
LUSAS Programmable
Interface (LPI)

Developer Guide

Version 15

LUSAS Programmable Interface (LPI)

Developer Guide

LUSAS Version 18.0 : Issue 2

LUSAS

Forge House, 66 High Street, Kingston upon Thames,

Surrey, KT1 1HN, United Kingdom

Tel: +44 (0)20 8541 1999

Fax +44 (0)20 8549 9399

Email: info@lusas.com

http://www.lusas.com

Distributors Worldwide

Copyright ©1982-2019 LUSAS

All Rights Reserved.

Table of Contents

i

Table of Contents

Introduction 1
Introduction .. 1
Topics covered in this guide .. 2
LUSAS Progammable Interface (LPI) Customisation and Automation Guide.......... 2

Creating dialogs using VB.NET 3
Choosing a development environment .. 3
Downloading and installing Visual Studio Community ... 4
Creating a LUSAS dialog ... 4

Module Manager .. 6
Creating a new module .. 7

Running Visual Studio ... 7
Build the project ... 11
Run the project... 11
Adding dialog controls .. 14
Defining a ListBox .. 17
Defining a Delete Button .. 18
Defining a Cancel Button ... 19
Handling errors .. 20

General considerations .. 22
Basic dialog design .. 22
Basic dialog controls .. 22
Code design considerations ... 22

Multiple Dialogs in a single module ... 23
Translation considerations ... 26
VB.NET online tutorials ... 27
VB.NET dialog exercise ... 29
VB.NET dialog solution .. 30

LUSAS via COM 33
Component Technology .. 33
Application Example .. 33

Create a new project .. 33
Interfacing to LUSAS using C++ .. 41
LUSAS Material Model Interface ... 43

Introduction

1

Introduction

Introduction

LUSAS software is highly customisable. The built-in LUSAS Programmable Interface

(LPI) allows the customisation and automation of modelling and results processing

tasks and creation of user-defined menu items, dialogs and toolbars as a means to

access those user-defined resources. It can also be used for transferring data between

LUSAS and other software applications, and to control other programs from within

LUSAS Modeller, or control LUSAS Modeller from other programs.

With LPI, any user can automate the creation of complete structures, either in LUSAS

or from third-party software, carrying out design checks, optimising members and

outputting graphs, spreadsheets of results and custom reports. Because everything

carried out by a user is recorded in a LUSAS Modeller session file, anything that

LUSAS can do, can also be controlled by another application via the LUSAS

Programmable Interface. This means that you can view and edit a recorded session,

Introduction

2

parameterise those commands, turn them into sub-routines, add loops and other

functions to the scripts and create a totally different application or program - using the

proven core technology of LUSAS.

In addition to the accessing and customising LUSAS Modeller via the LUSAS

Programmable Interface, user-defined material models (written in Fortran) can be

compiled and built into a customised LUSAS Solver executable by using the LUSAS

Material Model Interface (LUSAS MMI).

Topics covered in this guide

The aim of this guide is to help you use the more advanced facilities available to

customise LUSAS and interface with other applications. The guide covers:

 Creating dialogs using VB.NET

 LUSAS via COM

 LUSAS Material Model Interface

LUSAS Progammable Interface (LPI) Customisation and

Automation Guide

A separate LUSAS Programmable Interface (LPI) Customisation and Automation

Guide is also available covering more basic topics:

 Getting started with the LUSAS Programmable Interface (LPI)

 Identifying LPI Functions

 Customising the interface

 Getting started with VBS

 A simple example script

 Creating your own menus

Choosing a development environment

3

Creating dialogs

using VB.NET

A dialog is a window that appears on the display screen to neatly present information

or request input from the user. Creating dialogs, and some other advanced features,

such as object oriented programming, is a more advanced topic, and some

programming skills are required.

VBScript belongs to the group of interpreted languages, meaning that there is no need

for compilers to be used. This is because the implementations execute directly, line by

line. Examples of other interpreted languages are JavaScript, Python and Perl.

To create a dialog you will need to use a compiled programming language. Examples

of compiled languages are Visual Basic .NET (VB.NET), C#, Java, C++. For this

example VB.NET will be used, because although it is a different language to VBScript,

it uses the same syntax, and you should be already familiar with it. Also, and more

importantly, you do not need to be familiar with COM programming, as you would if

C++ was used instead.

Advantages of VB.NET over VBScript include

 Better user-interface creation

 Debugging with break points

 More extensible. Allows Object Oriented Programming (OOP)

 Multiple functions saved into one .dll file. Easier to share across the company

than multiple .vbs script files

 Easier to do testing

Choosing a development environment

To use VB.NET a compiler needs to be installed. Both Visual Studio Express and

Visual Studio Community are free to use and could be used but the Visual Studio

Community edition, which is a fully featured and extensible Integrated Development

Environment (IDE) is the application recommended by LUSAS and the application that

is documented in this guide. This is used in preference to the more limited Visual

Creating dialogs using VB.NET

4

Studio Express version, which is a closed IDE that cannot use any Visual Studio

extensions.

Visual Studio Community is free for individual developers, open source projects,

academic research, education, and small professional teams. Users should be aware of

the licensing terms under which it is supplied.

Downloading and installing Visual Studio Community

Visual Studio Community is free to use and can be downloaded from:

https://www.visualstudio.com/downloads

Note. Problems can be experienced when installing Visual Studio Community from

a downloaded exe file (relating to the installation being unable to locate the package

source as a result of you attempting to install the software when you are part of a

company network). To overcome this issue, download the .iso file instead and burn it

onto a DVD. Then install it from the DVD (or alternatively virtually mount the iso

image).

Visual Studio Community can take a long time to install.

Creating a LUSAS dialog

To create a LUSAS dialog, you will need to add a new Module to LUSAS. Modules

are like plugins.

1. Run LUSAS.

2. All the installed modules can be seen by selecting the menu item Help >

About LUSAS Modeller and checking “Show all installed components”

https://www.visualstudio.com/downloads

Creating a LUSAS dialog

5

Creating dialogs using VB.NET

6

Module Manager

LUSAS Modeller’s Modules are controller by the Module Manager and the Module

Manager dialog can be displayed by following the steps below.

1. Open the file C:\<LUSAS Installation Folder>\Programs\Modules\LUSAS.lml

into a text file editor.

2. Search for the text ModuleManager

3. Enable it by changing false to true as shown below

4. Save the file.

From now on, when you run LUSAS Modeller you will see the Modules menu:

Running Visual Studio

7

Creating a new module

 Copy the LusasModule<version_number>.zip file from the LUSAS

installation directory C:\<LUSAS Installation Folder>\Programs to the Visual

Studio project template folder. For instance: Libraries\Documents\Visual

Studio 2019\Templates\ProjectTemplates\Visual Basic

Running Visual Studio

 Open Visual Studio and select File>Create a new Project

 In Visual Studio scroll to the bottom and select the LUSAS Module<version

number> template for your version of LUSAS) from the available list>Next.

 The dialog example that will be covered in this guide creates a new module to

delete loadcases, therefore enter the name DeleteLoadcases (without any

space) and click OK.

Creating dialogs using VB.NET

8

Note. It is important to use a sensible name as this propagates throughout the

automatically generated code.

Note. Spaces can be used within Module names, but LUSAS generally avoids the

use of spaces in its own scripted file names.

Note. If more than one version of LUSAS is installed on your machine you should

check the version number of LUSAS that is being referenced by Visual Studio and

ensure that this number is what is required. This can be done by checking the path to

the LusasInterop dll.

 If this is required, on the Solution Explorer double-click on My Project and

visually check the path for LusasInterop.dll

Running Visual Studio

9

 If the wrong version of LUSAS is being referenced, click Add and search for

the Lusas.Interop.dll file in the right version path i.e. :\<LUSAS Installation

Folder>\Programs\Lusas.Interop.dll and click add

Carrying on:

 In the Solution Explorer right-click on DeleteLoadcases and choose Properties

 On the Application page set the Target framework to .NET Framework 4

Creating dialogs using VB.NET

10

Note. For LUSAS v18, .NET Framework 4 is needed. Later versions of LUSAS will

require a different target framework to be set.

 On the Compile page, browse and change the build output path to

Libraries\Documents\LUSAS180 folder>\Modules as it is a user-made

module dialog.

 On the Debug page, browse and change the external program path to

C:\<LUSAS Installation Folder>\Programs\lusas_m.exe

Running Visual Studio

11

Build the project

 In the Solution Explorer right-click on the DeleteLoadcases entry and select

Build.

Note. In Visual Studio you can also press F7 to build the project.

Details of the build will appear in the output window.

Run the project

 Press the F5 Key in Visual Studio to run (or click on start button)

LUSAS Modeller should start.

 Open a LUSAS model or create a new one.

 Open the Module Manager

 Click Add new module

Creating dialogs using VB.NET

12

 Browse on the Add Module dialog for

Libraries\Documents\LUSAS180\Modules\DeleteLoadcases.dll and click

OK

Running Visual Studio

13

The LUSAS Module Configuration Editor dialog will appear. This permits (amongst

many other features) restricting the Module to only work with a particular LUSAS

version or licence key. Change the assembly path to match the build output path in the

user directory by typing in %ModulesUserDir%.

 Press the Save button and then Close

From now on, you will see the Delete Loadcases item in the modules menu.

 Choose the DeleteLoadcases menu item. A blank window is displayed,

because you have not yet added any controls or written any code.

Creating dialogs using VB.NET

14

 Click on Stop Debugging in Visual Studio to close LUSAS Modeller and

amend the project.

Adding dialog controls

 In Visual Studio double-click on DeleteLoadcasesDialog.vb to open a blank

dialog.

Running Visual Studio

15

 Click on Toolbox, all Windows Forms and add a ListBox and two Buttons by

double clicking them

 Select each of the controls to modify its properties (Name, location, size...)

Creating dialogs using VB.NET

16

 Click on Button1in the dialog and define its Name to be btnDelete with Text:

Delete

 For Button 2 define its Name to be btnCancel with Text: Cancel

 For the ListBox define the Selection Mode to be MultiExtended (This will

allow selection of multiple items in the listbox).

Running Visual Studio

17

Defining a ListBox

All the loadsets (Loadcases, Combinations and Envelopes) are to be listed in the

ListBox

 Double-click on the form (i.e the dialog itself) to create an event handler for

the form load event

Modify the code as shown below:

Tip. Open the PDF file for this guide and copy and paste the code. Take care to

ensure that any unwanted line breaks are removed.

Private Sub Delete_LoadcasesDialog_Load(sender As Object, e As

EventArgs) Handles MyBase.Load

Call PopulateListBox()

End Sub

Private Sub PopulateListBox()

 'Delete previous items from listbox

 ListBox1.Items.Clear()

Creating dialogs using VB.NET

18

 'Add loadsets to the listbox

 Dim LoadsetsArray =

moduleObject.Modeller.db.getLoadsets("All", "All")

 For i = 0 To UBound(LoadsetsArray)

 ListBox1.Items.Add(LoadsetsArray(i).getName())

 Next

 End Sub

Defining a Delete Button

The selected loadsets of the list box need to be deleted when pressing this button, so:

 Double-click on the button Delete to create an event handler for this button’s

click event.

 Modify it by typing the following:

Tip. Rather than type the lines of VB required, open the PDF file for this guide and

for the remainder of this section of the Guide copy and paste the code where needed.

Take care to ensure that any unwanted line breaks are removed.

Private Sub btnDelete_Click(sender As Object, e As EventArgs)

Handles btnDelete.Click

 'Delete loadsets that are selected in the listbox

 For Each Item In ListBox1.SelectedItems

 Call moduleObject.Modeller.database.deleteLoadset(Item)

 Next

 Call PopulateListBox()

 End Sub

Running Visual Studio

19

Defining a Cancel Button

To cause the dialog to close:

 Double-click on the button Cancel to create an event handler for this buttons

click even and modify it to:

 Private Sub btnCancel_Click(sender As Object, e As EventArgs)
Handles btnCancel.Click

 Close()

End Sub

 Now build the project by pressing the F7 key and run it by pressing the F5

key.

 In LUSAS Modeller select the menu item Modules> DeleteLoadcases, then

select which loadcase to delete and press the Delete button.

Creating dialogs using VB.NET

20

You may have noticed that if you try to delete all loadcases you get the following:

This is because Modeller has raised an exception as there must always be at least one

loadcase. You can handle or catch the exception so you get a meaningful message

saying “Cannot delete the only remaining loadcase”

Handling errors

The code will be modified to handle this situation. Add the following code at the

beginning of the btnDelete_Click function.

General considerations

21

 Private Sub btnDelete_Click(sender As Object, e As EventArgs)

Handles btnDelete.Click

 Dim loadcaseArray =

moduleObject.Modeller.database.getLoadsets("Loadcase", "All")

 Try

 'Delete loadsets that are selected in the listbox

 For Each Item In ListBox1.SelectedItems

 Call moduleObject.Modeller.database.deleteLoadset(Item)

 Next

 Catch ex As Exception

 Call moduleObject.Modeller.AfxMsgBox(ex.Message())

 End Try

 Call PopulateListBox()

 End Sub

Now, if you try to delete all loadcases you get the following ‘cleaner’ message:

Creating dialogs using VB.NET

22

General considerations

Basic dialog design

 Use the ToolBox to create controls

 Double-click on the control in the toolbox to create the control at standard size

 Drag and drop to desired position using grid lines to line up with other

controls

 Name the controls in Properties using standard naming convention (See basic

dialog controls prefixes below e.g. txt, btn, opt, chk)

 Set FormBorderStyle = FixedDialog

 Set Localizable = True

Basic dialog controls

 TextBox (txt) – string of input or output

 Button (btn) – activate an event

 ComboBox (cbo) – choice of preset input

 CheckBox (chk) – true or false

 RadioButton (opt) – choice of a number of options

 NumericUpDown (spn) – Integer or decimal within specified range

 PictureBox (img) – display images on dialog

 GroupBox (grp) – groups radio buttons

 Label (lbl) – add text to dialog

 Panel (pnl)– invisible group, enable/disable multiple controls

Code design considerations

 Only code relating to the dialog should be contained in the dialog class

<projectname>Dialog.vb – e.g. Events, data check functions, change label

text etc. (Access to the module code is achieved by using

moduleObject.<function>)

 Place all worker code in module class <projectnameModule.vb> (access to

Modeller LPI functions is achieved using Modeller.<LPIfunction>”)

Multiple Dialogs in a single module

23

 All variables must be allocated a Type. Modeller has a number of

predefined data types e.g. IFPoint, IFLine. All Modeller data types start with

IF and a full list is automatically displayed in Visual Studio when the type is

being declared.

 Use access modifiers to restrict the scope of functions as much as possible.

Only make the function public if it is required outside the module.

 Private only available to routines in this module

 Protected only available within class and derived classes

 Friend only available within the assembly (Dialog to module)

 Public visible globally and outside of the assembly

 It is a good idea to comment all functions, classes, modules etc using the

standard XML comment blocks. Note: Typing three quotes (''') on the

line immediately above the function name will automatically present the

standard html template with the parameters included.

Multiple Dialogs in a single module

By default the LUSAS module template is set up to handle a single dialog. It is possible

for a module to provide multiple dialogs and provide multiple menu entries. It is good

practice to keep all related functionality in a single module.

When a module creates a new menu item, Modeller will return a unique id for that

menu item, these id’s should be stored in “member” variables within the module.

Modules can create new menu items in the onRefreshMainMenu function as shown

below:

Private m_dialog1_ID As Integer

Private m_dialog2_ID As Integer

Private m_dialog3_ID As Integer

''' <summary>

''' Called when Modeller is redrawing the Main Menu.

''' </summary>

''' <remarks>

''' Allows custom modules to append and maintain their own menus.

''' </remarks>

Protected Overrides Sub onRefreshMainMenu()

 Dim myModuleMenu As IFMenu = rootMenu.appendMenu("My Test Module")

 m_dialog1_ID = myModuleMenu.appendItem("Launch dialog 1...",

"textwin.writeLine(""Test Dialog 1"")")

 m_dialog2_ID = myModuleMenu.appendItem("Launch dialog 2...",

Creating dialogs using VB.NET

24

"textwin.writeLine(""Test Dialog 2"")")

 m_dialog3_ID = myModuleMenu.appendItem("Launch dialog 3...",

"textwin.writeLine(""Test Dialog 3"")")

End Sub

When the user clicks these menu items all modules will be called with the id of the

menu item. It is the responsibility of the module to listen for any menu ids it creates

and respond accordingly.

Notes:

 The modules are called via the onMenuClick function

 The module should respond when it is called with the correct menu ID.

 For each menu id the moduleDialog should be set to a new instance of the

correct dialog before the runModule function is called. This way the correct

dialog will be shown, as below.

''' <summary>

''' Called when the user clicks on a menu entry.

''' </summary>

''' <param name="menuID">ID of the menu that has been clicked.</param>

''' <param name="edittingObj">Object that is being edited (nothing when

creating a new object).</param>

''' <param name="clientData">Data that was provided to Modeller when

defining edittingObj.</param>

''' <returns>true if the click event was handled by this

Module.</returns>

''' <remarks>

''' LUSAS expects the a Module handling the event to execute itself

(typically using runModule()).

''' </remarks>

Function onMenuClick(ByVal menuID As Integer, ByVal edittingObj As

Object, Optional ByVal clientData As Object = Nothing) As Boolean

 If (m_dialog1_ID = menuID) Then

Multiple Dialogs in a single module

25

 moduleDialog = New myDialog1(Me)

 runModule()

 Return True

 End If

 If (m_dialog2_ID = menuID) Then

 moduleDialog = New myDialog2(Me)

 runModule()

 Return True

 End If

 If (m_dialog3_ID = menuID) Then

 moduleDialog = New myDialog3(Me)

 runModule()

 Return True

 End If

 Return False

End Function

 Menu items maybe enabled or disabled in the onMenuUpdate event

''' <summary>

''' Called when a menu entry needs to be drawn.

''' Allows the Module to specify whether the menu item should be

disabled or checked.

''' </summary>

''' <param name="menuID">ID of the menu that has been clicked.</param>

''' <param name="edittingObj">Object that is being edited (nothing when

creating a new object).</param>

''' <param name="enable">Set to true to enable the menu item.</param>

''' <param name="checked">

''' Set to 0 to show an 'off' tickbox next to the menu.

''' Set to 1 to show an 'on' tick mark by the side of the menu.

''' Set to 2 to show an indeterminate check.

''' Set to 3 to show no tick at all.

''' </param>

''' <param name="clientData">Data that was provided to Modeller when

defining edittingObj.</param>

''' <returns>true if the update event was handled by this

Module.</returns>

''' <remarks>

''' Only when a Module handles an menu update event are the changed

values of enable/checked respected.

''' </remarks>

Function onMenuUpdate(ByVal menuID As Integer, ByVal edittingObj As

Object, ByRef enable As Boolean, ByRef checked As Integer, Optional

ByVal clientData As Object = Nothing) As Boolean

 If (m_dialog1_ID = menuID) Then

Creating dialogs using VB.NET

26

 enable = (Modeller.db.countSurfaces() > 0)

 Return True

 End If

 If (m_dialog2_ID = menuID) Then

 enable = True

 Return True

 End If

 Return False

End Function

Note. All dialogs must inherit from LusasModuleDialog. When adding a new dialog

you should change the code in the dialog designer to inherit from LusasModuleDialog

rather than System.Windows.Forms.Form

Translation considerations

 The default language should always be English. All strings should be defined

in the Resources.resx file. To access the Resources.resx file pick the Show All

Files button in the Solution Explorer.

VB.NET online tutorials

27

Double clicking on the Resources.resx will display a window to name and define the

strings.

Note. If languages other than English are to be supported the dialog property

Localizable property should be set to be True and the Language should be changed

to the translation language, as for example for Chinese (Simplified) This will

automatically create a new resource file for the dialog where the translated string

should be defined and allow the labels to be translated and the size and position of the

controls to be customised. Changing the Language back to Default will display the

English labels with the controls set to in their original size and position.

By using this approach any strings which do not have a translation will be displayed in

English and an Language for which translation is not supported will show English

labels and strings.

VB.NET online tutorials

VB.NET online tutorials are widely available. Here are some examples:

Creating dialogs using VB.NET

28

English:

https://www.youtube.com/watch?v=hkcO_M9gcNw&index=1&list=PL42055376AE25

291E

English:

 https://www.youtube.com/watch?v=AJpTbPasJqI&list=PLS1QulWo1RIYLpgVN_Cp

XbkOQoYJTItzg

Chinese: https://channel9.msdn.com/Series/Visual-Basic-Fundamentals-for-

Absolute-Beginners/01

https://www.youtube.com/watch?v=hkcO_M9gcNw&index=1&list=PL42055376AE25291E
https://www.youtube.com/watch?v=hkcO_M9gcNw&index=1&list=PL42055376AE25291E
https://www.youtube.com/watch?v=AJpTbPasJqI&list=PLS1QulWo1RIYLpgVN_CpXbkOQoYJTItzg
https://www.youtube.com/watch?v=AJpTbPasJqI&list=PLS1QulWo1RIYLpgVN_CpXbkOQoYJTItzg
https://channel9.msdn.com/Series/Visual-Basic-Fundamentals-for-Absolute-Beginners/01
https://channel9.msdn.com/Series/Visual-Basic-Fundamentals-for-Absolute-Beginners/01

VB.NET dialog exercise

29

VB.NET dialog exercise

The preceding dialog is required to allow a user to change the colour of all Lines in a

model. The dialog should be activated from the menu item My Menu> Colour Line

Write the code to enable this to take place.

The solution is shown on the next page.

Creating dialogs using VB.NET

30

VB.NET dialog solution

1. In Dialog Class:

 Private Sub btnOK_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnOK.Click

 Call btnApply_Click(sender, e)

 Call btnCancel_Click(sender, e)

 End Sub

 Private Sub btnApply_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnApply.Click

 moduleObject.ColourLines(spnColourIndex.Value)

 End Sub

 Private Sub btnCancel_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnCancel.Click

 Me.Close()

 End Sub

2. In Module Class, in existing function onRefreshMainMenu change:

If rootMenu.exists("Modules") Then

 modMenu = rootMenu.getSubMenu("Modules")

Else

 modMenu = rootMenu.appendMenu("Modules")

End If

to:

VB.NET dialog solution

31

Dim menuName As String = "My Menu"

If rootMenu.exists(menuName) Then

 modMenu = rootMenu.getSubMenu(menuName)

Else

 modMenu = rootMenu.appendMenu(menuName)

End If

3. Add function

 ''' <summary>

 ''' Routine to colour lines

 ''' </summary>

 ''' <param name="colour">colour index</param>

 ''' <remarks></remarks>

 Public Sub ColourLines(ByVal colour)

 Dim lines As Object = Modeller.database.getObjects("Lines",

"All")

 For Each line As IFLine In lines

 line.setPen(colour)

 Next

End Sub

Creating dialogs using VB.NET

32

Component Technology

33

LUSAS via COM

Component Technology

The LUSAS Programmable Interface allows interfacing with other compatible

Windows programs through a Component Object Model (COM) interface. This defines

a set of rules by which two programs can communicate and allows controlling those

programs as if they were part of LUSAS Modeller. LUSAS can also be used as a

component of another system (running transparently if required) providing modelling

capabilities, analysis solutions and results viewing and processing options for that

application.

In order to drive LUSAS from a standalone application via COM (Component Object

Model), LUSAS must be installed and licenced. When creating a COM instance of

LUSAS a licence will be used. The licence will be in use for the lifetime of the instance

and must be properly disposed of to release the licence.

Application Example

To illustrate the process involved, a stand-alone application called SimpleBeam will be

created. The application will accept two parameters, length and load. The application

will use LUSAS to analyse the beam and return the results for the maximum bending

moment.

Create a new project

 In Visual Studio create a new Windows Form App (.NET Framework) in

Visual Basic called SimpleBeam.

LUSAS via COM

34

 Add a reference to LUSAS Modeller.

 In Solution Explorer, click Show All Files

 Right-click on References and select Add reference

 In the COM tab select LUSAS Modeller ActiveX Script Language 16.0

Version 18.0

(Note that later versions of LUSAS will require a different selection)

Application Example

35

 Create the following dialog using the Toolbox as shown in the previous

example:

For simplicity all code is placed in the dialog as follows, by double clicking the form

window.

Imports LusasM18_0

Public Class Form1

 Private m_lusas As LusasM18_0.LusasWinApp' Reference to Lusas

Modeller

 Private Sub btnCalculate_Click(sender As System.Object, e As

System.EventArgs) Handles btnCalculate.Click

 analyseBeam()

 End Sub

LUSAS via COM

36

 Private Sub analyseBeam()

 ' Get the params

 Dim length As Double = Double.Parse(txtLength.Text)

 Dim loading As Double = Double.Parse(txtLoading.Text)

 ' Create an instance of modeller

 m_lusas = New LusasM18_0.LusasWinApp

 ' Create a new model

 m_lusas.newDatabase()

 ' Set the vertical axis

 m_lusas.db.setLogicalUpAxis("Z")

 ' Set the unit system

 m_lusas.db.setModelUnits("kN,m,t,s,C")

 ' *** Create a line ***

 ' Get the geometry data object

 Dim geomData As IFGeometryData = m_lusas.geometryData()

 ' Set the defaults

 geomData.setAllDefaults()

 ' Set the coordinates of the first point

 geomData.addCoords(0, 0, 0)

 ' Set the coordinates of the second point

 geomData.addCoords(length, 0, 0)

 ' Create the line object

 Dim linesDBop As IFObjectSet = m_lusas.db.createLine(geomData)

 ' Get the lines

 Dim lines()As Object = linesDBop.getObjects("Lines", "All")

 ' Get a reference to the created line

Application Example

37

 Dim beamLine As IFLine = lines(0)

 ' *** Create a mesh attribute ***

 Dim meshAttr As IFMeshLine = m_lusas.db.createMeshLine("Beam

Mesh")

 ' Set the element type and number of elements (1m elements here)

 meshAttr.setNumber("BMS3", length)

 ' *** Create a geometric attribute ***

 Dim geomAttr As IFGeometricLine =

m_lusas.db.createGeometricLine("Beam Geometry")

 ' Set the element type

 geomAttr.setValue("elementType", "3D Thick Beam")

 ' Set the beam properties

 geomAttr.setBeam(0.0125, 0.0004573, 0.00002347, 0.0, 0.00000121,

0.00532608, 0.00755776, 0.0, 0.0, 0)

 ' *** Create a material attribute ***

 Dim materialAttr As IFMaterialIsotropic =

m_lusas.db.createIsotropicMaterial("Steel", 209000000.0, 0.3, 7.8)

 ' *** Create a support attribute (fixed) ***

 Dim fixedSupport As IFSupportStructural =

m_lusas.db.createSupportStructural("Fixed")

 ' set the freedoms

 fixedSupport.setStructural("R", "R", "R", "F", "F", "F", "F",

"F", "F")

 ' *** Create a support attribute (pinned) ***

 Dim pinnedSupport As IFSupportStructural =

m_lusas.db.createSupportStructural("Pinned")

 ' set the freedoms

LUSAS via COM

38

 pinnedSupport.setStructural("F", "R", "R", "F", "F", "F", "F",

"F", "F")

 ' *** Create a load attribute ***

 Dim loadAttr As IFLoadingGlobalDistributed =

m_lusas.db.createLoadingGlobalDistributed("UDL")

 ' Set the parameters

 loadAttr.setGlobalDistributed("Length", 0.0, 0.0, -loading, 0.0,

0.0, 0.0, 0.0, 0.0)

 ' *** Assign the attributes to the geometry ***

 ' get the assignment object

 Dim assignment As IFAssignment = m_lusas.assignment()

 ' set the defaults

 assignment.setAllDefaults()

 ' Assign the mesh

 meshAttr.assignTo(beamLine, assignment)

 ' Assign the geometry

 geomAttr.assignTo(beamLine, assignment)

 ' Assign the material

 materialAttr.assignTo(beamLine, assignment)

 ' Assign the loading

 loadAttr.assignTo(beamLine, assignment)

 ' Assign the supports to the points of the line

 ' get the points - Lower Order Features

 Dim pointsArray()As Object = beamLine.getLOFs()

 ' Assign the fixed support to the first point

 fixedSupport.assignTo(pointsArray(0), assignment)

 ' Assign the pinned support to the last point

 pinnedSupport.assignTo(pointsArray(1), assignment)

 ' Set the mesh

Application Example

39

 m_lusas.db.updateMesh()

 ' The model is ready to be solved - get the temporary file path

 Dim tempFilePath As String = System.IO.Path.GetTempPath()

 ' Get the solverOptions object and set the defaults

 Dim solverOptions As IFLusasRunOptionsObj =

m_lusas.solverOptions()

 solverOptions.setAllDefaults()

 ' Get the exporter object that will export the model to solver

 Dim solverExport As IFTabulateDataObj = m_lusas.solverExport()

 ' Set the defaults

 solverExport.setAllDefaults()

 ' Set a filename

 solverExport.setFilename(tempFilePath &

"beam.dat").setSearchAreaFileOn()

 ' Export the model as a solver data file (.dat)

 Dim returnCode As Integer = m_lusas.db.exportSolver(solverExport,

solverOptions)

 If (returnCode <> 0) Then

 ' If the export fails we cannot run the analysis

 MsgBox("The tabulation failed")

 Return

 End If

 ' Save the model before solving

 m_lusas.db.saveAs(tempFilePath & "beam.mdl")

 ' If we sucessfully exported the .dat file we can run the

analysis

 returnCode = m_lusas.solve(tempFilePath & "beam.dat",

solverOptions)

 If (returnCode <> 0) Then

 ' If the analysis fails we cannot access the results

LUSAS via COM

40

 MsgBox("The analysis failed")

 Return

 Else

 ' if the analysis is successful load the results

 m_lusas.database.openResults(tempFilePath & "beam.mys")

 m_lusas.database.getResultsCache().calculateNow()

 End If

 ' *** Successful analysis - Process the results to determine the

max bending ***

 Dim maxMom As Double

 Dim nodeNum As Integer

 ' Get the results at each node to determine the max

 For Each element As IFElement In beamLine.getElements()

 For Each node As IFNode In element.getNodes()

 ' Extract the nodal result for the required Entity and

Component

 Dim my As Double = node.getResults("Force/Moment - Thick

3D Beam", "My")

 ' Save the minimum (sagging) moment

 If my < maxMom Then

 maxMom = my

 nodeNum = node.getID()

 End If

 Next

 Next

 ' Get the units of the current model for display

 Dim forceUnit As String =

m_lusas.db.getModelUnits().getForceShortName()

 Dim lengthUnit As String =

Interfacing to LUSAS using C++

41

m_lusas.db.getModelUnits().getLengthShortName()

 ' Set the dialog label

 lblMaxMom.Text = m_lusas.convertToString(maxMom) & forceUnit &

lengthUnit

 ' Quit the application and free the licence

 m_lusas.quit()

 End Sub

 Private Sub btnClose_Click(sender As System.Object, e As

System.EventArgs) Handles btnQuit.Click

 For Each p As Process In

System.Diagnostics.Process.GetProcessesByName("Lusas_m")

 Try

 p.Kill()

 p.WaitForExit()

 Catch ex As Exception

 End Try

 Next

 Me.Close()

 End Sub

End Class

Interfacing to LUSAS using C++

Generally, LUSAS recommends that you use VB or any other language that natively

supports COM interfaces. C++ does not natively support COM interfaces, thus COM

programming in C++ is much more complex, and results in code which is more likely

to contain bugs and is harder to read. However, it is possible for experienced C++

programmers to interface to Modeller. A simple example follows:.

LUSAS via COM

42

#import “C:\LUSAS152\programs\Lusas_m.exe“

// create a modeller

 pModeller = IFModellerPtr("LUSAS.Modeller.18.0");

// create and return a database

 IFDatabasePtr db = pModeller->newDatabase();

// create and return a line

 IFLinePtr l = db->createLineByCoordinates(0, 0, 0, 5, 5, 5);

// calculate line length

 double len = l->getLineLength();

Note. The LPI functions often return a base class pointer which often needs to be

downcast to the desired type (e.g. attribute -> material). VB will do this for you, but

C++ will not. Therefore you must explicitly cast, and catch any exceptions that may

result

Note. LPI functions often have VARIANT inputs and outputs. VB will handle

conversion between simple data types (integers, strings, objects) and VARIANTs, but

C++ will not. Therefore you must be familiar with the use of the VARIANT type. If in

doubt, consult Microsoft documentation.

LUSAS Material Model Interface

43

 LUSAS Material Model Interface

In addition to the accessing and customising LUSAS Modeller via the LUSAS

Programmable Interface, user-defined material models (written in Fortran) can be

compiled and built into a customised LUSAS Solver executable by using the LUSAS

Material Model Interface (LUSAS MMI).

The use of LUSAS MMI is beyond the scope of this manual. Please contact LUSAS

Technical Support for more information.

LUSAS via COM

44

Version 15

LUSAS, Forge House, 66 High Street, Kingston upon Thames, Surrey, KT1 1HN, UK
Tel: +44 (0)20 8541 1999 | Fax: +44 (0)20 8549 9399 | info@lusas.com | www.lusas.com

	Introduction
	Introduction
	Topics covered in this guide
	LUSAS Progammable Interface (LPI) Customisation and Automation Guide

	Creating dialogs using VB.NET
	Choosing a development environment
	Downloading and installing Visual Studio Community
	Creating a LUSAS dialog
	Module Manager
	Creating a new module

	Running Visual Studio
	Build the project
	Run the project
	Adding dialog controls
	Defining a ListBox
	Defining a Delete Button
	Defining a Cancel Button
	Handling errors

	General considerations
	Basic dialog design
	Basic dialog controls
	Code design considerations

	Multiple Dialogs in a single module
	Notes:

	Translation considerations
	VB.NET online tutorials
	VB.NET dialog exercise
	VB.NET dialog solution

	LUSAS via COM
	Component Technology
	Application Example
	Create a new project

	Interfacing to LUSAS using C++
	LUSAS Material Model Interface

