CUSTOMER SUPPORT NOTE

Obtaining Slice Forces and Moments in Solid Meshed Models

Note Number: CSN/LUSAS/1031

This support note is issued as a guideline only.

LபヨAヨ

Table of Contents

1. INTRODUCTION 1
2. DESCRIPTION 1
2.1 Geometry - Volume Features 1
2.2 Mesh attributes 1
2.3 Material attributes 3
2.4 Support attributes 3
2.5 Loading attributes 4
2.6 Checking the model 5
2.7 Creating a (section through 3D) slice 5
2.8 Creating contours 6
2.9 Printing forces 6

1. Introduction

For a beam meshed model, forces and bending moments can be outputted directly. For a shell meshed model, resultant forces and moments per unit width can be integrated for a given slice to obtain equivalent beam forces and moments using Utilities>Slice Resultants Beams/Shells. Due to the element theory and degrees of freedom in use, bending moments cannot be "directly" outputted for solid continuum elements. Stresses can be integrated to obtain forces and moments for a slice created using Utilities>Section through 3D. This gives a cross-section slice through the three-dimensional solid meshed model on which the user can display results. Results for this slice through the solid model are calculated at pseudonodes, formed at the intersections of the slice with the element edges by linear interpolation of the nodal results. Stresses for the slice can then be integrated over the area of the crosssection to determine equivalent beam forces and moments.

This Support Note explains how this facility can be used in the context of a simple example of a cantilever beam meshed with solid 3D continuum elements.

2. Description

2.1 Geometry - Volume Features

A cantilever beam of 5 m length and a cross section of $0.25 \mathrm{~m} \times 0.60 \mathrm{~m}$ is to be modelled.
Create a new model with units of $\mathrm{kN}, \mathrm{m}, \mathrm{t}, \mathrm{s}, \mathrm{C}$ and Z -axis assigned as the vertical one.
Select the button to create a cuboid of length $(X) 5$, height $(Y) 0.25$ and depth $(Z) 0.60$

2.2 Mesh attributes

The four lines along the longitudinal axis of the beam shall have 20 divisions i.e. 0.25 m per element.

Attributes > Mesh > Line

Assign this attribute to the aforementioned lines.
The beam is going to be modelled with stress hexahedral elements with a quadratic interpolation order (HX20).
Attributes > Mesh > Volume

Select the whole model and assign the volume mesh 'HX20' from 'Attributes Treeview' by dragging and dropping the attribute into the Graphics Window.

2.3 Material attributes

An ungraded concrete material will be assigned on the whole model.
Attributes > Material > Material Library

Select the whole model and then assign the material attribute 'Iso1' from 'Attributes Treeview' onto it by dragging and dropping. Ensure that 'Assign to volumes' is selected.

2.4 Support attributes

Support attributes will be assigned to one end surface of the beam.

Select the surface at the left end of the beam and drag and drop the support attribute onto the model.

2.5 Loading attributes

Only one loadcase (self-weight) is going to be considered for the structure in this example. Define a linear acceleration of $9.81 \mathrm{kN} / \mathrm{m}^{2}$ in the global-Z axis.

Attributes $>$ Loading $>$ Body Force
Drag and drop the attribute onto the model (assign to volumes only) and check the loading arrows are as shown below.

2.6 Checking the model

Turn off the load attribute visualisation and then run the model to check that the deflected shape is sensible.

2.7 Creating a (section through 3D) slice

Before creating a slice through the solid meshed model, ensure that the view of the model is orientated as desired bearing in mind that the model will be sliced in a plane perpendicular with the current view orientation of the model (into the screen). Also ensure that only the volumes (and their underlying volume mesh) that you wish to slice are showing results, or set as that only visible on screen.

A section through the 3D solid continuum model is now created at $X=0.25$ by using Utilities > Section through 3D. In the dialog that appears, set the grid size equal to the elements length (i.e. 0.25 m) and draw a line parallel to the global Z axis at .

A parent group called "Slices" is automatically created, with a separate sequentially numbered group per slice created under it.

2.8 Creating contours

You can check the stress contours on the slice by right clicking on the slice group and choosing "Set as Only Visible" or you can view contours only on the slice by selecting "Display on slice(s)" in the Contour Properties Dialog.

[^0]Results file: Solid_slices.mys
Entity: Stress - Solids
Component: sz

	-109.962
	-82.4716
	-54.981
	-27.4905
	0.0
	27.4905
	54.981
	82.4716
	109.962

2.9 Printing forces

In the \qquad Treeview, you can now right click on the slice group to select "Print Local Forces".

This will load a pop-up a window showing the forces and bending moments on the slice about the slice local axes. Results improve with the mesh density.

```
ga LUSAS View slice,1.tot
Slice 1 SLICE ANALYSIS RESULTS
Results File = D;{Support_Notes\Solid Slices\Solid_slices.mys ID= 0
Loadcase = 1
Title: Leadcase 1
Fx on slice
Fy on slice
Fz on slice -0.2269E-10
Mbox about slice }x\mathrm{ axds -39.80
Myy about slice y axis 0.3210E-11
Mzz about slice z axis -0.8394E-11
```

The slice axes can be displayed on the slice by right clicking on the slice group and selecting "Draw axes".

Loadcase: 1:Loadcase 1
Results file: Solid_slices.mys
Entity: Stress - Solids
Component: sz

	-109.962
	-82.4716
	-54.981
	-27.4905
	0.0
	27.4905
	54.981
	82.4716
	109.962

If we compare these slice results to that of an equivalent beam meshed model we can see that we get the same result for the moment to three significant figures at this location on the beam:

The result for the vertical shear force is also the same as that in the equivalent beam meshed model to four significant figures:

Page 8

In addition, you can output the section properties of the slice (e.g. area, $2^{\text {nd }}$ moment of area etc.) by selecting "Print Properties" from the context menu for the slice group.

```
#% LUSAS Viem slice_2.tot
Slice 1 SLICE PROPERTIES
Total Slice Are: 0.1500
lmex about slice xaxds 0.4500E-02
byy about slice y axis 0.7613E-03
lmy about origin 0.000
Global X of centroid 0.2500
Global Y of centrold 0.1250
Global Z of centroid 0.3000
Principal l1 at centroid 0.4500E-02
Principal l2 at centroid 0.7613E-03
Principal Angle [degrees] 90.00
```

If we compare these section properties to those given by the Standard Section Property Calculator (Utilities menu) for this rectangular section (the output of which is shown below) we can see that we get the same values for the section properties calculated for the "Section through 3D":

In case you want the values about another location in the slice plane, you can move the slice local axes by right clicking on the slice group and selecting "Properties..." and choosing the "Slice" tab.

Note that this method will not slice line or surfaces meshed elements and these must be made invisible if present and sliced separately. For slices through beam and/or shell elements the Slice Resultants Beams / Shells facility should be used.

[^0]: Loadcase: 1:Loadcase 1

