
Slope stability modelling using Phi-C reduction

For LUSAS version:	19.0	
For software product(s):	Any Plus version	
With product option(s):	Nonlinear	

Description

This worked example considers the stability of a slope subject to gravity loading and a load applied to its top surface. The problem is modelled and analysed in 2D.

The modelling units used are kN, m, t, s, C throughout.

Objectives

The required output from the analysis consists of:

- □ Safety factors for each loadcase considered.
- Displacement results plots for each loadcase considered.

Keywords

2D, Inplane, Soil, Geotechnical, Phi-C reduction, (Geostatic) step, Nonlinear, Analysis branch, Safety factors, Displacements.

Associated Files

□ **slope_stability_modelling_2d.vbs** carries out the modelling of the 2D example.

Phi-C Reduction analysis and analysis branches

Phi-c reduction analysis is used to assess soil stability and safety factors for soil that is represented by Mohr-Coulomb or Hoek-Brown material models.

Once it is defined, a 'Phi-c reduction' attribute can be assigned to relevant features in a model for a specified analysis allowing the safety of a slope to be evaluated. Assignment is made to a particular loadcase or analysis stage that defines the applicable loading, boundary conditions and activation status.

By its very nature a Phi-c reduction analysis will always lead to failure, so it is best used in an analysis 'branch' where it can be used to study safety factors independent of the main solution. Analysis branches allow the running of one or more sub-analyses during the solution of a main analysis to investigate the state of the model at a particular loadcase.

Modelling

Running LUSAS Modeller

For details of how to run LUSAS Modeller, see the heading *Running LUSAS Modeller* in the *Introduction to LUSAS Worked Examples* document.

Note. This example is written assuming a new LUSAS Modeller session has been started. If continuing from an existing Modeller session select the menu command **File>New** to start a new model file. Modeller will prompt for any unsaved data and display the New Model dialog.

Creating a 2D model

- Enter a File name of Slope stability modelling in 2D
- Use the default User-defined working folder.

- Ensure an Analysis type of **Structural** is set.
- Select an Analysis Category of 2D Inplane
- Set Model units of kN,m,t,s,C
- Leave the Timescale units as Days
- Select a Startup template of None.
- Ensure the Layout grid is set as None
- Enter a Title of Slope stability modelling in 2D
- Click the **OK** button.

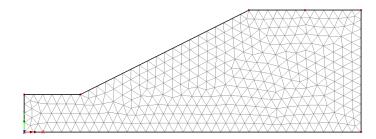
Note. Save the model regularly as the example progresses. Use the Undo button to correct any mistakes made since the last save was done.

Defining the Geometry

The soil is modelled as a single surface in the XY plane.

Ge	eometry	
-	Surface	>
	By Coords	

Enter the coordinates shown in the table to define the 2D cross-section of the slope.


Х	Y
0.0	0.0
0	2
3	2
12	6.5
15	6.5
18	6.5
18	0

Defining and Assigning Mesh Attributes

	٠
>	
	>

- Select **Plane strain, Triangle** elements with **Quadratic** interpolation order (TPN6 elements).
- Select Irregular mesh, and specify an Element size of 0.5
- Enter the attribute name as **TPN6 0.5m** and click **OK**
- Select the Surface representing the soil, and from the TPN6 0.5m mesh onto the model.

Geometric attributes

No geometric attributes are required.

Material Properties

A plastic material using Modified Mohr-Coulomb with "no cut-off" is required

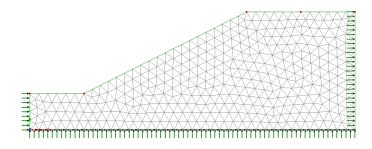
• With the **Elastic** tab selected enter a Young's modulus **2600**, Poisson's ratio **0.3** and Mass density of **1.63** (Note that this is entered in t/m³)

otropic					
V Plastic Creep	🕅 Damage	🔲 Shrinkage	Viscous	Two phase	🔲 Ko Initialisatio
Dynamic properties				Val	ue
Dynamic properties		Young's modulus		2600)
Dynamic properties		Young's modulus Poisson's ratio		2600	

- Select the **Plastic** tab, and ensure that the Modified Mohr Coulomb Type is set to **No cut-off.**
- Enter a Friction angle of **20**, a Dilation angle of **20** and a Cohesion value of **5**.

Attributes Material > Geotechnical > Modified Mohr-Coulomb

otropic						—
V Plastic	Creep 🛛	Damage	🗐 Shrinkage	Viscous	🕅 Two phase	C Ko Initialisation
Modified Mohr-Cou	ulomb No cut-off	•	Friction angle Dilation angle Cohesion		Value 20 20 5	
Hardening Cohesion			nsion		Compression	
Effective plastic stra			Effective lastic strain	Stress	Plastic strain	Stress


- Enter a material name of MMC no cut-off and click OK.
- With the whole model selected, drag and drop the material attribute **MMC no-cut-off** onto the selected features, assigning it to **Surfaces** in **Analysis 1**.

Supports

Two support conditions are required; one for the lines at the sides of the model, and one for the line at the bottom of the model.

• Leaving all other degrees of freedom **Free**, set the Translation in X to be **Fixed**. Enter a support name of **Fixed in X** then press **Apply** to define another support.

- Set the Translation in Y to be **Fixed**, change the name to be **Fixed in XY**, and click **OK**.
- Select the lines on the left and right-hand side of the model and drag and drop the support **Fixed in X** onto the selection, assigning it to **Lines** for **Analysis 1**.
- Select the line at the bottom of the model and drag and drop the support **Fixed in XY** onto the selection, assigning it to **Lines** for **Analysis 1**.

Defining a Phi-c Reduction attribute

A Phi-c reduction attribute will be created in readiness for assignment to the model for a particular loadcase in an analysis branch.

Attributes Support... Attributes Phi-c Reduction...

- Enter a starting value for safety factor of **1.1**
- Specify the Minimum change in safety factor to be **0.01**
- Set the Maximum number of steps to use to be 25.
- Enter a name of **Phi-c1** and click **OK**

hi-c Reduction	×
	Value
Starting value for safety factor	1.1
Minimum change in safety factor	0.01
Maximum number of steps to use	25
1	
Name Phi-c1	
OK	Cancel Apply Help

Structural Loading

Gravity loading is required to be assigned to the whole model and a global distributed load is to be defined and assigned to a line on the top surface.

Gravity

The effects of the self-weight of the soil can be applied as a property of an analysis or a loadcase. In this example, gravity will be assigned to individual loadcases where stated.

Defining surface loading (to crest)

• On the structural loading dialog select **Global distributed** and click **Next.** Select **Per unit length** and enter a loading value of **-30** in the **Y direction**.

• Enter a loading name of **Surface loading** and click **Finish**.

Surface loading will be assigned to loadcases in yet to be defined analysis branches.

Modelling methodology

A three stage modelling approach will be taken involving:

- 1. Setting up the initial conditions for a parent loadcase for two analysis branches
- 2. Adding an Analysis branch (and loadcase) to investigate the factor of safety from gravity loading only.
- **3.** Adding another Analysis branch (and loadcase) to investigate the factor of safety from gravity loading and a top crest load.

Attributes Loading...

Step1: Setting up a parent loadcase

Supports are already assigned to the parent loadcase, Loadcase 1. Material has already been assigned to the Analysis. Gravity loading and a nonlinear control are also required.

Assigning gravity

• In the Treeview right-click on Loadcase 1 and select Gravity

Adding a nonlinear control

Phi-c reduction analysis requires a nonlinear control to be set on the parent loadcase.

• In the Creeview right-click on Loadcase 1 and from the from the Controls menu item select the Nonlinear & Transient option.

Incrementation		Solution strategy	
Nonlinear		Same as previous loadcase	
Incrementation	Manual 🔻	Max number of iterations	12
Starting load factor	0.1	Residual force norm	0.1
Max change in load factor	0.0	Incremental displacement norm	1.0
Max total load factor	1.0		Advanced
✓ Adjust load based on co	nvergence	Incremental LUSAS file output	
Iterations per increment	4	Same as previous loadcase	
Displacement reset		Output file	1
	Advanced	Plot file	1
Time domain		Restart file	0
	Consolidation 💌	Max number of saved restarts	0
Initial time step	0.0	Max number of saved restarts	U
Total response time	100.0E6	Log file	1
Automatic time stepping		History file	1
	Advanced	Save a restart at the end of this	control
Common to all			
Max time steps or	increments 0		

- In the Nonlinear & Transient dialog select the **Nonlinear** option in the top-left hand corner and set the Incrementation type to be **Manual**.
- Ensure that **Displacement reset** is selected. Once solved, the calculated stresses in the soil will be applied to the initial undeformed model. No other settings are required for this example.
- Click OK.

Note. Most geotechnical problems begin from a geostatic state. This represents the initial stress distribution where the undisturbed soil or rock body remains in equilibrium with the prescribed boundary conditions and geostatic loads, including self-weight, or overburden, producing zero deformations. This stress state is then used as the initial stress field in a subsequent static or coupled pore fluid diffusion/stress analysis.

A **Nonlinear and Transient entry will be added to the Treeview. Double-clicking** on this entry will allow any future changes to be made to the control properties.

Analysis branches

Analysis branches allow the running of one or more sub-analyses during the solution of a main analysis to investigate the state of the model at a particular loadcase. Analysis branches can be added to the \bigcirc Treeview for any loadcase in that treeview that has (or inherits) a nonlinear or transient control.

For this example, two analysis branches are required – one to assess safety factors for gravity only loading, and one to assess factors for gravity and surface loading.

Step 2: Adding an analysis branch for the 'gravity only' assessment

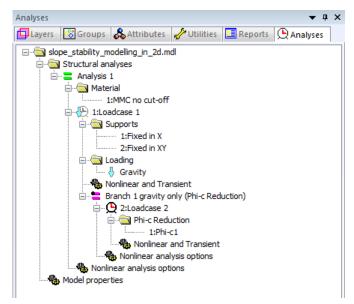
- In the \bigcirc Treeview right-click on the Loadcase 1 and from the New menu item select the Branch option.
- Set the Branch type to **Phi-c Reduction**, enter an analysis name of **Branch 1** gravity only and click OK.

Assign the Phi-C reduction attribute

Note. A Phi-c reduction analysis always leads to failure, so it can be termed an analysis "dead-end". As a result a Phi-c reduction attribute should generally be assigned to an analysis branch (and not to a main analysis entry) so that if a model contains multiple analyses the Phi-c reduction analysis will not prevent those other analyses from being solved.

• Select the whole model (press the **Ctrl** + **A** keys together), and from the A Treeview drag and drop the Phi-c reduction attribute **Phi-c1** onto the selected features, assigning it to **Surfaces** for analysis **Branch 1 gravity only** and **Loadcase 2**, and click **OK**.

Assigning gravity


In the Treeview right-click on Loadcase 2 and select Gravity

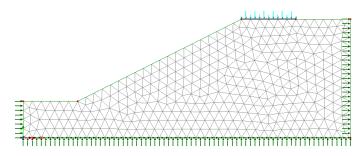
Adding a Nonlinear Control

Phi-c reduction analysis requires a nonlinear control to be set on the loadcase to which it has been assigned.

- In the 🕒 Treeview right-click on Loadcase 2 and select the Nonlinear & Transient option from the Controls menu.
- In the Nonlinear & Transient dialog select the **Nonlinear** option in the top-left hand corner and set the Incrementation type to be **Manual**. No other settings are required for this example. Click **OK**.

The Analysese Treeview should look like this:

Step 3: Adding an analysis branch for the 'gravity and top load' assessment


- In the C Treeview right-click on the Loadcase 1 and from the New menu item select the Branch option.
- Set the Branch type to **Phi-c Reduction**, enter an analysis name of **Branch 2** gravity and surface load and click OK. An analysis entry will be added to the Treeview along with Loadcase 3.

Note. Analysis branch names are sorted alphabetically. Each analysis branch is an independent sub-analysis, and not reliant on results from other branches. If more than one analysis branch is defined for a parent loadcase, all occur simultaneously, not sequentially.

Assigning surface loading

• Select the left-most line on the crest of the model and from the State Treeview drag and drop the loading attribute **Surface loading** onto the selected line, assigning it to **Lines** for analysis **Branch 2 gravity and surface load** and **Loadcase 3**, and click **OK**.

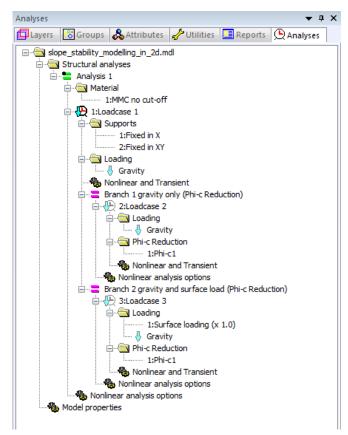
Assign the Phi-C reduction attribute

• Select the whole model (press the Ctrl + A keys together), and from the A Treeview drag and drop the Phi-c reduction attribute Phi-c1 onto the selected features, assigning it to Surfaces for analysis Branch 2 gravity and surface load and Loadcase 3, and click OK.

Assigning gravity

• In the 🕒 Treeview right-click on Loadcase 3 and select Gravity

Adding a Nonlinear Control

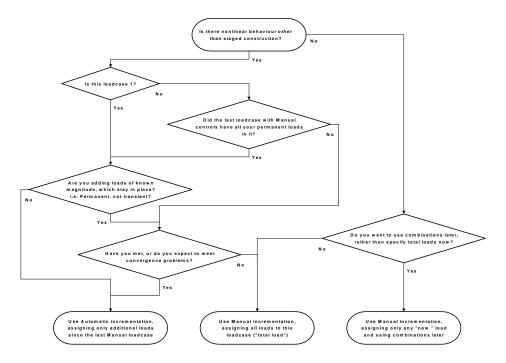

As stated previously, Phi-c reduction analysis requires a nonlinear control to be set on the loadcase to which it has been applied.

• In the 🕒 Treeview right-click on Loadcase 3 and select the Nonlinear & Transient option from the Controls menu.

• In the Nonlinear & Transient dialog select the **Nonlinear** option in the top-left hand corner and set the Incrementation type to be **Manual**. No other settings are required for this example. Click **OK**.

A **b** Nonlinear and Transient entry will be added to the 🕒 Treeview.

The Treeview should look like this:



Nonlinear controls – Use Manual or Automatic?

Essentially:

- □ Defining 'Manual' incrementation requires the <u>total</u> loading within the loadcase for which the nonlinear control has been specified, to be defined.
- □ Defining 'Automatic' incrementation requires <u>only the extra</u> loading within the loadcase to be defined, because other loading that was specified in a previous loadcase with Manual incrementation will be inherited.

The following flow chart can be used to decide if Manual or Automatic incrementation controls need to be defined for a nonlinear loadcase. Use total loads in each nonlinear step.

Flow chart to determine whether to use Manual or Automatic nonlinear loadcase control.

Running the Analysis

Den the Solve Now dialog, ensure **Analysis 1** is selected and press **OK** to solve.

Solve Now	×
Any valid existing results files will be loaded, even	if not re-solved above
Save options Save model 	Solver options
Save model with a different name	 Frontal Solver (slower with more error diagnostics)
O not save (The model file is up to date)	First loadcase only
	OK Cancel Help

A LUSAS Datafile will be created from the model information. The LUSAS Solver uses this datafile to perform the analysis.

If the analysis is successful...

Analysis loadcase results are added to the 🕒 Treeview.

In addition, solution files will be created in the Associated Model Data\Earth dam folder.

- □ **slope_stability_modelling_2d.dat** this data file contains details of model data and assigned attributes.
- □ **slope_stability_modelling_2d.out** this output file contains details of model data, assigned attributes and selected statistics of the analysis.
- □ **slope_stability_modelling_2d.mys** this is the LUSAS results file from the analysis which is loaded automatically into the ♀ Treeview to allow results to be viewed.

If the analysis fails...

If the analysis fails, information relating to the nature of the error encountered is written to the output files in addition to the text output window. Any errors listed in the text output window should be corrected in LUSAS Modeller before saving the model and re-running the analysis.

Rebuilding the Model

If errors are listed that for some reason cannot be corrected, a file is provided to recreate the model information correctly, allowing a subsequent analysis to be run successfully.

□ **slope_stability_modelling_2d.vbs** carries out the modelling of the example.

File New...

Start a new model file. If an existing model is open, Modeller will prompt for unsaved data to be saved before opening the new file.

- Enter the file name as **slope_stability_modelling_2d**
- File Script : Run Script...
- To recreate the model, select the file **slope_stability_modelling_2d.vbs** located in the **\<LUSAS Installation Folder>\Examples\Modeller** directory.

Run the analysis to generate the results.

Viewing the Results

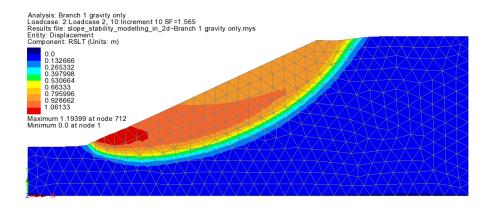
Following a successful solve, analysis loadcase results for each nonlinear analysis increment are present in the treeview.

Viewing safety factors

From an initial inspection of the increments in the 🕒 Treeview it can be seen that from using the default nonlinear control settings:

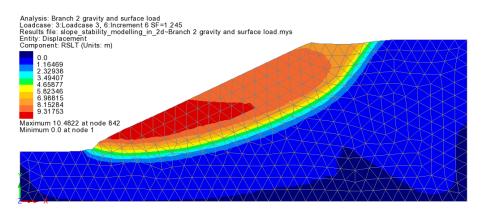
□ The safety factor for the gravity-only assessment is **1.565**

□ The safety factor for the gravity and surface loading assessment is 1.245


Viewing results

• In the P Treeview turn-off the display of the **Mesh** and **Geometry** and **Attributes** layers.

Gravity loading only


• In the C Treeview, set active Loadcase 2 (found inside Analysis branch 1). The last load increment for this loadcase will be set active.

- Right-click in a blank region of the view window and add the **Contours**. Then, on the contour properties dialog, select entity **Displacement** and component **RSLT** and click **OK**.
- In the Treeview drag and drop the **Deformed mesh** layer to follow the Contours layer.

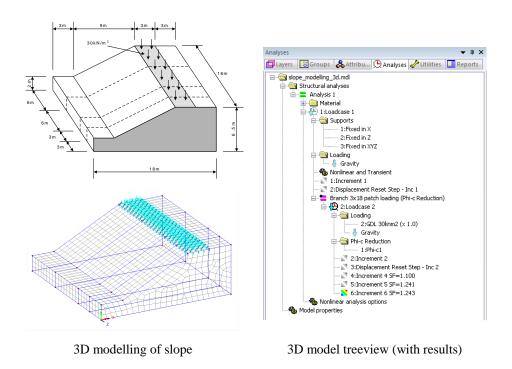
Gravity and surface loading

• In the 🕀 Treeview, set active Loadcase 3 (inside Analysis branch 2). The last load increment for this loadcase will be set active.

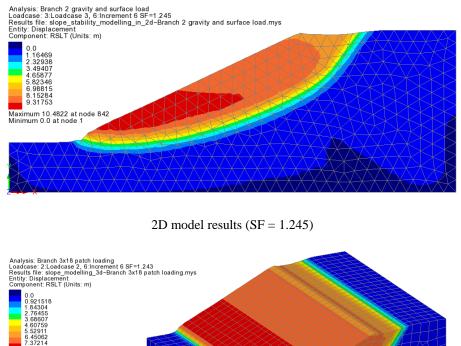
Displacement results for other load increments can be investigated by setting each increment active in turn.

Note. When viewing results the default deformed mesh factor of 6mm at screen size can generally be used, but if viewing a displacement reset loadcase it should be set to 1

to avoid a misleading mesh pattern that is caused by infinitesmal displacements being magnified by the default mesh factor.


This completes the example.

Discussion


Slope stability modelling using Phi-c reduction can be carried out in 3D in a similar manner to that done in 2D provided an analysis category of 3D is set either when creating a new model initially, or when converting a 2D model into a 3D model.

If the latter is done note that all assignments made for the 2D model that are no longer valid will be marked with an invalid data \bigcirc symbol, and these will need to be unassigned as necessary and replaced with assignments that are suitable for the 3D model.

A 3D model that was generated from the 2D worked example model for comparison purposes is shown below. Its associated Analyses 🕒 treeview is shown for reference.

Once solved, it can be seen that for an equivalent loading arrangement (assigning a surface load over the full width of the surfaces at the top of the slope in the 3D model, as opposed to assigning a line load on one line of the model in the 2D model) virtually the same results and Phi-C safety factor is obtained.

Maximum 8.29366 at node 308 Minimum 0.0 at node 1

3D model results (SF = 1.243)

z

In summary, for some soil modelling situations 2D modelling may be used in place of 3D modelling and will give similar results appreciably faster than carrying out an equivalent 3D analysis.