# Section Slicing of a 3D Shell Structure 

| For LUSAS version: | 19.0 |
| :--- | :--- |
| For software product(s): | Any Plus version. |
| With product option(s): | None |

## Description

This example uses the Slice Resultants Beams/Shells facility to investigate the behaviour of a bridge deck modelled using thick shell elements. The results are converted into forces and moments of an equivalent beam using this facility.

Units used are $\mathrm{N}, \mathrm{m}, \mathrm{kg}$,

$\mathrm{s}, \mathrm{C}$ throughout.

## Objectives

The output requirements of the analysis are:
Forces and bending moments along length for whole structure
$\square$ Forces and bending moments associated with central girder effective width

## Keywords

3D, Shell, Force, Bending Moments, Forces, Section, Slicing, Effective Width, Shells.

## Associated Files

$\square$ shell_slicing.mdl Model file of the structure.

## Modelling

## Running LUSAS Modeller

For details of how to run LUSAS Modeller see the heading Running LUSAS Modeller in the Introduction to LUSAS Worked Examples document.

## Creating a new Model

- To create the model, open the file shell_slicing.mdl located in the $1<$ LUSAS Installation Folder>\ExampleslModeller directory.

Depending upon your access rights it may be necessary to copy this file to another folder before it can be opened, and remove the read-only protection before it can be saved to the new folder. Once opened:


If necessary, click the isometric button to view the model in 3D


If necessary, turn-on the display of the supports.

File
Save As...

- Save the model to your local projects folder.

In the ${ }^{\text {LD}}$ Treeview two loadcases can be seen. One corresponds to the self-weight of the structure (note that because gravity loading is assigned to the loadcase directly, no loading arrows will be seen on the model) and the other to an applied load of a United Kingdom HB vehicle. For the post-processing, a combination has also been defined which combines these two load cases.

- Turn off the Geometry and Attributes layers to see the Mesh as defined.

Note. For the purposes of this example the mesh discretisation of the model is set to be extremely coarse. When carrying out this type of slicing on realistic models it is recommended that a much finer mesh discretisation is used to accurately capture the response of the structure, particularly if 3- and 4-noded shell elements are being used for the modelling.

The deck is 4.21 m wide and consists of a concrete slab and three steel girders as indicated in the following figures:

## Idealisation of the Bridge Structure

For this example shell elements are used to idealise the bridge structure.


Shell element modelling of the whole structure
Shell elements are used for the girder components and also the concrete slab as illustrated. For the modelling, discrete features have been defined for the top flange and the slab since their materials are not identical. The slab has an eccentricity to define a bending plane that is not coincident with the top flange and these two components are
combined using an equivalence attribute. This is just one of many ways that the idealisation for this type of bridge structure can be undertaken.

Based upon this idealisation method the whole model showing element discretisation is as shown:


## Alternative idealisations

The following figure shows the same structure but this time the shell elements representing the top and bottom flanges of the girder have been replaced by beam elements running along the top and bottom of the girder with the appropriate properties for the flange members.


## Beam element modelling of flanges

In the last figure the whole girder has been replaced by beam elements with appropriate geometric properties and an eccentricity to offset the bending plane of the beams.


Beam element modelling of the whole girder
The choice of which analysis idealisation should be used depends upon what is required from the results of the analysis. For instance, if a curved girder analysis is being performed and the lateral forces in the top and bottom flanges are required then shell element modelling of the whole structure or beam element modelling of the flanges (as shown in the first two figures) are suitable but beam element modelling of the whole girder (as shown in the last figure) is not.

## Running the Analysis

With the model loaded:


Open the Solve Now dialog, ensure Analysis $\mathbf{1}$ is selected and press OK.
A LUSAS Datafile will be created from the model information. The LUSAS Solver uses this datafile to perform the analysis.

## Viewing the Results

Analysis loadcase results are present in the Treeview, and the loadcase results for the self-weight loadcase will be set to be active by default.

## Plotting deformed shapes

- Ensure the Mesh, Geometry and Attributes layers are present and turned off in the幽 Treeview.
- With no features selected click the right-hand mouse button in a blank part of the Graphics area and select the Deformed mesh option to add the deformed mesh layer to the Treeview.
- Show the Window Summary for an overview of the results.

```
Scale: 1:47.6423
Linear/dynamic analysis
L
l
```

theration. 23.8019

## Computing forces and bending moments at locations along the deck

- Turn off the Deformed Mesh and Annotation layers in the Treeview.
- Turn on the Geometry layer
- Select the centre line of the model (Line 11). This line will be used to define the path along which the slicing will take place.


Utilities
Slice Resultants Beams/Shells

The slicing dialog will be displayed.

- Select the Incremental distances from start of path option.
- Enter 0;15@1 into the associated box which will cut slices at the start of the line ( 0 m ) and every 1 m up to and including 15 m .
- Deselect Include additional slices at the points along path
- Set the Distance from reference origin to start of path (chainage) to 0
- Ensure the Neutral axis option is set to calculate the forces and moments about the neutral axis of the sliced section.
- Ensure that the Slice width option is deselected.

- Set the Extent to Full model.
- Enter the dataset name as Deck.
- Click the OK button add the slice definition to the $\sqrt[5]{6}$ treeview.

Note. Four methods are available for the definition of the slice locations.
$\square$ Incremental distances from start of path allows the definition of progressive slice distances governed by the supplied increments. These increments can be positive or negative so long as the accumulated distance is within the path length.

Absolute distances from start of path allows the definition of known distances along the slicing path for slices to be taken.
$\square$ Parametric distances from start of path allows distances to be entered as a proportion of the whole path length.
$\square$ Constant spacing will define slice locations at the constant spacing entered. The option to Include slices at points can be used with any option to add additional slice locations at any line ends within the selected path.

Note. The Smooth corners on path option is used to traverse sharp corners in the defined slicing path. If smoothing is selected then the orientation of the slice plane is set to be at an angle of half the path angle change at the connection if this location coincides with a slice. If smoothing is not selected, two slices will be taken at a sharp corner with angles taken from both lines/arcs at the connection.

To continue:

- Double-click on the Utilities layer in the Treeview.
- On the Utilities layer properties dialog select the Beam/Shell Slicing tab, and press the Settings button
- Ensure the Show definition axes, Show slice planes and Show slice labels check boxes are checked.
- Click OK to close the Visualisation Settings and close the layer properties

Note. The location of the generated slice planes can only be visualised on the model after the results have been requested through any of the drawing layers.

## Viewing results

- In the Analyses $\stackrel{\text { Con }}{2}$ Treeview set the Combination active

| View |
| :--- |
| Drawing Layers |
| Contours |

Contours

The equivalent forces and moments calculated at each slice location can be contoured on the model as shown below.

- In the contours properties dialog select the entity Beam/Shell Slice Resultants and component My

Results contours and locations of the slices will be shown on the model as illustrated. The slice annotations include the physical location of the slice, its title and a local coordinate set indicating the axes of the slice.


Note. The size of the drawn slice plane depends upon the elements that are sliced. By default, slice planes and local slice axes are drawn in red, but these and other visualisation settings relating to slice axes, slice planes and slice labels can be specified from the Utilities layer properties dialog, which is accessed from the Utilities treeview.


Note. The visibility of the slices is controlled by selecting the Visible or Invisible context menu item for the Deck utility.

Note. If the option to calculate the forces and moments about the neutral axis has been selected this local coordinate set will be defined at the neutral axis location. If however the option to calculate the forces and moments about the slice path has been selected, the local coordinate set will be defined at the intersection between the slice path and the slice plane. The local coordinates of the slice planes is taken from the line axes defining the slice path.

## Printing results

Utilities Print Result Wizard

For the active load combination:
The beam shell slice resultants can be tabulated in the Print Result Wizard facility.

- In the Print Results Wizard dialog select the entity Beam/Shell Slice Resultants
- Check (tick) the Threshold value checkbox and specify a value of $\mathbf{1 e - 3}$ to ensure that any values, which are effectively zero, are tabulated as zero.

- Ensure all other settings are as shown and click OK to display the tabular results.

| 国 Beam/Shell Slice Resultants in Element Local Axes (Elements showing results) |  |  |  |  |  |  | 回 $x$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  | Beam/Shell Slicing a | Fx[ ${ }^{\text {] }}$ ] | Fy[N] | $\mathrm{Fz}[\mathrm{N}]$ | Mx[ $\mathrm{N} . \mathrm{m}$ ] | My[N.m] | Mz[ $\mathrm{N} . \mathrm{m}$ ] |
| 1 | Deck Slice 1 | 0.0 | 0.0 | -1.78959E6 | 0.0 | -389.893E3 | 0.0 |
| 2 | Deck Slice 2 | 0.0 | 0.0 | -1.54248E6 | 0.0 | -1.82672E6 | 0.0 |
| 3 | Deck Slice 3 | 0.0 | 0.0 | -1.29537E6 | 0.0 | -3.26355E6 | 0.0 |
| 4 | Deck Slice 4 | 0.0 | 0.0 | -1.04826E6 | 0.0 | -4.70038E6 | 0.0 |
| 5 | Deck Slice 5 | 0.0 | 0.0 | -518.628E3 | 0.0 | -5.83074E6 | 0.0 |
| 6 | Deck Slice 6 | 0.0 | 0.0 | -316.449E3 | 0.0 | -6.03675E6 | 0.0 |
| 7 | Deck Slice 7 | 0.0 | 0.0 | -114.269E3 | 0.0 | -6.24277E6 | 0.0 |
| 8 | Deck Slice 8 | 0.0 | 0.0 | 87.9102 E 3 | 0.0 | -6.44878E6 | 0.0 |
| 9 | Deck Slice 9 | 0.0 | 0.0 | -87.9102E3 | 0.0 | -6.44185E6 | 0.0 |
| 10 | Deck Slice 10 | 0.0 | 0.0 | 114.269E3 | 0.0 | -6.24085E6 | 0.0 |
| 11 | Deck Slice 11 | 0.0 | 0.0 | 316.449 E 3 | 0.0 | -6.03985E6 | 0.0 |
| 12 | Deck Slice 12 | 0.0 | 0.0 | 518.628 E 3 | 0.0 | -5.83885E6 | 0.0 |
| 13 | Deck Slice 13 | 0.0 | 0.0 | 1.04826 E 6 | 0.0 | $-4.69432 \mathrm{E} 6$ | 0.0 |
| 14 | Deck Slice 14 | 0.0 | 0.0 | 1.29537 E 6 | 0.0 | -3.26285E6 | 0.0 |
| 15 | Deck Slice 15 | 0.0 | 0.0 | 1.54248E6 | 0.0 | -1.83139E6 | 0.0 |
| 16 | Deck Slice 16 | 0.0 | 0.0 | 1.78959E6 | 0.0 | -399.92E3 | 0.0 |
| (14) ( 1 M Model info $\lambda$ 3:Combination $/$ 3:Combination(Summary) |  |  |  |  |  |  |  |

All beam/shell slice components are displayed in the Print Results Wizard Table. The axes defining the forces and moments are those displayed by the local coordinate system of each slice.

## Computing Forces and Bending Moments for Girder Effective Width

- In the Utilities 5 treeview, double click the Beam/Shell Slicing utility named Deck.

The slicing dialog will be displayed.

- Select the Absolute distances from start of path option.

Note. List separators vary according to a PC's regional locale settings. For example, English (UK) and English (US) settings use a comma as a list separator. French, Swedish and other language settings use a semi-colon.

Please enter whatever is appropriate to your region. In this example an English (UK) comma separator is shown.

- Enter 0,2.5,5,7.5,10,12.5,15 (using an appropriate list separator for your PC's regional settings) into the

associated box. This will cut slices at the start of the line ( 0 m ) and every 2.5 m up to and including 15 m .
- Set the Distance from reference origin to start of path (chainage) to $\mathbf{1 0 0}$. The start of the slicing path will therefore have a distance/chainage of 100 m and the end of the slicing path will have a distance/chainage of 115 m .
- Select the Slice width option and enter $\mathbf{2 . 0}$ in the associated box. This will set the slice width to be 2.0 m centred on the slicing path (i.e. 1.0 m either side)
- Click the OK to save the changes.

The contours and slice definitions will be updated as shown:


Note. The reference to $(-X)$ for the minimum value is due to the fact that at that location two slice planes are present (because the slice plane occurs at a node) and this indicates that the value stated is from the plane to the left of the node.

This completes the example.

## Notes

Curved structures can also be sliced using this facility.
$\square$ If skewing of a slice plane along a beam is required, create a line at an appropriate skew angle from a point at one end of the beam and of sufficient length to extend beyond the extent of the model. This line can then be selected as a path line from which orthogonal slice sections will be generated according to the extent stated.

