Linear Analysis of a 2D Frame

For LUSAS version:	18.0
For software product(s):	LUSAS Civil \& Structural LT and above, or LUSAS Bridge LT and above
With product option(s):	None.

Description

A simple 2D frame is to be modelled and analysed. The geometry of the frame is as shown.

All members are made of mild steel.

The structure is subjected to two loadcases; the selfweight of the structure,
 and a sway load at the top of the left-hand column.

The units of the analysis are $\mathrm{N}, \mathrm{m}, \mathrm{kg}, \mathrm{s}, \mathrm{C}$ throughout.

Objectives

The required output from the analysis consists of:
\square A deformed shape plot showing displacements caused by the imposed loading.
An axial force diagram showing stresses in the members.

Keywords

2D, Frame, Beam, Standard Sections, Fleshing, Copy, Mirror, Deformed Mesh, Axial Force Diagram, Shear Force Diagram, Bending Moment Diagram, Fibre Results, Saved view, Generating a Report, Printing Results.

Associated Files

\square frame_2d_modelling.vbs carries out the modelling of the example.

Modelling

Running LUSAS Modeller

For details of how to run LUSAS Modeller, see the heading Running LUSAS Modeller in the Introduction to LUSAS Worked Examples document.

Note. This example is written assuming a new LUSAS Modeller session has been started. If continuing from an existing Modeller session select the menu command File>New to start a new model file. Modeller will prompt for any unsaved data and display the New Model dialog.

Creating a New Model

- Enter a file name of Frame_2D
- Use the Default userdefined working folder.
- Ensure an Analysis type of Structural is set.
- Select an Analysis Category of 2D Inplane
- Set Model units of N,m,kg,s,C

- Ensure Timescale units are in Seconds
- Select a Startup template of 2D Frame.
- Ensure the Layout grid is set as None
- Enter a Title of Simple 2D Frame
- Click the OK button.

The Attributes treeview will be populated with potentially useful basic line mesh, geometric and support entries appropriate to the settings made on the new model dialog.

Note. The Undo button may be used to correct a mistake. The undo button allows any number of actions since the last save to be undone.

Feature Geometry

$\frac{\text { Geometry }}{\frac{\text { Line }}{\text { Points... }}}$

Geometry
Line Points...

$\frac{\text { Geometry }}{\text { Line }} \frac{\text { Points... }}{}$

Enter coordinates of $(\mathbf{0}, \mathbf{0})$, and after pressing the Tab key to move to the next entry field on the dialog, enter additional points of. $(\mathbf{0}, \mathbf{3}),(\mathbf{4}, \mathbf{3})$ and $(\mathbf{4}, \mathbf{4})$ to define the main setting-out points for one-half of the portal frame. With all the coordinates entered click the OK button.

Note. Sets of coordinates must be separated by commas or spaces unless the 'Grid Style' method is chosen.

- Select the two Points on the left-hand side of the model.

\squareConnect the selected Points with a Line representing the left-hand column of the portal frame.

- Select the pairs of Points on the right hand side of the model.

Connect the selected Points with a Line representing the right-hand vertical member

2. Drag a box around these two Points to create a vertical line on the centre line of the Frame

1. Drag a box around these two Points to create the left hand column on the frame centreline.

- Create the horizontal member by selecting the appropriate Points and define a Line in a similar manner.
- Select the Points at the top of the left hand column and the apex of the roof. (Hold down the Shift key to add the second Point to the initial selection).

1Connect the selected Points with a Line representing the sloping member of the frame.

Geometry	
Line	$>$
By Spliting	>
In Equal Divisions...	

|Geometry
$\frac{\text { Line }}{\mid \text { By Points... }}$

To create the vertical roof member at quarter span the 2 Lines shown are split into equal divisions to create the points required and the new line is then defined.

- Select the lower line (first) and the upper line (second) of those shown (Hold down the Shift key to add the second Line to the initial selection).
- Enter the number of divisions for both Lines as 2
- Ensure that Delete original lines after splitting is set so that the original Lines are deleted and click the $\mathbf{O K}$ button.
- Drag a box around the 2 Points just

Drag a box around these 2
Points created.

1Create the Line representing the internal member.

This completes the geometry definition for the half-frame.
Model attributes (mesh, material, geometric properties etc.) now need to be defined and assigned to the model.

Note. LUSAS Modeller works on a define and assign basis where attributes are first defined, then assigned to features of the model. This can be done either in a step-by-step fashion for each attribute or by defining all attributes first and then assigning all in turn to the model.
\square Attributes, once defined, are displayed in the Treeview. Unassigned attributes appear 'greyed-out'.Attributes are then assigned to features by dragging an attribute dataset from the ©Treeview
 onto features previously selected in the model view window.

The Treeview panel shows a variety of attributes that were defined as a result of selecting the 2D Frame template.

\|Attributes
Mesh
Line...

Tip. Useful commands relating to the manipulation of attributes can be accessed by selecting an attribute in the Treeview, then clicking the right-hand mouse button to display a shortcut menu.

Meshing

The Line features are to be meshed using two-dimensional beam elements. A 2D thick beam element is automatically provided in the Attributes Treeview but to show the process involved another will be defined:

- Select Thick beam, Linear elements.
- Set the number of divisions to be $\mathbf{1}$
- Enter the attribute name as Thick Beam then click OK
- Select the whole model. (Ctrl and \mathbf{A} keys together).
- Drag and drop the mesh attribute Thick Beam from the Treeview onto the selected model Lines.

Note. When an assignment is made confirmation of the assignment is written to the Text Output Window.

Material Properties

Steel of the required grade is already present in the Attributes Treeview.

- With the whole model selected ($\mathbf{C t r l}$ and \mathbf{A} keys together) drag and drop the material attribute Steel (Mild Steel | Steel Structural) from the Treeview onto the selected features.

Geometric Properties

The standard sections dialog will appear.

- Select the library of UK Sections
- Select section type Universal Beams (BS4)
- Select section name 127x76x13kg UB.
- Enter the Attribute name as stanchion.
- Click the Apply button to add the Universal Beam attribute to the Treeview.
- Change the library to $\mathbf{E U}$ Sections.
- Change the section type to Equal Angles, and select the 70x70x6 EA section name.
- Enter the Attribute name as roof member
- Click the OK button to add the Equal Angle
 attribute to the Treeview.

Note. The Treeview name given to the attribute consists of the stated name followed by the library section name, and the orientation of the section in parentheses. Only the stated name can be renamed.

Assigning Geometric Properties

- Select the Line representing the lefthand vertical member.
- Drag and drop the geometry attribute Stanchion (127x76x13kg UB) from the Treeview onto the selected Line.
- Drag a box around the Lines representing the roof members.
- Drag and drop the geometry attribute Roof member (70x70x6 EA from the

Geometric assignments are visualised by default.

- Click in a blank part of the View Window to deselect the members.

Select the isometric button to see the geometric visualisation on the members.

The Zoom in button can be used to check the orientations.

Select the Home button to return the model to the default view.

Select the fleshing on/off button to turn-off the geometric visualisation.

Supports

LUSAS provides the more common types of support by default. These can be seen in the Treeview. The structure will be supported at the end of the stanchion which is in contact with the ground with a fully fixed support condition.

Assigning the Supports

- Select the Point at the bottom of the left-hand vertical member.
- Drag and drop the support attribute Fully Fixed from the Treeview onto the selected feature.
- Ensure the Assign to points and All analysis loadcases options are selected and click OK

Mirroring the Model

One half of the 2D frame has now been generated. This half can now be copied about a mirror plane to create the complete frame.

- Select the whole model ($\mathbf{C t r l}$ and \mathbf{A} keys together).

Copy...

Select Mirror, select Parallel to \mathbf{Y} axis and enter $\mathbf{4}$ in X, and $\mathbf{0}$ in Z in the top cells and $\mathbf{4}$ in X , and $\mathbf{3}$ in Z in the lower cells to define the points defining the mirror plane.

- Click the OK button to create the full model.

Note. Features that are copied retain their attributes. This means that there is no need to define the mesh, material or geometric properties for the newly created Lines as they will already have the attributes
 from the original half of the model assigned.

Note. In mirroring the features the Line directions will have been reversed. The orientation of Lines is important as it controls the local beam axes directions which will define the sign convention used to present the results.

- In the Layers Treeview double-click on Geometry to display the geometry layer properties. Select the Line directions option and click OK

The orientations of the lines are shown.

- Select the 4 Lines on the right-hand side of the roof that are to be reversed. (Hold down the Shift key to add lines to the initial selection).

The selected Line

Geometry
 Line >
 Reverse

 directions will be reversed.- Once the Line directions are corrected, de-select the Line directions option in the geometry layer properties and click the OK button.

Loading

Two loadcases will be considered; self weight, and a concentrated sway load acting at the top of the left-hand vertical member.

Loadcase 1 - Self Weight

Loadcase 1 will represent the self-weight of the structure. This is modelled using a constant body force, which is an acceleration loading simulating the force of gravity acting upon the structure.

Gravity loading is already present in the Attributes Treeview.

- Select the whole model (Ctrl and A keys together) and drag and drop the loading attribute BFP1 (Gravity -ve Y) from the $\%$ Treeview onto the selected features.
- Ensure that the Assign to lines and Single loadcase options are selected and the loading is applied to Analysis 1 and Loadcase 1. Click the OK button and the loading on the frame will be displayed.

Loadcase 2 - Sway Load

Loadcase 2 is a sway load acting at the top of the left-hand vertical member.

- Ensure the Concentrated option is selected and click Next
- Enter a concentrated load in the \mathbf{X} direction of $\mathbf{5 0 0}$
- Enter the attribute name as Sway Load and click Finish
- Select the Point at the top of the left-hand column.
- Drag and drop the loading attribute Sway Load from the \% Treeview onto the selected Point.
- Ensure the Assign to
 points and Single loadcase options are selected, and that the selected analysis is Analysis 1. Change the loadcase name to Loadcase 2 by overtyping.
- Click the OK button to assign the loading as the active loadcase with a factor of 1

Saving the Model.

Save the model file.

Running the Analysis

With the model loaded:

-

Open the Solve Now dialog. Ensure Analysis 1 is selected and click the OK button to perform the analysis.

A LUSAS Datafile will be created from the model information. The LUSAS Solver uses this datafile to perform the analysis.

If the analysis is successful...

Analysis loadcase results are added to the Treeview.
In addition, 2 files will be created in the Associated Model Data directory where the model file resides:
\square frame_2d.out this output file contains details of model data, assigned attributes and selected statistics of the analysis.
frame_2d.mys this is the LUSAS results file which is loaded automatically into the Treeview to allow results processing to take place.

If the analysis fails...

If the analysis fails, information relating to the nature of the error encountered can be written to an output file in addition to the text output window. Any errors listed in the text output window should be corrected in LUSAS Modeller before saving the model and re-running the analysis.

Rebuilding a Model

If it proves impossible for you to correct the errors reported a file is provided to enable you to re-create the model from scratch and run an analysis successfully.
frame_2d_modelling.vbs carries out the modelling of the example.

Start a new model file. If an existing model is open Modeller will prompt for unsaved data to be saved before opening the new file.

- Enter the file name as frame_2D

- To recreate the model, select the file frame_2d_modelling.vbs located in the 1<LUSAS Installation Folder>\Examples\Modeller directory.

Rerun the analysis to generate the results.

Viewing the Results

Selecting the Results to be Viewed

Analysis loadcase results are present in the Treeview, and the last solved loadcase (Loadcase 2) is set to be active by default. This is signified by the active results bitmap .

Setting a loadcase active

- In the Treeview right-click on Loadcase 1 and select the Set Active option.

Deformed Mesh Plot

A deformed mesh plot is normally displayed initially to highlight any obvious errors with an analysis before progressing to more detailed results processing. The deformed shape will usually show up errors in loading or supports and may also indicate incorrect
material property assignments (e.g. where the results show excessive displacements). The deformed mesh layer is already present in the Treeview.

For clarity, layers will be turned off from the display to leave only the undeformed mesh displayed.

- In the Treeview turn off the display of the Geometry and Attributes layers by right-clicking on each layer name and selecting the On/Off menu item.

Note. By default the maximum displacement is scaled to the magnitude defined on the deformed mesh dialog so the deformed shape can be easily visualised. The exaggeration factor used to multiply the displacements is displayed on the deformed mesh properties dialog and can be defined if required.

The deformed mesh plot for loadcase 1 (the default active loadcase) is currently displayed on the mesh layer.

- Turn off the Mesh layer from the Treeview to leave only the deformed mesh displayed as shown.

Defining a Combination

Combinations can be created to view the combined effects of multiple loadcases on the structure.

The combination dialog will appear.

Both available results loadcases should be added to the Included combination panel.

- Select Loadcase 1, hold the shift key down and select Loadcase 2. Click the >> button to add the loadcases to the load combination.
- Click the OK button to finish.

Note. The load factor may be modified by selecting the included loadcase in the right hand list and updating the factor.

Note. To obtain the correct effect from the combined loads, the Combination should only include one occurrence of each loadcase.

Viewing a Combination

- In the Treeview, in the Post Processing folder, right-click on Combination 1 and select the Set Active option.

The deformed mesh plot will show the effect of the combined loading on the structure.

Marking Peak Values

- With no features selected click the right-hand mouse button in a blank part of the View window and select the Values option to add the values layer to the Treeview.

The values layer properties will be displayed.

- Select Displacement results from the Entity drop down list and select the resultant displacement RSLT from the Component drop down list.
- From the Values Display tab set $\mathbf{1 0 0 \%}$ of Maxima values to be displayed.
- Set the number of significant figures to 4
- Click the OK button to display the deformed mesh plot showing the displacement at each node.

Note. Because this example is written for LUSAS LT versions that only allow one model or results viewing window to be used the Values layer is best turned off prior to
adding further layers. In Standard and Plus versions of LUSAS multiple windows each having different layers can be defined.

- Turn off the Values layer in the Treeview.

Axial Force Diagram

- With no features selected click the right-hand mouse button in a blank part of the graphics window and select Diagrams to add the diagrams layer to the 囤 Treeview.

The diagram properties will be displayed.

- Select Force/Moment results of axial force $\mathbf{F x}$ in the members
- Select the Diagram Display tab and select the Label values button.
- Select the Label only if selected option.
- Ensure the number of significant figures is set to $\mathbf{4}$
- Click the OK button to finish.

The order of the layers in the Treeview governs the order that the layers are displayed.

- To see the deformed mesh on top of the diagram, in the Treeview drag and drop the deformed mesh on top of the diagrams layer.
- To add labels to the vertical members (the stanchions), select the left hand column, hold the Shift key and then select the right hand column.

An axial force diagram for
 each member will be displayed with values of Fx displayed on the selected columns.

Shear Force Diagram

- In the Treeview double-click on the Diagrams layer. The diagram properties will be displayed.
- Select Force/Moment results of shear force $\mathbf{F y}$ in the members.

- Click the OK button to display a shear force diagram of stresses in each member with labels on the selected vertical members.

Bending Moment Diagram

- In the Treeview double-click on the Diagrams layer. The diagram properties will be displayed.
- Select Force/Moment results of bending moments in the members Mz
- Click the OK button to display a bending moment diagram for
 each member with labels on the selected vertical members.

Viewing Results on Fleshed Members

As an alternative to plotting diagram results stresses in beams can be plotted on fleshed members.

- Turn off the Diagrams layer in the Treeview.
- Click in a blank part of the Graphics Window to deselect the members.
- With no features selected click the right-hand mouse button in a blank part of the view window and select Contours to add the contours layer to the Treeview.

The contour properties dialog will be displayed.

- Select Stress results of axial and moment results in the members $\mathbf{S x}(\mathbf{F x}, \mathbf{M z})$

Because a different result component was requested previously for the Values (and Diagrams) layer a message appears asking if that specified component should also be updated to the new choice.

- Click the Yes button
 to accept.

Initially the contours of stress will be drawn only at the current active fibre location on both stanchions as seen on the image above. A contour key will also be drawn. Fibre locations will be explained shortly.

Select the isometric button.

3
Select the fleshing on/off button to visualise the stress results on the fleshed crosssection as seen on isometric image shown below.

Select the fleshing on/off button again to turn off the visualisation.

Fibre Locations

As an alternative to plotting force and moment diagrams along nodal lines, diagrams of stresses can be plotted at fibre locations on members.

Standard steel sections have various extreme fibre locations pre-defined. These fibre locations can be seen by expanding the Geometric Line entry in the in the Treeview and can be visualised by doubleclicking the Geometric Line attribute name and selecting the Section details button.

Plotting of results for a particular fibre location is done by selecting the Set Fibre Active context menu item as shown in the image opposite.


```
\squareG Frame_2d.md
    -G Attributes (14)
        7 Mesh (4)
        \square-T Line (4)
        8:Thick beam, linear order, div = 4
        2:Thick beam, linear order, element length =
        3:Bar, linear order, div = 1
        8 4:Thick Beam
        | Geometric (2)
        \square.g Line (2)
        B 1:stanchion (127\times76\times13kg UB)
        - Fibrer rusum
        - Fibre
                - Fibre I4
            8 2:roof member (70\times70\times6 EA)
        |.] Material (2)
        -G Isotropic (2)
            8 1:Steel (Mild Steel | Steel - Structural)
             2:Concrete (Ungraded | Concrete)
        |}\mathrm{ Supports (4)
            1:Pinned
        8 2:Fully Fixed
        3:Fixed in X
            4:Fixed in }
        F Loading (2)
    \square}\mathrm{ Structural (2)
        & 1:BFP1 (Gravity -ve Y)
        & 2:Sway load
```


Diagram Stress Results at Fibre Locations

- Press the $Z: N / A$ button at the bottom of the interface to view the model along the z -axis.
- In the Treeview, turn-on the display of the Diagrams layer.
- In the Treeview drag and drop the Diagrams layer on top of the Contours layer to ensure that the diagrams are plotted on top of the contours in the view window.
- Double-click on the Diagrams layer and select Stress results of stress $\mathbf{S x}(\mathbf{F x}$, $\mathbf{M z}$) in the beam.
- Select the Diagram Display tab and ensure the Label values option is selected, and the Label only if selected option is deselected. Change the angle of the text to $\mathbf{- 4 5}$ and ensure that the number of significant figures to 4 .
- Select the Scale tab and set a local scale of magnitude $\mathbf{1 2 m m}$.
- Click OK to display the stress diagram at Fibre location I1.

Saving views of the model

Saved views of the model can be applied to other views to easily update the layers and settings used in that view. Saved views can also be inserted into reports (such that each time a model report is generated, the saved view will be updated to show the current state of the model and results at the time of creating the report). The insertion of a saved view into a report will be shown in this example.

Window
Save View...

- Leave the view name as View1 and click OK to save the view entry into the Utilities Treeview.

Save the Model

Save the model file.
Note. When the model file is saved all load combinations, envelopes, saved views and graph datasets, if defined, are also saved and therefore do not have to be re-created when the model and associated results file is re-opened at a later date.

Creating a Model Report

Specified model and results details can be exported to a variety of output formats by using the LUSAS report facility. Reports can include model and results data, saved views, graphs, one-click reports, screen captures, user-content and additional text. A report template, used to specify items to be included in a report, is saved in the Report國 Treeview when a model is saved. Multiple report templates are permitted.

Utilities
Reporting
New report．．

When creating a new model making use of a model template a basic report entry is automatically set－up in the Report 㘠 Treeview．This example will add an additional report entry to that treeview．

On the Report dialog enter a report title of 2D Frame
－Leave the modelling units and the number of significant figures set to default values．
－Enter a report name of Report 1 and click OK．
A report entry will be created in the Report 嫣 Treeview．
－In the Report 盷 Treeview right－click on Report 1 and select Add Chapter
－On the Chapters dialog，with the Model properties tab selected select the All checkbox．By default this will add all model property data for All loadcases for the Full model．

－On the Chapters dialog select the Results tab and click the New button．

- On the now displayed Print Results Wizard dialog make the following selections:
- Loadcase: All
- Entity: Force/Moment - Thick 2D Beam
- Location: Averaged nodal
- Extent: Full model
- Output: Tabular and Summary
- Order: Loadcase/Feature
- Click OK to finish.
- Back on the Report Chapters dialog select the Saved views tab and check (tick) the Saved view check-box to include the contents of View 1 in the Report. By default this will add the view contents for the Specified loadcase for the Elements showing results.
- Click OK to finish.

The Report 圈 Treeview will fill with
chapters relating to the content selected．
Note．The default order of the items in the Report 㘠 Treeview（and hence the order of any items on any exported report）can be changed by dragging and dropping the report sections as required． Right－clicking on an item gives access to additional options，such as modifying existing data or adding more chapters．

Reports
－ $4 \times$
（4）Layers Attributes 图Groups Analyses Utilities Reports
\square Frame＿2D．md
－ 9 Reports
（1）图 1：Report 1

㞒 Points，Full model

Lines，Full model
Mesh，Full model，Loadcases：All

PRW1

Viewing／Exporting a Report

Viewing a report automatically generates a PDF file using the report export facility．
－In the Report 國 Treeview right－click on Report 1 and select View Report
After a short pause whilst the requested report information is generated，a PDF file will be created and the first page of the report will be displayed．

Other export formats including Microsoft Excel（97－2003）are also available．

This completes the example．

