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1. Introduction 

Although a linear static analysis will ensure that equilibrium is fully achieved and may also 
predict stress levels within an acceptable range, the current structural design may still be 
unsuitable for the intended use. Below the critical buckling load of a structure “stable” 
equilibrium will usually be achieved, whilst above this load “unstable” equilibrium may result 
from geometric and/or material effects.  

This note concentrates on the methods available in LUSAS to determine the buckling 
behaviour of a structure; linear, including geometric effects and/or material nonlinearities.  

There are three methods in LUSAS to obtain information regarding buckling loads and their 
respective deformation modes,  

 Linear Eigenvalue Buckling Analysis  

 Geometrically Nonlinear Analysis  

 Full Nonlinear Analysis 

The following comments describe the principal characteristics of these methods to assist in 
the selection of the most appropriate method for the structure to be modelled. 

2. Linear Eigenvalue Buckling Analysis 

2.1 General 

An eigenvalue buckling analysis calculates the linear buckling load factors i.e. the load factors 
that if applied on the loading the structure will buckle with a specific deformed shape 
(eigenmode). It should be noted that as eigenvalue buckling analysis is a linear analysis, thus 
it doesn’t give any information on the post-buckling behaviour (if any) of the structure. I.e. it 
won’t give any information on whether the structure has a post-buckling resistance, if this is 
stable or unstable etc, although in certain cases it could calculate with a good approximation 
the actual buckling load factor of the structure. 

This technique can be applied to relatively "stiff" structures to estimate the maximum load that 
can be supported prior to structural instability or collapse. Determining the overall 
characteristics of a structure is a matter of engineering judgement but, in general, stiff means 
stocky (e.g. an engine block). In contrast, an example of a flexible structure would be one 
manufactured using a significant amount of slender and flexible members. The assumption of 
a stiff structure, however, is not unreasonable for many applications.  

The fundamental assumptions of such an analysis are as follows  

 The linear stiffness matrix does not change prior to buckling  

 The stress stiffness matrix is simply a multiple of its initial value  

The requirement for a stress stiffness matrix demands a nonlinear software path in LUSAS. 
Linear eigen value buckling, therefore, is only available for elements that have a nonlinear 
capability. See the relevant section on the element types available for use with this procedure 
for further details.  

An inference from these assumptions is that the pre-buckling displacements have negligible 
influence on the structural response. In other words, large deformation effects are not 
included in either the linear stiffness or the stress stiffness matrices. 

To explain this last comment, consider the following strut, loaded axially in compression as 
shown (a). If the member is slender then, instead of failing by direct compression, it may bend 
and deflect laterally (b). At this point the member is considered to have buckled.  
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The linear eigenvalue buckling analysis 
procedure would yield accurate solutions in 
this case because the horizontal pre-buckling 
deformation is negligible (zero).  

If, however, the strut is also subject to a prior 
horizontal load (c), the buckling load will be 
increasingly inaccurate as this load 
increases. This is because the linear 
eigenvalue buckling procedure firstly 
computes the stress state according to a 
linear elastic procedure. As a result the 
effects of large deformations are ignored. For 
the case above, this means the omission of 
the additional axial forces which would be 
induced into the strut as the horizontal force 
increases.  

In general, the eigenvalue buckling analysis 
will, therefore, increasingly overestimate the 
buckling load as the pre-buckling 
displacements increase.  

This analysis type will provide both local and 
global buckling modes. However, engineering 
judgement is necessary to determine which 
buckling mode is the most critical in order to 
select the appropriate buckling load factor. It 
is, of course possible to visually examine the 
resultant modes in Modeller. 

 

 

2.2 Structural model 

A typical bridge of a pair of plate steel girders is being considered. Bracing is provided to 
control buckling lengths of the girders and also stiffeners to control local buckling phenomena. 
Bearings are idealised as line supports, but other approximations e.g. point or surface 
supports, could be implemented. This would have an impact on the results and behaviour of 
the structure, as this would be more flexible or stiffer. 

 

Thick quadrilateral shells with linear interpolation (QTS4) elements are used to mesh the plate 
girders and thick nonlinear beam (BTS3) elements to mesh the bracing trusses.  

Eccentricity

(a) (b)

(c)
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2.3 Solver selection 

LUSAS includes different solvers that are suitable for each problem. More information on 
them could be found in LUSAS Solver Manual. 

Five eigenvalues are to be calculated using the Default eigensolver in this case, using the 
default values.  

 

2.4 Results 

After solving the model the following eigenvalues are being calculated. 

Utilities > Print Results Wizard > Loadcases: Active > Entity: None and Type: Eigenvalues 

MODE EIGENVALUE LOAD FACTOR ERROR NORM 

1 15.965 15.965 5.09E-10 

2 -17.0511 -17.0511 6.61E-9 

3 17.1157 17.1157 4.88E-13 

4 17.1162 17.1162 4.93E-13 

5 17.2041 17.2041 2.75E-10 

The first eigenmode is given in the following picture. Negative eigenvalues have been 
calculated in this case. This is mainly due to numerical difficulties in the solution procedure 
and LUSAS will return warning messages both in the Text Window and in the output file. Also, 
it is important that the first positive eigenvalue, which is usually of interest, is being calculated 
having a small error norm. 
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By using the alternative eigenvalue buckling solution the negative eigenvalues could be 
rectified, as this alternative algorithm will always give positive eigenvalues except when the 
buckling load factor is less than unity.  

The buckling load for a mode would be the result of multiplying the actual magnitude of the 
applied loading (as specified in the LOAD CASE ) with the load factor (15.965 in the case of 
the 1st mode). Note that only one load case (containing any number of different loading 
types) is permitted in an eigenvalue buckling analysis. As a result, the load factor computed 
by LUSAS applies to all the loads in this load case. To evaluate the effect of an active 
buckling load superimposed onto a constant static dead load would require a full 
geometrically nonlinear analysis to be performed. 

Absolute displacement output is not available from any eigenvalue analysis. It is available 
however in a normalised state. For buckling analyses the eigenvectors (mode shapes) are 
normalised to unity (mass normalisation is only supported in eigenvalue frequency analyses). 
The mode shapes are, therefore, accurate representations of the buckling deformation, but do 
not quantitatively define the displacements or stresses of the structure at the buckling load. 

The force and reaction output is evaluated only from a consideration of the displacements 
associated with each eigenvector (mode shape). The output, therefore, represents the forces 
developed as if the eigenvector displacements were applied directly to the structure as 
prescribed displacement loading. 

The applied loads are not taken into account at this stage and, moreover, the magnitude of 
the forces and reactions are not quantitative and are relative to the unit normalised 
eigenvector - they do not represent forces at the buckling load. To obtain member forces from 
eigenvalue buckling analyses it is necessary to perform a further linear elastic analysis with 
the same combination of loading on the structure - but this time factored according to the load 
factor obtained from the buckling analysis. 

3. Buckling using Geometrically Nonlinear Analysis (GNL) 

3.1 General 

A full geometrically nonlinear (GNL) analysis, if appropriately perturbed, will take account of 
any pre-buckling displacements of the structure and, moreover, provide a complete response 
of the structure at all stages of the analysis.  

The geometrically nonlinear functionality depends on the element type proposed, but the 
general available options are as follows: 

 Total Lagrangian   

 Updated Lagrangian     

 Eulerian    

 Co-rotational   
 
The buckling load is not given directly in this method; rather a complete deformation history is 
obtained. A graph of force-displacement (stress-strain) at any point or for the structure will 
enable the buckling load to be determined. See later section on buckling load output for 
further information. 
 
If a perturbation load is not specified and if the applied load on its own does not induce 
buckling due to its nature and its direction, then when the buckling load has been exceeded a 
negative pivot will be found in the iterative log output. This is after the increment has 
converged (negative pivots that occur during the iterative procedure, i.e. at unconverged 
configurations, can be ignored). Note that, if the buckling load for the next (higher) mode is 
surpassed, two negative pivots will occur and so on. The use of the bracketing facility in 
LUSAS can help isolate the buckling load and also to determine whether a bifurcation or limit 
point has been encountered. The bracketing procedure also removes the need to know how 
the structure should be perturbed in order to initiate buckling in the structure. 
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Local and global buckling modes are, therefore, accurately predicted with a complete 
geometrically nonlinear analysis with an appropriate initial perturbation. The interaction 
between the local and the global buckling modes will be accounted for directly in this manner. 

3.2 Which elements are permissible? 

Two guidelines are important here: 

 All the elements used in a linear eigenvalue buckling analysis must have a nonlinear 
functionality as a result of the requirement for the nonlinear stress stiffness matrix. 
 
Note that this does not mean that geometrically nonlinear effects are accounted for 
(they are not). As stated above, it is simply a numerical requirement. The linear 
eigenvalue buckling procedure assumes geometric linearity; ignoring the effects of 
large deformation. 
 

 For a full geometrically nonlinear analysis, geometrically nonlinear capability is only 
required by those elements which are deemed to undergo such effects. Linear 
elements may be used for the remainder of the structure. If there is uncertainty, all 
elements used should support geometric nonlinearity. 

 
This procedure depends on geometrically nonlinear functionality to determine buckling 
effects and cannot be omitted. The LUSAS element reference manual  should be 
inspected to determine which is available for the proposed element(s). 

 
To establish whether a proposed element supports nonlinearity, the Geometric Nonlinearity 
section in the LUSAS Element Reference Manual should be referred to. Geometric 
nonlinearity is, as stated above, not used for linear buckling analyses but an affirmative 
indication in this section is equivalent to saying that nonlinear functionality is available. If this 
reference states 'Not Applicable' the element does not support any geometric nonlinearity.  
 
 

3.3 Geometrically nonlinear analysis procedure 

Multiple different analyses can take place in LUSAS; linear static, eigenvalue, nonlinear etc. 
These are independent from each other, but attributes can be inherited from one to another or 
the deformed shape of an analysis can be used as the initial shape of another. 

Analyses > General Structural Analysis > Initial Deformations tab 

A base analysis is identified as such by a 
green solve icon alongside its Analysis 
name in the Analyses Treeview. Other 
analyses present in the Analyses Treeview 
that inherit assignments, options and 
settings of the base analysis are identified 
by a cyan solve icon. 

By default the “Set the analysis as the base 
structural analysis” is not checked 
(selected). As a result a new analysis will 
inherit most of the attribute assignments, 
options and settings etc. of the base 
analysis.  

Deselecting the “All” option provides the means to individually select which attribute 
assignments, options and settings should be inherited from a base analysis and, by their non-
selection, which should not. 

This procedure won’t copy the loads between the analyses, but this could be easily done by 
copying and pasting them between the loadcases.  
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In the following example the first eigenmode of the eigenvalue analysis is going to be used to 
appropriately perturb the structure.  

 

The magnitude of the initial deformations (if it is reasonable) will not affect the total buckling 
factor calculated from a geometrically nonlinear analysis; only the path followed is going to be 
changed. This is true whenever a limit point is reached. 

The “Nonlinear and Transient” controls should be turned on for the newly defined analysis 
and loadcase by right-clicking on the loadcase name.  

Note: An automatic incrementation is specified to monitor the behaviour of the structure while 
the loads are increasing in the structure. A total load factor greater than the initial eigenvalue 
buckling load factor is specified in order to monitor the post buckling behaviour of the 
structure. 

In the “Nonlinear analysis options” the “Total Lagrangian” and “Co-rotational” options are 
selected to enable the geometric nonlinearities in the shells and beams elements, 
respectively. Without these options, nonlinear buckling will be completely ignored. 

 

3.4 Results 

As the eigenvalue buckling analysis has already been conducted in analysis 1, only the 
second analysis is selected by default to run, when the “Solve” button is pressed.  
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For a full geometrically nonlinear analysis the buckling load is not automatically output but will 
require a force-deflection graph for the structural response to be plotted and the buckling load 
estimated there from; in which case the estimate of Pcr could be estimated by inspection. For 
instance the final graph may be of the form “nodal lateral displacement vs named total load 
factor”. 

In this type of analysis the magnitude of both the displacements and the stresses are 
meaningful (according to the assumptions made in the numerical modelling).  
The following graph represents the lateral displacements of a node in the middle of one of the 
two top flanges versus the total load factor. 

 

A decrease in the curve at total load factor 14.47 indicates a change of stiffness and it’s the 
desired value i.e. the buckling load factor. The shape of the curve shows that after buckling 
the structures has an unstable behaviour i.e. there is a reduction in its stiffness. 

4. Buckling using Material Nonlinear Analysis (MNL) 

4.1 General 

The previous GNL analysis takes into account a linear material; stresses could increase 
infinitely proportional to displacements without yielding. A full nonlinear analysis would 
incorporate both geometric and material nonlinearities (as well as boundary nonlinearity if this 
was significant to the behaviour of the structure). 

4.2 Material nonlinearity without hardening 

Another analysis can be added, having the same attributes and options as the GNL analysis. 
Care should be taken that materials should not be inherited from the base analysis as an 
elastic-perfectly plastic material is to be defined and assigned only onto the shells in the new 
analysis.  
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The nonlinear material is defined having a yield stress of fy = 275MPa and no hardening. The 
von Mises criterion is used as it models better the behaviour of metals. 
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A small hardening slope is being used only for numerical reasons; a “zero” value could 
potentially lead to numerical instabilities and nonconvergence of the model. 

The material attribute is assigned only onto the shell elements in the model and only for the 
3

rd
 analysis; beam elements are assigned with a linear material. 

4.3 Results 

The same diagram is produced for the same node, as in the previous analysis. In this case 
buckling occurs for a total load factor of 6.74, thus much less than the previous case, due to 
the elastoplastic material. The results show that material nonlinearity is significant in this case 
and should be considered. 

The stress contours of the von Mises stresses show that the top flanges yield in the middle of 
the girders. 
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Note that there has been a few small unloading and re-loading increments due to use of Arc-
length method for achieving convergence.  
 

 

4.4 Material nonlinearity with hardening 

A fourth analysis is being specified, having the same attributes and options as the GNL 
analysis and an elastoplastic material with hardening defined and assigned only onto the 
shells. In this case a different approach for the elastoplastic material is being used for 
instructive reasons only.  
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4.5 Results 

The “nodal lateral displacement vs named total load factor” diagram is produced once again 
for the same node, as in the previous analysis. Buckling occurs for a total load factor of 6.84, 
a value slightly larger than the previous case, due to hardening. 

The stress contours of the von Mises stresses show that the top flanges yield in the middle of 
the girders. 
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Note that there has been a few small unloading and re-loading increments due to use of Arc-
length method for achieving convergence. 

 

 

5. Discussion 

The eigenvalue buckling analysis of the structure can only be used to provide the mode 
shape of the structure and the critical buckling load. The stresses and displacements that are 
obtained are relative to the unit normalised eigenvector and are generally of no practical use. 
To obtain member forces for the girder it is necessary to perform a further linear static 
analysis with the same combination of loading on the structure.  

The stresses and displacements in the structure when the critical load is applied may be 
obtained simply by performing a linear static analysis with the loads factored to the buckling 
load previously derived. These may be compared to other limit state criterion to determine the 
load carrying capacity of the structure. The critical buckling stress for the mode under 
consideration will be obtained from the same analysis. If required, this can then be used with 
reference to design codes to calculate the value of the slenderness parameter for lateral 
torsional buckling λLT and the limiting compressive stress σlc.  

The Eigenvalue analysis provides a bounding factor, which assists in assessment of buckling 
as a significant design concern; however it is an upper bound (“unsafe”) theorem.  In the 
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Eurocode (EN1993-1-1:2005), the Eigenvalue can be used in the determination of design 
resistance (clause 6.3).  [A similar approach also appears in the British Standard, BS5400-
3:2000, clause 9.7.5]. 

The GNL analysis may reduce the total load factor, but it’s still considered unsafe, as the 
material is assumed elastic. It should be noted that the actual value of the imperfection won’t 
affect the total load factor, as long as too large values are not used. Thus, the same value of 
the total load factor should always be returned and only the initial deformed shape and 
direction  may affect it. 

In the simple example which is used in this note, the full nonlinear analysis, including GNL 
and MNL, reduces more than two times the total load factor. Considering hardening for the 
elastoplastic material increases slightly the total load factor.   

Method of analysis Total Load Factor 

Eigenvalue buckling 15.96 

Nonlinear (GNL) elastic  buckling 14.47 

Nonlinear buckling (MGNL) without hardening 6.74 

Nonlinear (MGNL) buckling with hardening 6.84 

 

 

In the above graph all the curves from the different analyses are plotted together. The total 
buckling load factor from the eigenvalue analysis is the upper bound of the problem. 
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