardening) 
 

• Plastification is an abrupt process with the whole cross-section transformed from an 
elastic to fully plastic stress state.  

 

• The fully plastic torsional capacity is constant.  
 

• Transverse shear distortions are neglected.  
 
Further information on the governing equations of this model can be found in Volume 1 of the 
LUSAS Theory Manual under section 4.3.2. 
 
Model 29 requires the specification of the following plastic section properties: 
 

• Plastic cross-section area (�� ) 
• Plastic modulii for bending about the y axis (����) 
• Plastic modulii for bending about the z axis (����) 
• Plastic modulii for torsion about the y axis (���) 
• Plastic modulii for torsion about the z axis (���) 

Note that plastic area for shear (��), is not actually used in the material formulation and 

therefore does not need to be specified (i.e. set it to 0). It is planned that this parameter will 
be removed from the user interface in future releases of LUSAS 
 
Finally, the following material properties need to be specified under the plastic material 
interface: 
 

• Uniaxial yield stress (so) 

• The section shape on which the material model is formulated, either rectangular solid 

section or circular hollow section 

This support note deals with the theory and calculation of the plastic section 

properties �		
, ���
, �	
 and ��
. 
 
Please note that Model 29 assumes an abrupt change from the elastic to fully plastic stress 
state when the yield criteria is met. 
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2. Plastic modulii for moment [1] 

First consider a beam with a rectangular solid section, of elasto-plastic material subjected to a 
bending moment �� about the local z axis. 

 
 
 
 
As �� increases, the stress on the most extreme fibre, at distance p from the neutral axis 
(NA) C, can increase to a maximum of so, the material yield stress. This moment is termed the 
yield moment and given about the z-axis as, 

��� � ��I��� � ����� 
Where I�� and ��� � ���

�  are the second moment of area and the elastic section modulus 

respectively, both about the z axis. In addition, a similar expression could be given for the 
yield moment about y. 
 
As the moment is increased past ���, the strains in the beam will continue to increase past 
the yield strain, but due to the elastic-perfectly plastic condition, the maximum stress cannot 
exceed the yield stress. Instead, the yielded zone will increase until the stress throughout the 
entire section has reached so, as shown below. 

 
 
 
 
The bending moment corresponding to the final idealised stress distribution (in item 4 of 
Figure 2) is represented by the plastic moment ���, which can be found by integrating over 
the cross-section area. 

��� � � ����
�

 

 
However at this instant, every point on the cross-section carries a tensile stress so above the 
NA and –so below the NA, so the above expression can be reduced to 
 ��� � ���� �����  ��� � �!�!� 
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Where A1 and A2 are the cross sectional areas above and below the neutral axis, and � �� and � �! are the distances from the NA to the centroids of �� and �!.  
 

 
 
 
 
For pure bending, the resultant force acting on the section is zero (i.e. $� � F!), so under fully 
plastic conditions,  s'�� � ��A! �� � A! 
 
Therefore, given that that the total area A, is equally divided between �� and �!, then the fully 
plastic moment about the z axis is, 
 

��� � ����� �� ) � �!�2 � ������ 
Where,   

���� � ��� �� ) � �!�2  

 
And similarly about the y-axis, 

++� � ����, �� ) , �!�2 � ���++� 
 

�++� � ��, �� ) , �!�2  

 
Therefore, for a doubly symmetrical cross section such as the rectangular section shown in 
Figure 1, the fully plastic bending moments are simply given by 
 

��� � �� �2 -
�
4 )

�
4/ � ��

��
4 � ������ 

 

++� � �� �2 -
b
4 )

b
4/ � ��

�1
4 � ���++� 

 
 
Where, the plastic section modulii for a rectangular section about the z and y-axes are,  
 

���� � 1�
!
4  

And, 

�++� � �1
!
4  

 
Values of plastic bending modulii can be found for a range of commercially available 
beam sections in texts such as Roark Formulas for Stress and Strain [1] or the AISC 
Manual for Steel Construction [2]. 
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3. Plastic modulii for torsion 

As discussed in the LUSAS Theory Manual, Model 29’s formulation uses the plastic modulii 
for torsion, �+� and ���, to calculate the fully plastic torsional moment 2�,  
 2� � ��3��� ) ���4 
 
Although the torsional modulii can be specified in two separate components, it is most 
common to calculate a single term i.e. �5�. Therefore, since the two components are 

eventually added together anyway, it is appropriate to divide this value equally between the 
two components. 
 

�+� � ��� � �5�2  

 
The response of an elastic-perfectly plastic beam, subject to pure torsion can be illustrated in 
a similar way to the pure bending case above. The material will remain in the elastic range as 
long as the applied torque 2 is below the yield torque 2�, but first yield will occur at 2 � 2� 
when the maximum shear stress 6̂ on the cross-section reaches 0.577so (i.e. from the Von 

Mises condition 6+ � 89
√;).  

 
A theoretical way to compute the plastic modulii for torsion is explained below using the “Sand 
Heap Analogy”. 
 

Sand Heap Analogy [4] 

The sand heap analogy is similar in concept to the more commonly known ‘membrane’ (or 
‘soap bubble’) analogy for elastic torsion. As discussed in structural mechanics text books, 
the maximum shear stress of a cross-section can be calculated via the Prandtl stress function 
or described using the membrane analogy, which says that the shear stresses in a pure 
torsion problem are analogous to the slope of a membrane of the same shape as the beam 
cross-section, that is pinned at its edges and subjected to a uniform pressure underneath.  
 
In addition, the theory says that the elastic torque, which is given by the following equation, is 
analogous to twice the volume under the membrane, since the stress function Φ corresponds 
to the membrane deflection, z at a point on the cross-section. 
 

2 � <=�>�� � 2<,�>�� 
 
Because the stress function Φ is not usually known (except for example in the case of an 
elliptical section), the soap bubble analogy is primarily used to justify assumptions for an 
approximate calculation, for example with ‘bars of narrow cross section’ and ‘thin walled 
tubes’ (see text books [1,5] for details)  
 
In a similar way, the sand heap analogy compares the stress function to a pile of dry sand, 
which of course is limited by instability at a given slope. This slope is analogous to the shear 
stress at yield, which for the fully plastic condition when 2 � 2�, is constant over the entire 
section. As such, because the torque is equal to twice the volume under the stress function, 
the fully plastic torque is also equal to twice the volume of the sand heap, which for a 
rectangular section is a pyramid.  
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Where the fully plastic torsional modulii 

�5� � 1
;
3 H-

3
2/ -

C
1  1/ ) 1I 

 
 
Therefore, unlike the elastic ‘soap bubble analogy’, where the ‘deflected surface’ (i.e. stress 
function) can be complex, the constant gradient (i.e. shear) condition in the sand heap 
analogy means that the volume and fully plastic torsional modulii can be calculated in a rather 
simpler approach. 
 
A list of plastic torque values for a number of standard structural shapes is provided in 

Table 3.1 of ‘Ductile Design of Steel Structures’ [4], from which �J can be calculated by 
dividing by KL. 
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