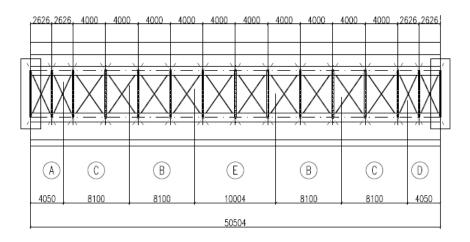
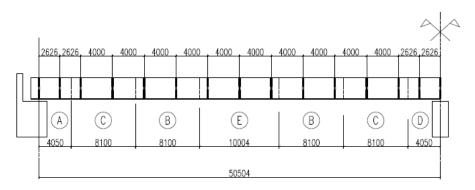
Assessment of a Composite Bridge Deck to Eurocodes

For LUSAS version:	18.0
For software product(s):	LUSAS Bridge or LUSAS Bridge plus
With product option(s):	Steel and Composite Deck Designer (PontiEC4 – V3.2.7)
With additional software	Microsoft Excel installed

Description


The global analysis and the assessment of the main girders of a two span continuous bridge is to be carried out using the Steel and Composite Deck Designer (PontiEC4) software option and LUSAS Bridge.

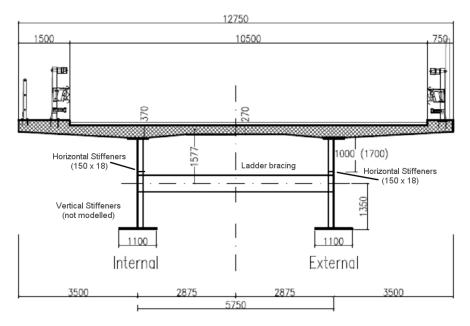
Because the primary aim of this particular example is to show the use of the PontiEC4 Composite Deck Designer and the interaction between it and LUSAS, no step-by-step instruction is provided for construction of the supplied LUSAS model that is used in this example. A separate example 'Composite Highway Bridge design' shows the LUSAS model building requirements to allow a design check with PontiEC4 to be carried out.


The bridge has a symmetrical composite two-girder structure with two spans of 50.504m. For the purposes of the example the following geometrical simplifications have been made:

The horizontal alignment is straight
The top face of the deck is flat
The bridge is straight, that is, not skewed
The structural steel main girders are of a constant depth of 2700mm

Plan, elevation and typical cross section views of the bridge deck are shown on the following pages.

Plan of left-hand span. (Note that transverse ladder bracing is modelled; X-bracing is not modelled.)


Elevation of left-hand span. Right-hand span is similar but handed.

Note.

- The girder shown above is formed from five <u>Segments</u> (lengths having the same beam section size) that are labelled A, B, C, D, and E.
- <u>Sections</u> are locations defined within a segment at which geometric properties are defined or calculated.

Both terms are used throughout this example.

Typical cross section

The total slab width is 12.75m. The centre-to-centre spacing between the main girders is 5.75m and the slab cantilever either side is 3.5m long. The main girder dimensions, for each segment, are summarized in the following table.

Table	of	main	girder	dimensions
-------	----	------	--------	------------

Segment name	Top flange width (mm)	Top flange thickness (mm)	Height of beam (mm)	Web thickness (mm)	Bottom flange width (mm)	Bottom flange thickness (mm)
A	600	20	2700	20	1100	20
C	600	30	2700	22	1100	40
В	600	30	2700	18	1100	40
Е	600	30	2700	18	1100	50
D	1100	40	2700	25	1200	50

The slab thickness varies from 0.37m over the main girders to 0.27m at its free edges and at its axis of symmetry. For simplification reasons, the actual slab cross-section of a half-deck is modelled by a rectangular area, which is the same as the actual width (i.e. 12.75/2 m), and a second rectangular area modelling the concrete haunch, which has the same width as the upper structural steel flange. The equivalent thickness of slab is 273mm and the equivalent height of the haunch is 75mm.

Steel and Composite Deck Designer (PontiEC4)

The Steel and Composite Deck Designer (PontiEC4) is a software option that carries out comprehensive calculations for multiple sections on steel/composite bridge decks to the Eurocodes. Force and moment results for selected bridge deck elements are provided by a corresponding LUSAS model, and loadcase combinations defined within LUSAS are associated with design limit states and phases defined in PontiEC4.

Design calculations covering ULS bending, stress, shear and interaction; SLS stress, web breathing and cracking, and fatigue checks for main members and connectors are carried out. Results, output in tabbed dialogs, visually show values that pass or fail. Graphs and a report containing all input data and output with references to the Eurocode clauses can be easily created.

In the Steel and Composite Deck Designer (PontiEC4) the units in use are always indicated in the input and output dialogs, and in general forces are expressed in N (Newton), lengths in mm (millimetres), and moments expressed in Nm (Newton Metres). The units used for the LUSAS model will therefore be N, m, kg, s, C.

Keywords

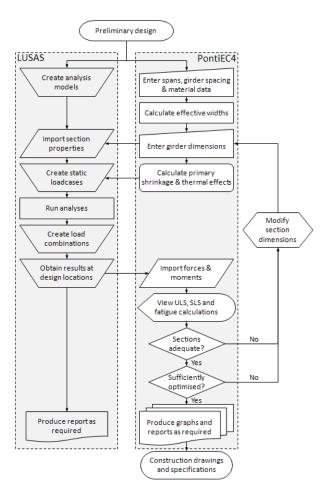
Steel, Composite, Deck, Designer, EC4, Design, Checking, Import, Export, ULS, SLS, Graphing, Detailed design.

Associated files

_	Composite_Bridge_Deck_Initial.csv – Contains initial material and geometric data / definitions for use with PontiEC4
	Sections_Rev0.vbs - A file created by PontiEC4 containing geometric section data to import into LUSAS. A version of this file is supplied also, but is only for use only in case of difficulties in manually creating the appropriate data
	Composite_Bridge_Deck.mdl – A supplied LUSAS model file that is to be used to analyse the structure. After solving this model, analysis results are exported from LUSAS or use in PontiEC4 to undertake design checks.
	Forces_and_moments.xls File created by the LUSAS Export Forces and Moments dialog containing data to import into PontiEC4. Supplied file is
	only for use in case of problems in manually creating the appropriate data in the previous section of the example.
	only for use in case of problems in manually creating the appropriate data in the
	only for use in case of problems in manually creating the appropriate data in the previous section of the example. Export_Forces_to_PontiEC4.inp File containing dialog selections

Sections_rev1.vbs - A file created by PontiEC4 containing revised section
data to import into LUSAS to update the geometric properties in the LUSAS
model.

Method and Objectives


necessary)

The main steps in using the Steel and Composite Deck Designer in conjunction with LUSAS can be summarized as follows:

_	Composite Deck Designer. All effective section properties are calculated.
	Step 2: Export the geometric properties from the PontiEC4 Steel and Composite Deck Designer for use with a corresponding user-defined LUSAS model.
	Step 3: Use LUSAS to calculate the forces and moments for all the limit state combinations.
	Step 4: Export the force and moment data from LUSAS for use in the PontiEC4 Steel and Composite Deck Designer.
	Step 5: Import force and moment data into PontiEC4 Steel and Composite Deck Designer
	Step 6: Assess the results and carry out detailed design checks in PontiEC4

The full interaction between LUSAS Bridge and the PontiEC4 Steel and Composite Deck Designer can be seen by referring to the following flowchart.

☐ Step 7: Optimize the structure (by making adjustments to section sizes if

File types used / generated / saved

LUSAS	PontiEC4
LUSAS Model data (.mdl)	PontiEC4 dialog values and settings (.csv)
Forces and Moment data calculated by LUSAS for import into PontiEC4 (.xls)	Effective geometric section properties data calculated by PontiEC4 for import into LUSAS (.vbs)
Saved values and settings made on the Export Force and Moment dialog (.inp)	PontiEC4 analysis log file for all section calculations (.log)

Step 1: Define material and geometric properties in PontiEC4

This section covers the definition of material and geometric properties in the PontiEC4 Composite Deck Designer in order to calculate effective section properties. Once done, the beam cross section properties are exported to a VBS file for subsequent importing into LUSAS.

Defining material properties

To define the required data for this worked example three options are available, according to what it is that you need to achieve from carrying out this example. Values and settings can be entered into dialogs in three ways:

- □ (Option 1) Manually entering all material and geometric data (so that an appreciation is obtained for all aspects of using and entering data into the various dialogs). This will obviously take the longest of the three options to input. See the heading 'Option 1: Manually entering all material and geometric data' for this option.
- □ (Option 2) Loading the material dialog with default values and settings This option reduces the material data input, but requires careful checking and updating of non-default values and settings in the material dialog as required by the example. Geometric data will still need to be entered. See the heading 'Option 2: Loading the material dialog with default values' for this option.
- □ (Option 3) Loading all material and geometry data from a csv file (to automatically populate the material and geometry dialogs with <u>all</u> the initial values and settings required by the example). This is the fastest option and would be used if it was simply required to see the main processes and steps involved in order to view the results obtained for this example and its accompanying LUSAS model. See the heading 'Option 3: Loading all material and initial geometric data from a csv file', that follows, for this option.

The example is written assuming that manual entering of all values is done. (Option 1 above), but Option 2 or Option 3 will save time in entering data.

The text that follows, having a grey background, shows the steps required for the options stated. The options are listed in reverse order to the above, according to the amount of data entry required, with the least amount of data entry first.

The example is written to manually enter all required data so that an understanding of the data entry can be appreciated.

Option 3: Loading all material and initial geometry data from a csy file:

A file is supplied if it is desired to automatically populate the material and geometry dialogs with the initial values required by the example (as opposed to manually defining the values required).

Associated file

• **Composite_Bridge_Deck_Initial.csv** – Contains initial material and geometric data / definitions for use with PontiEC4. To use this file:

Run the Steel and Composite Deck Designer (PontiEC4)

- Run the Steel and Composite Deck Designer (**PontiEC4**)
- Select the File > Open menu item, and browse in the \<PontiEC4 Installation
 Folder>\Help\Examples\Composite_Bridge_Deck folder for the
 Composite_Bridge_Deck_Initial.csv file and click Open. All dialogs will be filled
 with data initially required by the example.
- Expand the size of the PontiEC4 window and select the **File> Save as** menu item and **save the PontiEC4 dialog data to a working project folder different from the PontiEC4 installation folder**, (this would normally be a project folder in which a LUSAS model would also be created) with the name **Composite_Bridge_Deck.csv**
- Continue at Step 2 in the example entitled 'Export geometric properties from PontiEC4 LUSAS'

Option 2: Loading the material dialog with default values and settings:

Run the Steel and Composite Deck Designer (PontiEC4)

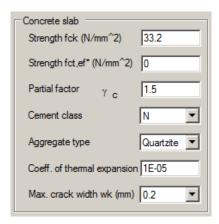
- Run the Steel and Composite Deck Designer (**PontiEC4**)
- Select the File> New menu item to create a new PontiEC4 project.
- On the Materials dialog, press the **Defaults** button.
- Select the File> Save as menu item to save the PontiEC4 dialog data to a working project folder different from the PontiEC4 installation folder, (this would normally be a project folder in which a LUSAS model would also be created) with the name Composite_Bridge_Deck.csv

• Continue at the heading entitled '*Defining material properties*' checking that each dialog panel contains the values that are shown in this example.

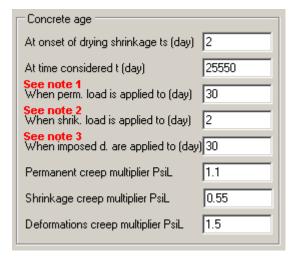
Option 1: Manually entering all material and geometric data:

Run the Steel and Composite Deck Designer (PontiEC4)

- Run the Steel and Composite Deck Designer (**PontiEC4**)
- Select the **File> New** menu item to create a new PontiEC4 project.
- Select the File> Save as menu item to save the PontiEC4 dialog data to a working project folder different from the PontiEC4 installation folder (this would normally be a project folder in which a LUSAS model would also be created), with the name Composite_Bridge_Deck.csv

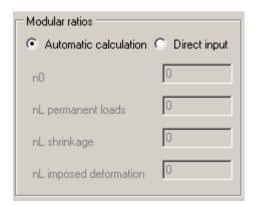

Note. All data entered in the various PontEC4 dialogs will be saved to this file. Previously created and saved data, or supplied data (held in .csv files) can be loaded into the PontiEC4 dialogs by using the File> Open menu item.

Defining material properties


The material dialog is immediately available when you start a new project or when you open an existing one. The material dialog is organized into separate panels; Concrete, Concrete age, Steel etc.

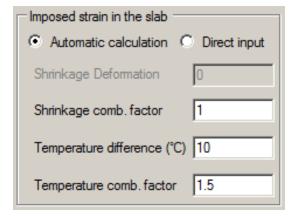
For each panel on the dialog enter the material data shown in the following images.

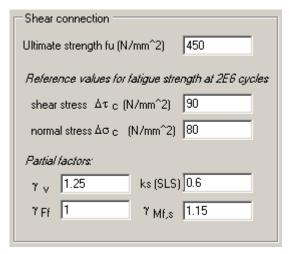
Concrete slab


Concrete age

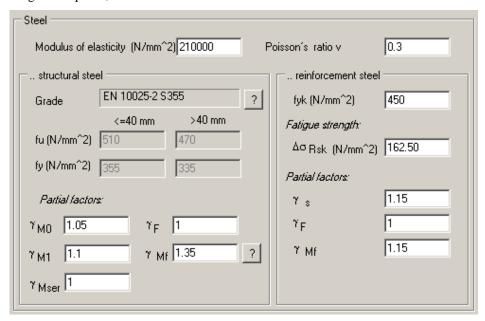
Notes:

- 1. Age of concrete when permanent load is applied
- 2. Age of concrete when shrinkage load is applied
- 3. Age of concrete when imposed deformations are applied.


Modular ratios

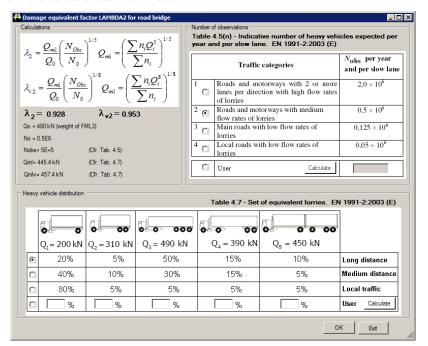

Environment

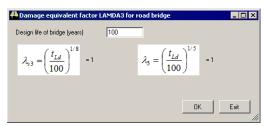
Imposed strain in the slab



Shear connection

Steel


• Click on the Question mark button next to the Grade field, to define the Steel grade required, then define all other values as shown:


Fatigue

• Note that λ_2 can be calculated from selections made in the dialog that appears when you click on the Question mark button next to the $\lambda_{v,2}$ input field. In this case, make the selections as shown below:

• Note that λ_3 can be calculated from data entered in the dialog that appears when you click on the Question mark button next to the $\lambda_{v,3}$ input field. In this case, input the data below:

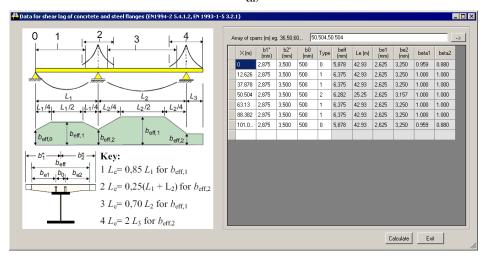
This completes the definition of the materials.

Save the data entered

• Select the **File> Save** menu item to save the PontiEC4 dialog data to the current working project folder.

Defining Geometric properties

Prior to defining the geometric section properties for the spans, the span lengths and the effective concrete slab width (beff) of each section, defined at various distances along the section, need to be defined.


Defining shear lag slab and flanges

- To input data for the effective slab width calculation, select the **Utilities> Shear lag** slab and flanges menu item.
- Input an array of the bridge spans (the span lengths) in the text box in the top right corner: 50.504,50.504 and click on the button. The X distance where the effective slab width changes will be automatically set up in the table
- For each row input the flange widths b1*, b2*, b0 as **2875**, **3500**, **500** respectively.

Note. Values in the table can be selected and copied and pasted into other cells by using the context menu.

- In the **Type** column ensure that the code **0** is used for the first and last section, **1** for the sagging regions, and **2** for the middle support.
- Click the Calculate button to calculate b_{eff},

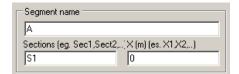
• Click the **Exit** button to close the dialog and return to the material dialog

Note. Values of effective length Le can be used to manage the shear lag of the flanges.

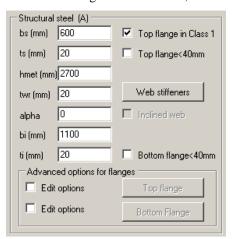
Defining geometry for segment A

The geometric data for each segment and/or section along the bridge now needs to be defined starting with segment A.

• From the main menu select **Windows> 2 Geometry** to display the Geometry dialog.


Note at this stage it is not necessary to define all the sections in each segment that will be checked; it will be enough to define just <u>one</u> section for each segment, and input a distance to automatically obtain the corresponding effective width of slab from the shear lag slab table previously defined.

Note. No entered data is saved with a segment name until the **Add to list** button is clicked. This is done at the end of this section of the example.

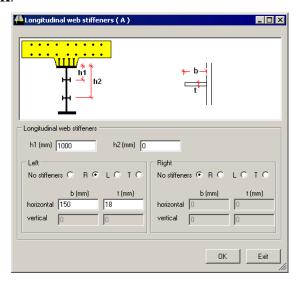

Segment name, sections, x-distances

• Input the data for the first Segment as shown in the following image.

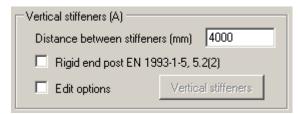
Structural steel plate details

• With reference to the main table of girder dimensions, enter the following values:

• Make sure that **Top flange in Class 1** is checked (ticked).


Note. The checkboxes for Top / Bottom flange <40mm should be only checked (ticked) for flanges that have a total thickness above 40mm, when they are made up

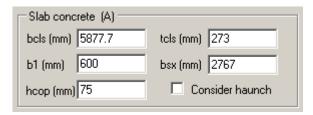
from a number of plates each of a thickness less than 40mm. When done, ultimate and yielding tension for steel below 40mm thickness will be used.


Longitudinal web stiffeners details

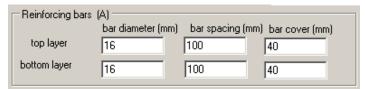
Properties of longitudinal stiffeners are necessary to perform web panel buckling calculations.

• Click the **Web stiffeners** button and input data as shown in the following image, then click **OK**.

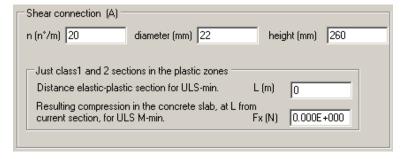
Vertical web stiffener distance



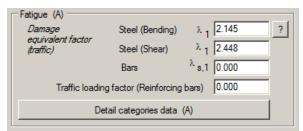
Note. A vertical stiffeners check is optional and is not carried out in the example. Specifying the distance between vertical stiffeners is the only mandatory value in this panel.

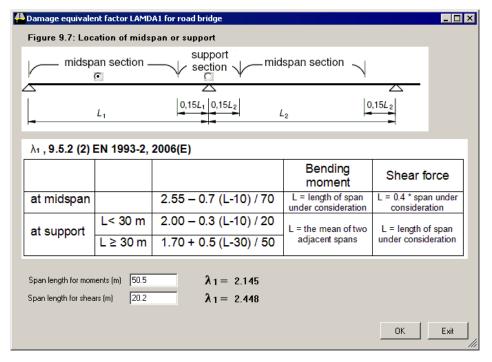

Slab concrete

• In the Slab concrete panel right-click inside the bcls field and select **Calculate beff.**The width of slab will be computed using data previously defined in the shear lag table. Input other data as shown in the following image.

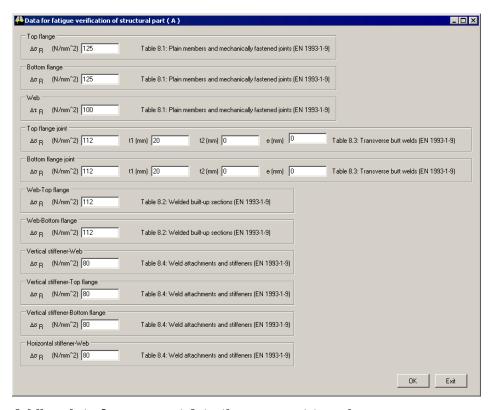


For the purposes of this example the section properties of the concrete haunch will be ignored in any calculations made, so it is left un-checked.


Reinforcing bars


Shear connection

Fatigue data



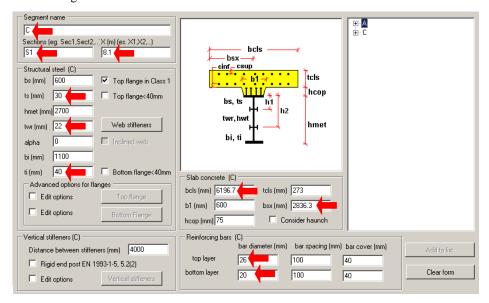
• λ_1 can be calculated automatically by clicking the Question mark button ? next to the input field and then, on the Damage equivalent factor dialog, select the radio button for the **midspan section** and enter **50.5** for the Span length for moments and **20.2** for the Span length for shears.

Detail categories

• In the Fatigue data panel, select the **Detail categories data** button and input the data as shown on the following image, then click **OK**.

Adding data for segment A to the segment treeview

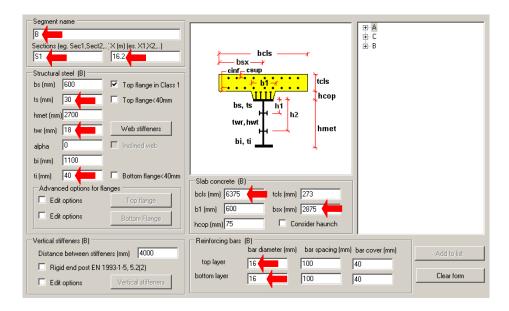
- Finally, click on the **Add to list button** located under the segment treeview to save all the data previously entered for Segment A.
- Before entering data for other segments, in the segment treeview **double-click** on the name of the segment **A**. All data previously input is now available for use in defining the next section.



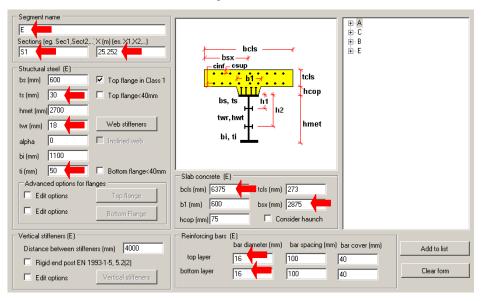
Note. Double-clicking on a segment name in the Segment treeview panel will switch PontiEC4 from EDIT MODE to INPUT MODE. The status bar at the bottom-left of the screen will always show what mode is being used at any time.

Defining Segment C

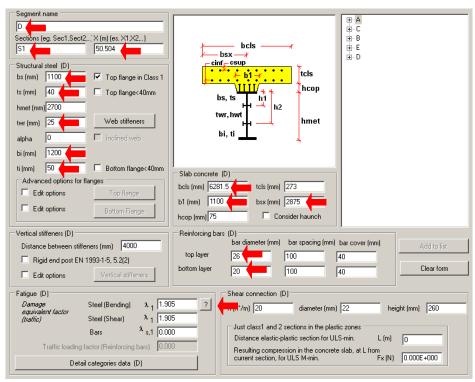
With the status bar stating 'INPUT GEOMETRY:'


• In the Segment name field delete **A** and type **C**. Then, with reference to the following image, change or ensure that the dialog fields marked have entries as shown. Remember that the values of bcls and bsx can be calculated automatically by selecting **Calculate beff** from the context menu for both fields.

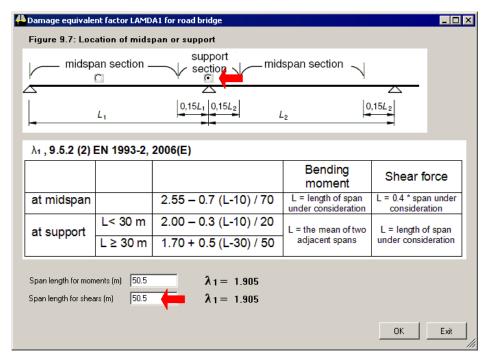
• When complete, click the **Add to list** button to save the data entered.


Defining Segment B

• Ensure that the dialog fields marked have the entries shown. When complete click the **Add to list** button to save the segment data entered.


Segment E

• Ensure that the dialog fields marked have the entries shown. When complete click the **Add to list** button to save the segment data entered.

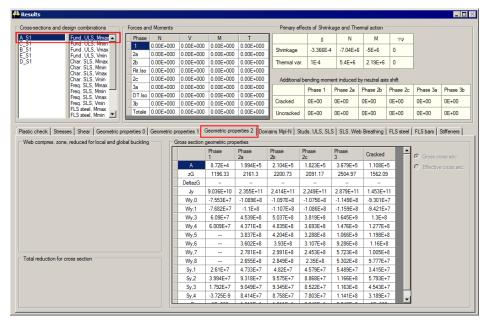


Segment D

• With reference to the following image change or ensure that the dialog fields highlighted have the entries shown.

• Click on the Question mark button next to the Steel (Bending moment) field and specify a **support section** and a Span length for shears of **50.5** as shown in the following image.

• When complete click the **Add to list** button to save the segment data entered.


Save the entered data

• Select the **File> Save** menu item to save the PontiEC4 dialog data to the current working project folder.

Step 2: Export geometric properties from PontiEC4 to LUSAS

Prior to exporting geometric properties PontiEC4 needs to check that all the data that has been input is valid, and then run part of the EC4 code check to calculate the required geometric properties of each defined cross section. This is automatically done when requesting to view the Results window/dialog and should always be done prior to exporting properties subsequently.

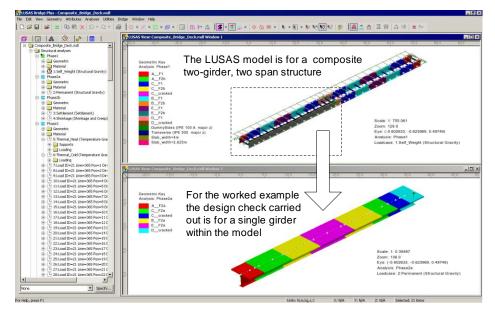
• On the main PontiEC4 menu select **Window> 4 Results** to set the **Results** dialog active. After a short delay whilst a partial code check is run, the geometric properties of each cross section will be calculated. This can be confirmed by selecting a Cross-section and Design combination with the **Geometric properties 2** tab active.

- When complete, select File> Export geometric properties to LUSAS
- Browse to a suitable project folder and enter a filename of "Sections_Rev0.vbs".
- Select (check) all the **Export** check boxes (apart from Export Phase 2c), select (check) **Distance middle plane of slab neutral axis**, and select the option **Assume slab width constant and use minimum value**. Click **OK** to finish.

The file created can be imported into LUSAS to create new, or overwrite any similarly named geometric and material properties. Note that Phase 2c relates to prestressing and is not required here.

Discussion: Modelling and Analysis with LUSAS

Because the primary aim of this particular example is to show the use of the PontiEC4 Composite Deck Designer and the interaction between it and LUSAS, no step-by-step instruction is provided for construction of the supplied LUSAS model that is used in this example. A separate example 'Composite Highway Bridge design' shows the LUSAS model building requirements to allow a design check with PontiEC4 to be carried out.


Several modelling approaches are possible in order to analyse a structure and obtain the forces and moments required for a design check of the composite sections. Possible options include grillage, ribbed-plate, or line beam methods. Users can choose the most suitable approach to their method of working, and obtain forces and moments as required.

Modelling

The model supplied for use with this example is a grillage model. Longitudinal grillage members have been placed at the location of the two girders and at the deck edges. Transverse members have been placed at the locations of the transverse beams and at the deck ends. Between the main girders, coincident lines are used to model both the transverse beams and the transverse segments of the slab deck separately.

Meshing

BMS3 elements have been used throughout and all mesh lies on the middle plane of the slab: the cross sections of the main girders and transverse beams are given an appropriate eccentricity within LUSAS. The edge longitudinal lines have a dummy cross section and are included in the model to enable processing of the discrete loads.

Geometric properties

Geometric properties are imported into LUSAS from PontiEC4 for each of the design phases considered. Eccentricities for sections are calculated as part of the PontiEC4 export process, with the mid-plane of the slab sitting on the nodal line if the appropriate option was selected during export. In the LUSAS model supplied, these section properties have already been assigned to corresponding lines of the model. Note that reimporting properties of the same name that have already been assigned to a model simply overwrites the existing definitions.

Material properties

Material properties, whilst defined in PontiEC4 for effective section and other calculations, are not imported into the LUSAS model, so when starting a real-life model for the first time, these would need to be defined and assigned to relevant features. In this example, the required materials have been defined and assigned to the appropriate lines.

Supports

Span lengths, whilst defined in PontiEC4, are not imported into LUSAS to derive support positions. Instead, suitable supports must be defined within LUSAS and assigned to the relevant features of the LUSAS model, In this worked example all supports are fixed in the Z-direction, and have a spring stiffness of 3.03E6 in the X and Y directions.

Analysis

The LUSAS multiple analysis facility is used, with four separate analyses being defined to represent the four design phases that need to be considered. These are:

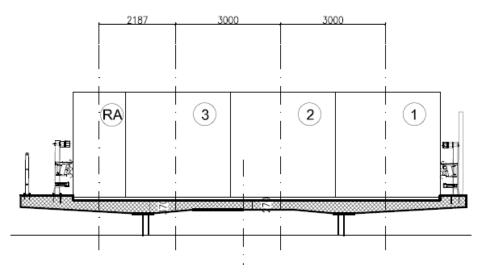
- Phase 1 Where the slab is present just as weight; the cross sections are only steel and not composite. The concreting order of the slab segments has been ignored, supposing that the concreting of the slab occurs at the same time.
- 2. **Phase 2a** The composite section has been calculated using the **long term** properties of the concrete, and the long term loadings considered are the **permanent** ones.
- 3. **Phase 2b** The composite section has been calculated using the **long term** properties of the concrete, and the long term loading considered is the **shrinkage of the concrete**.
- 4. **Phase 3** The composite section has been calculated using the **short term** properties of the concrete. **All variable actions** are considered in this analysis. A series of loadcases have been created to represent thermal action, LM1 Tandem and UDL, fatigue vehicle FLM3 and wind effects.

Notes

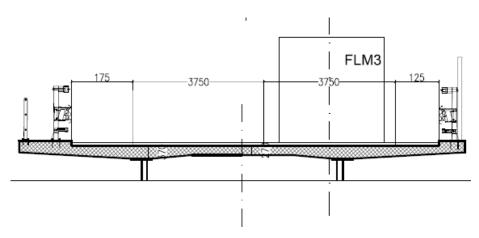
- ☐ Phase 2c in PontiEC4 represents the actions arising from prestressing and is therefore not required in this example.
- ☐ Transverse slab sections have been calculated based on the appropriate width of slab with appropriate time-dependant concrete properties applied in each phase. For the purposes of this example any possible reduction in torsional stiffness for these sections is not considered.

Loading and load cases

The following table summarizes the loadings and load cases used for each analysis.


Analysis	Loadings	Loadcases
	PHASE 1 Longitudinal and transv. beams Weight (m/s^2)	
	PHASE 1 Stud Weight (N/m)for_beam	
Phase1	PHASE 1 Slab Weight (N/m)for_beam	Self_Weight
	PHASE 1 Curb Weight w=750mm (N/m)external_beam	
	PHASE 1 Curb Weight w=1500mm (N/m)internal_beam	
Phase2a	PHASE 2a Permanent loading (N/m)_x_external_beam	Permanent
Pilaseza	PHASE 2a Permanent loading (N/m)_x_internal_beam	Permanent
	PHASE2b Internal support settlement	Settlement
	Shrinkage_A_S1	
Phase2h	Shrinkage_C_S1	
1 1143020	Shrinkage_B_S1	Shrinkage
	Shrinkage_E_S1	
	Shrinkage_S_S1	

Analysis	Loadings	Loadcases
	PHASE 3a Thermal Heat	Thermal_Heat
	PHASE 3a Thermal Cold	Thermal_Cold
	Tandem1 (Eurocode Load model 1 300000N)	From ID=2 Pos=1
		to ID=36 Pos=35 From ID=37 Pos=1
	Tandem2 (Eurocode Load model 1 200000N)	to ID=71 Pos=35
	Tandem3 (Eurocode Load model 1 100000N)	From ID=72 Pos=1
	Tundenis (Eurocode Eodd model 1 10000017)	to ID=106 Pos=35
Phase3	Udl1 (Eurocode Lane Load 3mx3m Load=9000N/m ²)	From ID=2 Pos=1
Phases	Cur (Eurocode Edite Eodd SillySill Eodd—70001 (iii)	to ID=36 Pos=35
	Udl23 (Eurocode Lane Load 3mx3m Load=2500N/m ²)	From ID=37 Pos=1
	Cui25 (Eurocode Euroc Eoud SinkSin Eoud-25001 (iii)	to ID=71 Pos=35
	Udl23 (Eurocode Lane Load 3mx3m Load=2500N/m ²)	From ID=72 Pos=1
	CG125 (Edifocode Edife Eodd 5ffix5ffi Eodd=25001Vffi)	to ID=106 Pos=35
	UdlRA (Eurocode Lane Load 3mx1.5m Load=2500N/m²)	From ID=107 Pos=1
	Cultur (Eurocode Euro Eodd Sillari.Siir Eodd—25001 (iir)	to ID=141 Pos=35
	FLM3 (Eurocode Fatigue Load Model 3 120000N)	From ID=2 Pos=1
	12.13 (2.13code l'augue 2014 Model 5 12000014)	to ID=36 Pos=35
	PHASE 3b Wind V (N/m)_x_internal_beam	Wind
	PHASE 3b Wind V (N/m)x_external_beam	Willia


Traffic loading

The traffic loading has been generated from the vehicle libraries in LUSAS and positioned using the Moving Load Generator. LM1 Tandem loadings have been moved along the lanes using an incremental distance of 3m. UDL loadings are defined as a segment with a length of 3m, and moved along the lanes by an incremental distance of 3m. (These patches will be combined in Smart Combinations and applied in adverse area only)

The notional lane position for the LM1 has been considered to maximize bending moments and shears in the right (external) girder beam. The lane position of the Fatigue model loading 3 is the actual position of the heavy traffic lane.

Notional lanes for Load Model 1 (ULS and SLS)

Fatigue Load Model 3 positioning

Shrinkage

Shrinkage effects in analysis Phase2b have been calculated applying a thermal gradient, equivalent to an imposed curvature. The forces and moments arising from this model represent the hyperstatic effect of the shrinkage. The primary effects of shrinkage are computed directly in PontiEC4 for each section.

Smart combinations

In order to define the design envelopes for each Phase and for each Limit State the following smart combinations have been defined.

Preliminary combinations

Loadcase ID: 288 Title: Thermal effect k

Sub Type: Smart Combination Loadcases to consider: 1

Variable Loadcases: All

Loadcase	Results	Beneficial	Adverse	Title	Type
	File	Factor	Factor		
5	0	1.0	1.0	Thermal_Heat	Temperature Gradient (TG)
6	0	1.0	1.0	Thermal_Cold	Temperature Gradient (TG)

Loadcase ID: 290 Title: Tandem 1

Sub Type: Smart Combination

Loadcases to consider: 1

Variable Loadcases: All

Loadcase	Results File	Beneficial Factor	Adverse Factor	Title	Type
7	0	1.0	1.0	Load ID=21 Line=365 Pos=1 Dir=Fwd (7)	Live Load (L)
41	0	1.0	1.0	Load ID=21 Line=365 Pos=35 Dir=Fwd (4	Live Load (L)

Loadcase ID: 292 Title: Tandem_2

Sub Type: Smart Combination

Loadcases to consider: 1 Variable Loadcases: All

Loadcase	Results	Beneficial	Adverse	Title	Туре
	File	Factor	Factor		
42	0	1.0	1.0	Load ID=22 Line=368 Pos=1 Dir=Fwd (42)	Live Load (L)
76	0	1.0	1.0	Load ID=22 Line=368 Pos=35 Dir=Fwd (76)	Live Load (L)

Loadcase ID: 294 Title: Tandem 3

Sub Type: Smart Combination

Loadcases to consider: 1 Variable Loadcases: All

Loadcase	Results	Beneficial	Adverse	Title Type
	File	Factor	Factor	
77	0	1.0	1.0	Load ID=23 Line=370 Pos=1 Dir=Fwd (77) Live Load (L)
111	0	1.0	1.0	Load ID=23 Line=370 Pos=35 Dir=Fwd (111) Live Load (L)

Loadcase ID: 296 Title: Udl k

Sub Type: Smart Combination Loadcases to consider: All

Variable Loadcases: All

Loadcase	Results	Beneficial	Adverse	Title	Type
	File	Factor	Factor		
112	0	0.0	1.0	Load ID=7 Line=365 Pos=1 Dir=Fwd (112)	Live Load (L)
146	0	0.0	1.0	Load ID=7 Line=365 Pos=35 Dir=Fwd (146)	Live Load (L)
147	0	0.0	1.0	Load ID=10 Line=368 Pos=1 Dir=Fwd (147)	Live Load (L)
216	0	0.0	1.0	Load ID=10 Line=370 Pos=35 Dir=Fwd (21-	6) Live Load (L)
217	0	0.0	1.0	Load ID=24 Line=372 Pos=1 Dir=Fwd (217	Live Load (L)
251	0	0.0	1.0	Load ID=24 Line=372 Pos=35 Dir=Fwd (25)) Live Load (L)

Type

Wind Load (W)

Loadcase ID: 298 Title: Tandem_k

Sub Type: Smart Combination Loadcases to consider: All Variable Loadcases: All

Loadcase	Results File	Beneficial Factor	Adverse Factor	Title
290	0	0.0	1.0	Tandem_1 (Max)
291	0	0.0	1.0	Tandem_1 (Min)
292	0	0.0	1.0	Tandem_2 (Max)
293	0	0.0	1.0	Tandem_2 (Min)
294	0	0.0	1.0	Tandem_3 (Max)
295	0	0.0	1.0	Tandem 3 (Min)

Loadcase ID: 300 Title: Wind_k

Sub Type: Smart Combination Loadcases to consider: All Variable Loadcases: All

Loadcase	Results	Beneficial	Adverse	Title
	File	Factor	Factor	
287	0	-1.0	1.0	Wind

ULS design combinations

Loadcase ID: 302 Title: ULS_Fundamental_Phase1

Sub Type: Smart Combination Loadcases to consider: All Variable Loadcases: All

Loadcase	Results	Beneficial	Adverse	Title	Type
	File	Factor	Factor		
1	0	1.0	1.35	Self Weight	Structural Gravity (G)

Loadcase ID: 304 Title: ULS_Fundamental_Phase2a

Sub Type: Smart Combination Loadcases to consider: All Variable Loadcases: All

Loadcase	Results	Beneficial	Adverse	Title	Type
	File	Factor	Factor		
2	0	1.0	1.35	Permanent	Structural Gravity (G)

Loadcase ID: 306 Title: ULS_Fundamental_Phase2b

Sub Type: Smart Combination Loadcases to consider: All Variable Loadcases: All

Loadcase	Results File	Beneficial Factor	Adverse Factor	Title	Type
3	0	0.0	1.2	Settlement	Settlement (STL)
4	0	1.2	1.2	Shrinkage	Shrinkage and Creen (SC)

Loadcase ID: 308 Title: ULS Fundamental Phase3a

Sub Type: Smart Combination Loadcases to consider: All Variable Loadcases: All

Loadcase	Results	Beneficial	Adverse	Title
	File	Factor	Factor	
288	0	1.2	1.2	Thermal_effect_k (Max)
289	0	1.2	1.2	Thermal effect k (Min)

Loadcase ID: 310 Title: ULS_Fundamental_Phase3b

Sub Type: Smart Combination Loadcases to consider: All Variable Loadcases: All

variable Lo	aucases. All			
Loadcase	Results	Beneficial	Adverse	Title
	File	Factor	Factor	
296	0	0.0	1.35	Udl_k (Max)
297	0	0.0	1.35	Udl_k (Min)
298	0	0.0	1.35	Tandem_k (Max)
299	0	0.0	1.35	Tandem_k (Min)
300	0	0.9	0.9	Wind_k (Max)
301	0	0.9	0.9	Wind k (Min)

SLS characteristic design combinations

Loadcase ID: 312 Title: SLS_Characteristic_Phase1

Sub Type: Smart Combination Loadcases to consider: All Variable Loadcases: All

Loadcase	Results	Beneficial	Adverse	Title	Type
	File	Factor	Factor		
1	0	1.0	1.0	Self Weight	Structural Gravity (G)

Loadcase ID: 314 Title: SLS_Charactersitic_Phase2a

Sub Type: Smart Combination Loadcases to consider: All Variable Loadcases: All

· mr more mon					
Loadcase	Results	Beneficial	Adverse	Title	Type
	File	Factor	Factor		
2	0	1.0	1.0	Permanent	Structural Gravity (G)

Loadcase ID: 316 Title: SLS_Characteristic_Phase2b

Sub Type: Smart Combination Loadcases to consider: All Variable Loadcases: All

Loadcase	Results File	Beneficial Factor	Adverse Factor	Title	Type
3	0	0.0	1.0	Settlement	Settlement (STL)
4	0	1.0	1.0	Shrinkage	Shrinkage and Creep (SC)

Loadcase ID: 318 Title: SLS_Characteristic_Phase3a

Sub Type: Smart Combination Loadcases to consider: All Variable Loadcases: All

Loadcase	Results	Beneficial	Adverse	Title
	File	Factor	Factor	
288	0	1.0	2.0	Thermal_effect_k (Max)
289	0	1.0	1.0	Thermal_effect_k (Min)

Loadcase ID: 320 Title: SLS_Characteristic_Phase3b

Sub Type: Smart Combination Loadcases to consider: All Variable Loadcases: All

Loadcase	Results	Beneficial	Adverse	Title
	File	Factor	Factor	
296	0	0.0	1.0	Udl_k (Max)
297	0	0.0	1.0	Udl_k (Min)
298	0	0.0	1.0	Tandem_k (Max)
299	0	0.0	1.0	Tandem_k (Min)
300	0	0.6	0.6	Wind_k (Max)
301	0	0.6	0.6	Wind k (Min)

SLS frequent design combinations

Loadcase ID: 322 Title: SLS_Frequent_Phase1

Sub Type: Smart Combination Loadcases to consider: 1

Variable Loadcases: All

Loadcase	Results File	Beneficial Factor	Adverse Factor	Title	Type
1	0	1.0	1.0	Self_Weight	Structural Gravity (G)

Loadcase ID: 324 Title: SLS_Frequent_Phase2a

Sub Type: Smart Combination Loadcases to consider: All Variable Loadcases: All

Loadcase	Results	Beneficial	Adverse	Title	Type
	File	Factor	Factor		
2	0	1.0	1.0	Permanent	Structural Gravity (G)

Loadcase ID: 326 Title: SLS_Frequent_Phase2b

Sub Type: Smart Combination Loadcases to consider: All Variable Loadcases: All

THI HOTE DONG HOTE STATE						
	Loadcase	Results	Beneficial	Adverse	Title	Type
		File	Factor	Factor		
	3	0	0.0	1.0	Settlement	Settlement (STL)
	4	0	1.0	1.0	Shrinkage	Shrinkage and Creep (SC)

Loadcase ID: 328 Title: SLS_Frequent_Phase3a

Sub Type: Smart Combination Loadcases to consider: All Variable Loadcases: All

Loadcase	Results	Beneficial	Adverse	Title	Type
	File	Factor	Factor		
5	0	1.0	1.0	Thermal_Heat	Temperature Gradient (TG)
6	0	1.0	1.0	Thermal_Cold	Temperature Gradient (TG)

Loadcase ID: 330 Title: SLS_Frequent_Phase3b

Sub Type: Smart Combination Loadcases to consider: All Variable Loadcases: All

Loadcase	Results	Beneficial	Adverse	Title
	File	Factor	Factor	
296	0	0.0	0.4	Udl_k (Max)
297	0	0.0	0.4	Udl_k (Min)
298	0	0.0	0.75	Tandem_k (Max)
299	0	0.0	0.75	Tandem_k (Min)

Fatigue design combinations

Loadcase ID: 332 Title: Fatigue_Phase3b Sub Type: Smart Combination Loadcases to consider: 1

Variable Loadcases: All

Loadcase	Results	Beneficial	Adverse	Title	Type
	File	Factor	Factor		
252	0	1.0	1.0	Load ID=25 Line=374 Pos=1 Dir=Fwd (252)	Live Load (L)
286	0	1.0	1.0	Load ID=25 Line=374 Pos=35 Dir=Fwd (286)	Live Load (L)

Step 3: Use LUSAS to calculate the forces and moments for all limit state combinations

Associated Files

- **Sections_Rev0.vbs** A file created by PontiEC4 containing geometric section data to import into LUSAS. A version of this file is supplied also, but is only for use only in case of difficulties in manually creating the appropriate data
- □ **Composite_Bridge_Deck.mdl** A supplied LUSAS model file that is to be used to analyse the structure. After solving this model, analysis results are exported from LUSAS or use in PontiEC4 to undertake design checks.

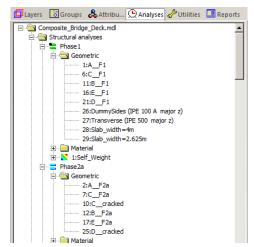
Open the associated LUSAS model

Run LUSAS Modeller and select the File> Open menu item, and open the supplied model named Composite_Bridge_Deck.mdl which is located in the \<PontiEC4 Installation Folder>\Help\Examples\LUSAS_Example directory.

The model supplied is a LUSAS Version 15 model. This is so that the same model can be opened regardless of the version of LUSAS being used with PontiEC4. As a result:

- Click **OK** to update the model to your current version
- Select the **File> Save as** menu item and <u>save the LUSAS model data to the same</u> working project folder as that used to save the PontiEC4 dialog data earlier) keeping the same file name **Composite_Bridge_Deck.mdl**

Importing the section properties from Ponti EC4

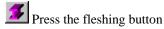

• Select **File> Script> Run Script** and select the PontiEC4 script file "**Sections_Rev0.vbs**" that was created in the working project folder earlier. This imports the geometric section data from PontiEC4.

Note. In this worked example, the geometric beam properties calculated by Ponti EC4 have already been assigned to the relevant lines in the supplied LUSAS model, so reimporting properties of the same name that have already been assigned simply overwrites the existing definitions. When importing geometric properties for the first time on a real project, the attributes created would need to be assigned to relevant lines of your model. Cracked section properties would be assigned to appropriate lines in the LUSAS model in accordance with the requirements of the code.

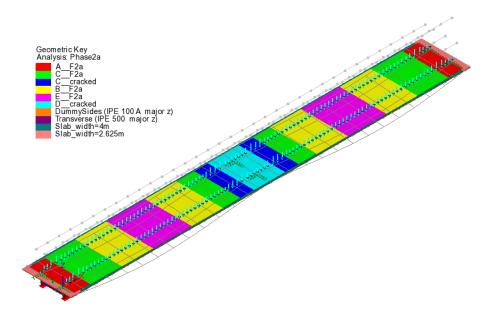
- In the Analyses treeview notice that different geometric assignments have been made for the main girders and material assignments for the slab for each analysis to represent the various design phases.
- Press the Solve button to compute all loadcases in all the analyses.

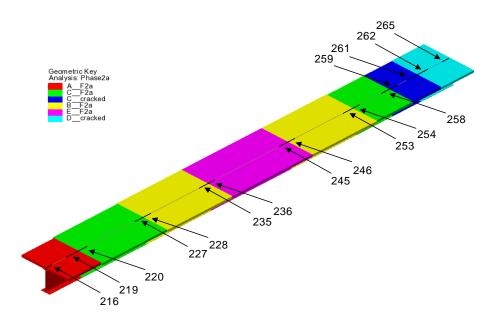
The model contains a large number of loadcases. After a short wait whilst they are all evaluated, results will be obtained.

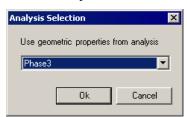
Step 4: Export the force and moment data from LUSAS

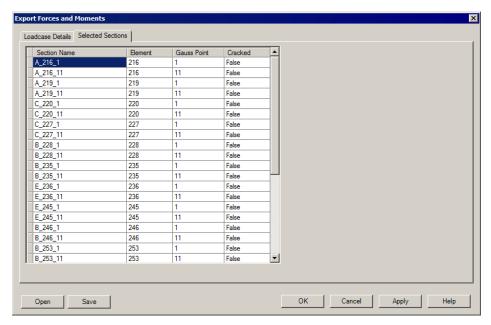

Selection of elements for checking

To enable design checks to be carried out the start and end elements of each main girder segment need to be selected. These elements are those that occur at the changes of geometric section, and they represent the sections at which design checks will be undertaken in PontiEC4.


In preparation:


Press the Isometric toolbar button to see the full model of the bridge deck.


- In the Analyses treeview expand the **Phase 2a** analysis entry and right-click on the loadcase named **Permanent** and choose **Set active**. This is the loadcase where the concrete deck is constructed.
- In the Layers Treeview, double-click the **Geometry** entry and on the Properties dialog choose to Colour by **Assignment**, and then press the **Set** button. Choose to colour by **Geometric** attribute type and click **OK**.


- In the Groups treeview right-click on the group name Half_External_Beam and choose Set as Only Visible.
- In the Layers Treeview turn off the display of the Deformed mesh layer
- In the Layers Treeview move the **Mesh** layer to be beneath the **Attributes** layer. This ensures that the required elements can be seen and selected.
- In the Layers Treeview, double-click on the **View properties** entry, select the **View Axes** tab and <u>deselect</u> **Visualise coordinate system**.
- Turn off the display of the supports
- Change the cursor selection mode to be **Select Elements**
- Holding-down the **Shift** key, select each element at the start and end of each segment. The element numbers selected will be as shown.

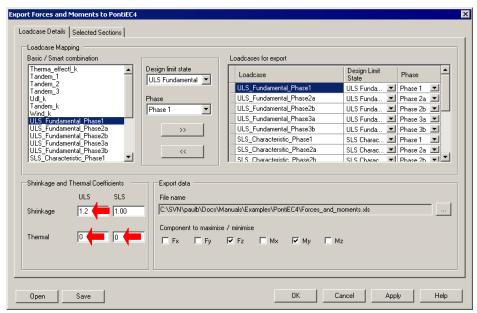
- Once done, to export the information for these sections, select the **Design> Export** to Composite Deck Design... menu item.
- In the Analysis selection dialog that appears, select **Phase 3** from the drop-down list provided, and click **OK**. The geometric properties assigned to Phase3 will be used to determine the section details for export.

• On the Export Forces and Moments dialog, select the **Selected Sections** tab. These sections have been defined based on the elements selected prior to selecting the **Bridge> Composite Deck Designer> Export...** menu item.

For each selected element, the table defines two sections, representing the first and last Gauss points. Each Section name listed has the following information: **Element** (number), Gauss point (number), Cracked/uncracked section status.

The section names in this table are created from the following named objects/values in the LUSAS model:

"[Segment Name]+" "+ "[Element number]+" "+[Gauss Point Number]


Important. The Export Forces and Moments facility obtains the segment and the phase name from the name of the assigned geometric attribute, by splitting the attribute name on the double underscore separator "__". For this reason the cross-section geometric properties in any associated LUSAS model must have a name that follows this standard:

[Segment Name] +"__"+ [Phase name]; where the phase name should be: {F1, F2a, F2b, F3a, F3b, cracked}.

The cracked status of the section is a Boolean value taken as true when the phase name is "cracked", and false otherwise.

Click the Loadcase Details tab.

On the Loadcase Details tab the design combinations, design limit states and phases are to be stated, along with the specification of shrinkage/thermal coefficients and component values of interest.

To assemble a design combination, proceed as follows:

- In the left-hand panel select **ULS_Fundamental_Phase1**, select a Design limit state of **ULS_Fundamental**, and from the Phase drop-down list select **Phase 1**. Click the Add to button to add the design combination to the right-hand panel
- Repeat the above sequence for all combinations listed in the table that follows, selecting the corresponding **Design limit state** and **Phase** for each one.

Loadcase	Design limit state	Phase
ULS_Fundamental_Phase1	ULS Fundamental	Phase 1
ULS_Fundamental_Phase2a	ULS Fundamental	Phase 2a
ULS_Fundamental_Phase2b	ULS Fundamental	Phase 2b
ULS_Fundamental_Phase3a	ULS Fundamental	Phase 3a
ULS_Fundamental_Phase3b	ULS Fundamental	Phase 3b
SLS_Characteristic_Phase1	SLS Characteristic	Phase 1
SLS_Charactersitic_Phase2a	SLS Characteristic	Phase 2a
SLS_Characteristic_Phase2b	SLS Characteristic	Phase 2b
SLS_Characteristic_Phase3a	SLS Characteristic	Phase 3a

Loadcase	Design limit state	Phase
SLS_Characteristic_Phase3b	SLS Characteristic	Phase 3b
SLS_Frequent_Phase1	SLS Frequent	Phase 1
SLS_Frequent_Phase2a	SLS Frequent	Phase 2a
SLS_Frequent_Phase2b	SLS Frequent	Phase 2b
SLS_Frequent_Phase3a	SLS Frequent	Phase 3a
SLS_Frequent_Phase3b	SLS Frequent	Phase 3b
SLS_Frequent_Phase1	Fatigue	Phase 1
SLS_Frequent_Phase2a	Fatigue	Phase 2a
SLS_Frequent_Phase2b	Fatigue	Phase 2b
SLS_Frequent_Phase3a	Fatigue	Phase 3a
Fatigue_Phase3b	Fatigue	Phase 3b

Note that loadcase SLS_Frequent_Phase3b is not mapped as a Fatigue design limit state; the Fatigue_Phase3b loadcase must be mapped instead.

- Input a Shrinkage coefficient of 1.2 for the ULS, and 1.0 for the SLS.
- Remove the default thermal coefficient values that are present and enter values of **0** for both the ULS and SLS Thermal coefficients

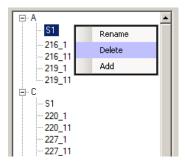
Note. These coefficients will be applied to the characteristic primary effects of the shrinkage as directly calculated in PontiEC4. The isostatic effect will be neglected $(\gamma*\psi=0)$ in the cracked section (True in cracked column of the Section Table column). The hyperstatic effect of the shrinkage comes from the LUSAS model and the combination factors have been already applied in the LUSAS smart combinations.

- In the Component to maximize/minimize panel ensure **Fz** and **My** are checked. (These are the components that will be considered in the smart combinations)
- Click the ellipsis button to choose the folder and name of the xls file to create (e.g.: <current work directory>\Forces_and_moments.xls), pressing the Save button to return to the main dialog
- Click the **Save** button on the bottom-left of the dialog to save the data entered in the dialog pages for any possible re-use. Save the input as "Export_Forces_to_PontiEC4.inp".
- Then, finally, click OK to create the XLS file containing forces and moments for use in PontiEC4.

Step 5: Import force and moment data into PontiEC4

Associated File

This supplied file is only for use in case of problems in manually creating the appropriate data in the previous section of the example.



☐ **Forces_and_moments.xls** File created by the LUSAS Export Forces and Moments dialog containing data to import into PontiEC4.

Importing force and moment data into PontiEC4

This section covers the import of section force and moment data from LUSAS into PontiEC4. Refer to the "Forces and moments" section in the PontiEC4 online help file for more information.

Whilst it is possible to manually enter forces and moments into PontiEC4 in the "Forces and moments" dialog, and it is also possible to copy and paste data into each section, when used with LUSAS any importing of data is far better achieved by using the automated procedure as follows.

In PontiEC4, with the current data still loaded (or with the data from the previously saved file 'Composite_Bridge_Deck.csv' loaded if the example had been saved and closed for some reason at that point), select the File> Import forces/moments menu item and load the file Forces_and_moments.xls from working project folder.

PontiEC4 will detect that 32 additional sections are present (these are the sections at the beginning and end of each beam element that was selected to signify a change of cross-section geometric property in the LUSAS model) and ask if they are to be added to their corresponding segments.

- Click **Yes** to import the new sections. This operation may take a few seconds to complete. The status bar will show the progress.
- From the main menu select **Windows> 2 Geometry** to display the Geometry dialog. In the Segment treeview the new sections added to each segment can be seen.
- If any previously defined initial sections for each segment (named "S1") are present these are no longer necessary and should be deleted. To do this, select each section named S1 in turn, click the right-hand mouse button, and choose **Delete**.

Note. If any mistakes are made in deleting the unwanted sections, re-importing the forces and moments.xls file will re-insert any deleted sections.

Select File> Save As and enter a file name of Composite_Bridge_Deck.csv to save
the PontiEC4 dialog data to the working project folder before proceeding to view
the results.

This concludes the data input.

Step 6: Assess the results and detailed design checks in PontiEC4

This section focuses on the procedure required to assess the main girder beams for Ultimate, Serviceability, and Fatigue limit states. It involves:

- 1. Viewing utilisation factors for all checks performed
- 2. Updating section sizes for any over-utilised sections
- 3. Viewing updated results
- 4. Updating the LUSAS model and re-analysing the revised sections

It is usually enough to cycle through steps 1 to 4 once, or perhaps twice, to obtain an optimized structure.

Limited details have been given about all the checks that are carried out. To find out more about the checks performed refer to the PontiEC4 online Help (accessed via the? button on the menu banner, where design code and theory details are also supplied.

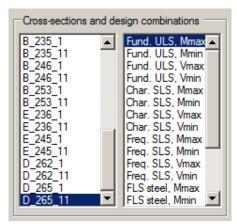
Viewing results in PontiEC4

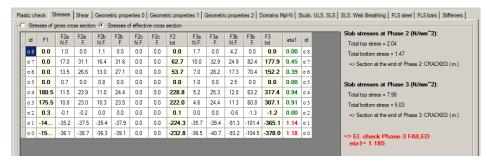
• With the results loaded in **PontiEC4** select the **Window> 5 Summary of results**. menu item. This carries out the design computations in PontiEC4 and displays the results for deck sections in a summary form.

The meaning of the coloured utilization factor entries is explained in the following table:

Colour of value / text	Utilization factor	Meaning
Red	Greater than 1.0	Value has failed the check carried out.
Green	Less than 1.0	Value has passed the check carried out.
Grey - without parentheses	Any	Value of potential interest but the utilisation factor is not relevant to the code.
(Grey) - with parentheses	Any	Value of potential interest but the utilisation factor is not relevant to the code in this particular context.
Grey stating 'No int.'	Not applicable	No interaction between bending and shear.

A check of the utilization factors obtained should be made for each limit state. Only a check for the **Fundamental ULS combination** will be shown here.

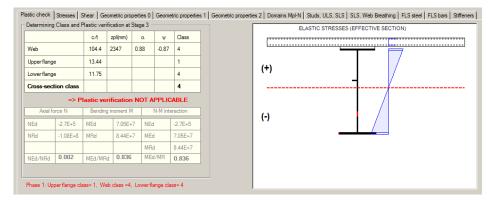

Note. By clicking on a particular header the values in a column can be sorted in increasing or decreasing value. Click twice to sort the **SigEd/fy** column in descending order. It can be seen that some of Segments D and C fail the check for normal stresses at ULS, as shown below.



Note. Changing from the Geometry, Materials or Forces and moments dialogs to the Results, Summary of results, Report, or Cracking dialogs causes a re-analysis of results.

- Select the Window> 4 Results menu item in order to find out more about the failed checks.
- In the Cross-sections and design combinations panel select section D_265_11 and Fund. ULS, Mmax

 Then, in the lower part of the Results dialog, select the Stresses tab and look at Stresses of effective cross section



Note. Currently, the 'Stresses tables' contain non-English abbreviations in their header that need to be explained: 'F1', 'F2a', 'F2b' etc come from the Italian 'Fase' – meaning 'Phase' in English, as in Phase 1, Phase 2 etc. Additionally 'N.F.' is the Italian abbreviation for 'Non Fessurata' – meaning 'Not Cracked', and 'F' denotes 'Fessurata' – meaning 'Cracked'.

Phase totals listed are a summation of all the Cracked values for each Phase.

The normal stresses are very large in the bottom flange where they exceed fy. They are also quite large in the top flange.

• Select the **Plastic check** tab to view the classification of the section (Class 4).

Step 7: Optimize the structure

Associated Files

These supplied files are only for use in case of problems in manually creating the appropriate data in this section of the example.

☐ Composite_Bridge_Deck_Optimized.csv - the input file for PontiEC4 with updated steel flange values for segments D and C.

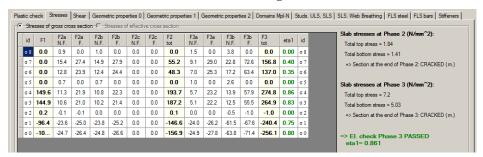
■ **Sections_rev1.vbs** - A file created by PontiEC4 containing revised section data to import into LUSAS to update the geometric properties in the LUSAS model.

For this example, optimizing the structure involves making changes to flange plate thicknesses in the PontiEC4 Composite Deck Designer for those segments that failed the design check, then using LUSAS to calculate revised forces and moments, and then re-assessing the revised results and design checks in PontiEC4.

Revise selected flange thicknesses in PontiEC4:

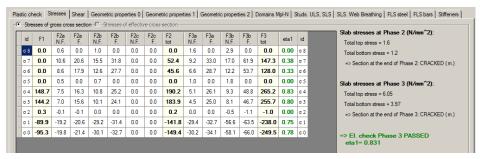
Flange thicknesses will be increased on those segments that currently fail the check for normal stresses at ULS.

Segment D


- In PontiEC4, select the **Window> 2 Geometry** menu item, and then click ONCE to select Segment **D** in the segment treeview. Note that the status bar at the bottom of the interface should state: 'Edit GEOMETRY of Segment D' showing that you are only editing an existing segment and not inputting data for a new one.
- Increase the top flange thickness (ts) from 40 to 50
- Increase the bottom flange thickness (ti) from 50 to 80
- Select the Window> 4 Results menu item. This causes the results for Section D_265_11 and Fund. ULS Mmax (and all other segments) to be updated.

Because of the modification to the flanges for Segment D, the **Plastic check** dialog will show that it has now moved from Class 4 to Class 3. As a result, the 'Stresses of effective cross section' radio button will no longer be available on the Stress results page of the Results dialog.

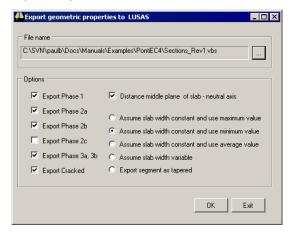
Note. Effective stresses are available only for the Class 4 sections.


Select the Stresses tab and look at Stresses of gross cross section.

The flange thickness changes for Segment D now allow it to pass the design check.

Segment C

- Select the Window> 2 Geometry menu item, and click once to select Segment C in the segment treeview. The status bar should state: 'Edit GEOMETRY of Segment C'
- Increase the top flange thickness (ts) from 30 to 50
- Increase the web thickness (twr) from 22 to 25
- Increase the bottom flange thickness (ti) from 40 to 60
- Select the Window> 4 Results menu item and view the updated results for Section C_261_11 and Fund. ULS Mmax. The flange thickness changes for Segment C now allow it to pass the design check. (And selecting the Plastic check tab would show that it, too, has moved from Class 4 to Class 3).


• Select the **Window> 5 Summary of results** menu item. Sort the **SigEd/fy** column. It can be seen that Segments D and C now both pass the check for normal stresses at ULS, as shown below. Stresses for other combinations are all satisfactory.

 Select File> Save As to save the current PontiEC4 project data as Composite_Bridge_Deck_Optimized.csv.

Export the revised geometric data to LUSAS

Select the File> Export geometric properties to LUSAS menu item. Ensure that
the destination directory is set to <u>your</u> working project folder, and input a filename
of Sections_Rev1.vbs. Then ensure that all the Export option boxes (apart from
Export Phase 2c), and selected (checked) and that Distance middle plane of slab –
neutral axis, and Assume slab width constant and use minimum value options
are also selected (checked). Click OK to finish.

Calculate revised forces and moments in LUSAS

- In LUSAS, and with the Composite_Bridge_Deck.mdl file open, select File>
 Script > Run Script and from the working project folder select the PontiEC4 script
 file Sections_Rev1.vbs to import the optimized sections into the model. The new
 sections will overwrite the geometric and material properties previously used.
- Select the **File> Save As** menu item to save the model to the working project folder as **Composite_Bridge_Deck_Optimized.mdl.** Any open results files will be closed.
- Press the **Solve** button to compute all loadcases in all the analyses. After a short wait the solving will be completed.

Export the revised force and moment data from LUSAS

This involves repeating the operations from Step 4 in this example. In summary, this involves:

• In LUSAS, selecting those elements of interest at the start and end of each main girder segment (they may still be selected from when this was done earlier), and exporting the results for those elements by selecting the **Design**> **Export to Composite Deck Design...** menu item.

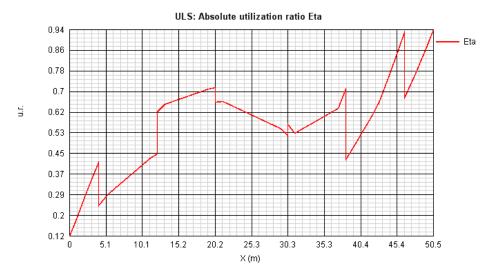
- Ensure that **Phase 3** is chosen, and when the **Export Forces and Moments** dialog appears press the **Open** button to populate the dialog with previously saved entries from the **Export_Forces_to_PontiEC4.inp** file that related to the loadcase mapping and other settings. Click **OK** to overwrite existing data.
- Then, on the same dialog, click the ellipsis button to choose the folder and name of the xls file that should be created (e.g.: Forces_and_moments_rev1.xls), and press Save to return to the main dialog.
- Then, finally, click **OK** to create the revised XLS file for use in PontiEC4

Import revised forces and moments into PontEC4

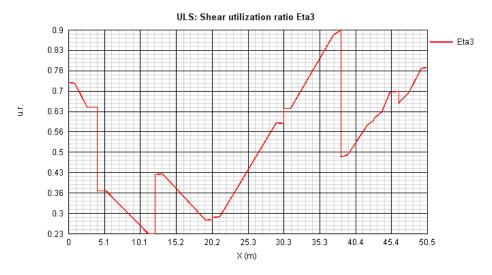
• In PontiEC4, with the current data still loaded, select the **File> Import forces/moments** menu item and load the file **Forces_and_moments_rev1.xls** that was created by LUSAS from the working project folder.

Assess the revised results in PontiEC4

- Select the Window> 5 Summary of results menu item.
- Sort the **SigEd/fy** column. It can be seen that values of SigEd/fy have changed slightly from the values previously calculated in PontiEC4 that used the initial forces and moments calculated by LUSAS, but values for all segments can be seen to pass the check for normal stresses at ULS.



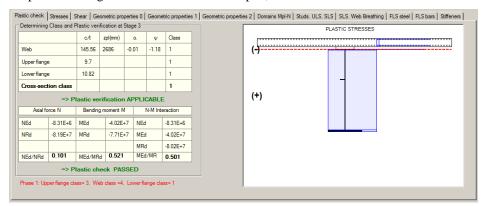
Methods for graphing data and producing detailed results will now be explained.


Creating Graphs

• In PontiEC4, with the optimized data still loaded, select the **Utilities> Graphs** menu item. (If the optimized data is no longer loaded open the file Composite_Bridge_Deck_Optimized.csv to populate the dialogs)

• From the first drop-down list choose **ULS: Absolute utilization ratio Eta** to plot the following graph:

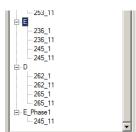
• From the first drop-down list choose **ULS: Shear utilization ratio Eta3** to plot the following graph:



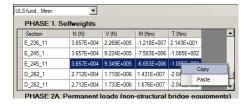
Note. Graphs can also be viewed by scrolling the mouse wheel up and down in the graph window.

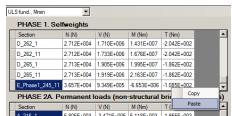
Obtaining more detailed results

- With the optimized data still loaded, select the **Window> 4 Results** menu item.
- In the Cross-sections and design combinations panel, select section E_245_11 and Fund. ULS, Mmin.
- Select the **Stresses** tab to have a look at the elastic stresses on the gross section.
- Then, select the **Plastic check** tab. From this, all details about the classification and plastic check are supplied, and it can be seen that for Stage 3, this section, that is part of the segment in the middle of the span, is in Class 1.

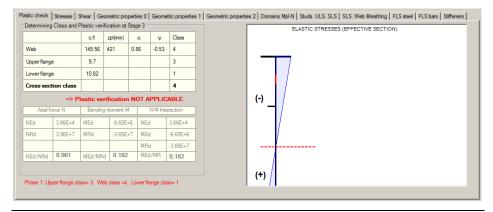


Note. At the bottom-left of the Plastic check page the section classification is also provided for Phase 1, where the top (upper) flange cannot be considered to be restrained by the slab. For this case, the section is in Class 4 as highlighted in the red message. For this situation a check of stresses in Phase 1 should be performed, using an effective section rather than a gross section.

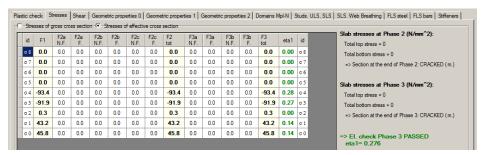

To check stresses on the effective section in Phase1


- Select the Window> 2 Geometry menu item.
- On the Geometry dialog, double-click on Segment E in the segment treeview to change from Edit mode to Input mode. The status bar should state: "Input GEOMETRY"
- In the Segment name field in the top-left of the dialog page (and <u>not</u> in the segment treeview panel) change the segment name from **E** to **E_Phase1**, then click outside of the text box to be sure that the new name is saved.
- Right-click inside the Sections text box and select Data grid input

- Select all rows except for the one with 245_11 in it (use the Ctrl key for a multiple selection of rows), open the context menu with the right-hand click of the mouse, and select **Remove rows** to leave just **245** 11 remaining. Click **OK**.
- In the Structural steel panel <u>uncheck</u> the option **Top Flange in Class 1**
- In the Slab concrete panel input 0 in each of the bcls, b1 and bsx text boxes
- Click the Add to list button beneath the Segment treeview to add the new segment to the list of other segments in the segment treeview, as shown right.
- Select the Window> 3 Forces and moments menu item, and on the Results dialog, select ULS fund., Mmin in the dropdown list seen in the Cross-sections and design combinations panel in the top-left corner.



Copy the four cells of forces and moment data for Phase 1 from section E_245_11, (click No to not copy the header text) and paste the copied data into the equivalent cells for section E_Phase1_245_11, as shown on the following images.



- Select the Window> 4 Results menu item
- Select Section **E_Phase1_245_11** and **Fund. ULS, Mmin** from the Cross-sections and design combinations panel.
- Select the Plastic check tab to see a coherent classification with an only steel structural section

Assessment of a Composite Bridge Deck to Eurocodes

• Lastly, select the **Stresse**s tab to see the stresses calculated on an effective cross section

This completes the example.