

Element Reference Manual

Version 19.1 Issue 1

LUSAS

Forge House, 66 High Street, Kingston upon Thames, Surrey, KT1 1HN, United Kingdom

> Tel: +44 (0)20 8541 1999 Fax +44 (0)20 8549 9399 Email: info@lusas.com http://www.lusas.com

Distributors Worldwide

Copyright ©1982-2021 LUSAS All Rights Reserved.

Table of Contents

Notation	
Introduction.	7
Overview	7
Element selection	7
Element uses	7
Element Groups	11
Element Sub-Groups	
Element Types and Availability	12
Element Index	
Element Summary Tables	43
Chapter 1 : Bar Elements.	
2D Structural Bar Elements	68
3D Structural Bar Elements	73
Chapter 2 : Beam Elements.	79
2D Engineering Grillage Thick Beam Element	80
2D Thick Beam Elements	85
2D Thick Beam Element with Quadrilateral Cross-Section	94
3D Thick Beam Elements	.102
3D Thick Beam Elements with Quadrilateral Cross-Section	.112
3D Thick Beam Elements with Torsional Warping	122
3D Thick Beam Elements with Quadrilateral Cross-Section and Torsional Warping	.132
2D Kirchhoff Thin Beam Elements	142
2D Kirchhoff Thin Beam Element with Quadrilateral Cross-Section	149
3D Kirchhoff Thin Beam Elements	157
3D Kirchhoff Thin Beam Element with Quadrilateral Cross-Section	164
3D Semiloof Thin Beam Elements	
3D Semiloof Thin Beam Element with Quadrilateral Cross-Section	
2D Plane Strain Beam Elements	
Chapter 3 : 2D Continuum Elements.	
2D Plane Stress Continuum Elements	
2D Plane Stress Continuum Element with Enhanced Strains	
2D Plane Stress Continuum Crack Tip Elements	
2D Plane Stress Explicit Dynamics Elements	216
2D Plane Strain Continuum Elements	221
2D Plane Strain Continuum Element with Enhanced Strains	
2D Plane Strain Continuum Element for Large Strains	
2D Plane Strain Continuum Crack Tip Elements	
2D Plane Strain Explicit Dynamics Elements	
2D Plane Strain Two Phase Continuum Elements	251
2D Axisymmetric Solid Continuum Elements	257
2D Axisymmetric Solid Continuum Element with Enhanced Strains	264
2D Axisymmetric Solid Continuum Element for Large Strains	
2D Axisymmetric Solid Continuum Crack Tip Elements	275
2D Axisymmetric Solid Explicit Dynamics Elements	281
2D Axisymmetric Solid Two Phase Continuum Elements	287
2D Axisymmetric Fourier Ring Elements	207
Chapter 4 : 3D Continuum Elements.	200
3D Solid Continuum Elements	
3D Solid Continuum Element with Enhanced Strains	307
3D Solid Continuum Crack Tip Elements	
3D Solid Continuum Composite Elements (Tetrahedral)	221
3D Solid Continuum Composite Elements (Pentahedral and Hexahedral)	320
3D Solid Continuum Explicit Dynamics Elements	320 32F
3D 30Hd CORRINGHE EXPRICIT DYNAMICS EIGHERTS	ააა

3D Solid Two Phase Continuum Elements	341
Chapter 5 : Plate Elements	
2D Isoflex Thin Plate Flexure Elements	
2D Isoflex Thick Plate Flexure Element	
2D Mindlin Thick Plate Flexure Element	
Chapter 6: Shell Elements	
2D Axisymmetric Thin Shell Element	
2D Axisymmetric Thick Shell Elements	
3D Flat Thin Shell Elements	3/8
Semiloof Curved Thin Shell Elements	
3D Thick Shell Elements	
Chapter 7 : Membrane Elements	
2D Axisymmetric Membrane Elements	
3D Space Membrane Elements	
Chapter 8 : Joint Elements.	417
2D Joint Element for Bars, Plane Stress and Plane Strain	
2D Joint Element for Engineering and Kirchhoff Beams	
2D Joint Element for Grillage Beams and Plates	
2D Joint Element for Axisymmetric Solids	
2D Joint Element for Axisymmetric Shells	442
3D Joints for Bars, Solids and Space Membranes	447
3D Joints for Semiloof Shells	
3D Joint Elements for Engineering, Kirchhoff and Semiloof Beams	457
3D Joint Element for Semiloof Beams	462
Chapter 9 : Thermal / Field Elements.	
2D Bar Field Elements	
2D Axisymmetric Membrane Field Elements	
3D Bar Field Elements	476
2D Link Field Element	480
3D Link Field Element	
2D Axisymmetric Link Field Element	
2D Axisymmetric Field Elements	489
2D Plane Field Elements	
3D Solid Field Elements	
3D Solid Composite Field Element (Tetrahedral)	504
3D Solid Composite Field Elements (Pentahedral and Hexahedral)	
Chapter 10 : Hygro-Thermal Elements.	
2D Plane Hygro-Thermal Elements	516
2D Axisymmetric Solid Hygro-Thermal Elements	
3D Solid Hygro-Thermal Elements	
Chapter 11 : Interface Elements	
2D Interface Element	530
2D Two Phase Interface Element	
3D Interface Element	
3D Two Phase Interface Element	
Chapter 12 : Non-Structural Elements	
3D Point Mass Element	
3D Line Mass Elements	
2D Line Mass Elements	
Surface Mass Elements	
Chapter 13 : Rigid Slideline Elements	
Rigid Slideline Surface 2D Elements	
Rigid Slideline Surface 3D Elements	567
Chapter 14 : Phreatic Elements	
	572

Phreatic Surface 3D Elements	574
Appendix A: Element and Pressure Loads	577
ELDS Element Loads	
ENVT/TDET Environmental Boundary Conditions	
FLD Face loading applied to thermal bars	581
Face Loads On 2D Continuum Elements	581
Face Loads On 3D Continuum Elements	582
UDL Loads on Shells	585
Appendix B: Element Restrictions.	587
Mid-side Node Centrality	
Excessive Element Curvature	587
Excessive Aspect Ratios	
Excessive Warping	
Appendix C : Local Element Axes	589
Standard Joint Element	
Standard Line Element	
Standard Surface Element	
Appendix D : Sign Conventions.	
Standard Bar Element	
Standard Beam Element	
Grillage Elements	
2D Engineering Beam Elements	
3D Engineering Beam Elements	
Standard Beam Eccentricities	596
Standard 2D Continuum Element	
Standard 3D Continuum Element	597
Standard Plate Element	
Thin Shell Element	
Thin Shell Eccentricity	500
Thick Shell Element	
Thick Shell Eccentricity	
Standard Membrane Element	
Standard Membrane Clement	
Standard Fleid Element	
Appendix E : Thick Shell Notation	
Thick Shell Nodal Rotation	
Appendix F : Newton Coates Integration.	
Newton-Cotes Integration Points	009
Appendix G : Shear Area and Torsional Constant.	009
Shear AreasShear Area and Torsional Constant.	
Torsional Constant	
Output Notation for Principal Stresses	013
Appendix I : Mass Lumping.	
Mass Lumping in LUSAS	
Appendix J : Moments of Inertia	
Moments of Inertia Definitions	
Appendix K : Results Tables.	
Key to Element Results Tables	
Key to Slideline Results Components	
Transforming Results Directions	
2D Structural Bars BAR2, BAR3	
3D Structural Bars BRS2, BRS3	
2D Engineering Grillage Thick Beam GRIL	
2D Thick Beam Elements BMI2, BMI3, BMI2X, BMI3X	
3D Thick Beam Elements BMI21, BMI22, BMI31, BMI33, BMX21, BMX22, BMX31, BMX	(33 635
	0.17

3D Thick Beam Elements with Torsional Warping BMI21W, BMI22W, BMI31W,	BMI33W,
BMX21W, BMX22W, BMX31W, BMX33W	636
2D Kirchhoff Thin Beams BM3, BMX3	637
3D Kirchhoff Thin Beams BS3, BS4, BSX4	
3D Semiloof Thin Beams BSL3, BSL4, BXL4	
Plane Strain Beam Elements BMI2N, BMI3N	640
2D Continuum (Plane Stress) TPM3/6, QPM4/8, QPM4M, TPK6, QPK8	
2D Continuum Plane Stress (Explicit Dynamics) TPM3E, QPM4E	
2D Continuum (Plane Strain) TPN3/6, QPN4/8, TNK6, QNK8, QPN4M	643
2D Continuum (Plane Strain) QPN4L	644
2D Plane Strain Two Phase Continuum TPN6P, QPN8P	645
2D Continuum Plane Strain (Explicit Dynamics) TPN3E, QPN4E	646
2D Continuum Axisymmetric Solid (Explicit Dynamics) TAX3E, QAX4E	647
2D Axisymmetric Solid Two Phase Continuum TAX6P, QAX8P	648
2D Continuum Axisymmetric Solid Fourier TAX3/6F, QAX4/8F	
Axisymmetric Solid TAX3/6, QAX4/8, QAX4M, TXK6, QXK8	
Axisymmetric Solid Large Strain QAX4L	651
3D Solid Continuum TH4/10, TH10S, PN6/12/15, PN6L/12L, HX8/16/20, HX8M, H	X8L/16L,
TH10K, PN15K, HX20K	652
3D Solid Continuum Two Phase TH10P, PN12P, PN15P, HX16P, HX20P	653
3D Solid Continuum Explicit Dynamics TH4E, PN6E, HX8E	654
Isoflex Thin Plates TF3, QF4	655
Isoflex Thick Plates QSC4	656
Mindlin Thick Plates TTF6, QTF8	
2D Axisymmetric Membranes BXM2, BXM3	
3D Space Membranes TSM3, SMI4	659
2D Thin Axisymmetric Shells BXS3	660
2D Thick Axisymmetric Shells BXSI2, BXSI3	
3D Flat Thin Shells TS3, QSI4	
3D Flat Thin Nonlinear Shell TSR6	663
Semiloof Shells TSL6, QSL8	
3D Thick Shells TTS3, TTS6, QTS4, QTS8	665
2D Joints (for Bars, Plane Stress and Plane Strain) JNT3	666
2D Joints (for Engineering and Kirchhoff Beams) JPH3	667
2D Joints (for Grillage Beams and Plates) JF3	
2D Joints (for Axisymmetric Solids) JAX3	
2D Joints (for Axisymmetric Shells) JXS3	670
3D Joints (for general 3 dof connection) JNT4, JL43	
3D Joints (for general 6 dof connection) JSH4, JL46	672
3D Joints (for Semiloof Element Mid-side Nodes) JSL4	673
Thermal Bars BFD2/3, BFS2/3, BFX2/3	674
Thermal Links LFD2, LFS2, LFX2	
Plane and Axisymmetric Field TFD3/6, QFD4/8, TXF3/6, QXF4/8	
Solid Field TF4/10, PF6/12/15, HF8/16/20, TF10S, PF6C/12C, HF8C/16C	674
Plane and Axisymmetric Hygro-Thermal THT3/6, QHT4/8, TXHT3/6, QXHT4/8	675
Solid Hygro-Thermal THT4/10, PHT6/12/16, HHT8/16/20	
2D Interface Element IPN4, IPN6, IAX4, IAX6	677
2D Two Phase Interface Elements IPN6P, IPN8P	678
3D Interface Element IS6 IS8 IS12 IS16	679
3D Two Phase Interface Element IS12P, IS16P	
Appendix L : Joint Element Compatibility	681
Joint Element Compatibility and Notes	
Index	685

Notation

- A Cross sectional area
- Ap Plastic area
- As, Asy, Asz Effective shear area
 - $A_1 \dots A_n$ Nodal cross sectional areas
 - ar Mass Rayleigh damping constant
 - α Coefficient of thermal expansion
 - αs Softening parameter
- αx , αy , αz , αxy , αxz , Orthotropic thermal expansion coefficients αyz
 - αx , αy , αz Angular accelerations
 - br Stiffness Rayleigh damping parameter
 - β Shear retention factor/parameter
 - β Principal stresses direction
 - C Specific heat capacity
 - Ci (i)th hardening stiffness
 - C₀ Neo-Hookean rubber model constant
 - C_1 , C_2 Mooney-Rivlin rubber model constants
 - c Cohesion
 - co Initial cohesion
 - Dij Rigidity coefficients
 - du, dq Relative displacement, rotation
 - E Modulus of elasticity (Young's modulus)

- Ep Elasto-plastic modulus
- Ex, Ey, Ez Orthotropic moduli of elasticity
 - ep Strain at peak compressive strength
 - ey, ez Eccentricity
 - εx , εy , εz Direct strains (local or global)
 - **ES** Maximum shear strain
 - εe Von Mises equivalent strain
 - εc Creep strains
 - ε**p** Equivalent plastic strain
- Fx, Fy, Fz Forces (local or global)
 - Fyld Yield force
 - F Deformation gradient
 - fc' Compressive strength of concrete
 - ft' Tensile strength of concrete
- ψx , ψy , ψz Flexural (bending) strain resultants
- wxv, wxz, wvz Torsional strain resultants
 - G Shear modulus
 - **Gf** Fracture energy
- Gxy, Gxz, Gyz Orthotropic shear moduli
 - γx , γy , γz Membrane strain resultants
 - γx , γy , γz Field gradients (local or global)
 - **H** Enthalpy
 - **Hi**1 Isotropic hardening parameter
 - Hk1 Kinematic hardening parameter
 - **hc** Convective heat transfer coefficient
 - hf Heat fraction
 - **hr** Radiative heat transfer coefficient

- θx , θy , θz Rotations (local or global)
 - θ_1, θ_2 Loof node rotations (local)
 - $\theta\alpha$, $\theta\beta$ Nodal rotations for thick shells
 - $\theta\lambda$ Angle defining principal directions of λ_1 , λ_2
 - Iy, Iz 1st moments of inertia
 - **Iyy, Izz** 2nd moments of inertia
 - Iyz Product moment of inertia
 - J Volume ratio (determinant of F)
 - K Spring stiffness
 - Kc Contact stiffness
 - Kl Lift-off stiffness
 - Ko Original gap conductance
 - Kt Torsional constant
 - k Thermal conductivity
- kx, ky, kz Orthotropic thermal conductivities
 - kr Bulk modulus
 - K Hardening stiffness
 - Li Limit of (i)th hardening stiffness
- $\lambda_1, \lambda_2, \lambda_3$ Principal stretches
 - M Mass
- Mx, My, Mz Concentrated moments (local or global)
- Mx, My, Mz, Mo Flexural moments (local or global)
- Mxy, Mxz, Myz Torsional moments (local or global)
 - M_1 , M_2 Concentrated loof moments (local or global)
 - \mathbf{m}_{x} , \mathbf{m}_{y} , \mathbf{m}_{z} Mass in element local directions
 - μ Coulomb friction coefficient
 - μ**ri**, α**ri** Ogden rubber model constants

- Nx, Ny, Nz, N₀ Membrane resultants (local or global)
 - Nx, Ny, Nxy Stress resultants
 - Nmax, Nmin Principal stress resultants
 - Ns Maximum shear stress resultant
 - Ne Von Mises equivalent stress resultant
 - D Poisson's ratio
 - UXY, UXZ, UYZ Orthotropic Poisson's ratio
 - Px, Py, Pz Concentrated loads (global)
 - o Mass density
 - **Q** Field loading
 - qa Field face loading flux/unit area
 - qv Field volume loading flux/unit volume
 - qx, qy, qz Field fluxes (local or global)
 - Q_H Rate of internal heat generation per unit volume Rate of internal mass (liquid+vapour) generation per unit volume Heat flux
 - **Q**_w Rate of internal heat generation per unit volume Rate of internal mass (liquid+vapour) generation per unit volume Heat flux
 - q_H Rate of internal heat generation per unit volume Rate of internal mass (liquid+vapour) generation per unit volume Heat flux
 - **qs** Stress potential parameters
 - \mathbf{q}_{w} Mass (liquid+vapour) flux Relative humidity Initial relative humidity
 - **RH** Mass (liquid+vapour) flux Relative humidity Initial relative humidity
 - \mathbf{RH}_0 Mass (liquid+vapour) flux Relative humidity Initial relative humidity
 - Sp Plastic shear area
 - σv Yield stress

σyo Initial uniaxial yield stress

 σx , σy , σz Direct stresses (local or global)

omax, omin Principal stresses

 σxy , σxz , σyz Shear stresses (local or global)

σs Maximum shear stress

σe Von Mises equivalent stress

T Temperature

T, To Final, initial temperatures

 $\mathbf{t}_1 \dots \mathbf{t}_n$ Nodal thicknesses

U, V, W Displacements (global)

Φ Field variable

Φe External environmental temperature

Frictional angle

φο Initial frictional angle

Body force potential

Vx, Vy, Vz Nodal velocities (global)

V11, V12 ... V33 Left stretch tensor components

Wx, Wy, Wz Uniformly distributed intensities

X, Y, Z Nodal coordinates (global)

Xcbf, **Ycbf**, **Zcbf** Constant body forces (global)

Xo, Yo, Zo Offsets of finite element model coordinate system from point about which global angular acceleration and velocities are applied

 $\mathbf{y}_1, \mathbf{z}_1 \dots \mathbf{y}_4, \mathbf{z}_4$ Cross sectional coordinates (local)

Zyp, Zzp Torsional plastic moduli

Zyyp, Zzzp Flexural plastic moduli

ω Frequency of vibration

 Ωx , Ωy , Ωz Angular velocities (global)

Element Reference Manual		

Introduction

Overview

The LUSAS *Element Reference Manual* describes the elements currently available in LUSAS Solver. It has been designed to be used in conjunction with the *Solver Reference Manual* and provides input/output information which is specific to each element type.

If you require:

- General theoretical information refer to *Theory Manual Volume 1*
- <u>Element related</u> theoretical / formulation information refer to *Theory Manual Volume 2*

Element selection

Details of typical <u>element uses</u> are provided and, to assist you with choosing an element for a particular modelling task, three alternative selection methods are available for selecting by:

- ☐ Element type listing just element group, sub-group and element name
- ☐ Element index showing element name, geometry, nodal freedoms and element availability
- ☐ <u>Element summary</u> showing element names, material property, loading, nonlinear, integration, and mass modelling capabilities

Of these three methods, the element summary tables provide the most detail to enable correct element selection for a particular modelling task.

Element uses

The following brief descriptions of each element group are provided to assist you with element selection for a particular modelling task.

Additional more detailed and element-specific recommendations on use can be found by viewing the *Recommendations on Use* section provided within each element's listing. For an example see 3D Thick Beam Elements

Bar Elements

Bar elements are used to model plane and space truss structures, cables in cable-stayed structures, and stiffening reinforcement.

- LUSAS incorporates 2 and 3-dimensional bar elements which may either be straight or curved.
- Bar elements model *axial force* only.

Beam Elements

Beam elements are used to model plane frames, space frame structures, and cables in cable-stayed structures.

- LUSAS incorporates a variety of thin and thick beams in both 2 and 3-dimensions. In addition, specialised beam elements for modelling grillage or eccentrically ribbed plate structures are available.
- LUSAS beam elements may be either straight or curved and may model *axial force*, *bending* and *torsional behaviour*.

2D Continuum Elements

2D continuum elements are used to model solid structures whose behaviour *may reasonably be assumed to be 2-dimensional*.

- 2D continuum elements may be applied to plane stress, plane strain and axisymmetric solid problems.
- Triangular and quadrilateral elements are available.
- Fourier elements, which allow non-axisymmetric loading to be applied to axisymmetric models, are considered a special case of the 2D continuum elements since the mesh is defined entirely in the xy-plane, but the resulting displacements, strains and stresses are fully three-dimensional.
- Special crack tip elements are available to model the singularities encountered at crack opening
- Explicit elements are available to model high speed dynamics problems efficiently.

3D Continuum Elements

3D continuum elements are used to model *fully3-dimensional structures*.

- Tetrahedral, pentahedral and hexahedral solid elements are available to model full 3-dimensional stress fields.
- Composites elements are available to model laminates.
- Special crack tip elements are available to model the singularities encountered at crack opening

Plate Elements

Plate elements are used to model flat structures whose deformation can be assumed to be predominantly flexural

- LUSAS incorporates both thin and thick plate elements.
- Triangular and quadrilateral flexural plate elements are available.

Shell Elements

Shell elements are used to model 3-dimensional structures whose behaviour is dependent upon both *flexural and membrane effects*.

- LUSAS incorporates both flat and curved shell elements.
- Triangular and quadrilateral elements are available
- Both thin and thick shell elements are available.

Membrane Elements

Membrane elements are used to model 2 and 3-dimensional structures whose behaviour is dominated by in-plane membrane effects.

- LUSAS incorporates both axisymmetric and space (3-dimensional) membrane elements.
- Membrane elements incorporate *in-plane* (*membrane*) *behaviour only* (they include no bending behaviour).

Joint Elements

Joint elements are used to model *flexible joints* between other LUSAS elements.

- LUSAS incorporates a variety of joint elements which are designed to match the nodal freedoms of their associated elements.
- Joint elements may also be used to model point masses, elasto-plastic hinges, or smooth and frictional element contacts.

Non-Structural Mass Elements

Non-Structural Mass elements are used to model translational *mass* at a point, along an edge or on a surface.

 Non-Structural Mass elements must be used with other structural elements.

Thermal / Field Elements

Thermal / Field elements are used to model quasiharmonic equation problems such as *thermal conduction* or potential distribution.

- LUSAS incorporates bar, plane, axisymmetric solid and 3-dimensional solid field elements.
- Thermal link elements are also available.

Hygro-Thermal Elements

Hygro-thermal elements are used in *hygro-thermal* transient analyses, i.e. to model heat and moisture flow in porous media. The elements are generally used for problems involving the heat of hydration of concrete, and are normally used in a hygro-thermal-structural coupled analysis.

- LUSAS incorporates plane, axisymmetric solid and 3-dimensional solid hygro-thermal elements
- Thermal link elements can also be used in a hygro-thermal analysis.

Interface Elements

Mohr-Coulomb interface elements are used to model the *contact behaviour* between two bodies.

Delamination interface elements model *delamination* and *crack propagation* in composites. They are positioned at places of potential delamination between continuum elements

Rigid Elements

Rigid elements are used to define the shape of a rigid surface which is not part of the analysis model.

Phreatic Surface Elements

Phreatic surface elements are used to define the shape of a phreatic surface. They may be used with 2D and 3D continuum and two-phase elements.

Element Groups

The LUSAS Element Library is arranged into the following element groups:

- □ Bars
- □ Beams
- **□** 2D Continuum elements
- **□** 3D Continuum elements
- **□** Plates
- □ Shells
- **□** Membranes
- **□** Joints
- **□** Non-structural mass elements
- **□** Thermal/Field elements
- **☐** Hygro-thermal elements
- **□** Interface elements
- **□** Rigid elements
- **☐** Phreatic surface elements

Element Sub-Groups

Each element group is also sub-divided into element sub-groups according to the type of element formulation as shown in the following <u>table</u>. For example, the **Beam** element group contains the element sub-groups: Engineering beams, Thick beams, Kirchhoff beams and Semiloof beams.

Within each sub-group elements vary according to the geometry, the number of nodes, and the properties required by each element. The individual elements are referred to by their LUSAS name, for example: BMI21 or QTS4.

Note

The dimensional classification of LUSAS elements is on the basis of the number of dimensions required for input of the nodal coordinates. For example, an engineering grillage element, (GRIL) requires X, Y coordinates and is hence classed as being 2-dimensional (despite having an out of plane displacement freedom).

Element Types and Availability

Element Group	Element Subgroup	Element Name and Software Product Version Availability			
		LT	Standard (S)	Plus (+)	
<u>Bars</u>	Structural bars	BAR2, BRS2	BAR3, BRS3		
<u>Beams</u>	Engineering beams	GRIL			
	Plain strain beams		BMI2N, BMI3N		
	Thick beams	<u>BMI2</u> , <u>BMI21</u>		BMI3, BMI2X, BMI3X, BMI22, BMI31, BMI33, BMX21, BMX22, BMX31, BMX33	
	Thick cross- section beams			BMI3, BMI2X, BMI3X, BMI22, BMI31, BMI33, BMX21, BMX22, BMX31, BMX33	

Element Group	Element Subgroup	Element Name and Software Product Version Availability					
		LT Standard (S		Plus (+)			
	Warping beams			BMI21W, BMI22W, BMI31W, BMI33W, BMX21W, BMX22W, BMX31W, BMX33W			
	Thin (Kirchhoff) beams		<u>BM3</u> , <u>BMX3</u>	<u>BS3</u> , <u>BS4</u> , <u>BSX4</u>			
	Semiloof beams			BSL3, BSL4, BXL4			
2D Continuum	Plane stress continuum		TPM3, TPM6, QPM4, QPM8, QPM4M, TPK6, QPK8	TPM3E, QPM4E			
	Plane strain continuum		TPN3, TPN6, QPN4, QPN8, QPN4M, QPN4L, TNK6, QNK8	TPN3E, OPN4E			
	Plain strain two phase		TPN6P, QPN8P				
	Axisymmetric solid continuum		TAX3, TAX6, QAX4, QAX8, QAX4M, QAX4L, TXK6, QXK8, TAX3F, TAX6F, QAX4F, QAX8F	TAX3E, QAX4E			

Element Group	Element Subgroup	Element Name and Software Produ Version Availability		
		LT	Standard (S)	Plus (+)
	Axisymmetric solid two-phase			TAX6P, QAX8P
	Fourier ring			<u>TAX3F</u> , <u>TAX6F</u> , <u>QAX4F</u> , <u>QAX8F</u>
3D Continuum	Solid continuum		TH4, PN6, HX8, HX8M	TH10, PN12, PN15, HX16, HX20, TH10S, PN6L PN12L, HX8L, HX16L, TH4E, PN6E,
	Solid continuum crack tip			TH10K, PN15K, HX20K
	Solid continuum two phase			TH10P, PN12P, PN15P, HX16P, HX20P
<u>Plates</u>	Isoflex plates		TF3, <u>QF4</u> , <u>QSC4</u>	
	Mindlin plates		TTF6 , QTF8	
<u>Shells</u>	Axisymmetric thin shells		BXS3	
	Axisymmetric thick shells		BXSI2, BXSI3	
	Flat thin shells		<u>TS3</u> , <u>QSI4</u>	TSR6,
	Semiloof shells			TSL6, QSL8
	Thick shells		TTS3, OTS4	TTS6, OTS8
<u>Membranes</u>	Axisymmetric membranes		BXM2, BXM3	
	Space membranes		TSM3, SMI4	

Element Group	Element Subgroup	Element Name and Software Product Version Availability		
		LT	Standard (S)	Plus (+)
<u>Joints</u>	2D joints		JNT3, JPH3, JF3, JAX3, JXS3	
	3D joints		JNT4, JL43, JSH4, JL46	JSL4
<u>Field</u>	Thermal bars		BFD2, BFD3, BFX2, BFX3, BFS2, BFS3	
	Thermal links		LFD2, LFX2, LFS2	
	Plane field		TFD3, TFD6, OFD4, OFD8	
	Axisymmetric field		TXF3, TXF6, QXF4, QXF8	
	Solid field		TF4, TF10, PF6, PF12, PF15, HF8	HF16, HF20, PF6C, PF12C, HF8C, HF16C, TF10S
Hygro- Thermal	Plane hygro- thermal			<u>THT3, THT6,</u> <u>QHT4, QHT8</u>
	Axisymmetric hygro-thermal			<u>TXHT3</u> , <u>TXHT6</u> , <u>QXHT4</u> , <u>QXHT8</u>
	Solid hygro- thermal			THT4, THT10, PHT6, PHT12, PHT15, HHT8, HHT16, HHT20
<u>Interface</u>	2D Interface			<u>IPN4, IPN6, IPM4,</u> <u>IPM6, IAX4,</u> <u>IAX6</u>
	2D Two-phase interface			IPN6P, IAX6P

Element Group	Element Subgroup	Element Name and Software Product Version Availability		
		LT	Standard (S)	Plus (+)
	3D Interface			<u>IS6, IS8, IS12,</u> <u>IS16</u>
	3D Two-phase interface			<u>IS12P, IS16P</u>
<u>Mass</u>	Point Mass			<u>PM2</u> , <u>PM3</u>
	Line Mass			<u>LM2</u> , <u>LM3</u> , <u>LMS3</u> , <u>LMS4</u>
	Surface Mass			TM3, TM6, QM4, QM8
Rigid Surface	2D Rigid			<u>R2D2</u>
	3D Rigid			<u>R3D3</u> , <u>R3D4</u>
Phreatic Surface	2D		PHS2	
	3D		PHS3, PHS4	

For details of the compatibility of joint elements with other elements see Appendix L : Joint Element Compatibility

Element Index

The following element index tables provide a diagrammatic index for each element with a description of the element, the nodal freedoms, and the software product version in which it is available.

The tables are listed in the following order:

- **□** Bar elements
- **□** Beam elements
- **□** 2D Continuum elements
- **□** 3D Continuum elements
- **☐** Plate elements
- **□** Shell elements
- **■** Membrane elements
- **□** Joint elements
- **☐** Thermal / Field elements
- **□** Hygro-Thermal elements
- **□** Interface elements
- **■** Non-Structural Mass elements
- **☐** Rigid elements
- **□** Phreatic elements

Bar Elements						
Name	Geometry	Title	Freedoms	Product Version		
BAR2	2	BAR element in 2D	U, V	LT		
BAR3	3	BAR element in 2D	U, V	Standard		

BRS2	2	BAR element in 3D	U, V, W	LT
BRS3	3	BAR element in 3D	U, V, W	Standard

Beam Elements					
Name	Geometry	Title	Freedoms	Product Version	
GRIL	y 2	ENGINEERING grillage thick beam element in 2D	W, qx, qy	LT	
BMI2	2	THICK beam element in 2D (co- rotational)	U, V, qz	LT	
BMI3	y 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	THICK beam element in 2D (co- rotational)	U, V, qz	Plus	
<u>BMI2X</u>	y 2 x x	THICK beam element in 2D with quadrilateral cross- section (co- rotational)	U, V, qz	Plus	
BMI3X	y 1 3	THICK beam element in 2D with quadrilateral cross- section (co- rotational)	U, V, qz	Plus	

<u>BMI21</u>	**************************************	THICK linear thick beam element in 3D	U, V, W, qx, qy, qz	LT
BMI21W	y 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	THICK linear thick beam element with torsional warping in 3D	U, V, W, qx, qy, qz, α	Plus
BMX21	**************************************	THICK linear thick beam element in 3D with quadrilateral cross-section	U, V, W, qx, qy, qz	Standard
BMX21W	**************************************	THICK linear thick beam element with torsional warping in 3D with quadrilateral cross-section	U, V, W, qx, qy, qz, α	Plus
<u>BMI31</u>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	THICK quadratic thick beam element in 3D	U, V, W, qx, qy, qz	Plus
BMI31W	y 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	THICK quadratic thick beam element with torsional warping in 3D	U, V, W, qx, qy, qz, α	Plus
BMX31	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	THICK quadratic thick beam element in 3D with quadrilateral cross- section	U, V, W, qx, qy, qz	Plus
BMX31W	V 3 X 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	THICK quadratic thick beam element with torsional warping in 3D with quadrilateral cross- section	U, V, W, qx, qy, qz, α	Plus

BMI22		THICK twisted linear thick beam element in 3D	U, V, W, qx, qy, qz	Plus
BMI22W		THICK twisted linear thick beam element with torsional warping in 3D	U, V, W, qx, qy, qz, α	Plus
BMX22		THICK twisted linear thick beam element in 3D with quadrilateral cross- section	U, V, W, qx, qy, qz	Plus
BMX22W		THICK twisted linear thick beam element with torsional warping in 3D with quadrilateral cross- section	U, V, W, qx, qy, qz, α	Plus
<u>BMI33</u>	**************************************	THICK twisted quadratic thick beam element in 3D	U, V, W, qx, qy, qz	Plus
BMI33W	**************************************	THICK twisted quadratic thick beam element with torsional warping in 3D	U, V, W, qx, qy, qz, α	Plus
BMX33	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	THICK twisted quadratic beam element in 3D with quadrilateral cross- section	U, V, W, qx, qy, qz	Plus

BMX33W	-6	THICK twisted	II V W ov	Plus
		quadratic beam element with torsional warping in 3D with quadrilateral cross-section	U, V, W, qx, qy, qz, α	
<u>BM3</u>	3	KIRCHHOFF thin beam element in 2D	end nodes: U, V, qz mid-node: dU	Standard
BMX3	y 3 x 3	KIRCHHOFF thin beam element in 2D with quadrilateral cross-section	end nodes: U, V, qz mid-node: dU	Standard
BS3	3	KIRCHHOFF thin beam element in 3D	end nodes: U, V, W, qx, qy, qz mid-node: dU, dqx	Plus
<u>BS4</u>	y 1 x 2 3	KIRCHHOFF thin beam element in 3D	end nodes: U, V, W, qx, qy, qz mid-node: dU, dqx	Plus
BSX4	y 3 3 3 1	KIRCHHOFF thin beam element in 3D with quadrilateral cross-section	end nodes: U, V, W, qx, qy, qz mid-node: dU, dqx	Plus
BSL3	y	SEMILOOF thin beam element in 3D for use with TSL6	end nodes: U, V, W, qx, qy, qz mid-node: U, V, W, q1, q2	Plus
BSL4	y 1 x 2 3	SEMILOOF thin beam element in 3D for use with QSL8	end nodes: U, V, W, qx, qy, qz mid-node: U, V, W, q1, q2	Plus

BXL4	y 3 3 3 3 3 1	SEMILOOF thin beam element in 3D with quadrilateral cross-section	end nodes: U, V, W, qx, qy, qz mid-node: U, V, W, q1, q2	Plus
<u>BMI2N</u>	1 2 ×	Plane strain beam (co-rotational)	U, V, qz,	Standard
<u>BMI3N</u>	1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Plane strain beam (co-rotational)	U, V, qz,	Standard

2D Continuum Elements				
Name	Geometry	Title	Freedoms	Product Version
TPM3	3	PLANE STRESS continuum element in 2D	U, V	Standard
TPM6	5	PLANE STRESS continuum element in 2D	U, V	Standard
QPM4	1	PLANE STRESS continuum element in 2D	U, V	Standard
QPM8	7 6 5 1 2 3	PLANE STRESS continuum element in 2D	U, V	Standard
QPM4M	3	PLANE STRESS continuum element in 2D with enhanced strains	U, V	Standard

TPK6	5 5	PLANE STRESS continuum crack tip element in 2D	U, V	Standard
QPK8	7 6 5 4 8 4 2 3 5	PLANE STRESS continuum crack tip element in 2D	U, V	Standard
TPM3E	2	PLANE STRESS explicit dynamics element in 2D	U, V	Plus
QPM4E	3	PLANE STRESS explicit dynamics element in 2D	U, V	Plus
TPN3	2	PLANE STRAIN continuum element in 2D	U, V	Standard
TPN6	1 2 3	PLANE STRAIN continuum element in 2D	U, V	Standard
OPN4	1 2	PLANE STRAIN continuum element in 2D	U, V	Standard
OPN8	7 6 5 4	PLANE STRAIN continuum element in 2D	U, V	Standard
QPN4M	1 2	PLANE STRAIN continuum element in 2D with enhanced strains	U, V	Standard
QPN4L	4 3	PLANE STRAIN continuum element in 2D for large strains	U, V	Standard

TNK6	1 2 3	PLANE STRAIN continuum crack tip element in 2D	U, V	Standard
QNK8	7 6 5	PLANE STRAIN continuum crack tip element in 2D	U, V	Standard
TPN3E	3	PLANE STRAIN explicit dynamics element in 2D	U, V	Plus
QPN4E	3	PLANE STRAIN explicit dynamics element in 2D	U, V	Plus
TPN6P	5 1 2 3	PLANE STRAIN continuum two phase element in 2D	U, V P: corner nodes U, V: Midside nodes	Standard
OPN8P	7 6 3 4 4 1 2 3	PLANE STRAIN continuum two phase element in 2D	U, V P: corner nodes U, V: Midside nodes	Standard
TAX3	3	AXISYMMETRIC solid continuum element in 2D	U, V	Standard
TAX6	1 2 3 3	AXISYMMETRIC solid continuum element in 2D	U, V	Standard
QAX4	1 2	AXISYMMETRIC solid continuum element in 2D	U, V	Standard
QAX8	7 6 3 4 4 4 2 3	AXISYMMETRIC solid continuum element in 2D	U, V	Standard

QAX4M	4	AXISYMMETRIC solid continuum element in 2D with enhanced strains	U, V	Standard
QAX4L	4 1	AXISYMMETRIC solid continuum element in 2D for large strains	U, V	Standard
TXK6	1000	AXISYMMETRIC solid continuum crack tip element in 2D	U, V	Standard
QXK8	7 5 5 8 4 4 1 2 3	AXISYMMETRIC solid continuum crack tip element in 2D	U, V	Standard
TAX3E	2	AXISYMMETRIC solid explicit dynamics element in 2D	U, V	Plus
QAX4E	1 2	AXISYMMETRIC solid explicit dynamics element in 2D	U, V	Plus
TAX6P	1 2 3	AXISYMMETRIC solid two phase continuum element in 2D	U, V P: corner nodes U, V: Midside nodes	Plus
QAX8P	7 6 5 8 4 4 4 2 3 3	AXISYMMETRIC solid two phase continuum element in 2D	U, V P: corner nodes U, V: Midside nodes	Plus
TAX3F	2	AXISYMMETRIC Fourier ring element in 2D	U, V, W	Plus
TAX6F	5 1 2 3	AXISYMMETRIC Fourier ring element in 2D	U, V, W	Plus

QAX4F	1	AXISYMMETRIC Fourier ring element in 2D	U, V, W	Plus
QAX8F	7 8 1 2 3	AXISYMMETRIC Fourier ring element in 2D	U, V, W	Plus

3D Continuum Elements					
Name	Geometry	Title	Freedoms	Product Version	
TH4	3	SOLID CONTINUUM element in 3D	U, V, W	Standard	
<u>TH10</u>	10 7 5	SOLID CONTINUUM element in 3D	U, V, W	Plus	
PN6	1 2	SOLID CONTINUUM element in 3D	U, V, W	Standard	
PN12	7 8 9 6 4	SOLID CONTINUUM element in 3D	U, V, W	Plus	
<u>PN15</u>	10 11 13 14 19 19 19 11 11 11 11 11 11 11 11 11 11	SOLID CONTINUUM element in 3D	U, V, W	Plus	
HX8	3 7	SOLID CONTINUUM element in 3D	U, V, W	Standard	
<u>HX16</u>	16 13 13 13 10 11 11 12 13 13 14 13 15 15 15 15 15 15 15 15 15 15 15 15 15	SOLID CONTINUUM element in 3D	U, V, W	Plus	

<u>HX20</u>	13 11 12 11	SOLID CONTINUUM element in 3D	U, V, W	Plus
HX8M	5 T T T T T T T T T T T T T T T T T T T	SOLID CONTINUUM element in 3D with enhanced strains	U, V, W	Standard
<u>TH10S</u>	10 7 9 9	SOLID CONTINUUM composite element in 3D	U, V, W	Plus
PN6L	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SOLID CONTINUUM composite element in 3D	U, V, W	Plus
PN12L	7 12 10 10 5	SOLID CONTINUUM composite element in 3D	U, V, W	Plus
HX8L	5 0 dd 7	SOLID CONTINUUM composite element in 3D	U, V, W	Plus
HX16L	16 12 13 13 14 13 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	SOLID CONTINUUM composite element in 3D	U, V, W	Plus
TH10K	10 0 5	SOLID CONTINUUM crack tip element in 3D	U, V, W	Plus
PN15K	10 13 14	SOLID CONTINUUM crack tip element in 3D	U, V, W	Plus
HX20K	13 14 15 17 12 11 12 12 11 12 12 12 12 12 12 12 12	SOLID CONTINUUM crack tip element in 3D	U, V, W	Plus

TH4E	3	SOLID CONTINUUM explicit dynamics element in 3D	U, V, W	Plus
PN6E	1 2 3	SOLID CONTINUUM explicit dynamics element in 3D	U, V, W	Plus
HX8E	5 T T T T T T T T T T T T T T T T T T T	SOLID CONTINUUM explicit dynamics element in 3D	U, V, W	Plus
TH10P	10 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	SOLID CONTINUUM two phase element in 3D	U, V, W	Plus
PN12P	4 2 3	SOLID CONTINUUM two phase element in 3D	U, V, W	Plus
PN15P	10 13 14	SOLID CONTINUUM two phase element in 3D	U, V, W	Plus
HX16P	15 12 13 13 14 13 15 15 15 15 15 15 15 15 15 15 15 15 15	SOLID CONTINUUM two phase element in 3D	U, V, W	Plus
HX20P	13 12 13 13 13 13 13 13 13 13 13 13 13 13 13	SOLID CONTINUUM two phase element in 3D	U, V, W	Plus

Plate Elements							
Name	Geometry	Title	Freedoms	Product Version			
TF3	2	ISOFLEX thin plate flexure element in 2D	W, qx, qy	Standard			

QF4	3	ISOFLEX thin plate flexure element in 2D	W, qx, qy	Standard
QSC4	3	ISOFLEX thick plate flexure element in 2D	W, qx, qy	Standard
TTF6	1 2 3	MINDLIN thick plate flexure element in 2D	W, qx, qy	Standard
QTF8	7 6 5	MINDLIN thick plate flexure element in 2D	W, qx, qy	Standard

Shell Elements				
Name	Geometry	Title	Freedoms	Product Version
BXS3	1 2 × x	AXISYMMETRIC thin shell element in 2D	end nodes: U, V, qz	Standard
BXSI2	2	AXISYMMETRIC thick shell element in 2D	end nodes: U, V, qz	Standard
BXSI3	3	AXISYMMETRIC thick shell element in 2D	end nodes: U, V, qz mid-node: dU	Standard
<u>TS3</u>	y 3	FLAT thin shell element in 3D	U, V, W, qx, qy, qz	Standard

QSI4	y x	FLAT thin shell element in 3D	U, V, W, qx, qy, qz	Standard
TSR6	y 6 4 x	FLAT thin nonlinear shell element in 3D	corner nodes: U, V, W mid-side nodes: q1	Plus
TSL6	5 5 1 2 3	SEMILOOF curved thin shell element in 3D	corner nodes: U, V, W mid-side nodes: U, V, W, q1, q2	Plus
QSL8	7 0 5 8 4 4 4 4 4 3 3	SEMILOOF curved thin shell element in 3D	corner nodes: U, V, W mid-side nodes: U, V, W, q1, q2	Plus
TTS3	2	THICK SHELL flat element in 3D	U, V, W, qa, qbor U, V, W, qx, qy, qz	Standard
TTS6	5 3	THICK SHELL curved element in 3D	U, V, W, qa, qbor U, V, W, qx, qy, qz	Plus
OTS4	1 2	THICK SHELL flat element in 3D	U, V, W, qa, qbor U, V, W, qx, qy, qz	Standard
QTS8	7 6 5 4 4 1 2 3	THICK SHELL curved element in 3D	U, V, W, qa, qbor U, V, W, qx, qy, qz	Plus

Membrane Elements				
Name	Geometry	Title	Freedoms	Product Version
BXM2	2	AXISYMMETRIC membrane element in 2D	U, V	Standard
BXM3	3	AXISYMMETRIC membrane element in 2D	U, V	Standard
TSM3	y 3	SPACE membrane element in 3D	U, V, W	Standard
SMI4	y 3 3 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SPACE membrane element in 3D	U, V, W	Standard

Joint Elements				
Name	Geometry	Title	Freedoms	Product Version
JNT3	May net	JOINT ELEMENT in 2D for bars, plane stress and plane strain	U, V	Standard
<u>ЈРН3</u>	Mary Hart	JOINT ELEMENT in 2D for engineering and Kirchhoff beams	U, V, qz	Standard
JF3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	JOINT ELEMENT in 2D for grillage beams and plates	W, qx, qy	Standard
JAX3	May Hart	JOINT ELEMENT in 2D for axisymmetric solids	U, V	Standard

JXS3	Marian 1	JOINT ELEMENT in 2D for axisymmetric shells	U, V, qz	Standard
JNT4	In the state of th	JOINT ELEMENT in 3D for bars, solids and space membranes	U, V, W	Standard
JL43	In the state of th	JOINT ELEMENT in 3D for corner nodes of semiloof elements	U, V, W	Standard
JSH4 JL46		JOINT ELEMENT in 3D for engineering and Kirchhoff beams and the end/corner nodes of semiloof elements	U, V, W, qx, qy, qz	Standard
JSL4	AND	JOINT ELEMENT in 3D for mid-side nodes of semiloof elements	U, V, W, q1, q2	Plus

Therma	Thermal / Field Elements				
Name	Geometry	Title	Freedoms	Product Version	
BFD2	1	THERMAL BAR element in 2D	F	Standard	
BFD3	3	THERMAL BAR element in 2D	F	Standard	
BFX2	1	Axisymmetric THERMAL MEMBRANE element in 2D	F	Standard	
BFX3	3	Axisymmetric THERMAL MEMBRANE element in 2D	F	Standard	

BFS2	2	THERMAL BAR element in 3D	F	Standard
BFS3	3	THERMAL BAR element in 3D	F	Standard
LFD2	**************************************	THERMAL LINK element in 2D	F	Standard
LFX2	•	Axisymmetric THERMAL LINK element in 2D	F	Standard
LFS2	1	THERMAL LINK element in 3D	F	Standard
TFD3	1	PLANE FIELD element in 2D	F	Standard
TFD6	5	PLANE FIELD element in 2D	F	Standard
QFD4	4 3	PLANE FIELD element in 2D	F	Standard
QFD8	7 6 3 8 4 1 2 3	PLANE FIELD element in 2D	F	Standard
TF4	3	SOLID FIELD element in 3D	F	Standard
<u>TF10</u>	10 0 0	SOLID FIELD element in 3D	F	Plus

<u>PF6</u>	1 5 3	SOLID FIELD element in 3D	F	Standard
<u>PF12</u>	7 12 10 5	SOLID FIELD element in 3D	F	Plus
PF15	10 13 13 19 9 9 5	SOLID FIELD element in 3D	F	Plus
HF8	5 7	SOLID FIELD element in 3D	F	Standard
HF16	9 10 11 12 12 13 14 13	SOLID FIELD element in 3D	F	Plus
<u>HF20</u>	20 13 14 15 15 16 17 11 15 12 11 2 10 3	SOLID FIELD element in 3D	F	Plus
TF10S	10 0 5	SOLID FIELD composite element in 3D	F	Plus
PF6C	3 3 3	SOLID FIELD composite element in 3D	F	Plus
PF12C	7 12 10 10 10 11 1 1 1 1 1 1 1 1 1 1 1 1	SOLID FIELD composite element in 3D	F	Plus
HF8C	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SOLID FIELD composite element in 3D	F	Plus

HF16C	16 14 13 15 14 15 15 16 15 16 15 16 15 16 15 16 15 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16	SOLID FIELD composite element in 3D	F	Plus
TXF3	3	AXISYMMETRIC FIELD element in 2D	F	Standard
TXF6	1 2 3	AXISYMMETRIC FIELD element in 2D	F	Standard
QXF4	4 3 2	AXISYMMETRIC FIELD element in 2D	F	Standard
QXF8	7 6 5 8 4 4 1 2 3	AXISYMMETRIC FIELD element in 2D	F	Standard

Hygro-Thermal Elements				
Name	Geometry	Title	Freedoms	Product Version
THT3	1 2	PLANE HYGRO- THERMAL element in 2D	T, Pc	Plus
THT6	5	PLANE HYGRO- THERMAL element in 2D	T, Pc	Plus
QHT4	1 2	PLANE HYGRO- THERMAL element in 2D	T, Pc	Plus
QHT8	7 6 5 8 4 4 4 1 2 3	PLANE HYGRO- THERMAL element in 2D	T, Pc	Plus

TXHT3	3	AXISYMMETRIC HYGRO-THERMAL element in 2D	T, Pc	Plus
TXHT6	5 5	AXISYMMETRIC HYGRO-THERMAL element in 2D	T, Pc	Plus
<u>OXHT4</u>	***************************************	AXISYMMETRIC HYGRO-THERMAL element in 2D	T, Pc	Plus
QXHT8	7 6 3 8 4 4 4 5 3	AXISYMMETRIC HYGRO-THERMAL element in 2D	T, Pc	Plus
THT4	3	SOLID HYGRO- THERMAL element in 3D	T, Pc	Plus
<u>THT10</u>	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SOLID HYGRO- THERMAL element in 3D	T, Pc	Plus
PHT6	1 2	SOLID HYGRO- THERMAL element in 3D	T, Pc	Plus
PHT12	7 12 10 10 1 2 3	SOLID HYGRO- THERMAL element in 3D	T, Pc	Plus
PHT15	10 13 14 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	SOLID HYGRO- THERMAL element in 3D	T, Pc	Plus
HHT8	5 7	SOLID HYGRO- THERMAL element in 3D	T, Pc	Plus

<u>HHT16</u>	16 13 14 13 0 10 11 12 12 13 14 13 14 13 14 13 14 13 14 13 14 13 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	SOLID HYGRO- THERMAL element in 3D	T, Pc	Plus
<u>HHT20</u>	2) 17 17 17 17 17 17 17 17 17 17 17 17 17	SOLID HYGRO- THERMAL element in 3D	T, Pc	Plus

Interfa	ce Elements			
Name	Geometry	Title	Freedoms	Product Version
IPN4	3 3 1	PLANE STRAIN INTERFACE ELEMENT in 2D (Initial gap allowed for Mohr-Coulomb variant)	U, V	Plus
<u>IPM4</u>	3 3 1	PLANE STRESS INTERFACE ELEMENT in 2D (Initial gap allowed for Mohr-Coulomb variant)	U, V	Plus
IAX4		AXISYMMETRIC INTERFACE ELEMENT in 2D (Initial gap allowed for Mohr-Coulomb variant)	U, V	Plus
IPN6	5 3	PLANE STRAIN INTERFACE ELEMENT in 2D (Initial gap allowed for Mohr-Coulomb variant)	U, V, P corner nodes; U,V midside nodes	Plus
IPM6	5 3	PLANE STRESS INTERFACE ELEMENT in 2D (Initial gap allowed for Mohr-Coulomb variant)	U, V, P corner nodes; U,V midside nodes	Plus

TATE		AMIGNA A PERDIC	11.17	DI
<u>IAX6</u>	6 t	AXISYMMETRIC	U, V	Plus
	5 3	INTERFACE		
	3	ELEMENT in 2D		
	4	(Initial gap allowed for		
	1	Mohr-Coulomb		
		variant)		
IPN6P	6	PLANE STRAIN	U, V	Plus
	5 6 zero	TWO PHASE		
	3	INTERFACE		
	4 2	ELEMENT in 2D		
	•	(Initial gap allowed for		
	1	Mohr-Coulomb		
TAYOR		variant)	TT V	Dlean
<u>IAX6P</u>	6 T	AXISYMMETRIC	U, V	Plus
	5 3	TWO PHASE		
	2	INTERFACE		
	1	ELEMENT in 2D		
	1	(Initial gap allowed for		
		Mohr-Coulomb		
		variant)		
<u>IS6</u>		INTERFACE	U, V, W	Plus
_	.3	ELEMENT in 3D		
	4	(Initial gap allowed for		
	zero	Mohr-Coulomb		
	1 2	variant)		
IS8	8 7 zero	INTERFACE	U, V, W	Plus
	3	ELEMENT in 3D	, , , , ,	
	•//	(Initial gap allowed for		
	1 2	Mohr-Coulomb		
		variant)		
IS12	11	INTERFACE	U, V, W	Plus
<u>IS12</u>	12/•. 10	ELEMENT in 3D	U, V, W	rius
	5			
	7/.6 8 4 9	(Initial gap allowed for		
	1 2 3	Mohr-Coulomb		
	16 14 10	variant)		
<u>IS16</u>	16 14 13 zero	INTERFACE	U, V, W	Plus
	12//5	ELEMENT in 3D		
	11/1	(Initial gap allowed for		
	1 2 3	Mohr-Coulomb		
		variant)		
IS12P	11	TWO PHASE	U, V, W, P	Plus
	12 5. 10	INTERFACE	corner	
	7 6 8 4 9	ELEMENT in 3D	nodes; U,V,	
	zero		W midside	
	1 2 3		nodes	
	1		noucs	<u> </u>

IS16P	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TWO PHASE INTERFACE ELEMENT in 3D	U, V, W, P corner nodes; U,V, W midside	Plus
			nodes	

Non-St	ructural Mas	s Elements		
Name	Geometry	Title	Freedoms	Product Version
PM2	y x	NON-STRUCTURAL MASS ELEMENT in 2D to model mass at a point	U, V	Plus
<u>PM3</u>	2	NON-STRUCTURAL MASS ELEMENT in 3D to model mass at a point	U, V, W	Plus
LMS3	3 × × × × × × × × × × × × × × × × × × ×	NON-STRUCTURAL MASS ELEMENT in 3D to model mass along an edge	U, V, W, qx, qy, qz	Plus
LMS4	y	NON-STRUCTURAL MASS ELEMENT in 3D to model mass along an edge	U, V, W, qx, qy, qz	Plus
LM2	1	NON-STRUCTURAL MASS ELEMENT in 2D to model mass along an edge	U, V	Plus
LM3	3	NON-STRUCTURAL MASS ELEMENT in 2D to model mass along an edge	U, V	Plus
TM3	2	NON-STRUCTURAL MASS ELEMENT in 3D to model mass on a surface.	U,V,W	Plus
<u>TM6</u>	6 1 2 3	NON-STRUCTURAL MASS ELEMENT in 3D to model mass on a surface.	U,V,W	Plus

QM4	1	NON-STRUCTURAL MASS ELEMENT in 3D to model mass on a surface.	U,V,W	Plus
QM8	7 5 8 4 4 1 2 3 5	NON-STRUCTURAL MASS ELEMENT in 3D to model mass on a surface.	U,V,W	Plus

Rigid Slideline Elements											
Name	Geometry	Title	Freedoms	Product Version							
<u>R2D2</u>	2	RIGID SLIDELINE SURFAC E ELEMENT in 2D for modelling non- deformable surfaces in a contact analysis	U, V	Plus							
<u>R3D3</u>	y ↑ 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	RIGID SLIDELINE SURFAC E ELEMENT in 3D for modelling non-deformable surfaces in a contact analysis	U, V, W	Plus							
R3D4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RIGID SLIDELINE SURFAC E ELEMENT in 3D for modelling non- deformable surfaces in a contact analysis	U, V, W	Plus							

Phreatic	Elements			
Name	Geometry	Title	Freedoms	Product Version
PHS2	2	PHREATIC SURFACE ELEMENT in 2D for modelling phreatic surface.	U, V	Plus

PHS3	3	PHREATIC SURFACE ELEMENT in 3D for modelling phreatic surface.	U, V, W	Plus
PHS4	7 2 3	PHREATIC SURFACE ELEMENT in 3D for modelling phreatic surface.	U, V, W	Plus

Element Reference Manual					

Element Summary Tables

The following element summary tables list element facilities arranged by LUSAS element group:

- **□** Bar and Beam elements
- **□** 2D Continuum elements
- **□** 3D Continuum elements
- **☐** Plate, Shell and Membrane elements
- **□** Joint elements
- **☐** Thermal/Field elements
- **☐** Hygro-Thermal elements
- ☐ Interface, Non-Structural Mass, Rigid, Interface and Phreatic elements

		Ba	ırs								Beams							
Bar and Beam Element Summary			BRS2, BRS3	GRIL	BMI21	BMI2, BMI3	BMI2N, BMI3N	BMI2X, BMI3X	BMI22, BMI31, BMI33	BMI31W, BMI33W.	BMX21, BMX22, BMX31, BMX32	BMX21W, BMX22W, BMX31W, BMX33W	BM3	BMX3	BS3, BS4	BSX4	BSL3, BSL4	BXL4
Product	LT, Standard (S) or	LT	LT	LT	LT	LT	S	+	+	+	+	+	S	S	+	+	+	+
version	Plus (+)																	
Nodal	U, V	✓																
freedoms																		
	U, V, W		✓															
(mid-side)	U, V, qz					✓	✓	✓										
	U, V, qz (dU)												✓	✓				
	W, qx, qy			✓														
	U, V, W, qx, qy, qz (dU, dqx)														✓	>		
	U, V, W, qx, qy, qz (U, V, W,q1, q2)																✓	✓
	U, V, W, qx, qy																	
	U, V, W, qx, qy, qz				✓				✓		✓	✓						
Material properties	Linear (Isotropic)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
•	Linear (Orthotropic)																	
	Linear (Anisotropic)																	
	Linear (Rigidities)				✓	✓			✓	✓			✓		✓	✓	✓	
	Matrix																	
	Joint																	
	Concrete Multi-crack							✓			✓	✓						
	Stress Resultant				✓	√			✓	✓			✓		✓		✓	
	Tresca	✓	✓				✓	✓			✓	✓		✓		✓		✓
	Drucker-Prager	✓	✓				✓	✓			✓	✓		✓		✓		✓
	Mohr-Coulomb	✓	✓				✓	✓			✓	✓		✓		✓		✓
	Optimised Implicit Von Mises	✓	✓				✓	✓			✓	✓		✓		✓		✓
	Volumetric Crushing/Foam																	
	Stress Potential(Von	✓	✓				✓	✓			✓	✓	√	✓	✓	✓	✓	✓

		Ba	ars								Beams							
	d Beam nt Summary	BAR2, BAR3	BRS2, BRS3	GRIL	BMI21	BMI2, BMI3	BMI2N, BMI3N	BMI2X, BMI3X	BMI22, BMI31, BMI33	BMI31W, BMI33W	BMX21, BMX22, BMX31, BMX32	BMX21W, BMX22W, BMX31W, BMX33W	BM3	BMX3	BS3, BS4	BSX4	BSL3, BSL4	BXL4
Product	LT, Standard (S) or	LT	LT	LT	LT	LT	S	+	+	+	+	+	S	S	+	+	+	+
version	Plus (+) Mises, Modified Von Mises)																	
	Creep (General)	✓	✓				✓	✓			✓	✓	✓	✓	✓	✓	✓	✓
	Creep (AASHTO)				√	√	√	√	✓	✓	✓	✓	✓	√	✓	√	√	✓
	Creep (CEB-FIP)				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Creep (Chinese)				1	√	✓	√	✓	✓	✓	✓	✓	√	✓	√	✓	✓
	Creep (Eurocode)				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Creep (IRC)				√	√	✓	✓	✓	✓	✓	✓	√	√	✓	✓	√	✓
	Damage (Simo, Oliver)	✓	✓				✓	✓			✓	✓		✓		✓		✓
	Viscoelastic	✓																
	Shrinkage (CEB-FIP_90, Eurocode_2, General, User)	✓			✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Rubber																	
	Generic Polymer																	
	Multi-linear	✓	✓															
	Composite																	
	Field																	
Loading types	Prescribed Value (PDSP,TPDSP)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Concentrated Loads (CL)	✓	✓	✓	✓	✓	✓	✓	✓	✓	√	✓	✓	✓	✓	✓	✓	✓
	Element Load (ELDS)			✓	✓	✓	✓	✓	✓	√	√	√	✓	✓				✓
	Distributed Load (UDL)			✓	✓	✓	✓	✓	✓	√	√	✓	✓	✓	✓	✓	✓	✓
	Distributed Load (FLD)																	

		Ba	ırs								Beams							
Bar and Elemen	l Beam t Summary	BAR2, BAR3	BRS2, BRS3	GRIL	BMI21	<u>BMI2, BMI3</u>	BMI2N, BMI3N	BMI2X, BMI3X	BMI22, BMI31, BMI33	BMI31W, BMI33W	BMX31, BMX22, BMX31, BMX32	BMX31W, BMX32W, BMX31W, BMX33W	BM3	BMX3	BS3, BS4	BSX4	BSL3, BSL4	BXL4
Product	LT, Standard (S) or	LT	LT	LT	LT	LT	S	+	+	+	+	+	S	S	+	+	+	+
version	Plus (+) Body Force (CBF)	√	✓	✓	√	√	√	√	√	/	√	√	√	√	·/	√	√	√
	Body Force (BFP,BFPE)	✓	✓	✓	✓	✓	✓	✓	✓	*	*	*	✓	✓	✓	√	✓	✓
	Velocity (VELO)	✓	✓	✓	✓	✓	✓	√	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Acceleration (ACCE)	>	✓	>	✓	>	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	\	✓
	Initial Stress/Strain (SSI,SSIE)	>	✓		✓	>	✓	✓	✓	✓	✓	✓	✓	✓	✓	>	>	✓
	Initial Stress/Strain (SSIG)	>	✓		✓	>	✓	✓	✓	✓	✓	✓	✓	✓	√	>	>	✓
	Residual Stress (SSR,SSRE)				✓	>	✓	✓	✓	✓	✓	✓	✓	✓	✓	>	>	√
	Residual Stress (SSRG)	√	✓		✓	√	✓	✓	✓	✓	✓	✓	✓	✓	✓	<	√	✓
	Target Stress/Strain (TSSIE,TSSIA)	✓	✓		✓	✓	✓	✓	✓	✓	✓	√	✓	✓	✓	✓	✓	✓
	Target Stress/Strain (TSSIG)	✓	✓		✓	✓	✓	✓	✓	✓	✓	√	✓	✓	✓	✓	✓	✓
	Temperature (TEMP,TMPE)	√	✓	✓	✓	√	✓	✓	✓	√	√	√	✓	✓	✓	>	>	✓
	Field Loads																	
	Temperature Dependent Loads																	
Nonlinear geometry	Total Lagrangian	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Updated Lagrangian							✓					✓	✓	✓	✓		
	Eulerian																	
	Co-rotational	✓	✓	√	✓	✓			✓	✓	✓	✓						
Integration schemes				√														
	Numerically	✓	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

		Ba	ırs								Beams							
Bar and Elemen	d Beam et Summary	BAR2, BAR3	BRS2, BRS3	GRIL	BMI21	BMI2, BMI3	BMI2N, BMI3N	BMI2X, BMI3X	BMI22, BMI31, BMI33	BMI31W, BMI33W, BMI31W, BMI33W	BMX21, BMX22, BMX31, BMX32	BMX21W, BMX22W, BMX31W, BMX33W	BM3	BMX3	BS3, BS4	BSX4	BSL3, BSL4	BXL4
Product version	LT, Standard (S) or Plus (+)	LT	LT	LT	LT	LT	S	+	+	+	+	+	S	S	+	+	+	+
	Integrated																	
Mass	Consistent Mass	✓	√	✓	✓	✓	✓	✓	√	✓	✓	✓	✓	✓	✓	✓	✓	√
modelling	(default)																	
	Lumped Mass	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

								2	D C	ontii	nuur	n						
2D Con Elemen	tinuum It Summary	TPM3/6, OPM4/8	<u>OPM4M</u>	TPK6, QPK8	TPM3E, QPM4E	TPN3/6, QPN4/8	<u>OPN4M</u>	<u>OPN4L</u>	TNK6, QNK8	TPN3E, OPN4E	TPN6P, OPN8P	TAX3/6, QAX4/8	<u>OAX4M</u>	<u>OAX4L</u>	TXK6, QXK8	TAX3E, QAX4E	TAX6P, QAX8P	TAX3F/6F, QAX4F/8F
	LT, Standard	S	S	S	+	S	S	S	S	+	+	S	S	S	S	+	+	+
	(S) or Plus (+)									,								
Nodal	U, V	✓	✓	✓	✓	√	✓	√	✓	✓		✓	✓	✓	✓	✓		
freedoms	U, V, W																	√
(corner)	U, V, W U, V, (P)										1						1	V
(corner) Material	Linear	√	√	√	1	√	√		✓	√	▼	1	1		1	1	√	1
properties			•		•				•	•	•	•	•		•	•	,	
properties	Linear (Orthotropic)	✓	✓	✓	✓	✓	✓		✓	✓	✓	✓	✓		✓	✓	✓	✓
	Linear (Anisotropic)	✓	✓	✓		✓	√ *		√ *		√ *	✓	√ *		√ *		√ *	
	Linear (Rigidities)	✓	✓	✓		✓	√ *		√ *		√ *						√ *	
	Matrix																	
	Joint																	
	Concrete Multi- crack	✓	✓	✓		✓	✓		✓		✓	✓	✓		✓		✓	
	Concrete Multi- crack(Transient)	✓	✓	✓		✓	√					✓	✓					
	Stress Resultant		,						,	,	,							
	Tresca	√	√	✓	√	√	√		√	1	√	√	1		1	√	√	
	Optimised Implicit Von Mises	✓	Ť	•	•	Y	•		•	V	V	_	•		V	V	•	
	Mohr-Coulomb	✓	✓	✓	✓	✓	✓		✓	✓	✓	✓	✓		✓	✓	✓	
	Modified Mohr-Coulomb					✓	✓		✓	√	✓	✓	✓		✓	✓	✓	
	Drucker-Prager	✓	✓	✓	✓	✓	√		✓	✓	✓	✓	✓		✓	✓	✓	
	Modified Cam-clay					√	√		✓		✓	✓	✓		✓		✓	

									υC	ontii	nuur	n						
2D Cont	tinuum t Summary	8/			ല	~1										FI		X4F/8F
		TPM3/6, OPM4/8	OPM4M	TPK6, OPK8	TPM3E, OPM4E	TPN3/6, OPN4/8	<u>OPN4M</u>	OPN4L	TNK6, QNK8	TPN3E, OPN4E	TPN6P, OPN8P	TAX3/6, QAX4/8	OAX4M	OAX4L	TXK6, OXK8	TAX3E, OAX4E	TAX6P, OAX8P	TAX3F/6F, QAX4F/8F
	LT, Standard (S) or Plus (+)	S	S	S	+	S	S	S	S	+	+	S	S	S	S	+	+	+
	Volumetric Crushing/Foam					✓	~		✓	✓	✓	✓	✓		✓	✓	✓	
	Stress Potential (Von Mises, Modified Von Mises)	√	✓	✓	✓	✓	√		✓	✓	✓	√	✓		√	√	✓	
	Interface (2D)	>																
	Creep (General)	✓	✓	✓		✓	✓		✓	✓	✓	✓	✓		✓	✓	✓	
	Creep (AASHTO)	\	✓	✓		✓	\		✓			✓	√		✓			
	Creep (CEB- FIP)	\	✓	√		✓	√		✓			✓	✓		✓			
	Creep (Chinese)	✓	✓	✓		✓	✓		✓			✓	✓		✓			
	Creep (Eurocode)	√	✓	✓		✓	1		✓			✓	✓		✓			
	Creep (IRC)	✓	✓	✓		✓	✓		✓			✓	✓		✓			
	Damage (Simo, Oliver)	✓	✓	✓		✓	✓		✓	✓	✓	√	✓		√	✓	✓	
	Viscoelastic					✓	✓			✓	✓	✓	✓		✓	✓	✓	
	Shrinkage (CEB- FIP, Eurocode. General, User)	✓		√		✓	✓		✓		√	√	√	√	√		✓	
	Ko Initialisation					✓	✓		✓			✓	✓		✓	✓	✓	
	Rubber (Ogden,		✓				✓	✓						✓				
	Mooney-Rivlen, Neo-Hookean,																	
	Hencky)		1	1		1	1		1		1	✓	1		1		1	
	Generic Polymer Composite		V	*		V	٧		V		V	V	*		*		V	
	Field																	
	Prescribed Value	1	√	√	√	√	✓	√	√	√	✓	√	1	√	√	√	√	1

			ı	ı				2	D C	ontii	nuur	n	ı	1	ı	ı	ı	
	ntinuum nt Summary	TPM3/6, OPM4/8	<u>OPM4M</u>	TPK6, QPK8	TPM3E, OPM4E	TPN3/6, QPN4/8	<u>OPN4M</u>	<u>OPN4L</u>	TNK6, QNK8	TPN3E, OPN4E	TPN6P, OPN8P	TAX3/6, QAX4/8	<u>QAX4M</u>	<u>OAX4L</u>	TXK6, QXK8	TAX3E, QAX4E	TAX6P, OAX8P	TAX3F/6F, QAX4F/8F
Product Version	LT, Standard (S) or Plus (+)	S	S	S	+	S	S	S	S	+	+	S	S	S	S	+	+	+
types	(PDSP,TPDSP)																	
cy pes	Concentrated Loads (CL)	✓	√	√	*	√	*	√	✓	✓	✓	✓	✓	✓	✓	✓	✓	√
	Element Load																	
	Distributed Load (UDL)																	
	Distributed Load (FLD)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Body Force (CBF,BFP,BFPE	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Velocity (VELO)	✓	✓	✓	1	✓	1	✓	✓	1	✓	√	✓	✓	✓	✓	✓	✓
	Acceleration (ACCE)	✓	✓	✓	*	\	*	>	✓	✓	✓	√	✓	√	✓	✓	✓	✓
	Viscous Support Load (VSL)	✓	✓	√	>	>	>	>	✓	√	✓	✓	✓	✓	√	√	✓	
	Initial Stress/Strain (SSI,SSIE)	✓	✓	✓	✓	✓	✓	√	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Initial Stress/Strain (SSIG)	✓	✓	✓	✓	√	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓	✓
	Residual Stress (SSR)	✓	✓	✓	✓	✓	✓	√	✓	✓	✓	✓	✓	✓	✓	✓	✓	
	Residual Stress (SSRE,SSRG)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
	Target Stress/Strain (TSSIE,TSSIA)	✓	✓	✓	>	\	\	\	✓	✓	✓	✓	✓	√	✓	√	✓	√
	Target	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓	✓

								2	D C	ontii	nuur	n						
2D Con Elemen	tinuum it Summary	TPM3/6, OPM4/8	<u>QPM4M</u>	TPK6, OPK8	TPM3E, OPM4E	<u>TPN3/6, OPN4/8</u>	<u>OPN4M</u>	<u>OPN4L</u>	TNK6, QNK8	TPN3E, QPN4E	TPN6P, OPN8P	TAX3/6, QAX4/8	<u>OAX4M</u>	<u>OAX4L</u>	TXK6, QXK8	TAX3E, OAX4E	TAX6P, OAX8P	TAX3F/6F, QAX4F/8F
Product Version	LT, Standard (S) or Plus (+)	S	S	S	+	S	S	S	S	+	+	S	S	S	S	+	+	+
Version	Stress/Strain (TSSIG)																	
	Temperature (TEMP,TMPE)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	√
	Field Load Temp Dependent Load																	
	Overburden	✓	✓	√		✓	✓	✓	✓		✓	✓	✓	✓	✓		✓	
	Phreatic Surface	√	1	√		✓	√	✓			√	1	√	✓	1		✓	
Nonlinear geometry	Total Lagrangian	✓	✓	✓		✓	✓		✓		✓	✓	✓		✓		✓	
	Updated Lagrangian	✓	✓	✓		√	√		✓		✓	✓	✓		✓		✓	
	Eulerian	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
	Co-rotational	✓	✓	✓		✓	\		√		✓							
Integratio n schemes	Explicitly Integrated																	
	Numerically Integrated	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Mass modelling	Consistent Mass (default)	✓	✓	✓		✓	√	√	✓		✓	✓	✓	✓	✓		✓	✓
	Lumped Mass	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

^{*} Linear anisotropic and rigidities material properties for elements marked are supported in LUSAS Solver but not supported in LUSAS Modeller.

			ı			T	3D C	onti	nuur	n	T	1	T	
3D Cont Elemen	tinuum t Summary	<u>TH4</u>	<u>TH10</u>	<u>9Nd</u>	PN12/15	HX8	HX16/20	HX8M	TH10K, PN15K, HX20K	TH10S	PN6L, PN12L	HX8L, HX16L	TH4E, PN6E, HX8E	TH10P, PN12P, PN15P, HX16P, HX20P
Product	LT, Standard	S	+	S	+	S	+	s	+	+	+	+	+	+
Version	(S) or Plus (+)		•		•		•	•	•	•	•	•	•	•
Nodal	U, V													
freedoms	U, V, W	√	√	✓	√	√	√	√	✓	√	√	√	√	
(corner)	U, V, W (P)	•	•	•	•	V	•	•	•	•	•	V	•	1
Material	Linear (Isotropic)	√	1	1	1	1	1	√	√	1	√	1	1	· ✓
properties	Linear (Isotropic)	,		·	·	·	,	·	,	Ţ	,	ľ	,	·
F	Linear (Orthotropic)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	√	✓	√
	Linear (Anisotropic)	✓	✓	✓	√	✓	✓	✓	✓	✓	✓	✓		✓
	Linear (Rigidities)													
	Matrix													
	Joint													
	Concrete (Multi- crack)	4	✓	>	>	✓	√	✓	√	✓	✓	✓		✓
	Concrete (Multi- crack)Transient	✓	✓	✓	✓	✓	✓	✓						
	Stress Resultant													
	Tresca	✓	√	√	1	√	1	1	1	1	√	1	1	V
	Optimised Implicit Von Mises	•	•	•	•	•	•	•	•	•	•	•	•	•
	Mohr-Coulomb	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Modified Mohr-Coulomb	✓	√	√	√	✓	√	✓	√					√
	Drucker-Prager	\	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Modified Cam- clay	✓	√	√	√	√	√	√	✓					√

							3D (Conti	nuur	n				
	tinuum nt Summary	<u>TH4</u>	<u>TH10</u>	<u>9Nd</u>	PN12/15	HX8	HX16/20	HX8M	TH10K, PN15K, HX20K	<u>TH10S</u>	PN6L, PN12L	HX8L, HX16L	TH4E, PN6E, HX8E	TH10P, PN12P, PN15P, HX16P, HX20P
Product Version	LT, Standard (S) or Plus (+)	s	+	s	+	s	+	s	+	+	+	+	+	+
, 0282022	Volumetric Crushing/Foam	✓	√	✓	√	√	√		✓	√	√	✓	√	✓
	Stress Potential(Von Mises, Modified Von Mises Hill, Hoffman)	>	√	√	√	√	√	✓	✓	√	√	√	√	~
	Creep (General)	✓	✓	✓	✓	✓	✓		✓				✓	✓
	Creep (AASHTO)	✓	√	✓	✓	✓	✓	√	✓	✓	✓	✓		
	Creep (CEB-FIP)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
	Creep (Chinese)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
	Creep (Eurocode)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
	Creep (IRC)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
	Damage	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Viscoelastic	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓
	Shrinkage (CEB- FIP, Eurocode, General, User)	→	√	✓	✓	✓	✓	✓	✓	✓	✓	✓		√
	Ko Initialisation	\	✓	✓	✓	✓	✓	✓	✓					✓
	Elasto-plastic interface	✓	✓	✓	✓	✓	✓		✓					✓
	Rubber (Ogden, Mooney-Rivlin, Neo- Hookean, Hencky							√						
	Generic Polymer	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓
	Resin Cure Model								•	√	√	√		
	Composite								•	✓	✓	✓		

							3D (Conti	nuur	n				
3D Con Elemen	tinuum it Summary	<u>TH4</u>	<u>TH10</u>	<u>9Nd</u>	PN12/15	HX8	HX16/20	HX8M	TH10K, PN15K, HX20K	<u>TH10S</u>	PN6L, PN12L	HX8L, HX16L	TH4E, PN6E, HX8E	TH10P, PN12P, PN15P, HX16P, HX20P
Product Version	LT, Standard (S) or Plus (+)	S	+	S	+	S	+	S	+	+	+	+	+	+
V CI SIUII	(Composite Solid)													
	Composite													
	(Composite Shell)													
Loading	Field Prescribed Value	√	1	√	1	√	-/	√	./	1	√	-/	-/	-/
types	(PDSP,TPDSP)	•	Ť	•	Ť	ľ	ľ	•	•	•	•	•	•	v
J 1	Concentrated Loads (CL)	✓	1	√	1	1	√	✓	√	√	✓	✓	1	√
	Element Loads													
	Distributed Load (UDL)													
	Distributed Load (FLD)	√	✓	✓	✓	✓	✓	✓	✓	✓	√	✓	✓	~
	Body Force (CBF,BFP,BFPE)	✓	1	✓	✓	✓	✓	√	✓	✓	✓	✓	1	✓
	Velocity (VELO)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Acceleration (ACCE)	>	√	>	✓	✓	✓	✓	>	✓	✓	✓	✓	✓
	Viscous Support Load (VSL)	>	✓	→	✓	✓	√	✓	→	√	✓	✓	✓	✓
	Initial Stress/Strain (SSI,SSIE)	✓	✓	✓	✓	✓	✓	✓	✓	√	√	√	✓	√
	Initial Stress/Strain (SSIG)	√	✓	✓	✓	✓	√	√	√	√	✓	✓		√
	Residual Stress (SSR,SSRE)	√	✓	√	✓	✓	✓	✓	√	✓	✓	✓	✓	√
	Residual Stress (SSRG)	✓	✓	✓	✓	✓	✓	√	1	✓	✓	✓	✓	✓
	Target	\	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

							3D C	onti	nuun	n				
3D Conti Element	inuum Summary	<u>TH4</u>	<u>TH10</u>	9Nd	PN12/15	HX8	HX16/20	HX8M	TH10K, PN15K, HX20K	<u>TH10S</u>	PN6L, PN12L	HX8L, HX16L	TH4E, PN6E, HX8E	TH10P, PN12P, PN15P, HX16P, HX20P
Product Version	LT, Standard (S) or Plus (+)	S	+	s	+	s	+	s	+	+	+	+	+	+
	Stress/Strain (TSSIE,TSSIA)													
	Target Stress/Strain (TSSIG)	√	✓	✓	✓	✓	✓	✓	✓	✓	√	✓	•	1
	Temperature (TEMP,TMPE)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Field Load													
	Temp Dependent Load													
	Overburden	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓
	Phreatic Surface	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓
Nonlinear geometry	Total Lagrangian	√	✓	✓	✓	✓	✓	✓	✓					√
	Updated Lagrangian	✓	✓	✓	✓	✓	✓	✓	✓					✓
	Eulerian	✓	✓	✓	✓	✓	✓	✓	✓				✓	✓
	Co-rotational	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓
Integration schemes	Explicitly Integrated													
	Numerically Integrated	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Mass modelling	Consistent Mass (default)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓
	Lumped Mass	✓	✓	✓	✓	✓	✓	✓	√	✓	✓	✓	✓	✓

		I	Plate	S				Sl	nells					Memb	ranes
•	shell and ane Element ry	TF3, OF4	<u>OSC4</u>	TTF6, OTF8	BXS3	BXS12, BXS13	TS3, OSI4	TSR6	TSL6, QSL8	TTS3	<u>9811</u>	OTS4	OTS8	BXM2/3	TSM3, SMI4
Product	LT, Standard (S) or	S	S	S	S	S	S	+	+	S	+	S	+	S	S
Version	Plus (+)														
Nodal	U, V													✓	
Freedoms	U, V, W														✓
(mid-side)	W, qx, qy		✓	✓											
	W, qx, qy (dq)	✓													
	U, V, W, qx, qy														
	U, V, qz					✓									
	U, V, qz (dU)				✓										
	U, V, W, qx, qy, qz						✓								
	U, V, W (U, V, W, q1,								✓						
	q2)														
	U, V, W (q1,)							✓							
	U, V, W, qa, qb (U, V,									✓	✓	✓	✓		
	W, qx, qy, qz)														
Material	Linear (Isotropic)	✓	1	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
properties															
	Linear (Orthotropic)	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓		✓
	Linear (Anisotropic)	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓		✓
	Linear (Rigidities)	✓	✓	✓			✓	✓	✓						✓
	Matrix														
	Joint												_		
	Concrete (Multi-crack)							√	✓	✓	✓	✓	✓		
	Stress Resultant				✓			√	✓			L			
	Tresca				✓	√		✓	✓	✓	✓	✓	✓	✓	
	Optimised Implicit Von Mises				✓	✓		✓	✓	✓	✓	✓	✓	✓	
	Mohr-Coulomb				✓	✓		✓	✓	✓	✓	✓	✓	✓	
	Drucker-Prager				✓	✓		✓	✓	✓	✓	✓	✓	✓	
	Volumetric Crushing/Foam														
	Stress Potential (Von-				✓	✓		✓	✓	✓	✓	✓	✓	✓	
	Mises, Modified Von														

		1	Plate	S				Sl	nells					Memb	ranes
•	Shell and ane Element ary	TF3, QF4	<u>0SC4</u>	TTF6, QTF8	BXS3	BXSI2, BXSI3	TS3, OSI4	TSR6	TSL6, OSL8	TTS3	9 <u>SLL</u>	QTS4	OTS8	BXM2/3	TSM3, SMI4
Product Version	LT, Standard (S) or Plus (+)	S	S	S	S	S	S	+	+	S	+	S	+	S	S
V CI SIUII	Mises)														
	Stress Potential(Hill, Hoffman)				✓	✓		✓	1	✓	✓	✓	✓		
	Creep (General)				1	1		1	1	1	1	1	√	1	
	Creep (AASHTO)				✓	✓			✓	✓	✓	✓	✓		
	Creep (CEB_FIP_90)				✓	✓			✓	✓	✓	✓	✓		
	Creep (Chinese)				✓	✓			✓	✓	✓	✓	✓		
	Creep (Eurocode)				✓	✓			✓	✓	✓	✓	✓		
	Creep (IRC)				✓	✓			✓	✓	✓	✓	✓		
	Damage				✓	✓		✓	✓	✓	✓	✓	✓	✓	
	Viscoelastic														
	Shrinkage (CEB-FIP_90, Eurocode_2, General, User)				✓	√	✓	√	✓	√	✓	✓	✓	√	√
	Ko Initialisation Rubber (Ogden,													1	
	Mooney-Rivlin, Neo- Hookean, Hencky)													Y	
	Generic Polymer														
	Composite (Composite Shell)								✓	✓	✓	✓	✓		
	Field														
Loading types	Prescribed Value (PDSP,TPDSP)	✓	✓	✓	✓	✓	✓	✓	√	✓	✓	✓	✓	√	✓
	Concentrated Loads (CL)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Element Load (ELDS)				✓	✓									
	Distributed Load (UDL)	✓	√	✓	✓	✓	√	✓	✓	✓	✓	✓	✓	√	✓
	Distributed Load (FLD)				✓	✓						L		✓	
	Body Force (CBF,BFP,BFPE)	√	√	√	/	√	√	√	√	√	✓	✓	✓	✓	✓

		I	Plate	S			ı	Sl	nells				Membranes					
Plate, S Membra Summaı	ne Element	F4		OTF8		BXS12, BXS13	<u>S14</u>		8TSC					8 1	SMI4			
		TF3, OF4	OSC4	TTF6, QTF8	BXS3	BXS12,	TS3, OSI4	TSR6	TSL6, QSL8	TTS3	9SLL	OTS4	OTS8	BXM2/3	TSM3, SM14			
Product Version	LT, Standard (S) or Plus (+)	S	S	S	S	S	S	+	+	S	+	S	+	S	S			
	Velocity (VELO)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓			
	Acceleration (ACCE)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓			
	Viscous Support Load (VSL)	✓	✓	✓	✓	✓	✓	✓	✓	✓	1	✓	✓	✓	✓			
	Initial Stress/Strain (SSI,SSIE)	✓	1	✓	1	1	✓	√						✓	✓			
	Initial Stress/Strain (SSIG)				√	√		√	✓	✓	√	✓	✓	✓	✓			
	Residual Stress (SSR,SSRE)							√										
	Residual Stress (SSRG)				\	\		✓	✓	✓	✓	✓	✓	✓				
	Target Stress/Strain (TSSIE,TSSIA)	✓	★	\	✓	√	✓	✓						✓	✓			
	Target Stress/Strain (TSSIG)				✓	✓		✓	✓	√	1	✓	✓	✓	✓			
	Temperature (TEMP,TMPE)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	1	✓	✓	✓			
	Field Load																	
	Temp Dependent Loads																	
	Overburden									✓	✓	✓	✓					
	Phreatic surface			✓	✓	✓				✓	✓	✓	✓					
Nonlinear geometry	Total Lagrangian				✓	1			✓	√	V	1	✓	✓				
	Updated Lagrangian				✓				✓									
	Eulerian																	
	Co-rotational							✓										
Integration schemes	Explicitly Integrated																	
	Numerically Integrated	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓			
Mass modelling	Consistent Mass (default)	✓	✓	\	√	√		✓	✓	✓	✓	√	✓	✓				
	Lumped Mass	✓	✓	√	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓			

					Joi	nts			
Joint El	ement Summary	JNT3	<u>лрнз</u>	JF3	JAX3	JXS3	JNT4, JL43	JSH4, JL46	JSL4
Product version	LT, Standard (S) or Plus (+)	S	S	S	S	S	S	S	+
Nodal freedoms	U, V	√			√				
	U, V, W						✓		
	U, V, qz		✓			✓			
	W, qx, qy			✓					
	U, V, W, qx, qy								
	U, V, W, qx, qy, qz							✓	
	U, V, W, q1, q2								✓
Material properties	Linear								
	Matrix (Stiffness, Mass, Damping)*	✓	✓	✓	✓	✓	✓	✓	✓
	Joint (Stiffness, General)	✓	✓	✓	✓	✓	✓	✓	✓
	Joint (Dynamic, General)	✓	✓	✓	✓	✓	✓	✓	✓
	Joint (Elasto-Plastic)	✓	✓	✓	✓	✓	✓	✓	✓
	Joint (Nonlinear Contact)	✓	✓	✓	✓	✓	✓	✓	✓
	Joint (Nonlinear Friction)	✓	✓	✓	✓	✓	✓	✓	✓
	Viscous damping	✓	✓	✓	✓	✓	✓	✓	✓
	Lead-Rubber	✓	✓	✓	✓	✓	√	✓	✓
	Friction Pendulum	✓	✓	✓	✓	✓	✓	✓	✓
	Multilinear elastic	✓	✓	✓	✓	✓	✓	✓	✓
	Axial force dependent multilinear elastic	√	✓	✓	✓	✓	>	✓	✓
	Concrete								
	Elasto-Plastic								
	Creep								
	Damage								
	Viscoelastic								
	Shrinkage								
	Volumetric Crushing/Foam								
	Rubber								
	Composite								
	Field								
Loading	Prescribed value (PDSP,TPDSP)	√	✓	✓	✓	√	√	✓	✓

					Joi	nts			
Joint Ele	ement Summary	JNT3	JPH3	JF3	JAX3	JXS3	JNT4, JL43	JSH4, JL46	JSL4
Product version	LT, Standard (S) or Plus (+)	S	S	S	S	S	S	S	+
types									
	Concentrated Load (CL)	✓	✓	✓	✓	✓	✓	✓	✓
	Element Load								
	Distributed Load								
	Body Force(CBF)	✓	✓	✓	✓	✓	✓	✓	✓
	Body Force (BFP,BFPE)								
	Velocities (VELO)	✓	✓	✓	✓	✓	✓	✓	✓
	Acceleration (ACCE)	✓	✓	✓	✓	✓	✓	✓	✓
	Viscous Support Load (VSL)	✓	✓	✓	✓	✓	✓	✓	✓
	Initial Stress/Strain (SSI,SSIE)	✓	✓	✓	✓	✓	✓	✓	✓
	Initial Stress/Strain (SSIG)								
	Residual Stress								
	Target Stress/Strain (TSSIE,TSSIA)	✓	✓	✓	✓	✓	✓	✓	✓
	Target Stress/Strain (TSSIG)								
	Temperature (TEMP,TMPE)	✓	✓	✓	✓	✓	✓	✓	✓
	Field Load								
	Temp Dependent Load								
Nonlinear geometry	Total Lagrangian								
	Updated Lagrangian								
	Eulerian								
	Co-rotational								
Integration schemes	Explicitly Integrated								
	Numerically Integrated	✓	✓	✓	✓	✓	✓	✓	✓
Mass modelling	Consistent Mass (default)								
3	Lumped Mass	✓	✓	✓	✓	✓	✓	✓	✓

^{*} Supported in LUSAS Solver but not supported in LUSAS Modeller for all joints listed.

		Field																		
	al / Field nt Summary	BFD2/3	BFX2/3	BFS2/3	LFD2	LFX2	LFS2	TFD3/6, QFD4/8	TFX3/6, OFX4/8	TF4	<u>TF10</u>	PF6	PF12/15	HF8	HF16/20	TF10S	PF6C, HF8C	PF12C, HF16C	TXF3, OXF4	TXF6, QXF8
Product	LT, Standard (S)	S	S	S	S	S	S	S	S	S	S	S	S	S	+	+	+	+	S	S
version	or Plus (+)																			
Freedoms	F	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Material properties	Composite															✓	✓	✓		
•	Field (Isotropic)	✓	✓	✓				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Field (Isotropic Concrete)	✓	✓	✓				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Field (Orthotropic)							✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	√
	Field (Orthotropic Concrete)							✓	1	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Field (Linear Conv/Rad)				✓	✓	✓													
	Field (Arbitary Conv/Rad)				✓	✓	✓													
Loading types	Prescribed (TPDSP)	✓	✓	✓	✓	✓	√	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Rate of heat inflow, concentrated (RGN)	✓	✓	✓				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Face heat and water fluxes (FFL)	✓	✓	✓				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Rate of heat inflow, per unit volume (RBC, RBV, RBVE)	✓	✓	✓				√	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Temperature (TEMP, TMPE)	✓	✓	✓																
	Environmental	✓	✓	✓				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

										1	Field	ł								
Thermal / Field Element Summary		BFD2/3	BFX2/3	BFS2/3	LFD2	LFX2	LFS2	TFD3/6, QFD4/8	TFX3/6, OFX4/8	TF4	<u>TF10</u>	PF6	PF12/15	HF8	$\overline{\rm HF16/20}$	TF10S	PF6C, HF8C	PF12C, HF16C	TXF3, 0XF4	TXF6, OXF8
Product version	LT, Standard (S) or Plus (+)	S	S	S	S	S	S	S	S	S	S	S	S	S	+	+	+	+	S	S
, , , , , , , , , , , , , , , , , , , ,	conditions (ENVT)																			
	Temp Dep Load (TDET/RIHG)	✓	✓	✓				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Schemes	Numerically Integrated	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Specific heat	Consistent (default)	✓	✓	✓				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	√
	Lumped	>	✓	✓				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

				H	[ygro-]	Therma	al		
Hygro-T Summar	hermal Element 'Y	THT3/6, OHT4/8	TXHT3/6, QXHT4/8	THT4	THT10	PHT6	PHT12/15	HHT18	HHT16/20
Product version	LT, Standard (S) or Plus (+)	\+	+	+	+	+	+	+	+
Freedoms	T, Pc	✓	✓	\	✓	\	✓	✓	✓
Material properties	Hygro-thermal concrete	✓	✓	>	✓	\	✓	✓	\
	Hygro-thermal linear	✓	✓	\	✓	\	✓	✓	✓
Loading types	Prescribed temperature and relative humidity (TPDSP)	✓	✓	√	✓	✓	✓	✓	✓
	Environmental conditions (ENVT)	✓	✓	✓	✓	✓	✓	✓	✓
	Rate of heat and/or water inflow (concentrated) (RGN)	✓	√	√	√	✓	√	√	✓
	Rate of heat and/or water inflow per unit area - flux, (FFL)	✓	✓	√	✓	√	✓	✓	✓
	Rate of heat and/or water inflow per unit volume (RBC, RBV, RBVE)	✓	√	✓	√	*	√	√	*
	Temperature dependent environmental conditions (TDET)	✓	✓	√	✓	✓	✓	✓	✓
	Temperature dependent rate of heat and/or water inflow per unit volume (RIHG)	✓	4	4	4	4	4	1	√
Initial conditions	Initial conditions (TMPE, TMP)	✓	✓	*	√	4	✓	√	√
Integration schemes	Numerically Integrated	✓	✓	√	√	*	✓	✓	✓

			I	nterf	ace					Mas	S		Ri ₂ Slide	gid eline	Phreatic		
Interface, Non- Structural Mass, Rigid Slideline and Phreatic Element Summary		<u>IPN4, IAX4, IPM4</u>	IPN6, IAX6, IPM6	<u>IS6, IS8</u>	IS12, IS16	IPN6P, IAX6P	IS12P, IS16P	PM2	<u>PM3</u>	LMS3, LMS4	LM2, LM3	TM3/6, QM4/8	R2D2	R3D3, R4D3	PHS2	PHS3, PHS4	
Product version	LT, Standard (S) or Plus (+)	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Nodal freedoms	U, V	✓	✓					✓			✓		√				
	U, V, P					✓											
	U, V, W			✓	✓				✓	✓		✓		✓			
	U,V,W, P						✓										
	U, V, qz																
	W, qx, qy																
	U, V, W, qx, qy																
	U, V, W, qx, qy, qz									✓							
	U, V, W, q1, q2																
Material properties	Linear												✓	✓			
	Matrix																
	Joint																
	Mass							✓	✓	✓	✓	✓					
	Concrete																
	Elasto-Plastic																
	Creep																
	Damage																
	Shrinkage																
	Interface	>	✓	\	✓	\	✓										
	Rubber																
	Generic Polymer																
	Stress Potential																
	Composite Field																
Loading types	Prescribed value (PDSP,TPDSP)	✓	✓	✓	✓	✓	✓						✓	✓			
o F	Concentrated Loads	✓	✓	✓	✓	✓	√										

			Iı	nterf	ace					Mas	S			gid eline	Phre	eatic
Interface, Non- Structural Mass, Rigid Slideline and Phreatic Element Summary		<u>IPN4, IAX4, IPM4</u>	<u>IPN6, IAX6, IPM6</u>	<u>IS6, IS8</u>	<u>IS12, IS16</u>	IPN6P, IAX6P	IS12P, IS16P	PM2	PM3	LMS3, LMS4	LM2, LM3	TM3/6, QM4/8	R2D2	R3D3, R4D3	PHS2	PHS3, PHS4
Product	LT, Standard (S)	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
version	or Plus (+)															
	(CL) Element Load															
	Distributed Load															
								1	✓	√	1	1				
	Body Force (CBF) Body Force							Y	•	_	•	_				
	(BFP,BFPE)															
	Velocity (VELO)	✓	✓	✓	✓								✓	✓		
	Acceleration (ACCE)	✓	✓	✓	✓								✓	✓		
	Viscous Support Load (VSL)	√	√	✓	✓	√	✓									
	Initial Stress/Strain (SSI,SSIE)															
	Initial Stress/Strain (SSIG)															
	Residual Stress															
	Target Stress/Strain (TSSIE,TSSIA)															
	Target Stress/Strain (TSSIG)															
	Temperature (TEMP,TMPE)	✓	✓	✓	✓	✓	✓									
	Field Load															
	Temp Dependent Load															
Nonlinear geometry	Total Lagrangian												√ *	√ *		
	Updated Lagrangian												√ *	√ *		
	Eulerian												√ *	√ *		
	Co-rotational	√		✓									√ *	√ ∗		

			I	nterf	ace					Mas	S		Rig Slide	gid eline	Phre	eatic
•	al Mass, deline and Element	IPN4, IAX4, IPM4	IPN6, IAX6, IPM6	<u>IS6, IS8</u>	<u>IS12, IS16</u>	IPN6P, IAX6P	IS12P, IS16P	PM2	<u>PM3</u>	LMS3, LMS4	LM2, LM3	TM3/6, QM4/8	<u>R2D2</u>	R3D3, R4D3	PHS2	PHS3, PHS4
Product version	LT, Standard (S) or Plus (+)	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Integration schemes	Explicitly Integrated															
	Numerically Integrated	✓	✓	✓	✓	√	✓	✓	✓	\	✓	√				
Mass modelling	Consistent Mass (default)					·		✓	√	1	1	1				
	Lumped Mass							✓	✓	\	✓	\				

^{*} Dependent upon the other surface (deformable surface) that the element is in contact with.

Chapter 1 : Bar Elements

2D Structural Bar Elements

General

Element Group Bars

Element Structural Bars

Subgroup

Element Straight and curved <u>isoparametric</u> bar elements in 2D which can accommodate varying cross sectional area.

Number Of 2 or 3.

Nodes

Freedoms U, V at each node

Node X, Y at each node

Coordinates

Geometric Properties

A1 ... An Cross sectional area at each node.

SF1, MF1 Optional scale factor applied to the areas in the calculation of the stiffness and mass matrices

Material Properties

Linear Isotropic MATERIAL PROPERTIES (Elastic: Isotropic)

Matrix Not applicable
Joint Not applicable

Concrete Not applicable Elasto-Plastic Stress resultant

Stress resultant Not applicable

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64
Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65

Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Optimised MATERIAL PROPERTIES NONLINEAR 75

Implicit Von (Elastic: Isotropic, Plastic: Von Mises, Mises: Hardening: Isotropic & Kinematic)

Volumetric Not applicable

Crushing:

Stress Potential STRESS POTENTIAL VON_MISES

(Isotropic: von Mises, Modified von Mises)

Creep CREEP PROPERTIES (Creep)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic VISCO ELASTIC PROPERTIES

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Rubber Not applicable

Multi-linear MATERIAL PROPERTIES NONLINEAR 104

Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V at each node.

Concentrated CL Concentrated loads. Px, Py at each node.

Loads

Element Loads Not applicable. **Distributed Loads** Not applicable.

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

 Ωx , Ωy , Ωz , αz

BFP, BFPE Body force potentials at nodes/for element. 0,

0, 0, 0, Xcbf, Ycbf

Velocities VELO Velocities. Vx, Vy at nodes.

Accelerations ACCE Acceleration Ax, Ay at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy: at nodes.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element.

Stress/Strains $Fx, \varepsilon x, \sigma x, \varepsilon x$

1 A, GA, GA, GA

SSIG Initial stresses/strains at Gauss points. F, Ex,

σx, εx

Residual Stresses SSR, SSRE Not applicable.

SSRG Residual stresses at Gauss points.

Components (nonlinear material models): 0, 0,

 σ_{x}

Target TSSIE, TSSIA Target stresses/strains at nodes/for element.

Stress/Strains $Fx, \varepsilon x, \sigma x, \varepsilon x$

TSSIG Target stresses/strains at nodes/for element. F,

 ϵx , σx , ϵx

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

To, 0, 0, 0 in local directions.

Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.

Loads

LUSAS Output

Solver Force (default): Fx

Strain: Ex

Modeller See <u>Results Tables (Appendix K)</u>

Local Axes

☐ Standard line element

Sign Convention

☐ Standard bar element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and small strains

Updated Not applicable.

Lagrangian

Eulerian Not applicable.

Co-rotational For large displacements and small strains.

Integration Schemes

Stiffness Default. 1-point (BAR2), 2-point (BAR3).

Fine (see 2-point (BAR2).

Options).

Mass Default. 2-point (BAR2), 3-point (BAR3).

Fine (see As default. *Options*).

Mass Modelling

Consistent mass (default).
Lumped mass.

Options

- 18 Invokes fine integration rule for element.
- 55 Outputs strains as well as stresses
- **87** Total Lagrangian geometric nonlinearity.
- 105 Lumped mass matrix.
- 229 Co-rotational geometric nonlinearity.

Notes on Use

- 1. The bar formulation is based on the standard <u>isoparametric</u> approach. The variation of axial force is constant for BAR2, and linear for BAR3.
- 2. Since the 3-noded element has no bending stiffness mechanisms may occur when used as 'stand alone' elements if the central node is not constrained in some way.
- 3. When the BAR2 element is used with either varying cross-sectional area or temperature dependent material properties, the 2-point Gauss rule should be utilised. This provides an improved representation of the variation of the material properties along the length of the element.
- 4. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.

Restrictions

Ensure mid-side node centrality
Avoid excessive element curvature

Recommendations on Use

 The 2-node elements are the most effective bar elements for modelling 'standalone-elements' such as members of trusses or bars connecting two discrete structures.

- They can be used to model cables in cable-stayed structures.
- Both the 2-noded and 3-noded elements are suitable for modelling reinforcement with continuum elements e.g. BAR3 may be used with QPM8 for analysis of reinforced concrete structures, or for modelling rock bolts surrounding an excavation

Theory

For additional information see the LUSAS Theory Manual

3D Structural Bar Elements

General

Element Group Bars
Element Struc

ent Structural Bars

Subgroup Element Description

Straight and curved isoparametric bar elements in 3D which can accommodate varying cross-sectional area.

2 or 3.

Number Of Nodes Freedoms

U, V, W at each node

Node Coordinates

Node X, Y, Z at each node.

Geometric Properties

A1 ... An Cross sectional area at each node.

SF1, MF1 Optional scale factor applied to the areas in the calculation of the stiffness and mass matrices

Material Properties

Linear Isotropic MATERIAL PROPERTIES (Elastic: Isotropic)

Matrix Not applicable
Joint Not applicable
Concrete Not applicable

Elasto-Plastic Stress Not applicable

resultant

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64
Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

MATERIAL PROPERTIES NONLINEAR 65 Mohr-Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Optimised MATERIAL PROPERTIES NONLINEAR 75 Implicit Von (Elastic: Isotropic, Plastic: Von Mises, Mises: Hardening: Isotropic & Kinematic)

Volumetric Not applicable

Crushing:

Stress STRESS POTENTIAL VON MISES

Potential (Isotropic: von Mises, Modified von Mises)

Creep CREEP PROPERTIES (Creep)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic VISCO ELASTIC PROPERTIES

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

MATERIAL PROPERTIES NONLINEAR 104 Multi-linear

Rubber Not applicable **Composite** Not applicable

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL Loads

Element Loads Not applicable **Distributed Loads** Not applicable

Body Forces CBF

Constant body forces for element. Xcbf, Yebf, Zebf, Ωx , Ωy , Ωz , αx , αy , αz

Body force potentials at nodes/for element. BFP, BFPE

0, 0, 0, 0, Xcbf, Ycbf, Zcbf

Prescribed variable. U, V, W at each node.

Concentrated loads. Px, Py, Pz at each node.

Velocities VELO Velocities. Vx, Vy, Vz at nodes. **Accelerations** ACCE Acceleration Ax, Ay, Az at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy at nodes.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element.

Stress/Strains Fx, εx , σx , εx

> **SSIG** Initial stresses/strains at Gauss points. F, Ex,

> > σx, εx

Residual Stresses SSR. SSRE Not applicable

> **SSRG** Residual stresses at Gauss points.

Components (nonlinear material models): 0,

 $0. \sigma x$

Target TSSI, TSSIA

Stress/Strains

Target stresses/strains at nodes/for element. Fx, εx , σx , εx

TSSIG

Target stresses/strains at nodes/for element.

 $F, \varepsilon x, \sigma x, \varepsilon x$

Temperatures TEMP, TMPE

Temperatures at nodes/for element. T, 0, 0,

0, To, 0, 0, 0 in local directions.

Overburden Not applicable. Phreatic Surface Not applicable. Field Loads Not applicable **Temp Dependent** Not applicable

Loads

LUSAS Output

Solver Force (default): Fx

Strain: Ex

Modeller See Results Tables (Appendix K)

Local Axes

☐ Standard line element

Sign Convention

☐ Standard bar element

Formulation

Geometric Nonlinearity

For large displacements and small strains **Total Lagrangian**

> **Updated** Not applicable.

Lagrangian

Eulerian Not applicable.

Co-rotational For large displacements and small strains.

Integration Schemes

Stiffness Default. 1-point (BRS2), 2-point (BRS3).

> Fine (see Options). 2-point (BRS2).

Mass Default. 2-point (BRS2), 3-point (BRS3).

As default. Fine (see *Options*). **Mass Modelling**

☐ Consistent mass (default). ☐ Lumped mass.

Options

- Invokes fine integration rule for element. 18
- 55 Outputs strains as well as stresses
- 87 Total Lagrangian geometric nonlinearity.
- 105 Lumped mass matrix.
- 229 Co-rotational geometric nonlinearity.

Notes on Use

- 1. The bar formulation is based on the standard
- 2. Since the 3-noded element has no bending stiffness, mechanisms may occur, when used as 'stand alone' elements, if the central node is not constrained in some way.
- 3. When the BRS2 element is used with either varying cross-sectional area or temperature dependent material properties, the 2-point Gauss rule should be utilised. This provides an improved representation of the variation of the material properties along the length of the element.
- 4. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION FACTORS must be added to the GEOMETRIC PROPERTIES input command.

Restrictions

Ensure mid-side node centrality
Avoid excessive element curvature

Recommendations on Use

- The 2-node elements are the most effective bar elements for modelling 'standalone-elements' such as members of trusses or bars connecting two discrete structures.
- They can be used to model cables in cable-stayed structures.

 Both the 2-noded and 3-noded elements are suitable for modelling reinforcement with continuum elements e.g. BRS3 may be used with HX20 for analysis of reinforced concrete structures, or for modelling rock bolts surrounding an excavation.

Element Reference Manual	

Chapter 2 : Beam Elements

2D Engineering Grillage Thick Beam Element

General

Element Name GRIL ΑΥ.0y

Element Group

Beams

Element Subgroup

Engineering Beams

Element

A straight grillage element for which shear deformations are

Description Number Of

Nodes

included. The geometric properties are constant along the length.

2 with moment release end conditions

End Releases

The element node numbers should be followed by: R restrained (default), F free defined in the order θ y at node 1 and then θ y at

node 2 related to local element axes

Freedoms

W, θx , θy : at each node.

Node

X, Y: at each node.

Coordinates

Geometric Properties

for element A, Iyy, Izz, Jxx, Asz, EFW

ASF1,SF2,SF3,SF4, SF5,SF6 MF1,MF2,MF3,MF4, MF5,MF6

Optional scale factors applied to the geometric properties in the calculation of the stiffness and

mass matrices

A Cross sectional area

Iyy, Izz 2nd moments of area about local y, z axes (see

Definition and *Notes*)

Jxx Torsional constant

Asz Effective shear area on local yz plane in local z

directions

EFW Equivalent plate width

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic:

Isotropic)

Matrix Not applicable

Not applicable Joint

Concrete Not applicable

Elasto-Plastic Not applicable

> Creep Not applicable

Not applicable Damage

Viscoelastic Not applicable

Not applicable Shrinkage

Rubber Not applicable

Generic Polymer Not applicable

> Composite Not applicable.

Loading

Prescribed Value PDSP, Prescribed variable. W, θx , θy : at nodes.

TPDSP

Concentrated CL Concentrated loads. Pz, Mx, My: at nodes

Loads (global).

Element Loads ELDS Element loads

LTYPE, S1, Pz, Mx, My

LTYPE=11: point loads and moments in local directions. LTYPE=12: point loads and

moments in global directions.

LTYPE, 0, Wz, Mx, 0

LTYPE=21: uniformly distributed

loads in local directions.

LTYPE, S1, Wz1, Mx1, 0, S2, Wz2, Mx2,

LTYPE=31: distributed loads in

local directions.

LTYPE, S1, Wz, Mx, 0

LTYPE=41: trapezoidal loads in

local directions.

Distributed Loads UDL Uniformly distributed loads. Wz:

Force/unit length in local directions for element (Local z and global Z are

coincident).

FLD, FLDG Not applicable.

Body Forces CBF Constant body forces for element. Zcbf

BFP, BFPE Not applicable.

VelocitiesVELOVelocities. Vz: at nodes.AccelerationsACCEAcceleration Az: at nodes.

Viscous Support VSL Viscous support loads. VLz nodes.

Loads

Initial Not

Stress/Strains applicable.

Residual Stresses Not

applicable.

Target Not

Stress/Strains applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element.

0, 0, 0, dT/dz, 0, 0, 0, dTo/dz: in local

directions.

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

Output

Solver Force (default): Fz, Mx, My: in local directions (see *Notes*).

Element output is with respect to the beam centre line.

Modeller See **Results Tables** (Appendix K).

Local Axes

☐ Standard line element

Sign Convention

☐ 2D engineering grillage thick beam element. Positive external forces and moments acting on the element nodes are in the direction of the local element axes.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Explicitly integrated.

Mass Modelling

]	Consistent	mass	(default)

☐ Lumped mass.

Options

105 Lumped mass matrix

Notes on Use

- The element formulation is based on the standard grillage element formulation.
 The force variations along the element are linear shear force, constant torsion and quadratic bending moment.
- 2. The displacement variations along the element are linear torsional rotations and cubic transverse flexural displacements.
- 3. Internal forces and moments are output at intervals of 1/10th of the element length by specifying the Gauss point option from the Output button on the **File** > **LUSAS datafile** dialog.
- 4. The <u>second moment of area</u> about local z, (Izz), is only required when assembling the mass matrix.
- 5. Strains are not available for GRIL elements.
- 6. Though this element cannot model nonlinear behaviour it can be mixed with other elements in a nonlinear analysis.
- 7. For restrictions on the use of <u>Wood-Armer</u> with grillages refer to the LUSAS User Guide and Theory Manual.

- 8. The element has constant material properties along its length. For analyses utilising temperature dependent material properties, the temperature used is the average of the nodal values.
- 9. A moment release option permits modelling of internal hinges (torsional rotations cannot be released). See <u>Number of Nodes</u> section.
- 10. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.

Restrictions

The element does not model material or geometric nonlinear effects.

Recommendations on Use

The element can be used to model two dimensional grillage type structures. Linear, eigen, and dynamic analysis procedures can be used with GRIL elements.

2D Thick Beam Elements

General

Element Name BMI2 BMI3

Element Group

Beams

Element Subgroup 2D Thick Beams

Element Description

Straight and curved isoparametric degenerate thick beam elements in 2D for which shearing deformations are included. The elements can accommodate varying geometric properties along the length.

Number Of Nodes

2 (BMI2) 3 (BMI3)

Freedoms

U, V, θ z at each node.

End Releases

The element node numbers should be followed by: R restrained (default) F free defined in the order U, V, θz for node 1 and then U, V, θz for the other end node (node 2 for BMI2, node 3 for BMI3). The releases relate to the local element axes (see Notes, Assumptions and Limitations).

Partial Fixity

Partial fixity at each end node can be defined for all freedoms; this can take the form of a fixity reduction factor or an explicitly defined stiffness value. Partial fixities are defined with respect to the local element axes (see Notes, Assumptions and Limitations).

Rigid Ends

Rigid lengths r_1 and r_2 measured from each end node can be specified for these elements. If these lengths are non zero then any end release or partial fixity is applied at the inner point defining the rigid end. A rigidity factor $(1.0>\lambda>0.0)$ can be specified to make the ends semi-rigid, and options to include/exclude the masses of the rigid ends are also provided (see Notes, Assumptions and Limitations).

Node Coordinates

Node X, Y: at each node.

Geometric Properties

A, Izz, Asy, ey for element

SF1,SF2,SF3,SF4, Optional scale factors applied to the geometric properties in **MF1,MF2,MF3,MF4** the calculation of the stiffness and mass matrices

A Cross sectional area

Izz 2nd moment of area about local z-axis (see **Definition**)

Asy Effective shear area on local yz plane in local y directions

ey Eccentricity from beam xz-plane to nodal line (+ve in +ve local y-direction)

Note: For MATERIAL MODEL 29 additional geometric properties are appended to the previous 8 (BMI2) or 12 (BMI3) geometric properties (see Notes, Assumptions and Limitations).

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic:

Isotropic)

Matrix Not applicable
Joint Not applicable
Concrete Not applicable

Elasto-Plastic Stress resultant MATERIAL PROPERTIES NONLINEAR

29

(Elastic: Isotropic, Plastic: Resultant) (ifcode=1 or 2, see Notes, Assumptions

and Limitations)

Creep AASHTO MATERIAL PROPERTIES NONLINEAR

86 AASHTO

(Concrete creep model to AASHTO code

of Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR

86 CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR

86 CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR

86 EUROCODE

(Concrete creep model to EUROCODE 2)

IRC MATERIAL PROPERTIES NONLINEAR

86 IRC

(Concrete creep model to Indian IRC code

of Practice)

Damage Not applicable **Viscoelastic** Not applicable

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Rubber Not applicable **Generic Polymer** Not applicable **Composite** Not applicable

Loading

Prescribed Value PDSP,

TPDSP

Concentrated CL

Loads

Element Loads ELDS

Prescribed variable. U, V, θz : at nodes.

Concentrated loads. Px, Py, Mz: at nodes

(global).

Element loads on nodal line (load type number LTYPE *10 defines the corresponding element load type on beam axis, see Notes)

LTYPE, S1, Px, Py, Mz

LTYPE=11: point loads and moments in local directions.

LTYPE=12: point loads and moments in global directions.

LTYPE, 0, Wx, Wy, 0

LTYPE=21: uniformly distributed loads in local directions.

LTYPE=22: uniformly distributed loads in global directions.

LTYPE=23: uniformly distributed projected loads in global directions

LTYPE, S1, Wx1, Wy1, 0, S2, Wx2, Wy2, 0

LTYPE=31: distributed loads in local directions.

LTYPE=32: distributed loads in global directions.

LTYPE=33: distributed projected loads in global directions

LTYPE, S1, Wx, Wy, 0

LTYPE=41: trapezoidal loads in local directions.

LTYPE=42: trapezoidal loads in global directions.

LTYPE=43: trapezoidal projected loads in

global directions

Distributed Loads UDL Uniformly distributed loads. Wx, Wy:

forces/unit length for element in local

directions.

FLD Not applicable.

Body Forces CBF Constant body forces for element.

Xcbf, Ycbf, Ωx , Ωy , Ωz , αz

BFP, BFPE Not applicable.

Velocities VELO Velocities. Vx, Vy: at nodes. **Accelerations** ACCE Acceleration. Ax, Ay: at nodes.

Viscous Support VSL Viscous support loads. VLx, Vly: at nodes.

Loads

Initial SSI, SSIE

Stress/Strains Resultants (for material model 29). Fx,

Fy, Mz: axial force, shear force and

Residual stresses at nodes/for element.

moment in local directions.

Residual Stresses SSR, SSRE, Residual stresses at Gauss points. These **SSRG**

stresses are specified in the same manner

as SSR and SSRE.

Target TSSIE, Target stresses/strains at nodes/for element. Stress/Strains TSSIA Fx, Fy, Mz: axial force, shear force and

> moment in local directions. Ex, Ey, Wz: axial, shear and flexural strains in local

directions.

Target stresses/strains at Gauss points. These stresses/strains are specified in the

same manner as TSSIE and TSSIA.

Temperatures TEMP, TMPE Temperatures at nodes/for elements. T, 0,

dT/dy, 0, To, 0, dTo/dy, 0

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress resultants (default): Fx, Fy, Mz: axial force, shear force and

moment in local directions.

Strain: ϵx , ϵy , ψz : Axial, shear and flexural strains in local

directions.

By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the

beam centroidal axes.

Modeller See Results Tables (Appendix K).

Local Axes

☐ Standard line element

Sign Convention

☐ 2D engineering beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations (see *Notes*)

Updated Not applicable.

Lagrangian

Eulerian Not applicable.

Co-rotational For large displacements and large rotations

P-Delta Displacements and rotations should be small (see *Notes*)

Integration Schemes

Stiffness Default. 1-point (BMI2), 2-point (BMI3).

Fine. Same as default.

Mass Default. 2-point (BMI2), 3-point (BMI3).

Fine. Same as default.

Note: A 3-point Newton-Cotes integration rule is also available for BMI3 using OPTION 134. This may be more applicable for infinitesimal strain, elasto-plastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory Manual.

Mass Modelling

Ш	Consistent mass	(de	faul	lt)).
---	-----------------	-----	------	-----	----

☐ Lumped mass.

Options

- 36 Follower loads
- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity. (see Notes)
- 102 Switch off load correction stiffness matrix due to centripetal acceleration
- 105 Lumped mass matrix.
- **134** Gauss to Newton-Cotes in plane (in the local x direction) integration for elements
- 157 Material model 29 (non cross-section elements), see Notes.
- **229** Co-rotational geometric nonlinearity.
- **403** Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Notes, Assumptions and Limitations (on by default).
- **404** Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMI21, see Notes, Assumptions and Limitations (on by default).
- **405** Specify geometric properties along beam centroidal axes
- 406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
- **418** Output stress resultants relative to beam centroidal axes for eccentric elements
- **421** P-Delta analysis, see Notes
- **432** Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis

Notes, Assumptions and Limitations

- The element is formulated from the degenerate continuum concept, i.e.
 enforcing directly the modified Timoshenko hypothesis for thick beams to the
 continuum theory. Plane cross-sections initially normal to the beam axis remain
 plane and undistorted (the shape of the cross-section remains unchanged) under
 deformation, but do not necessarily remain normal to the beam axis. Shearing
 deformations are included.
- 2. Input of geometric properties (OPTION 405) and loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axes. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line.
- 3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMI2, the axial force is constant, while the shear force and moment vary linearly along the length of the beam. For BMI3 the axial force, shear force and moment all vary linearly along the length.
- 4. When BMI2 is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic. Note that if OPTION 403 is used with eccentrically stacked elements, slippage can occur.

- 5. When BMI2 is used together with OPTION 404, loading that varies along the element length is accounted for in the force diagrams (i.e. for a beam under CBF or internal element loading). A post-processing technique has been introduced to obtain accurate quadratic bending moments for BMI3. For BMI2 (with OPTION 404) and BMI3, internal forces and moments are output at intervals of 1/10th of the element length by specifying the Gauss point option from the Output button of the LUSAS Datafile dialog.
- 6. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral. The rotations and translations remain in the local directions of the beam elements and support large deformations.
- 7. For nonlinear material model 29 the following geometric properties are appended to those already specified (see Geometric Properties).
 - Ap, Zzzp, Sp at each node
 - Ap Plastic area (=elastic area)
 - Zzzp Plastic modulus for bending about z axes
 - Sp Plastic area for shear (Sp=0).

Note that if eccentricity has been specified the plastic properties must be defined with reference to the nodal line and not the beam axes, i.e. the eccentricity is not used to automatically modify the plastic properties, they must be defined via modified geometry.

For nonlinear material model 29 the following ifcode parameters are applicable: ifcode=1 for circular hollow sections and ifcode=2 for solid rectangular sections.

- 8. Temperature dependent properties cannot be used with material model 29.
- 9. The <u>rigidity matrix</u> is evaluated explicitly from the geometric properties for both linear and nonlinear materials.
- 10. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.
- 11. OPTION 36 is only applicable for use with element load types ELDS and UDL. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
- 12. When a nonlinear material is used with this element the transverse shear stresses are excluded from the plasticity computations i.e. the transverse shear stresses are assumed to remain elastic. This means that if a nonlinear material is

- used in applications where transverse shear tends to dominate the stress field the equivalent von Mises and maximum principal stresses can exceed the uniaxial yield stress.
- 13. When a step by step dynamic analysis is carried out using BMI elements with distributed loading, the "free body force diagrams" pertaining to applied loading, are not superimposed on the nodal values, to do so would lead to erroneous results until a steady state is reached. It should therefore be noted that different force diagrams will be obtained for BMI elements if static and dynamic analyses are directly compared.
- 14. OPTION 229 considers large displacements and large rotations using a corotational formulation. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework. Note that OPTION 87 has no effect when specified without OPTION 229. To model very flexible members like cables, it is beneficial to use the corotational formulation together with the total Lagrangian formulation to improve convergence and obtain sensible internal displacements.
- 15. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.
- 16. The P-Delta formulation is only applicable to lower order (2-noded) beams, higher order beams used in a P-Delta analysis will default to co-rotational GNL.
- 17. Partial fixities and rigid ends are defined via the ELEMENT TOPOLOGY data and follow on the same line after the end releases, for example:

The character K is used to identify that the partial fixity stiffnesses $k_{12}^{\hat{}}$ $k_{13}^{\hat{}}$ are being explicitly defined, while the character N signifies that fixity factors, n_{12} n_{13} are being defined. The fixity factors are used as follows:

$$\hat{k}_{ij} = \frac{n_{ij}}{1 - n_{ij}} \tilde{k}_{ij}$$

The value of the factor n_{ij} ranges from zero for a pinned connection to 1.0 for a fully fixed connection.

The values r_1 and r_2 are the rigid end lengths at nodes 1 and 2 and λ is the rigidity factor (1.0 = fully rigid, the default). The factors m_1 and m_2 dictate how much mass to include for the rigid ends, full mass = 1.0 (default m_1 = m_2 =0.0).

Restrictions

- Ensure mid-side node centrality
- ☐ Avoid excessive element curvature

Recommendations on Use

 The element may be used for linear and nonlinear analysis of two dimensional beam, frame and arch structures.

2D Thick Beam Element with Quadrilateral Cross-Section

General

Element Group

Beams

Element Subgroup 2D Thick Beams

Element

Description

Straight and curved isoparametric degenerate thick beam elements in 2D for which shearing deformations are included. The elements have a quadrilateral cross section which may vary along its length.

Number Of Nodes 2 (BMI2X) 3 (BMI3X)

Freedoms

U. V. θ z: at end nodes.

End Releases

The element node numbers should be followed by: R restrained (default) F free defined in the order U, V, θz for node 1 and then U, V, θz for the other end node (node 2 for BMI2X, node 3 for BMI3X). The releases relate to the local element axes (see Notes, Assumptions and Limitations).

Partial Fixity

Partial fixity at each end node can be defined for all freedoms; this can take the form of a fixity reduction factor or an explicitly defined stiffness value. Partial fixities are defined with respect to the local element axes (see Notes, Assumptions and Limitations).

Rigid Ends

Rigid lengths r_1 and r_2 measured from each end node can be specified for these elements. If these lengths are non zero then any end release or partial fixity is applied at the inner point defining the rigid end. A rigidity factor $(1.0>\lambda>0.0)$ can be specified to make the ends semi-rigid, and options to include/exclude the masses of the rigid ends are also provided (see Notes, Assumptions and Limitations).

Node Coordinates

Node X. Y: at each node.

Geometric Properties

y₁, z₁, y₂, z₂, y₃, z₃, y₄, z₄: local cross section coordinate pairs at each node; followed by nt₁₂, nt₁₄: specifying the number of <u>Newton-Cotes integration</u> points in the direction defined by the local cross-section points 1-2 and 1-4 (zero indicates default values). See *Notes*. Multiple quadrilateral cross-sections can be used to build up complex beam cross-sections.

Note. The coordinates of the cross section are numbered clockwise about the local x-axis (the beam nodal line). That is, a right-hand screw rule in the direction of increasing x.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Matrix Not applicable

Joint Not applicable

Concrete MATERIAL PROPERTIES NONLINEAR 109

(Elastic: Isotropic, Plastic: Smoothed Multi

Crack Concrete)

Elasto-Plastic Stress Not applicable

resultant:

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64

Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65

Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Optimised MATERIAL PROPERTIES NONLINEAR 75

Implicit Von (Elastic: Isotropic, Plastic: Von Mises, Mises: Hardening: Isotropic & Kinematic)

Volumetric Not applicable

Crushing:

Stress STRESS POTENTIAL VON MISES

Potential (Isotropic: von Mises, Modified von Mises)

Creep CREEP PROPERTIES (Creep)

AASHTO

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP

MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese

MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode

MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE 2)

IRC

MATERIAL PROPERTIES NONLINEAR 86

(Concrete creep model to Indian IRC code of

Practice)

Damage

DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic Not applicable

Shrinkage

SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Rubber Not applicable Generic Polymer Not applicable

Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP

Prescribed variable. U. V. θ z: at end nodes.

Concentrated loads. Px, Py, Mz: at end nodes

dU at mid-side node.

Concentrated CL

Loads

(global). dPx: at mid-side node (local).

Element Loads ELDS

Element loads on nodal line (load type number LTYPE *10 defines the

corresponding element load type on beam

axis).

LTYPE, S1, Px, Py, Mz

LTYPE=11: point loads and moments in local

directions.

LTYPE=12: point loads and moments in

global directions.

LTYPE, 0, Wx, Wy, Mz

LTYPE=21: uniformly distributed loads in

local directions.

LTYPE=22: uniformly distributed loads in

global directions.

LTYPE=23: uniformly distributed projected

loads in global directions

LTYPE, S1, Wx1, Wy1, Mz1, S2, Wx2, Wy2,

LTYPE=31: distributed loads in local

directions.

LTYPE=32: distributed loads in global

directions.

LTYPE=33: distributed projected loads in

global directions

LTYPE, S1, Wx, Wy, Mz

LTYPE=41: trapezoidal loads in local

directions.

LTYPE=42: trapezoidal loads in global

directions.

LTYPE=43: trapezoidal projected loads in

global directions

Distributed Loads UDL Uniformly distributed loads. Wx, Wy:

force/unit length in local directions.

FLD Not applicable.

Constant body forces for element. Xcbf, Ycbf, **Body Forces** CBF

 $\Omega_{\rm X}$, $\Omega_{\rm V}$, $\Omega_{\rm Z}$, $\alpha_{\rm Z}$

BFP, BFPE Body force potentials at nodes/for element. Φ1,

Φ2, 0, 0, Xcbf, Ycbf

Velocities VELO Velocities. Vx, Vy: at nodes. **Accelerations** ACCE Acceleration Ax, Ay: at nodes

Viscous Support VSL Viscous support loads. VLx, Vly: at nodes.

Loads

Initial SSI, SSIE Target stresses/strains at nodes/for element.

Stress/Strains Components: Fx, Fy, Mz, εx, εy, ψz,

 $(\sigma x, \sigma xy, \varepsilon x, \varepsilon xy)$ Bracketed terms repeated

for each fibre integration point.

SSIG Initial stresses/strains at Gauss points. These

stresses/strains are specified in the same

manner as SSI and SSIE.

Residual Stresses SSR. SSRE Residual stresses at nodes/for element.

Components: $0, 0, 0, 0, 0, 0, (\sigma x, \sigma xy)$

Bracketed terms repeated for each fibre

integration point.

SSRG Residual stresses at Gauss points. These

stresses are specified in the same manner as

SSR and SSRE.

Target TSSIE, TSSIA

Stress/Strains

Target stresses/strains at nodes/for element.

Components: Fx, Fy, Mz, ϵ x, ϵ y, ψ z, $(\sigma$ x,

 σ xy, ϵ x, ϵ xy) Bracketed terms repeated for

each fibre integration point.

TSSIG Target stresses/strains at Gauss points. These

stresses/strains are specified in the same

manner as TSSIE and TSSIA.

Temperatures TEMP, TMPE Temperatures at nodes/for element T, 0, dT/dy,

0, To, 0, dTo/dy, 0: in local directions.

Phreatic surface Face_Pressure The fluid pressure is applied in the -y

direction of the element y axis.

Field Loads Not applicable. **Temp Dependent** Not applicable.

Loads

LUSAS Output

Solver Stress resultants (default): Fx, Fy, Mz: axial force, shear forces

and moment in local directions.

Continuum stresses: σx , σxy , in local directions.

Strain: Ex, Ey, Wz: Axial, shear and flexural strains in local

directions.

Continuum strains: Ex, Exy in local directions.

By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the

beam centroidal axes.

Modeller See Results Tables (Appendix K).

Local Axes

☐ Standard line element

Sign Convention

☐ Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, small rotations and small strains (see

Notes).

Updated For large displacements, large rotations and small strains.

Lagrangian

Eulerian Not applicable.

Co-rotational For large displacements and large rotations

P-Delta Displacements and rotations should be small (see *Notes*)

Integration Schemes

Stiffness Default. 1-point (BMI2X), 2-point (BMI3X).

Fine (see *Options*). Same as default.

Mass Default. 2-point (BMI2X), 3-point (BMI3X).

Fine (see *Options*). Same as default.

A 3-point Newton-Cotes integration rule is also available for BMI3X using OPTION 134. This may be more applicable for infinitesimal strain, elasto-plastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory Manual

Mass Modelling

_	a	(1 C 1()
	Consistent ma	cc (detaillt)

☐ Lumped mass.

Options

- 36 Follower loads
- 55 Output strains as well as stresses
- **87** Total Lagrangian geometric nonlinearity (see *Notes*).
- **102** Switch off load correction stiffness matrix due to centripetal acceleration
- **105** Lumped mass matrix
- 134 Gauss to <u>Newton-Cotes</u> in plane (in the local x direction) integration for elements.
- 139 Output yielded integration points only
- **229** Co-rotational geometric nonlinearity
- **403** Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Notes, Assumptions and Limitations (on by default).
- **404** Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMI2X, see Notes (on by default).

- 406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
- 418 Output stress resultants relative to beam centroidal axes for eccentric elements
- 421 P-Delta analysis, see Notes
- 432 Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis

Notes on Use

- The element is formulated from the degenerate continuum concept, i.e.
 enforcing directly the modified Timoshenko hypothesis for thick beams to the
 continuum theory. Plane cross-sections initially normal to the beam axis remain
 plane and undistorted (the shape of the cross-section remains unchanged) under
 deformation, but do not necessarily remain normal to the beam axis. Shearing
 deformations are included.
- 2. Input of loads (OPTION 406) and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axis. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line. Fiber stress/strain results are output at the actual location.
- 3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMI2X, the axial force is constant, while the shear force and moment vary linearly along the length of the beam. For BMI3X the axial force, shear force and moment all vary linearly along the length.
- 4. When BMI2X is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic. Note that if OPTION 403 is used with eccentrically stacked elements, slippage can occur.
- 5. When BMI2X is used together with OPTION 404, loading that varies along the element length is accounted for in the force diagrams (i.e. for a beam under CBF or internal element loading). Internal forces and moments are output at intervals of 1/10th of the element length by specifying the Gauss point option from the Output button of the LUSAS Datafile dialog.
- 6. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral. The rotations and translations remain in the local directions of the beam elements and support large deformations
- 7. OPTION 36 is only applicable for use with element load types ELDS and UDL. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
- 8. OPTION 229 considers large displacements and large rotations using a corotational formulation. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework. Note that OPTION 87 has no effect when specified without OPTION 229. To

model very flexible members like cables, it is beneficial to use the corotational formulation together with the total Lagrangian formulation to improve convergence and obtain sensible internal displacements.

- 9. The P-Delta formulation is only applicable to lower order (2-noded) beams, higher order beams used in a P-Delta analysis will default to co-rotational GNL.
- 10. The Smoothed Multi Crack Concrete Model (109) can be used with this element, however, due to the "plane sections remaining plane" hypothesis, crack widths cannot be computed.
- 11. Partial fixities and rigid ends are defined via the ELEMENT TOPOLOGY data and follow on the same line after the end releases, for example:

1 1 2 3 RFFRRR
$$K$$
 \hat{k}_{12} \hat{k}_{13} [$r_1 r_2 \lambda m_1 m_2$] or

1 1 2 3 R F F R R R N
$$n_{12} n_{13} [r_1 r_2 \lambda m_1 m_2]$$

The character K is used to identify that the partial fixity stiffnesses $k_{12}^2 k_{13}^2$ are being explicitly defined, while the character N signifies that fixity factors, $n_{12} n_{13}$ are being defined. The fixity factors are used as follows:

$$\hat{k}_{ij} = \frac{n_{ij}}{1 - n_{ij}} \tilde{k}_{ij}$$

The value of the factor n_{ij} ranges from zero for a pinned connection to 1.0 for a fully fixed connection.

The values r_1 and r_2 are the rigid end lengths at nodes 1 and 2 and λ is the rigidity factor (1.0 = fully rigid, the default). The factors m_1 and m_2 dictate how much mass to include for the rigid ends, full mass = 1.0 (default m_1 = m_2 =0.0).

Restrictions

- ☐ Ensure mid-side node centrality
- ☐ Avoid excessive element curvature

Recommendations on Use

The element may be used for linear and nonlinear analysis of two dimensional beam, frame and arch structures.

3D Thick Beam Elements

General

Element Group

Element

Subgroup

Element Description

Beams

Thick Beams

Straight and curved isoparametric degenerate thick beam elements in 3D for which shearing deformations are included. The elements can accommodate varying geometric properties along the length. BMI22 and BMI33 can consider initial twist.

Number Of Nodes $3\ (BMI21), 4\ (BMI22\ and\ BMI31)$ and $6\ (BMI33)$ with end release conditions.

The orientation node(s) (3rd node of BMI21, 3rd and 4th nodes of BMI22, 4th node of BMI31, 4th, 5th and 6th nodes of BMI33) are used to define the local xy-plane.

Freedoms

U, V, W, θx , θy , θz : at each active node.

End Releases

The element node numbers should be followed by: R restrained (default), F free defined in the order U, V, W, θx , θy , θz at node 1 and then U, V, W, θx , θy , θz at node 2 and node 3 (only for BMI31 and BMI33) related to local element axes (see Notes, Assumptions and Limitations).

Partial Fixity

Partial fixity at each end node can be defined for all freedoms; this can take the form of a fixity reduction factor or an explicitly defined stiffness value. Partial fixities are defined with respect to the local element axes (see Notes, Assumptions and Limitations).

End Conditions

Rigid lengths r_1 and r_2 measured from each end node can be specified for these elements. If these lengths are non zero then any end release or partial fixity is applied at the inner point defining the rigid end. A rigidity factor $(1.0 > \lambda > 0.0)$ can be specified to make the ends semi-rigid, and options to include/exclude the masses of the rigid ends are also provided (see Notes, Assumptions and Limitations).

Node Coordinates

Node X, Y, Z: at each node.

Geometric Properties

A, Iyy, Izz, Jxx, Asz, Asy, Iyz, ez, ey At each node

SF1,SF2,SF3,SF4,SF5,SF6,SF7,SF8,SF9 Optional scale factors applied to the **MF1,MF2,MF3,MF4**, geometric properties in the calculation of

MF5,MF6,MF7,MF8,MF9

the stiffness and mass matrices

A Cross sectional area.

A Closs sectional area

Iyy, Izz 2nd moment of area about local y, z directions (see **Definition**).

Jxx Torsional constant.

Asz, Asy Effective shear areas on local yz plane in local z, y directions (see **shear areas**).

Iy, Iz 1st moment of area about local y, z directions (see **Definition**).

Iyz Product moment of area about local y, z axes (see **Definition**).

ez Eccentricity from beam xy-plane to nodal line. (+ve in the +ve local z direction). (See Notes)

ey Eccentricity from beam xz-plane to nodal line. (+ve in the +ve local y direction). (See Notes)

Note: For MATERIAL MODEL 29 additional geometric properties are appended to the previous 22 (BMI21 and BMI22) or 33 (BMI31 and BMI33) geometric properties (see Notes, Assumptions and Limitations).

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic:

Isotropic)

Rigidities: RIGIDITIES 6 (Rigidities: Beam)

Matrix Not applicable
Joint Not applicable
Concrete Not applicable

Elasto-Plastic Stress resultant: MATERIAL PROPERTIES NONLINEAR

29

(Elastic: Isotropic, Plastic: Resultant) (ifcode=1 or 2, see Notes, Assumptions

and Limitations)

Creep AASHTO MATERIAL PROPERTIES NONLINEAR

86 AASHTO

(Concrete creep model to AASHTO Code

of Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR

86 CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR

86 CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR

86 EUROCODE

(Concrete creep model to EUROCODE_2)

IRC MATERIAL PROPERTIES NONLINEAR

86 IRC

(Concrete creep model to Indian IRC Code

of Practice)

Damage Not applicable Viscoelastic Not applicable

Shrinkage

SHRINKAGE CEB_FIP_90,

EUROCODE_2, GENERAL, USER

Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V, W, θ_x , θ_y ,

 θ z: at active nodes.

Concentrated CL Loads

Element Loads ELDS

Concentrated loads in global directions. Px, Py, Pz, Mx, My, Mz: at active nodes.

Element loads on nodal line (load type number LTYPE *10 defines the corresponding element load type on beam axis, see Notes, Assumptions and Limitations) (see Notes, Assumptions and Limitations)

LTYPE, S1, Px, Py, Pz, Mx, My, Mz LTYPE=11: point loads and moments in local directions. LTYPE=12: point loads and moments in global directions.

LTYPE, 0, Wx, Wy, Wz, Mx, My, Mz
LTYPE=21: uniformly
distributed loads in local
directions.
LTYPE=22: uniformly
distributed loads in global
directions (Mx=0).
LTYPE=23: uniformly
distributed projected loads in
global directions.

LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1, S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions.

LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz LTYPE=41: trapezoidal loads in local directions. LTYPE=42: trapezoidal loads in global directions. LTYPE=43: trapezoidal projected loads in global directions.

Uniformly distributed loads. Wx, Wy, Wz, Mx, My, Mz: local forces and moments / unit length for element (see

Distributed Loads UDL

Body Forces	FLD, FLDG CBF	Notes, Assumptions and Limitations). Not applicable. Constant body forces for Element.
Body Forces	CBI	Scot, Yebf, Zebf, Ωx , Ωy , Ωz , αx ,
		αy, αz
	BFP, BFPE	Body force potentials at nodes/for element. φ1, φ2, φ3, 0, Xcbf, Ycbf, Zcbf
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Acceleration. Ax, Ay, Az: at nodes
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy, VLz: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. Fx, Fy, Fz, Mx, My, Mz: axial force, shear forces, torque and
		moments in local directions. Ex, Ey,
		εz, ψx, ψy, ψz: axial, shear and flexural strains in local directions.
	SSIG	Initial stresses/strains at Gauss points. These stresses/strains are specified in the same manner as SSI and SSIE.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. Resultants (for material model 29). Fx, Fy, Fz, Mx, My, Mz: axial force, shear forces, torque and moments in local directions.
	SSRG	Residual stresses at Gauss points. These stresses are specified in the same manner as SSR and SSRE.
Target Stress/Strains	TSSIE, TSSIA	Target stresses/strains at nodes/for element. Fx, Fy, Fz, Mx, My, Mz: axial force, shear forces, torque and moments in local directions. £x, £y,
		εz, ψx, ψy, ψz: axial, shear and flexural strains in local directions.
	TSSIG	Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, 0, dT/dy, dT/dz, To, 0, dTo/dy, dTo/dz in local directions
Overburden	Not applicable.	

Phreatic Surface Not applicable. **Field Loads** Not applicable. **Temp Dependent** Not applicable.

Loads

LUSAS Output

Solver Stress resultants (default): Fx, Fy, Fz, Mx, My, Mz: axial force,

shear forces, torque and moments in local directions.

Strain: Ex, Ey, Ez, \Psi x, \Psi y, \Psi z: Axial, shear, torsional and

flexural strains in local directions.

By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the

beam centroidal axes.

Modeller See Results Tables (Appendix K).

Local Axes

□ Standard line element For each element/active node, the local xy-plane is defined by the local x-axis and the orientation node. The local y-axis is perpendicular to the local x-axis and positive on the side of the element where the orientation node lies. The local y and z-axes form a right-handed set with the local x-axis. See **Local Element Axes** for details

Sign Convention

☐ Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations (see Notes)

> Updated Not applicable.

Lagrangian

Eulerian Not applicable.

Co-rotational For large displacements and large rotations

> P-Delta Displacements and rotations should be small (see Notes)

Integration Schemes

Stiffness Default. 1-point (BMI21 and BMI22), 2-point (BMI31 and BMI33).

> Fine. Same as default.

Mass Default. 2-point (BMI21 and BMI22), 3-point (BMI31 and BMI33). Fine. Same as default.

Note: A 3-point Newton-Cotes integration rule is also available for BMI31 and BMI33 using OPTION 134. This may be more applicable for infinitesimal strain, elasto-plastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory Manual.

Mass Modelling

Consistent mass (default).
Lumped mass.

Options

- **36** Follower loads
- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity (see Notes).
- 102 Switch off load correction stiffness matrix due to centripetal acceleration
- 105 Lumped mass matrix.
- **134** Gauss to Newton-Cotes in plane (in the local x direction) integration for elements
- 157 Material model 29 (non cross-section elements), see Notes.
- **229** Co-rotational geometric nonlinearity.
- **403** Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Notes, Assumptions and Limitations (on by default).
- **404** Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMI21, see Notes, Assumptions and Limitations.
- **405** Specify geometric properties along beam centroidal axes (on by default).
- **406** Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
- 418 Output stress resultants relative to beam centroidal axes for eccentric elements
- **421** P-Delta analysis, see Notes
- **432** Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis

Notes, Assumptions and Limitations

1. The element is formulated from the so-called degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Plane cross-sections initially normal to the beam axis remain plane and undistorted (the shape of the cross-section remains unchanged) under deformation, but do not necessarily remain normal to the beam axis; the shear centre and centroid of cross-section coincide. Shearing deformations are included. The basic kinematic assumptions correspond to the Timoshenko beam theory and do not allow for warping effects in torsion.

- Although warping effects can be considered approximately by using real torsional constants, inaccuracies are likely to occur when eccentricity is present.
- 2. Input of geometric properties (OPTION 405) and loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axes. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line.
- 3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMI21 and BMI22, the axial force and torsion are constant, while shear forces and moments vary linearly along the length of the beam. For BMI31 and BMI33 the axial force, shear forces, moments and torsion all vary linearly along the length.
- 4. When BMI21 is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic. Note that if OPTION 403 is used with eccentrically stacked elements, slippage can occur.
- 5. When BMI21 is used together with OPTION 404, loading that varies along the element length is accounted for in the force diagrams (i.e. for a beam under CBF or internal element loading). A post-processing technique has been introduced to obtain accurate quadratic bending moments for BMI31. For BMI21 (with OPTION 404) and BMI31, internal forces and moments are output at intervals of 1/10th of the element length by specifying the Gauss point option from the Output button of the LUSAS Datafile dialog.
- 6. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral. The rotations and translations remain in the local directions of the beam elements and support large deformations.
- 7. For nonlinear material model 29 the following geometric properties are appended to those already specified (see Geometric Properties).
 - A^p, Zyy^p, Zzz^p, Zy^p, Zz^p, S^p at each node
 - A^p Plastic area (=elastic area)
 - Zyy^p, Zzz^p Plastic moduli for bending about y, z axes
 - Zy^p , Zz^p Plastic moduli for torsion about y, z axes.
 - S^p Plastic area for shear (S^p=0).

Where the fully plastic torsional moment = $\sigma_y (Zy^p + Zz^p)$.

Note that if eccentricity has been specified the plastic properties must be defined with reference to the **nodal line** and **not** the beam axes, i.e. the eccentricity is not

used to automatically modify the plastic properties, they must be defined via modified geometry.

For nonlinear material model 29 the following **ifcode** parameters are applicable: **ifcode=1** for circular hollow sections and **ifcode=2** for solid rectangular sections

- 8. Temperature dependent properties cannot be used with material model 29.
- 9. The <u>rigidity matrix</u> is evaluated explicitly from the geometric properties for both linear and nonlinear materials.
- OPTION 36 is only applicable for use with element load types ELDS and UDL. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
- 11. When a nonlinear material is used with this element the transverse shear stresses are excluded from the plasticity computations i.e. the transverse shear stresses are assumed to remain elastic. This means that if a nonlinear material is used in applications where transverse shear tends to dominate the stress field the equivalent von Mises and maximum principal stresses can exceed the uniaxial yield stress.
- 12. When a step by step dynamic analysis is carried out using BMI elements with distributed loading, the "free body force diagrams" pertaining to applied loading, are not superimposed on the nodal values, to do so would lead to erroneous results until a steady state is reached. It should therefore be noted that different force diagrams will be obtained for BMI elements if static and dynamic analyses are directly compared.
- 13. OPTION 229 considers large displacements and large rotations using a corotational formulation. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework. Note that OPTION 87 has no effect when specified without OPTION 229. To model very flexible members like cables, it is beneficial to use the corotational formulation together with the total Lagrangian formulation to improve convergence and obtain sensible internal displacements.
- 14. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.
- 15. The P-Delta formulation is only applicable to lower order (2-noded) beams, higher order beams used in a P-Delta analysis will default to co-rotational GNL.
- 16. Partial fixities and rigid ends are defined via the ELEMENT TOPOLOGY data and follow on the same line after the end releases, for example:

1 1 2 3 RFRRFRRRRRR
$$K$$
 \hat{k}_{12} \hat{k}_{15} [r₁ r₂ λ m₁ m₂] or

1 1 2 3 RFRRFRRRRRR
$$N$$
 n_{12} n_{15} [r_1 r_2 λ m_1 m_2]

The character K is used to identify that the partial fixity stiffnesses $k_{12}^{\circ} k_{15}^{\circ}$ are being explicitly defined, while the character N signifies that fixity factors, n_{12} n_{15} are being defined. The fixity factors are used as follows:

$$\hat{k}_{ij} = \frac{n_{ij}}{1 - n_{ij}} \tilde{k}_{ij}$$

The value of the factor n_{ij} ranges from zero for a pinned connection to 1.0 for a fully fixed connection.

The values r_1 and r_2 are the rigid end lengths at nodes 1 and 2 and λ is the rigidity factor (1.0 = fully rigid, the default). The factors m_1 and m_2 dictate how much mass to include for the rigid ends, full mass = 1.0 (default m_1 = m_2 =0.0).

Restrictions

- ☐ Ensure mid-side node centrality
- ☐ Avoid excessive element curvature

Recommendations on Use

• The elements may be used for linear and material nonlinear analysis of three dimensional beam, frame and arch structures, and can also be used to model cables in cable stayed structures. BMI21 and BMI22 may also be used as a stiffener for the QTS4 shell element; while BMI31 and BMI33 may be used as a stiffener for the QTS8 shell element, e.g. space frames.

3D Thick Beam Elements with Quadrilateral Cross-Section

General

Element Group

Beams

Element

Thick Beams

Subgroup Element Description

Straight and curved isoparametric degenerate thick beam elements in 3D for which shearing deformations are included. The element

has a quadrilateral cross section which may vary along the element length. BMX22 and BMX33 can consider initial twist.

Number Of 3 (BMX2

Nodes

3 (BMX21), 4 (BMX22 and BMX31) and 6 (BMX33) with end release conditions.

release conditions.

The orientation node(s) (3rd node of BMX21, 3rd and 4th nodes of BMX22, 4th node of BMX31, 4th, 5th and 6th nodes of BMX33) are used to define the local xy-plane.

Freedoms

U, V, W, θx , θy , θz : at each active node.

End Releases

The element node numbers should be followed by: R restrained (default), F free defined in the order U, V, W, θx , θy , θz at node 1 and then U, V, W, θx , θy , θz at node 2 and node 3 (only for

Partial Fixity

BMX31 and BMX33) related to local element axes (see Notes).

Partial fixity at each end node can be defined for all freedoms; this can take the form of a fixity reduction factor or an explicitly defined stiffness value. Partial fixities are defined with respect to the local element axes (see Notes, Assumptions and Limitations).

End Conditions

Rigid lengths r_1 and r_2 measured from each end node can be specified for these elements. If these lengths are non zero then any end release or partial fixity is applied at the inner point defining the rigid end. A rigidity factor $(1.0>\lambda>0.0)$ can be specified to make the ends semi-rigid, and options to include/exclude the masses of the rigid ends are also provided (see Notes, Assumptions and Limitations).

Node Coordinates

Node X, Y, Z: at each node.

Geometric Properties

y₁, z₁, y₂, z₂, y₃, z₃, y₄, z₄: local cross section coordinate pairs at each node; followed by nt₁₂, nt₁₄: number of Newton-Cotes integration points in the direction defined by the local cross-section points 1-2 and 1-4 (zero indicates default values). Multiple quadrilateral cross-sections can be used to build up complex beam cross-sections.

Note. The corners of the quadrilateral are numbered clockwise about the local x-axis (the beam nodal line), that is, a right-hand screw rule in the direction of increasing x.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic:

Isotropic)

Matrix Not applicableJoint Not applicable

Concrete MATERIAL PROPERTIES NONLINEAR

109 (Elastic: Isotropic, Plastic: Smoothed

Multi Crack Concrete)

Elasto-Plastic Stress resultant: Not applicable.

Tresca: MATERIAL PROPERTIES NONLINEAR

61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total

Strain)

Drucker-Prager: MATERIAL PROPERTIES NONLINEAR

64 (Elastic: Isotropic, Plastic: Drucker-

Prager, Hardening: Granular)

MATERIAL PROPERTIES NONLINEAR Mohr-Coulomb:

> 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with

Dilation)

Optimised MATERIAL PROPERTIES NONLINEAR Implicit Von 75 (Elastic: Isotropic, Plastic: Von Mises,

Mises: Hardening: Isotropic & Kinematic)

Volumetric

Not applicable. Crushing:

Stress Potential STRESS POTENTIAL VON_MISES

(Isotropic: von Mises, Modified von

Mises)

Creep CREEP PROPERTIES (Creep)

> **AASHTO** MATERIAL PROPERTIES NONLINEAR

> > 86 AASHTO

(Concrete creep model to AASHTO code

of Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR

86 CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR

86 CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR

86 EUROCODE

(Concrete creep model to EUROCODE 2)

IRC MATERIAL PROPERTIES NONLINEAR

86 IRC

(Concrete creep model to Indian IRC code

of Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic Not applicable

Shrinkage SHRINKAGE CEB_FIP_90,

EUROCODE_2, GENERAL, USER

Rubber Not applicable Generic Polymer Not applicable Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL Loads

Element Loads ELDS

Prescribed variable. U, V, W, θx , θy , θz : at active nodes.

Concentrated loads in global directions. Px, Py, Pz, Mx, My, Mz: at active nodes (global).

Element loads on nodal line (load type number LTYPE *10 defines the corresponding element load type on beam axis, see Notes, Assumptions and Limitations)

LTYPE, S1, Px, Py, Pz, Mx, My, Mz LTYPE=11: point loads and moments in local directions. LTYPE=12: point loads and moments in global directions.

LTYPE, 0, Wx, Wy, Wz, Mx, My, Mz
LTYPE=21: uniformly
distributed loads in local
directions.
LTYPE=22: uniformly
distributed loads in global
directions (Mx=0).
LTYPE=23: uniformly
distributed projected loads in
global directions.

LTYPE, S1, Wx1, Wy1, Wz1, Mx1,
My1, Mz1, S2, Wx2, Wy2, Wz2,
Mx2, My2, Mz2
LTYPE=31: distributed loads in
local directions.
LTYPE=32: distributed loads in
global directions.
LTYPE=33: distributed projected

LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz LTYPE=41: trapezoidal loads in local directions. LTYPE=42: trapezoidal loads in global directions. LTYPE=43: trapezoidal projected

loads in global directions.

		loads in global directions.
Distributed Loads	UDL	Uniformly distributed loads. Wx, Wy, Wz, Mx, My, Mz: local forces and moments / unit length for element in local directions. see Notes, Assumptions and Limitations.
	FLD	Not applicable.
Body Forces	CBF	Constant body forces for Element. Xcbf, Ycbf, Zcbf, Ωx , Ωy , Ωz , αx , αy , αz
	BFP, BFPE	Body force potentials at nodes/for element. φ1, φ2, φ3, 0, Xcbf, Ycbf, Zcbf
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy, VLz: at nodes.
Accelerations	ACCE	Acceleration. Ax, Ay, Az: at nodes
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. Components: Fx, Fy, Fz, Mx,
		My, Mz, ϵx , ϵy , ϵz , ψx , ψy , ψz , $(\sigma x$,
		σxy, σxz ,εx, εxy, εxz) Bracketed terms repeated for each fibre integration point.
	SSIG	Initial stresses/strains at Gauss points. These stresses/strains are specified in the same manner as SSI and SSIE.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. Components: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
		0 , 0 , $(\sigma x$, σxy , $\sigma xz)$ Bracketed terms repeated for each fibre integration point.
	SSRG	Residual stresses at Gauss points. These stresses are specified in the same manner as SSR and SSRE.
Target Stress/Strains	TSSIE, TSSIA	Target stresses/strains at nodes/for element.Components: Fx, Fy, Fz, Mx,
		My, Mz, εx , εy , εz , ψx , ψy , ψz , $(\sigma x$,
		σxy, σxz ,εx, εxy, εxz) Bracketed terms repeated for each fibre integration point.
	TSSIG	Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0,

dT/dy, dT/dz, To, 0, dTo/dy, dTo/dz in

local directions

Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.

Loads

LUSAS Output

Solver Stress resultants (default): Fx, Fy, Fz, Mx, My, Mz: axial force,

shear forces, torque and moments in local directions.

Continuum stresses (OPTION 172): σx , σxy , σxz : in local

directions.

Strain: Ex, Ey, Ez, \psi x, \psi y, \psi z: Axial, shear, torsional and

flexural strains in local directions.

Continuum strains (OPTION 172): Ex, Exy, Exz: in local

directions.

By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the

beam centroidal axes.

Modeller See Results Tables (Appendix K).

Local Axes

□ Standard line element For each element/active node, the local xy-plane is defined by the local x-axis and the orientation node. The local y-axis is perpendicular to the local x-axis and positive on the side of the element where the orientation node lies. The local y and z-axes form a right-handed set with the local x-axis. See Local Element Axes for details

Sign Convention

☐ Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and rotations (see Notes)

Updated Not applicable.

Lagrangian

Eulerian Not applicable.

Corotational For large displacements and rotations

P-Delta Displacements and rotations should be small (see Notes)

Integration Schemes

Stiffness Default. 1-point (BMX21 and BMX22), 2-point (BMX31 and

BMX33).

Fine. Same as default.

Mass Default. 2-point (BMX21 and BMX22), 3-point (BMX31 and

BMX33).

Fine. Same as default.

Note: A 3-point Newton-Cotes integration rule is also available for BMX31 and BMX33 using OPTION 134. This may be more applicable for infinitesimal strain, elasto-plastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory Manual.

Mass Modelling

☐ Consistent mass (defau

☐ Lumped mass.

Options

- **36** Follower loads
- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity (see Notes).
- 102 Switch off load correction stiffness matrix due to centripetal acceleration
- 105 Lumped mass matrix.
- **134** Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
- **139** Output yielded integration points only.
- 172 Form the **rigidity matrix** by numerical cross section integration.
- **229** Co-rotational geometric nonlinearity.
- **403** Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Notes, Assumptions and Limitations (on by default).
- **404** Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMX21, see Notes (on by default).
- **406** Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
- 418 Output stress resultants relative to beam centroidal axes for eccentric elements
- **421** P-Delta analysis, see Notes
- **432** Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis

Notes, Assumptions and Limitations

- The element is formulated from the so-called degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Plane cross-sections initially normal to the beam axis remain plane and undistorted (the shape of the cross-section remains unchanged) under deformation, but do not necessarily remain normal to the beam axis; the shear centre and centroid of cross-section coincide. Shearing deformations are included.
- 2. Input of loads (OPTION 406) and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axis. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line. Fiber stress/strain results are output at the actual location.
- 3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMX21 and BMX22, the axial force and torsion are constant, while shear forces and moments vary linearly along the length of the beam. For BMX31 and BMX33 the axial force, shear forces, moments and torsion all vary linearly along the length.
- 4. When BMX21 is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic. Note that if OPTION 403 is used with eccentrically stacked elements, slippage can occur.
- 5. When BMX21 is used together with OPTION 404, loading that varies along the element length is accounted for in the force diagrams (i.e. for a beam under CBF or internal element loading). Internal forces and moments are output at intervals of 1/10th of the element length by specifying the Gauss point option from the Output button of the LUSAS Datafile dialog.
- 6. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral. The rotations and translations remain in the local directions of the beam elements and support large deformations.
- 7. Computation of the <u>rigidity matrix</u> by integration through the cross-section depth of the beam is necessary for all nonlinear material models. By default OPTION 172 is invoked automatically and a 5*5 point <u>Newton-Cotes integration</u> rule is used. This allows the output of stresses at the numerical cross section integration points.
- By default, the <u>rigidity matrix</u> is evaluated explicitly for linear materials. A
 3*3 point <u>Newton-Cotes integration</u> rule may be invoked using OPTION 172.
 Numerical cross section integration enables top, middle and bottom stress output.

- OPTION 36 is only applicable for use with element load types ELDS and UDL. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
- 10. For nonlinear material models, fibre integration is used across the cross-sectional area of the beam. Only axial deformation is considered in the plasticity computations, any torsional deformation is assumed to remain elastic.
- 11. OPTION 229 considers large displacements and large rotations using a corotational formulation. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework. Note that OPTION 87 has no effect when specified without OPTION 229. To model very flexible members like cables, it is beneficial to use the corotational formulation together with the total Lagrangian formulation to improve convergence and obtain sensible internal displacements.
- 12. The P-Delta formulation is only applicable to lower order (2-noded) beams, higher order beams used in a P-Delta analysis will default to co-rotational GNL.
- 13. The Smoothed Multi Crack Concrete Model (109) can be used with this element, however, due to the "plane sections remaining plane" hypothesis, crack widths cannot be computed.
- 14. Partial fixities and rigid ends are defined via the ELEMENT TOPOLOGY data and follow on the same line after the end releases, for example:

1 1 2 3 R F R R F R R R R R R R R R R
$$n_{12} n_{15} [r_1 r_2 \lambda m_1 m_2]$$

The character K is used to identify that the partial fixity stiffnesses k_{12} k_{15} are being explicitly defined, while the character N signifies that fixity factors, n_{12} n_{15} are being defined. The fixity factors are used as follows:

$$\hat{k}_{ij} = \frac{n_{ij}}{1 - n_{ij}} \tilde{k}_{ij}$$

The value of the factor n_{ij} ranges from zero for a pinned connection to 1.0 for a fully fixed connection.

The values r_1 and r_2 are the rigid end lengths at nodes 1 and 2 and λ is the rigidity factor (1.0 = fully rigid, the default). The factors m_1 and m_2 dictate how much mass to include for the rigid ends, full mass = 1.0 (default m_1 = m_2 =0.0).

Restrictions

Ц	Ensure mid-side node centrality
	Avoid excessive element curvature

☐ BMX22 and BMX33 elements are not available for selection currently within LUSAS Modeller.

Recommendations on Use

• The elements may be used for linear and nonlinear analysis of three dimensional beam, frame and arch structures. BMX21 and BMX22 may also be used as a stiffener for the QTS4 shell element; while BMX31 and BMX33 may be used as a stiffener for the QTS8 shell element.

3D Thick Beam Elements with Torsional Warping

General

Element Group

Beams

Element Subgroup Isoparametric Degenerate Beams

Element Description

Straight and curved isoparametric degenerate beam elements in 3D for which shearing deformations and torsional warping are included. The elements can accommodate varying geometric properties along the length. BMI22W and BMI33W can consider

initial twisting.

Number Of Nodes 3 (BMI21W), 4 (BMI22W and BMI31W) and 6 (BMI33W) with end release conditions.

The orientation node(s) (3rd node of BMI21W, 3rd and 4th nodes of BMI22W, 4th node of BMI31W, 4th, 5th and 6th nodes of BMI33W) are used to define the local xy-plane.

Freedoms

U, V, W, θx , θy , θz , α : at each active node.

End Releases

The element node numbers should be followed by: R restrained (or continuous or unreleased) (default), F free (or discontinuous or released), C discontinuous and constrained, defined in the order U, V, W, θx , θy , θz at node 1 and then U, V, W, θx , θy , θz at at node 2 and node 3 (only for BMI31W and BMI33W) related to local

element axes (see Notes, see Notes, Assumptions and Limitations).).

Partial Fixity

Partial fixity at each end node can be defined for all freedoms; this can take the form of a fixity reduction factor or an explicitly defined stiffness value. Partial fixities are defined with respect to the local element axes (see Notes, Assumptions and Limitations).

End Conditions

Rigid lengths r_1 and r_2 measured from each end node can be specified for these elements. If these lengths are non zero then any end release or partial fixity is applied at the inner point defining the rigid end. A rigidity factor $(1.0 > \lambda > 0.0)$ can be specified to make the ends semi-rigid, and options to include/exclude the masses of the rigid ends are also provided (see Notes, Assumptions and Limitations).

Node Coordinates

Node X, Y, Z: at each node.

Geometric Properties

A, Iyy, Izz, Jxx, Asz, Asy, Iy, Iz, Iyz, Cw, Cwy, Cwz,
Iyr, Izr, Irr, Iwr (default) or A, Iyy, Izz, Jxx, Asz, Asy,
ez, ey, Iyz, Cw, zo, yo, Iyr, Izr, Irr, Iwr (option 405)
SF1,SF2,SF3,SF4,SF5,SF6,SF7,SF8,SF9,
SF10,SF11,SF12,SF13, SF14,SF15,SF16
MF1,MF2,MF3,MF4,MF5,MF6,MF7,MF8,
MF9,MF10,MF11,MF12,MF13,MF14,MF15,MF16
calculation of

Optional scale factors applied to the geometric properties in the calculation of the stiffness and mass

A Cross sectional area.

matrices

Iyy, Izz 2nd moment of area about local y, z directions (see **Definition**).

Jxx Torsional constant.

Asz, Asy Effective shear areas on local yz plane in local z, y directions (see shear areas).

Iy, Iz 1st moment of area about local y, z directions (see **Definition**).

Iyz Product moment of area about local y, z axes (see **Definition**).

Cw Warping constant (see **Definition**).

Cwy, Cwz 1st moment of warping about local y, z directions (see <u>Definition</u>).

- ez Eccentricity from beam xy-plane to nodal line. (+ve in the +ve local z direction). (See Notes)
- ey Eccentricity from beam xz-plane to nodal line. (+ve in the +ve local y direction). (See Notes)
- Zo z-coordinate of the shear center with respect to the centroid (+ve in +ve local z-direction)
- Yo y-coordinate of the shear center with respect to the centroid (+ve in +ve local y-direction)

Iyr, Izr, Irr, Iwr Wagner constants. (See Notes)

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic:

Isotropic)

Rigidities: RIGIDITIES 6 (Rigidities: Beam)

Matrix Not applicable
Joint Not applicable
Concrete Not applicable

Elasto-Plastic Stress resultant: MATERIAL PROPERTIES NONLINEAR

29

(Elastic: Isotropic, Plastic: Resultant) (ifcode=1 or 2, see Notes, Assumptions

and Limitations)

Creep AASHTO MATERIAL PROPERTIES NONLINEAR

86 AASHTO

(Concrete creep model to AASHTO code

of Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR

86 CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR

86 CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR

86 EUROCODE

(Concrete creep model to EUROCODE_2)

IRC MATERIAL PROPERTIES NONLINEAR

86 IRC

(Concrete creep model to Indian IRC code

of Practice)

Damage Not applicable **Viscoelastic** Not applicable

SHRINKAGE CEB FIP 90, Shrinkage

EUROCODE_2, GENERAL, USER

Rubber Not applicable Generic Polymer Not applicable Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V, W, θx , θy ,

 θ z. α : at active nodes.

Concentrated loads in global directions. Concentrated CL Loads

Px, Py, Pz, Mx, My, Mz, Mb: at

active nodes.

Element loads on nodal line (load type Element Loads ELDS number LTYPE *10 defines the

corresponding element load type on beam axis, see Notes, Assumptions and Limitations) (see Notes,

Assumptions and Limitations)

LTYPE, S1, Px, Py, Pz, Mx, My, Mz LTYPE=11: point loads and moments in local directions.

LTYPE=12: point loads and moments in global directions.

LTYPE, 0, Wx, Wy, Wz, Mx, My, Mz LTYPE=21: uniformly

distributed loads in local

directions.

LTYPE=22: uniformly distributed loads in global

directions (Mx=0). LTYPE=23: uniformly distributed projected loads in global directions. LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1, S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2 LTYPE=31: distributed loads in local directions. LTYPE=32: distributed loads in global directions. LTYPE=33: distributed projected loads in global directions. LTYPE, S1, Wx, Wy, Wz, Mx, My, LTYPE=41: trapezoidal loads in local directions. LTYPE=42: trapezoidal loads in global directions. LTYPE=43: trapezoidal projected loads in global directions. Not applicable. DLDL, DLDG DLEL,DLEG Not applicable. PLDL, PLDG Not applicable. Distributed Loads UDL Uniformly distributed loads. Wx, Wy, Wz, Mx, My, Mz: local forces and moments / unit length for element (see Notes, Assumptions and Limitations). FLD, FLDG Not applicable. Constant body forces for Element. **Body Forces** CBF Xcbf, Ycbf, Zcbf, Ωx , Ωy , Ωz , αx , αν, αz BFP. BFPE Body force potentials at nodes/for element. φ 1, φ 2, φ 3, 0, Xcbf, Ycbf, Zcbf Velocities VELO Velocities. Vx, Vy, Vz: at nodes. Accelerations ACCE Acceleration. Ax, Ay, Az: at nodes Viscous Support VSL Viscous support loads. VLx, VLy, Loads VLz: at nodes. Initial stresses/strains at nodes/for Initial SSI, SSIE

Stress/Strains element. Fx, Fy, Fz, Mx, My, Mz, 0,

0: axial force, shear forces, torque and moments in local directions. £x,

 εy , εz , ψx , ψy , ψz , 0, 0: axial, shear

and flexural strains in local

directions.

SSIG Initial stresses/strains at Gauss points.

These stresses/strains are specified in the same manner as SSI and SSIE.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element.

Resultants (for material model 29). Fx, Fy, Fz, Mx, My, Mz: axial force, shear forces, torque and moments in

local directions.

SSRG Residual stresses at Gauss points.

These stresses are specified in the same manner as SSR and SSRE.

Target TSSIE, TSSIA Target stresses/strains at nodes/for Stress/Strains element. Fx. Fy. Fz. Mx. My. Mz

element. Fx, Fy, Fz, Mx, My, Mz, 0,0: axial force, shear forces, torque and moments in local directions. Ex.

Ey, Ez, ψ x, ψ y, ψ z, 0, 0: axial, shear

and flexural strains in local

directions.

TSSIG Target stresses/strains at Gauss points.

These stresses/strains are specified in the same manner as TSSIE and TSSIA.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T,

0, dT/dy, dT/dz, To, 0, dTo/dy, dTo/dz in local directions

Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.

Temp Dependent Not applicable. **Loads**

LUSAS Output

Solver Force (default): Fx, Fy, Fz, Mx, My, Mz, Fb, Mb: axial force,

shear forces, torque, moments, bishear (or warping torsion) and

bimoment in local directions.

Strain: εx , εy , εz , ψx , ψy , ψz , α , α' : axial, shear, torsional,

flexural strains and torsional warping strains in local directions. By default element output is with respect to the nodal line. Option 380 outputs stress/strain resultants with respect to the beam centreline.

Modeller See Results Tables (Appendix K).

Local Axes

☐ Standard line element For each element/active node, the local xy-plane is defined by the local x-axis and the orientation node. The local y-axis is perpendicular to the local x-axis and positive on the side of the element where the orientation node lies. The local y and z-axes form a right-handed set with the local x-axis. See Local Element Axes for details

Sign Convention

☐ Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, large rotations and small strains (see

Notes).

Updated Not applicable.

Lagrangian

Eulerian Not applicable.

Co-rotational For large displacements, large rotations and small strains.

P-Delta Displacements and rotations should be small (see Notes)

Integration Schemes

Stiffness Default. 1-point (BMI21W and BMI22W), 2-point (BMI31W and

BMI33W).

Fine. Same as default.

Mass Default. 2-point (BMI21W and BMI22W), 3-point (BMI31W and

BMI33W).

Fine. Same as default.

Note: A 3-point Newton-Cotes integration rule is also available for BMI31W and BMI33W using option 134. This may be more applicable for infinitesimal strain, elastoplastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory Manual

Mass Modelling

Ч	Consistent mass (default).
	Lumped mass.

Options

- 36 Follower loads
- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity (see Notes).
- **102** Switch off load correction stiffness matrix due to centripetal acceleration
- 105 Lumped mass matrix.
- **134** Gauss to Newton-Cotes in plane (in the local x direction) integration for elements
- 157 Material model 29 (non cross-section elements), see Notes.
- **229** Co-rotational geometric nonlinearity.
- **380** Output stress/strain resultants relative to beam axes for eccentric elements.
- **403** Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Notes, Assumptions and Limitations.
- **404** Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMI21, see Notes, Assumptions and Limitations.
- 405 Specify geometric properties along beam centroidal axes
- 406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
- **421** P-Delta analysis, see Notes
- **424** Include the Wagner effect in the large deformation formulation for beams
- **432** Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis

Notes, Assumptions and Limitations

- The element is formulated from the so-called degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Shearing deformations and torsional warping are included.
- 2. By default input of geometric properties and loads, and output of element stress/strain resultants are with respect to the nodal line. Option 405 inputs geometric properties, option 406 inputs loads, and option 380 outputs stress/strain resultants with respect to the beam centreline. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line.
- 3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMI21W and BMI22W, the axial force, bishear, bimoment and torsion are constant, while the other shear forces and moments

- vary linearly along the length of the beam. For BMI31W and BMI33W the axial force, all shear forces, all moments and torsion vary linearly along the length
- 4. When BMI21W is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic.
- 5. When BMI21W is used together with OPTION 404, loading that varies along the element length is accounted for in the force diagrams (i.e. for a beam under CBF or internal element loading). Internal forces and moments are output at intervals of 1/10th of the element length by specifying the Gauss point option from the Output button of the LUSAS Datafile dialog.
- 6. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral as well as different warping conditions in adjacent elements. The rotations and translations remain in the local directions of the beam elements and support large deformations.
- 7. The <u>rigidity matrix</u> is evaluated explicitly from the geometric properties for both linear and nonlinear materials.
- 8. Option 36 is only applicable for use with element load types ELDS and UDL. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
- 9. For large deformation analyses the following geometric properties (Wagner constants) are required (see Geometric Properties) if Option 424 = T: Iyr, Igr, Irr and Iwr at each node. If these constants are set to zero, the Wagner effect will be ignored, and the results may not be correct if twist rotations are not small.
- 10. When a step by step dynamic analysis is carried out using BMI elements with distributed loading, the "free body force diagrams" pertaining to applied loading, are not superimposed on the nodal values, to do so would lead to erroneous results until a steady state is reached. It should therefore be noted that different force diagrams will be obtained for BMI elements if static and dynamic analyses are directly compared.
- 11. OPTION 229 considers large displacements and large rotations using a corotational formulation. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework. Note that OPTION 87 has no effect when specified without OPTION 229.
- 12. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric

properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.

- 13. The P-Delta formulation is only applicable to lower order (2-noded) beams, higher order beams used in a P-Delta analysis will default to co-rotational GNL.
- 14. Partial fixities and rigid ends are defined via the ELEMENT TOPOLOGY data and follow on the same line after the end releases, for example:

1 1 2 3 RFRRFRRRRRR
$$K$$
 \hat{k}_{12} \hat{k}_{15} $[r_1 r_2 \lambda m_1 m_2]$ or

1 1 2 3 R F R R F R R R R R R R R R
$$N$$
 $n_{12} n_{15} [r_1 r_2 \lambda m_1 m_2]$

The character K is used to identify that the partial fixity stiffnesses k_{12} k_{15} are being explicitly defined, while the character N signifies that fixity factors, n_{12} n_{15} are being defined. The fixity factors are used as follows:

$$\hat{k}_{ij} = \frac{n_{ij}}{1 - n_{ij}} \tilde{k}_{ij}$$

The value of the factor $n_{\rm ij}\, ranges$ from zero for a pinned connection to 1.0 for a fully fixed connection.

The values r_1 and r_2 are the rigid end lengths at nodes 1 and 2 and λ is the rigidity factor (1.0 = fully rigid, the default). The factors m_1 and m_2 dictate how much mass to include for the rigid ends, full mass = 1.0 (default m_1 = m_2 =0.0).

Restrictions

- ☐ Ensure mid-side node centrality
- ☐ Avoid excessive element curvature
- ☐ Ensure correct warping condition at connections.

Recommendations on Use

 The elements may be used for linear and material nonlinear analysis of three dimensional beam, frame and arch structures. BMI21W and BMI22W may also be used as a stiffener for the QTS4 shell element; while BMI31W and BMI33W may be used as a stiffener for the QTS8 shell element.

3D Thick Beam Elements with Quadrilateral Cross-Section and Torsional Warping

General

Element Group

Beams

Element Subgroup Isoparametric Degenerate Beams

Element Description

Straight and curved isoparametric degenerate beam elements in 3D for which shearing deformations and torsional warping are included. The element has a quadrilateral cross section which may vary along the element length. BMX22W and BMX33W can consider initial twisting.

consider initial twisting.

Number Of Nodes 3(BMX21W), 4 (BMX22W and BMX31W) and 6(BMX33W) with end release conditions. The orientation node(s) (3rd node of BMX21W, 3rd and 4th nodes of BMX22W, 4th node of BMX31W, 4th, 5th and 6th nodes of BMX33W) are used to define the local xyplane.

Freedoms

U, V, W, θx , θy , θz : at each active node.

End Releases

The element node numbers should be followed by: R restrained (default), F free defined in the order U, V, W, θx , θy , θz at node 1 and then U, V, W, θx , θy , θz at node 2 and node 3 (only for BMX31 and BMX33) related to local element axes (see Notes).

The element node numbers should be followed by: R restrained (or continuous or unreleased) (default), F free (or discontinuous or released), C discontinuous and constrained, defined in the order U, V, W, θx , θy , θz , α and then U, V, W, θx , θy , θz , α at node 2 and node 3 (only for BMX31W and BMX33W) related to local element axes (see Notes).

Partial Fixity

Partial fixity at each end node can be defined for all freedoms; this can take the form of a fixity reduction factor or an explicitly defined stiffness value. Partial fixities are defined with respect to the local element axes (see Notes, Assumptions and Limitations).

End Conditions

Rigid lengths r_1 and r_2 measured from each end node can be specified for these elements. If these lengths are non zero then any end release or partial fixity is applied at the inner point defining the rigid end. A rigidity factor $(1.0 > \lambda > 0.0)$ can be specified to make the ends semi-rigid, and options to include/exclude the masses of the rigid ends are also provided (see Notes, Assumptions and Limitations).

Node Coordinates

Node X, Y, Z: at each node.

Geometric Properties

y₁, z₁, y₂, z₂, y₃, z₃, y₄, z₄: local cross section coordinate pairs for a triangle at each node; followed by nt12, nt14: specifying the number of integration points nt12* nt14 (the value nt12* nt14 determines the integration rule no matter what the values nt12 and nt14 are except when nt12* nt14 = 7, nt12 = 1 defines a cubic rule, while nt12 = 7 defines a quintic rule)

or

y1, z1, y2, z2, y3, z3, y4, z4: local cross section coordinate pairs for a quadrilateral at each node; followed by nt12, nt14: specifying the number of Newton-Cotes integration points in the direction defined by the local cross-section points 1-2 and 1-4 (zero indicates default values). Multiple quadrilateral cross-sections can be used to build up complex beam cross-sections. Number of divisions for each coarse quadrilateral (default =5) can be specified for the computation of warping of cross-section

Note. The corners of the quadrilateral are numbered clockwise about the local x-axis (the beam nodal line), that is, a right-hand screw rule in the direction of increasing x.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic:

Isotropic)

Matrix Not applicable Joint Not applicable

MATERIAL PROPERTIES NONLINEAR Concrete

109 (Elastic: Isotropic, Plastic: Smoothed

Multi Crack Concrete)

Not applicable. **Elasto-Plastic** Stress resultant:

> Tresca: MATERIAL PROPERTIES NONLINEAR

> > 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total

Strain)

MATERIAL PROPERTIES NONLINEAR Drucker-Prager:

64 (Elastic: Isotropic, Plastic: Drucker-

Prager, Hardening: Granular)

Mohr-Coulomb: MATERIAL PROPERTIES NONLINEAR

> 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with

Dilation)

MATERIAL PROPERTIES NONLINEAR Optimised Implicit Von 75 (Elastic: Isotropic, Plastic: Von Mises, Mises:

Hardening: Isotropic & Kinematic)

Volumetric Not applicable.

Crushing:

Stress Potential STRESS POTENTIAL VON MISES

(Isotropic: von Mises, Modified von

Mises)

Creep CREEP PROPERTIES (Creep)

> **AASHTO** MATERIAL PROPERTIES NONLINEAR

> > 86 AASHTO

(Concrete creep model to AASHTO code

of Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR

86 CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR

86 CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR

86 EUROCODE

(Concrete creep model to EUROCODE_2)

IRC MATERIAL PROPERTIES NONLINEAR

86 IRC

(Concrete creep model to Indian IRC code

of Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic Not applicable

Shrinkage

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Rubber Not applicable **Generic Polymer** Not applicable **Composite** Not applicable

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL Loads

Element Loads ELDS

Prescribed variable. U, V, W, θ x, θ y, θ z: at active nodes.

Concentrated loads in global directions. Px, Py, Pz, Mx, My, Mz, α: at active nodes (global).

Element loads on nodal line (load type number LTYPE *10 defines the corresponding element load type on beam axis, see Notes, Assumptions and Limitations)

LTYPE, S1, Px, Py, Pz, Mx, My, Mz LTYPE=11: point loads and moments in local directions. LTYPE=12: point loads and moments in global directions.

LTYPE, 0, Wx, Wy, Wz, Mx, My, Mz
LTYPE=21: uniformly
distributed loads in local
directions.
LTYPE=22: uniformly
distributed loads in global
directions (Mx=0).
LTYPE=23: uniformly
distributed projected loads in

global directions.

		My1, Mz1, S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2 LTYPE=31: distributed loads in local directions. LTYPE=32: distributed loads in global directions. LTYPE=33: distributed projected loads in global directions. LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz LTYPE=41: trapezoidal loads in
		local directions. LTYPE=42: trapezoidal loads in global directions. LTYPE=43: trapezoidal projected loads in global directions.
	DLDL, DLDG	Not applicable.
	DLEL,DLEG	Not applicable.
Distributed Loads	PLDL, PLDG UDL	Not applicable. Uniformly distributed loads. Wx, Wy, Wz, Mx, My, Mz: local forces and moments / unit length for element in local directions. see Notes, Assumptions and Limitations.
	FLD, FLDG	Not applicable.
Body Forces	CBF	Constant body forces for Element. Xcbf, Ycbf, Zcbf, Ω x, Ω y, Ω z, α x, α y, α z
	BFP, BFPE	Body force potentials at nodes/for element. φ1, φ2, φ3, 0, Xcbf, Ycbf, Zcbf
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Acceleration. Ax, Ay, Az: at nodes
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy, VLz: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. Components: Fx, Fy, Fz, Mx, My, Mz, 0, 0, &\varepsilon x, &\varepsilon y, \psi x, \varepsilon y, \psi x, \varepsilon y, \psi y, \varepsilon x, \varepsilon
		Bracketed terms repeated for each fibre integration point.
	SSIG	Initial stresses/strains at Gauss points.

LTYPE, S1, Wx1, Wy1, Wz1, Mx1,

These stresses/strains are specified in the same manner as SSI and SSIE.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element.

point.

SSRG Residual stresses at Gauss points. These

stresses are specified in the same

manner as SSR and SSRE.

Target TSSIE, TSSIA Target stresses/strains at nodes/for element.Components: Fx. Fy. Fz. N

element.Components: Fx, Fy, Fz, Mx,

My, Mz, 0, 0, εx , εy , εz , ψx , ψy , 0, 0,

 ψ z, $(\sigma$ x, σ xy, σ xz , ε x, ε xy, ε xz) Bracketed terms repeated for each fibre

integration point.

TSSIG Target stresses/strains at Gauss points.

These stresses/strains are specified in the same manner as TSSIE and TSSIA.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0,

dT/dy, dT/dz, To, 0, dTo/dy, dTo/dz in

local directions

Overburden Not applicable.

Phreatic Surface Not applicable. Field Loads Not applicable.

Temp Dependent Not applicable.

Loads

LUSAS Output

Solver Force (default): Fx, Fy, Fz, Mx, My, Mz, Fb and Mb: axial force, shear forces, torque, moments, bishear and bimoments in local

directions.

Continuum stresses (OPTION 172): σx , σxy , σxz : in local

directions.

Strain: εx , εy , εz , ψx , ψy , ψz , α , α ': axial, shear, torsional, flexural strains and torsional warping strains in local directions.

Continuum strains (OPTION 172): £x, £xy, £xz: in local directions.

By default element output is with respect to the nodal line. Option 380 outputs stress/strain resultants with respect to the beam

centreline.

Modeller See Results Tables (Appendix K).

Local Axes

☐ Standard line element For each element/active node, the local xy-plane is defined by the local x-axis and the orientation node. The local y-axis is perpendicular to the local x-axis and positive on the side of the element where the orientation node lies. The local y and z-axes form a right-handed set with the local x-axis. See Local Element Axes for details

Sign Convention

☐ Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations (see Notes).

Updated Not applicable.

Lagrangian

Eulerian Not applicable.

Co-rotational For large displacements and large rotations.

P-Delta Displacements and rotations should be small (see Notes)

Integration Schemes

Stiffness Default. 1-point (BMX21W and BMX22W), 2-point (BMX31W and

BMX33W).

Fine. Same as default.

Mass Default. 2-point (BMX21W and BMX22W), 3-point (BMX31W and

BMX33W).

Fine. Same as default.

Note: A 3-point Newton-Cotes integration rule is also available for BMX31W and BMX33W using option 134. This may be more applicable for infinitesimal strain, elastoplastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory manual.

Mass Modelling

Consistent mass (default).
Lumped mass.

Options

- **36** Follower loads
- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity (see Notes)
- 102 Switch off load correction stiffness matrix due to centripetal acceleration
- 105 Lumped mass matrix.
- **134** Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
- 139 Output yielded integration points only.
- 172 Form the <u>rigidity matrix</u> by numerical cross section integration.
- **229** Co-rotational geometric nonlinearity.
- 380 Output stress/strain resultants relative to beam axes for eccentric elements
- **403** Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Notes, Assumptions and Limitations (on by default).
- **404** Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMX21, see Notes (on by default).
- **405** Specify geometric properties along beam centroidal axes.
- 406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
- 418 Output stress resultants relative to beam centroidal axes for eccentric elements
- **421** P-Delta analysis, see Notes
- **432** Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis

Notes, Assumptions and Limitations

- The element is formulated from the so-called degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Shearing deformations and torsional warping are included.
- 2. By default input of loads and output of element stress/strain resultants are with respect to the nodal line. Option 381 inputs loads, and option 380 outputs stress/strain resultants with respect to the beam centreline. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line.
- 3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMX21W and BMX22W, the axial force, torsion, bi-shear and bi-moment are constant, while the other shear forces and moments vary linearly along the length of the beam. For BMX31W and BMX33W the axial force, all shear forces, all moments and the torsion vary linearly along the length.

- 4. When BMX21W is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic. Note that if OPTION 403 is used with eccentrically stacked elements, slippage can occur.
- 5. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral as well as different warping conditions in adjacent elements. The rotations and translations remain in the local directions of the beam elements and support large deformations.
- 6. Computation of the <u>rigidity matrix</u> by integration through the cross-section depth of the beam is necessary for all linear and nonlinear material models. By default OPTION 172 is invoked automatically and a 3*3 and 5*5 point <u>Newton-Cotes integration</u> rule is used respectively for linear and nonlinear materials for quadrilaterals; and a 7 point cubic rule is used for both linear and nonlinear materials for triangles. This allows the output of stresses at the numerical cross section integration points.
- OPTION 36 is only applicable for use with element load types ELDS and UDL. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
- 8. For large deformation analyses the following geometric properties (Wagner constants) are required (see Geometric Properties) if Option 424 = T: Iyr, Igr, Irr and Iwr at each node. If these constants are set to zero, the Wagner effect will be ignored, and the results may not be correct if twist rotations are not small.
- 9. When a step by step dynamic analysis is carried out using BMI elements with distributed loading, the "free body force diagrams" pertaining to applied loading, are not superimposed on the nodal values, to do so would lead to erroneous results until a steady state is reached. It should therefore be noted that different force diagrams will be obtained for BMI elements if static and dynamic analyses are directly compared.
- 10. OPTION 229 considers large displacements and large rotations using a corotational formulation. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework. Note that OPTION 87 has no effect when specified without OPTION 229.
- 11. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.

- 12. The P-Delta formulation is only applicable to lower order (2-noded) beams, higher order beams used in a P-Delta analysis will default to co-rotational GNL.
- 13. The Smoothed Multi Crack Concrete Model (109) can be used with this element, however, due to the "plane sections remaining plane" hypothesis, crack widths cannot be computed
- 14. Partial fixities and rigid ends are defined via the ELEMENT TOPOLOGY data and follow on the same line after the end releases, for example:

1 1 2 3 RFRRFRRRRRR
$$K$$
 \hat{k}_{12} \hat{k}_{15} [r_1 r_2 λ m_1 m_2] or

1 1 2 3 R F R R F R R R R R R R R R
$$N$$
 n_{12} n_{15} $[r_1$ r_2 λ m_1 $m_2]$

The character K is used to identify that the partial fixity stiffnesses k_{12} k_{15} are being explicitly defined, while the character N signifies that fixity factors, n_{12} n_{15} are being defined. The fixity factors are used as follows:

$$\hat{k}_{ij} = \frac{n_{ij}}{1 - n_{ij}} \tilde{k}_{ij}$$

The value of the factor n_{ij} ranges from zero for a pinned connection to 1.0 for a fully fixed connection.

The values r_1 and r_2 are the rigid end lengths at nodes 1 and 2 and λ is the rigidity factor (1.0 = fully rigid, the default). The factors m_1 and m_2 dictate how much mass to include for the rigid ends, full mass = 1.0 (default m_1 = m_2 =0.0).

Restrictions

- ☐ Ensure mid-side node centrality
- ☐ Avoid excessive element curvature
- BMX22 and BMX33 are not available for selection currently within LUSAS Modeller.

Recommendations on Use

 The elements may be used for linear and nonlinear analysis of three dimensional beam, frame and arch structures. BMX21W and BMX22W may also be used as a stiffener for the QTS4 shell element; while BMX31W and BMX33W may be used as a stiffener for the QTS8 shell element.

2D Kirchhoff Thin Beam Elements

General

Element Group

Beams

Element Subgroup

Kirchhoff Beams

Element Description

Parabolically curved thin beam element in which shear

deformations are excluded. The element can accommodate varying geometric properties along the length.

Number Of

f 3

Freedoms

Nodes

U, V, θ z: at end nodes.

dU: (relative displacement) at mid-side node.

Node Coordinates

Node X, Y: at each node.

Geometric Properties

A, Izz, ey At each node

SF1,SF2,SF3 Optional scale factors applied to the geometric properties in the

MF1,MF2,MF3 calculation of the stiffness and mass matrices

A Cross sectional area

Izz 2nd moment of area about local z-axis (see **Definition**).

ey Eccentricity from beam xz-plane to nodal line (+ve in +ve local v-direction)

For a beam with <u>eccentricity</u> **e** from the nodal line then Izz=e²A+Ina and Iz=eA (Ina=I about centroidal axis).

For MATERIAL MODEL 29 additional geometric properties are appended to the previous 9 geometric properties; see *Notes*.

Material Properties

Linear .. Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Rigidities: RIGIDITIES 3 (Rigidities:Beam)

Matrix Not

applicable

Joint Not

applicable

Concrete Not

applicable

resultant:

Elasto-Plastic Stress MATERIAL PROPERTIES NONLINEAR 29

(Elastic: Isotropic, Plastic: Resultant)

(ifcode=1 or 2, see *Notes*)

Creep CREEP PROPERTIES (Creep)

AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE 2)

IRC MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage Not

applicable

applicable

Viscoelastic Not

applicable

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Rubber Not

applicable

Generic Polymer Not

applicable

Composite Not

applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V, θ z: at end nodes.

Concentrated CL Concentrated loads. Px, Py, Mz: at end nodes.

Loads dPx: in local x direction at mid-side node.

Element Loads ELDS Element loads on nodal line (load type number

LTYPE *10 defines the corresponding element

load type on beam axis). LTYPE, S1, Px, Py, Mz

LTYPE=11: point loads and moments in local

directions.

LTYPE=12: point loads and moments in global directions.

LTYPE, 0, Wx, Wy, Mz

LTYPE=21: uniformly distributed loads in local directions.

LTYPE=22: uniformly distributed loads in global directions.

LTYPE=23: uniformly distributed projected

loads in global directions

LTYPE, S1, Wx1, Wy1, Mz1, S2, Wx2, Wy2, Mz2

LTYPE=31: distributed loads in local directions.

LTYPE=32: distributed loads in global directions

directions.

LTYPE=33: distributed projected loads in global directions

LTYPE, S1, Wx, Wy, Mz

LTYPE=41: trapezoidal loads in local

directions.

LTYPE=42: trapezoidal loads in global

directions.

LTYPE=43: trapezoidal projected loads in

global directions

Distributed Loads UDL Uniformly distributed loads. Wx, Wy:

force/unit length in local directions.

FLD, FLDG Not applicable.

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

 Ωx , Ωy , Ωz , αz

BFP, BFPE Body force potentials at nodes/for element. φ1,

φ2, 0, 0, Xcbf, Ycbf

Velocities VELO Velocities. Vx, Vy: at nodes.

Viscous Support VSL Viscous support loads. VLx, Vly: at nodes.

Loads

Accelerations ACCE Acceleration Ax, Ay: at nodes

Initial SSI, SSIE Initial stresses/strains at nodes/for element. Fx,

Stress/Strains Mz, 0: forces, moments in local directions. Ex,

 ψ z, 0: strains in local directions.

SSIG Initial stresses/strains at Gauss points Fx, Mz, 0:

forces, moments in local directions. ϵx , ψz , 0:

strains in local directions.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element. Fx, Mz,

0: forces, moments in local directions.

SSRG Residual stresses at Gauss points Fx, Mz, 0:

forces, moments in local directions.

Temperatures TEMP, Temperatures at nodes/for element. T, 0, dT/dy,

TMPE 0, To, 0, dTo/dy, 0

Target TSSIE, Target stresses/strains at nodes/for element. Fx,

Stress/Strains TSSIA Mz, 0: forces, moments in local directions. Ex,

 Ψz , 0: strains in local directions.

TSSIG Target stresses/strains at Gauss points Fx, Mz,

0: forces, moments in local directions, Ex. Wz.

0: strains in local directions.

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Force (default): Fx, Fy, Mz: forces, moments in local directions

(see Notes).

Strain: εx , εy , ψz : axial, flexural strains in local directions. By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the

beam centroidal axis.

Modeller See Results Tables (Appendix K).

Local Axes

☐ Standard line element

Sign Convention

■ Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, small rotations and small strains.

Updated For large displacements, large rotations and small strains.

Lagrangian

Eulerian Not applicable. **Co-rotational** Not applicable.

Integration Schemes

Stiffness Default. 2-point.

Fine (see *Options*). 3-point.

Mass Default. 2-point.
Fine (see *Options*). 3-point.

A 3-point <u>Newton-Cotes integration</u> rule is also available using option 134. This may be more applicable for infinitesimal strain, elastoplastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory manual.

Mass Modelling

Consistent mass ((default).
-------------------	------------

☐ Lumped mass.

Options

- **18** Invokes fine integration rule for element.
- 54 Updated Lagrangian geometric nonlinearity.
- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity.
- 105 Lumped mass matrix
- **134** Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
- 157 Material model 29 (non cross-section elements), see *Notes*.

- 170 Suppress transfer of shape function arrays to disk.
- **405** Specify geometric properties along beam centroidal axes
- 406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes.
- 418 Output stress resultants relative to beam centroidal axes for eccentric elements

Notes on Use

- The element formulation is based on the constrained super-parametric approach. The variation of axial force along the beam is linear. The variation of displacement is quadratic in the local x-direction and cubic in the local ydirection. Shear force is constant.
- Input of geometric properties (OPTION 405) and loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axis. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line
- 3. For nonlinear material model 29 the following geometric properties are appended to those already specified (see *Geometric Properties*).
 - A^p , Zzz^p , S^p at each node (i.e. nodes 1, 2, 3)
 - A^p Plastic area (=elastic area)
 - Zzz^p Plastic modulus for bending about z axis
 - S^p Plastic area for shear (S^p=0)
- 4. For nonlinear material model 29 the following if code parameters should be
 - ifcode=1 for circular hollow sections.
 - ifcode=2 for solid rectangular sections.
- 5. Temperature dependent properties cannot be used with material model 29.
- 6. The element should not be coupled to the face of a two dimensional continuum element because of the midside node incompatibility.
- 7. The <u>rigidity matrix</u> for BM3 is evaluated explicitly from the material and geometric properties for both linear and nonlinear materials.
- 8. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command

Restrictions

- ☐ Ensure mid-side node centrality
- ☐ Avoid excessive element curvature

Recommendations on Use

The element may be used for linear and nonlinear analysis of two dimensional beam, frame and arch structures. The 2-noded straight beam (BMI2 is more effective for the linear analysis of structures containing straight members of constant cross-section, e.g. plane frames.

2D Kirchhoff Thin Beam Element with Quadrilateral **Cross-Section**

General

Element Group Beams

> **Element Kirchhoff** Beams

Subgroup **Element Description**

Parabolically curved thin beam elements in which shear deformations are excluded. The quadrilateral cross-section may be

eccentric and can vary along the element length.

Number Of **Nodes**

> **Freedoms** U, V, θ z: at end nodes.

> > dU: (relative displacement) at mid-side node.

Node X, Y: at each node. **Coordinates**

Geometric Properties

y1, z1, y2, z2, y3, z3, y4, z4: local cross section coordinate pairs at each node; followed by nt₁₂, nt₁₄: specifying the number of **Newton-Cotes integration** points in the direction defined by the local cross-section points 1-2 and 1-4 (zero indicates default values). See Notes. Multiple quadrilateral cross-sections can be used to build up complex beam cross-sections.

Note. The coordinates of the cross section are numbered clockwise about the local x-axis (the beam nodal line). That is, a right-hand screw rule in the direction of increasing x.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Matrix Not applicable **Joint** Not applicable **Concrete** Not applicable

Elasto-Plastic Stress MATERIAL PROPERTIES NONLINEAR 29

> (Elastic: Isotropic, Plastic: Resultant) resultant:

> > (ifcode=2, see *Notes*)

MATERIAL PROPERTIES NONLINEAR 61 Tresca:

> (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker-**MATERIAL PROPERTIES NONLINEAR 64** Prager:

(Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

MATERIAL PROPERTIES NONLINEAR 65 Mohr-Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

MATERIAL PROPERTIES NONLINEAR 75 Optimised Implicit Von (Elastic: Isotropic, Plastic: Von Mises, Mises:

Hardening: Isotropic & Kinematic)

Volumetric

Crushing:

Stress STRESS POTENTIAL VON MISES

Not applicable

Potential (Isotropic: von Mises, Modified von Mises)

Creep CREEP PROPERTIES (Creep)

> **AASHTO** MATERIAL PROPERTIES NONLINEAR 86

> > AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese **MATERIAL PROPERTIES NONLINEAR 86**

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode **MATERIAL PROPERTIES NONLINEAR 86**

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC

MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic Not applicable

Shrinkage

SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value PDSP,

TPDSP

Concentrated CL

Loads

Element Loads ELDS

Prescribed variable. U, V, θ z: at end nodes. dU

at mid-side node.

Concentrated loads. Px, Py, Mz: at end nodes (global). dPx: at mid-side node (local).

Element loads on nodal line (load type number LTYPE *10 defines the corresponding

element load type on beam axis).

LTYPE, S1, Px, Py, Mz

LTYPE=11: point loads and moments in local directions.

LTYPE=12: point loads and moments in global directions.

LTYPE, 0, Wx, Wy, Mz

LTYPE=21: uniformly distributed loads in local directions.

LTYPE=22: uniformly distributed loads in global directions.

LTYPE=23: uniformly distributed projected loads in global directions

LTYPE, S1, Wx1, Wy1, Mz1, S2, Wx2, Wy2,

1z2

LTYPE=31: distributed loads in local directions.

LTYPE=32: distributed loads in global directions.

LTYPE=33: distributed projected loads in

global directions

LTYPE, S1, Wx, Wy, Mz

LTYPE=41: trapezoidal loads in local

		4.
		directions.
		LTYPE=42: trapezoidal loads in global directions.
		LTYPE=43: trapezoidal projected loads in
		global directions
Distributed Loads	UDL	Uniformly distributed loads. Wx, Wy: force/unit length in local directions.
	FLD, FLDG	Not applicable.
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, Ωx , Ωy , Ωz , αz
	BFP, BFPE	Body force potentials at nodes/for element. φ1,
T 7 1 4.4	VELO	φ ₂ , 0, 0, Xcbf, Ycbf
Velocities	VELO	Velocities. Vx, Vy: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay: at nodes
Viscous Support Loads	VSL	Viscous support loads. VLx, Vly: at nodes.
Initial	SSI, SSIE	Initial stresses/strains at nodes/for element.
Stress/Strains	551, 55112	Resultants (for linear material models without numerical cross section integration and model 29, see <i>Notes</i>): Fx, Mz, 0: forces, moments in
		local directions. εx , ψz , 0: strains in local directions.
	SSIG	Initial stresses/strains at Gauss points. (1) Resultants (for linear material models without numerical cross section integration and model 29, see <i>Notes</i>). Fx, Mz, 0: forces,
		 moments in local directions. εx, ψz, 0 strains in local directions. (2) Components (for linear material models with numerical cross section integration and all non-linear material models except 29): Fx,
		Mz, 0, εx , ψz , 0, $(\sigma x, \varepsilon x)$. Bracketed terms repeated at each fibre integration point.
Residual Stresses	SSR, SSRE	Not applicable.
	SSRG	Residual stresses at Gauss points.
		 (1) Resultants (material model 29): Fx, Mz, 0 (2) Components (all nonlinear material models except 29, also linear material models with numerical cross section integration): 0, 0, 0, 0, 0, 0, (σx, εx) Bracketed term repeated for each fibre integration point.

Stress/Strains TSSIA

Resultants (for linear material models without numerical cross section integration and model 29, see *Notes*): Fx, Mz, 0: forces, moments in local directions. εx, ψz, 0: strains in local directions.

TSSIG

Target stresses/strains at Gauss points.

(1) Resultants (for linear material models without numerical cross section integration and model 29, see *Notes*). Fx, Mz, 0: forces, moments in local directions. εx, ψz, 0 strains in local directions.

(2) Components (for linear material models with numerical cross section integration and all non-linear material models except 29): Fx,

Mz, 0, εx , ψz , 0, (σx , εx). Bracketed terms repeated at each fibre integration point.

Temperatures TEMP, TMPE

Temperatures at nodes/for element T, 0, dT/dy, 0, To, 0, dTo/dy, 0: in local directions.

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Force (default): Fx, Mz, Fy: forces, moment in local directions

(see Notes)

Continuum stresses (OPTION 172): σx: in local directions. Strain: εx, ψz, 0: axial, flexural strains in local directions. Continuum strains (OPTION 172): εx: in local directions. By default element output is with respect to the nodal line.

OPTION 418 outputs stress/strain resultants with respect to the

beam centroidal axis.

Modeller See **Results Tables** (Appendix K).

Local Axes

☐ Standard line element

Sign Convention

☐ Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, small rotations and small strains.

Updated For large displacements, large rotations and small strains.

Lagrangian

Eulerian Not applicable. **Co-rotational** Not applicable.

Integration Schemes

Stiffness Default. 2-point.

Fine (see *Options*). 3-point.

Mass Default. 2-point.

Fine (see *Options*). 3-point.

A 3-point <u>Newton-Cotes integration</u> rule is also available using option 134. This may be more applicable for infinitesimal strain, elastoplastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory manual.

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

- 18 Invokes fine integration rule for element.
- 32 Suppress stress output but not resultants
- 54 Updated Lagrangian geometric nonlinearity.
- 55 Output strains as well as stresses
- **87** Total Lagrangian geometric nonlinearity
- 105 Lumped mass matrix
- **134** Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
- 157 Material model 29 (non cross-section elements), see *Notes*.
- 170 Suppress transfer of shape function arrays to disk.
- 172 Formulate <u>rigidity matrix</u> by integrating across the cross-section

- 406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
- 418 Output stress resultants relative to beam centroidal axes for eccentric elements

Notes on Use

- The element formulation is based on the constrained super-parametric approach. The variation of axial force along the beam is linear. The variation of displacement is quadratic in the local x-direction and cubic in the local ydirection. Shear force is constant.
- 2. Input of loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axis. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line. Fiber stress/strain results are output at the actual location
- 3. Initial strain resultants may be input for any material model.
- 4. The number of numerical cross-section integration points, nt12 and nt14, may be specified but for improved performance the number of integration points corresponding to the y direction can be defined correctly (the beam bends about the local z-axis) and the integration rule in the other direction may be set to 1.
- For nonlinear material model 29 ifcode must be set to 2 for solid rectangular sections. Multiple quadrilateral cross-sections can be used to build up complex beam cross-sections.
- 6. Temperature dependent properties cannot be used with material model 29.
- 7. The element should not be coupled to the face of a two dimensional continuum element because of the midside node incompatibility.
- Computing the <u>rigidity matrix</u> by integration through the cross-section depth of the beam is necessary for all nonlinear material models (except 29). By default option 172 is invoked automatically and a 5 point <u>Newton-Cotes</u> <u>integration</u> rule is used.
- 9. By default, the <u>rigidity matrix</u> is evaluated explicitly for linear materials. A 3 point <u>Newton-Cotes</u> rule may be invoked using option 172. Numerical cross section integration enables top, middle and bottom stress output.

Restrictions

 Ensure mid-side node centrality 		Ensure	mid-side	node	centrality
---	--	--------	----------	------	------------

☐ Avoid excessive element curvature

Recommendations on Use

The element may be used for linear and nonlinear analysis of two dimensional beam, frame and arch structures. The 2-noded straight beam (BMI2) is more effective for

linear analysis of structures containing straight members of constant cross-section, e.g. plane frames.

3D Kirchhoff Thin Beam Elements

General

Element Group

Element Subgroup Beams

Kirchhoff Beams

Element Description

Curved beam elements in 3D for which shearing deformations are excluded. The elements can accommodate varying geometric properties along the length.

Number Of 3 (BS3).

Nodes 4 (DS4)

Nodes 4 (BS4). The 4th node is used to define the local xy-plane.

Freedoms U, V, W, θx , θy , θz : at end nodes (1 and 3)

 $dU,\,d\theta x\mbox{:(relative displacement/rotation)}$ at mid-length node.

Node Coordinates

Node X, Y, Z: at each node.

Geometric Properties

A, Iyy, Izz, Jxx, Iy, Iz, Iyz, ez, ey SF1,SF2,SF3,SF4,SF5,SF6,SF7,SF8,SF9 MF1,MF2,MF3,MF4,MF5,MF6,MF7,MF8,MF9

At each node

Optional scale factors applied to the geometric properties in the calculation of the stiffness and mass matrices

A Cross sectional area

Iyy, Izz 2nd moment of area about local y, z directions (see **Definition**)

Jxx Torsional constant.

Iy, Iz 1st moment of area about local y, z directions (see <u>Definition</u>)

Iyz Product moment of area (see **Definition**)

ez Eccentricity from beam xy-plane to nodal line. (+ve in the +ve

ey Eccentricity from beam xz-plane to nodal line. (+ve in the +ve local y direction). (See Notes)

For MATERIAL MODEL 29 additional geometric properties are appended to the previous 21 geometric properties (see *Notes*).

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Rigidities: RIGIDITIES 6 (Rigidities: Beam)

Matrix Not

applicable

Joint Not

applicable

Concrete Not

applicable

Elasto-Plastic Stress MATERIAL PROPERTIES NONLINEAR 29

resultant: (Elastic: Isotropic, Plastic: Resultant)

(ifcode=1 or 2, see *Notes*)

Creep CREEP PROPERTIES (Creep)

AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage Not

applicable

Viscoelastic Not

applicable

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Rubber Not

applicable

Generic Polymer Not

applicable

Composite Not

applicable

Loading

Prescribed Value PDSP.

TPDSP

Prescribed variable. U, V, W, θx , θy , θz : at end nodes (1 and 3). dU, $d\theta x$: at mid-length node.

Concentrated CL

Loads

Element Loads ELDS

Concentrated loads. Px, Py, Pz, Mx, My, Mz: at end nodes. dPx, dMy: at mid-length node.

Element loads on nodal line (load type number LTYPE *10 defines the corresponding element load type on beam axis)

LTYPE, S1, Px, Py, Pz, Mx, My, Mz

LTYPE=11: point loads and moments in local directions.

LTYPE=12: point loads and moments in global directions.

LTYPE, 0, Wx, Wy, Wz, Mx, My, Mz

LTYPE=21: uniformly distributed loads in local directions.

LTYPE=22: uniformly distributed loads in global directions.

LTYPE=23: uniformly distributed projected loads in global directions.

LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1,

S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2 LTYPE=31: distributed loads in local

directions.

LTYPE=32: distributed loads in global directions.

LTYPE=33: distributed projected loads in global directions.

LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz LTYPE=41: trapezoidal loads in local directions.

LTYPE=42: trapezoidal loads in global

		directions.
		LTYPE=43: trapezoidal projected loads in
		global directions.
Distributed Loads	UDL	Uniformly distributed loads. Wx, Wy, Wz: local forces/unit length.
	FLD, FLDG	Not applicable.
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf,
		$Zcbf,\Omega x,\Omega y,\Omega z$
	BFP, BFPE	Body force potentials at nodes/for element. ϕ_1 ,
		φ ₂ , φ ₃ , 0, Xcbf, Ycbf, Zcbf
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay, Az: at nodes
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy, VLz: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. Fx, My, Mz, Txz, Txy, 0: axial force, moments
		and torques in local directions. Ex, \psi y, \psi z,
		ψxz , ψxy , 0: axial, flexural and torsional strains in local directions. Total torque = Txz
		+ Txy, total torsional strain = $yxz + \psi xy$.
	SSIG	Not applicable.
Residual Stresses	SSR, SSRE	Not applicable.
	SSRG	Residual stresses at Gauss points. Resultants (for material model 29). Fx, My, Mz, Txz, Txy, 0: axial force, moments and torques in local directions. Total torque = Txz + Txy,
		total torsional strain = $yxz + \psi xy$.

Target TSSIE, Target stresses/strains at nodes/for element. Fx, Stress/Strains TSSIA My, Mz, Txz, Txy, 0: axial force, moments and torques in local directions. εx , ψy , ψz , $\psi xz, \psi xy, 0$: axial, flexural and torsional strains in local directions. Total torque = Txz+ Txy, total torsional strain = $yxz + \psi xy$.

TSSIG Not applicable.

Temperatures at nodes/for element. T, 0, dT/dy, **Temperatures** TEMP, TMPE

dT/dz, To, 0, dTo/dy, dTo/dz

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Force (default): Fx, Fy, Fz, My, Mz, Txz, Txy: axial force,

moments, torques and shear forces in local directions. (Total

torque = Txz+Txy).

Strain: Ex, \psi_y, \psi_z, \psi_xz, \psi_xy, 0: axial, flexural and torsional

strains in local directions.

By default element output is with respect to the nodal line.

OPTION 418 outputs stress/strain resultants with respect to the

beam centroidal axes.

Modeller See **Results Tables** (Appendix K).

Local Axes

For BS3 the local xy-plane is defined by the 3 element nodes. The local y-axis is perpendicular to the local x-axis and positive on the convex side of the element. The local y and z-axes form a right handed set with the local x-axis.

For BS4 the local xy-plane is defined by the 2 end nodes of the beam and the 4th node. The local y-axis is perpendicular to the local x-axis and positive on the side of the element where the 4th node lies. The local y and z-axes form a right handed set with the local x-axis. See **Local Element Axes** for more details.

Sign Convention

☐ Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, small rotations and small strains.

Updated For large displacements, large rotations and small strains.

Lagrangian

Eulerian Not applicable. **Co-rotational** Not applicable.

Integration Schemes

Stiffness Default. 2-point.

Fine (see 3-point.

Options).

Mass Default. 2-point.
Fine (see 3-point.
Options).

A 3-point <u>Newton-Cotes</u> integration rule is also available using option 134. This may be more applicable for infinitesimal strain, elastoplastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory manual.

Mass Modelling

Consistent mass (default).
Lumped mass.

Options

- 18 Invokes fine integration rule for element.
- 54 Updated Lagrangian geometric nonlinearity.
- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity.
- 102 Switch off load correction stiffness matrix due to centripetal acceleration.
- 105 Lumped mass matrix.
- Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
- 157 Material model 29 (non cross-section elements), see *Notes*.
- 170 Suppress transfer of shape function arrays to disk.
- **405** Specify geometric properties along beam centroidal axes
- **406** Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
- 418 Output stress resultants relative to beam centroidal axes for eccentric elements

Notes on Use

- 1. The element formulation is based on the **<u>Kirchhoff</u>** hypothesis for thin beams (i.e. the exclusion of shearing deformations).
- 2. The variation of axial force, moments and torsion along the length of the beam can be regarded as linear. Shear force variations are constant.
- 3. Input of geometric properties (OPTION 405) and loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axes. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line.
- 4. For nonlinear material model 29 the following geometric properties are appended to those already specified (see *Geometric Properties*).

- A^p, Zyy^p, Zzz^p, Zy^p, Zz^p, S^p at each node (i.e. nodes 1, 2, 3).
- A^p Plastic area (=elastic area)
- Zyy^p, Zzz^p Plastic moduli for bending about y, z axes
- Zy^p, Zz^p Plastic moduli for torsion about y, z axes.
- S^p Plastic area for shear (S^p=0).

Where the fully plastic torsional moment = $\sigma y (Zy^p + Zz^p)$.

- 5. For nonlinear material model 29 the following if code parameters should be used
 - ifcode=1 for circular hollow sections.
 - ifcode=2 for solid rectangular sections.
- 6. Temperature dependent properties cannot be used with material model 29.
- 7. The element should not be coupled to the edges of either continuum or shell elements because of midside node incompatibility.
- 8. The <u>rigidity matrix</u> for BS3 and BS4 is evaluated explicitly from the geometric properties for both linear and nonlinear materials.
- 9. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.

Restrictions

- ☐ Ensure mid-side node centrality
- ☐ Avoid excessive element curvature

Recommendations on Use

The elements may be used for linear and nonlinear analysis of three dimensional beam, frame and arch structures. The 2-noded straight beam (BMI21) is more effective for linear analysis of structures containing straight members of constant cross-section, e.g. space frames.

3D Kirchhoff Thin Beam Element with Quadrilateral Cross-Section

General

Element Name SSX4 Y, V, B Y Z, W, B Z X, U, B X Y Z Z

Element Group B

oup Beams

Element Subgroup **Kirchhoff** Beams

Element Description

Curved beam elements in 3D for which shearing deformations are excluded. The element has a quadrilateral cross section which may vary along the element length.

Number Of Nodes

4. The 4th node is used to define the local xy-plane.

Freedoms

U, V, W, θ x, θ y, θ z: at the end nodes (1 and 3)

 $dU,\,d\theta x;$ (relative displacement/rotation) at the mid-length node.

Node Coordinates

Node X, Y, Z: at each node.

Geometric Properties

y1, z1, y2, z2, y3, z3, y4, z4: local cross section coordinate pairs at each node; followed by nt12, nt14: specifying the number of Newton-Cotes integration points in the direction defined by the local cross-section points 1-2 and 1-4 (zero indicates default values). Multiple quadrilateral cross-sections can be used to build up complex beam cross-sections.

Note. The coordinates of the cross section are numbered clockwise about the local x-axis (the beam nodal line). That is, a right-hand screw rule in the direction of increasing x.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Not applicable.

Matrix Not applicable
Joint Not applicable
Concrete Not applicable

Elasto-Plastic Stress

resultant:

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64
Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65 Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Optimised MATERIAL PROPERTIES NONLINEAR 75

Implicit Von (Elastic: Isotropic, Plastic: Von Mises, Mises: Hardening: Isotropic & Kinematic)

Volumetric Not applicable

Crushing:

Stress

STRESS POTENTIAL VON MISES

Potential (Isotropic: von Mises, Modified von Mises)

Creep CREEP PROPERTIES (Creep)

AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE 2)

IRC MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic Not applicable

Shrinkage

SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Rubber Not applicable **Generic Polymer** Not applicable

Composite Not applicable

Loading

Prescribed Value PDSP,

Concentrated CL Loads

TPDSP

Prescribed variable. U, V, W, θx , θy , θz : at the

end nodes. dU, $d\theta x$: at the mid-length node. Concentrated loads. Px, Py, Pz, Mx, My, Mz: at

end nodes (global). dPx, dMx: at mid-length

local node.

Element Loads ELDS

Element loads on nodal line (load type number LTYPE *10 defines the corresponding

element load type on beam axis)

LTYPE, S1, Px, Py, Pz, Mx, My, Mz

LTYPE=11: point loads and moments in local directions.

directions.

LTYPE=12: point loads and moments in global

directions.

LTYPE, 0, Wx, Wy, Wz, Mx, My, Mz

LTYPE=21: uniformly distributed loads in local directions

directions.

LTYPE=22: uniformly distributed loads in

global directions.

LTYPE=23: uniformly distributed projected

loads in global directions.

LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1,

S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2 LTYPE=31: distributed loads in local

directions.

LTYPE=32: distributed loads in global

directions.

LTYPE=33: distributed projected loads in

global directions.

 $LTYPE,\,S1,\,Wx,\,Wy,\,Wz,\,Mx,\,My,\,Mz$

LTYPE=41: trapezoidal loads in local

		directions.
		LTYPE=42: trapezoidal loads in global
		directions. LTYPE=43: trapezoidal projected loads in global directions.
Distributed Loads	UDL	Uniformly distributed loads. Wx, Wy, Wz: forces/unit length in local directions.
	FLD, FLDG	Not applicable
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, Zcbf, Ω x, Ω y, Ω z, α x, α y, α z
	BFP, BFPE	Body force potentials at nodes/for element. φ1, φ2, φ3, 0, Xcbf, Ycbf, Zcbf
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay, Az: at nodes
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy, VLz: at nodes.
Initial	SSI, SSIE	Initial stresses/strains at nodes/for element.
Stress/Strains		Components: Fx, My, Mz, 0, 0, 0, εx, ψy,
		Ψz , 0, 0, 0, (σx , σxy , σxz , σyz , εyz , εx ,
		Exz, Eyz) Bracketed terms repeated for each fibre integration point.
	SSIG	Initial stresses/strains at Gauss points. These stresses/strains are specified in the same manner as SSI and SSIE.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. Components:0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (
		σx , σxy , σxz , σyz ,) Bracketed terms repeated for each fibre integration point.
	SSRG	Residual stresses at Gauss points. These stresses are specified in the same manner as SSR and SSRE.
Target	TSSIE,	Target stresses/strains at nodes/for element.
Stress/Strains	TSSIA	Components: Fx, My, Mz, 0, 0, 0, εx, ψy,
		ψz , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
		σx, σxy, σxz, σyz, εyz, εx, εxz, εyz) Bracketed terms repeated for each fibre integration point.
	TSSIG	Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, 0, dT/dy,
•		- · · · · · · · · · · · · · · · · · · ·

dT/dz, To, 0, dTo/dy, dTo/dz: in local directions.

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable

Temp Dependent Not

Loads applicable

LUSAS Output

Solver Force (default): Fx, My, Mz, Txz, Txy, Fy, Fz: axial force, moments, torques and shear forces in local directions. (Total

Torque = Txz + Txy).

Continuum stresses (OPTION 172): σx , σxy , σxz , σyz : in local

directions.

Strain: Ex, \Psi, \Psiz, \Psix, \Psix, \Psix xy: axial, flexural and torsional strains

in local directions.

Continuum strains (OPTION 172): Ex, Exy, Exz, Eyz: in local

directions.

By default element output is with respect to the nodal line.

OPTION 418 outputs stress/strain resultants with respect to the

beam centroidal axes.

Modeller See Results Tables (Appendix K).

Local Axes

<u>Standard line element</u>. The local xy-plane is defined by the 2 end nodes of the beam and the 4th node. The local y-axis is perpendicular to the x-axis and positive on the side of the element where the 4th node lies.

The local y and z-axes form a right-hand set with the local x-axis.

Sign Convention

☐ Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, small rotations and small strains.

Updated For large displacements, large rotations and small strains.

Lagrangian

Eulerian Not applicable. **Co-rotational** Not applicable.

Integration Schemes

Stiffness Default. 2-point. Fine (see *Options*). 3-point.

Mass Default. 2-point. Fine (see *Options*). 3-point.

A 3-point <u>Newton-Cotes</u> integration rule is also available using option 134. This may be more applicable for infinitesimal strain, elastoplastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory manual.

Mass Modelling

Consistent mass (default)
Lumped mass.

Options

- 18 Invokes fine integration rule for element.
- 54 Updated Lagrangian geometric nonlinearity.
- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity.
- 102 Switch off load correction stiffness matrix due to centripetal acceleration.
- 105 Lumped mass matrix.
- **134** Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
- 139 Output yielded integration points only.
- 170 Suppress transfer of shape function arrays to disk.
- 172 Form the <u>rigidity matrix</u> by numerical cross section integration.
- **406** Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
- 418 Output stress resultants relative to beam centroidal axes for eccentric elements

Notes, Assumptions and Limitations

- 1. The element formulation is based on the <u>Kirchhoff</u> hypothesis for thin beams (i.e. the exclusion of shearing deformations)
- 2. The variation of axial force, moments and torsion along the length of the beam can be regarded as linear. Shear force is constant.

- 3. Input of loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axes. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line. Fiber stress/strain results are output at their actual location
- 4. Computation of the <u>rigidity matrix</u> by integration over the thickness is necessary for all nonlinear material models. For nonlinear models a 5x5 <u>Newton-Cotes integration</u> rule is used as default. For linear models a 3x3 rule is used as the default. This allows the output of stresses at the numerical cross section integration points.
- 5. The torsional constant is estimated from the computed values for Iyy and Izz, Jxx = Iyy + Izz.
- 6. For nonlinear material models, fibre integration is used across the crosssectional area of the beam. Only axial deformation is considered in the plasticity computations, any torsional deformation is assumed to remain elastic.
- 7. The element should not be coupled to the face of a two dimensional continuum element because of the midside node incompatibility
- 8. Computing the <u>rigidity matrix</u> by integration through the cross-section depth of the beam is necessary for all nonlinear material models (except 29). By default OPTION 172 is invoked automatically and a 5*5 point <u>Newton-Cotes integration</u> rule is used.
- By default, the <u>rigidity matrix</u> is evaluated explicitly for linear materials. A
 3*3 point <u>Newton-Cotes integration</u> rule may be invoked using OPTION 172.
 Numerical cross section integration enables top, middle and bottom stress output.

Restrictions

Ensure mid-side node centrality
Avoid excessive element curvature

Recommendations on Use

The elements may be used for linear and nonlinear analysis of three dimensional beam, frame and arch structures. The 2-noded straight beam (BMI21) is more effective for linear analysis of structures containing straight members of constant cross-section, e.g. space frames.

3D Semiloof Thin Beam Elements

General

Element Name $\Lambda Y, v, \theta y$ X,u,θx $\mathbb{Z}_{Z,w,\theta z}$

Element Group

Beams

Element Subgroup

Semiloof Beams

Element Description

Curved beam elements in 3D which can be mixed with the semiloof shell elements TSL6 and OSL8. The elements can accommodate varying geometric properties. Shearing deformations are excluded.

Number Of Nodes

3 or 4. For BSL4 the 4th node is used to define the local xy-plane.

Freedoms

U, V, W, θx , θy , θz : at end nodes (1 and 3). U, V, W, θ_1 , θ_2 : at mid-side node (node 2) (see Notes).

Node X, Y, Z: at each node.

Coordinates

Geometric Properties

A, Iyy, Izz, Jxx, Iy, Iz, Iyz, ez, ey at nodes 1, 2 and 3 SF1.SF2.SF3.SF4.SF5.SF6.SF7.SF8.SF9 MF1,MF2,MF3,MF4,MF5,MF6,MF7,MF8,MF9

Optional scale factors applied to the geometric properties in the calculation of the stiffness and mass matrices

A Cross sectional area

Iyy, Izz 2nd moments of area in local y, z axes (see **Definition**)

Jxx Torsional constant.

Iy, Iz 1st moment of area in local y, z axes (see **Definition**)

Ivz Product moment of area (see **Definition**).

ez Eccentricity from beam xy-plane to nodal line (+ve in +ve local zdirection)

ey Eccentricity from beam xz-plane to nodal line (+ve in +ve local ydirection)

For MATERIAL MODEL 29 additional geometric properties are appended to the 21 properties above; see *Notes*.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Rigidities: RIGIDITIES Rigidities 6 (Rigidities: Beam)

Matrix Not

applicable

Joint Not

applicable

Concrete Not

applicable

Elasto-Plastic Stress MATERIAL PROPERTIES NONLINEAR 29

resultant: (Elastic: Isotropic, Plastic: Resultant)

(ifcode=1 or 2, see *Notes*)

Creep CREEP PROPERTIES (Creep)

AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE 2)

IRC MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage Not

applicable

Viscoelastic Not

applicable

Shrinkage

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Rubber Not

applicable

Generic Polymer Not

applicable

Composite Not

applicable

Loading

Prescribed Value PDSP,

TPDSP

Concentrated CL

Loads

Element Loads ELDS

Prescribed variable. U, V, W, θx , θy , θz : at

end nodes. U, V, W, θ_1 , θ_2 : at mid-side node.

Concentrated loads. Px, Py, Pz, Mx, My, Mz: at end nodes (global). Px, Py, Pz, M1, M2: at

mid-side node (M1 and M2 local).

Element loads on nodal line (load type number LTYPE *10 defines the corresponding

element load type on beam axis)

LTYPE, S1, Px, Py, Pz, Mx, My, Mz

LTYPE=11: point loads and moments in local directions.

LTYPE=12: point loads and moments in global directions.

LTYPE, 0, Wx, Wy, Wz, Mx, My, Mz LTYPE=21: uniformly distributed loads in local directions.

LTYPE=22: uniformly distributed loads in global directions.

LTYPE=23: uniformly distributed projected loads in global directions.

LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1,

S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2 LTYPE=31: distributed loads in local directions.

LTYPE=32: distributed loads in global directions.

LTYPE=33: distributed projected loads in global directions.

LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz LTYPE=41: trapezoidal loads in local directions.

LTYPE=42: trapezoidal loads in global

Loads

directions.			
LTYPE=43: traj	pezoidal p	rojected	loads in

global directions.

Distributed Loads UDL Uniformly distributed loads. Wx, Wy, Wz:

force/unit length in local directions for

element.

FLD, FLDG Not applicable.

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

Zcbf, Ωx , Ωy , Ωz , αx , αy , αz

BFP, BFPE Body force potentials at nodes/for element. φ1,

φ₂, φ₃, 0, Xcbf, Ycbf, Zcbf

VelocitiesVELOVelocities. Vx, Vy, Vz: at nodes.AccelerationsACCEAccelerations. Ax, Ay, Az: at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy, VLz: at

nodes.

Initial SSI, SSIE Initial stresses/strains at nodes/for element. Fx, Stress/Strains

My, Mz, Tyz, Tyy, 0 in local directions, Sy

My, Mz, Txz, Txy, 0 in local directions. εx,

ψy, ψz, ψxz, ψxy, 0: in local directions. (see

Notes). Total torque = Txz + Txy

SSIG Not applicable.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element.

Resultants (nonlinear model 29): Fx, My, Mz,

Txz, Txy, 0: in local directions.

SSRG Not applicable.

Target TSSE, TSSIA Stress/Strains

TSSE, TSSIA Target stresses/strains at nodes/for element. Fx,

My, Mz, Txz, Txy, 0 in local directions. &x,

ψy, ψz, ψxz, ψxy, 0: in local directions. (see *Notes*). Total torque = Txz + Txy.

Notes). Total torque = Txz + Txy

TSSIG Not applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, dT/dy,

dT/dz, To, 0, dTo/dy, dTo/dz: in local

directions.

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Force (default): Fx, My, Mz, Txz, Txy, Fy, Fz: in local directions.

 $(Total\ torque = Txz + Txy)$

Strain: εx , ψy , ψz , ψxz , ψxy : in local directions. (see *Notes*).

Total torsional strain = $\psi xz + \psi xy$

By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the

beam centroidal axes.

Modeller See Results Tables (Appendix K).

Local Axes

<u>Standard line element</u>. For BSL3 the local xy-plane is defined by the 3 element nodes. The local y-axis is perpendicular to the local x-axis and positive on the convex side of the element. The local y and z-axes form a right-hand set with the local x-axis.

For BSL4 the local xy-plane is defined by the 2 end nodes of the beam and the 4th node. The local y-axis is perpendicular to the x-axis and positive on the side of the element where the 4th node lies. The local y and z-axes form a right-hand set with the local x-axis.

Sign Convention

☐ Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, small rotations and small strains.

Updated Not applicable.

Lagrangian

Eulerian Not applicable. **Co-rotational** Not applicable.

Integration Schemes

Stiffness Default. 3-point torsion, 2-point bending.

Fine. As default.

Mass Default. 3-point.

Fine. As default.

Mass Modelling

☐ Consistent mass (default).

☐ Lumped mass.

Options

- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity
- 102 Switch off load correction stiffness matrix due to centripetal acceleration.
- 105 Lumped mass matrix.
- 157 Material model 29 (non cross-section elements), see *Notes*.
- 170 Suppress transfer of shape function arrays to disk.
- **405** Specify geometric properties along beam centroidal axes
- 406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
- 418 Output stress resultants relative to beam centroidal axes for eccentric elements

Notes on Use

- 1. The semiloof beam element is based on a <u>Kirchhoff</u> hypothesis for thin beams (i.e. the exclusion of shearing deformations).
- The variation of axial force, moments and torsion can be regarded as linear along the length of the element. Shear forces are constant along the length of the element.
- 3. The loof rotations θ_1 and θ_2 refer to rotations about the element at the loof positions. A positive loof rotation is defined by a right-hand screw rule applied to a vector running in the local x-axis direction along the element edge.
- 4. Input of geometric properties (OPTION 405) and loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axes. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line.
- 5. For nonlinear material model 29 the following geometric properties are appended to those already specified (see *Geometric Properties*).
 - A^p, Zyy^p, Zzz^p, Zy^p, Zz^p, S^p at each node (i.e. nodes 1, 2, 3).
 - A^p Plastic area (=elastic area)
 - Zyy^p, Zzz^p Plastic moduli for bending about y, z axes
 - Zy^p, Zz^p Plastic moduli for torsion about y, z axes.
 - S^p Plastic area for shear (S^p=0).

Where the fully plastic torsional moment = $\sigma y (Zy^p + Zz^p)$

- 6. For nonlinear material model 29 the following if code parameters should be
 - ifcode=1 for circular hollow sections.
 - ifcode=2 for solid rectangular sections.
- 7. Semiloof beam elements should be used with semiloof shell elements. For beam only problems, BS3/BS4 elements should be used.
- 8. Temperature dependent properties cannot be used with material model 29.
- 9. Integration of the element stiffness matrix is performed using selective integration, with a 2-point Gauss rule for the axial and flexural strain energy, and a 3-point Gauss rule for the torsional strain energy. The selective integration technique is implemented in a similar manner to the method proposed by Hughes [H4], i.e. the strain-displacement matrix for the bending and axial strains is evaluated at the reduced rule quadrature points and then extrapolated to the sampling locations of the 3-point quadrature rule. The material response is then assessed at the 3-point Gauss rule.
- 10. The <u>rigidity matrix</u> for BSL3 and BSL4 is evaluated explicitly from the geometric properties for both linear and nonlinear materials.
- 11. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command

Restrictions

Ensure	mid-side	node	centrality

☐ Avoid excessive element curvature

Recommendations on Use

- The primary use of this element is to provide a beam stiffener for the semiloof shell (QSL8) for analysing stiffened shell structures.
- The BS3 and BS4 elements are more effective for linear analysis of 3D frame structures with curved members and nonlinear analysis of three dimensional beam, frame and arch structures.

•	The 2-noded straight beam (BMI21) is the most effective for linear analysis of structures containing straight members of constant cross-section, e.g. space frames.

3D Semiloof Thin Beam Element with Quadrilateral Cross-Section

General

Element Group

Beams

Element Subgroup Semiloof Beams

Element Description

A curved beam element in 3D which can be mixed with the semiloof shell element. The element has a quadrilateral cross section which may vary along the element. Shearing deformations are excluded.

Number Of Nodes

4. The 4th node is used to define the local xy-plane.

Freedoms

U, V, W, θx , θy , θz : at end nodes. U, V, W, $\theta 1$, $\theta 2$: at mid-length

node.

Node X, Y, Z: at each node. **Coordinates**

Geometric Properties

y₁, z₁, y₂, z₂, y₃, z₃, y₄, z₄: local cross section coordinate pairs at each node; followed by nt₁₂, nt₁₄: number of Newton-Cotes integration points in the direction defined by the local cross-section points 1-2 and 1-4 (zero indicates default values). Multiple quadrilateral cross-sections can be used to build up complex beam cross-sections.

Note. The corners of the quadrilateral are numbered clockwise about the local x-axis (the beam nodal line), that is, a right-hand screw rule in the direction of increasing x.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Matrix Not applicable
Joint Not applicable
Concrete Not applicable

Elasto-Plastic Stress Not applicable.

resultant:

Crushing:

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64
Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65
Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb.

(Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)

Optimised MATERIAL PROPERTIES NONLINEAR 75
Implicit Von (Elastic: Isotropic, Plastic: Von Mises,
Mises: Hardening: Isotropic & Kinematic)

Volumetric Not applicable

Stress STRESS POTENTIAL VON_MISES

Potential (Isotropic: von Mises, Modified von Mises)

Creep CREEP PROPERTIES (Creep)

AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage) **Viscoelastic** Not applicable

Shrinkage

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Rubber Not applicable Generic Polymer Not applicable **Composite** Not applicable

Loading

Prescribed Value PDSP. Prescribed variable. U, V, W, θx , θy , θz : at

TPDSP end nodes. U, V, W, θ_1 , θ_2 at mid-side node.

Concentrated loads Px, Py, Pz, Mx, My, Mz at **Concentrated** CL end nodes (global). Px, Py, Pz, M1, M2: at Loads

mid-side node (M1 and M2 local).

Element Loads ELDS **Element loads** on nodal line (load type number LTYPE *10 defines the corresponding

element load type on beam axis)

LTYPE, S1, Px, Py, Pz, Mx, My, Mz

LTYPE=11: point loads and moments in local directions.

LTYPE=12: point loads and moments in global directions.

LTYPE, 0, Wx, Wy, Wz, Mx, My, Mz LTYPE=21: uniformly distributed loads in local directions.

LTYPE=22: uniformly distributed loads in global directions.

LTYPE=23: uniformly distributed projected loads in global directions.

LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1,

S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2 LTYPE=31: distributed loads in local directions.

LTYPE=32: distributed loads in global

directions.

LTYPE=33: distributed projected loads in global directions.

LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz LTYPE=41: trapezoidal loads in local directions.

LTYPE=42: trapezoidal loads in global directions.

		LTYPE=43: trapezoidal projected loads in
		global directions.
Distributed Loads	UDL	Uniformly distributed loads. Wx, Wy, Wz: for element in local directions.
	FLD, FLDG	Not applicable.
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, Zcbf, Ω x, Ω y, Ω z, α x, α y, α z
	BFP, BFPE	Body force potentials at nodes/for element. φ1,
Velocities	VELO	φ ₂ , φ ₃ , 0, Xcbf, Ycbf, Zcbf Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Accelerations. Ax, Ay, Az: at nodes.
Viscous Support	VSL	Viscous support loads. VLx, VLy, VLz: at
Loads	VSE	nodes.
Initial	SSI, SSIE	Initial stresses/strains at nodes/for element.
Stress/Strains		Components: Fx, My, Mz, 0,0, 0, &x, \psi y, \psi z,
		0, 0, 0, (σx, σxy, σxz, σyz, εx, εxy, εxz,
		Eyz) Bracketed terms repeated for each fibre integration point.
	SSIG	Initial stresses/strains at Gauss points. These stresses/strains are specified in the same manner as SSI and SSIE
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. Components: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (
		σx , σxy , σxz , σyz ,) Bracketed terms repeated for each fibre integration point.
	SSRG	Residual stresses at Gauss points. These stresses are specified in the same manner as SSR and SSRE.
Target	TSSIE,	Target stresses/strains at nodes/for element.
Stress/Strains	TSSIA	Components: Fx, My, Mz, 0,0, 0, &x, \psi y, \psi z,
		$0, 0, 0, (\sigma x, \sigma xy, \sigma xz, \sigma yz, \varepsilon x, \varepsilon xy, \varepsilon xz,$
		Eyz) Bracketed terms repeated for each fibre integration point.
	TSSIG	Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, 0, dT/dy, dT/dz, To, 0, dTo/dy, dTo/dz
Overburden	Not	·
	applicable.	
Phreatic Surface	Not	

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Force (default): Fx, My, Mz, Txz, Txy, Fy, Fz: in local directions.

Total torque = Txz+Txy.

Continuum stresses (Option 172): σx , σxy , σxz , σyz : in local

directions.

Strain/curvatures (default): εx, ψy, ψz, ψxz, ψxy, γyz: in local

directions (see *Notes*). Total torsional strain = $\psi xy + \psi yz$.

Continuum strains (Option 172): Ex, Exy, Exz, Eyz: in local

directions.

By default element output is with respect to the nodal line.

OPTION 418 outputs stress/strain resultants with respect to the

beam centroidal axes.

Modeller See Results Tables (Appendix K).

Local Axes

□ Standard line element The local xy-plane is defined by the 2 end nodes of the beam and the 4th node. The local y-axis is perpendicular to the x-axis and positive on the side of the element where the 4th node lies. The local y and z-axes form a right-hand set with the local x-axis.

Sign Convention

☐ Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, large rotations and small strains.

Updated Not applicable.

Lagrangian

Eulerian Not applicable.

Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 2-point torsion, 2-point bending.

Fine. As default.

Mass Default. 3-point.

Fine. As default.

Mass Modelling

Consistent mass (default).
Lumped mass.

Options

- 32 Suppress stress output (but not stress resultant).
- 55 Output strains as well as stresses.
- 87 Total Lagrangian geometric nonlinearity.
- 102 Disable load correction stiffness matrix due to centripetal acceleration.
- 105 Lumped mass matrix
- 139 Output inelastic Gauss points only
- 170 Suppress transfer of shape function arrays to disk
- 172 Form the <u>rigidity matrix</u> by numerical cross section integration.
- **406** Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
- 418 Output stress resultants relative to beam centroidal axes for eccentric elements

Notes, Assumptions and Limitations

- 1. The semiloof beam element formulation is based on a **Kirchhoff** hypothesis for thin beams (i.e. shearing deformations are excluded). The variation of axial force, bending and torsion along the length of the element may be considered as linear. Shear forces are constant.
- 2. Input of loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axes. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line. Fiber stress/strain results are output at their actual location.
- 3. The torsional constant is estimated from the computed values for Iyy and Izz, Jxx = Iyy + Izz.
- 4. For nonlinear material models, fibre integration is used across the cross-sectional area of the beam. Only axial deformation is considered in the plasticity computations, any torsional deformation is assumed to remain elastic.
- 5. Computing the <u>rigidity matrix</u> by integration through the cross-section depth of the beam is necessary for all nonlinear material models (except 29). By

- default option 172 is invoked automatically and a 5*5 point <u>Newton-Cotes</u> <u>integration</u> rule is used.
- 6. By default, the <u>rigidity matrix</u> is evaluated explicitly for linear materials. A 3*3 point <u>Newton-Cotes integration</u> rule may be invoked using option 172. Numerical cross section integration enables top, middle and bottom stress output.
- 7. Integration of the element stiffness matrix is performed using selective integration, with a 2-point Gauss rule for the axial and flexural strain energy, and a 3-point Gauss rule for the torsional strain energy. The selective integration technique is implemented in a similar manner to the method proposed by Hughes, i.e. the strain-displacement matrix for the bending and axial strains is evaluated at the reduced rule quadrature points and then extrapolated to the sampling locations of the 3-point quadrature rule. The material response is then assessed at the 3-point Gauss rule.

Restrictions

- ☐ Ensure mid-side node centrality
- ☐ Avoid excessive element curvature

Recommendations on Use

- The element's primary use is to provide a beam stiffener for the semiloof shell (QSL8) for analysing stiffened shell structures.
- The BSX4 element is more effective for linear analysis of 3D frame structures with curved members and nonlinear analysis of three dimensional beam, frame and arch structures.
- The 2-noded straight beam (BMS21) is the most effective for linear analysis of structures containing straight members of constant cross-section, e.g. space frames.

2D Plane Strain Beam Elements

General

Element Group Beams

> Plane Strain Beam **Element**

Subgroup

Element Straight and curved isoparametric degenerate thick beam elements in 2D for which shearing deformations are included. The element **Description**

thickness may vary along its length.

Number Of 2 (BMI2N) 3 (BMI3N)

Nodes

Freedoms U, V, θ z: at each node.

The element node numbers should be followed by: R restrained End Releases

> (default) F free defined in the order U, V, θ z for node 1 and then U, V. θz for the other end node (node 2 for BMI2N, node 3 for BMI3N). The releases relate to the local element axes (see Notes,

Assumptions and Limitations).

Node X. Y: at each node. **Coordinates**

Geometric Properties

t1, t2, t3 Thickness at each node.

MATERIAL PROPERTIES (Elastic: Linear Isotropic:

Isotropic)

Matrix Not applicable **Joint** Not applicable **Concrete** Not applicable

Elasto-Plastic Stress resultant Not applicable.

Tresca: MATERIAL PROPERTIES NONLINEAR

61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total

Strain)

Drucker-Prager: MATERIAL PROPERTIES NONLINEAR

64 (Elastic: Isotropic, Plastic: Drucker-

Prager, Hardening: Granular)

Mohr-Coulomb: MATERIAL PROPERTIES NONLINEAR

65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with

Dilation)

Optimised MATERIAL PROPERTIES NONLINEAR

Implicit Von 75 (Elastic: Isotropic, Plastic: Von Mises, Mises: Hardening: Isotropic & Kinematic)

Volumetric Not applicable.

Crushing:

Stress Potential STRESS POTENTIAL VON MISES,

HILL, HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep CREEP PROPERTIES (Creep)

AASHTO MATERIAL PROPERTIES NONLINEAR

86 AASHTO

(Concrete creep model to AASHTO code

of Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR

86 CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR

86 CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR

86 EUROCODE

(Concrete creep model to EUROCODE_2)

IRC MATERIAL PROPERTIES NONLINEAR

86 IRC

Damage

(Concrete creep model to Indian IRC code

of Practice)

DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic Not applicable

Shrinkage SHF

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Rubber Not applicable **Generic Polymer** Not applicable **Composite** Not applicable

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL Loads

Element Loads ELDS

Prescribed variable. U, V, θ z: at nodes.

Concentrated loads. Px, Py, Mz: at nodes

(global).

<u>Element loads</u>on nodal line (load type number LTYPE *10 defines the corresponding element load type on beam

axis, see Notes)

LTYPE, S1, Px, Py, Mz

LTYPE=11: point loads and moments in

local directions.

LTYPE=12: point loads and moments in global directions.

LTYPE, 0, Wx, Wy, 0

LTYPE=21: uniformly distributed loads in

local directions.

LTYPE=22: uniformly distributed loads in

global directions.

LTYPE=23: uniformly distributed projected loads in global directions

LTYPE, S1, Wx1, Wy1, 0, S2, Wx2,

Wy2, 0

LTYPE=31: distributed loads in local

directions.

LTYPE=32: distributed loads in global directions.

TEXADE 00

LTYPE=33: distributed projected loads in

global directions

LTYPE, S1, Wx, Wy, 0

LTYPE=41: trapezoidal loads in local

directions.

LTYPE=42: trapezoidal loads in global

		LTYPE=43: trapezoidal projected loads in
		global directions
Distributed Loads	UDL	Uniformly distributed loads. Wx, Wy:
		forces/unit length for element in local

FLD Not applicable.

Body Forces CBF Constant body forces for element.

Xcbf, Ycbf, Ωx , Ωy , Ωz , αz

BFP, BFPE Body force potentials at nodes/for

directions.

directions.

element. ϕ 1, ϕ 2, 0, 0, Xcbf, Ycbf

Velocities VELO Velocities. Vx, Vy: at nodes. **Accelerations** ACCE Acceleration. Ax, Ay: at nodes. Viscous Support VSL Viscous support loads. VLx, Vly: at Loads

nodes.

Initial SSI, SSIE Initial stresses/strains at nodes/for Stress/Strains

element. Components: Nx, 0, Mx, 0,

Sxy, εx , 0, γx , 0, εxy , (σx , σxy , σz , εx , Exy, Ez) Bracketed terms repeated for

each fibre integration point.

SSIG Initial stresses/strains at Gauss points.

These stresses/strains are specified in the

same manner as SSI and SSIE.

Residual stresses at nodes/for element. Residual Stresses SSR, SSRE,

Components: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

 $(\sigma x, \sigma xy, \sigma z)$ Bracketed terms repeated

for each fibre integration point.

SSRG Residual stresses at Gauss points for element.. Components: 0, 0, 0, 0, 0, 0, 0,

 $0, 0, 0, (\sigma x, \sigma xy, \sigma z)$ Bracketed terms

repeated for each fibre integration point.

Target TSSIE, TSSIA Target stresses/strains at nodes/for

Stress/Strains element. Fx, Fy, Mz: axial force, shear

force and moment in local directions. Ex,

εy, ψz: axial, shear and flexural strains

in local directions.

TSSIG Target stresses/strains at Gauss points.

> These stresses/strains are specified in the same manner as TSSIE and TSSIA.

Temperatures TEMP, TMPE Temperatures at nodes/for elements. T, 0,

dT/dy, 0, To, 0, dTo/dy, 0 in local

directions.

Phreatic surface Face_Pressure

The fluid pressure is applied in the –y direction of the element y axis..

Field Loads Not applicable. **Temp Dependent** Not applicable.

Loads

LUSAS Output

Solver Force. Nx, Nz, Mx, Mz, Sxy: axial and normal forces,

moments/unit width in local directions, shear force. NB. The plate/shell convention is used for the moment definition.

Strain. Ex, Ez, Yx, Yz, Exy axial, normal, flexural and shear strains.

Continuum stresses: σx , σxy , σz in local directions.

Strain: Ex, Exy, Ez: Axial, shear and normal strains in local

directions.

Modeller See Results Tables (Appendix K).

Local Axes

☐ The local x-axis lies along the line of the element in the direction in which the nodes are numbered. The local y and z-axes form a right-hand set with the local x-axis such that the y-axis lies in the global XY-plane with the z-axis parallel to the global Z-axis.

Sign Convention

☐ Standard shell element. Axial and circumferential moments are positive for tension on element top fibre (the top fibre lies on the positive local y side of the element).

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, small rotations and small strains

Updated Not applicable.

Lagrangian

Eulerian Not applicable. **Co-rotational** Not applicable.

Integration Schemes

Stiffness Default. 1-point (BMI2N), 2-point (BMI3N).

Fine. Same as default.

Mass Default. 2-point (BMI2N), 3-point (BMI3N).

Fine. Same as default.

Note: A 3-point <u>Newton-Cotes integration</u> rule is also available for BMI3N using OPTION 134. This may be more applicable for infinitesimal strain, elasto-plastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory Manual.

Mass Modelling

Consistent mass (default)
Lumped mass.

Options

- 36 Follower loads
- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity.
- 102 Switch off load correction stiffness matrix due to centripetal acceleration
- 105 Lumped mass matrix.
- **134** Gauss to Newton-Cotes in plane (in the local x direction) integration for elements
- **139** Output yielded integration points only.
- **403** Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Notes, Assumptions and Limitations.
- **404** Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMI21, see Notes, Assumptions and Limitations.

Notes, Assumptions and Limitations

- 1. The element is formulated from the degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Plane cross-sections initially normal to the beam axis remain plane and undistorted (the shape of the cross-section remains unchanged) under deformation, but do not necessarily remain normal to the beam axis. Shearing deformations are included.
- 2. OPTION 36 is only applicable for use with element load types FLD, ELDS, UDL and phreatic surface pressure. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
- 3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMI2N, the axial force is constant, while the shear force and moment vary linearly along the length of the beam. For BMI3N the axial force, shear force and moment all vary linearly along the length

- 4. When BMI2N is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic. As the plane strain beam can only be of rectangular cross section, a shear area based on 5/6 of the nodal thicknesses is assumed in this process.
- 5. When BMI2N is used together with OPTION 404, loading that varies along the element length is accounted for in the force diagrams (i.e. for a beam under CBF or internal element loading). A post-processing technique has been introduced to obtain accurate quadratic bending moments for BMI3N. For BMI2N (with OPTION 404) and BMI3, internal forces and moments are output at intervals of 1/10th of the element length by specifying the Gauss point option from the Output button of the LUSAS Datafile dialog.
- 6. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral. The rotations and translations remain in the local directions of the beam elements and support large deformations.
- 7. When a nonlinear material is used with this element the transverse shear stresses are excluded from the plasticity computations i.e. the transverse shear stresses are assumed to remain elastic. This means that if a nonlinear material is used in applications where transverse shear tends to dominate the stress field the equivalent von Mises and maximum principal stresses can exceed the uniaxial yield stress.
- 8. When a step by step dynamic analysis is carried out using BMI elements with distributed loading, the "free body force diagrams" pertaining to applied loading, are not superimposed on the nodal values, to do so would lead to erroneous results until a steady state is reached. It should therefore be noted that different force diagrams will be obtained for BMI elements if static and dynamic analyses are directly compared.
- 9. OPTION 87 considers large displacements and large rotations using a Total Lagrangian formulation; OPTION 229 considers large displacements and large rotations using a co-rotational formulation. In general the co-rotational formulation works better. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework.
- 10. End releases for these elements are currently not valid for use in step-by-step dynamic analyses.

Restrictions

ш	Ensure mid-side node centrality
	Avoid excessive element curvature

Recommendations on Use

• The element may be used for linear and nonlinear analysis of two dimensional long structures of box girder cross-sections such as tunnel linings and retaining walls for which the plane strain assumption is appropriate.

Element Referen	ce Manual		

Chapter 3: 2D Continuum Elements

2D Plane Stress Continuum Elements

General

Element Group

2D Continuum

Element

Plane Stress Continuum

Subgroup

Element Description

A family of 2D isoparametric elements with the higher order elements capable of modelling curved boundaries. The elements are

numerically integrated. 3, 4, 6 or 8, numbered anticlockwise.

Number Of Nodes

Freedoms U, V: at each node.

Coordinates

Node X, Y: at each node.

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic:

Isotropic)

Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

(Elastic: Orthotropic Plane Stress)

Anisotropic: MATERIAL PROPERTIES ANISOTROPIC

3 (Elastic: Anisotropic Thin Plate)

Rigidities. RIGIDITIES 3 (Rigidities: Membrane/Thin

Plate)

Matrix Not applicableJoint Not applicable

Concrete MATERIAL PROPERTIES NONLINEAR

105 (Elastic: Isotropic, Plastic: Transient

Smoothed Multi-Crack Concrete)

MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed

Multi-Crack Concrete)

Elasto-Plastic Stress resultant: Not applicable.

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca,

Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total

Strain)

Drucker-Prager: MATERIAL PROPERTIES NONLINEAR 64

(Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65 Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Volumetric Not applicable

Crushing:

Interface: MATERIAL PROPERTIES NONLINEAR 27

Stress Potential STRESS POTENTIAL VON_MISES, HILL,

HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep CREEP PROPERTIES (Creep)

AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese

MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode

MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC

MATERIAL PROPERTIES NONLINEAR 86

(Concrete creep model to Indian IRC code of

Practice)

Damage

DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic Not applicable

Shrinkage

SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Ko Initialisation Not applicable

Rubber Not applicable

Generic Polymer Isotropic

MATERIAL PROPERTIES NONLINEAR 89

(Generic Polymer Model)

Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP

Prescribed variable. U, V: at nodes.

Concentrated CL Loads

Concentrated loads. Px, Py: at nodes.

Element Loads Not

applicable.

Distributed Loads UDL

Not applicable.

FLD Face Loads. Px, Py: Local Face Axis Pressures

At Nodes.

FLDG

Global Face Loads. σx , σy , σzxy at nodes

Body Forces CBF

Constant body forces for element. Xcbf, Ycbf,

 $\Omega_{\rm X}$, $\Omega_{\rm Y}$, $\Omega_{\rm Z}$, $\alpha_{\rm Z}$

BFP, BFPE

Body force potentials at nodes/for element. 0,

0, 0, φ₄, Xcbf, Ycbf

Velocities VELO

Velocities. Vx, Vy: at nodes.

Accelerations ACCE Accelerations. Ax, Ay: at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy: at nodes.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element. σx,

Stress/Strains

σy, σxy: global stresses. εx, εy, γxy: global strains.

strain

SSIG Initial stresses/strains at Gauss points. σx , σy ,

 σ xy: global stresses. ε x, ε y, γ xy: global

strains.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element. σx , σy ,

σxy: global stresses.

SSRG Residual stresses at Gauss points. σx , σy , σxy :

global stresses.

Target TSSIE, Target stresses/strains at nodes/for element.

Stress/Strains TSSIA

Target stresses/strains at nodes/for element.

 σx , σy , σxy : global stresses. εx , εy , γxy :

global strains.

TSSIG Target stresses/strains at Gauss points. σx , σy ,

σxy: global stresses. εx, εy, γxy: global

strains.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

To, 0, 0, 0

Overburden Applicable. **Phreatic Surface** Applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress resultants: Nx, Ny, Nxy, Nmax, Nmin, β , Ns, Ne

Stress (default): σx , σy , σxy , σmax , σmin , β , σs , σe (see description of

principal stresses)

Strain: εx , εy , γxy , εmax , εmin , β , εs , εe

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations. **Updated** For large displacements and large rotations.

Lagrangian

Eulerian For large displacement, large rotations and moderately large

strains.

Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default. 1-point (TPM3), 3-point (TPM6), 2x2 (QPM4,

QPM8)

Fine (see *Options*). 3x3 (QPM8), 3-point (TPM3).

Mass Default. 1-point (TPM3), 3-point (TPM6), 2x2 (QPM4,

QPM8)

Fine (see *Options*). 3x3 (QPM8), 3-point (TPM3).

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

- 18 Invokes fine integration rule.
- **34** Output element stress resultants.
- 36 Follower loads (see Notes)
- **54** Updated Lagrangian geometric nonlinearity.
- 55 Output strains as well as stresses.
- 87 Total Lagrangian geometric nonlinearity.
- 91 Invokes fine integration rule for mass matrix.
- 105 Lumped mass matrix.
- 123 Clockwise node numbering.

- 139 Output yielded Gauss points only
- **167** Eulerian geometric nonlinearity.
- 229 Co-rotational geometric nonlinearity

Notes on Use

- The element formulations are based on the standard isoparametric approach.
 The variation of stresses within an element can be regarded as constant for the lower order (corner node only) elements, and linear for the higher (mid-side node) elements.
- 2. All elements pass the patch test.
- 3. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the face loading (FLD).
- 4. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if **every** element is numbered **clockwise**. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
- 5. If applying an initial stress/strain or thermal load that varies across an element, a higher order element (6 or 8 nodes) should be used. A limitation of the standard isoparametric approach when used for lower order elements (3 or 4 nodes) is that only constant stress/strain fields can be imposed correctly.

Restrictions

Ц	Ensure	mid-sid	e node	centrali	ty

- Avoid excessive element curvature
- ☐ Avoid excessive aspect ratio

Recommendations on Use

• The 8-noded element with a 2*2 Gauss rule is usually the most effective element, as the under-integration of the stiffness matrix prevents locking, which may occur either when the element is subjected to **parasitic shear**, or as the material reaches the incompressible limit (elasto-plasticity). The Gauss point stresses are also sampled at the most accurate locations for the element. However, the element does possess one spurious zero energy mode. This mode is very rarely activated in linear analysis, but it may occur in both materially and geometrically nonlinear analyses. Therefore, a careful examination of the solution should be performed, to check for spurious stress oscillations and peculiarities in the deformed configuration.

- The 8-noded element with a 3*3 Gauss rule may be used if a spurious mechanism is excited with the 2*2 Gauss rule.
- The 4-noded element should not be used for analyses where in-plane bending effects are significant as the element tends to lock in **parasitic shear** [C1], e.g. if QPM4 elements are employed to model a cantilever subject to a point load, the solution obtained will be over-stiff.

2D Plane Stress Continuum Element with Enhanced Strains

General

Element Group

2D Continuum

Element Subgroup

Plane Stress Continuum

Element Description

A 2D isoparametric element with an assumed strain field. This mixed assumed strain element demonstrates a superior performance to QPM4 (see Notes). The elements are numerically integrated.

Number Of 4, num

4, numbered anticlockwise.

Nodes Freedoms

Freedoms U, V: at each node.

Node Coordinates

Node X, Y: at each node.

Geometric Properties

t1... t_n Thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

(Elastic: Orthotropic Plane Stress)

Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 3

(Elastic: Anisotropic Thin Plate)

Rigidities: RIGIDITIES 3 (Rigidities: Membrane/Thin

Plate)

Matrix Not applicable

Joint Not applicable

Concrete MATERIAL PROPERTIES NONLINEAR 105

(Elastic: Isotropic, Plastic: Transient Smoothed

Multi-Crack Concrete)

MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi-

Crack Concrete)

Elasto-Plastic Stress Not applicable

resultant:

Tresca: MATERIAL PROPERTIES NONLINEAR 61

> (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)

Drucker-MATERIAL PROPERTIES NONLINEAR 64 Prager:

(Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr-MATERIAL PROPERTIES NONLINEAR 65 Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Volumetric Not applicable

Crushing:

Stress STRESS POTENTIAL VON MISES, HILL,

Potential **HOFFMAN**

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep CREEP PROPERTIES (Creep)

> AASHTO MATERIAL PROPERTIES NONLINEAR 86

> > AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic Not applicable

Shrinkage SHRINKAGE CEB FIP 90, EUROCODE 2,

GENERAL, USER

Ko Initialisation Not applicable

MATERIAL PROPERTIES RUBBER OGDEN Rubber Ogden:

(Rubber: Ogden) (Rubber: Ogden)

MATERIAL PROPERTIES RUBBER Mooney-Rivlin: MOONEY RIVLIN (Rubber: Mooney-

Rivlin)

Neo-Hookean: MATERIAL PROPERTIES RUBBER

NEO HOOKEAN (Rubber: Neo-Hookean)

MATERIAL PROPERTIES RUBBER Hencky:

HENCKY (Rubber: Hencky)

Generic Polymer Isotropic **MATERIAL PROPERTIES NONLINEAR 89**

(Generic Polymer Model)

Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V: at nodes. Concentrated loads. Px, Py: at nodes.

Concentrated CL

Loads

Element Loads Not

applicable.

Distributed Loads UDL Not applicable.

> FLD Face loads. Px, Py: local face axis pressures at

FLD Global Face Loads. σx , σy , σxy at nodes

Constant body forces for element. Xcbf, Ycbf, **Body Forces** CBF

 $\Omega_{\rm X}$, $\Omega_{\rm V}$, $\Omega_{\rm Z}$, $\alpha_{\rm Z}$

BFP, BFPE Body force potentials at nodes/for element. 0,

0, 0, φ4, Xcbf, Ycbf

Velocities VELO Velocities. Vx, Vy: at nodes. **Accelerations** ACCE Accelerations. Ax, Ay: at nodes.

Viscous support loads. VLx, VLy: at nodes. Viscous Support VSL

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element. σx ,

Stress/Strains

σy, σxy: global stresses. εx, εy, γxy: global

strains.

SSIG	Initial stress	es/strains at	Gauss	points.	σx,	σ
bbio	Initial stress	es/strains at	Gauss	points.	σx,	\mathbf{o}

σxy: global stresses. εx, εy, γxy: global

strains.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element. σx , σy ,

σxy: global stresses.

SSRG Residual stresses at Gauss points. σx , σy , σxy :

global stresses.

Target TSSIE, Target stresses/strains at nodes/for element.

Stress/Strains TSSIA σ_{x} , σ_{y} , σ_{xy} : global stresses. ε_{x} , ε_{y} , γ_{xy} :

global strains.

TSSIG Target stresses/strains at Gauss points. σx , σy ,

σxy: global stresses. εx, εy, γxy: global

strains.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

To, 0, 0, 0

Overburden Applicable.

Phreatic Surface Applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

Output

Solver Stress resultants: Nx, Ny, Nxy, Nmax, Nmin, β , Ns, Ne

Stress (default): σx , σy , σxy , σmax , σmin , β , σs , σe (see

description of principal stresses)

Strain: εx , εy , γxy , εmax , εmin , β , εs , εe

Stretch (for rubber only): V11, V22, V12, λ 1, λ 2, λ 3, $\theta\lambda$, det F.

Where V_{ii} are components of the left stretch tensors, λ_i the

principal stretches, $\theta\lambda$ the angle between the maximum principal stretch and the global X axis, and det F the determinant of the

deformation gradient or volume ratio.

Modeller See **Results Tables (Appendix K)**.

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.

Updated For large displacements and large rotations.

Lagrangian

Eulerian For large displacements, large rotations and moderately large

strains.

Co-rotational For large displacements and large rotations (large strains with

rubber).

Integration Schemes

Stiffness Default. 2x2

Fine. As default.

Mass Default. 2x2

Fine. As default.

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

- **34** Output element stress resultants.
- **36** Follower loads.
- **39** Stress smoothing for rubber material models.
- 54 Updated Lagrangian geometric nonlinearity.
- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity.
- **91** Invokes fine integration rule for mass matrix.
- 105 Lumped mass matrix.
- 123 Clockwise node numbering (see *Notes*).
- 139 Output yielded Gauss points only
- **167** Eulerian geometric nonlinearity.
- 225 Use alternative number of parameters for enhanced strain interpolation (see *Notes*).

229 Co-rotational geometric nonlinearity.

Notes on Use

- 1. The variation of stresses within an element can be regarded as linear.
- 2. The element passes the patch test and the large strain patch test for rubber.
- 3. The strain field for this element consists of two parts: the compatible strains derived from an assumed displacement field and the assumed enhanced strains (see *LUSAS Theory Manual*). The assumed enhanced strain field is defined using 5 or 4 parameters for linear and nonlinear applications respectively. Option 225 switches on the higher 5 parameter enhanced strain interpolation function for nonlinear analysis.
- 4. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility. The load does not have to be normal to the face and may also vary over the face.
- 5. To apply a non-conservative (follower) pressure load (load type FLD) with corotational geometric nonlinearity, Option 36 must be specified. Note that this load must be normal to the face and constant for all the nodes of the element face.
- 6. The converged stresses for rubber are Kirchoff stresses (see *LUSAS Theory Manual*).
- 7. When using the rubber material model, converged strain output is replaced by the left stretch tensor, the principal stretches and the angle defining these principal directions. The value of det $F = \lambda_1 \lambda_2$ (the Volume ratio) is only available for Gauss-point output. (Refer to the *LUSAS Theory Manual* for more details.)
- 8. For rubber, the iterative values of stress and strain are output in local co-rotated directions at the Gauss points only.
- Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if **every** element is numbered **clockwise**. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
- 10. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
- 11. Convergence difficulties can sometimes arise when using enhanced strain elements with nonlinear materials, particularly if the material is elastic perfectly plastic or if a very shallow hardening curve is defined. In such cases it is recommended that the standard element formulation is used.

12. In analyses where significant in-plane bending is thermally induced it is recommended that a nonlinear solution is used. If a linear solution is required, then quadratic plane strain elements QPN8 are recommended.

Restrictions

	Avoid	excessive	aspect ratio	
_			aspect rates	

□ Rubber material models can only be applied in conjunction with the corotational formulation, Option 229.

Recommendations on Use

These elements exhibit an improved performance when compared with the parent element QPM4. The integration rules are the same as those given for QPM4, but the elements do not suffer from locking due to parasitic shear when the material approaches the incompressible limit. The elements are also free of any zero energy modes.

2D Plane Stress Continuum Crack Tip Elements

General

Crack specified at Node 1

Crack specified at Node 1

Element Group

Element Subgroup

2D Continuum

Plane Stress Continuum

Element Description

A family of 2D isoparametric crack tip elements where the crack tip can be located at any corner node. The mid-side nodes are moved to the quarter points to produce a singularity at the crack tip. The strains vary as the square root of 1/R, where R is the distance from the crack tip. These elements are used at the crack tip only and should be mixed with the higher order plane strain continuum elements. The elements are numerically integrated.

Number Of **Nodes**

6 or 8 numbered anticlockwise.

End Releases

Node X. Y: at each node.

Freedoms U, V: at each node.

Coordinates

Geometric Properties

t1... tn Thickness at each node.

Material Properties

MATERIAL PROPERTIES (Elastic: Isotropic) **Linear** Isotropic:

Orthotropic MATERIAL PROPERTIES ORTHOTROPIC

(Elastic: Orthotropic Plane Stress)

MATERIAL PROPERTIES ANISOTROPIC 3 Anisotropic:

(Elastic: Anisotropic Thin Plate)

RIGIDITIES 3 (Rigidities: Membrane/Thin Rigidities.

Plate)

Matrix Not applicableJoint Not applicable

Concrete MATERIAL PROPERTIES NONLINEAR 109

(Elastic: Isotropic, Plastic: Smoothed Multi-

Crack Concrete)

Elasto-Plastic Stress Not applicable.

resultant:

Interface: MATERIAL PROPERTIES NONLINEAR 27
Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic

Plastic Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64
Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65 Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Volumetric Not applicable.

Crushing:

Stress STRESS POTENTIAL VON_MISES, HILL,

Potential HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep CREEP PROPERTIES (Creep)

AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE 2)

IRC MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic Not applicable

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Ko Initialisation Not applicable

Rubber Not applicable

Generic Polymer Isotropic MATERIAL PROPERTIES NONLINEAR 89

(Generic Polymer Model)

Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V: at nodes.

Concentrated CL

Concentrated loads. Px, Py: at nodes.

Loads

Element Loads Not

applicable.

Distributed Loads UDL Not applicable.

FLD Face loads. Px, Py: local face axis pressures at

nodes.

FLDG Global Face Loads. σx , σy , σxy at nodes

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

 $\Omega_{\rm X}$, $\Omega_{\rm Y}$, $\Omega_{\rm Z}$, $\alpha_{\rm Z}$

BFP, BFPE Body force potentials at nodes/for element. 0,

0, 0, φ4, Xcbf, Ycbf

Velocities VELO Velocities. Vx, Vy: at nodes.

Accelerations ACCE Accelerations. Ax, Ay: at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy: at nodes.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element. σx ,

Stress/Strains

σy, σxy: global stresses. εx, εy, γxy: global

strains.

SSIG Initial stresses/strains at Gauss points. σx , σy ,

 σ xy: global stresses. ϵ x, ϵ y, γ xy: global

strains.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element. σx , σy ,

σxy: global stresses.

SSRG Residual stresses at Gauss points. σx , σy , σxy :

global stresses.

Target TSSIE, Target stresses/strains at nodes/for element.

Stress/Strains TSSIA σ_{x} , σ_{y} , σ_{xy} : global stresses. ε_{x} , ε_{y} , γ_{xy} :

global strains.

TSSIG Target stresses/strains at Gauss points. σx , σy ,

σxy: global stresses. εx, εy, γxy: global

strains.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

To, 0, 0, 0

Overburden Applicable. **Phreatic Surface** Applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress resultants: Nx, Ny, Nxy, Nmax, Nmin, β, Ns, Ne

Stress (default): σx , σy , σxy , σmax , σmin , β , σs , σe (see

description of principal stresses)

Strain: εx , εy , γxy , εmax , εmin , β , εs , εe

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.

Updated For large displacements and large rotations. **Lagrangian**

Eulerian For large displacements, large rotations and moderately large

strains.

Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default. 6-point (TPK6), 3x3 (QPK8)

Fine (see *Options*). 12-point (TPK6).

Mass Default. 6-point (TPK6), 3x3 (QPK8)

Fine (see *Options*). 12-point (TPK6).

Mass Modelling

☐ Consistent mass (default).

☐ Lumped mass.

Options

18 Invokes finer integration rule.

- 34 Output element stress resultants.
- 54 Updated Lagrangian geometric nonlinearity.
- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity.
- **91** Invokes fine integration rule for mass matrix.
- 105 Lumped mass matrix.
- 123 Clockwise node numbering.
- 139 Output yielded Gauss points only.
- **167** Eulerian geometric nonlinearity.
- 229 Co-rotational geometric nonlinearity.

Notes on Use

- 1. The element formulations are based on the standard isoparametric approach. Moving the mid-side nodes to the quarter points creates a singularity with theoretically infinite stress at the corner node.
- Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
- Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if **every** element is numbered **clockwise**. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
- 4. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.

Restrictions

- ☐ Avoid excessive element curvature
- ☐ Avoid excessive aspect ratio

Recommendations on Use

The QPK8 and TPK6 elements are specifically designed for application to fracture mechanics problems and may used to model the singularities that occur at the crack tip. The mid-side nodes near the crack tip are shifted to the quarter point. This ensures a singularity is present at the crack tip and that the strains vary as 1/square root of r where r is the distance from the crack tip. The triangular TPK6 element is more effective than the quadrilateral element.

2D Plane Stress Explicit Dynamics Elements

General

Element Group

2D Continuum

Element

Plane Stress Continuum

Subgroup Element

A family of 2D isoparametric elements for explicit dynamic

Description

analyses. The elements are numerically integrated.

Number Of

3 or 4 numbered anticlockwise.

Nodes

End Releases

Freedoms U, V: at each node.

Node

de X, Y: at each node.

Coordinates

Geometric Properties

t1... t_n Thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

(Elastic: Orthotropic Plane Stress)

Anisotropic: Not applicable Rigidities. Not applicable

Matrix Not applicable

Joint Not applicable

Concrete Not applicable

Elasto-Plastic Stress Not applicable

resultant:

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64

Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65

Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)

Not applicable

Volumetric

Crushing:

Stress STRESS POTENTIAL VON_MISES, HILL,

Potential HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Ko Initialisation Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value PDSP, Prescribed variable. U, V: at each node.

TPDSP

Concentrated CL Concentrated loads. Px, Py: at each node.

Loads

Element Loads Not

applicable.

Distributed Loads UDL Not applicable.

FLD Face loads. Px, Py: local face axis pressures at

nodes.

FLDG Not applicable.

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

 $\Omega_{\rm X}$, $\Omega_{\rm Y}$, $\Omega_{\rm Z}$, $\alpha_{\rm Z}$

BFP, BFPE Body force potentials at nodes/for element. 0,

0, 0, Φ4, Xcbf, Ycbf

VelocitiesVELOVelocities. Vx, Vy: at nodes.AccelerationsACCEAccelerations. Ax, Ay: at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy: at nodes.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element. σx ,

Stress/Strains

Oy, Oxy: global stresses. Ex, Ey, Yxy: global

strains.

SSIG Initial stresses/strains at Gauss points σx , σy ,

 σ xy: global stresses. ε x, ε y, γ xy: global

strains.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element. σx , σy ,

σxy: global stresses.

SSRG Residual stresses at Gauss points. σx , σy , σxy :

global stresses.

Target Not

Stress/Strains applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

 $T_0, 0, 0, 0$

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress (default): σx , σy , σxy , σmax , σmin , β , σs , σe (see

description of principal stresses)

Strain: εx , εy , γxy , εmax , εmin , β , εs , εe

Modeller See **Results Tables** (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.

Updated Not applicable.

Lagrangian

Eulerian For large displacements, large rotations and moderately large

strains.

Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default. 1-point (see *Notes*).

Fine. As default.

Mass Default. 1-point (see *Notes*).

Fine. As default.

Mass Modelling

Lumped mass only (see Notes).

Options

- **34** Output element stress resultants.
- 55 Output strains as well as stresses.
- **105** Lumped mass matrix (see *Notes*).
- 139 Output yielded Gauss points only.

Notes on Use

- 1. The element formulations are based on the standard isoparametric approach. The variation of stresses within an element can be regarded as constant.
- 2. The system parameter HGVISC is used to restrict element mechanisms due to under-integration. The default value is usually sufficient.
- The bulk viscosity coefficients are used to restrict numerical oscillations due to the traversal of stress waves. The default bulk viscosity coefficients (BULKLF and BULKQF) may be altered as SYSTEM parameters.
- 4. These elements **must** be used with the dynamic central difference scheme and a lumped mass matrix.
- 5. These elements are **not** applicable. for static or eigenvalue analyses.
- 6. Automatic time step calculations are implemented.

- 7. As the element geometry is always updated in an explicit dynamic analysis, a nonlinear solution is obtained. When using explicit dynamics elements nonlinear control must be specified.
- 8. If creep properties are defined, explicit time integration must be specified.
- 9. Non-conservative loading is invoked when the FLD loading facility is applied.
- 10. Rayleigh damping coefficients are not supported by these elements.
- 11. Constraint equations are not available for use with these elements.
- 12. Nodes **must** be specified in an anticlockwise order. Option 123 is **not** applicable for this element. When using Modeller ensure surface normal is in the +ve z direction.

Restrictions

☐ Avoid excessive aspect ratio

Recommendations on Use

Explicit dynamics elements may be used to define surface boundaries which will be active in a slideline analysis.

2D Plane Strain Continuum Elements

General

Element Group

2D Continuum

Element Subgroup Plane Strain Continuum

Element Description

A family of 2D isoparametric elements with higher order models

capable of modelling curved boundaries. The elements are

numerically integrated.

Number Of Nodes

3, 4, 6, or 8 numbered anticlockwise.

Freedoms

Freedoms U, V: at each node.

Node Coordinates

Node X, Y: at each node.

Geometric Properties

Not applicable (a unit thickness is assumed).

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

PLANE STRAIN (Elastic: Orthotropic Plane

Strain)

Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 4

(Not supported in LUSAS Modeller)

Rigidities. RIGIDITIES 4 (Not supported in LUSAS

Modeller)

Matrix Not

applicable

Joint Not

applicable

Concrete MATERIAL PROPERTIES NONLINEAR 105

(Elastic: Isotropic, Plastic: Transient Smoothed

Multi-Crack Concrete)

MATERIAL PROPERTIES NONLINEAR 109

(Elastic: Isotropic, Plastic: Smoothed Multi-

Crack Concrete)

Not applicable.

Elasto-Plastic Stress

resultant:

Modified

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64

Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65

Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Modified MATERIAL PROPERTIES

Mohr- MODIFIED MOHR COULOMB (Elastic:

Coulomb: Isotropic, Plastic: Mohr-Coulomb/Tresca, non-

associative Hardening with

tension/compression cut-off)

MATERIAL PROPERTIES CAM_CLAY

Cam-clay MODIFIED (Elastic: Isotropic, Plastic)
Optimised MATERIAL PROPERTIES NONLINEAR 75

Implicit Von (Elastic: Isotropic, Plastic: Von Mises,

Mises: Hardening: Isotropic & Kinematic)

Volumetric MATERIAL PROPERTIES NONLINEAR 81 Crushing: (Volumetric Crushing or Crushable Foam)

Interface: MATERIAL PROPERTIES NONLINEAR 27

Stress STRESS POTENTIAL VON_MISES, HILL,

Potential HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

CREEP PROPERTIES (Creep) Creep

> AASHTO **MATERIAL PROPERTIES NONLINEAR 86**

> > AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model Code

1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC MATERIAL PROPERTIES NONLINEAR 86

(Concrete creep model to Indian IRC code of

MATERIAL PROPERTIES NONLINEAR 89

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic VISCO ELASTIC PROPERTIES

SHRINKAGE CEB_FIP_90, EUROCODE_2, Shrinkage

GENERAL, USER

Ko Initialisation Applicable

Rubber Not

applicable

Generic Isotropic

(Generic Polymer Model)

Polymer Composite Not

applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V: at nodes. Concentrated CL Concentrated loads. Px, Py: at nodes.

Loads

Element Loads Not

applicable.

Distributed Loads	UDL	Not applicable.
	FLD	<u>Face Loads</u> . Px, Py: local face axis pressures at nodes.
	FLDG	Global Face Loads. σx , σy , σxy at nodes
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, $0, 0, \Omega z, \alpha z$
	BFP, BFPE	Body force potentials at nodes/for element. 0, 0, 0, φ4, Xcbf, Ycbf
Velocities	VELO	Velocities. Vx, Vy: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy: at nodes.
Initial	SSI, SSIE	Initial stresses/strains at nodes/for element. σx ,
Stress/Strains		σy, $σ$ xy, $σ$ z: global stresses. $ε$ x, $ε$ y, $γ$ xy: global strains.
	SSIG	Initial stresses/strains at Gauss points. σx , σy ,
		σ xy, σ z: global stresses. ε x, ε y, γ xy: global strains.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. σx , σy ,
		σxy, σz: global stresses.
	SSRG	Residual stresses at Gauss points. σx , σy , σxy ,
		σz global stresses.
Target	TSSIE,	Target stresses/strains at nodes/for element.
Stress/Strains	TSSIA	σx, σy, σxy, σz: global stresses. εx, εy,
		γxy: global strains.
	TSSIG	Target stresses/strains at Gauss points. σx , σy ,
		σxy, σz: global stresses. εx, εy, γxy: global strains.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, 0, 0, 0, To, 0, 0, 0
Overburden	Applicable.	
Phreatic Surface	Applicable.	
Field Loads	Not	
Tomm Domondant	applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver

Stress (default): σx , σy , σxy , σz , σmax , σmin , β , σs , σe (see

description of principal stresses)

Strain: εx , εy , γxy , $\varepsilon z = 0$, εmax , εmin , β , εs , εe

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.

Updated For large displacements and large rotations.

Lagrangian

Eulerian For large displacements, large rotations and moderately large

strains.

Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default. 1-point (TPN3), 3-point (TPN6), 2x2 (QPN4,

QPN8)

Fine (see *Options*). 3x3 (QPN8), 3-point (TPN3).

Mass Default. 1-point (TPN3), 3-point (TPN6), 2x2 (QPN4,

QPN8)

Fine (see *Options*). 3x3 (QPN8), 3-point (TPN3).

Mass Modelling

☐ Consistent mass (default).

☐ Lumped mass.

Options

18 Invokes finer integration rule.

- **36** Follower loads.
- 54 Updated Lagrangian geometric nonlinearity
- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity.
- **91** Invokes fine integration rule for mass matrix.
- 105 Lumped mass matrix.
- 123 Clockwise node numbering.
- 139 Output yielded Gauss points only.
- **167** Eulerian geometric nonlinearity.
- 229 Co-rotational geometric nonlinearity

Notes on Use

- The element formulations are based on the standard isoparametric approach.
 The variation of stresses within an element can be regarded as constant for the lower order (corner node only) elements, and linear for the higher order (midside node) elements.
- 2. All elements pass the **patch test**.
- 3. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
- 4. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if **every** element is numbered **clockwise**. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
- Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
- 6. If applying an initial stress/strain or thermal load that varies across an element, a higher order element (6 or 8 nodes) should be used. A limitation of the standard isoparametric approach when used for lower order elements (3 or 4 nodes) is that only constant stress/strain fields can be imposed correctly.

Restrictions

- ☐ Ensure mid-side node centrality
- ☐ Avoid excessive element curvature
- ☐ Avoid excessive aspect ratio

Recommendations on Use

• The 8-noded element with a 2*2 Gauss rule is usually the most effective element, as the under-integration of the stiffness matrix prevents locking, which

may occur either when the element is subjected to <u>parasitic shear</u>, or as the material reaches the incompressible limit (elasto-plasticity). The Gauss point stresses are also sampled at the most accurate locations for the element. However, the element does possess one spurious zero energy mode. This mode is very rarely activated in linear analysis, but it may occur in both materially and geometrically nonlinear analyses. Therefore, a careful examination of the solution should be performed, to check for spurious stress oscillations and peculiarities in the deformed configuration.

- The 8-noded element with a 3*3 Gauss rule may be used if a spurious mechanism is excited with the 2*2 Gauss rule.
- The 4-noded element should not be used for analyses where in-plane bending effects are significant as the element tends to lock in <u>parasitic shear</u>, e.g. if QPN4 elements are employed to model a cantilever subject to a point load, the solution obtained will be over-stiff.

2D Plane Strain Continuum Element with Enhanced **Strains**

General

Element Group

2D Continuum

Element Subgroup

Plane Strain Continuum

Element Description

A 2D isoparametric element with an assumed strain field. This

mixed assumed strain element demonstrates a superior performance to QPN4 (see Notes). The element is numerically integrated.

Number Of Nodes

4, numbered anticlockwise.

Freedoms U, V: at each node.

Coordinates

Node X, Y: at each node.

Geometric Properties

Not applicable (a unit thickness is assumed).

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

> Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

> > PLANE STRAIN (Elastic: Orthotropic Plane

Strain)

MATERIAL PROPERTIES ANISOTROPIC 4 Anisotropic:

(Not supported in LUSAS Modeller)

Rigidities. RIGIDITIES 4 (Not supported in LUSAS

Modeller)

Matrix Not

applicable

Joint Not

applicable

Concrete MATERIAL PROPERTIES NONLINEAR 105

(Elastic: Isotropic, Plastic: Transient Smoothed

Multi-Crack Concrete)

MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi-

Crack Concrete)

Elasto-Plastic Stress Not applicable.

resultant:

Tresca: MATERIAL PROPERTIES NONLINEAR 61

> (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker-MATERIAL PROPERTIES NONLINEAR 64 Prager:

(Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Modified MATERIAL PROPERTIES

Mohr-MODIFIED MOHR COULOMB (Elastic: Coulomb: Isotropic, Plastic: Mohr-Coulomb/Tresca, non-

> associative Hardening with tension/compression cut-off)

Modified MATERIAL PROPERTIES CAM CLAY Cam-clay MODIFIED (Elastic: Isotropic, Plastic) Optimised MATERIAL PROPERTIES NONLINEAR 75 Implicit Von

(Elastic: Isotropic, Plastic: Von Mises, Mises: Hardening: Isotropic & Kinematic)

Volumetric MATERIAL PROPERTIES NONLINEAR 81 Crushing: (Volumetric Crushing or Crushable Foam) Stress STRESS POTENTIAL VON MISES, HILL,

Potential **HOFFMAN**

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model Code

1990)

Chinese **MATERIAL PROPERTIES NONLINEAR 86**

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic VISCO ELASTIC PROPERTIES

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Ko Initialisation Applicable

Rubber Ogden MATERIAL PROPERTIES RUBBER OGDEN

(Rubber: Ogden)

Mooney- MATERIAL PROPERTIES RUBBER

Rivlin MOONEY_RIVLIN (Rubber: Mooney-Rivlin)

Neo-Hookean MATERIAL PROPERTIES RUBBER

NEO HOOKEAN (Rubber: Neo-Hookean)

Hencky MATERIAL PROPERTIES RUBBER HENCKY

(Rubber: Hencky)

Generic Isotropic MATERIAL PROPERTIES NONLINEAR 89

Polymer (Generic Polymer Model)

Composite Not

applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V: at nodes.

Concentrated CL Concentrated loads. Px, Py: at nodes.

Loads

_ - - - -

Element Loads Not

applicable. **Distributed Loads** UDL Not applicable.

FLD Face loads. Px, Py: local face axis pressures at

nodes.

FLDG Global Face Loads. σx , σy , σxy at nodes

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

 $0, 0, \Omega z, \alpha z$

BFP, BFPE Body force potentials at nodes/for element. 0,

0, 0, φ4, Xcbf, Ycbf

VelocitiesVELOVelocitiesVx, Vy: at nodesAccelerationsACCEAcceleration Ax, Ay: at nodes

Viscous Support VSL Viscous support loads. VLx, VLy: at nodes.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element. σx ,

Stress/Strains σ y, σ xy, σ z: global stresses. ε x, ε y, γ xy:

global strains.

SSIG Initial stresses/strains at Gauss points. σx , σy ,

 σxy , σz : global stresses. εx , εy , γxy : global

strains.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element. σx , σy ,

 σxy , σz : global stresses.

SSRG Residual stresses at Gauss points. σx, σy, σxy,

σz global stresses.

Target TSSIE TSSIA Target stresses/strains at nodes/for element.

Stress/Strains σ_{x} , σ_{y} , σ_{xy} , σ_{z} : global stresses. ε_{x} , ε_{y} ,

γxy: global strains.

TSSIG Target stresses/strains at Gauss points. σx , σy ,

 σxy , σz : global stresses. εx , εy , γxy : global

strains.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

 $T_0, 0, 0, 0$

Overburden Applicable.

Phreatic Surface Applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver

Stress (default): σx , σy , σxy , σz , σmax , σmin , β , σs , σe (see

description of principal stresses)

Strain: εx , εy , γxy , $\varepsilon z = 0$, εmax , εmin , β , εs , εe

Stretch (for rubber only): V_{11} , V_{22} , V_{12} , λ_1 , λ_2 , $\lambda_3=1$, $\theta\lambda$, det F.

Where Vii are components of the left stretch tensors, λ_i the

principal stretches, $\theta\lambda$ the angle between the maximum principal

stretch and the global X axis, and det F the determinant of the deformation gradient or volume ratio.

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.

Updated For large displacements and large rotations.

Lagrangian

Eulerian For large displacements, large rotations and moderately large

strains.

Co-rotational For large displacements and large rotations (large strains with

rubber).

Integration Schemes

Stiffness Default. 2x2

Fine. As default.

Mass Default. 2x2

Fine. As default.

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Output

- **36** Follower loads.
- **39** Stress smoothing for rubber material models.
- 54 Updated Lagrangian geometric nonlinearity.
- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity.

- **91** Invokes fine integration rule for mass matrix.
- 105 Lumped mass matrix.
- 123 Clockwise node numbering.
- 139 Output yielded Gauss points only
- **167** Eulerian geometric nonlinearity.
- **225** Use alternative number of parameters for enhanced strain interpolation (see *Notes*).
- 229 Co-rotational geometric nonlinearity.

Notes on Use

- 1. The variation of stresses within an element can be regarded as linear.
- 2. The element passes the patch test and the large strain patch test for rubber.
- 3. The strain field for this element consists of two parts: the compatible strains derived from an assumed displacement field and the assumed enhanced strains; see *LUSAS Theory Manual*. The assumed enhanced strain field is defined using 5 or 4 parameters for linear and nonlinear applications respectively. Option 225 switches on the higher 5 parameter enhanced strain interpolation function for nonlinear analysis.
- 4. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility. The load does not have to be normal to the face and may also vary over the face.
- To apply a non-conservative (follower) pressure load (load type FLD) with corotational geometric nonlinearity, Option 36 must be specified. Note that this load should be normal to the face and constant for all the nodes of the element face.
- The converged stresses for rubber are <u>Kirchhoff</u> stresses (see *LUSAS Theory Manual*).
- 7. Option 39 is used to smooth the stress output. It is particularly useful when the rubber material model is applied and the element is under very high compression where oscillatory stresses may appear (checker-board pattern).
- 8. When using the rubber material model, converged strain output is replaced by the left stretch tensor, the principal stretches and the angle defining these principal directions. The value of det $F = \lambda_1 \lambda_2$ (the Volume ratio) is only available for Gauss-point output. (Refer to the *LUSAS Theory Manual* for more details.)
- 9. For rubber, the iterative values of stress and strain are output in local co-rotated directions at the Gauss points only.

- 10. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if **every** element is numbered **clockwise**. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
- 11. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
- 12. Convergence difficulties can sometimes arise when using enhanced strain elements with nonlinear materials, particularly if the material is elastic-perfectly plastic or if a very shallow hardening curve is defined. In such cases it is recommended that the standard element formulation is used.
- 13. In analyses where significant in-plane bending is thermally induced it is recommended that a nonlinear solution is used. If a linear solution is required, then quadratic plane strain elements QPN8 are recommended.

Restrictions

Rubber material models can only be applied in conjunction with the co-
rotational formulation, Option 229.

☐ Avoid excessive aspect ratio

Recommendations on Use

These elements exhibit an improved performance when compared with the parent element QPN4. The integration rules are the same as the parent element. The elements do not suffer from locking due to parasitic shear or when the material approaches the incompressible limit. The elements are also free of any zero energy modes.

2D Plane Strain Continuum Element for Large Strains

General

Element Group

2D Continuum

Element Subgroup

Plane Strain Continuum

Element Description

A 2D isoparametric element incorporating an internal pressure variable. This element should be used for analyses involving large

strains. The element is numerically integrated

Number Of **Nodes**

4, numbered anticlockwise.

Freedoms U. V: at each node.

Coordinates

Node X, Y: at each node.

Geometric Properties

Not applicable (a unit thickness is assumed).

Material Properties

Linear Not

applicable

Matrix Not

applicable

Joint Not

applicable

Concrete Not

applicable

Optimised

Elasto-Plastic Implicit **MATERIAL PROPERTIES NONLINEAR 75**

(Elastic: Isotropic, Plastic: Von Mises,

Von Mises Hardening: Isotropic)

Stress STRESS POTENTIAL VON_MISES (Isotropic: Potential von Mises)

Creep Not

applicable

Damage Not

applicable

Viscoelastic Not

applicable

Shrinkage Not

applicable

Ko Initialisation Not

applicable

Rubber Ogden MATERIAL PROPERTIES RUBBER OGDEN

(Rubber: Ogden)

Mooney-MATERIAL PROPERTIES RUBBER

Rivlin MOONEY_RIVLIN (Rubber: Mooney-Rivlin)

Neo-Hookean MATERIAL PROPERTIES RUBBER

NEO HOOKEAN (Rubber: Neo-Hookean)

MATERIAL PROPERTIES RUBBER Hencky

HENCKY (Rubber: Hencky)

Generic Polymer Not

applicable

Composite Not

applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V: at nodes.

Concentrated CL

Concentrated loads. Px, Py: at nodes.

Loads **Element Loads** Not

applicable.

Distributed Loads UDL Not applicable.

> **FLD** Face loads. Px, Py: local face axis pressures at

> > nodes.

FLDG Global Face Loads. σx , σy , σxy at nodes

Constant body forces for element. Xcbf, Ycbf, **Body Forces** CBF

 $0.0, \Omega z, \alpha z$

Body force potentials at nodes/for element. 0, BFP, BFPE

0, 0, φ4, Xcbf, Ycbf

Velocities VELO Velocities. Vx, Vy: at nodes. **Accelerations** ACCE Acceleration Ax, Ay: at nodes.

Viscous support loads. VLx, VLy: at nodes. Viscous Support VSL

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element. σx,

Stress/Strains

σy, σxy, σz: global stresses. εx, εy, γxy:

alohal strains

global strains.

SSIG Initial stresses/strains at Gauss points. σx , σy ,

σxy, σz: global stresses. εx, εy, γxy: global

strains.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element. σx , σy ,

σxy, σz: global stresses.

SSRG Residual stresses at Gauss points. σx , σy , σxy ,

σz global stresses.

Target TSSIE, Target stresses/strains at nodes/for element.

Stress/Strains TSSIA $\sigma_x, \sigma_y, \sigma_{xy}, \sigma_{zz}$ global stresses. $\varepsilon_x, \varepsilon_y, \sigma_{zz}$

 γ xy: global strains.

TSSIG Target stresses/strains at Gauss points. σx , σy ,

σxy, σz: global stresses. εx, εy, γxy: global

strains.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

 $T_0, 0, 0, 0$

Overburden Applicable. **Phreatic Surface** Applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver

Stress (default): σx , σy , σxy , σz , σmax , σmin , β , σs , σe (see

description of principal stresses)

Principal stretches, λ_1 , λ_2 , $\lambda_3=1$, $\theta\lambda$, det F. Where V_{ii} are components of the left stretch tensors, λ_i the principal stretches, $\theta\lambda$ the angle between the maximum principal stretch and the global X axis, and det F the

determinant of the deformation gradient or volume ratio.

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.

Updated Not applicable.

Lagrangian

Eulerian For large displacements and large strains.Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default. 2x2

Fine. As default.

Mass Default. 2x2

Fine. As default.

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

- 55 Output stretches as well as stresses.
- 91 Invokes fine integration rule for mass matrix.
- 105 Lumped mass matrix.
- 123 Clockwise node numbering.

Notes on Use

- 1. The element formulations are based on the standard **isoparametric** approach. The variation of stresses within an element can be regarded as linear.
- 2. The element passes the large strain patch test for rubber.
- 3. Non-conservative loading is available with this element when using FLD loading.

- 4. The stresses output are **Kirchhoff** stresses (see *LUSAS Theory Manual*).
- 5. Stretch output consists of the principal stretches and the angle defining the principal directions. The value of det $F = \lambda_1 \lambda_2$ is also output. (Refer to the *LUSAS Theory Manual.*)
- 6. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if **every** element is numbered **clockwise**. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
- 7. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
- 8. This element is based on a formulation that tackles the problem of volumetric locking in a different way to that used in QPN4M. It should be preferred to the QPN4M in cases where Eulerian description (with a current configuration taken as reference) is more appropriate than the co-rotational description (e.g. inflation problems).

Restrictions

Avoid excessive aspect ratio

_	Tivola excessive aspect ratio	
П	Avoid non-uniform initial and thermal strains with coarse meshes	

2D Plane Strain Continuum Crack Tip Elements

General

Crack specified at Node 1

Crack specified at Node 1

Element Group

Element Subgroup

2D Continuum

Plane Strain Continuum

Element Description

A family of 2D isoparametric crack tip elements where the crack tip can be located at any corner node. The mid-side nodes are moved to the quarter points to produce a singularity at the crack tip. The strains vary as the square root of 1/R, where R is the distance from the crack tip. These elements are used at the crack tip only and should be mixed with the higher order plane strain continuum elements. The elements are numerically integrated.

Nodes

Number Of 6 or 8, numbered anticlockwise.

Coordinates

Freedoms U. V: at each node. **Node** X, Y: at each node.

Geometric Properties

Not applicable (a unit thickness is assumed).

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

> MATERIAL PROPERTIES ORTHOTROPIC Orthotropic:

> > PLANE STRAIN (Elastic: Orthotropic Plane

Strain)

MATERIAL PROPERTIES ANISOTROPIC 4 Anisotropic:

(Not supported in LUSAS Modeller)

Rigidities. RIGIDITIES 4 (Not supported in LUSAS

Modeller)

Matrix Not applicable

Joint Not applicable

MATERIAL PROPERTIES NONLINEAR 109 Concrete

(Elastic: Isotropic, Plastic: Smoothed Multi-

Crack Concrete) Not applicable.

Elasto-Plastic Stress

resultant:

Interface: MATERIAL PROPERTIES NONLINEAR 27

Tresca: MATERIAL PROPERTIES NONLINEAR 61

> (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker-MATERIAL PROPERTIES NONLINEAR 64 Prager:

(Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

MATERIAL PROPERTIES NONLINEAR 65 Mohr-

Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Modified MATERIAL PROPERTIES

Mohr-MODIFIED MOHR COULOMB (Elastic: Coulomb: Isotropic, Plastic: Mohr-Coulomb/Tresca, non-

> associative Hardening with tension/compression cut-off)

Modified Cam-

clay

MATERIAL PROPERTIES CAM CLAY

MODIFIED (Elastic: Isotropic, Plastic)

MATERIAL PROPERTIES NONLINEAR 75 Optimised

Implicit Von (Elastic: Isotropic, Plastic: Von Mises, Mises: Hardening: Isotropic & Kinematic)

Volumetric **MATERIAL PROPERTIES NONLINEAR 81** (Volumetric Crushing or Crushable Foam) Crushing:

Stress Potential STRESS POTENTIAL VON_MISES, HILL,

HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

CREEP PROPERTIES (Creep) Creep

AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic VISCO ELASTIC PROPERTIES

Shrinkage SHRINKAGE CEB FIP 90, EUROCODE 2,

GENERAL, USER

Ko Initialisation Applicable

Rubber Not applicable

Generic Isotropic MATERIAL PROPERTIES NONLINEAR 89

Polymer (Generic Polymer Model)

Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V: at nodes.

Concentrated CL Concentrated loads. Px, Py: at nodes.

Loads

Element Loads Not

applicable.

Distributed Loads UDL Not applicable.

	FLD	<u>Face loads</u> . Px, Py: local face axis pressures at nodes.
	FLDG	Global Face Loads. σx , σy , σxy at nodes
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, $0, 0, \Omega z, \alpha z$
	BFP, BFPE	Body force potentials at nodes/for element. 0, 0, 0, φ4, Xcbf, Ycbf
Velocities	VELO	Velocities. Vx, Vy: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy: at nodes.
Initial	SSI, SSIE	Initial stresses/strains at nodes/for element. σx,
Stress/Strains		σy, $σ$ xy, $σ$ z: global stresses. $ε$ x, $ε$ y, $γ$ xy: global strains.
	SSIG	Initial stresses/strains at Gauss points. σx , σy ,
		σ xy, σ z: global stresses. ε x, ε y, γ xy: global strains.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. $\sigma x,\sigma y,$
		σxy, σz: global stresses.
	SSRG	Residual stresses at Gauss points. σx , σy , σxy , σz : global stresses.
Target	TSSIE,	Target stresses/strains at nodes/for element.
Stress/Strains	TSSIA	σx, σy, σxy, σz: global stresses. εx, εy,
		γxy: global strains.
	TSSIG	Target stresses/strains at Gauss points. σx , σy ,
		σxy, σz: global stresses. εx, εy, γxy: global strains.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, 0, 0, 0, To, 0, 0, 0
Overburden	Applicable.	
Phreatic Surface	Applicable.	
Field Loads	Not	
	applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver Stress (default): σx , σy , σxy , σmax , σmin , β , σs , σe (see

description of principal stresses)

Strain: εx , εy , γxy , εmax , εmin , β , εs , εe

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.

Updated For large displacements and large rotations.

Lagrangian

Eulerian For large displacements, large rotations and moderately large

strains.

Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default. 6-point (TNK6), 3x3 (QNK8)

Fine (see *Options*). 12-point (TNK6)

Mass Default. 6-point (TNK6), 3x3 (QNK8)

Fine (see *Options*). 12-point (TNK6)

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

- 18 Invokes finer integration rule.
- 54 Updated Lagrangian geometric nonlinearity.
- 55 Output strains as well as stresses.
- 87 Total Lagrangian geometric nonlinearity.

- **91** Invokes fine integration rule for mass matrix.
- 105 Lumped mass matrix.
- 123 Clockwise node numbering.
- 139 Output yielded Gauss points only.
- **167** Eulerian geometric nonlinearity.
- 229 Co-rotational geometric nonlinearity.

Notes on Use

- The element formulations are based on the standard isoparametric approach.
 Moving the mid-side nodes to the quarter points creates a singularity with
 theoretically infinite stress at the corner node.
- Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
- 3. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if **every** element is numbered **clockwise**. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
- 4. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.

Restrictions

- ☐ Avoid excessive element curvature
- ☐ Avoid excessive aspect ratio

Recommendations on Use

Elements QNK8 and TNK6 are specifically designed for application to fracture mechanics problems and may be used to model the singularities that occur at the crack tip. The mid-side nodes near the crack tip are shifted to the quarter point. This ensures a singularity is present at the crack tip and that the strains vary as 1/square root of r where r is the distance from the crack tip. The triangular TNK6 element is more effective than the quadrilateral element.

2D Plane Strain Explicit Dynamics Elements

General

Element Group

2D Continuum

Element Subgroup

Plane Strain Continuum

Element Description

A family of 2D isoparametric elements for explicit dynamic analyses. The elements are numerically integrated.

Number Of

3 or 4 numbered anticlockwise.

Nodes

Freedoms

U, V: at each node.

Node Coordinates

Node X, Y: at each node.

Geometric Properties

Not applicable (a unit thickness is assumed).

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

PLANE STRAIN (Elastic: Orthotropic Plane

Strain)

Anisotropic:

Not applicable.

Rigidities.

Not applicable.

Matrix Not

applicable

Joint Not

applicable

Concrete Not

applicable

Elasto-Plastic Stress Not applicable.

resultant:

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64
Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65 Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Modified MATERIAL PROPERTIES

Mohr- MODIFIED MOHR_COULOMB (Elastic: Coulomb: Isotropic, Plastic: Mohr-Coulomb/Tresca, non-

associative Hardening with tension/compression cut-off)

Optimised MATERIAL PROPERTIES NONLINEAR 75
Implicit Von (Elastic: Isotropic, Plastic: Von Mises,
Mises: Hardening: Isotropic & Kinematic)

Volumetric MATERIAL PROPERTIES NONLINEAR 81
Crushing: (Volumetric Crushing or Crushable Foam)
Stress STRESS POTENTIAL VON_MISES, HILL,

HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

CREEP PROPERTIES (Creep) (see *Notes*)
DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic VISCO ELASTIC PROPERTIES

Shrinkage Not

Creep

Damage

applicable

Potential

Ko Initialisation Not

applicable

Rubber Not

applicable

Generic Not

Polymer applicable

Composite Not

applicable

Loading

Prescribed Value PDSP, Prescribed variable. U, V: at each node.

	TPDSP	
Concentrated	CL	Concentrated loads. Px, Py: at each node.
Loads	NT 4	
Element Loads	Not applicable.	
Distributed Loads	UDL	Not applicable.
21801100000 20000	FLD	Face loads. Px, Py: local face axis pressures at
		nodes.
	FLDG	Not applicable
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf,
		$0, 0, \Omega z, \alpha z$
	BFP, BFPE	Body force potentials at nodes/for element. 0,
		0, 0, φ4, Xcbf, Ycbf
	VELO	Velocities. Vx, Vy: at nodes.
	ACCE	Acceleration Ax, Ay: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy: at nodes.
	SSI, SSIE	Initial stresses/strains at nodes/for element. σx ,
Stress/Strains	,	σy, σxy, σz: global stresses. εx, εy, γxy
	SSIG	global strains.
		Initial stresses/strains at Gauss points. σx , σy ,
		σ xy, σ z: global stresses. ε x, ε y, γ xy: global strains.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. σx , σy ,
		σxy, σz: global stresses.
	SSRG	Residual stresses at Gauss points. σx , σy , σxy ,
		σz: global stresses.
Target		
Stress/Strains		
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, 0, 0, 0, To, 0, 0, 0
Overburden		
D 1 4 C 6	applicable.	
Phreatic Surface	applicable.	
Field Loads		
	applicable.	
Temp Dependent	Not	
Loads	applicable.	

LUSAS Output

Solver

Stress (default): σx , σy , σxy , σz , σmax , σmin , β , σs , σe (see

description of principal stresses)

Strain: εx , εy , γxy , εmax , εmin , β , εs , εe

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.

Updated Not applicable.

Lagrangian

Eulerian For large displacements, large rotations and moderately large

strains.

Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default. 1-point (see *Notes*).

Fine. As default.

Mass Default. 1-point (see *Notes*).

Fine. As default.

Mass Modelling

☐ Lumped mass only (see *Notes*).

Options

55 Output strains as well as stresses.

105 Lumped mass matrix (see *Notes*).

139 Output yielded Gauss points only.

Notes on Use

- 1. The element formulations are based on the standard
- 2. The system parameter HGVISC is used to restrict element mechanisms due to under-integration. The default value is usually sufficient.
- 3. The bulk viscosity coefficients are used to restrict numerical oscillations due to the traversal of stress waves. The default bulk viscosity coefficients (BULKLF and BULKQF) may be altered as SYSTEM parameters.
- 4. These elements must be used with a dynamic central difference scheme and a lumped mass matrix in order to obtain the maximum efficiency from the numerical algorithms.
- 5. These elements are not applicable for static or eigenvalue analyses.
- 6. Automatic time step calculations are implemented.
- 7. As the element geometry is always updated in an explicit dynamic analysis, a nonlinear solution is obtained. When using explicit dynamics elements NONLINEAR CONTROL must be specified.
- 8. If CREEP PROPERTIES are defined, explicit time integration must be specified in VISCOUS CONTROL.
- 9. Non-conservative loading is invoked when the FLD loading facility is applied.
- 10. Rayleigh damping coefficients are not supported by these elements.
- 11. Constraint equations are not available for use with these elements.
- 12. Nodes **must** be specified in an anticlockwise order. Option 123 is **not** applicable for this element. When using Modeller ensure surface normal is in the +ve z direction.

Restrictions

☐ Avoid excessive aspect ratio

Recommendations on Use

Explicit dynamics elements may be used to define surface boundaries which will be active in a slideline analysis.

2D Plane Strain Two Phase Continuum Elements

General

Element Group

2D Continuum

Element Subgroup

Plane Strain Continuum

Element Description

A family of 2D isoparametric elements with higher order models capable of modelling curved boundaries. The elements are

numerically integrated.

Number Of Nodes

6 or 8 numbered anticlockwise.

Freedoms U, V, P at corner nodes. U, V at midside nodes.

Coordinates

Node X, Y: at each node.

Geometric Properties

Not applicable (a unit thickness is assumed).

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

> MATERIAL PROPERTIES ORTHOTROPIC Orthotropic:

PLANE STRAIN (Elastic: Orthotropic Plane

Strain)

Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 4

(Not supported in LUSAS Modeller)

Rigidities. RIGIDITIES 4 (Not supported in LUSAS

Modeller)

Matrix Not

applicable

Joint Not

applicable

Concrete MATERIAL PROPERTIES NONLINEAR 109

(Elastic: Isotropic, Plastic: Smoothed Multi Crack

Concrete)

Elasto-Plastic Stress Not applicable.

resultant:

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64

Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65 Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Modified MATERIAL PROPERTIES

Mohr- MODIFIED MOHR_COULOMB (Elastic: Coulomb: Isotropic, Plastic: Mohr-Coulomb/Tresca, non-

associative Hardening with

tension/compression cut-off)

Modified MATERIAL PROPERTIES CAM_CLAY
Cam-clay MODIFIED (Elastic: Isotropic, Plastic)
Optimised MATERIAL PROPERTIES NONLINEAR 75
Implicit Von (Elastic: Isotropic, Plastic: Von Mises,

Mises: Hardening: Isotropic & Kinematic)
Volumetric MATERIAL PROPERTIES NONLINEAR 81

Crushing: (Volumetric Crushing or Crushable Foam)
Interface MATERIAL PROPERTIES NONLINEAR 27
Stress STRESS POTENTIAL VON MISES, HILL,

Potential HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep CREEP PROPERTIES (Creep)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic VISCOELASTIC PROPERTIES

Shrinkage SHRINKAGE CEB FIP 90, EUROCODE 2,

GENERAL, USER

Ko Initialisation Not

applicable

Rubber Not

applicable

Generic MATERIAL PROPERTIES NONLINEAR 89

Polymer (Generic Polymer Model)

Composite Not

applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V, P at corner nodes. U,

V at midside nodes.

Concentrated CL Concentrated loads. Px, Py, Q at corner nodes.

Loads Px, Py at midside nodes.

Element Loads Not

applicable.

Distributed Loads UDL Not applicable.

FLD Face Loads. Px, Py, Q: face pressures/flux per

unit area at corner nodes relative to local face axes. Px, Py: face pressures at midside nodes

relative to local face axes.

FLDG Global Face Loads. σx , σy , σxy at nodes

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

 $0, 0, \Omega z, \alpha z, gx, gy$ (see Notes on Use)

BFP, BFPE Body force potentials at nodes/for element. 0,

0, 0, ϕ 4, Xcbf, Ycbf, gx, gy (see Notes on

Use)

Velocities VELO Velocities. Vx, Vy: at nodes.

Accelerations ACCE Acceleration Ax, Ay: at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy: at nodes.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element. σx,

Stress/Strains

σy, σxy, σz, σp global stresses. εx, εy, γxy:

global strains.

SSIG Initial stresses/strains at Gauss points. σx , σy ,

 σxy , σz , σp : global stresses. εx , εy , γxy :

global strains.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element. σx , σy ,

σxy, σz, σp: global stresses.

SSRG Residual stresses at Gauss points. σx , σy , σxy ,

σz, σp global stresses.

Target TSSIE, Target stresses/strains at nodes/for element.

Stress/Strains TSSIA $\sigma_{x}, \sigma_{y}, \sigma_{x}, \sigma_{z}, \sigma_{p}$ global stresses. $\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{y}, \varepsilon_{z}, \varepsilon_{y}, \varepsilon_{z}, \varepsilon_{y}, \varepsilon_{y}, \varepsilon_{z}, \varepsilon_{z$

γxy: global strains.

TSSIG Target stresses/strains at Gauss points. σx , σy ,

 σxy , σz , σp : global stresses. εx , εy , γxy :

global strains.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

 $T_0, 0, 0, 0$

Overburden Applicable.

Phreatic Surface Applicable.
Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress (default): σx , σy , σxy , σz , σp , σmax , σmin , β , σs , σe

(see description of principal stresses)

Strain: εx , εy , γxy , $\varepsilon z = 0$, εv , εmax , εmin , β , εs , εe

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.

Updated For large displacements and large rotations.

Lagrangian

Eulerian For large displacements, large rotations and moderately large

strains.

Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default. 3-point (TPN6P), 2x2 (QPN8P)

Fine (see *Options*). 3x3 (QPN8P)

Mass Default. 3-point (TPN6P), 2x2 (QPN8P)

Fine (see *Options*). 3x3 (QPN8P)

Mass Modelling

☐ Consistent mass (default).

☐ Lumped mass.

Options

- 18 Invokes finer integration rule.
- 36 Follower loads.
- 54 Updated Lagrangian geometric nonlinearity
- 55 Output strains as well as stresses
- **87** Total Lagrangian geometric nonlinearity.
- 91 Invokes fine integration rule for mass matrix.
- 105 Lumped mass matrix.
- 123 Clockwise node numbering.
- 139 Output yielded Gauss points only.
- 167 Eulerian geometric nonlinearity.
- 229 Co-rotational geometric nonlinearity.

Notes on Use

- 1. Two phase material parameters must be used with these elements for undrained and consolidation analysis.
- 2. The element formulations are based on the standard isoparametric approach. The variation of isoparametric stresses and pore pressures within an element can be considered linear.
- 3. All elements pass the **patch test**.
- 4. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if **every** element is numbered **clockwise**. Surface normals should be visualised and if necessary corrected in the pre-processing stage. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.

- 5. Non-conservative loading is available with these elements when using Updated Lagrangian, Eulerian or co-rotational (with OPTION 36) geometric nonlinear formulations together with the FLD loading facility.
- 6. The global components of gravity acting on the fluid phase are defined by gx and gy under CBF and BFP loading.

_	4 =	4 =		
				_
K				_
Res	•	~	~	•

	Avoid excessive aspect ratio
	Avoid excessive element curvature
Ц	Ensure mid-side node centrality

2D Axisymmetric Solid Continuum Elements

General

Element Group Element Subgroup

Element Axisymmetric Solid
Subgroup

Element Description

A family of 2D <u>isoparametric</u> elements with higher order models capable of modelling curved boundaries. The formulations apply over a unit radian segment of the structure and the loading and boundary conditions are axisymmetric. By default, the Y-axis is taken as the axis of symmetry. The elements are numerically integrated.

Number Of Nodes 3, 4, 6, or 8 numbered anticlockwise.

Freedoms Node Coordinates

doms U, V: at each node.

Node X. Y: at each node.

2D Continuum

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

> Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

> > AXISYMMETRIC (Elastic: orthotropic

Axisymmetric)

MATERIAL PROPERTIES ANISOTROPIC 4 Anisotropic:

(Not supported in LUSAS Modeller)

Not applicable. Rigidities.

Matrix Not applicable **Joint** Not applicable

Concrete MATERIAL PROPERTIES NONLINEAR 105

(Elastic: Isotropic, Plastic: Transient Smoothed

Multi-Crack Concrete)

MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi-

Crack Concrete)

Elasto-Plastic Stress Not applicable.

resultant:

Interface: MATERIAL PROPERTIES NONLINEAR 27.

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker-MATERIAL PROPERTIES NONLINEAR 64

Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

MATERIAL PROPERTIES NONLINEAR 65 Mohr-Coulomb:

(Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Modified MATERIAL PROPERTIES

Mohr-MODIFIED MOHR COULOMB (Elastic: Isotropic, Plastic: Mohr-Coulomb/Tresca, non-Coulomb:

associative Hardening with tension/compression cut-off)

Modified Cam-MATERIAL PROPERTIES CAM_CLAY clay

MODIFIED (Elastic: Isotropic, Plastic)

Optimised MATERIAL PROPERTIES NONLINEAR 75 Implicit Von (Elastic: Isotropic, Plastic: Von Mises,

Mises: Hardening: Isotropic & Kinematic)

Volumetric MATERIAL PROPERTIES NONLINEAR 81 (Volumetric Crushing or Crushable Foam) Crushing:

Stress Potential STRESS POTENTIAL VON MISES, HILL,

HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep CREEP PROPERTIES (Creep)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic VISCO ELASTIC PROPERTIES

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Ko Initialisation Applicable

Rubber Not applicable

Generic Isotropic

MATERIAL PROPERTIES NONLINEAR 89 (Generic Polymer Model)

Polymer

Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL

Loads

Prescribed variable. U, V: at nodes.

Concentrated loads. Px, Py: force per unit

radian at nodes.

Element Loads Not

applicable.

Distributed Loads UDL Not available.

FLD Face loads. Px, Py: local face pressures at

nodes (force per unit area).

FLDG Global Face Loads. σx , σy , σxy at nodes

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

 Ω x, Ω y (angular velocity must be applied

about axis of symmetry), 0, 0.

BFP, BFPE Body force potentials at nodes/for element. 0, 0,

0, φ₄, Xcbf, Ycbf

VelocitiesVELOVelocitiesVx, Vy: at nodesAccelerationsACCEAcceleration Ax, Ay: at nodes

Viscous Support VSL Viscous support loads. VLx, VLy: at nodes.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element. σx ,

Stress/Strains $\sigma_y, \sigma_{xy}, \sigma_{z}$: global stresses. $\epsilon_x, \epsilon_y, \gamma_{xy}, \epsilon_z$:

global strains.

SSIG Initial stresses/strains at Gauss points. σx , σy ,

 σxy , σz : global stresses. εx , εy , γxy , εz :

global strains.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element. σx , σy ,

σxy, σz: global stresses.

SSRG Residual stresses at Gauss points. σx , σy , σxy ,

σz: global stresses.

Target TSSIE, TSSIA

Stress/Strains

Target stresses/strains at nodes/for element. σx ,

 σ y, σ xy, σ z: global stresses. ε x, ε y, γ xy, ε z:

global strains.

TSSIG Target stresses/strains at Gauss points. σx , σy ,

 σxy , σz : global stresses. εx , εy , γxy , εz :

global strains.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

To, 0, 0, 0

Overburden Applicable.
Phreatic Surface Applicable.

Field Loads Not

applicable.

Temp Dependent Not

260

Loads applicable.

LUSAS Output

Solver Stress (default): σx , σy , σxy , σz , σmax , σmin , β , σs , σe (see

description of principal stresses)

Strain: εx , εy , γxy , εz , εmax , εmin , β , εs , εe

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.

Updated For large displacements and large rotations.

Lagrangian

Eulerian For large displacements, large rotations and moderately large

strains.

Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 1-point (TAX3), 3-point (TAX6), 2x2 (QAX4,

QAX8)

Fine (see *Options*). 3x3 (QAX8), 3-point (TAX3).

Mass Default. 1-point (TAX3), 3-point (TAX6), 2x2 (QAX4,

QAX8)

Fine (see *Options*). 3x3 (QAX8), 3-point (TAX3).

Mass Modelling

☐ Consistent mass (default).

☐ Lumped mass.

Options

- 18 Invokes finer integration rule.
- 47 X-axis taken as axis of symmetry
- 54 Updated Lagrangian geometric nonlinearity.
- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity.
- 91 Invokes fine integration rule for mass matrix.
- 105 Lumped mass matrix.
- 123 Clockwise node numbering.
- 139 Output yielded Gauss points only.
- **167** Eulerian geometric nonlinearity.

Notes on Use

- The element formulations are based on the standard <u>isoparametric</u> approach.
 The variation of stresses within an element can be regarded as constant for the lower order (corner node only) elements, and linear for the higher order (midside node) elements.
- 2. All elements pass the **patch test**.
- Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
- 4. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if **every** element is numbered **clockwise**. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
- Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
- 6. The maximum and minimum principal stress computations for axisymmetric elements do not include the σz term as this is implicitly a principal stress in a biaxial stress field.
- 7. An initial stress/strain or thermal load that varies across an element should not be applied to this element. A limitation of the standard isoparametric approach when used for lower order elements is that only constant stress/strain fields can be imposed correctly.

Restrictions

	Ensure	mid-side	node	centrality
--	--------	----------	------	------------

☐ Avoid excessive element curvature

☐ Avoid excessive aspect ratio

Recommendations on Use

- The 8-noded element with a 2*2 Gauss rule is usually the most effective element, as the under-integration of the stiffness matrix prevents locking, which may occur either when the element is subjected to **parasitic shear**, or as the material reaches the incompressible limit (elasto-plasticity). The Gauss point stresses are also sampled at the most accurate locations for the element. However, the element does possess one spurious zero energy mode. This mode is very rarely activated in linear analysis, but it may occur in both materially and geometrically nonlinear analyses. Therefore, a careful examination of the solution should be performed, to check for spurious stress oscillations and peculiarities in the deformed configuration.
- The 8-noded element with a 3*3 Gauss rule may be used if a spurious mechanism is excited with the 2*2 Gauss rule.
- The 4-noded element should not be used for analyses where in-plane bending effects are significant as the element tends to lock in **parasitic shear**.

2D Axisymmetric Solid Continuum Element with Enhanced Strains

General

Element Group

2D Continuum

Element Subgroup Axisymmetric Solid

Element Description

A 2D <u>isoparametric</u> element with an assumed strain field. This mixed assumed strain element demonstrates a superior performance to QAX4 (see Notes). The formulations apply over a unit radian segment of the structure, and the loading and boundary conditions are axisymmetric. By default, the Y-axis is taken as the axis of

symmetry. The element is numerically integrated.

Number Of

4, numbered anticlockwise.

Nodes

Freedoms U, V: at each node.

Node

Node X, Y: at each node.

Coordinates

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

AXISYMMETRIC (Elastic: Orthotropic

Axisymmetric)

Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 4

(Not supported in LUSAS Modeller)

Rigidities. Not applicable

Matrix Not

applicable

Joint Not

11 1

applicable

Concrete MATERIAL PROPERTIES NONLINEAR 105

(Elastic: Isotropic, Plastic: Transient Smoothed

Multi-Crack Concrete)

MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi-

Crack Concrete)

Elasto-Plastic Stress Not applicable.

resultant:

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64
Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65 Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Modified MATERIAL PROPERTIES

Mohr- MODIFIED MOHR_COULOMB (Elastic: Coulomb: Isotropic, Plastic: Mohr-Coulomb/Tresca, non-

associative Hardening with tension/compression cut-off)

Modified MATERIAL PROPERTIES CAM_CLAY
Cam-clay MODIFIED (Elastic: Isotropic, Plastic)
Optimised MATERIAL PROPERTIES NONLINEAR 75
Implicit Von (Elastic: Isotropic, Plastic: Von Mises,

Mises: Hardening: Isotropic & Kinematic)

Volumetric MATERIAL PROPERTIES NONLINEAR 81
Crushing: (Volumetric Crushing or Crushable Foam)
Stress STRESS POTENTIAL VON_MISES, HILL,

Potential HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep CREEP PROPERTIES (Creep)

AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model Code

1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic VISCO ELASTIC PROPERTIES

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Ko Initialisation Applicable

Rubber Not

applicable

Generic Isotropic MATERIAL PROPERTIES NONLINEAR 89

Polymer (Generic Polymer Model)

Composite Not

applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V: at nodes.

Concentrated CL Concentrated loads. Px, Py: force per unit

Loads radian at nodes.

Element Loads Not

applicable.

Distributed Loads UDL Not available.

FLD Face loads. Px, Py: local face pressures at

nodes (force per unit area).

FLDG Global Face Loads. σx , σy , σxy at nodes

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

 Ωx , Ωy (angular velocity must be applied

about axis of symmetry), 0,0.

BFP, BFPE Body force potentials at nodes/for element. 0,

0, 0, φ4, Xcbf, Ycbf

VelocitiesVELOVelocities. Vx, Vy: at nodes.AccelerationsACCEAcceleration Ax, Ay: at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy: at nodes.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element. σx .

Stress/Strains

σy, σxy, σz: global stresses. εx, εy, γxy, εz:

global strains.

SSIG Initial stresses/strains at Gauss points. σx , σy ,

 σxy , σz : global stresses. εx , εy , γxy , εz :

global strains.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element. σx , σy ,

 σxy , σz : global stresses.

SSRG Residual stresses at Gauss points. σx , σy , σxy ,

σz: global stresses.

Target TSSIE, Target stresses/strains at nodes/for element.

Stress/Strains TSSIA $\sigma x, \sigma y, \sigma xy, \sigma z$: global stresses. $\varepsilon x, \varepsilon y, \gamma xy, \tau y, \tau z$

Ez: global strains.

TSSIG Target stresses/strains at Gauss points. σx , σy ,

 σ_{xy} , σ_{z} : global stresses. ε_{x} , ε_{y} , γ_{xy} , ε_{z} :

global strains.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

To, 0, 0, 0

Overburden Applicable.
Phreatic Surface Applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver

Stress (default): σx , σy , σxy , σz , σmax , σmin , β , σs , σe (see

description of principal stresses)

Strain: εx , εy , γxy , εz , εmax , εmin , β , εs , εe

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.

Updated For large displacements and large rotations.

Lagrangian

Eulerian For large displacements, large rotations and moderately large

strains.

Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 2x2

Fine. As default.

Mass Default. 2x2

Fine. As default.

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

- 47 X-axis taken as axis of symmetry
- 54 Updated Lagrangian geometric nonlinearity
- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity.
- **91** Invokes fine integration rule for mass matrix.
- 105 Lumped mass matrix.
- 123 Clockwise node numbering.
- 139 Output yielded Gauss points only.
- **167** Eulerian geometric nonlinearity.

Notes on Use

- The element formulations are based on the standard <u>isoparametric</u> approach.
 The variation of stresses within an element can be regarded as linear.
- 2. All elements pass the **patch test**.
- 3. The strain field for this element consists of two parts: the compatible strains derived from an assumed displacement field and the assumed enhanced strains; see *LUSAS Theory Manual*. The assumed enhanced strain field is defined using 5 parameters for both linear and nonlinear applications.
- Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
- 5. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it will only work if **every** element is numbered **clockwise**. The best way to avoid a mixture is to check and appropriately reverse the surface definitions in the pre-processing stage of modelling.
- 6. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
- 7. The maximum and minimum principal stress computations for axisymmetric elements do not include the σz term as this is implicitly a principal stress in a biaxial stress field.
- 8. Convergence difficulties can sometimes arise when using enhanced strain elements with nonlinear materials, particularly if the material is elastic-perfectly plastic or if a very shallow hardening curve is defined. In such cases it is recommended that the standard element formulation is used.
- 9. This element exhibits an improved performance when compared with its parent element QAX4. The integration rules are the same as the parent element. The elements do not suffer from locking due to <u>parasitic shear</u> or when the material approaches the incompressible limit. The elements are also free of any <u>zero</u> energy modes.
- 10. In analyses where significant in-plane bending is thermally induced it is recommended that a nonlinear solution is used. If a linear solution is required, then quadratic plane strain elements QPN8 are recommended.

Restrictions

☐ Avoid excessive aspect ratio

2D Axisymmetric Solid Continuum Element for Large Strains

General

Element Group

2D Continuum

Element Subgroup Axisymmetric Solid

Element Description

A 2D <u>isoparametric</u> element incorporating an internal pressure variable. This element should be used for analyses involving large strains. The formulations apply over a unit radian segment of the structure and the loading and boundary conditions are axisymmetric. By default, the Y-axis is taken as the axis of symmetry. The element is numerically integrated.

Number Of Nodes 4. numbered anticlockwise.

Freedoms U, V: at each node.

Node Coordinates

Node X, Y: at each node.

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear Not

applicable

Matrix Not

applicable

Joint Not

applicable

Concrete Not

applicable

Elasto-Plastic Implicit MATERIAL PROPERTIES NONLINEAR 75

Optimised (Elastic: Isotropic, Plastic: Von Mises,

Von Mises Hardening: Isotropic)

Stress STRESS POTENTIAL VON_MISES (Isotropic:

von Mises)

Creep Not

applicable

Potential

Damage Not

applicable

Viscoelastic Not

applicable

Shrinkage Not

applicable

Ko Initialisation Not

applicable

Rubber Ogden MATERIAL PROPERTIES RUBBER OGDEN

(Rubber: Ogden)

Mooney- MATERIAL PROPERTIES RUBBER

Rivlin MOONEY_RIVLIN (Rubber: Mooney-Rivlin)

Neo-Hookean MATERIAL PROPERTIES RUBBER

NEO HOOKEAN (Rubber: Neo-Hookean)

Hencky MATERIAL PROPERTIES RUBBER

HENCKY (Rubber: Hencky)

Generic Polymer Not

applicable

Composite Not

applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V: at nodes.

Concentrated CL Concentrated loads. Px, Py: force per unit

Loads radian at nodes.

Element Loads Not applicable.

Distributed Loads UDL Not available.

FLD Face loads. Px, Py: local face pressures at

nodes (force per unit area).

FLDG Global Face Loads. σx , σy , σxy at nodes

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

 Ωx , Ωy , (angular velocity must be applied

about axis of symmetry), 0,0.

BFP, BFPE Body force potentials at nodes/for element. 0,

0, 0, Φ4, Xcbf, Ycbf

Velocities VELO Velocities. Vx, Vy: at nodes. **Accelerations** ACCE Acceleration Ax, Ay: at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy: at nodes.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element.

Stress/Strains σx, σy, σxy, σz: global stresses. εx, εy,

Yxy, Ez: global strains.

SSIG Initial stresses/strains at Gauss points. σx , σy ,

 σxy , σz : global stresses. ϵx , ϵy , γxy , ϵz :

global strains.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element, σx.

σy, σxy, σz: global stresses.

SSRG Residual stresses at Gauss points. σx , σy ,

σxy, σz: global stresses.

Target TSSIE, TSSIA

Target stresses/strains at nodes/for element. Stress/Strains

σx, σy, σxy, σz: global stresses. εx, εy,

γxy, εz: global strains.

TSSIG Target stresses/strains at Gauss points. σx ,

σy, σxy, σz: global stresses. εx, εy, γxy,

Ez: global strains.

Temperatures at nodes/for element. T, 0, 0, 0, Temperatures TEMP, TMPE

To, 0, 0, 0

Overburden Applicable. Phreatic Surface Applicable. Field Loads Not applicable. **Temp Dependent** Not applicable.

Loads

LUSAS Output

Solver

Stress (default): σx , σy , σxy , σz , σmax , σmin , β , σs , σe (see

description of principal stresses)

Principal stretches, λ_1 , λ_2 , λ_31 , $\theta\lambda$, det F. Where λ_i are the principal stretches, $\theta \lambda$ the angle between the maximum principal stretch and the global X axis, and det F the determinant of the

deformation gradient or volume ratio.

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.

Updated Not applicable.

Lagrangian

Eulerian For large displacements and large strains.

Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 2x2

Fine. As default.

Mass Default. 2x2

Fine. As default.

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

- 47 X-axis taken as axis of symmetry.
- 55 Output stretches as well as stresses.
- **91** Invokes fine integration rule for mass matrix.
- 105 Lumped mass matrix
- 123 Clockwise node numbering.

Notes on Use

- 1. The element formulations are based on the standard **isoparametric** approach. The variation of stresses within an element can be regarded as linear.
- 2. The element passes the large strain patch test for rubber.

- 3. Non-conservative loading is available with this element when using FLD loading.
- 4. The stresses output are **Kirchhoff** stresses (see *LUSAS Theory Manual*).
- 5. Stretch output consists of the principal stretches and the angle defining the principal directions. The value of det $F = \lambda_1 \lambda_2$ is also output. (Refer to the *LUSAS Theory Manual* for more details.)
- 6. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it will only work if **every** element is numbered **clockwise**. The best way to avoid a mixture is to check and appropriately reverse the surface definitions in the pre-processing stage of modelling.
- 7. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
- 8. The maximum and minimum principal stress computations for axisymmetric elements do not include the σz term as this is implicitly a principal stress in a biaxial stress field.

Restrictions

_	Avoid excessive aspect ratio
	Avoid non-uniform initial and thermal strains with coarse meshes

2D Axisymmetric Solid Continuum Crack Tip Elements

General

Element Name TXK6 ΛY,v X,u →

Crack specified at Node 1

Crack specified at Node 1

Element Group Element Subgroup

Element Description

2D Continuum Axisymmetric Solid

A family of 2D **isoparametric** crack tip elements where the crack tip can be located at any node. The mid-side nodes are moved to the quarter points to produce a singularity at the crack tip. The strains vary as the square root of 1/R, where R is the distance from the crack tip. These elements are used at the crack tip only and should be mixed with the higher order axisymmetric solid continuum elements. The formulations apply over a unit radian segment of the structure, and the loading and boundary conditions are axisymmetric. By default, the Y-axis is taken as the axis of symmetry. The elements are numerically integrated.

Number Of Nodes

Node X. Y: at each node. Coordinates

Freedoms U, V: at each node.

6 or 8 numbered anticlockwise.

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

AXISYMMETRIC (Elastic: Orthotropic

Axisymmetric)

MATERIAL PROPERTIES ANISOTROPIC 4 Anisotropic:

(Not supported in LUSAS Modeller)

Rigidities. Not applicable.

Matrix Not applicable Joint Not applicable

Concrete MATERIAL PROPERTIES NONLINEAR 109

(Elastic: Isotropic, Plastic: Smoothed Multi-

Crack Concrete)

Elasto-Plastic Stress Not applicable.

resultant:

clay

Interface: MATERIAL PROPERTIES NONLINEAR 27
Tresca: MATERIAL PROPERTIES NONLINEAR 61

Tresca: MATERIAL PROPERTIES NONLINEAR 61
(Flastic: Isotropic Plastic: Tresca, Hardening)

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64
Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65 Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Modified MATERIAL PROPERTIES

Mohr- MODIFIED MOHR_COULOMB (Elastic: Coulomb: Isotropic, Plastic: Mohr-Coulomb/Tresca, non-

associative Hardening with tension/compression cut-off)

Modified Cam- MATERIAL PROPERTIES CAM_CLAY

MODIFIED (Elastic: Isotropic, Plastic)

Optimised MATERIAL PROPERTIES NONLINEAR 75
Implicit Von (Elastic: Isotropic, Plastic: Von Mises,

Mises: Hardening: Isotropic & Kinematic)

Volumetric MATERIAL PROPERTIES NONLINEAR 81
Crushing: (Volumetric Crushing or Crushable Foam)

STREES POTENTIAL VON MISES LILL

Stress Potential STRESS POTENTIAL VON_MISES, HILL,

HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep CREEP PROPERTIES (Creep)

AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese

MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC

MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic VISCO ELASTIC PROPERTIES

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Shrinkage Applicable

Rubber Not applicable

Generic Isotropic MATERIAL PROPERTIES NONLINEAR 89

(Generic Polymer Model)

Composite Not applicable

Loading

Prescribed PDSP, TPDSP Prescribed variable. U, V: at nodes.

Value

Polymer

Concentrated CL Concentrated loads. Px, Py: at nodes.

Loads

Element Loads Not

applicable.

Distributed UDL Not applicable.

Loads

FLD Face loads. Px, Py: local face axis pressures at

nodes.

FLDG Global Face Loads. σx , σy , σxy at nodes

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

 Ωx , Ωy (angular velocity must be applied about

axis of symmetry), 0, 0.

BFP, BFPE Body force potentials at nodes/for element. 0, 0, 0,

φ₄, Xcbf, Ycbf

VelocitiesVELOVelocities. Vx, Vy: at nodes.AccelerationsACCEAcceleration Ax, Ay: at nodes.

Viscous VSL Viscous support loads. VLx, VLy: at nodes.

Support Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element. σx ,

Stress/Strains

σy, σxy, σz: global stresses. εx, εy, γxy, εz:

global strains.

SSIG Initial stresses/strains at Gauss points. σx , σy ,

σxy, σz: global stresses. εx, εy, γxy, εz: global

strains.

Residual SSR, SSRE

Stresses

Residual stresses at nodes/for element. σx , σy ,

 σxy , σz : global stresses.

SSRG Residual stresses at Gauss points. σx , σy , σxy ,

σz: global stresses.

Target TSSIE,

Stress/Strains TSSIA

Target stresses/strains at nodes/for element. σx ,

 $\sigma y,\,\sigma xy,\,\sigma z .$ global stresses. Ex, Ey, $\gamma xy,\,Ez.$

global strains.

TSSIG Target stresses/strains at Gauss points. σx , σy ,

σxy, σz: global stresses. εx, εy, γxy, εz: global

strains.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0, To,

0, 0, 0

Overburden Applicable.

Phreatic Applicable.

Surface

Field Loads Not

applicable.

Temp Not

Dependent applicable.

Loads

LUSAS Output

Solver

Stress (default): σx , σy , σxy , σz , σmax , σmin , β , σs , σe (see **description of principal stresses**)

Strain: εx , εy , γxy , εz , εmax , εmin , β , εs , εe

Modeller See **Results Tables** (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.

Updated For large displacements and large rotations.

Lagrangian

Eulerian For large displacements, large rotations and moderately large

strains.

Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 6-point (TXK6), 3x3 (QXK8)

Fine (see *Options*). 12-point (TXK6).

Mass Default. 6-point (TXK6), 3x3 (QXK8)

Fine (see *Options*). 12-point (TXK6).

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

- 18 Invokes finer integration rule.
- 47 X-axis taken as axis of symmetry.
- 54 Updated Lagrangian geometric nonlinearity.
- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity.
- **91** Invokes fine integration rule for mass matrix.
- 105 Lumped mass matrix
- 123 Clockwise node numbering.

- 139 Output yielded Gauss points only.
- **167** Eulerian geometric nonlinearity.

Notes on Use

- 1. The element formulations are based on the standard <u>isoparametric</u> approach. Moving the mid-side nodes to the quarter points creates a singularity with theoretically infinite stress at the corner node.
- 2. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
- 3. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it will only work if **every** element is numbered **clockwise**. The best way to avoid a mixture is to check and appropriately reverse the surface definitions in the pre-processing stage of modelling.
- 4. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
- 5. The maximum and minimum principal stress computations for axisymmetric elements do not include the σz term as this is implicitly a principal stress in a biaxial stress field.

Restrictions

- Avoid excessive element curvature
- ☐ Avoid excessive aspect ratio

Recommendations on Use

The QXK8 and TXK6 elements are specifically designed for application to fracture mechanics problems and may used to model the singularities that occur at the crack tip. The mid-side nodes near the crack tip are shifted to the quarter point. This ensures a singularity is present at the crack tip and that the strains vary as 1/square root of r where r is the distance from the crack tip. The triangular TPK6 element is more effective than the quadrilateral element.

2D Axisymmetric Solid Explicit Dynamics Elements

General

Element Name TAX3E ΛY,v X,u

Element Group

2D Continuum

Element Subgroup

Axisymmetric Solid Continuum

Element Description

A family of 2D **isoparametric** elements for explicit dynamic analyses. The formulations apply over a unit radian segment of structure and loading boundary conditions are axisymmetric. By default, the Y-axis is taken as the axis of symmetry. The elements are numerically integrated.

Number Of Nodes

3 or 4 numbered anticlockwise.

Freedoms U. V: at each node.

Coordinates

Node X, Y: at each node.

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

> Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

> > AXISYMMETRIC (Elastic: Orthotropic

Axisymmetric)

Not applicable Anisotropic: Rigidities. Not applicable

Matrix Not

applicable

Joint Not

applicable

Concrete Not

applicable

Elasto-Plastic Stress

Not applicable

resultant:

MATERIAL PROPERTIES NONLINEAR 61 Tresca:

> (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker-MATERIAL PROPERTIES NONLINEAR 64 Prager:

(Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

MATERIAL PROPERTIES NONLINEAR 65 Mohr-Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Modified **MATERIAL PROPERTIES**

Mohr-MODIFIED MOHR COULOMB (Elastic: Coulomb: Isotropic, Plastic: Mohr-Coulomb/Tresca, non-

> associative Hardening with tension/compression cut-off)

Optimised MATERIAL PROPERTIES NONLINEAR 75

(Elastic: Isotropic, Plastic: Von Mises, Implicit Von Mises: Hardening: Isotropic & Kinematic)

Volumetric **MATERIAL PROPERTIES NONLINEAR 81** Crushing: (Volumetric Crushing or Crushable Foam) Stress STRESS POTENTIAL VON MISES, HILL,

Potential **HOFFMAN**

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

CREEP PROPERTIES (Creep) (See *Notes*) Creep

> AASHTO MATERIAL PROPERTIES NONLINEAR 86

> > AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model Code

1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic VISCO ELASTIC PROPERTIES

Shrinkage Not

applicable

Ko Initialisation Applicable

Rubber Not

applicable

Generic Not

Polymer applicable

Composite Not

applicable

Loading

Prescribed Value PDSP, Prescribed variable. U, V: at each node.

TPDSP

Concentrated CL Concentrated loads. Px, Py: at each node.

Loads

Element Loads Not

applicable.

Distributed UDL Not applicable.

Loads

FLD Face loads. Px, Py: local face axis pressures at

nodes.

FLDG Not applicable.

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

 Ωx , Ωy (angular velocity must be applied

about axis of symmetry), 0,0.

BFP, BFPE Body force potentials at nodes/for element. 0,

0, 0, 004, Xcbf, Ycbf

VelocitiesVELOVelocities. Vx, Vy at nodes.AccelerationsACCEAcceleration. Ax, Ay at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy: at nodes.

Loads

SSI, SSIE Initial Initial stresses/strains at nodes/for element. σx,

Stress/Strains σy, σxy, σz: global stresses. εx, εy, γxy, εz:

global strains.

SSIG Initial stress/strains at Gauss points. σx , σy ,

σχy, σz: global stress. εx, εy, γχy, εz: global

strains.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element σx , σy ,

σxy, σz: global stresses.

SSRG Residual stresses at Gauss points. σx , σy ,

σxy, σz: global stresses.

Target Not

Stress/Strains applicable.

Temperatures TEMP, Temperatures at nodes/for element. T, 0, 0, 0, **TMPE**

To, 0, 0, 0

Overburden Not

applicable

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Not **Temp Dependent**

> Loads applicable.

LUSAS Output

Solver Stress (default): σx , σy , σxy , σz , σmax , σmin , β , σs , σe (see

description of principal stresses)

Strain: εx , εy , γxy , εz , εmax , εmin , β , εs , εe

Modeller See Results Tables (Appendix K)

Local Axes

Not applicable.

Sign Convention

☐ Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.

Updated Not applicable.

Lagrangian

Eulerian For large displacements, large rotations and moderately large

strains.

Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 1-point (see *Notes*)

Fine. As default.

Mass Default. 1-point (see Notes)

Fine. As default.

Mass Modelling

☐ Lumped mass (see *Notes*).

Options

47 X-axis taken as axis of symmetry

Output strains as well as stresses.

105 Lumped mass matrix (see *Notes*).

139 Output yielded Gauss points only.

Notes on Use

- 1. The element formulations are based on the standard
- 2. The system parameter HGVISC is used to restrict element mechanisms due to under-integration. The default value is usually sufficient.
- 3. The bulk viscosity coefficients are used to restrict numerical oscillations due to the traversal of stress waves. The default bulk viscosity coefficients (BULKLF and BULKQF) may be altered as a SYSTEM parameter.
- 4. These elements must be used with a dynamic central difference scheme and a lumped mass matrix.
- 5. These elements are not applicable to static or eigenvalue analyses.
- 6. Automatic time step calculations are implemented.

- 7. As the element geometry is always updated in an explicit dynamic analysis, a nonlinear solution is obtained. When using explicit dynamics elements Nonlinear Control must be specified.
- 8. If CREEP PROPERITES are defined explicit time integration must be specified in VISCOUS CONTROL.
- 9. Non-conservative loading is invoked when the face loading (FLD) is applied.
- 10. Rayleigh damping coefficients are not supported by these elements.
- 11. Constraint equations are not available for use with these elements.
- 12. Nodes **must** be specified in an anticlockwise order. Option 123 is **not** applicable for this element. When using Modeller ensure surface normal is in the +ve z direction.
- 13. The maximum and minimum principal stress computations for axisymmetric elements do not include the σz term as this is implicitly a principal stress in a biaxial stress field.

Restrictions

☐ Avoid excessive aspect ratio

Recommendations on Use

Explicit dynamics elements may be used to define surface boundaries which will be active in a slideline analysis.

2D Axisymmetric Solid Two Phase Continuum Elements

General

Element Group 2D Continuum
Element Axisymmetric Solid

Subgroup

Element A family of 2D iso

ElementDescription

A family of 2D <u>isoparametric</u> elements with higher order models capable of modelling curved boundaries. The formulations apply over a unit radian segment of the structure and the loading and boundary conditions are axisymmetric. By default, the Y-axis is taken as the axis of symmetry. The elements are numerically integrated.

Number Of 6 or 8 numbered anticlockwise.

Freedoms U, V, P: at corner nodes. U, V: at midside nodes. **Node** X, Y: at each node.

Geometric Properties

Coordinates

Not applicable (a unit radian segment is assumed).

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

AXISYMMETRIC (Elastic: orthotropic,

Axisymmetric)

Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 4

(Not supported in LUSAS Modeller)

Rigidities. Not applicable.

Matrix Not applicable

Joint Not applicable

Concrete MATERIAL PROPERTIES NONLINEAR 109

(Elastic: Isotropic, Plastic: Smoothed Multi-

Crack Concrete)
Not applicable.

Elasto-Plastic Stress

resultant: Interface:

MATERIAL PROPERTIES NONLINEAR 27.

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64

Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65 Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb.

Hardening: Granular with Dilation)

Modified MATERIAL PROPERTIES

Mohr- MODIFIED MOHR_COULOMB (Elastic: Coulomb: Isotropic, Plastic: Mohr-Coulomb/Tresca, non-

associative Hardening with

tension/compression cut-off)

Modified Camclay MATERIAL PROPERTIES CAM_CLAY MODIFIED (Elastic: Isotropic, Plastic)

Optimised
Implicit Von
Mises,
Mises

Mises: Hardening: Isotropic & Kinematic)
Volumetric MATERIAL PROPERTIES NONLINEAR 81

Crushing: (Volumetric Crushing or Crushable Foam)
Stress Potential STRESS POTENTIAL VON MISES, HILL,

HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep CREEP PROPERTIES (Creep)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic VISCO ELASTIC PROPERTIES

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Ko Initialisation Applicable

Rubber Not applicable

Generic Isotropic MATERIAL PROPERTIES NONLINEAR 89

Polymer (Generic Polymer Model)

Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V, P: at corner nodes. U,

V:at midsaide nodes.

Concentrated CL Concentrated loads. Px, Py, Q: force/flux per

Loads unit radian at corner nodes. Px,Py: force per

unit radian at midside nodes.

Element Loads Not

applicable.

Distributed Loads UDL Not available.

FLD Face loads. Px, Py, Q: local face pressures/flux

at corner nodes (force/flux per unit area). Px, Py: local face pressures at midside nodes.

FLDG Global Face Loads. σx , σy , σxy at nodes

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

 Ωx , Ωy (angular velocity must be applied about axis of symmetry), 0, 0, gx, gy. (See

Notes on Use)

BFP, BFPE Body force potentials at nodes/for element. 0, 0,

0, φ4, Xcbf, Ycbf, gx, gy. (See Notes on Use)

Velocities VELO Velocities. Vx, Vy: at nodes. **Accelerations** ACCE Acceleration Ax, Ay: at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy: at nodes.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element. σx , Stress/Strains

σy, σxy, σz, σp: global stresses. εx, εy, γxy,

Ez: global strains.

SSIG Initial stresses/strains at Gauss points. σx , σy ,

 σxy , σz , σp : global stresses. εx , εy , γxy , εz :

global strains.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element. σx , σy ,

σxy, σz, σp: global stresses.

SSRG Residual stresses at Gauss points. σx , σy , σxy ,

σz, σp: global stresses.

Target TSSIE, TSSIA

Stress/Strains

Target stresses/strains at nodes/for element. σx , σy , σxy , σz , σp : global stresses. εx , εy , γxy ,

Ez: global strains.

TSSIG Target stresses/strains at Gauss points. σx , σy ,

 σxy , σz , σp : global stresses. ϵx , ϵy , γxy , ϵz :

global strains.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

To, 0, 0, 0

Overburden Applicable. **Phreatic Surface** Applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress (default): σx , σy , σxy , σz , σp , σmax , σmin , β , σs , σe

(see description of principal stresses)

Strain: εx , εy , γxy , εz , εmax , εmin , β , εs , εe

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.

Updated For large displacements and large rotations.

Lagrangian

Eulerian For large displacements, large rotations and moderately large

strains.

Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 3-point (TAX6P), 2x2 (QAX8P)

Fine (see *Options*). 3x3 (QAX8P)

Mass Default. 3-point (TAX6P), 2x2 (QAX8P) Fine (see *Options*). 3x3 (QAX8P)

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

- 18 Invokes finer integration rule.
- 47 X-axis taken as axis of symmetry
- 54 Updated Lagrangian geometric nonlinearity.
- 55 Output strains as well as stresses.
- 87 Total Lagrangian geometric nonlinearity.
- **91** Invokes fine integration rule for mass matrix.
- 105 Lumped mass matrix.
- 123 Clockwise node numbering.
- 139 Output yielded Gauss points only.
- 167 Eulerian geometric nonlinearity.

Notes on Use

- 1. Two phase material parameters must be used with these elements for undrained and consolidation analysis.
- 2. The element formulations are based on the standard **isoparametric** approach. The variation of isoparametric stresses and pore pressures within an element can be regarded as linear.
- 3. All elements pass the **patch test**.
- 4. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
- 5. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if **every** element is numbered **clockwise**. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
- Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
- 7. The global components of gravity acting on the fluid phase are defined by gx and gy under CBF and BFP loading.

8.	The maximum and minimum principal stress computations for axisymmetric
	elements do not include the $\Box z$ term as this is implicitly a principal stress in a
	biaxial stress field.

Restrictions

Ensure mid-side node centrality
Avoid excessive element curvature
Avoid excessive aspect ratio

Recommendations on Use

- The 8-noded element with a 2*2 Gauss rule is usually the most effective element, as the under-integration of the stiffness matrix prevents locking, which may occur either when the element is subjected to **parasitic shear**, or as the material reaches the incompressible limit (elasto-plasticity). The Gauss point stresses are also sampled at the most accurate locations for the element. However, the element does possess one spurious zero energy mode. This mode is very rarely activated in linear analysis, but it may occur in both materially and geometrically nonlinear analyses. Therefore, a careful examination of the solution should be performed, to check for spurious stress oscillations and peculiarities in the deformed configuration.
- The 8-noded element with a 3*3 Gauss rule may be used if a spurious mechanism is excited with the 2*2 Gauss rule.

2D Axisymmetric Fourier Ring Elements

General

Element Group

Element Subgroup

Element Description

2D Continuum Fourier Ring

A family of 2D <u>isoparametric</u> elements with higher order models capable of modelling curved boundaries. The structure must be axisymmetric but the loading need not be. By default the Y-axis is taken to be the axis of symmetry. The elements are numerically integrated.

Number Of

3, 4, 6 or 8 numbered anticlockwise.

Nodes Freedoms U. V

U, V, W: at each node (in cylindrical coordinates, see <u>local</u> coordinates).

Node X,

X, Y: at each node.

Node Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic:

Isotropic)

Orthotropic: MATERIAL PROPERTIES

ORTHOTROPIC (Elastic: Orthotropic

Plane Stress)

MATERIAL PROPERTIES

ORTHOTROPIC SOLID (Elastic:

Orthotropic Solid)

Anisotropic: Not applicable Rigidities. Not applicable

Matrix Not applicable

Joint Not applicable Concrete Not applicable

Elasto-Plastic Not applicable

Creep Not applicable **Damage** Not applicable

Viscoelastic Not applicable Shrinkage Not applicable

Ko Initialisation Not applicable **Rubber** Not applicable

Generic Polymer Not applicable

Composite Not applicable

Loading

Prescribed Value PDSP, Prescribed variable. U, V, W: at each node.

TPDSP

Concentrated CL Concentrated loads. Px, Py, Pz: at each node

(global, may also be applied locally, see

options).

Element Loads Not

Loads

applicable.

Distributed Loads UDL Not applicable.

FLD <u>Face loads</u>. Px, Py, Pz: local face axis pressures

at nodes Pz in the direction of increasing θ .

FLDG Not applicable.

Body Forces CBF Constant body forces for element (see *Notes*).

Xcbf, Ycbf, Zcbf, Ωx , $\Omega y \Omega z$, αx , αy , αz ,

Xo, Yo, Zo, $d\theta/dt$

BFP, BFPE Body force potentials at nodes/for element.

Xcbf, Ycbf, Zcbf

Velocities VELO Velocities. Vx, Vy, Vz at nodes. **Accelerations** ACCE Acceleration. Ax, Ay, Az at nodes.

Viscous Support VSL Not applicable.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element. σx ,

Stress/Strains $\sigma_y, \sigma_z, \sigma_{xy}, \sigma_{yz}, \sigma_{xz}$: local stresses. $\varepsilon_x, \varepsilon_y$,

εz, γxy, γyz, γxz: local strains.

SSIG Initial stresses/strains at Gauss points. σx , σy ,

σz, σxy, σyz, σxz: local stresses. εx, εy, εz,

γxy, γyz, γxz: local strains.

Residual Stresses Not

applicable.

Target Not

Stress/Strains applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

To, 0, 0, 0

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver

Stress (default): σx , σy , σz , σxy , σyz , σxz , σmax , σmin , β , σs ,

σe (see description of principal stresses)

Strain: ϵx , ϵy , ϵz , γxy , γyz , γxz , ϵmax , ϵmin , β , ϵs , ϵe

Use LUSAS Modeller to access results at various angles around the structure. See **Local and Global Results** in the *Modeller User*

Manual

Modeller See **Results Tables** (Appendix K).

Local Axes

Cylindrical	coordinates	(see	Ap_{I}	pendix	F).

The element axes are defined in the cylindrical coordinate system x,y,z, with associated displacements u,v,w. The tangential displacement w is positive in the direction of increasing θ , where θ is the positive rotation defined by the right-hand coordinate system about the axis of symmetry. u and v are positive in the direction of increasing x and y respectively and may be either axial or radial displacements depending on the definition of the axis of symmetry.

Sign Convention

☐ Standard 3D continuum element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness	Default.	1-point (TAX3F), 3-point (TAX6F), 2x2 (QAX4F,
-----------	----------	---

QAX8F)

Fine (see 3x3 (QAX8F), 3-point (TAX3F)

Options).

Mass Default. 1-point (TAX3F), 3-point (TAX6F), 2x2 (QAX4F,

QAX8F)

Fine (see 3x3 (QAX8F), 3-point (TAX3F)

Options).

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

- **18** Invokes fine integration rule.
- 47 X-axis taken as axis of symmetry.
- 55 Output strains as well as stresses.
- 102 Switch off load correction stiffness matrix due to centripetal acceleration.
- 105 Lumped mass matrix.
- 202 Apply concentrated loads in cylindrical coordinates.

Notes on Use

- 1. CBF loads are always applied as acceleration loading. Xo, Yo, Zo, permit a shift in the original point of the global coordinate system (about which the rotations are applied). $d\theta/dt$ is the local angular velocity about the finite element coordinate system.
- 2. The application of the CBF loading depends on the particular element material model selected. See the description of Fourier analysis in *Chapter 2* of the *LUSAS User Guide*.
- 3. If CBF loads are used the structure must be axisymmetric about the X-axis (option 47).
- 4. Fourier elements cannot be mixed with other element types.
- 5. Temperature fields cannot be used in dynamic or harmonic response analyses.
- 6. Centripetal load stiffening has been applied to the n=0 term, but there is no nonlinear stress stiffening contribution. The centripetal load stiffening matrix, contrary, to its name, actually decreases the stiffness of the structure. Centripetal forces are proportional to the angular rotation squared and the lever arm of the mass from the centre of rotation. As the body spins, the lever arm is lengthened by positive displacements, which increases the applied load. This may, conversely, be thought of as reducing the stiffness. The centripetal load stiffness is applied by default, but is may be omitted by setting option 102.
- 7. The maximum and minimum principal stress computations for axisymmetric elements do not include the σz term as this is implicitly a principal stress in a biaxial stress field.

Restrictions

Ensure mid-side node centrality
Avoid excessive element curvature
Avoid excessive aspect ratio

Recommendations on Use

- The element is designed to model fairly solid structures, but it also performs well in comparison to standard shell analyses and may be an effective alternative for axisymmetric problems. The QAX8F is the most effective element of the family.
- If eigenvalues are required from a thin shelled structure such as a cylinder, the Fourier elements provide an efficient means of checking a range of circumferential harmonics and will indicate the permissible coarseness of a finite element mesh which will adequately represent the 3D variation.

Element Reference Manual				

Chapter 4: 3D Continuum Elements

3D Solid Continuum Elements

General

Element Group Element Subgroup Element Description 3D Continuum Solid Continuum

A family of 3D isoparametric solid continuum elements with higher order models capable of modelling curved boundaries. The elements are numerically integrated.

Number Of 4 or 10 (tetrahedra). 6, 12 or 15 (pentahedra). 8, 16 or 20

Nodes (hexahedra). The elements are numbered according to a right-hand

screw rule in the local z-direction.

Freedoms U, V, W: at each node.

Node X, Y, Z: at each node.

Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

SOLID (Elastic: Orthotropic Solid)

Anisotropic: MATERIAL PROPERTIES ANISOTROPIC

SOLID (Elastic: Anisotropic Solid)

Rigidities. Not applicable.

Matrix Not

applicable.

іррпсавіс

Joint Not

applicable.

Concrete MATERIAL PROPERTIES NONLINEAR 105

(Elastic: Isotropic, Plastic: Transient Smoothed

Multi-Crack Concrete)

MATERIAL PROPERTIES NONLINEAR 109

(Elastic: Isotropic, Plastic: Smoothed Multi-

Crack Concrete)

Elasto-Plastic Stress Not applicable.

resultant:

Coulomb:

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64

Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65

(Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Modified MATERIAL PROPERTIES

Mohr- MODIFIED MOHR_COULOMB (Elastic:

associative Hardening with tension/compression cut-off)

Modified MATERIAL PROPERTIES CAM_CLAY
Cam-clay MODIFIED (Elastic: Isotropic, Plastic)
Optimised MATERIAL PROPERTIES NONLINEAR 75
Implicit Von (Elastic: Isotropic, Plastic: Von Mises,
Mises: Hardening: Isotropic & Kinematic)

Volumetric MATERIAL PROPERTIES NONLINEAR 81
Crushing: (Volumetric Crushing or Crushable Foam)
Stress STRESS POTENTIAL VON_MISES, HILL,

Potential: HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep CREEP PROPERTIES (Creep)

AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model Code

1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE 2)

IRC MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic VISCO ELASTIC PROPERTIES

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Ko Initialisation Applicable

Elasto- Plastic MATERIAL PROPERTIES NONLINEAR 26

Interface

Rubber Not

applicable.

Generic Isotropic MATERIAL PROPERTIES NONLINEAR 89

Polymer (Generic Polymer Model)

Composite Not

applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V, W: at each node.

Concentrated CL Concentrated loads. Px, Py, Pz: at each node.

Loads

Loads

Element Loads Not

applicable.

Distributed Loads UDL Not applicable.

FLD Face Loads. Px, Py, Pz: local face pressures at

nodes.

FLDG Global Face Loads. σx , σy , σz , σxy , σyz , σxz

at nodes

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

Zcbf, Ωx , Ωy , Ωz , αx , αy , αz

BFP, BFPE Body force potentials at nodes/for element. 0,

0, 0, φ₄, Xcbf, Ycbf, Zcbf

VelocitiesVELOVelocities. Vx, Vy, Vz: at nodes.AccelerationsACCEAcceleration Ax, Ay, Az: at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy, VLz: at

nodes.

Initial SSI, SSIE Initial stresses/strains at nodes/for element. σx, Stress/Strains

σy, σz, σxy, σyz, σxz: global stresses. εx,

εy, εz, γxy, γyz, γxz: global strains.

SSIG Initial stresses/strains at Gauss points σx , σy ,

σz, σxy, σyz, σxz: global stresses. εx, εy,

 $\mathcal{E}z$, γxy , γyz , γxz : global strains.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element. σx , σy ,

 σz , σxy , σyz , σxz : global stresses.

SSRG Residual stresses at Gauss points. σx , σy , σz ,

σxy, σyz, σxz global stresses.

Target TSSIE, Target stresses/strains at nodes/for element. σx, Stress/Strains TSSIA

σy, σz, σxy, σyz, σxz: global stresses. εx,

εy, εz, γxy, γyz, γxz: global strains.

TSSIG Target stresses/strains at Gauss points σx , σy ,

σz, σxy, σyz, σxz: global stresses. εx, εy,

 $\mathcal{E}z$, γxy , γyz , γxz : global strains.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

To, 0, 0, 0

Overburden Applicable.

Phreatic Surface Applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver

Stress (default): σx , σy , σz , σxy , σyz , σxz , σe : global stresses.

Strain: &x, &y, &z, \gammaxy, \gammayz, \gammaxz, &e: global strains.

For optional principal stress/strain output, together with the

corresponding direction cosines, use Option 77.

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.

Updated For large displacements and large rotations.

Lagrangian

Eulerian For large displacements, large rotations and moderately large

strains.

Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness	Default.	1-point (TH4), 4-point (TH10), 3x2 (PN6, PN12, PN15), 2x2x2 (HX8, HX16, HX20)
	Fine (see <i>Options</i>).	5-point (TH10), 3x3x2 (HX16), 3x3x3 (HX20)
	Coarse (see <i>Options</i>)	13-point (HX20), 14-point (HX20)
Mass	Default.	1-point (TH4), 4-point (TH10), 3x2 (PN6, PN12, PN15), 2x2x2 (HX8, HX16, HX20)
	Fine (see	4-point (TH4) 11-point (TH10), 14-point (TH10)
	Options).	3x3x2 (HX16), 3x3x3 (HX20)
	Coarse (see <i>Options</i>)	13-point (HX20), 14-point (HX20)

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

- 18 Invokes fine integration rule.
- 36 Follower loads
- 54 Updated Lagrangian geometric nonlinearity
- 55 Output strains as well as stresses.
- 77 Output principal stresses and direction cosines.
- **87** Total Lagrangian geometric nonlinearity.
- **91** Invoke finer integration of the mass matrix.
- 102 Switch off load correction stiffness due to centripetal acceleration.
- 105 Lumped mass matrix.
- 139 Output yielded Gauss points only.
- 155 Use 14-point integration rule for HX20.
- **156** Use 13-point integration rule for HX20.
- **167** Eulerian geometric nonlinearity.
- 229 Co-rotational geometric nonlinearity.
- 395 Use 14-point integration rule for mass matrix of TH10 (used together with Option 91).
- 398 For HX20 and HX16 with fine integration use all integration points for stress

extrapolation.

Notes on Use

- The elements are based on the standard isoparametric approach. The variation
 of stresses within an element may be regarded as constant for the lower order
 elements (corner nodes only), and linear for the higher order elements (with
 mid-side nodes).
- 2. All elements pass the **patch test**.
- 3. When using table input format for temperature dependent ORTHOTROPIC SOLID or ANISOTROPIC SOLID material properties, the value of nset used is that defined in the first line of the property table.
- Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.

Restrictions

Ensure mid-side node centrality
Avoid excessive element curvature
Avoid excessive aspect ratio

Recommendations on Use

- The 3D solid elements should be used if the stress field is fully 3D, i.e. it cannot be approximated with any of the 2D elements, e.g. as for a non-axisymmetric pressure vessel.
- For linear materials, the 20-noded element with a 2*2*2 Gauss rule is usually the most effective element, as this under-integration of the stiffness matrix prevents locking, i.e. over-stiff solutions will occur if the elements are used with a 3*3*3 Gauss integration rule to model structures subjected to bending. However, the element possesses six zero energy modes. Therefore, a careful examination of the solution should be performed to check for spurious stress oscillations and peculiarities in the deformed configuration. Either the 14-point or 3*3*3 Gauss rules should be used for materially nonlinear problems or materially linear problems that exhibit spurious deformations.
- The 8-noded element should not be used for analyses where bending effects are significant as the element tends to lock in **parasitic shear** [C1]. The 8-noded element will perform poorly if it is highly distorted. The 4-noded tetrahedron TH4 element is generally not effective and should only be used if the geometry requires elements of this shape.

3D Solid Continuum Element with Enhanced Strains

General

Element Name HX8M X,u

Element Group

3D Continuum

Subgroup

Element Solid Continuum

Element Description

A 3D isoparametric solid element with an incompatible strain field. This mixed assumed strain element demonstrates a much superior

performance to that of the HX8 element.

Number Of 8. The element is numbered according to a right-hand screw rule in

Nodes the local z-direction.

Freedoms U, V, W: at each node.

Coordinates

Node X, Y, Z: at each node.

Geometric Properties

Not applicable.

Material Properties

MATERIAL PROPERTIES (Elastic: Isotropic) Linear Isotropic:

> Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

> > SOLID (Elastic: Orthotropic Solid)

MATERIAL PROPERTIES ANISOTROPIC Anisotropic:

SOLID (Elastic: Anisotropic Solid)

Rigidities. Not applicable.

Matrix Not

applicable.

Joint Not

applicable.

MATERIAL PROPERTIES NONLINEAR 105 Concrete

(Elastic: Isotropic, Plastic: Transient Smoothed

Multi-Crack Concrete)

MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi-

Crack Concrete)

Not applicable.

Elasto-Plastic Stress

resultant: Tresca:

MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64

Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65 Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Modified MATERIAL PROPERTIES

Mohr- MODIFIED MOHR_COULOMB (Elastic: Coulomb: Isotropic, Plastic: Mohr-Coulomb/Tresca, non-

associative Hardening with tension/compression cut-off)

Modified MATERIAL PROPERTIES CAM_CLAY
Cam-clay MODIFIED (Elastic: Isotropic, Plastic)
Optimised MATERIAL PROPERTIES NONLINEAR 75

Implicit Von (Elastic: Isotropic, Plastic: Von Mises, Mises: Hardening: Isotropic & Kinematic)

Volumetric MATERIAL PROPERTIES NONLINEAR 81
Crushing: (Volumetric Crushing or Crushable Foam)
Stress STRESS POTENTIAL VON MISES, HILL,

Potential HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model Code

1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic VISCO ELASTIC PROPERTIES

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Ko Initialisation Applicable

Rubber Ogden: MATERIAL PROPERTIES RUBBER OGDEN

(Rubber: Ogden)

Mooney- MATERIAL PROPERTIES RUBBER

Rivlin: MOONEY_RIVLIN (Rubber: Mooney-Rivlin)

Neo- MATERIAL PROPERTIES RUBBER

Hookean: NEO_HOOKEAN (Rubber: Neo-Hookean)
Hencky: MATERIAL PROPERTIES RUBBER HENCKY

(Rubber: Hencky)

Generic Isotropic

MATERIAL PROPERTIES NONLINEAR 89

(Generic Polymer Model)

Polymer Composite Not

applicable.

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V, W: at each node.

Concentrated CL Concentrated loads. Px, Py, Pz: at each node.

Loads

Element Loads Not

applicable.

Distributed Loads UDL Not applicable.

FLD Face Loads. Px, Py, Pz: local face pressures at

nodes.

FLDG Global Face Loads. σx , σy , σz , σxy , σyz , σxz

at nodes

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

Zcbf, Ωx , Ωy , Ωz , αx , αy , αz

BFP, BFPE Body force potentials at nodes/for element. 0,

		0, 0, φ ₄ , Xcbf, Ycbf, Zcbf
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay, Az: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy, VLz: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. σx , σy , σz , σxy , σyz , σxz : global stresses. ϵx ,
	SSIG	 εy, εz, γxy, γyz, γxz: global strains. Initial stresses/strains at Gauss points σx, σy, σz, σxy, σyz, σxz: global stresses. εx, εy, εz, γxy, γyz, γxz: global strains.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. σx, σy, σz, σxy, σyz, σxz: global stresses.
	SSRG	Residual stresses at Gauss points. σx , σy , σz , σxy , σyz , σxz global stresses.
Target Stress/Strains	TSSIE, TSSIA	Target stresses/strains at nodes/for element. σx, σy, σz, σxy, σyz, σxz: global stresses. εx, εy, εz, γxy, γyz, γxz: global strains.
	TSSIG	Target stresses/strains at Gauss points σx , σy , σz , σxy , σyz , σxz : global stresses. εx , εy , εz , γxy , γyz , γxz : global strains.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, 0, 0, 0, To, 0, 0, 0
Overburden Phreatic Surface Field Loads	Applicable. Applicable. Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver

Stress (default): $\sigma x, \, \sigma y, \, \sigma z, \, \sigma xy, \, \sigma yz, \, \sigma xz, \, \sigma e$: global stresses.

Strain: &x, &y, &z, \gammaxy, \gammayz, \gammaxz, &e: global strains.

Stretch (for rubber only): V_{11} , V_{22} , V_{33} , V_{12} , V_{23} , V_{13} , λ_1 , λ_2 , λ_3 , det F. Where V_{ii} are components of the left stretch tensors, λ_i the

principal stretches, $\theta\lambda$ the angle between the maximum principal stretch and the global X axis, and det F the determinant of the deformation gradient or volume ratio.

For optional principal stress/strain output, together with the corresponding direction cosines, use Option 77.

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations. **Updated** For large displacements and large rotations.

Lagrangian

Eulerian For large displacements, large rotations and moderately large

strains.

Co-rotational For large displacements and large rotations (large strains with the

rubber material model).

Integration Schemes

Stiffness Default. 2x2x2

Fine. As default.

Mass Default. 2x2x2

Fine. As default.

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

- **39** Stress smoothing for rubber material models.
- **54** Updated Lagrangian geometric nonlinearity.
- 55 Output strains as well as stresses.

- 77 Output principal stresses and direction cosines.
- **87** Total Lagrangian geometric nonlinearity.
- 102 Switch off load correction stiffness due to centripetal acceleration.
- 105 Lumped mass matrix.
- 139 Output yielded Gauss points only.
- **167** Eulerian geometric nonlinearity.
- 225 Use alternative number of parameters for enhanced strain interpolation (see *Notes*).
- 229 Co-rotational geometric nonlinearity.

Notes on Use

- 1. The element is based on the standard isoparametric approach. The variation of stresses within an element may be regarded as linear.
- 2. The strain field for this element consists of two parts: the compatible strains derived from the assumed displacement field and the assumed enhanced strains; see *LUSAS Theory Manual*. By default, 18 parameters are used to define the assumed enhanced strain. In general, the default number of parameters should be used. However, 9 parameters may be specified using Option 225. In most cases the use of 9 or 18 parameters will give an equivalent solution. However, in some instances a better response may be obtained using more parameters at the expense of increased computation time.
- 3. The element passes the **patch test** and the large strain patch test for rubber.
- 4. When using table input format for temperature dependent ORTHOTROPIC SOLID or ANISOTROPIC SOLID material properties, the value of nset used is that defined in the first line of the property table.
- 5. Non-conservative (follower) loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility. The load does not have to be normal to the face and may also vary over the face.
- 6. To apply a non-conservative (follower) pressure load (load type FLD) with corotational geometric nonlinearity, Option 36 must be specified. Note that this load must be normal to the face and constant for all the nodes of the element face.
- 7. The converged stresses for the rubber material model are <u>Kirchhoff</u> stresses (see *LUSAS Theory Manual*).
- 8. Option 39 is used to smooth the stress output. It is particularly useful when the rubber material model is applied and the element is under very high compression where oscillatory stresses may appear (checker-board pattern).
- 9. For the rubber material model, converged values for strain output are replaced by the left stretch tensor V, the principal stretches of the vectors defining these

- principal directions. The principal stretches and directions can be obtained using Option 77. The value of det $F = \lambda_1 \lambda_2 \lambda_3$ (the volume ratio) is only available for Gauss point output.
- 10. For the rubber material model, the iterative values of stress and strain are output in local co-rotated directions at the Gauss points only.
- 11. Convergence difficulties can sometimes arise when using enhanced strain elements with nonlinear materials, particularly if the material is elastic-perfectly plastic or if a very shallow hardening curve is defined. In such cases it is recommended that the standard element formulation is used.

Restrictions

- ☐ Avoid excessive aspect ratio
- □ Rubber material models can only be applied in conjunction with the corotational formulation, Option 229.

Recommendations on Use

This element exhibits an improved performance when compared with the parent element HX8. The integration rules are the same as the parent element. The HX8M element does not suffer from locking due to <u>parasitic shear</u> or when the material approaches the incompressible limit. No <u>zero energy modes</u> exist for this element.

3D Solid Continuum Crack Tip Elements

General

TH10K

Crack specified at Node 1

Crack specified along edge 1-2-3

PN15K

Crack specified at Node 1

Crack specified along edge 1-2-3

HX20K

Crack specified at Node 1

Crack specified along edge 1-2-3

Element Group Element **Subgroup Element Description**

3D Continuum Solid Continuum

A family of 3D isoparametric crack tip elements where the crack tip can be located at any corner node or along any edge of an element. The mid-side nodes are moved to the quarter points to produce a singularity at the crack tip. The strains vary as the square root of

Number Of Nodes 1/R, where R is the distance from the crack tip. These elements are used at the crack tip only. The elements are numerically integrated. 10 (tetrahedra). 15 (pentahedra). 20 (hexahedra). The elements are numbered according to a right-hand screw rule in the local z-direction.

Freedoms

Node Coordinates

doms U, V, W: at each node. **Node** X, Y, Z: at each node.

Geometric Properties

Not applicable.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

SOLID (Elastic: Orthotropic Solid)

Anisotropic: MATERIAL PROPERTIES ANISOTROPIC

SOLID (Elastic: Anisotropic Solid)

Rigidities. Not applicable.

Matrix Not

applicable.

Joint Not

applicable.

Concrete MATERIAL PROPERTIES NONLINEAR 109

(Elastic: Isotropic, Plastic: Smoothed Multi-

Crack Concrete)

Elasto-Plastic Stress Not applicable.

resultant:

Prager:

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64

(Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65 Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Modified MATERIAL PROPERTIES

Mohr- MODIFIED MOHR_COULOMB (Elastic: Coulomb: Isotropic, Plastic: Mohr-Coulomb/Tresca, non-

associative Hardening with

tension/compression cut-off)

Modified MATERIAL PROPERTIES CAM_CLAY
Cam-clay MODIFIED (Elastic: Isotropic, Plastic)
Optimised MATERIAL PROPERTIES NONLINEAR 75
Implicit Von (Elastic: Isotropic, Plastic: Von Mises,
Mises: Hardening: Isotropic & Kinematic)

Volumetric MATERIAL PROPERTIES NONLINEAR 81
Crushing: (Volumetric Crushing or Crushable Foam)
Stress STRESS POTENTIAL VON_MISES, HILL,

Potential: HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep CREEP PROPERTIES (Creep)

AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model Code

1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE 2)

IRC MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic VISCO ELASTIC PROPERTIES

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Ko Initialisation Applicable

Elasto- Plastic MATERIAL PROPERTIES NONLINEAR 26
Interface

Rubber Not

applicable.

Generic Isotropic Polymer

MATERIAL PROPERTIES NONLINEAR 89

(Generic Polymer Model)

Composite Not

applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V, W: at each node.

Concentrated CL Concentrated loads. Px, Py, Pz: at each node.

Loads

Loads

Element Loads Not

applicable.

Distributed Loads UDL Not applicable.

FLD Face Loads. Px, Py, Pz: local face pressures at

nodes.

FLDG Global Face Loads. σx , σy , σz , σxy , σyz , σxz

at nodes

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

Zcbf, Ωx , Ωy , Ωz , αx , αy , αz

BFP, BFPE Body force potentials at nodes/for element. 0,

 $0, 0, \phi_4, Xcbf, Ycbf, Zcbf$

VelocitiesVELOVelocities. Vx, Vy, Vz: at nodes.AccelerationsACCEAcceleration Ax, Ay, Az: at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy, VLz: at

nodes.

Initial SSI, SSIE Initial stresses/strains at nodes/for element. σx,

Stress/Strains

σy, σz, σxy, σyz, σxz: global stresses. εx,

Ey, Ez, γ xy, γ yz, γ xz: global strains.

SSIG Initial stresses/strains at Gauss points σx , σy ,

σz, σxy, σyz, σxz: global stresses. εx, εy,

 $\mathcal{E}z$, γxy , γyz , γxz : global strains.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element. σx , σy ,

 σz , σxy , σyz , σxz : global stresses.

SSRG Residual stresses at Gauss points. σx , σy , σz ,

 σxy , σyz , σxz global stresses.

Target TSSIE, Target stresses/strains at nodes/for element. σx ,

εy, εz, γxy, γyz, γxz: global strains.

TSSIG Target stresses/strains at Gauss points σx , σy ,

σz, σxy, σyz, σxz: global stresses. εx, εy,

εz, γxy, γyz, γxz: global strains.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

To, 0, 0, 0

Overburden Applicable.

Phreatic Surface Applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver

Stress (default): σx , σy , σz , σxy , σyz , σxz , σe : global stresses.

Strain: Ex, Ey, Ez, Yxy, Yyz, Yxz, Ee: global strains.

For optional principal stress/strain output, together with the

corresponding direction cosines, use Option 77.

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.

Updated For large displacements and large rotations.

Lagrangian

Eulerian For large displacements, large rotations and moderately large

strains.

Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default. 4-point (TH10K), 6x3 (PN15K), 3x3x3

(HX20K)

Fine (see *Options*). 11-point (TH10K), 12x4 (HX15K)

Mass Default. 4-point (TH10K), 6x3 (PN15K), 3x3x3

(HX20K)

Fine (see *Options*). 11-point (TH10K), 14-point (TH10K),

12x4 (HX15K)

Mass Modelling

☐ Consistent mass (default).

☐ Lumped mass.

Options

- 18 Invokes fine integration rule.
- 36 Follower loads
- 54 Updated Lagrangian geometric nonlinearity
- 55 Output strains as well as stresses.
- 77 Output principal stresses and direction cosines.
- **87** Total Lagrangian geometric nonlinearity.
- **91** Invoke finer integration of the mass matrix.
- 102 Switch off load correction stiffness due to centripetal acceleration.
- 105 Lumped mass matrix.
- 139 Output yielded Gauss points only.
- **167** Eulerian geometric nonlinearity.
- 229 Co-rotational geometric nonlinearity.
- 395 Use 14-point integration rule for mass matrix of TH10 (used together with Option 91).
- **398** For HX20 and HX16 with fine integration use all integration points for stress extrapolation.

Notes on Use

- 1. The elements are based on the standard isoparametric approach. Moving the mid-side nodes to the quarter points creates a singularity with theoretically infinite stress at the crack tip.
- 2. When using table input format for temperature dependent ORTHOTROPIC SOLID or ANISOTROPIC SOLID material properties, the value of nset used is that defined in the first line of the property table.

3. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.

_		4 -			
R	96	tr	cti	α n	c
	C 3		-	vII	-

Avoid excessive element curvature
Avoid excessive aspect ratio

Recommendations on Use

- The 3D solid crack tip elements should be used if the stress field is fully 3D, i.e. it cannot be approximated with any of the 2D crack tip elements.
- Elements TH10K, PN15K and HX20K are specifically designed for application to fracture mechanics problems and may be used to model the singularities that occur at the crack tip. The mid-side nodes near the crack tip are shifted to the quarter point. This ensures a singularity is present at the crack tip and that strains vary as 1 over the square root of r where r is the distance from the crack tip.

3D Solid Continuum Composite Elements (Tetrahedral)

General

Element Group

3D Continuum

Element Subgroup

Solid Continuum

Element

A 3D tetrahedral element capable of modelling curved boundaries. **Description**

The element can be arbitrarily oriented with respect to the laminate and allows for the fully automatic mesh generation of laminate

geometric models imported from CAD packages.

Number Of

10. The element is numbered according to a right-hand screw rule **Nodes** in the local z-direction.

U, V, W: at each node.

Freedoms Node X, Y, Z: at each node. Coordinates

Geometric Properties

See Composites in the Modeller Reference Manual

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

> MATERIAL PROPERTIES ORTHOTROPIC Orthotropic:

> > SOLID (Elastic: Orthotropic Solid)

MATERIAL PROPERTIES ANISOTROPIC Anisotropic:

SOLID (Elastic: Anisotropic Solid)

Rigidities. Not applicable.

Matrix Not

applicable.

Joint Not

applicable.

Concrete MATERIAL PROPERTIES NONLINEAR 109

(Elastic: Isotropic, Plastic: Smoothed Multi-

Crack Concrete)

Elasto-Plastic Stress Not applicable.

resultant:

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64

Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65 Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Modified MATERIAL PROPERTIES

Mohr- MODIFIED MOHR_COULOMB (Elastic: Coulomb: Isotropic, Plastic: Mohr-Coulomb/Tresca, non-

associative Hardening with tension/compression cut-off)

Volumetric Not applicable.

Crushing:

Stress STRESS POTENTIAL VON_MISES, HILL,

Potential HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model Code

1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic VISCO ELASTIC PROPERTIES

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Ko Initialisation Not

applicable

Rubber Not

applicable.

Generic MATERIAL PROPERTIES NONLINEAR 89

Polymer (Generic Polymer Model)

Resin Cure MATERIAL PROPERTIES NONLINEAR

Model CURE LAYER, FIBRE_RESIN

Composite Composite COMPOSITE PROPERTIES (Elastic:

solid: Orthotropic Solid)

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V, W: at each node.

Concentrated CL Concentrated loads. Px, Py, Pz: at each node.

Loads

Element Loads Not

applicable.

Distributed Loads UDL Not applicable.

FLD Face Loads. Px, Py, Pz: local face pressures at

nodes.

FLDG Global Face Loads. σx , σy , σz , σxy , σyz ,

σxz at nodes

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

Zcbf, Ωx , Ωy , Ωz , αx , αy , αz

BFP, BFPE Body force potentials at nodes/for element. 0,

0, 0, φ₄, Xcbf, Ycbf, Zcbf

Velocities VELO Velocities. Vx, Vy, Vz: at nodes. **Accelerations** ACCE Acceleration Ax, Ay, Az: at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy, VLz: at

Loads nodes.

Initial SSI, SSIE Initial stresses/strains at nodes/for element.

Stress/Strains σ_{x} , σ_{y} , σ_{z} , σ_{xy} , σ_{yz} , σ_{xz} : global stresses.

εx , εy , εz ,	γxy, γyz,	γxz: global strains.	

SSIG Initial stresses/strains at Gauss points (see

Notes).

 σx , σy , σz , σxy , σyz , σxz : global stresses.

 $\epsilon x,\, \epsilon y,\, \epsilon z,\, \gamma xy,\, \gamma yz,\, \gamma xz.$ global strains.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element.

σx, σy, σz, σxy, σyz, σxz: global stresses.

SSRG Residual stresses at Gauss points (see *Notes*).

σx, σy, σz, σxy, σyz, σxz global stresses.

Target TSSIE, Stress/Strains TSSIA Target stresses/strains at nodes/for element. σx , σy , σz , σxy , σyz , σxz , σxz ; global stresses.

Ex, εy, εz, γxy, γyz, γxz: global strains.

TSSIG Target stresses/strains at Gauss points (see

Notes).

 $\sigma x,\,\sigma y,\,\sigma z,\,\sigma xy,\,\sigma yz,\,\sigma xz.$ global stresses.

 εx , εy , εz , γxy , γyz , γxz : global strains.

Temperatures TEMP, TMPE Temperatures at nodes/for element.

T, 0, 0, 0, To, 0, 0, 0

Overburden Applicable.

Phreatic Surface Applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver

Stress (default): σx , σy , σz , σxy , σyz , σxz : local stresses.

Strain: εx, εy, εz, γxy, γyz, γxz: local strains.

Stresses and strains are output at the Gauss and corner points of

the subdivision(s) of each layer. For optional principal

stress/strain output, together with the corresponding direction

cosines, use Option 77.

Modeller See Results Tables (Appendix K).

Local Axes

The local axes for each layer are defined by the LAMINAR DIRECTIONS specified for its bottom surface. The three node set in LAMINAR DIRECTIONS define the local

Cartesian set origin, the x-axis and the positive quadrant of the xy-plane respectively. The local z-axis forms an orthonormal coordinate system with x and y.

Sign Convention

☐ Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.

Updated Not applicable.

Lagrangian

Eulerian Not applicable.

Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default. 1-point for a tetrahedral subdivision (see Notes), 3-point for a

pentahedral/pyramid subdivision, 2x2 for a hexahedral/wrick

subdivision

Fine (see 1-point for a tetrahedral subdivision (see Notes), 3x2 for a

Options). pentahedral/pyramid subdivision, 2x2 x2 for a hexahedral/wrick

subdivision

Mass Default 5-point for the whole element or (see Options) 1-point for a

tetrahedral subdivision, 3x2 for a pentahedral/pyramid subdivision, 2x2 x2 for a hexahedral/wrick subdivision

Fine (see 11-point or (see Options) 14 -point for the whole element

Options).

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

- **18** Invokes fine integration rule.
- **36** Follower loads.
- 55 Output strains as well as stresses.
- 77 Output principal stresses and direction cosines.
- **91** Formulate element mass with fine integration.
- 105 Lumped mass matrix.

- 139 Output yielded Gauss points only.
- 229 Co-rotational geometric nonlinearity.
- **266** Layer by layer computation of mass matrix.
- 394 Lamina directions supported.
- 395 Use 14-point fine integration rule for mass matrix of TH10 family (used together with 91).

Notes on Use

- 1. The element is based on the standard isoparametric approach. The variation of strains within an element may be regarded as linear.
- 2. All elements pass the **patch test**.
- The LAMINAR DIRECTIONS and COMPOSITE PROPERTIES data chapters must be used with this element in conjunction with the COMPOSITE ASSIGNMENTS data chapter.
- The stresses obtained from a geometric nonlinear analysis are <u>Kirchhoff</u> stresses.
- 5. If the whole tetrahedral element is embedded in a single lamina, a 4-point integration rule will be used for this tetrahedral subdivision; otherwise a 1-point rule will be used.
- 6. The mass matrix can be computed using a layer by layer integration (OPTION 266), however this should only be used when the densities of the layers vary considerably because the computation time can be greatly increased when this OPTION is specified.
- 7. Numerical integration through the thickness is performed. The integration points are located in the subdivisions of each layer. Each subdivision forms the shape of a regular 3D solid continuum element and the integration points are located accordingly within the subdivision as described above.
- 8. SSIG and SSRG loads have to be applied at the Gauss point positions for the subdivision(s) of each layer.
- 9. Layer 1 is always the bottom layer.

Restrictions

Avoid excessive aspect ratio
Avoid excessive element curvature
Ensure mid-side node centrality

Recommendations on Use

- 3D solid composite elements should be used for modelling thick composite structures comprising laminae of differing material properties where the computational cost of modelling each lamina with an individual solid element would be prohibitive.
- As these elements can be arbitrarily oriented with respect to the laminate, they are particularly aimed at the use of fully automatic mesh generation of laminate geometric models imported from CAD packages.

3D Solid Continuum Composite Elements (Pentahedral and Hexahedral)

General

Element Group 3

Element Subgroup

3D Continuum t Solid Continuum

Element Description

3D isoparametric pentahedral and hexahedral solid elements with higher order models capable of modelling curved boundaries. The element can be used to model a laminate, where lamina planes are defined by the top and bottom surfaces of the element. The elements are numerically integrated.

Number Of Nodes

6 or 12 (pentahedra), 8 or 16 (hexahedra). The elements are numbered according to a right-hand screw rule in the local z-direction.

Freedoms U, V, W: at each node.

Node X, Y, Z: at each node.

Coordinates

Geometric Properties

See **Composites** in the *Modeller Reference Manual*

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

> Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

> > SOLID (Elastic: Orthotropic Solid)

MATERIAL PROPERTIES ANISOTROPIC Anisotropic:

SOLID (Elastic: Anisotropic Solid)

Rigidities. Not applicable.

Matrix Not

applicable.

Joint Not

applicable.

Concrete MATERIAL PROPERTIES NONLINEAR 109

(Elastic: Isotropic, Plastic: Smoothed Multi-

Crack Concrete)

Elasto-Plastic Stress Not applicable.

resultant:

Tresca: **MATERIAL PROPERTIES NONLINEAR 61**

> (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

MATERIAL PROPERTIES NONLINEAR 64 Drucker-Prager:

(Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr-MATERIAL PROPERTIES NONLINEAR 65

Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

MATERIAL PROPERTIES Modified

Mohr-MODIFIED MOHR COULOMB (Elastic: Coulomb: Isotropic, Plastic: Mohr-Coulomb/Tresca, non-

associative Hardening with

tension/compression cut-off)

Volumetric Not applicable.

Crushing:

Stress STRESS POTENTIAL VON_MISES, HILL,

Potential HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model Code

1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic VISCO ELASTIC PROPERTIES

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Ko Initialisation Not

applicable

Rubber Not

applicable.

Generic MATERIAL PROPERTIES NONLINEAR 89

Polymer (Generic Polymer Model)

Resin Cure MATERIAL PROPERTIES NONLINEAR

Model CURE LAYER, FIBRE_RESIN

Composite Composite COMPOSITE PROPERTIES (Elastic:

solid: Orthotropic Solid)

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V, W: at each node.

Concentrated CL Concentrated loads. Px, Py, Pz: at each node.

Loads

Element Loads Not

applicable.

Distributed Loads UDL Not applicable.

FLD Face Loads. Px, Py, Pz: local face pressures at

nodes.

FLDG Global Face Loads. σx, σy, σz, σxy, σyz,

σxz at nodes

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

Zcbf, Ωx , Ωy , Ωz , αx , αy , αz

BFP, BFPE Body force potentials at nodes/for element. 0,

 $0, 0, \varphi_4, Xcbf, Ycbf, Zcbf$

VelocitiesVELOVelocities. Vx, Vy, Vz: at nodes.AccelerationsACCEAcceleration Ax, Ay, Az: at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy, VLz: at

nodes.

Initial SSI, SSIE Initial stresses/strains at nodes/for element.

Stress/Strains $\sigma_{x}, \sigma_{y}, \sigma_{z}, \sigma_{xy}, \sigma_{yz}, \sigma_{xz}$: global stresses.

εx, εy, εz, γxy, γyz, γxz: global strains.

SSIG Initial stresses/strains at Gauss points (see

Notes).

 $\sigma x,\,\sigma y,\,\sigma z,\,\sigma xy,\,\sigma yz,\,\sigma xz.$ global stresses.

εx, εy, εz, γxy, γyz, γxz: global strains.

Residual Stresses SSR. SSRE Residual stresses at nodes/for element.

 σx , σy , σz , σxy , σyz , σxz : global stresses.

SSRG Residual stresses at Gauss points (see *Notes*).

σx, σy, σz, σxy, σyz, σxz global stresses.

Target TSSIE, Target stresses/strains at nodes/for element.

Stress/Strains TSSIA

Type Grant Gr

 σx , σy , σz , σxy , σyz , σxz : global stresses.

εx, εy, εz, γxy, γyz, γxz: global strains.

TSSIG Target stresses/strains at Gauss points (see

Notes).

 σx , σy , σz , σxy , σyz , σxz : global stresses.

 εx , εy , εz , γxy , γyz , γxz : global strains.

Temperatures TEMP, TMPE Temperatures at nodes/for element.

T, 0, 0, 0, To, 0, 0, 0

Overburden Applicable.

Phreatic Surface Applicable.

Loads

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress (default): σx , σy , σz , σxy , σyz , σxz : local stresses.

Strain: Ex, Ey, Ez, Yxy, Yyz, Yxz: local strains.

Stresses and strains are output at the top and bottom of each layer.

For optional principal stress/strain output, together with the corresponding direction cosines, use Option 77.

Modeller See Results Tables (Appendix K).

Local Axes

The local axes for each layer are defined using the convention for standard area elements. Local axes are computed at the top and bottom surfaces (at the Gauss points) and average values are interpolated for the mid-surface. The top and bottom faces of the element are as shown, e.g. nodes 1, 2, 3, 4 define the bottom face of HX8L. Every layer uses the same averaged values.

Sign Convention

☐ Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.

Updated Not applicable.

Lagrangian

Eulerian Not applicable.

Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default. 1-point for each layer (PN6L), 3-point for each layer (PN12L),

2x2 for each layer (HX8L,HX16L)

Fine (see 3-point for each layer (PN6L), 3x3 for each layer (HX16L)

Options).

Mass Default 3x2 for the whole element (PN6L,PN12L) or (see Options) 1-

point for each layer (PN6L), 3-point for each layer

(PN12L),2x2x2 for the whole element or 2x2 for each layer

(HX8L,HX16L)

Fine (see 3x2 for the whole element or 3-point for each layer

Options). (PN6L),3x3x2 for the whole element or 3x3 for each layer

(HX16L)

Mass Modelling

☐ Consistent mass (default).

☐ Lumped mass.

Options

- 18 Invokes fine integration rule.
- **36** Follower loads.
- 55 Output strains as well as stresses.
- 77 Output principal stresses and direction cosines.
- 105 Lumped mass matrix.
- 139 Output yielded Gauss points only.
- **229** Co-rotational geometric nonlinearity.
- **266** Layer by layer computation of mass matrix.
- 303 Exclude incompatible modes for solid composite elements.

Notes on Use

- The elements are based on the standard isoparametric approach. The variation
 of stresses within an element may be regarded as constant for the lower order
 elements (corner nodes only), and linear in the plane of the quadratic element
 faces for the higher order elements.
- 2. All elements pass the **patch test**.
- 3. The COMPOSITE GEOMETRY and COMPOSITE PROPERTIES data chapters must be used with this element in conjunction with the COMPOSITE ASSIGNMENTS data chapter.
- The stresses obtained from a geometric nonlinear analysis are <u>Kirchhoff</u> stresses.
- 5. The mass matrix can be computed using a layer by layer integration (Option 266), however this should only be used when the densities of the layers vary considerably because the computation time can be greatly increased applying this option.
- 6. Numerical integration through the thickness is performed. The integration points are located at the top and bottom surface of each layer.

- 7. SSIG and SSRG loads have to be applied at the Gauss point positions for the top and bottom surfaces of each layer.
- 8. Layer 1 is always the bottom layer.

Restrictions

Ensure mid-side node centrality
Avoid excessive element curvature
Avoid excessive aspect ratio

Recommendations on Use

- The 3D solid composite elements should be used for modelling thick composite structures comprising laminae of differing material properties where the computational cost of modelling each lamina with an individual solid element would be prohibitive.
- Because of the numerical integration through the thickness, by increasing the number of layers the accuracy of solution will increase. This can be achieved by dividing each single layer into two or three identical layers.

3D Solid Continuum Explicit Dynamics Elements

General

Element Group 3D Continuum **Element** Solid Continuum **Subgroup**

Element A family of 3D isoparametric solid elements for explicit dynamic analyses. The elements are numerically integrated. **Description** 4 (tetrahedra), 6 (pentahedra), 8 (hexahedra). **Number Of** The elements are numbered according to a right-hand screw rule in **Nodes**

the local z-direction.

Freedoms U, V, W: at each node. **Node** X, Y, Z: at each node. Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear .. Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

> MATERIAL PROPERTIES ORTHOTROPIC Orthotropic:

SOLID (Elastic: Orthotropic Solid)

Not applicable. Anisotropic: Rigidities. Not applicable.

Matrix Not

applicable

Joint Not

applicable

Concrete Not

applicable

Elasto-Plastic Stress Not applicable.

resultant:

Tresca: MATERIAL PROPERTIES NONLINEAR 61

> (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker-MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Prager:

Hardening: Granular)

Mohr-MATERIAL PROPERTIES NONLINEAR 65 Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Modified MATERIAL PROPERTIES

Mohr-MODIFIED MOHR_COULOMB (Elastic: Isotropic, Plastic: Mohr-Coulomb/Tresca, non-Coulomb:

> associative Hardening with tension/compression cut-off)

Modified MATERIAL PROPERTIES CAM CLAY Cam-clay MODIFIED (Elastic: Isotropic, Plastic) Optimised MATERIAL PROPERTIES NONLINEAR 75 Implicit Von (Elastic: Isotropic, Plastic: Von Mises,

Mises: Hardening: Isotropic & Kinematic)

MATERIAL PROPERTIES NONLINEAR 81 Volumetric Crushing: (Volumetric Crushing or Crushable Foam) STRESS POTENTIAL VON_MISES, HILL, Stress

Potential HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep CREEP PROPERTIES (Creep) (see *Notes*) DAMAGE PROPERTIES SIMO, OLIVER **Damage**

(Damage)

VISCO ELASTIC PROPERTIES Viscoelastic

Shrinkage Not

applicable

Ko Initialisation Not

applicable

Not Rubber

applicable

Not

Generic **Polymer** applicable

Composite

Not

applicable

Loading

Prescribed Value PDSP, Prescribed variable. U, V, W: at each node.

TPDSP

Concentrated CL Concentrated loads. Px, Py, Pz: at each node.

Loads

Element Loads Not

applicable.

Distributed Loads UDL Not applicable.

FLD <u>Face Loads</u>. Px, Py, Pz: local face pressures at

nodes.

FLDG Not applicable

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

Zcbf, Ωx , Ωy , Ωz , αx , αy , αz

BFP, BFPE Body force potentials at nodes/for element. 0, 0,

0, φ₄, Xcbf, Ycbf, Zcbf

VelocitiesVELOVelocitiesVx, Vy, Vz: at nodesAccelerationsACCEAcceleration Ax, Ay, Az: at nodes

Viscous Support VSL Viscous support loads. VLx, VLy, VLz: at

nodes.

Initial SSI, SSIE Initial stresses/strains at nodes/for element. σx, Stress/Strains

σy, σz, σxy, σyz, σxz: global stresses. εx,

εy, εz, γxy, γyz, γxz: global strains.

SSIG Not applicable.

Residual Stresses SSR, SSRE Residual stresses at nodes/for element. σx , σy ,

σz, σxy, σyz, σxz: global stresses.

SSRG Residual stresses at Gauss points. σx , σy , σz ,

σxy, σyz, σxz: global stresses.

Target Not

Loads

Stress/Strains applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

To, 0, 0, 0

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress(default): σx , σy , σz , σxy , σyz , σxz , σe : global stresses.

Strain: not available (see Notes).

For optional principal stress output, together with the corresponding direction cosines, use Option 77.

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.

Updated Not applicable.

Lagrangian

Eulerian For large displacements, large rotations and moderately large

strains.

Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default. 1-point (see Notes).

Fine. As default.

Mass Default. 1-point (see *Notes*).

Fine. As default.

Mass Modelling

☐ Lumped mass only (see *Notes*).

Options

- 77 Output principal stresses and direction cosines.
- 105 Lumped mass matrix.
- 139 Output yielded Gauss points only.

Notes on Use

- 1. The elements are based on the standard isoparametric approach. Stresses within an element may be regarded as constant.
- 2. When using tabular input for ORTHOTROPIC SOLID the value of nset used is that defined in the first line of the property table.
- 3. The system parameter HGVISC is used to restrict element mechanisms due to under-integration. The default value is usually sufficient.
- 4. The bulk viscosity coefficients are used to restrict numerical oscillations due to the traversal of stress waves. The default bulk viscosity coefficients (BULKLF and BULKQF) may be altered as SYSTEM parameters.
- 5. These elements must be used with a dynamic central difference scheme and a lumped mass matrix.
- 6. These element are Not applicable. for static or eigenvalue analyses.
- 7. Automatic time step length calculations are implemented.
- 8. As element geometry is always updated in an explicit dynamic analysis, the solution is nonlinear. When using explicit dynamic elements NONLINEAR CONTROL must be specified.
- 9. If CREEP PROPERTIES are defined, explicit time integration must be specified in VISCOUS CONTROL.
- 10. Strains are computed incrementally and therefore total strains are not available for output.
- 11. Non-conservative loading is invoked when the FLD loading facility is applied.
- 12. Rayleigh damping coefficients are not supported by these elements.
- 13. Constraint equations are not available for use with these elements.

Restrictions

☐ Avoid excessive aspect ratio

Recommendations on Use

• Explicit dynamics elements may be used to define surface boundaries which will be active in a slideline analysis.

•	The 3D explicit dynamics elements should be used if the stress field is fully 3D, i.e. it cannot be approximated with any of the 2D elements, e.g. a non-axisymmetric pressure vessel.

3D Solid Two Phase Continuum Elements

General

Element Group Element Subgroup

Element Description

3D Continuum Solid Continuum

A family of 3D isoparametric solid two phase continuum elements capable of modelling curved boundaries. The elements are numerically integrated.

Number Of Nodes

10 (tetrahedra). 12 or 15 (pentahedra). 16 or 20 (hexahedra). The elements are numbered according to a right-hand screw rule in the local z-direction.

Freedoms Node Coordinates

Freedoms U, V, W, P: at corner nodes, U, V, W at mid-side nodes.

Node X, Y, Z: at each node.

Geometric Properties

Not applicable.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

SOLID (Elastic: Orthotropic Solid)

Anisotropic: MATERIAL PROPERTIES ANISOTROPIC

SOLID (Elastic: Anisotropic Solid)

Rigidities. Not applicable.

Matrix Not

applicable.

Joint Not

applicable.

Concrete MATERIAL PROPERTIES NONLINEAR 109

(Elastic: Isotropic, Plastic: Smoothed Multi-

Crack Concrete)

Elasto-Plastic Stress Not applicable.

resultant:

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64

Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65

Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Modified MATERIAL PROPERTIES

Mohr- MODIFIED MOHR_COULOMB (Elastic:

Coulomb: Isotropic, Plastic: Mohr-Coulomb/Tresca, non-

associative Hardening with tension/compression cut-off)

Modified MATERIAL PROPERTIES CAM_CLAY

Cam-clay MODIFIED (Elastic: Isotropic, Plastic)
Optimised MATERIAL PROPERTIES NONLINEAR 75

Implicit Von (Elastic: Isotropic, Plastic: Von Mises,

Mises: Hardening: Isotropic & Kinematic)

Volumetric MATERIAL PROPERTIES NONLINEAR 81
Crushing: (Volumetric Crushing or Crushable Foam)
Stress STRESS POTENTIAL VON_MISES, HILL,

Potential: HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep CREEP PROPERTIES (Creep)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic VISCO ELASTIC PROPERTIES

Shrinkage SHRINKAGE CEB FIP 90, EUROCODE 2,

GENERAL, USER

Ko Initialisation Applicable

Elasto- Plastic MATERIAL PROPERTIES NONLINEAR 26

Interface

Rubber Not

applicable.

Generic Isotropic MATERIAL PROPERTIES NONLINEAR 89

Polymer (Generic Polymer Model)

Composite Not

applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V, W, P: at corner

nodes, U, V, W at mid-side nodes.

Concentrated CL Concentrated loads. Px, Py, Pz, Q: at corner

nodes, .Px, Py, Pz at mid-side nodes.

Element Loads Not

Loads

applicable.

Distributed Loads UDL Not applicable.

FLD Face Loads. Px, Py, Pz, Q: face pressures/flux

per unit area at corner nodes relative to local face axes. Px, Py, Pz: face pressures at midside nodes relative to local face axes.

FLDG Global Face Loads. σx , σy , σz , σxy , σyz , σxz

at nodes

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

Zcbf, Ωx , Ωy , Ωz , αx , αy , αz , g x, g y, g z.

		(See notes on use)
	BFP, BFPE	Body force potentials at nodes/for element. 0,
		0, 0, φ4, Xcbf, Ycbf, Zcbf, gx, gy, gz. (See notes on use)
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay, Az: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy, VLz: at nodes.
Initial	SSI, SSIE	Initial stresses/strains at nodes/for element. σx ,
Stress/Strains		σy , σz , σxy , σyz , σxz , σp global stresses.
		εx, εy, εz, γxy, γyz, γxz: global strains.
	SSIG	Initial stresses/strains at Gauss points σx , σy ,
		σz, σxy, σyz, σxz, σp: global stresses. εx,
		εy, εz, γxy, γyz, γxz: global strains.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. σx, σy,
		σz, σxy, σyz, σxz, σp: global stresses.
	SSRG	Residual stresses at Gauss points. σx , σy , σz ,
		σxy, σyz, σxz, σp global stresses.
Target	TSSIE,	Target stresses/strains at nodes/for element. σx ,
Stress/Strains	TSSIA	σy, σz, σxy, σyz, σxz, σp global stresses.
		εx, εy, εz, γxy, γyz, γxz: global strains.
	TSSIG	Target stresses/strains at Gauss points σx , σy ,
		σz, σxy, σyz, σxz, σp: global stresses. εx,
		εy, εz, γxy, γyz, γxz: global strains.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, 0, 0, 0, To, 0, 0, 0
Overburden	Applicable.	
Phreatic Surface	Applicable.	
Field Loads	Not	
	applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver

Stress (default): σx , σy , σz , σxy , σyz , σxz , σp , σe : global stresses.

Strain: εx , εy , εz , γxy , γyz , γxz , εv , εe : global strains.

For optional principal stress/strain output, together with the

corresponding direction cosines, use Option 77.

Modeller See **Results Tables (Appendix K)**.

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.	
Updated	For large displacements and large rotations.
Lagrangian	
Eulerian	For large displacements, large rotations and moderately large
	strains

Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness	Default.	4-point (TH10P), 3x2 (PN12P, PN15P), 2x2x2 (HX16P, HX20P)
	Fine (see <i>Options</i>).	5-point (TH10P), 3x3x2 (HX16P), 3x3x3 (HX20P)
	Coarse (see <i>Options</i>)	13-point (HX20P), 14-point (HX20P)
Mass	Default.	4-point (TH10P), 3x2 (PN12P, PN15P), 2x2x2 (HX16P, HX20P)
	Fine (see	11-point (TH10P),14-point (TH10P), 3x3x2
	Options).	(HX16P), 3x3x3 (HX20P)
	Coarse (see <i>Options</i>)	13-point (HX20P), 14-point (HX20P)

Mass Modelling

Ц	Consistent mass (default)
	Lumped mass.

Options

- 18 Invokes fine integration rule.
- 36 Follower loads
- 54 Updated Lagrangian geometric nonlinearity
- 55 Output strains as well as stresses.
- 77 Output principal stresses and direction cosines.
- 87 Total Lagrangian geometric nonlinearity.
- 91 Invoke finer integration of the mass matrix.
- 102 Switch off load correction stiffness due to centripetal acceleration.
- 105 Lumped mass matrix.
- 139 Output yielded Gauss points only.
- 155 Use 14-point integration rule for HX20P.
- 156 Use 13-point integration rule for HX20P.
- **167** Eulerian geometric nonlinearity.
- 229 Co-rotational geometric nonlinearity.
- **398** For HX20P and HX16P with fine integration use all integration points for stress extrapolation.

Notes on Use

- 1. Two phase material parameters must be used with these elements for undrained and consolidation analysis.
- 2. The elements are based on the standard isoparametric approach. The variation of stresses and pore pressures within an element may be regarded linear, except for elements PN12P and HX16P where the stress is constant in the z direction.
- 3. All elements pass the **patch test**.
- 4. When using table input format for temperature dependent ORTHOTROPIC SOLID or ANISOTROPIC SOLID material properties, the value of nset used is that defined in the first line of the property table.
- Non-conservative loading is available with these elements when using Updated Lagrangian, Eulerian or co-rotational (with OPTION 36) geometric nonlinear formulations together with the FLD loading facility.
- 6. The global components of gravity acting on the fluid phase are defined by gx and gy under CBF and BF loading.

Restrictions

Ensure mid-side node centrality
Avoid excessive element curvature
Avoid excessive aspect ratio

Recommendations on Use

- The 3D solid two phase elements should be used if the stress field is fully 3D, i.e. it cannot be approximated with any of the 2D elements, e.g. a non-axisymmetric pressure vessel.
- For linear materials, the 20-noded element with a 2*2*2 Gauss rule is usually the most effective element, as this under-integration of the stiffness matrix prevents locking, i.e. over-stiff solutions will occur if the elements are used with a 3*3*3 Gauss integration rule to model structures subjected to bending. However, the element possesses six zero energy modes. Therefore, a careful examination of the solution should be performed to check for spurious stress oscillations and peculiarities in the deformed configuration. Either the 14-point or 3*3*3 Gauss rules should be used for materially nonlinear problems or materially linear problems that exhibit spurious deformations.
- In general, PN15P and HX20P give the best performance; TH10P is less accurate and needs to be used with a finer mesh. HX16P and PN12P should only be used to overcome connectivity problems when meshing.

Element Reference Manual	

Chapter 5 : Plate Elements

2D Isoflex Thin Plate Flexure Elements

General

Element Group

Element Subgroup Plates

it <u>Isoflex</u> Plates

Element Description

A family of thin plate flexure elements in 2D with higher order models capable of modelling curved boundaries. The element formulation takes account of varying thickness and anisotropic properties. As required by thin plate theory, transverse shearing effects are excluded.

Number Of Nodes 3 or 4 numbered anticlockwise.

Freedoms

W, θx , θy : at the corner nodes.

Node X, Y: at each node. **Coordinates**

Geometric Properties

t1 ... tn Thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

(Elastic: Orthotropic Plane Stress)

Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 3

(Elastic: Anisotropic Thin Plate)

Rigidities. RIGIDITIES 3 (Rigidities: Membrane/Thin

Plate)

Matrix Not applicableJoint Not applicable

Concrete Not applicable Elasto-Plastic Not applicable Creep Not applicable **Damage** Not applicable Viscoelastic Not applicable Shrinkage Not applicable **Rubber** Not applicable Generic Polymer Not applicable Composite Not applicable

Loading

Prescribed Value PDSP, Prescribed variable. W, θx , θy : at the corner

TPDSP

Concentrated CL Concentrated loads. Pz, Mx, My: at corner

> Loads nodes.

Element Loads Not

applicable.

Distributed Loads UDL Uniformly distributed loads. Wz: normal

pressure for element (global).

Not applicable. FLD, FLDG

Body Forces CBF Constant body forces for element. Zcbf

> BFP, BFPE Body force potentials at nodes/for element. Φ1,

> > Zcbf

Velocities. Vz: at nodes. Velocities VELO **Accelerations** ACCE Accelerations. Az: at nodes.

Viscous Support VSL Viscous support loads. VLz at nodes.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element. Stress/Strains Mx, My, Mxy: moments/unit width (global).

 Ψx , Ψy , Ψxy : flexural strains (global).

SSIG Not applicable.

Residual Stresses Not

applicable.

Target TSSIE. Target stresses/strains at nodes/for element. Stress/Strains TSSIA Mx, My, Mxy: moments/unit width (global).

 Ψx , Ψy , Ψxy : flexural strains (global).

TSSIG Not applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element.

0, 0, 0, dT/dz, 0, 0, 0, dTo/dz

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress resultant: Mx, My, Mxy: moments/unit width (global).

Strain: ψx, ψy, ψxy: flexural strains (global).

Modeller See **Results Tables** (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard plate element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 3-point (TF3), 2x2 (QF4).

Fine. As default.

Mass Default. 3-point (TF3), 2x2 (QF4).

Fine. As default.

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

- 18 Invokes fine integration rule for element.
- 55 Output strains as well as stresses.

- 143 Output shear forces for low order thin plate bending elements.
- 170 Suppress transfer of shape function arrays to disk.

Notes on Use

- 1. The element formulations are based on an **<u>Kirchhoff</u>** hypothesis for thin plates.
- 2. The variation of moments within the elements can be regarded as linear.
- 3. The elements pass the <u>patch test</u> for convergence for mixed triangular and quadrilateral element geometry.
- 4. The averaged nodal values produced with ELEMENT OUTPUT do not include the thin **isoflex** plate shear stresses if Option 143 is invoked.
- 5. When Option 143 is invoked shear stresses are only computed for the low order isoflex elements (QF4,TF3).

Restrictions

☐ Avoid excessive aspect ratio

Recommendations on Use

- This element may be used to analyse any 2D plate type structures where transverse shear effects do not influence the solution, e.g. thin cantilever plates.
- The thick plate elements QTF8 and TTF6 are recommended for thick plates where transverse shear strains are no longer negligible.

The following element combinations should be used for ribbed plates;

Ribs	with	small	or	no	eccentricity
			•		

Ц	QS14/TS3 elements with BMI21 elements,
	OTS4/TTS3 elements with BMI21 elements.

Ribs with large eccentricity

	QSL8/TSL6 elements	with BSL3/BSL4/BXL4 elements.
\Box		

☐ QTS4/TTS3 elements with BMI21 element

The through thickness integration is performed explicitly.

2D Isoflex Thick Plate Flexure Element

General

Element Group Plates

> Element **Isoflex** Plates

Subgroup

Element Description

A thick plate flexure element in 2D. The element formulation takes into account varying thickness and anisotropic properties.

Transverse shearing effects are included.

Number Of **Nodes**

4, numbered anticlockwise.

Freedoms

W, θx , θy : at each node.

Node Coordinates

X, Y: at each node.

Geometric Properties

t1... tn At each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

> Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

> > THICK (Elastic: Orthotropic Thick)

MATERIAL PROPERTIES ANISOTROPIC 5 Anisotropic:

(Elastic: Anisotropic Thick Plate)

Rigidities: RIGIDITIES 5 (Rigidities: Thick Plate)

Matrix Not applicabl

Joint Not applicable **Concrete** Not applicable

Elasto-Plastic Not applicable

Creep Not

applicable.

Damage Not applicable Viscoelastic Not applicable **Shrinkage** Not applicable **Rubber** Not applicable

Generic Polymer Not applicable

Composite Not applicable

Loading

Prescribed Value PDSP, Prescribed variable. W, θx , θy : at nodes.

TPDSP

CL Concentrated loads. Pz, Mx, My: at nodes. Concentrated

Loads

Element Loads Not

applicable.

Uniformly distributed loads. Wz: normal **Distributed Loads** UDL

pressure for element (global).

FLD, FLDG Not applicable.

Constant body forces for element. Zcbf **Body Forces CBF**

> BFP, BFPE Body force potentials at nodes/for element. O1,

> > Zcbf

Velocities **VELO** Velocities, Vz. at nodes. Accelerations ACCE Accelerations. Az: at nodes.

Viscous Support **VSL** Viscous support loads. VLz at nodes.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element. Stress/Strains

Mx, My, Mxy: moments/unit width (global).

 ψx , ψy , ψxy : flexural strains (global).

SSIG Not applicable.

Residual Stresses Not

applicable.

Target TSSIE, Target stresses/strains at nodes/for element. Stress/Strains **TSSIA** Mx, My, Mxy: moments/unit width (global).

 Ψx , Ψy , Ψxy : flexural strains (global).

TSSIG Not applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element. 0, 0, 0,

dT/dz, 0, 0, 0, dTo/dz

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress resultant: Mx, My, Mxy, Sx, Sy: moments, shear

forces/unit width (global)

Strain: ψx , ψy , ψxy , γxz , γyz : flexural, shear strains (global).

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard plate element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 2x2

Fine. As default.

Mass Default. 2x2

Fine. As default.

Mass Modelling

☐ Consistent mass (default).

☐ Lumped mass.

Options

55 Output strains as well as stresses.

105 Lumped mass matrix.

170 Suppress transfer of shape function arrays to disk.

Notes on Use

- 1. The element formulation involves imposing an assumed bi-linear shear strain field on the isoflex thin plate element QF4.
- 2. Though this element cannot model nonlinear behaviour, it can be mixed with other elements in a nonlinear analysis.
- 3. The element passes the <u>patch test</u> for convergence with rectangular and parallelogram element geometry.
- 4. The QF4,QF8,TF3,TF8 elements are usually more effective elements for thin plate analyses.
- 5. The QTF8 and TTF6 elements are usually more effective for thick plate analyses, and in such cases should be preferred to QSC4.
- 6. 3D solid elements should be used if the normal stress in the transverse direction is not insignificant in comparison with the in-plane stresses.
- 7. The following element combinations should be used for ribbed plates

Ribs with small or no eccentricity

- QSI4/TS3 elements with BMI21 elements,
- QTS4/TTS3 elements with BMI21 elements.

Ribs with large eccentricity

- QSL8/TSL6 elements with BSL3/BSL4/BXL4 elements,
- QTS4/TTS3 elements with BMI21 elements.
- 8. The through-thickness integration is performed explicitly.

Restrictions

■ Avoid excessive aspect ratio

Recommendations on Use

This element may be used to analyse any 2D plate type structures where transverse shear effects influence the solution, e.g. perforated thick plates.

2D Mindlin Thick Plate Flexure Element

General

Element Group

Element Subgroup Mindlin Plates

Plates

Element Description

A family of thick plate flexure elements based on a Mindlin plate formulation. The elements can accommodate curved boundaries and varying thicknesses. Transverse shear deformations are included.

Number Of Nodes 6 or 8, numbered anticlockwise.

Freedoms Node

W, θx , θy : at each node. X, Y: at each node.

Coordinates

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic:

Isotropic)

Orthotropic: MATERIAL PROPERTIES

ORTHOTROPIC THICK (Elastic:

Orthotropic Thick)

Anisotropic: MATERIAL PROPERTIES

ANISOTROPIC 5 (Elastic: Anisotropic

Thick Plate)

Rigidities.

RIGIDITIES 5 (Rigidities: Thick Plate)

Matrix Not applicable
Joint Not applicable
Concrete Not applicable

Elasto-Plastic Not applicable Creep Not applicable **Damage** Not applicable Viscoelastic Not applicable **Shrinkage** Not applicable Rubber Not applicable Generic Polymer Not applicable Composite Not applicable

Loading

Prescribed Value PDSP, Prescribed variable. W, θx , θy : at nodes.

TPDSP

Concentrated CL Concentrated loads. Pz, Mx, My: at nodes.

Loads

Element Loads Not

applicable.

Distributed Loads UDL Uniformly distributed loads. Wz: normal

pressure for element (global).

Not applicable. FLD, FLDG

Body Forces CBF Constant body forces for element. Zcbf

> BFP, BFPE Body force potentials at nodes/for element. O1,

> > **Zcbf**

Velocities VELO Velocities, Vz. at nodes. **Accelerations** ACCE Accelerations. Az: at nodes.

Viscous support loads. VLz at nodes. Viscous Support VSL

Loads

Initial SSI. SSIE Initial stresses/strains at nodes/for element.

Stress/Strains Mx, My, Mxy, Sx, Sy: moments, shear

forces/unit width (global).

 Ψx , Ψy , Ψxy , γxz , γyz : flexural, shear strains

/unit width (global).

SSIG Not applicable.

Residual Stresses Not

applicable.

Target TSSIE. Target stresses/strains at nodes/for element. Stress/Strains TSSIA Mx, My, Mxy, Sx, Sy: moments, shear

forces/unit width (global).

 Ψx , Ψy , Ψxy , γxz , γyz : flexural, shear strains

/unit width (global).

TSSIG Not applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element.

0, 0, 0, dT/dz, 0, 0, 0, dTo/dz

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

Output

Solver Stress resultant: Mx, My, Mxy, Sx, Sy: moments, shear

forces/unit width (global).

Strain: ψx , ψy , ψxy , γxz , γyz : flexural, shear strains /unit width

(global).

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard plate element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 3-point (TTF6), 2x2 (QTF8)

Fine (see *Options*). 3x3 (QTF8).

Mass Default. 3-point (TTF6), 2x2 (QTF8)

Fine (see *Options*). 3x3 (QTF8).

Mass Modelling

☐ Consistent mass (default).

☐ Lumped mass.

Options

- 18 Invokes fine integration rule for element.
- 55 Output strains as well as stresses.
- 105 Lumped mass matrix.
- 170 Suppress transfer of shape function arrays to disk.

Notes on Use

- 1. The element formulations are based on an isoparametric approach. The variation of moments and shears within the element may be regarded as linear.
- 2. Though this element cannot model nonlinear behaviour, it can be mixed with other elements in a nonlinear analysis.
- 3. The elements pass the <u>patch test</u> for convergence with triangular and parallelogram element geometry.
- 4. These elements are usually more effective than the QSC4 thick shell element (section 7.6.2).
- 5. The elements tend to lock as the plate thickness approaches the thin plate limit since shear strain energy dominates the element stiffness. Therefore, a thin plate or shell element should be used when the depth/span ratio exceeds 1/50.
- 6. 3D solid elements should be used if the normal stress in the transverse direction is not insignificant in comparison with the in-plane stresses.
- 7. The following element combinations should be used for ribbed plates

Ribs with small or no eccentricity

- QSI4/TS3 elements with BMI21 elements,
- QTS4/TTS3 elements with BMI21 elements.

Ribs with large eccentricity

- QSL8/TSL6 elements with BSL3/BSL4/BXL4 elements,
- QTS4/TTS3 elements with BMI21 elements.
- 8. The QTF8 element with 2*2 Gauss quadrature is generally more effective than the 3*3 rule. The 2*2 rule does, however, exhibit one zero energy mode which can be eliminated using option 18.
- 9. The through-thickness integration is performed explicitly.

Restrictions

Ensure mid-side node centrality
Avoid excessive element curvature
Avoid excessive aspect ratio

Recommendations on Use

These elements may be used to analyse any 2D plate type structures where transverse shear effects influence the solution, e.g. perforated thick plates.

Chapter 6: Shell Elements

2D Axisymmetric Thin Shell Element

General

Element Group

Shells

Element Subgroup

Axisymmetric Shells

Element Description

A parabolically curved axisymmetric thin shell element in 2D in which shear deformations are excluded. The geometric properties may vary along the length of the element.

Number Of

3

Nodes End Releases

Freedoms

U, V, θ z: at end nodes.

dU: (relative local in-plane displacement) at the mid-length node.

Node Coordinates

Node X, Y: at each node.

Geometric Properties

t1, t2, t3 Thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

(Elastic: Orthotropic Plane Stress)

MATERIAL PROPERTIES ORTHOTROPIC

SOLID (Elastic: Orthotropic Thick)

Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 2

(Not supported in LUSAS Modeller)

Rigidities: Not applicable.

Matrix Not

applicable.

Joint Not

applicable.

Concrete Not

applicable.

resultant:

Elasto-Plastic Stress MATERIAL PROPERTIES NONLINEAR 29

(Elastic: Isotropic, Plastic: Resultant) (ifcode

not required)

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64
Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65

Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Optimised MATERIAL PROPERTIES NONLINEAR 75

Implicit Von (Elastic: Isotropic, Plastic: Von Mises, Mises: Hardening: Isotropic & Kinematic)

Volumetric Not applicable.

Crushing:

Stress STRESS POTENTIAL VON MISES, HILL,

Potential HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep CREEP PROPERTIES (Creep)

AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO Code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC

MATERIAL PROPERTIES NONLINEAR 86

(Concrete creep model to Indian IRC Code of

Practice)

DAMAGE PROPERTIES SIMO, OLIVER Damage

(Damage)

Viscoelastic Not

applicable.

Shrinkage SHRINKAGE CEB FIP 90, EUROCODE 2,

GENERAL, USER

Rubber Not

applicable.

Generic Polymer Not applicable

Composite Not

applicable.

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V, θ z: at end nodes. dU:

at the mid-length node.

Concentrated CL Concentrated loads. Px, Py, Mx: point loads, Loads

moments/unit length/radian at end nodes

(global).

DPx: point load/unit length/radian at mid-

length node (local).

Element Loads ELDS **Element loads**

LTYPE, S1, Px, Py, Mx

LTYPE=11: point loads and moments in local

directions.

LTYPE=12: point loads and moments in global

directions.

LTYPE, 0, Wx, Wy, Mx

LTYPE=21: uniformly distributed loads in

local directions.

LTYPE=22: uniformly distributed loads in

global directions.

LTYPE=23: uniformly distributed projected

loads in global directions

LTYPE, S1, Wx1, Wy1, Mx1, S2, Wx2, Wy2,

LTYPE=31: distributed loads in local

directions.

LTYPE=32: distributed loads in global directions.

LTYPE=33: distributed projected loads in global directions

LTYPE, S1, Wx, Wy, Mx

LTYPE=41: trapezoidal loads in local

directions.

LTYPE=42: trapezoidal loads in global

directions.

LTYPE=43: trapezoidal projected loads in

global directions

Distributed Loads UDL Uniformly distributed loads. Wx, Wy:

forces/unit length/radian in local x, y

directions for element.

FLD Face Loads. Px, Py: local face pressures at

nodes.

FLDG Not applicable.

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

 $\Omega_{\rm X}$, $\Omega_{\rm Y}$, $\Omega_{\rm Z}$, $\alpha_{\rm Z}$

BFP, BFPE Body force potentials at nodes/for element. (01,

Φ2, 0, 0, Xcbf, Ycbf

Velocities VELO Velocities. Vx, Vy: at nodes.

Accelerations ACCE Accelerations. Ax, Ay: at nodes. Viscous support loads. VLx, VLy: at nodes.

Viscous Support VSL Loads

Initial SSI, SSIE

Stress/Strains

Initial stresses/strains at nodes/for element.

Resultants (for linear material models without cross section integration and material model

29). Nx, Nθ, Mx, Mθ, 0: axial and

circumferential forces, moments/unit width.

 $\mathcal{E}x$, $\mathcal{E}\theta$, ψx , $\psi \theta$, 0, axial and circumferential

strains (all models).

SSIG Initial stresses/strains at Gauss points.

> (1) Resultants (for linear material models without cross section integration and material model 29). Nx, N θ , Mx, M θ ,0: axial and circumferential forces, moments/unit width.

 εx , $\varepsilon \theta$, ψx , $\psi \theta$, 0: axial and circumferential

strains (all models).

(2) Components (for linear material models with cross section integration and all

nonlinear material models except 29). 0, 0, 0,

		$0, 0, 0, 0, 0, 0, 0, (\sigma x, \sigma \theta, \epsilon x, \epsilon \theta)$ Bracketed terms repeated for each fibre integration
		point.
Residual Stresses	SSR, SSRE	Not applicable.
	SSRG	Residual stresses at Gauss points. (1) Resultants (model 29). Nx, Nθ, Mx, Mθ, 0 (2) Components (all models except 29) 0, 0,
		$0, 0, 0, 0, 0, 0, 0, 0, (\sigma x, \sigma \theta)$ Bracketed terms repeated for each fibre integration point.
Target Stress/Strains	TSSIE, TSSIA	Target stresses/strains at nodes/for element. Resultants (for linear material models without cross section integration and material model 29). Nx, Nθ, Mx, Mθ, 0: axial and circumferential forces, moments/unit width.
		εx , $\varepsilon \theta$, ψx , $\psi \theta$, 0, axial and circumferential strains (all models).
	TSSIG	Target stresses/strains at Gauss points. (1) Resultants (for linear material models without cross section integration and material model 29). Nx, Nθ, Mx, Mθ,0: axial and circumferential forces, moments/unit width.
		 εx, εθ, ψx, ψθ, 0: axial and circumferential strains (all models). (2) Components (for linear material models with cross section integration and all nonlinear material models except 29). 0, 0, 0,
		$0, 0, 0, 0, 0, 0, 0, (\sigma x, \sigma \theta, \epsilon x, \epsilon \theta)$ Bracketed terms repeated for each fibre integration point.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, 0, dT/dy, 0, To, 0, dTo/dy, 0: in local directions.
Overburden	Not applicable.	
Phreatic Surface Field Loads	Applicable. Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver Force. Nx, N θ , Mx, M θ : axial and circumferential forces,

moments/unit width in local directions.

Strain. $\mathcal{E}x$, $\mathcal{E}\theta$, $\mathcal{Y}x$, $\mathcal{Y}\theta$: axial and circumferential strains.

Layer stress and strain output is also available when using the

nonlinear continuum material models.

Modeller See Results Tables (Appendix K).

Local Axes

The local x-axis lies along the line of the element in the direction in which the nodes are numbered. The local y and z-axes form a right-hand set with the local x-axis such that the y-axis lies in the global XY-plane with the z-axis parallel to the global Z-axis.

Sign Convention

☐ Standard shell element. Axial and circumferential moments are positive for tension on element top fibre (the top fibre lies on the positive local y side of the element).

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, rotations up to 1 radian, and small

strains.

Updated For large displacements, rotation increments up to 1 radian and

Lagrangian small strains.

Eulerian Not applicable.

Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 2-point.

Fine (see *Options*). 3-point. **Mass** Default. 2-point.

Fine (see *Options*). 3-point.

Mass Modelling

☐ Consistent mass (default).

☐ Lumped mass.

Options

- 18 Invokes fine integration rule for element
- 47 X-axis taken as axis of symmetry
- 54 Updated Lagrangian geometric nonlinearity.
- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity
- 105 Lumped mass matrix.
- 157 Material model 29 (non cross-section elements), see *Notes*.
- 170 Suppress transfer of shape function arrays to disk.

Notes on Use

- 1. The element formulation is based on a constrained super-parametric approach.
- 2. The variation of axial force and moment along the length of the element is linear. The variation of displacements is cubic in the local y-direction, and quadratic in the local x direction.
- 3. Temperature dependent properties cannot be used with material model 29.
- The through-thickness integration is performed explicitly for linear and stress resultant plasticity models and with a 5-point <u>Newton-Cotes</u> rule for all other material models.

Restrictions

- ☐ Ensure mid-side node centrality
- ☐ Avoid excessive element curvature

Recommendations on Use

The element can be used for analysing shell structures which are axisymmetric, e.g. pressure vessels or pipes.

2D Axisymmetric Thick Shell Elements

General

Element Group Shells

Element Axisymmetric Shells

Subgroup Element Straight and curved isoparametric degenerate thick axisymmetric shell elements in 2D for which shearing deformations are included.

The element thickness may vary along the length.

Number Of 2 (BXSI2), 3 (BXSI3)

Nodes

End Releases

Freedoms U, V, θ z: at end nodes.

Node X, Y: at each node. **Coordinates**

Geometric Properties

t1, t2, t3 Thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

(Elastic: Orthotropic Plane Stress)

MATERIAL PROPERTIES ORTHOTROPIC

SOLID (Elastic: Orthotropic Thick)

Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 2

(Not supported in LUSAS Modeller)

Rigidities: Not applicable.

Matrix Not

applicable.

Joint Not

applicable.

Concrete Not

applicable.

Elasto-Plastic Stress Not applicable.

resultant:

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64
Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65 Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Optimised MATERIAL PROPERTIES NONLINEAR 75
Implicit Von (Elastic: Isotropic, Plastic: Von Mises,
Mises: Hardening: Isotropic & Kinematic)

Volumetric Not applicable.

Crushing:

Stress STRESS POTENTIAL VON_MISES, HILL,

Potential HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep CREEP PROPERTIES (Creep)

AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC

MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic Not

applicable.

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Rubber Not

applicable.

Generic Polymer Not applicable

Composite Not

applicable.

Loading

Prescribed Value PDSP, Prescribed variable. U, V, θ z: at end nodes.

TPDSP

Concentrated CL Concentrated loads. Px, Py, Mx at nodes.

Loads

Element Loads ELDS <u>Element loads</u> on nodal line

LTYPE, S1, Px, Py, Mz

LTYPE=11: point loads and moments in local

directions.

LTYPE=12: point loads and moments in global

directions.

LTYPE, 0, Wx, Wy, Mz

LTYPE=21: uniformly distributed loads in

local directions.

LTYPE=22: uniformly distributed loads in

global directions.

LTYPE=23: uniformly distributed projected

loads in global directions

LTYPE, S1, Wx1, Wy1, Mz1, S2, Wx2, Wy2,

Mz2

LTYPE=31: distributed loads in local

directions.

LTYPE=32: distributed loads in global

directions.

LTYPE=33: distributed projected loads in

		global directions
		LTYPE, S1, Wx, Wy, Mz
		LTYPE=41: trapezoidal loads in local
		directions.
		LTYPE=42: trapezoidal loads in global
		directions.
		LTYPE=43: trapezoidal projected loads in
		global directions
Distributed Loads	UDL	Uniformly distributed loads. Wx, Wy:
		forces/unit length/radian in local x, y directions for element.
	FLD	Face Loads. Px, Py: local face pressures at
	ILD	nodes.
	FLDG	Not applicable.
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf,
		$\Omega_{x}, \Omega_{y}, \Omega_{z}, \alpha_{z}$
	BFP, BFPE	Body force potentials at nodes/for element. φ1,
		φ2, 0, 0, Xcbf, Ycbf
Velocities	VELO	Velocities. Vx, Vy: at nodes.
Accelerations	ACCE	Accelerations. Ax, Ay: at nodes.
Viscous Support	VSL	Viscous support loads. VLx, VLy: at nodes.
Loads		
Initial	SSI, SSIE	Initial stresses/strains at nodes/for element.
Stress/Strains		Components: $0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (\sigma x, 0)$
		σxy, σz, εx, εxy, εz) Bracketed terms
		repeated for each fibre integration point
	SSIG	Initial stresses/strains at Gauss points. These
		stresses/strains are specified in the same
D 11 10	222 222	manner as SSI and SSIE.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element.
		Components: $0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (\sigma x, 0)$
		σxy, σz) Bracketed terms repeated for each fibre integration point.
	SSRG	Residual stresses at Gauss points for element.
		Components: $0, 0, 0, 0, 0, 0, 0, 0, 0, (\sigma x, 0)$
		σ xy, σ z) Bracketed terms repeated for each
		fibre integration point.
Target	TSSIE,	Target stresses/strains at nodes/for element.
Stress/Strains	TSSIA	Components: $0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (\sigma x, 0)$
		σ xy, σ z) Bracketed terms repeated for each
		fibre integration point.

TSSIG Target stresses/strains at Gauss points. These

stresses/strains are specified in the same

manner as TSSIE and TSSIA.

Temperatures TEMP, TMPE Temperatures at nodes/for element.

T, 0, dT/dy, 0, To, 0, dTo/dy, 0: in local

directions.

Overburden Not

applicable.

Phreatic Surface Face pressure. The fluid pressure is applied in the –y direction

of the element y axis.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Force. Nx, Ne, Mx, Me, Sxy: axial and hoop forces, moments/unit

width in local directions, shear force

Strain. εx , ε_{\Box} , γx , $\Box \theta$, εxy axial, hoop, flexural and shear strains.

Continuum stresses: σx , σxy , $\sigma \theta$ in local directions.

Strain: εx , εxy , ε_{\square} : Axial, shear and hoop strains in local

directions.

Modeller See **Results Tables** (Appendix K).

Local Axes

The local x-axis lies along the line of the element in the direction in which the nodes are numbered. The local y and z-axes form a right-hand set with the local x-axis such that the y-axis lies in the global XY-plane with the z-axis parallel to the global Z-axis.

Sign Convention

☐ Standard shell element. Axial and circumferential moments are positive for tension on element top fibre (the top fibre lies on the positive local y side of the element).

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, rotations up to 1 radian, and small

strains.

Updated Not applicable.

Lagrangian

Eulerian Not applicable. **Co-rotational** Not applicable.

Integration Schemes

Stiffness Default. 1-point (BXSI2), 2-point (BXSI3).

Fine (see *Options*). Same as default.

Mass Default. 2-point (BXSI2), 3-point (BXSI3).

Fine (see *Options*). Same as default.

Mass Modelling

☐ Consistent mass (default).

☐ Lumped mass.

Options

- 18 Invokes fine integration rule for element
- 55 Output strains as well as stresses.
- 87 Total Lagrangian geometric nonlinearity
- 102 Switch off load correction stiffness matrix due to centripetal acceleration
- 105 Lumped mass matrix.
- **134** Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
- 139 Output yielded integration points only.

Notes on Use

- 1. The element is formulated from the degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Plane cross-sections initially normal to the x axis remain plane and undistorted (the shape of the cross-section remains unchanged) under deformation, but do not necessarily remain normal to the x axis. Shearing deformations are included.
- 2. The axial force, hoop force, shear force and moments are constant in BXSI2 and vary linearly along the length of the beam in BXSI3.
- 3. OPTION 36 is only applicable for use with element load types FLD, ELDS, UDL and phreatic surface pressure. Specifying this option makes these element loads follow the element geometry as the analysis progresses.

Restrictions

- ☐ Ensure mid-side node centrality
- ☐ Avoid excessive element curvature

Recommendations on Use

The element can be used for analysing linear and nonlinear shell structures which are axisymmetric, e.g. pressure vessels or pipes.

3D Flat Thin Shell Elements

General

Element Group

Element

Flat Thin Shells

Shells

Subgroup

Element Description

A family of flat thin shells in 3D which include a high performance incompatible model. The elements take into account both membrane and flexural deformations. As required by thin plate theory, transverse shearing deformations are excluded. An average thickness value for each element is obtained from the specified nodal thicknesses. Since the elements are formulated in local element axes, directional material properties may be defined relative to the element orientation.

Number Of Nodes

3 or 4 numbered anticlockwise.

Freedoms

U, V, W, θx , θy , θz : at each node.

X, Y, Z: at each node.

Node **Coordinates**

Geometric Properties

Ez, t1... tn <u>Eccentricity</u> and thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic:

Isotropic)

Orthotropic: MATERIAL PROPERTIES

ORTHOTROPIC (Elastic: Orthotropic

Plane Stress)

MATERIAL PROPERTIES

ORTHOTROPIC SOLID (Elastic:

Orthotropic Thick)

MATERIAL PROPERTIES Anisotropic:

ANISOTROPIC 3 (Elastic: Anisotropic

Thin Plate)

Rigidities. RIGIDITIES 6 (Rigidities: Shell) (D7, D8, D9, D11, D12, D13, D16, D17, D18=0)

Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable

Shrinkage SHRINKAGE CEB_FIP_90,

EUROCODE_2, GENERAL, USER

Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value PDSP, Prescribed variable. U, V, W, θ x, θ y, θ z: at

TPDSP nodes.

Concentrated CL Concentrated loads. Px, Py, Pz, Mx, My, Mz: at

Loads nodes.

Element Loads Not

applicable.

Distributed Loads UDL Uniformly distributed loads. Wx, Wy, Wz:

local surface pressures for element (see

Notes).

FLD, FLDG Not applicable.

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

Zcbf (see Notes).

BFP, BFPE Body force potentials at nodes/for element. φ_1 ,

Φ2, Φ3 (see Notes).

VelocitiesVELOVelocities. Vx, Vy, Vz: at nodes.AccelerationsACCEAccelerations. Ax, Ay, Az: at nodes.Viscous SupportVSLViscous support loads. VLx, VLy, VLz: at

Loads nodes.

Initial SSI, SSIE Initial stresses/strains at nodes/for element.

Stress/Strains Resultants. Nx, Ny, Nxy, Mx, My, Mxy:

forces, moments/unit width in local

directions. εx , εy , γxy , ψx , ψy , ψxy : membrane, flexural strains in local directions

(see Notes).

SSIG Not applicable.

Residual Stresses Not

applicable.

Target TSSIE,
Stress/Strains TSSIA

Target stresses/strains at nodes/for element. Resultants. Nx, Ny, Nxy, Mx, My, Mxy:

forces, moments/unit width in local directions. εx , εy , γxy , ψx , ψy , ψxy :

membrane, flexural strains in local directions

(see Notes).

TSSIG Not applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0,

dT/dz, To, 0, 0, dTo/dz: in local directions.

(see Notes)

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress resultant: Nx, Ny, Nxy, Mx, My, Mxy: forces,

moments/unit width in local directions.

Stress (default): σx , σy , σxy , σmax , σmin , β , σe : in local

directions (see Notes).

Strain: Ex, Ey, Yxy, Wx, Wy, Wxy: membrane, flexural strains in

local directions.

Modeller See Results Tables (Appendix K).

Local Axes

☐ Standard area element

Sign Convention

☐ Thin shell element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point for the in-plane incompatible modes,

(QSI4),

2x2 for the in-plane compatible modes, (QSI4),

2x2 for bending (QSI4).

1-point for in-plane (TS3), 3-point for bending

(TS3).

Fine. As default.

Mass Default. 1-point for the in-plane incompatible modes,

(QSI4),

2x2 for the in-plane compatible modes, (QSI4),

2x2 for bending (QSI4).

1-point for in-plane (TS3), 3-point for bending

(TS3).

Fine. As default.

Mass Modelling

Lumped mass only.

Options

- 32 Suppress stress output but not stress resultants.
- **34** Outputs stress resultants.
- 55 Outputs strains as well as stresses.
- 59 Outputs local direction cosines for elements.
- 170 Suppresses transfer of shape function arrays to disk.

Notes on Use

- 1. The element formulations are based on the standard <u>isoflex</u> approach for the flexural matrices.
- 2. The variation of membrane stresses within the element can be regarded as constant for TS3 and linear for QSI4. The higher order membrane performance of QSI4 is due to the addition of four incompatible in-plane displacement modes. The variation of flexural stresses can be regarded as linear for all elements.

- 3. The stress results are most easily interpreted if the local element axes are all parallel.
- 4. The elements pass the <u>patch test</u> for mixed triangular and quadrilateral geometry.
- 5. Stress output to the LUSAS output file is on 4 lines:
 - Stresses due to membrane action.
 - Top surface stresses due to bending action.
 - Top surface stresses due to membrane and bending action.
 - Bottom surface stresses due to membrane and bending action.

Gauss point output is not available.

- 6. All distributed loading will be lumped at the nodes.
- 7. For effective analysis of curved shell structures, a flat shell element should not extend over more than 15 degrees of arc.
- 8. Though this element cannot model nonlinear behaviour, it can be mixed with other elements in a nonlinear analysis.
- 9. A system variable is used to alter the artificial stiffness for in-plane rotations.
- 10. A fine discretisation will be required to reproduce the correct behavioural response for curved structures. Therefore, the Semiloof shell elements (QSL8,TSL6) or the thick shell elements (QTS8, TTS6) may be more appropriate.
- 11. The ORTHOTROIC SOLID material model may be used with either composite or non-composite thin shell elements. Using a Solid rather than a Thick orthotropic material means that a local coordinate may be used to orientate the material.
- 12. Element loading on elements with eccentricity is applied as follows:
 - SSI, SSIE, TSSIE, TSSIA, TEMP, TMPE at the mid-plane of the element.
 - UDL, CBF, BFP, BFPE at the nodal plane.

Restrictions

Avoid excessive aspect ratio.
Avoid excessive warning

Recommendations on Use

- The flat thin shell elements are suitable for modelling both flat and curved thin shell structures which exhibit negligible transverse shear deformations.
- A fine discretisation will be required to reproduce the correct behavioural response for curved structures. Therefore, the Semiloof shell elements (QSL8,TSL6) or the thick shell elements (QTS8, TTS6) may be more appropriate.
- The Semiloof shell elements (QSL8,TSL6) or the thick shell elements (QTS8, TTS6) are more effective for structures containing multiple shell intersections.
- The Semiloof shell elements (QSL8,TSL6) or the thick shell elements (QTS4, QTS8, TTS3, TTS6) may be more effective for eigen-analyses since a consistent mass matrix is available.
- The Semiloof shell elements (QSL8,TSL6) should be utilised for nonlinear analyses.
- The elements can be combined with BMI21 beam elements for analysing ribbed shells with small or no eccentricity. However, the Semiloof shell (QSL8,TSL6) and beam (BSL3,BSL4,BXL4) are more effective for thin ribbed shells with larger eccentricity. For thick ribbed shells with larger eccentricity the thick shell (QTS4, QTS8, TTS3, TTS6) and co-rotational beam (BMI21) are recommended.

3D Flat Thin Nonlinear Shell Element

General

TSR6

Element Group

Element

Flat Thin Shells

Shells

Subgroup

Element Description A triangular shell element for the analysis of faceted shell geometries, including multiple branched junctions. The elements can accommodate varying thickness and anisotropic material properties. The element is based on the "Morley shell" formulation and assumes constant membrane and bending strains across the element. As required by thin shell theory, transverse shearing deformations are excluded.

Number Of **Nodes**

6 numbered anticlockwise.

Freedoms

U, V, W: at corner nodes. θ_1 : (loof rotation) at mid-side nodes (see

Notes).

Coordinates

Node X, Y, Z: at each node.

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

> MATERIAL PROPERTIES ORTHOTROPIC Orthotropic:

> > (Elastic: Orthotropic Plane Stress)

MATERIAL PROPERTIES ORTHOTROPIC

SOLID (Elastic: Orthotropic Thick)

MATERIAL PROPERTIES ANISOTROPIC 3 Anisotropic:

(Elastic: Anisotropic Thin Plate)

Rigidities. RIGIDITIES 6 (Rigidities: Shell)

Matrix Not applicable

Joint Not applicable

Concrete MATERIAL PROPERTIES NONLINEAR 109

(Elastic: Isotropic, Plastic: Smoothed Multi-

Crack Concrete)

Elasto-Plastic Stress MATERIAL PROPERTIES NONLINEAR 29 resultant:

(Elastic: Isotropic, Plastic: Resultant) (ifcode

not required)

Tresca: **MATERIAL PROPERTIES NONLINEAR 61**

> (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic

Strain or Isotropic Total Strain)

Drucker-MATERIAL PROPERTIES NONLINEAR 64

Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr-MATERIAL PROPERTIES NONLINEAR 65

(Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Volumetric Crushing:

Coulomb:

Not applicable.

Stress STRESS POTENTIAL VON MISES, HILL,

Potential **HOFFMAN**

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep CREEP PROPERTIES (Creep)

> **AASHTO** Not applicable

CEB-FIP

Not applicable

Chinese Not applicable

Eurocode Not applicable

IRC Not applicable

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic Not applicable

Shrinkage GENERAL, USER

Rubber Not

applicable.

Generic Polymer Not applicable

Composite Not applicable

Loading

Prescribed Value PDSP, Prescribed variable. U, V, W: at corner nodes.

TPDSP θ_1 : at mid-side nodes.

Concentrated CL Concentrated loads. Px, Py, Pz: at corner nodes.

Loads M1: at mid-side nodes.

Element Loads Not

applicable.

Distributed Loads UDL Uniformly distributed loads. Wx, Wy, Wz: mid-

surface local pressures for element.

FLD, FLDG Not applicable.

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

Zcbf, Ωx , Ωy , Ωz , αx , αy , αz

BFP, BFPE Body force potentials at nodes/for element. \emptyset_1 ,

 φ_2 , φ_3 , 0, Xcbf, Ycbf, Zcbf, where φ_1 , φ_2 , φ_3

are the face loads in the local coordinate

		system.
Velocities	VELO	Velocities. Vx, Vy, Vz: at corner nodes.
Accelerations	ACCE	Accelerations. Ax, Ay, Az: at corner nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy, VLz: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element.
2.2.000	SSIG	Initial stresses/strains at Gauss points. (1) Resultants (for model 29 and RIGIDITIES) Nx, Ny, Nxy, Mx, My, Mxy,
		 εx, εy, γxy, ψx, ψy, ψxy: forces, moments/unit width and membrane/flexural strains in local directions. (2) Components (in all other cases except for nonlinear model 29 and RIGIDITIES), 0, 0, 0,
		$0, 0, 0, 0, 0, 0, 0, 0, 0, (\sigma x, \sigma y, \sigma xy, \epsilon x, \epsilon y,$
		γxy). Bracketed terms repeat for each layer.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element
	SSRG	Residual stresses at Gauss points. (1) Resultants (for model 29) Nx, Ny, Nxy, Mx, My, Mxy: forces, moments/unit width in local directions. (2) Components (for all nonlinear material models except model 29): 0, 0, 0, 0, 0, 0, 0, 0,
		$0, 0, 0, 0, (\sigma x, \sigma y, \sigma xy)$. Bracketed terms repeat for each layer.
Target Stress/Strains	TSSIE, TSSIA	Target stresses/strains at nodes/for element.
	TSSIG	Target stresses/strains at Gauss points. (1) Resultants (for model 29 and RIGIDITIES) Nx, Ny, Nxy, Mx, My, Mxy,
		 εx, εy, γxy, ψx, ψy, ψxy: forces, moments/unit width and membrane/flexural strains in local directions. (2) Components (in all other cases except for nonlinear model 29 and RIGIDITIES), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
		0, 0, 0, 0, 0, 0, 0, 0, (σx, σy, σxy, εx, εy,
Temperatures	TEMP,	γxy). Bracketed terms repeat for each layer. Temperatures at nodes/for element. T, 0, 0,
•	TMPE	dT/dz, To, 0, 0, dTo/dz
Overburden	Not applicable.	

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress resultant: Nx, Ny, Nxy, Mx, My, Mxy: forces,

moments/unit width in local directions.

Stress (default): σx , σy , σxy , σmax , σmin , β , σe : in local

directions (see Notes).

Strain: εx, εy, γxy, ψx, ψy, ψxy: membrane, flexural strains in

local directions.

Modeller See Results Tables (Appendix K).

Local Axes

Standard area element

Sign Convention

☐ Thin shell element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.

Updated Not applicable.

Lagrangian

Eulerian Not applicable.

Co-rotational For large displacements and rotations

Integration Schemes

Stiffness Default. 1-point

Fine. 1-point Coarse. 1-point

Coarse. 1-point

Mass Default. 1-point

Fine. 1-point

Mass Modelling

☐ Consistent mass.

Options

- 32 Suppresses stress output but not resultants.
- **34** Outputs element stress resultants.
- 55 Outputs strains as well as stresses.
- 59 Outputs local direction cosines at nodes and Gauss points.
- 77 Output principal stresses and directions.
- 139 Output yielded Gauss points only.

Notes on Use

- 1. The element formulations are based on a **Kirchhoff** hypothesis for thin shells.
- 2. The stresses are constant within the elements.
- 3. The loof rotations refer to rotations about the element edge at the mid-side nodes. The positive direction of a loof rotation is defined by a right-hand screw rule applied to a vector running in the direction of the lower to higher numbered corner nodes. It should be noted that this direction is enforced on a global level which means that the loof rotations along the adjoining edge of several elements will be consistent in terms of direction and ordering.
- The element edges must remain straight even though the elements have midside nodes.
- 5. The elements pass the **patch test** for convergence.
- 6. Stresse will not be output when using RIGIDITIES or material model 29.
- 7. The through-thickness integration is performed explicitly for linear analyses and a 5-point <u>Newton-Cotes</u> rule is utilised for materially nonlinear analyses with continuum material models. The through-thickness integration rules are as follows:
 - Linear models: 3-layers.
 - Nonlinear models: 5-layers.

Restrictions

Ц	Ensure mid-side	node centrali	ty and	straight	element ed	lges
	Avoid avaggiva	aspect ratio				

Recommendations on Use

- These elements may be utilised for analysing flat and faceted 3D shell structures where the transverse shear effects do not influence the solution. The configuration of the nodal freedoms provides an element suitable for modelling intersecting shells.
- The elements are recommended for geometrically nonlinear problems where large displacements and rotations occur. The single Gauss point integration scheme gives rise to a computationally efficient solution, however, the mesh may need to be refined if there is an unacceptable differentiation in stresses between adjacent elements..

Semiloof Curved Thin Shell Elements

General

Element Name $X, u, \theta x$ $Z, w, \theta z$

Element Group

Element Subgroup Shells

Semiloof Shells

Element Description

A family of shell elements for the analysis of arbitrarily curved shell geometries, including multiple branched junctions. The elements can accommodate generally curved geometry with varying thickness and anisotropic and composite material properties. The element formulation takes account of both membrane and flexural deformations. As required by thin shell theory, transverse shearing deformations are excluded.

Number Of Nodes

6 or 8 numbered anticlockwise.

Freedoms U, V, W: at corner nodes. U, V, W, θ_1 , θ_2 : (loof rotations) at midside nodes (see *Notes*).

Node X, Y, Z: at each node.

Node Coordinates

Geometric Properties

t1... tn Thickness at each node. Also see *Composite Geometry* data chapter.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

(Elastic: Orthotropic Plane Stress)

MATERIAL PROPERTIES ORTHOTROPIC

SOLID (Elastic: Orthotropic Solid)

Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 3

(Elastic: Anisotropic Thin Plate)

Rigidities. RIGIDITIES 6 (Rigidities: Shell)

Matrix Not applicable

Joint Not applicable

Concrete MATERIAL PROPERTIES NONLINEAR 109

(Elastic: Isotropic, Plastic: Smoothed Multi-

Crack Concrete)

Elasto-Plastic Stress MATERIAL PROPERTIES NONLINEAR 29

resultant: (Elastic: Isotropic, Plastic: Resultant) (ifcode

not required)

Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)

Drucker- MATERIAL PROPERTIES NONLINEAR 64

Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr- MATERIAL PROPERTIES NONLINEAR 65

Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Volumetric

Crushing:

Not applicable.

Stress STRESS POTENTIAL VON_MISES, HILL,

Potential HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep CREEP PROPERTIES (Creep)

AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO code of

Practice)

CEB-FIP MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC code of

Practice)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic Not applicable

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Rubber Not

applicable.

Generic Polymer Not applicable

Composite Composite

shell:

COMPOSITE PROPERTIES

Loading

Prescribed Value PDSP, Prescribed variable. U, V, W: at corner nodes.

TPDSP U, V, W, θ_1 , θ_2 : at mid-side nodes.

Concentrated CL Concentrated loads. Px, Py, Pz: at corner nodes.

Loads Px, Py, Pz, M₁, M₂: at mid-side nodes.

Element Loads Not

applicable.

Distributed Loads UDL Uniformly distributed loads. Wx, Wy, Wz: mid-

		surface local pressures for element.
	FLD, FLDG	Not applicable.
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, Zcbf, Ω x, Ω y, Ω z, α x, α y, α z
	BFP, BFPE	Body force potentials at nodes/for element. ϕ_1 , ϕ_2 , ϕ_3 , 0, Xcbf, Ycbf, Zcbf, where ϕ_1 , ϕ_2 , ϕ_3 are the face loads in the local coordinate system.
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Accelerations. Ax, Ay, Az: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy, VLz: at nodes.
Initial Stress/Strains	SSI, SSIE	Not applicable.
	SSIG	Initial stresses/strains at Gauss points. (1) Resultants (for linear analysis and model
		29) Nx, Ny, Nxy, Mx, My, Mxy, εx, εy, γxy,
		 ψx, ψy, ψxy: forces, moments/unit width and membrane/flexural strains in local directions. (2) Components (for all other nonlinear material models) are: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
		0 , 0 , $(\sigma x$, σy , σxy , εx , εy , γxy) - with the bracketed terms repeated for each of the five layers. (See note 7 in the Notes of Use) section.
Residual Stresses	SSR, SSRE	Not applicable.
	SSRG	Residual stresses at Gauss points. (1) Resultants (for model 29) Nx, Ny, Nxy, Mx, My, Mxy: forces, moments/unit width in local directions. (2) Components (for all other nonlinear material models) are:0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
		0 , 0 , $(\sigma x$, σy , $\sigma xy)$ - with the bracketed terms repeated for each of the five layers. (See note 7 in the Notes of Use) section.
Target Stress/Strains	TSSIE, TSSIA	Not applicable.
	TSSIG	Target stresses/strains at Gauss points. (1) Resultants (for linear analysis and model
		29) Nx, Ny, Nxy, Mx, My, Mxy, εx, εy, γxy,
		ψx , ψy , ψxy : forces, moments/unit width and

Temperatures at nodes/for element. T, 0, 0,

dT/dz, To, 0, 0, dTo/dz

Temperatures TEMP,

TMPE

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress resultant: Nx, Ny, Nxy, Mx, My, Mxy: forces,

moments/unit width in local directions.

Stress (default): σx , σy , σxy , σmax , σmin , β , σe : in local

directions (see Notes).

Strain: εx , εy , γxy , ψx , ψy , ψxy : membrane, flexural strains in

local directions.

Modeller See **Results Tables** (Appendix K).

Local Axes

- Local y axis The local element y-axis at a point coincides with a curvilinear line ξ = constant in the natural coordinate system which lies in the shell midsurface.
- Local x axis The local x-axis at a point is perpendicular to the local y-axis in the positive η direction and is tangential to the shell mid-surface.
- Local z axis The local z-axis forms a right-hand set with the x and y axes and the direction is given by the ordering of the element nodes according to a right-hand screw rule. The local z-axis +ve direction defines the element top surface.

QSL8

Sign Convention

☐ Thin shell element (see*Notes*).

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, rotations up to 1 radian and small

strains.

Updated For large displacements, rotation increments up to 1 radian and

Lagrangian small strains.

Eulerian Not applicable.

Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 3-point (TSL6), 5-point (QSL8).

Fine (see 3x3 (QSL8)

Options).

Coarse (see 2x2 (QSL8)

Options).

Mass Default. 3-point (TSL6), 5-point (QSL8).

Fine (see 3x3 (QSL8)

Options).

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

- 18 Invokes fine integration rule.
- 19 Invokes coarse integration rule.
- 32 Suppresses stress output but not resultants.
- 34 Outputs element stress resultants.
- 54 Updated Lagrangian geometric nonlinearity.
- 55 Outputs strains as well as stresses
- 59 Outputs local direction cosines at nodes and Gauss points.
- **87** Total Lagrangian geometric nonlinearity.
- 102 Switch off load correction stiffness due to centripetal acceleration.
- 105 Lumped mass matrix.
- 138 Output yield flags only.
- 139 Output yielded Gauss points only.
- **169** Suppress extrapolation of stresses to nodes.
- 170 Suppress transfer of shape function arrays to disk.

Notes on Use

- 1. The element formulations are based on a **Kirchhoff** hypothesis for thin shells.
- 2. The variation of stresses within the elements may be regarded as linear.
- 3. The loof rotations refer to rotations about the element edge at the loof points. The positive direction of a loof rotation is defined by a right-hand screw rule applied to a vector running in the direction of the lower to higher numbered corner nodes. It should be noted that this direction is enforced on a global level which means that the loof rotations along the adjoining edge of several elements will be consistent in terms of direction and ordering. The ordering is such that loof point 1 is located between the lower numbered node and the appropriate mid-side node. Similarly loof point 2 lies between the mid-side node and the higher numbered node along an element edge. The loof rotations are actually specified at the element mid-side nodes.
- 4. The elements pass the <u>patch test</u> for convergence for mixed triangular and quadrilateral element geometry.
- 5. Stress output to the LUSAS output file is on 4 lines:
 - Stresses due to membrane action.
 - Top surface stresses due to bending action.
 - Top surface stresses due to membrane and bending action.
 - Bottom surface stresses due to membrane and bending action.

- 6. Stresses will not be output when using RIGIDITIES or material model 29. Averaged stresses will not be processed when using RIGIDITIES.
- 7. The through-thickness integration is performed explicitly for linear analyses and a 5-point <u>Newton-Cotes</u> rule is utilised for materially nonlinear analyses with continuum material models. The through-thickness integration rules are as follows:

Linear models: 3-layers.

Nonlinear models: 5-layers.

Composite model: Variable.

- 8. The quadrature points of the 3-point rule are non-standard.
- 9. The coarse 2*2 quadrature rule provides the most effective element if the mesh is highly constrained. However, the element possesses two mechanisms, the usual in-plane hourglass mechanism encountered when reduced integration is utilised with 8-noded elements and an out of plane mechanism. The in-plane mechanism is rarely activated but the out-of-plane mechanism may be more troublesome, particularly where elements are regular and have one zero principal curvature, e.g. a cylinder subject to internal pressure. Provided the mechanisms are not activated the element with 2*2 provides the best results.
- 10. The 5-point quadrature rule provides an element with a performance below that of the element with 2*2 quadrature, but considerably better than the element with 3*3 quadrature. However, the element possesses a 'near' mechanism which may be activated for lightly constrained meshes, particularly if out of plane loads are present.
- 11. The middle integration point of the 5 point rule is only implemented as a method of reducing the excitation of spurious modes (or mechanisms) which are present with the 2*2 integration rule. The 5th integration point is actually weighted with an arbitrarily small value which has the effect of stabilising the results. For these reasons, values from the middle integration point are not taken into account for the nodal extrapolation.
- 12. The 3*3 quadrature rule provides an element that has no mechanisms but tends to provide over-stiff solutions. Therefore, a finer discretisation is required than if the 5-point quadrature rule is used.

Restrictions

Avoid excessive aspect ratio
Avoid excessive element curvature
Ensure mid-side node centrality

Recommendations on Use

- These elements may be utilised for analysing flat and curved 3D shell structures
 where the transverse shear effects do not influence the solution. The
 configuration of the nodal freedoms provides an element suitable for modelling
 intersecting shells, e.g. tubular joints and also for use with solid elements
 (HX20).
- The elements may be combined with the Semiloof beam (BSL3,BSL4,BXL4) for analysing ribbed plates and shells.

3D Thick Shell Elements

General

Element Group
Element
Subgroup
Element
Description

Shells Thick Shells

A family of shell elements for the analysis of arbitrarily thick and thin curved shell geometries, including multiple branched junctions. The quadratic elements can accommodate generally curved geometry while all elements account for varying thickness. Anisotropic and composite material properties can be defined. These degenerate continuum elements are also capable of modelling warped configurations. The element formulation takes account of membrane, shear and flexural deformations. The quadrilateral elements use an assumed strain field to define transverse shear which ensures that the element does not lock when it is thin (see *Notes*).

to axes defined by the orientation of the normal at a node, see **Thick**

Number Of Nodes 3, 4, 6 or 8 numbered anticlockwise.

Freedoms Default: 5 degrees of freedom are associated with each node U, V, W, $\theta\alpha$, $\theta\beta$. To avoid singularities, the rotations $\theta\alpha$ and $\theta\beta$ relate

Shell Nodal Rotation. These rotations may be transformed to relate to the global axes in some instances (see Notes). Degrees of freedom relating to global axes: U, V, W, θx , θy , θz may be enforced using the Nodal Freedom data input, or for all shell nodes

by using option 278 (see *Notes*).

Node **Coordinates** Nodal 5 or 6.

Freedoms

X, Y, Z: at each node.

Geometric Properties

ez, t1... tn Eccentricity and thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

> Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

> > THICK (Elastic: Orthotropic Thick)

MATERIAL PROPERTIES ORTHOTROPIC

SOLID (Elastic: Orthotropic Thick)

Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 5

(Elastic: Anisotropic Thick Plate)

Rigidities. Not applicable.

Matrix Not applicable **Joint** Not applicable

MATERIAL PROPERTIES NONLINEAR 109 Concrete

(Elastic: Isotropic, Plastic: Smoothed Multi-

Crack Concrete)

Elasto-Plastic Stress Not applicable.

resultant:

Tresca: MATERIAL PROPERTIES NONLINEAR 61

> (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)

Drucker-MATERIAL PROPERTIES NONLINEAR 64 Prager: (Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr-MATERIAL PROPERTIES NONLINEAR 65 Coulomb:

(Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Volumetric Not applicable.

Crushing:

Stress STRESS POTENTIAL VON MISES, HILL, Potential HOFFMAN

(Isotropic: von Mises, Modified von Mises

Orthotropic: Hill, Hoffman)

Creep

CREEP PROPERTIES (Creep)

AASHTO MATERIAL PROPERTIES NONLINEAR 86

AASHTO

(Concrete creep model to AASHTO Code of

Practice)

CEB-FIP

MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP

(Concrete creep model to CEB-FIP Model

Code 1990)

Chinese

MATERIAL PROPERTIES NONLINEAR 86

CHINESE

(Chinese creep model to Chinese Code of

Practice)

Eurocode

MATERIAL PROPERTIES NONLINEAR 86

EUROCODE

(Concrete creep model to EUROCODE_2)

IRC

MATERIAL PROPERTIES NONLINEAR 86

IRC

(Concrete creep model to Indian IRC Code of

Practice)

Damage

DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic Shrinkage

Viscoelastic Not applicable

SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Rubber Not applicable

Generic Polymer Not applicable

Composite Composite shell:

Loads

COMPOSITE PROPERTIES

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. 5 degrees of freedom: U,

 $V, W, \theta\alpha, \theta\beta$ or 6 degrees of freedom: U, V, θ

 $W, \theta x, \theta y, \theta z$

Concentrated CL Concentrated loads. 5 degrees of freedom: Px,

Py, Pz, M α , M β , where M α and M β relate

to axes defined by $\theta\alpha$ and $\theta\beta$ respectively. 6

degrees	s of freed	lom: Pa	к, Ру,	Pz, M	1x, M	ly, N	Λz.

Element Loads Not

applicable.

Distributed Loads UDL

Uniformly distributed loads. Wx, Wy, Wz: mid-surface local pressures for element (see

Notes).

FLD, FLDG Not applicable.

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

Zcbf, Ωx , Ωy , Ωz , αx , αy , αz (see Notes).

BFP, BFPE Body force potentials at nodes/for element. O1,

> φ_2 , φ_3 , 0, Xcbf, Ycbf, Zcbf, where φ_1 , φ_2 , φ_3 are the face loads in the local coordinate

Viscous support loads. VLx, VLy, VLz: at

system (see Notes).

Velocities VELO Velocities. Vx, Vy, Vz: at nodes. **Accelerations** ACCE Accelerations. Ax, Ay, Az: at nodes.

Viscous Support VSL Loads

nodes.

Initial SSI, SSIE Initial stresses/strains at nodes/for element (see

Stress/Strains Notes).

> SSIG Initial stresses/strains at Gauss points.

> > Stress/strain components relating to local axes at Gauss points: σx , σy , σxy , σyz , σxz , εx , Ey, γxy , γyz , γxz . All of these 10 terms are repeated for each fibre integration point

through the thickness (see *Notes*).

Residual Stresses SSR, SSRE Not applicable.

> **SSRG** Residual stresses at Gauss points. Stress

> > components relating to local axes at Gauss points: σx , σy , σxy , σyz , σxz all of these 5

> > terms are repeated for each fibre integration

point through the thickness (see *Notes*).

Target TSSIE, Target stresses/strains at nodes/for element (see Stress/Strains TSSIA Notes).

TSSIG Target stresses/strains at Gauss points.

> Stress/strain components relating to local axes at Gauss points: σx , σy , σxy , σyz , σxz , εx , Ey, γxy , γyz , γxz . All of these 10 terms are

repeated for each fibre integration point through the thickness (see *Notes*).

Temperatures at nodes/for element. T, 0, 0, **Temperatures** TEMP, TMPE

dT/dz, To, 0, 0, dTo/dz (see Notes).

Overburden Applicable. **Phreatic Surface** Applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress resultant: Nx, Ny, Nxy, Mx, My, Mxy, Sx, Sy: forces,

moments/unit width in local directions.

Stress (default): σx , σy , σxy , σyz σxz , σe : in local directions

(see Notes).

Strain: Ex, Ey, Yxy, Yyz, Yxz, Ee: in local directions (see *Notes*).

Modeller See **Results Tables (Appendix K)**.

Local Axes

The local element x-axis at a point coincides with a curvilinear line $\eta=$ constant in the natural coordinate system which lies in the shell mid-surface. The local z-axis at a point is obtained from the cross product of a curvilinear line $\xi=$ constant in the natural coordinate system and the local x-axis. The local y-axis forms a right-hand set with the x and z axes and the direction is given by the ordering of the element nodes according to a right-hand screw rule. The local z-axis +ve direction defines the element top surface.

TTS6

QTS8

Sign Convention

☐ Thick shell element (see*Notes*).

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, large rotations and small strains.

Updated Not applicable.

Lagrangian

Eulerian Not applicable. **Co-rotational** Not applicable.

Integration Schemes

Stiffness Default. 1-point (TTS3), 3-point (TTS6), 2x2 (QTS4,

QTS8).

Fine (see *Options*). 3-point (TTS3), 5-point (QTS8)

Mass Default. 1-point (TTS3), 3-point (TTS6), 2x2 (QTS4,

QTS8).

Fine (see *Options*). 3-point (TTS3), 5 point (QTS8)

Mass Modelling

☐ Consistent mass (default).

☐ Lumped mass.

Options

- **18** Invokes fine integration rule.
- 32 Suppresses stress output but not resultants.
- **34** Outputs element stress resultants.
- 55 Outputs strains as well as stresses.
- **59** Outputs local direction cosines at nodes and Gauss points.
- 77 Outputs principal stresses.
- **87** Total Lagrangian geometric nonlinearity.
- **102** Switch off load correction stiffness due to centripetal acceleration.
- **105** Lumped mass matrix.
- 110 Use assumed shear strain field for TTS6 and QTS8 thick shell elements.
- 139 Output yielded Gauss points only.
- **169** Suppress extrapolation of stresses to nodes.
- 171 Switch off assumed strain field for QTS4 elements.
- **278** Six degrees of freedom.
- 396 Invokes the improved transverse shear calculation ('on' by default for models created by version 14.4 and above, and 'off' for models created by

- previous versions).
- **417** Introduce residual bending flexibility correction for 3-node thick shell TTS3.
- 422 Use assumed transverse shear strain field for TTS3 thick shell element.

Notes on Use

- For TTS3 elements all moments and shears are constant for the element. For QTS4 the variations of moments, out of plane shears and in-plane loads is nearconstant and the variation of in-plane shear is near-linear. For TTS6 and QTS8 elements the variation of moments and in-plane shear is near-linear while the variation of out of plane shears is near constant.
- 2. Shear locking is much more of an issue for lower order elements, and hence an assumed shear strain field is always switched on for TTS3/QTS4 elements; if it were switched off, these elements would always lock and perform very badly. Higher order elements are less prone to shear locking, and the situation is not quite so clear cut. It has been found that using an assumed shear strain field with QTS8 elements when transverse shear strain dominates can lead to poor results. The view has therefore been taken that the assumed shear strain field should be switched off by default for the higher order TTS6/QTS8 elements.
- 3. The QTS8 element fails the shear <u>patch test</u> when the assumed strain field is utilised with 2*2 or 5 point integration rule. When carrying out analyses involving these elements that are dominated by transverse shear effects, e.g. a shear wall, it is recommended, as discussed above, that the assumed strain field is disabled. This is the default setting for QTS8 elements. Option 110 may be used to invoke the assumed strain interpolation but this is not recommended for general use.
- 4. The assumed strain field is invoked automatically for QTS4 elements. The assumed strain field may be revoked for QTS4 by specifying Option 171.
- 5. The introduction of assumed transverse shear strains (Option 422) significantly improves the performance of the TTS3 element. The RBF correction (Option 417) further improves the TTS3 element, especially for very thin shells. For elasto-plastic materials, the correction matrix is computed using the linear material properties
- 6. Continuum stresses (and strains using Option 55) at each fibre integration point are output by default. For linear materials these stresses relate to the top, middle and bottom surfaces of the element. If a nonlinear material is specified then stresses are output at 5 points through the thickness after material yield.
- 7. Option 55 must be specified if nonlinear state variables are to be written to the LUSAS output file.
- 8. The through-thickness integration rules are as follows:

- Linear material models: 3-layers.
- Nonlinear material models: 5-layers.
- Composite model: variable.
- 7. Initial stresses/strains must be specified at 3 layers for a linear material or 5 layers for a nonlinear material. Residual stresses must be specified for 5 layers. In all instances the stresses/strains are specified sequentially from the bottom surface to the top.
- 8. There are usually 2 rotational degrees of freedom and a common nodal normal associated with each node giving a smooth surface to the shell assembly:

The direction of the axes defining the rotations depends upon the orientation of the normal at a node (see <u>Thick Shell Nodal Rotation</u>). In certain circumstances 3 rotational degrees of freedom relating to global axes will be assigned to a node. This is done automatically:

- When connecting with beam elements, joint elements or other types of shells, eg.QSI4.
- When a Concentrated Load is applied in LUSAS Modeller.
- When a Support is applied in LUSAS Modeller.
- When the angle between adjacent shell normals exceeds the SYSTEM parameter SHLANG (see below).
- When option 278 is specified.

If Option 278 is specified then all nodes for these shell element types will be assigned six global degrees of freedom. To overcome the problems associated with in-plane drilling rotations an artificial stiffness is automatically included for the rotation about the shell normal. The use of Option 278 is not recommended for analyses that involve large displacements or rotations. LUSAS Modeller will automatically specify Option 278 but it can be switched off in Modeller via File > Model Properties > Solution > Element options.

Option 278 should be switched **off** if QTS4 elements are to be used to model thick curved shells in which membrane action leads to a significant difference between the in-plane strains in the top and bottom surface of the shell. If Option 278 is not disabled under these circumstances the moments associated with this in-plane strain differential are not accurately accounted for. An alternative approach would be to switch to QTS8 elements as these elements produce more accurate moments under these conditions.

When the maximum angle between adjacent normals at a node is greater than 20 degrees, e.g., branched shell structures. (20 degrees is a default value which may be changed using the SYSTEM parameter SHLANG); if the nodal freedom command has **not** been specified for that node.

- 9. A system variable (STFINP) is used to alter the artificial stiffness for in-plane rotations. This system parameter can only be used in conjunction with Option 278.
- 10. The desired number of rotational degrees of freedom for a node may be enforced through the NODAL FREEDOMS data input. Care must be taken if 6 degrees of freedom are specified in this manner as a singularity may occur if appropriate in-plane rotations are not restrained. This facility is provided together with the TRANSFORMED FREEDOMS data chapter to allow more flexibility in the specification of boundary conditions. In these circumstances, the in-plane rotation about the normal of the shell must usually be restrained to avoid singularities. In general, wherever possible, 5 degrees of freedom should be used when the shell surface is smooth.
- 11. The TTS3 and QTS8 elements possess one out of plane mechanism when using the default integration rules. The 3 noded element is most effective using the one point rule.
- 12. The through-thickness integration is performed by utilising a 3 point <u>Newton-Cotes</u> rule for linear materials and a 5 point rule for nonlinear materials and

- creep. In an analysis involving material nonlinearity, a 3 point rule is used until the material yields and then a 5 point rule is invoked.
- 13. The thick shell formulation assumes constant transverse shear deformation. In the post-processing stage, after the application of the constitutive relationship, this results in a constant transverse shear stress. This result can be improved by taking into account the true parabolic shear stress distribution while preserving the same shear resultant. Thus, when Option 396 is used, the transverse shear stresses for a non-layered shell are set to zero at the top and bottom and to 1.5 times the constant value at the middle. For a layered shell, the distribution of the transverse shear depends on the in-plane stiffness of the layers. The output results are for the middle of the layer, thus the top and bottom layers will not have zero transverse shear.
- 14. The ORTHOTROPIC SOLID material model may be used with either composite or non-composite thick shell elements. Using a Solid rather than a Thick orthotropic material means that a local coordinate may be used to orientate the material.
- 15. If applying an initial stress/strain or thermal load that varies across an element, a higher order element (6 or 8 nodes) should be used. A limitation of the standard isoparametric approach when used for lower order elements (3 or 4 nodes) is that only constant stress/strain fields can be imposed correctly.
- 16. For an element with eccentricity the following load types are applied at the midplane of the element (not the nodal plane): UDL, CBF, BFP, BFPE, SSI, SSIE, SSIG, SSRG, TSSIE, TSSIA, TSSIG, TEMP, TMPE.
- 17. The Smoothed Multi Crack Concrete Model (109) can be used with this element, however, due to the "plane sections remaining plane" hypothesis, crack widths cannot be computed.

Restrictions

Ensure mid-side node centrality
Avoid excessive element curvature
Avoid excessive aspect ratio

Recommendations on Use

These elements may be utilised for analysing flat and curved 3D shell structures
where it is necessary to account for transverse shear. This typically involves
thick shell structures where transverse shear deformation can have a
considerable influence on the response. The degenerate continuum formulation
also allows the low order quadrilateral element (QTS4) to successfully model
warped shell configurations.

- The elements may be used for modelling intersecting shells or branched shell junctions. In this instance the nodal rotation freedoms are transformed to relate to the global axes. For modelling stiffened shell structures, the shells may be connected to beam elements BMI21.
- This family of thick shell elements offers a consistent formulation of the tangent stiffness which makes them particularly effective in geometrically nonlinear applications.
- Be aware that when the shell is defined with eccentricity to a reference surface and this reference surface does not pass through the centroid of the cross section, membrane forces or displacements prescribed/calculated at the nodes will cause bending.

Chapter 7: Membrane Elements

2D Axisymmetric Membrane Elements

General

Element Group

Membranes

Element Subgroup

Axisymmetric Membranes

Element Description

Straight and curved axisymmetric membrane elements which can accommodate varying thickness. The formulations apply over a unit radian segment of the structure. The loading and boundary

conditions are axisymmetric. The elements are numerically integrated. The default axis of symmetry is the Y-axis.

Number Of 2 or 3. **Nodes**

Freedoms U. V: at each node.

Node X. Y: at each node. Coordinates

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic:

Isotropic)

Matrix Not applicable Joint Not applicable Concrete Not applicable

Elasto-Plastic Tresca: MATERIAL PROPERTIES NONLINEAR 61

(Elastic: Isotropic, Plastic: Tresca,

Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total

Strain)

MATERIAL PROPERTIES NONLINEAR 64 Drucker-Prager:

(Elastic: Isotropic, Plastic: Drucker-Prager,

Hardening: Granular)

Mohr-Coulomb: MATERIAL PROPERTIES NONLINEAR 65

(Elastic: Isotropic, Plastic: Mohr-Coulomb,

Hardening: Granular with Dilation)

Optimised MATERIAL PROPERTIES NONLINEAR 75

Implicit Von (Elastic: Isotropic, Plastic: Von Mises, Mises: Hardening: Isotropic & Kinematic)

Volumetric Crushing: Not applicable.

Stress Potential STRESS POTENTIAL VON MISES

(Isotropic: von Mises, Modified von Mises)

Creep CREEP PROPERTIES (Creep)

Damage DAMAGE PROPERTIES SIMO, OLIVER

(Damage)

Viscoelastic Not applicable

Shrinkage SHRINKAGE CEB_FIP_90, EUROCODE_2,

GENERAL, USER

Rubber Ogden: MATERIAL PROPERTIES RUBBER

OGDEN (Rubber: Ogden) (See Restrictions)

Mooney-Rivlin: MATERIAL PROPERTIES RUBBER

MOONEY_RIVLIN (Rubber: Mooney-

Rivlin) (See Restrictions)

Neo-Hookean: MATERIAL PROPERTIES RUBBER

NEO HOOKEAN (Rubber: Neo-Hookean)

(See Restrictions)

Hencky: Not applicable.

Generic Not applicable

Polymer

Composite Not applicable

Field Not applicable

Loading

Prescribed PDSP, TPDSP Prescribed variable. U, V: at nodes.

Value

Concentrated CL Concentrated loads. Px, Py: at nodes.

Loads

Element Loads Not applicable.

Distributed UDL Not applicable.

Loads

FLD Face Loads. Px, Py: local face pressure at

no	A	00
11(1	"	-

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

 Ωx , Ωy , Ωz , αz

BFP, BFPE Body force potentials at nodes/for element. 0,

0, 0, 0, Xcbf, Ycbf

VelocitiesVELOVelocitiesVx, Vy: at nodesAccelerationsACCEAccelerationsAx, Ay: at nodes

Viscous Support VSL Viscous support loads. VLx, VLy: at nodes.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element.

Stress/Strains $\sigma_{x}, \sigma_{\theta}$: axial, circumferential stress.

εx, εθ: axial, circumferential strain.

SSIG Initial stresses/strains at Gauss points.

 σx , $\sigma \theta$: axial, circumferential stress.

Ex, εθ: axial, circumferential strain.

Residual SSR, SSRE Not applicable.

Stresses

SSRG Residual stresses at Gauss points. σx , $\sigma \theta$:

axial, circumferential stress.

Target TSSIE, TSSIA

Stress/Strains

Target stresses/strains at nodes/for element.

 σx , $\sigma \theta$: axial, circumferential stress.

Ex, E0: axial, circumferential strain.

TSSIG Target stresses/strains at Gauss points.

 σx , $\sigma \theta$: axial, circumferential stress.

Ex, E0: axial, circumferential strain.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

To, 0, 0, 0

Overburden Not applicable.

Phreatic Surface Not applicable.

Field Loads Not applicable.

Temp Not applicable.

Dependent Loads

LUSAS Output

Solver

Stress (default): σx , $\sigma \theta$: axial, circumferential stress.

Strain: Ex, E0: axial, circumferential strain.

Modeller See Results Tables (Appendix K).

Local Axes

☐ Standard line element

Sign Convention

☐ Standard membrane element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and small strains.

Updated Not applicable.

Lagrangian

Eulerian Not applicable. **Co-rotational** Not applicable.

Integration Schemes

Stiffness Default. 1-point (BXM2), 2-point (BXM3).

Fine (see 2-point (BXM2).

Options).

Mass Default. 1-point (BXM2), 2-point (BXM3).

Fine (see 2-point (BXM2).

Options).

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

- 18 Invokes fine integration rule.
- **36** Follower loads (see *Notes*).
- 47 Use the X-axis as the axis of symmetry.
- 55 Output strains as well as stresses.
- **87** Total Lagrangian geometric nonlinearity.
- 105 Lumped mass matrix.

170 Suppress transfer of shape function arrays to disk

Notes on Use

- 1. The element formulation is based on the standard **isoparametric** approach.
- The variation of stress along the element is constant for BXM2 and linear for BXM3.
- 3. To apply a non-conservative (follower) pressure load (load type FLD), Option 36 must be specified. Note that this load should be normal to the face and constant for all the nodes of the element. Follower load can only be used with BXM2 elements.
- The elements should not be used as 'stand-alone' elements if any bending effects are present. The thin axisymmetric shell element BXS3 should be used for this case.
- 5. The BXM3 element has a zero energy mode which may be excited if the midside node is free and not connected to any other element.
- 6. When BXM2 elements are used with either variable nodal thicknesses, temperature dependent material properties or utilised in materially nonlinear analyses the 2-point Gauss rule is most effective.

Restrictions

Ensure mid-side node centrality
Avoid excessive element curvature
Rubber material models can only be used with element BXM2 and must be
used with Total Lagrangian geometric nonlinearity (Option 87).

Recommendations on Use

The elements may be used alone to model circular plates or pipes, or coupled with axisymmetric solid elements to provide stiffeners, e.g. radial reinforcement.

3D Space Membrane Elements

General

Element Group

Element Subgroup

Element Description Membranes

Space Membranes

A family of space membrane elements in 3D which include a high performance incompatible model (SMI4 only). The elements are intended for 3D membrane structures (they possess no bending stiffness). The elements are formulated in the local element axes which allows directional material properties to be defined relative to the element orientation. The elements can accommodate varying thickness.

Number Of 3 or 4 numbered anticlockwise. **Nodes**

Freedoms U, V, W: at each node. Coordinates

Node X. Y. Z: at each node.

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic:

Isotropic)

Orthotropic: MATERIAL PROPERTIES

ORTHOTROPIC (Elastic: Orthotropic

Plane Stress)

MATERIAL PROPERTIES Anisotropic:

ANISOTROPIC 3 (Elastic: Anisotropic

Thin Plate)

Rigidities: RIGIDITIES 3 (Rigidities: Membrane/Thin

Plate)

Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable

Shrinkage SHRINKAGE CEB_FIP_90,

EUROCODE_2, GENERAL, USER

Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value PDSP, Prescribed variable. U, V, W: at nodes.

TPDSP

Concentrated CL Concentrated loads. Px, Py, Pz: at nodes.

Loads

Element Loads Not

applicable.

Distributed Loads UDL Uniformly distributed loads. Wx, Wy, Wz:

local surface pressures for element.

FLD, FLDG Not applicable.

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

Zcbf, Ωx , Ωy , Ωz , αx , αy , αz

BFP, BFPE Body force potentials at nodes/for element. Φ1,

 Φ_2 , Φ_3

VelocitiesVELOVelocities. Vx, Vy, Vz: at nodes.AccelerationsACCEAccelerations. Ax, Ay, Az: at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy, VLz: at

Loads nodes.

Initial SSI, SSIE Initial stresses/strains at nodes/for element. Nx,

Stress/Strains Ny, Nxy: forces in local directions. Ex, Ey,

 γxy : membrane strains in local directions.

SSIG Initial stresses/strains at Gauss points. Nx, Ny,

Nxy: forces in local directions. εx , εy , γxy :

membrane strains in local directions.

Residual Stresses Not

applicable.

Target TSSIE, Target stresses/strains at nodes/for element. Nx,

Stress/Strains TSSIA Ny, Nxy: forces in local directions. Ex, Ey,

γxy: membrane strains in local directions.

TSSIG Target stresses/strains at Gauss points. Nx, Ny,

Nxy: forces in local directions. εx, εy, γxy:

membrane strains in local directions.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

To, 0, 0, 0

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

Output

Solver

Stress resultant: Nx, Ny, Nxy, Nmax, Nmin, β: forces/unit length in local directions.

Stress (default): σx , σy , σxy , σmax , σmin , β : membrane stresses in local directions.

Strain: εx , εy , γxy , εmax , εmin , β : membrane strains in local directions.

Modeller See Results Tables (Appendix K).

Local Axes

☐ Standard area element

Sign Convention

☐ Standard membrane element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point (TSM3), 2x2 (SMI4).

Fine. As default.

Mass Default. 1-point (TSM3), 2x2 (SMI4).

Fine. As default.

Mass Modelling

Lumped mass only.

Options

32 Suppress stress output but not stress resultants.

- 34 Output stress resultants.
- 55 Output strains as well as stresses.
- **59** Output local direction cosines for elements.
- 77 Output averaged global stresses.

Notes on Use

- 1. The element formulations are based on the standard
- The variation of stresses within an element may be regarded as constant for TSM3 and linear for SMI4.
- 3. The higher performance of SMI4 is due to the addition of 4 incompatible displacement modes.
- 4. The elements pass the <u>patch test</u> for mixed triangular and quadrilateral geometry.
- 5. Distributed loads are lumped at the nodes.
- 6. The element is formulated so that the material response is evaluated in the local Cartesian system.
- The SMI4 element is generally the most effective element due to its quadratic displacement accuracy. However, its behaviour tends to deteriorate as the element becomes distorted.
- 8. The element matrices are formed using 1-point Gauss quadrature for TSM3. Selective integration is utilised for the evaluation of the element matrices for SMI4. The method used is similar to that proposed by Hughes, with the contribution of the incompatible modes to the strain-displacement matrix being evaluated at the 1-point Gauss rule sampling location and then extrapolated to the 2*2 Gauss rule sampling locations. The element matrices are then formed using the 2*2 Gauss rule.

Restrictions

Avoid	excessive	aspect ratio
Avoid	excessive	warping.

Recommendations on Use

- The space membrane elements have limited 'stand-alone' use because of their inability to support any loading except membrane loading. However, they can be utilised with the flat shell elements (QSI4, TS3) to model very thin membranes in structural components.
- If a structure is composed of exactly co-planar flat space membrane elements that are not stiffened by plate or shell elements, singularities may arise since there is no out-of-plane stiffness.
- If there is a possibility of bending behaviour then a thin shell should be utilised for the analysis.

Element Reference Manual		

Chapter 8 : Joint Elements

2D Joint Element for Bars, Plane Stress and Plane Strain

General

Element Group

Joints

Element Subgroup 2D Joints

Element Description

A 2D joint element which connects two nodes by two springs in the local x and y-directions.

Description
Number Of

3. The 3rd node is used to define the local x-direction.

Nodes Freedoms

U, V: at nodes 1 and 2 (active nodes).

Node Coordinates X, Y: at each node.

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable

Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 4

K1,..., K10 element stiffness matrix (Not

supported in LUSAS Modeller)

Mass: MATRIX PROPERTIES MASS 4 M1,...,

M10 element mass matrix (Not supported

in LUSAS Modeller)

Damping: MATRIX PROPERTIES DAMPING 4

C1,..., C10 element damping matrix (Not

supported in LUSAS Modeller)

Joint Standard: JOINT PROPERTIES 2 (Joint: 2/Spring

Stiffness Only)

Dynamic general: JOINT PROPERTIES GENERAL 2 (Joint:

2/General Properties)

Elasto-plastic: JOINT PROPERTIES NONLINEAR 31 2

(Joint: 2/Elasto-Plastic (Tension and

Compression Equal))

Elasto-plastic: JOINT PROPERTIES NONLINEAR 32 2

(Joint: 2/Tension and Compression

Unequal)

Nonlinear JOINT PROPERTIES NONLINEAR 33 2

contact: (Joint: 2/Smooth Contact)

Nonlinear JOINT PROPERTIES NONLINEAR 44 2

friction: (Joint: 2/Frictional Contact)

Viscous damping: JOINT PROPERTIES NONLINEAR 35 2

(Joint: 2/Viscous Damper)

Lead-rubber: JOINT PROPERTIES NONLINEAR 36 2

(Joint: 2/Lead Rubber Bearing)

Friction JOINT PROPERTIES NONLINEAR 37 2
pendulum: (Joint: 2/Frictional Pendulum System)
Multi-linear JOINT PROPERTIES NONLINEAR 40 2

elastic (Joint: 2/Multi-Linear Elastic)

Multi-linear JOINT PROPERTIES NONLINEAR 41 2

hysteresis (Joint: 2/Multi-Linear Hysteresis)

Multi-linear JOINT PROPERTIES NONLINEAR 42 2

compound (Joint: 2/Multi-Linear Compound

hysteresis Hysteresis)

Axial force JOINT PROPERTIES NONLINEAR 43 2

dependent multi- (Joint: 2/Axial Force Dependent Multi-

linear elastic Linear Elastic)

Concrete Not applicable

Elasto-Plastic Not applicable

Creep Not applicable

Damage Not applicable

Viscoelastic Not applicable

Shrinkage Not applicable

Rubber Not applicable

Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value PDSP, Prescribed variable. U, V: at active nodes.

TPDSP

Concentrated CL Concentrated loads. Px, Py: at active nodes.

Loads

Element Loads Not

applicable.

Distributed Loads Not

applicable.

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

 Ωx , Ωy , Ωz , αz

BFP, BFPE Not applicable.

VelocitiesVELOVelocitiesVx, Vy: at nodesAccelerationsACCEAccelerationsAx, Ay: at nodes

Viscous Support VSL Viscous support loads. VLx, VLy: at nodes.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element. Fx,

Stress/Strains Fy: at active nodes. Ex, Ey: at active nodes.

SSIG Not applicable.

Residual Stresses Not

applicable.

Target TSSIE, Target stresses/strains at nodes/for element. Fx, Stress/Strains TSSIA Fy: at active nodes. Ex, Ey: at active nodes.

TSSIG Not applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T₁, T₂, T₁₀,

T20: actual and initial spring temperatures.

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Force: Fx, Fy: spring forces in local directions.

Strain: Ex, Ey: spring strains in local directions.

Modeller See **Results Tables** (Appendix K).

Local Axes

☐ Standard joint element

Sign Convention

☐ Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point.

Fine. As default. Default. 1-point.

Fine. As default.

Mass Modelling

Mass

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

- 55 Output strains as well as stresses.
- 119 Invokes temperature input for joints.

Notes on Use

See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

2D Joint Element for Engineering and Kirchhoff Beams

General

Element Group
Element

Joints
2D Joints

Subgroup

2D Joints

Element Description

A 2D joint element which connects two nodes by two springs in the local x and y-direction and one spring about the local z-direction.

Number Of Nodes 3. The 3rd node is used to define the local x-direction.

Freedoms

U, V, θ z: at nodes 1 and 2 (active nodes).

Coordinates

X, Y: at each node.

Geometric Properties

ey Eccentricity measured from the joint x axis to the nodal line (i.e. parallel to the joint y axis).

dy Parametric distance factor (between 0.0 and 1.0), which defines the position of the shear spring for the local y direction between nodes 1 and 2. It is measured from node 1 (dy=0) along the local x direction

Material Properties

Linear Not

applicable

Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 6 K1,...,

K21 element stiffness matrix (Not supported

in LUSAS Modeller)

Mass: MATRIX PROPERTIES MASS 6 M1,..., M21

element mass matrix (Not supported in

LUSAS Modeller)

Damping: MATRIX PROPERTIES DAMPING 6 C1,...,

C21 element damping matrix (Not supported

in LUSAS Modeller)

Joint Standard: JOINT PROPERTIES 3 (Joint: 3/Spring

Stiffness Only)

Dynamic JOINT PROPERTIES GENERAL 3 (Joint:

general: 3/General Properties)

Elasto-plastic: JOINT PROPERTIES NONLINEAR 31 3

(Joint: 3/Elasto-Plastic (Tension and

Compression Equal))

Elasto-plastic: JOINT PROPERTIES NONLINEAR 32 3

(Joint: 3/Tension and Compression Unequal)

Nonlinear JOINT PROPERTIES NONLINEAR 33 3

contact: (Joint: 3/Smooth Contact)

JOINT PROPERTIES NONLINEAR 44 3

friction: (Joint: 3/Frictional Contact)

Viscous JOINT PROPERTIES NONLINEAR 35 3

damping: (Joint: 3/Viscous Damper)

Lead-rubber: JOINT PROPERTIES NONLINEAR 36 3

(Joint: 3/Lead Rubber Bearing)

Friction JOINT PROPERTIES NONLINEAR 37 3 pendulum: (Joint: 3/Frictional Pendulum System)
Multi-linear JOINT PROPERTIES NONLINEAR 40 3

elastic (Joint: 3/Multi-Linear Elastic)

Multi-linear JOINT PROPERTIES NONLINEAR 41 3

hysteresis (Joint: 3/Multi-Linear Hysteresis)

Multi-linear JOINT PROPERTIES NONLINEAR 42 3 (Joint: 3/Multi-Linear Compound Hysteresis)

hysteresis

multi-linear

Nonlinear

Axial force JOINT PROPERTIES NONLINEAR 43 3 (Joint: 3/Axial Force Dependent Multi-Linear

Elastic)

elastic

Joint Standard: JOINT PROPERTIES 3 (Joint: 3/Spring

Stiffness Only)

Dynamic JOINT PROPERTIES GENERAL 3 (Joint:

general: 3/General Properties)

Concrete Not

applicable

Elasto-Plastic Not

applicable

Creep Not

applicable

Damage Not

applicable

Viscoelastic Not

applicable

Shrinkage Not

applicable

Rubber Not

applicable

Generic Polymer Not

applicable

Composite Not

applicable

Loading

Prescribed Value PDSP, Prescribed variable. U, V, θ z: at active nodes.

TPDSP

Concentrated CL Concentrated loads. Px, Py, Mz: at active

> Loads nodes.

Element Loads Not

applicable

Distributed Loads Not

applicable

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

 $\Omega_{\rm X}$, $\Omega_{\rm V}$, $\Omega_{\rm Z}$, $\alpha_{\rm Z}$

BFP, BFPE Not applicable.

Velocities VELO Velocities. Vx, Vy: at nodes. **Accelerations** ACCE Accelerations. Ax, Ay: at nodes.

Viscous support loads. VLx, VLy: at nodes. Viscous Support VSL

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element.

Stress/Strains Resultants. Fx, Fy, Mz: spring forces and

moment in local directions. Ex, Ey, \UZ:

strains at nodes.

SSIG Not applicable.

Residual Stresses Not

applicable

Target TSSIE, Target stresses/strains at nodes/for element. Stress/Strains TSSIA Resultants. Fx, Fy, Mz: spring forces and

moment in local directions. Ex, Ey, Wz:

strains at nodes.

TSSIG Not applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T₁, T₂, T₃,

T10, T20, T30: actual and initial spring

temperatures.

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable

Temp Dependent Not

Loads applicable

LUSAS Output

Solver Force: Fx, Fy, Mz: spring forces and moment in local directions.

Strain: εx , εy , ψz : spring strains in local directions.

Modeller See Results Tables (Appendix K).

Local Axes

☐ Standard joint element

Sign Convention

☐ Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point.

Fine. As default.

Mass Default. 1-point.

Fine. As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

- 55 Output strains as well as stresses.
- 119 Invokes temperature input for joints.

Notes on Use

See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

2D Joint Element for Grillage Beams and Plates

General

Element Group Joints
Element 2D Joints
Subgroup

Element
Description
Number Of
Nodes

A 2D joint element which connects two nodes by one spring in the local z-direction and two springs about the x and y directions.

3. The 3rd node is used to define the local x-direction.

Freedoms W, θx , θy : at nodes 1 and 2 (active nodes).

Node X, Y: at each node. **Coordinates**

Geometric Properties

dz Parametric distance factor (between 0.0 and 1.0), which defines the position of the shear spring for the local z direction between nodes 1 and 2. It is measured from node 1 (dz=0) along the local x direction.

Material Properties

Linear Not applicable

Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 6

K1,..., K21 element stiffness matrix (Not

supported in LUSAS Modeller)

Mass: MATRIX PROPERTIES MASS 6 M1,....

M21 element mass matrix (Not supported

in LUSAS Modeller)

Damping: MATRIX PROPERTIES DAMPING 6

C1,..., C21 element damping matrix (Not

supported in LUSAS Modeller)

Joint Standard: JOINT PROPERTIES 3 (Joint: 3/Spring

Stiffness Only)

JOINT PROPERTIES GENERAL 3 (Joint: Dynamic general:

3/General Properties)

Elasto-plastic: **JOINT PROPERTIES NONLINEAR 31 3**

(Joint: 3/Elasto-Plastic (Tension and

Compression Equal))

JOINT PROPERTIES NONLINEAR 32 3 Elasto-plastic:

(Joint: 3/Tension and Compression

Unequal)

Nonlinear contact: **JOINT PROPERTIES NONLINEAR 33 3**

(Joint: 3/Smooth Contact)

Nonlinear Not applicable

friction:

Viscous damping: **JOINT PROPERTIES NONLINEAR 35 3**

(Joint: 3/Viscous Damper)

Lead-rubber: Not applicable Friction Not applicable

pendulum:

Multi-linear **JOINT PROPERTIES NONLINEAR 40 3**

elastic (Joint: 3/Multi-Linear Elastic)

Multi-linear **JOINT PROPERTIES NONLINEAR 41 3**

hysteresis (Joint: 3/Multi-Linear Hysteresis)

Multi-linear **JOINT PROPERTIES NONLINEAR 42 3**

compound (Joint: 3/Multi-Linear Compound

hysteresis Hysteresis)

JOINT PROPERTIES NONLINEAR 43 3 Axial force dependent multi-(Joint: 3/Axial Force Dependent Multi-

linear elastic Linear Elastic)

Concrete Not applicable **Elasto-Plastic** Not applicable

Creep Not applicable **Damage** Not applicable Viscoelastic Not applicable.

Shrinkage Not applicable

Rubber Not applicable Generic Polymer Not applicable Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. ω , θx , θy : at active

nodes.

Concentrated CL Concentrated loads. Pz, Mx, My: at active

Loads nodes.

Element Loads Not applicable

Distributed Loads Not applicable

Body Forces CBF Constant body forces for element. Zcbf

BFP, BFPE Not applicable.

VelocitiesVELOVelocities. Vz: at nodes.AccelerationsACCEAccelerations. Az: at nodes.

Viscous Support VSL Viscous support loads. VLz: at nodes.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element.

Stress/Strains F7 My My at

Fz, Mx, My: at active nodes. εz , ψx , ψy :

at active nodes.

SSIG Not applicable.

Residual Stresses Not applicable

Target TSSIE, TSSIA Target stresses/strains at nodes/for element.

Stress/Strains

Fz, Mx, My: at active nodes. εz , ψx , ψy :

at active nodes.

TSSIG Not applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T₁, T₂,

T₃, T₁₀, T₂₀, T₃₀: actual and initial spring

temperatures.

Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable

Temp Dependent Not applicable

Loads

LUSAS Output

Solver Force: Pz, Mx, My: spring forces in local directions.

Strain: εz , ψx , ψy : spring strains in local directions.

Modeller See **Results Tables** (Appendix K).

Local Axes

☐ Standard joint element

Sign Convention

☐ Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point.

Fine. As default.

Mass Default. 1-point.

Fine. As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

55 Output strains as well as stresses.

119 Invokes temperature input for joints.

Notes on Use

See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See <u>Joint Element Compatibility (Appendix L)</u>

2D Joint Element for Axisymmetric Solids

General

Joints
2D Joints

Element Group Element

Subgroup

Element Description

An axisymmetric joint element for use with axisymmetric solid elements, which connects two nodes by two springs in the local x and y-directions and a 3rd spring in the circumferential direction.

3. The 3rd node is used to define the local x-direction.

Number Of Nodes

Freedoms U, V: at nodes 1 and 2 (active nodes).

Node Coordinates

X, Y: at each node.

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable

Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 6

K1,..., K10 element stiffness matrix (Not

supported in LUSAS Modeller)

Mass: MATRIX PROPERTIES MASS 6 M1,...,

M10 element mass matrix (Not supported

in LUSAS Modeller)

Damping: MATRIX PROPERTIES DAMPING 6

C1,..., C10 element damping matrix (Not

supported in LUSAS Modeller)

Joint Standard: JOINT PROPERTIES 2 (Joint: 2/Spring

Stiffness Only) (See notes on use)

Dynamic general: JOINT PROPERTIES GENERAL 2 (Joint:

2/General Properties) (See notes on use)

Elasto-plastic: JOINT PROPERTIES NONLINEAR 31 2

(Joint: 2/Elasto-Plastic (Tension and Compression Equal)) (See notes on use)

Elasto-plastic: JOINT PROPERTIES NONLINEAR 32 2

(Joint: 2/Tension and Compression

Unequal) (See notes on use)

Nonlinear JOINT PROPERTIES NONLINEAR 33 2

contact: (Joint: 2/Smooth Contact) (See notes on

use)

Nonlinear JOINT PROPERTIES NONLINEAR 44 2

friction: (Joint: 2/Frictional Contact) (See notes on

use)

Viscous damping: JOINT PROPERTIES NONLINEAR 35 2

(Joint: 2/Viscous Damper) (See notes on

use)

Lead-rubber: JOINT PROPERTIES NONLINEAR 36 2

(Joint: 2/Lead Rubber Bearing) (See notes

on use)

Friction JOINT PROPERTIES NONLINEAR 37 2

pendulum: (Joint: 2/Frictional Pendulum System)

(See notes on use)

Multi-linear JOINT PROPERTIES NONLINEAR 40 2

elastic (Joint: 2/Multi-Linear Elastic)

Multi-linear JOINT PROPERTIES NONLINEAR 41 2

hysteresis (Joint: 2/Multi-Linear Hysteresis)

Multi-linear JOINT PROPERTIES NONLINEAR 42 2

compound (Joint: 2/Multi-Linear Compound

hysteresis Hysteresis)

Axial force JOINT PROPERTIES NONLINEAR 43 2

dependent multi- (Joint: 2/Axial Force Dependent Multi-

linear elastic Linear Elastic)

Concrete Not applicable

Elasto-Plastic Not applicable

Creep Not applicable

Damage Not applicable **Viscoelastic** Not applicable

Shrinkage Not applicable

Rubber Not applicable

Generic Polymer Not applicable

Composite Not applicable

Loading

Prescribed Value PDSP, Prescribed variable. U, V: at active nodes.

TPDSP

Concentrated CL Concentrated loads. Px, Py: at active nodes.

Loads

Element Loads Not

applicable.

Distributed Loads Not

applicable.

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

 Ωx , Ωy , Ωz , αz

BFP, BFPE Not applicable.

VelocitiesVELOVelocities. Vx, Vy: at nodes.AccelerationsACCEAccelerations. Ax, Ay: at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy: at nodes.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element. Fx,

Stress/Strains Fy: spring forces in local directions. Ex, Ey:

spring strains in local directions.

SSIG Not applicable.

Residual Stresses Not

applicable.

Target TSSIE, Target stresses/strains at nodes/for element. Fx,

Stress/Strains TSSIA Fy: spring forces in local directions. Ex, Ey:

spring strains in local directions.

TSSIG Not applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T₁, T₂, T₁₀,

T20: actual and initial spring temperatures.

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Force: Fx, Fy, Fz: spring forces in local directions.

Strain: Ex, Ey, Ez: spring strains in local directions.

Modeller See Results Tables (Appendix K).

Local Axes

☐ Standard joint element

Sign Convention

☐ Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point.

Fine. As default.

Mass Default. 1-point.

Fine. As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

- 47 X-axis taken as axis of symmetry.
- 55 Output strains as well as stresses.
- 119 Invokes temperature input for joints.

Notes on Use

- This joint has only two degrees of freedom but requires 3 inputs. The 3rd input required is the circumferential stiffness.
- For problems where the circumferential forces are to be transmitted by adjacent elements the circumferential stiffness should be input as zero.
- This element cannot be used with axisymmetric Fourier elements.

See <u>Joint Element Compatibility and Notes (Appendix L)</u>.

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See <u>Joint Element Compatibility (Appendix L)</u>

2D Joint Element for Axisymmetric Shells

General

Joints 2D Joints

Element Group

Element

Subgroup

Element **Description**

An axisymmetric joint element for use with axisymmetric shell elements, which connects two nodes by two springs in the local x and y-directions, one spring about the local z-direction and a 4th

3. The 3rd node is used to define the local x-direction.

spring in the circumferential direction.

Number Of Nodes

Freedoms Node

Coordinates

U, V, θ : at nodes 1 and 2 (active nodes).

X. Y: at each node.

Geometric Properties

dy Parametric distance factor (between 0.0 and 1.0), which defines the position of the shear spring for the local y direction between nodes 1 and 2. It is measured from node 1 (dy=0) along the local x direction.

Material Properties

Linear Not applicable

Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 8 K1.....

K21 element stiffness matrix (Not supported

in LUSAS Modeller)

Mass: MATRIX PROPERTIES MASS 8 M1,..., M21

element mass matrix (Not supported in

LUSAS Modeller)

Damping: MATRIX PROPERTIES DAMPING 8 C1.....

C21 element damping matrix (Not supported

in LUSAS Modeller)

Joint Standard: JOINT PROPERTIES 3 (Joint: 3/Spring

Stiffness Only) (See notes on use)

JOINT PROPERTIES GENERAL 3 (Joint: Dynamic general:

3/General Properties) (See notes on use)

Elasto-plastic: **JOINT PROPERTIES NONLINEAR 31 3**

> (Joint: 3/Elasto-Plastic (Tension and Compression Equal)) (See notes on use)

Elasto-plastic: JOINT PROPERTIES NONLINEAR 32 3

(Joint: 3/Tension and Compression Unequal)

(See notes on use)

Nonlinear **JOINT PROPERTIES NONLINEAR 33 3** contact: (Joint: 3/Smooth Contact) (See notes on use) Nonlinear JOINT PROPERTIES NONLINEAR 44 3 friction: (Joint: 3/Frictional Contact) (See notes on

use)

Viscous **JOINT PROPERTIES NONLINEAR 35 3** damping: (Joint: 3/Viscous Damper) (See notes on use)

Lead-rubber: **JOINT PROPERTIES NONLINEAR 36 3** (Joint:3/Lead Rubber Bearing) (See notes on

use)

Friction **JOINT PROPERTIES NONLINEAR 37 3** pendulum:

(Joint: 3/Frictional Pendulum System) (See

JOINT PROPERTIES NONLINEAR 43 3

notes on use)

Multi-linear **JOINT PROPERTIES NONLINEAR 40 3**

elastic (Joint: 3/Multi-Linear Elastic)

JOINT PROPERTIES NONLINEAR 41 3 Multi-linear

hysteresis (Joint: 3/Multi-Linear Hysteresis)

JOINT PROPERTIES NONLINEAR 42 3 Multi-linear (Joint: 3/Multi-Linear Compound Hysteresis) compound

hysteresis

Axial force

dependent multi-(Joint: 3/Axial Force Dependent Multi-

linear elastic Linear Elastic)

Concrete Not applicable

Elasto-Plastic Not applicable

Creep Not applicable **Damage** Not applicable

Viscoelastic Not applicable **Shrinkage** Not applicable

> **Rubber** Not applicable **Generic** Not applicable

Polymer

Composite Not applicable

Loading

Prescribed Value PDSP, Prescribed variable. U, V, θ : at active nodes.

TPDSP

Concentrated CL Concentrated loads. Px, Py, M: at active nodes.

Loads

Element Loads Not

applicable.

Distributed Loads Not

applicable.

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

 Ωx , Ωy , Ωz , αz

BFP, BFPE Not applicable.

VelocitiesVELOVelocitiesVx, Vy: at nodesAccelerationsACCEAccelerationsAx, Ay: at nodes

Viscous Support VSL Viscous support loads. VLx, VLy: at nodes.

Loads

Initial SSI, SSIE Initial stresses/strains at nodes/for element. Fx,

Stress/Strains Fy: spring forces in local directions. Ex, Ey:

spring strains in local directions.

SSIG Not applicable.

Residual Stresses Not

applicable.

Target TSSIE, Target stresses/strains at nodes/for element. Fx,

Stress/Strains TSSIA Fy: spring forces in local directions. Ex, Ey:

spring strains in local directions.

TSSIG Not applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T₁, T₂, T₃,

T₁₀, T₂₀, T₃₀: actual and initial spring

temperatures.

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Force: Fx, Fy, Fz,M: spring forces in local directions.

Strain: Ex, Ey, Ez, \Psiz: spring strains in local directions.

Modeller See Results Tables (Appendix K).

Local Axes

☐ Standard joint element

Sign Convention

Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point.

Fine. As default.

Mass Default. 1-point.

Fine. As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

47 X-axis taken as axis of symmetry.

55 Output strains as well as stresses.

119 Invokes temperature input for joints.

Notes on Use

This joint has only three degrees of freedom but requires 4 inputs. The 4th input required is the circumferential stiffness.

See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

3D Joints for Bars, Solids and Space Membranes

General

Element Group Joints
Element 3D Joints
Subgroup

Element A 3D joint element which connects two nodes by three springs in the local x, y and z-directions.

Number Of Nodes

A 3D joint element which connects two nodes by three springs in the local x, y and z-directions.

4. The 3rd and 4th nodes are used to define the local x-axis and local xy-plane.

Freedoms U, V, W: at nodes 1 and 2 (active nodes).

Node X, Y, Z: at each node. **Coordinates**

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable

Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 6

K1,..., K21 element stiffness matrix (Not

supported in LUSAS Modeller)

Mass: MATRIX PROPERTIES MASS 6 M1,...,

M21 element mass matrix (Not supported

in LUSAS Modeller)

Damping: MATRIX PROPERTIES DAMPING 6

C1,..., C21 element damping matrix (Not

supported in LUSAS Modeller)

Joint Standard: JOINT PROPERTIES 3 (Joint: 3/Spring

Stiffness Only)

Dynamic general: JOINT PROPERTIES GENERAL 3 (Joint:

3/General Properties)

Elasto-plastic: JOINT PROPERTIES NONLINEAR 31 3

(Joint: 3/Elasto-Plastic (Tension and

Compression Equal))

Elasto-plastic: JOINT PROPERTIES NONLINEAR 32 3

(Joint: 3/Tension and Compression

Unequal)

Nonlinear JOINT PROPERTIES NONLINEAR 33 3

contact: (Joint: 3/Smooth Contact)

Nonlinear JOINT PROPERTIES NONLINEAR 44 3

friction: (Joint: 3/Frictional Contact)

Viscous damping: JOINT PROPERTIES NONLINEAR 35 3

(Joint: 3/Viscous Damper)

Lead-rubber: JOINT PROPERTIES NONLINEAR 36 3

(Joint: 3/Lead Rubber Bearing)

Friction JOINT PROPERTIES NONLINEAR 37 3
pendulum: (Joint: 3/Frictional Pendulum System)
Multi-linear JOINT PROPERTIES NONLINEAR 40 3

elastic (Joint: 3/Multi-Linear Elastic)

Multi-linear JOINT PROPERTIES NONLINEAR 41 3

hysteresis (Joint: 3/Multi-Linear Hysteresis)

Multi-linear JOINT PROPERTIES NONLINEAR 42 3

compound (Joint: 3/Multi-Linear Compound

hysteresis Hysteresis)

Axial force JOINT PROPERTIES NONLINEAR 43 3 dependent multi- (Joint: 3/Axial Force Dependent Multi-

linear elastic Linear Elastic)

Concrete Not applicable

Elasto-Plastic Not applicable

Creep Not applicable **Damage** Not applicable

Viscoelastic Not applicable

Shrinkage Not applicable Rubber Not applicable

Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value PDSP, Prescribed variable. U, V, W: at active nodes.

TPDSP

Concentrated CL Concentrated loads. Px, Py, Pz: at active nodes.

Loads

Element Loads Not

applicable.

Distributed Loads Not

applicable.

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

Zcbf, Ωx , Ωy , Ωz , αx , αy , αz

BFP, BFPE Not applicable.

VelocitiesVELOVelocities. Vx, Vy, Vz: at nodes.AccelerationsACCEAccelerations. Ax, Ay, Az: at nodes.Viscous SupportVSLViscous support loads. VLx, VLy, VLz: at

Loads nodes.

Initial SSI, SSIE Initial stresses/strains at nodes/for element. Fx,

Stress/Strains Fy, Fz: spring forces in local directions. Ex,

Ey, Ψ z: spring strains in local directions.

SSIG Not applicable.

Residual Stresses Not

applicable.

Target TSSIE, Target initial stresses/strains at nodes/for Stress/Strains TSSIA element. Fx, Fy, Fz: spring forces in local

directions. Ex, Ey, Wz: spring strains in local

directions.

TSSIG Not applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T₁, T₂, T₃,

T₁₀, T₂₀, T₃₀: actual and initial spring

temperatures.

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Force: Fx, Fy, Fz: spring forces in local directions.

Strain: Ex, Ey, Ez: spring strains in local directions.

Modeller See **Results Tables** (Appendix K).

Local Axes

☐ Standard joint element

Sign Convention

☐ Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point.
Fine. As default.

Mass Default. 1-point.
Fine As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

55 Output strains as well as stresses.

119 Invokes temperature input for joints.

Notes on Use

See <u>Joint Element Compatibility and Notes (Appendix L)</u>.

Restrictions

Not applicable.

Recommendations on Use

 The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node. • See <u>Joint Element Compatibility (Appendix L)</u>

3D Joints for Semiloof Shells

General

Element Group

Element

Subgroup

Element Description

Nodes Freedoms

Coordinates

Joints

3D Joints

A 3D joint element which connects two nodes by three springs in the local x, y and z-directions.

Number Of 4. The 3rd and 4th nodes are used to define the local x-axis and local xy-plane.

U, V, W: at nodes 1 and 2 (active nodes).

Node X, Y, Z: at each node.

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable

Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 6

K1,..., K21 element stiffness matrix (Not

supported in LUSAS Modeller)

Mass: MATRIX PROPERTIES MASS 6 M1,...,

M21 element mass matrix (Not supported

in LUSAS Modeller)

MATRIX PROPERTIES DAMPING 6 Damping:

C1,..., C21 element damping matrix (Not

supported in LUSAS Modeller)

Joint Standard: JOINT PROPERTIES 3 (Joint: 3/Spring

Stiffness Only)

JOINT PROPERTIES GENERAL 3 (Joint: Dynamic general:

3/General Properties)

Elasto-plastic: JOINT PROPERTIES NONLINEAR 31 3

(Joint: 3/Elasto-Plastic (Tension and

Compression Equal))

Elasto-plastic: JOINT PROPERTIES NONLINEAR 32 3

(Joint: 3/Tension and Compression

Unequal)

Nonlinear JOINT PROPERTIES NONLINEAR 33 3

contact: (Joint: 3/Smooth Contact)

Nonlinear JOINT PROPERTIES NONLINEAR 44 3

friction: (Joint: 3/Frictional Contact)

Viscous damping: JOINT PROPERTIES NONLINEAR 35 3

(Joint: 3/Viscous Damper)

Lead-rubber: JOINT PROPERTIES NONLINEAR 36 3

(Joint: 3/Lead Rubber Bearing)

Friction JOINT PROPERTIES NONLINEAR 37 3 pendulum: (Joint: 3/Frictional Pendulum System)
Multi-linear JOINT PROPERTIES NONLINEAR 40 3

elastic (Joint: 3/Multi-Linear Elastic)

Multi-linear JOINT PROPERTIES NONLINEAR 41 3

hysteresis (Joint: 3/Multi-Linear Hysteresis)

Multi-linear JOINT PROPERTIES NONLINEAR 42 3

compound (Joint: 3/Multi-Linear Compound

hysteresis Hysteresis)

Axial force JOINT PROPERTIES NONLINEAR 43 3 dependent multi- (Joint: 3/Axial Force Dependent Multi-

linear elastic Linear Elastic)

Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable

Shrinkage Not applicable
Rubber Not applicable

Generic Polymer Not applicable

Composite Not applicable

Loading

Prescribed Value PDSP, Prescribed variable. U, V, W: at active nodes.

TPDSP

Concentrated CL Concentrated loads. Px, Py, Pz: at active nodes.

Loads

Element Loads Not

applicable.

Distributed Loads Not

applicable.

Body Forces CBF Constant body forces for element. Xcbf, Ycbf,

Zcbf, Ωx , Ωy , Ωz , αx , αy , αz

BFP, BFPE Not applicable.

VelocitiesVELOVelocities. Vx, Vy, Vz: at nodes.AccelerationsACCEAccelerations. Ax, Ay, Az: at nodes.Viscous SupportVSLViscous support loads. VLx, VLy, VLz: at

nodes.

Initial SSI, SSIE Initial stresses/strains at nodes/for element. Fx,

Stress/Strains Fy, Fz: spring forces in local directions. Ex,

Ey, ψ z: spring strains in local directions.

SSIG Not applicable.

Residual Stresses Not

Loads

applicable.

Target TSSIE, Target stresses/strains at nodes/for element. Fx,

Stress/Strains TSSIA Fy, Fz: spring forces in local directions. Ex,

Ey, ψ z: spring strains in local directions.

TSSIG Not applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T₁, T₂, T₃,

T₁₀, T₂₀, T₃₀: actual and initial spring

temperatures.

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Force: Fx, Fy, Fz: spring forces in local directions.

Strain: Ex, Ey, Ez: spring strains in local directions.

Modeller See Results Tables (Appendix K).

Local Axes

☐ Standard joint element

Sign Convention

☐ Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point.

Fine. As default.

Mass Default. 1-point.

Fine. As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

- 55 Output strains as well as stresses.
- 119 Invokes temperature input for joints.

Notes on Use

When using Modeller to assign this semiloof joint element to interface lines a
JL43 joint element will be created at the semiloof shell corner nodes and a JSL4
joint element will be created at the semiloof shell mid-side nodes.

See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

 The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.

• See <u>Joint Element Compatibility (Appendix L)</u>

3D Joint Elements for Engineering, Kirchhoff and Semiloof Beams

General

Joints

Element Group

Element 3D Joints

Subgroup

Element Description Number Of Nodes

3D joint elements which connects two nodes by six springs in the local x, y and z-directions. Use JL46 for semiloof beam end nodes.

4. The 3rd and 4th nodes are used to define the local x-axis and

local xy-plane respectively.

Freedoms U, V, W, θx , θy , θz : at nodes 1 and 2 (active nodes).

Node X, Y, Z: at each node. **Coordinates**

Geometric Properties

ez Eccentricity measured from the joint xy-plane to the nodal line.

dy Parametric distance factor (between 0.0 and 1.0), which defines the position of the shear spring for the local y direction between nodes 1 and 2. It is measured from node 1 (dy=0) along the local x direction.

dz Parametric distance factor (between 0.0 and 1.0), which defines the position of the shear spring for the local z direction between nodes 1 and 2. It is measured from node 1 (dz=0) along the local x direction

Material Properties

Linear Not applicable

Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 12

 $K1,...,\,K78$ element stiffness matrix (Not

supported in LUSAS Modeller)

Mass: MATRIX PROPERTIES MASS 12 M1,...,

M78 element mass matrix (Not supported

in LUSAS Modeller)

MATRIX PROPERTIES DAMPING 12 Damping:

C1...., C78 element damping matrix (Not

supported in LUSAS Modeller)

Joint Standard: JOINT PROPERTIES 6 (Joint: 6/Spring

Stiffness Only)

JOINT PROPERTIES GENERAL 6 (Joint: Dynamic general:

6/General Properties)

Elasto-plastic: JOINT PROPERTIES NONLINEAR 31 6

(Joint: 6/Elasto-Plastic (Tension and

Compression Equal))

JOINT PROPERTIES NONLINEAR 32 6 Elasto-plastic:

(Joint: 6/Tension and Compression

Unequal)

Nonlinear **JOINT PROPERTIES NONLINEAR 33 6**

contact: (Joint: 6/Smooth Contact)

Nonlinear **JOINT PROPERTIES NONLINEAR 44 6**

friction: (Joint: 6/Frictional Contact)

Viscous damping: **JOINT PROPERTIES NONLINEAR 35 6**

(Joint: 6/Viscous Damper)

Lead-rubber: **JOINT PROPERTIES NONLINEAR 36 6**

(Joint: 6/Lead Rubber Bearing)

Friction JOINT PROPERTIES NONLINEAR 37 6 (Joint: 6/Frictional Pendulum System) pendulum: Multi-linear JOINT PROPERTIES NONLINEAR 40 6

elastic (Joint: 6/Multi-Linear Elastic)

Multi-linear JOINT PROPERTIES NONLINEAR 41 6

hysteresis (Joint: 6/Multi-Linear Hysteresis)

Multi-linear JOINT PROPERTIES NONLINEAR 42 6

compound (Joint: 6/Multi-Linear Compound

hysteresis Hysteresis)

Axial force JOINT PROPERTIES NONLINEAR 43 6 dependent multi-(Joint: 6/Axial Force Dependent Multi-

linear elastic Linear Elastic)

Concrete Not applicable

Elasto-Plastic Not applicable

Creep Not applicable **Damage** Not applicable

Viscoelastic Not applicable Shrinkage Not applicable

Rubber Not applicable Generic Polymer Not applicable Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V, W, θx , θy , θz : at

active nodes.

Concentrated CL Concentrated loads. Px, Py, Pz, Mx, My,

Mz: at active nodes. Loads

Element Loads Not applicable. **Distributed Loads** Not applicable.

> **Body Forces** CBF Constant body forces for element. Xcbf,

> > Yebf, Zebf, Ωx , Ωy , Ωz , αx , αy , αz

BFP, BFPE Not applicable.

Velocities. Vx, Vy, Vz: at nodes. Velocities VELO Accelerations. Ax, Ay, Az: at nodes. **Accelerations** ACCE

Viscous Support VSL Viscous support loads. VLx, VLy, VLz: at Loads

nodes.

Initial SSI, SSIE Initial stresses/strains at nodes/for element. Stress/Strains

Fx, Fy, Fz, Mx, My, Mz: spring forces in

local directions. εx, εy, εz, ψx, yy, yz: spring strains in local directions.

SSIG Not applicable.

Residual Stresses Not applicable.

Target TSSIE, TSSIA

Stress/Strains

Target stresses/strains at nodes/for element. Fx, Fy, Fz, Mx, My, Mz: spring forces in local directions. εx, εy, εz, ψx, yy, yz:

spring strains in local directions.

TSSIG Not applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T1, T2,

T3, T4, T5, T6, T10, T20, T30, T40, T50,

Too: actual and initial spring

temperatures.

Overburden Not applicable. Phreatic Surface Not applicable. **Field Loads** Not applicable.

Temp Dependent Not applicable.

Loads

LUSAS Output

Solver Force: Fx, Fy, Fz, Mx, My, Mz spring forces in local directions.

Strain: εx , εy , εz , ψx , ψy , ψz : spring strains in local directions.

Modeller See **Results Tables** (Appendix K).

Local Axes

☐ Standard joint element

Sign Convention

☐ Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default.
Fine.
As default.

Mass Default.
1-point.
1-point.
Fine
As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

- 55 Output strains as well as stresses.
- 119 Invokes temperature input for joints

Notes on Use

See Joint Element Compatibility and Notes.

Restrictions

Not applicable.

Recommendations on Use

 The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.

• See <u>Joint Element Compatibility (Appendix L)</u>

3D Joint Element for Semiloof Beams

General

Element Group

Element

3D Joints

Joints

Subgroup

Element Description

A 3D joint element which connects two nodes by three springs in the local x, y and z-directions and two springs about the local x-direction at the 1st and 2nd loof points.

Number Of Nodes

4. The 3rd and 4th nodes are used to define the local x-axis and local xy-plane respectively.

Freedoms

U, V, W, θ_1 , θ_2 : at nodes 1 and 2 (active nodes).

Node X, Y, Z: at each node.

Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable

Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 10 K1...., K55 element stiffness matrix (Not

supported in LUSAS Modeller)

Mass: MATRIX PROPERTIES MASS 10 M1.....

M55 element mass matrix (Not supported

in LUSAS Modeller)

Damping: MATRIX PROPERTIES DAMPING 10

C1,..., C55 element damping matrix (Not

supported in LUSAS Modeller)

Joint Standard: JOINT PROPERTIES 5 (Joint: 5/Spring

Stiffness Only)

Dynamic general: JOINT PROPERTIES GENERAL 5 (Joint:

5/General Properties)

Elasto-plastic: JOINT PROPERTIES NONLINEAR 31 5

(Joint: 5/Elasto-Plastic (Tension and

Compression Equal))

Elasto-plastic: JOINT PROPERTIES NONLINEAR 32 5

(Joint:5/Tension and Compression

Unequal)

Nonlinear JOINT PROPERTIES NONLINEAR 33 5

contact: (Joint: 5/Smooth Contact)

Nonlinear JOINT PROPERTIES NONLINEAR 44 5

friction: (Joint: 5/Frictional Contact)

Viscous damping: JOINT PROPERTIES NONLINEAR 35 5

(Joint: 5/Viscous Damper)

Lead-rubber: JOINT PROPERTIES NONLINEAR 36 5

(Joint: 5/Lead Rubber Bearing)

Friction JOINT PROPERTIES NONLINEAR 37 5
pendulum: (Joint: 5/Frictional Pendulum System)
Multi-linear JOINT PROPERTIES NONLINEAR 40 5

elastic (Joint: 5/Multi-Linear Elastic)

Multi-linear JOINT PROPERTIES NONLINEAR 41 5

hysteresis (Joint: 5/Multi-Linear Hysteresis)

Multi-linear JOINT PROPERTIES NONLINEAR 42 5

compound (Joint: 5/Multi-Linear Compound

hysteresis Hysteresis)

Axial force JOINT PROPERTIES NONLINEAR 43 5 dependent multi- (Joint: 5/Axial Force Dependent Multi-

linear elastic Linear Elastic)

Concrete Not applicable

Elasto-Plastic Not applicable

Creep Not applicable **Damage** Not applicable

Viscoelastic Not applicable
Shrinkage Not applicable

Rubber Not applicable

Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP

Prescribed variable. U, V, W, θ_1 , θ_2 : at active nodes.

Concentrated CL Concentrated loads. Px, Py, Pz, M1, M2: at active nodes.

Element Loads Not applicable.

Distributed Loads Not applicable.

Body Forces CBF Constant body forces for element. Xcbf,

Body Forces CBF Constant body forces for element. Xcbf, Ycbf, Zcbf, Ωx , Ωy , Ωz , αx , αy , αz

BFP, BFPE Not applicable.

VelocitiesVELOVelocities. Vx, Vy, Vz: at nodes.AccelerationsACCEAccelerations. Ax, Ay, Az: at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy, VLz: at

Loads nodes.

Initial SSI, SSIE Initial stresses/strains at nodes/for element.

Stress/Strains Fx, Fy, Fz, Mx, My, Mz; spring forces in

tress/Strains Fx, Fy, Fz, Mx, My, Mz: spring forces in local directions. εx, εy, εz, ψx, ψy, ψz:

spring strains in local directions.

SSIG Not applicable.

Residual Stresses Not applicable.

Target TSSIE, TSSIA Target stresses/strains at nodes/for element.

Stress/Strains

Fx. Fy. Fz. Mx. My. Mz: spring forces in

Fx, Fy, Fz, Mx, My, Mz: spring forces in local directions. εx, εy, εz, ψx, ψy, ψz:

spring strains in local directions.

TSSIG Not applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T₁, T₂,

T3, T4, T5, T10, T20, T30, T40, T50: actual

and initial spring temperatures.

Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.

Loads

LUSAS Output

Solver Force: Fx, Fy, Fz, M₁, M₂: spring forces in local directions.

Strain: εx , εy , εz , ψ_1 , ψ_2 : spring strains in local directions.

Modeller See **Results Tables (Appendix K)**.

Local Axes

☐ Standard joint element

Sign Convention

☐ Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point.

Fine. As default.

Mass Default. 1-point.

Fine. As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

- 55 Output strains as well as stresses.
- 119 Invokes temperature input for joints.

Notes on Use

See Joint Element Compatibility and Notes.

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

Element Reference Manual	

Chapter 9: Thermal / Field Elements

2D Bar Field Elements

General

Element Group Field **Element** Thermal Bars Subgroup **Element Description** 2 or 3.

Straight and curved

Number Of Nodes Freedoms

φ: field value (temperature) at each node

Node **Coordinates**

X. Y: at each node.

Geometric Properties

A1 ... An Cross-sectional area at each node.

Material Properties

Matrix Not applicable Joint Not applicable Composite Not applicable

Field Isotropic MATERIAL PROPERTIES FIELD

ISOTROPIC (Field: Isotropic) MATERIAL PROPERTIES FIELD ISOTROPIC CONCRETE(Field:

Isotropic)

Orthotropic: Not applicable Linear Not applicable

convection/radiation:

Arbitrary Not applicable

convection/radiation:

Loading

Prescribed Value PDSP, TPDSP p: field variable (temperature) at nodes.

Rate of Heat RGN Q: field loading at nodes.

Inflow at a Point

Element Loads Not applicable.

Distributed Loads UDL Not applicable.

FFL qa: (Q/unit area) at nodes (positive defines

heat input) (see <u>FLD Face loading</u> applied to thermal bars).

Rate of Heat RBC qv: (Q/unit volume) for element.

Inflow/Unit Volume

RBV, RBVE qv: (Q/unit volume) at nodes/ for element.

Velocities Not applicable.

Accelerations Not applicable.

Viscous Support Not applicable.

Loads

Initial Not applicable.

Stress/Strains

Residual Stresses Not applicable. **Target** Not applicable.

Stress/Strains

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0,

0, 0, 0, 0, 0 (See *Notes*.)

Field Loads ENVT Environmental boundary conditions. Oe.

hc. hr: external environmental

temperature, convective and radiative heat

transfer coefficients. (See *Notes*)

Temp Dependent TDET Temperature dependent environmental

Loads

boundary conditions. (Pe, hc, hr, T:

external environmental temperature, convective and radiative heat transfer coefficients and temperature for element.

(See Notes)

RIHG Internal heat generation rate. Q, T:

coefficient/unit volume and temperature.

(See *Notes*)

LUSAS Output

Solver Field variable (temperature). gx, qx: gradient and flow in local

axes.

Modeller See **Results Tables** (Appendix K).

Local Axes

☐ Standard line element

Sign Convention

☐ Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity Default. 1-point (BFD2), 2-point (BFD3).

Fine (see *Options*). 2-point (BFD2), 3-point (BFD3).

Specific Heat Default. 1-point (BFD2), 2-point (BFD3).

Fine (see *Options*). 2-point (BFD2), 3-point (BFD3).

Specific Heat Modelling

- ☐ Consistent specific heat (default).
- ☐ Lumped specific heat.

Options

18 Invokes fine integration rule.

105 Lumped specific heat.

Notes on Use

- 1. TEMP/TMPE loading can be used to initialise the temperature field on the first step of a nonlinear field analysis. The temperature will be applied on the first pass of iteration 0 only and the load must be specified as a manual increment.
- 2. For linear field problems only one load case is allowed if an ENVT load is to be applied.
- 3. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.

- 4. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
- 5. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
- 6. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.

Restrictions

- ☐ Ensure mid-side node centrality
- ☐ Avoid excessive element curvature

Recommendations on Use

These elements may be used to analyse heat conduction along bars either individually or in conjunction with continuum field elements, e.g. supporting struts.

2D Axisymmetric Membrane Field Elements

General

Element Group

Field

Element Subgroup

Thermal Bars

Element Description Straight and curved **isoparametric** axisymmetric thermal bar elements in 2D which can accommodate varying cross sectional area.

Number Of 2 or 3. **Nodes**

Freedoms

j: field variable (temperature) at each node.

Coordinates

Node X, Y: at each node.

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Matrix Not applicable. Composite Not applicable.

Field Isotropic MATERIAL PROPERTIES FIELD

ISOTROPIC (Field: Isotropic) MATERIAL PROPERTIES FIELD

ISOTROPIC CONCRETE (Field: Isotropic)

Orthotropic: Not applicable Linear Not applicable

convection/radiation:

Arbitrary Not applicable

convection/radiation:

Loading

Prescribed PDSP, TPDSP

Value

φ: field variable (temperature) at nodes.

Rate of Heat RGN

Inflow at a

Q: field loading at nodes.

Point

Element Loads Not applicable.

Distributed UDL

Loads

Not applicable.

FFL qa: (Q/unit area) at nodes (positive defines

heat input) (see **FLD Face loading applied**

qv: (Q/unit volume) at nodes/ for element.

to thermal bars).

Rate of Heat RBC

Inflow/Unit

Volume

qv: (Q/unit volume) for element.

RBV, RBVE

Velocities Not applicable.

Accelerations Not applicable.

lerations Not applicable. **Viscous** Not applicable.

Support Loads

Initial Not applicable.

Stress/Strains

Residual Not applicable.

Stresses

Target Not applicable.

Stress/Strains

Temperatures TEMP, TMPE

Temperatures at nodes/for element. T, 0, 0, 0,

0, 0, 0, 0 (See *Notes*.)

Field Loads ENVT

Environmental boundary conditions. Oe, hc,

hr: external environmental temperature, convective and radiative heat transfer

coefficients. (See *Notes*.)

Temp TDET

Dependent Loads **Temperature dependent environmental**

boundary conditions. (pe, hc, hr, T: external environmental temperature, convective and radiative heat transfer coefficients and

temperature. (See *Notes*.)

RIHG Internal heat generation rate. Q, T:

coefficient/unit volume and temperature for

element. (See *Notes*.)

LUSAS Output

Solver Field variable (temperature). gx, qx: gradient and flow in local axes.

Modeller See **Results Tables (Appendix K)**.

Local Axes

☐ Standard line element

Sign Convention

☐ Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity Default. 1-point (BFX2), 2-point (BFX3).

Fine (see *Options*). 2-point (BFX2), 3-point (BFX3).

Specific Heat Default. 1-point (BFX2), 2-point (BFX3).

Fine (see *Options*). 2-point (BFX2), 3-point(BFX3).

Specific Heat Modelling

- ☐ Consistent specific heat (default).
- ☐ Lumped specific heat.

Options

- 18 Invokes fine integration rule.
- 47 X-axis taken as axis of symmetry.
- 105 Lumped specific heat.

Notes on Use

- 1. TEMP/TMPE loading can be used to initialise the temperature field on the first step of a nonlinear field analysis. The temperature will be applied on the first pass of iteration 0 only and the load must be specified as a manual increment.
- 2. For linear field problems only one load case is allowed if an ENVT load is to be applied.

- 3. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
- 4. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
- 5. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
- 6. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.

Restrictions

- ☐ Ensure mid-side node centrality
- ☐ Avoid excessive element curvature

Recommendations on Use

One example of the usage of these elements is the analysis of in-plane temperature flow in a thin circular plate.

3D Bar Field Elements

General

Element Group Element Subgroup

Thermal Bars

Element Description

Straight and curved

Description Number Of

2 or 3.

Field

Nodes Freedoms

φ: field value (temperature) at each node

Node Coordinates X, Y, Z: at each node.

Geometric Properties

A1 ... An Cross sectional area at each node.

Material Properties

Linear Not applicable

Matrix Not applicable

Joint Not applicable

Concrete Not applicable

Elasto-Plastic Not applicable

Creep Not applicable **Damage** Not applicable

Viscoelastic Not applicable

Shrinkage Not applicable

Rubber Not applicable.

Generic Polymer Not applicable

Composite Not applicable

Field Isotropic MATERIAL PROPERTIES FIELD

ISOTROPIC (Field: Isotropic)
MATERIAL PROPERTIES FIELD
ISOTROPIC CONCRETE (Field:

Isotropic)

Orthotropic: Not applicable. Linear Not applicable.

convection/radiation:

Arbitrary

convection/radiation:

Not applicable.

Loading

Rate of Heat RGN Q: field loading at nodes.

Inflow at a Point

Element Loads Not applicable.

Distributed Loads UDL Not applicable.

FFL qa: (Q/unit area) at nodes (positive defines

heat input) (see **FLD Face loading**

applied to thermal bars).

Rate of Heat RBC qv: (Q/unit volume) for element.

Inflow/Unit Volume

RBV, RBVE qv: (Q/unit volume) at nodes/ for element.

Velocities Not applicable.

Accelerations Not applicable.

Viscous Support Not applicable.

Loads

Initial Not applicable.

Stress/Strains

Residual Stresses Not applicable.

Target Not applicable.

Stress/Strains

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0,

0, 0, 0, 0, 0 (See *Notes*.)

Field Loads ENVT Environmental boundary conditions. Oe,

hc, hr: external environmental

temperature, convective and radiative heat

transfer coefficients. (See Notes.)

Temp Dependent TDET Temperature dependent environmental

boundary conditions. φe, hc, hr, T: external environmental temperature,

convective and radiative heat transfer coefficients and temperature. (See *Notes*.)

RIHG Internal heat generation rate. Q, T:

coefficient/unit volume, and temperature

for element. (See Notes.)

LUSAS Output

Solver Field variable (temperature). gx, qx: gradient and flow in local

axes.

Modeller See Results Tables (Appendix K).

Local Axes

☐ Standard line element

Sign Convention

☐ Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity Default. 1-point (BFS2), 2-point (BFS3).

Fine (see *Options*). 2-point (BFS2), 3-point (BFS3).

Specific Heat Default. 1-point (BFS2), 2-point (BFS3).

Fine (see *Options*). 2-point (BFS2), 3-point (BFS3).

Specific Heat Modelling

- ☐ Consistent specific heat (default).
- ☐ Lumped specific heat.

Options

18 Invokes fine integration rule.

105 Lumped specific heat.

Notes on Use

- 1. TEMP/TMPE loading can be used to initialise the temperature field on the first step of a nonlinear field analysis. The temperature will be applied on the first pass of iteration 0 only and the load must be specified as a manual increment.
- 2. For linear field problems only one load case is allowed if an ENVT load is to be applied.
- 3. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
- 4. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
- 5. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
- 6. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.

Restrictions

- ☐ Ensure mid-side node centrality
- ☐ Avoid excessive element curvature

2D Link Field Element

General

Element Group Field
Element There
Subgroup

Thermal Links

Element Straight conductive, convective or radiative thermal link element for 2D field analysis.

Number Of 2.

Nodes Freedoms

φ: field value (temperature) at each node.

Node Coordinates X, Y at each node.

Geometric Properties

A1 ... An Cross sectional area at each node.

Material Properties

LinearNot applicableMatrixNot applicableJointNot applicableConcreteNot applicableElasto-PlasticNot applicableCreepNot applicableDamageNot applicable

Viscoelastic Not applicable
Shrinkage Not applicable

Rubber Not applicable

Generic Polymer Not applicable
Composite Not applicable

iposite Not applicable

Field Isotropic: Not applicable.

Orthotropic: Not applicable.

Linear MATERIAL PROPERTIES FIELD
convection/radiation: LINK 18 (Field: Linear Link)
Arbitrary MATERIAL PROPERTIES FIELD
LINK 10 (Field: Linear Link)

convection/radiation: LINK 19 (Field: Nonlinear Link)

Loading

Prescribed Value PDSP, TPDSP φ: field variable (temperature) at nodes.

Concentrated Not applicable.

Loads

Element Loads Not applicable.

Distributed Loads Not applicable.

Body Forces Not applicable.

Velocities Not applicable.

Accelerations Not applicable.

Viscous Support Not applicable.

Loads

Initial Not applicable.

Stress/Strains

Residual Stresses Not applicable.

Target Not applicable.

Stress/Strains

Temperatures Not applicable.

Field Loads Not applicable.

Temp Dependent Not applicable.

Loads

LUSAS Output

Solver Field variable (temperature). qx: flow at nodes in local directions.

Modeller See Results Tables (Appendix K).

Local Axes

☐ Standard line element

Sign Convention

☐ Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conduction, Default. 1-point (at element centroid).

Convection,

Radiation

Fine. As default.

Specific Heat Default. Not applicable.

Fine. Not applicable.

Specific Heat Modelling

Not applicable.

Options

Not applicable.

Notes on Use

No notes at present.

Restrictions

Not applicable.

Recommendations on Use

An example of the usage of these elements is the analysis of heat conduction at contacting interfaces.

3D Link Field Element

General

Element Group

Field

Element Subgroup Thermal Links

Element

Straight conductive, convective or radiative thermal link element for 3D field analysis.

Description Number Of

2.

Nodes
End Releases

End Releases Freedoms

φ: field value (temperature) at each node.

Node Coordinates X, Y, Z at each node.

Geometric Properties

A1 ... An Cross sectional area at each node.

Material Properties

Linear Not applicable.

Matrix Not applicable.

Joint Not applicable.

Concrete Not applicable. **Elasto-Plastic** Not applicable.

Rubber Not applicable.

Generic Polymer Not applicable

Composite Not applicable.

Field Isotropic: Not applicable.

Orthotropic: Not applicable.

Linear MATERIAL PROPERTIES FIELD convection/radiation: LINK 18 (Field: Linear Link)

Arbitrary MATERIAL PROPERTIES FIELD

convection/radiation: LINK 19 (Field: Nonlinear Link)

Stress Potential Not applicable.

Creep Not applicable.

Damage Not applicable.

Viscoelastic Not applicable.

Shrinkage Not applicable

Loading

Prescribed Value PDSP, TPDSP p: field variable (temperature) at nodes.

Concentrated Not applicable.

Loads

Element Loads Not applicable.

Distributed Loads Not applicable.

Body Forces Not applicable. **Velocities** Not applicable.

Accelerations Not applicable.

Viscous Support Not applicable.

Loads

Initial Not applicable.

Stress/Strains

Residual Stresses Not applicable.

Target Not applicable.

Stress/Strains

Temperatures Not applicable. **Field Loads** Not applicable.

Temp Dependent Not applicable.

Loads

LUSAS Output

Solver Field variable (temperature). qx: flow at nodes in local directions.

Modeller See **Results Tables (Appendix K)**.

Local Axes

☐ Standard line element

Sign Convention

☐ Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conduction, Default. 1- point (at element centroid).

Convection, Radiation

Fine. As default. **Specific Heat** Default. Not applicable.

Fine. Not applicable.

Specific Heat Modelling

Not applicable.

Options

Not applicable.

Notes on Use

No notes at present.

Restrictions

Not applicable.

Recommendations on Use

An example of the usage of these elements is the analysis of heat conduction at contacting interfaces.

2D Axisymmetric Link Field Element

General

Element Group

Field

Element

Thermal Links

Subgroup

Thermal Link

Element Description

Straight conductive, convective or radiative thermal link element for 2D axisymmetric field analysis.

Number Of

2.

Nodes

End Releases

Freedoms

φ: field value (temperature) at each node.

Node Coordinates X, Y at each node.

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Linear Not applicable.

Matrix Not applicable.

Joint Not applicable.

Concrete Not applicable.

Elasto-Plastic Not applicable.

Rubber Not applicable.

Generic Polymer Not applicable

Composite Not applicable.

Field Isotropic: Not applicable.

Orthotropic: Not applicable.

Linear MATERIAL PROPERTIES FIELD convection/radiation: LINK 18 (Field: Linear Link)

MATERIAL PROPERTIES FIELD Arbitrary convection/radiation: LINK 19 (Field: Nonlinear Link)

Loading

Prescribed Value PDSP, TPDSP φ: field variable (temperature) at nodes.

Concentrated Not applicable.

Loads

Element Loads Not applicable. **Distributed Loads** Not applicable. **Body Forces** Not applicable. Velocities Not applicable. Accelerations Not applicable. **Viscous Support** Not applicable. Loads

Initial Not applicable.

Stress/Strains

Residual Stresses Not applicable. **Target** Not applicable.

Stress/Strains

Temperatures Not applicable. Field Loads Not applicable. **Temp Dependent** Not applicable.

Loads

LUSAS Output

Solver Field variable (temperature). qx: flow at nodes in local directions.

Modeller See Results Tables (Appendix K).

Local Axes

☐ Standard line element

Sign Convention

■ Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conduction, Default. 1- point (at element centroid).

Convection, Radiation

Fine. As default.

Specific Heat Default. Not applicable.

Fine. Not applicable.

Specific Heat Modelling

Not applicable.

Options

47 X-axis taken as axis of symmetry.

Notes on Use

No notes at present.

Restrictions

Not applicable.

Recommendations on Use

An example of the usage of these elements is the analysis of heat conduction at contacting interfaces.

2D Axisymmetric Field Elements

General

Element Group Element Subgroup Field Plane Field

Element Description

A family of axisymmetric field elements in 2D with higher order elements capable of modelling curved boundaries. The elements are applicable to both steady state and transient field problems. The formulations apply over a unit radian segment of the structure and the loading and boundary conditions are axisymmetric. The elements are numerically integrated. Axisymmetry is taken about the Y-axis by default.

Number Of Nodes 3, 4, 6, or 8 numbered anticlockwise.

Freedoms Node

φ: field variable at each node.

Coordinates

X, Y: at each node

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear Not applicable.Matrix Not applicable.Joint Not applicable.

Concrete Not applicable.

Rubber Not applicable.

Generic Not applicable.

Not applicable.

Polymer

Composite Not applicable.

Field Isotropic: MATERIAL PROPERTIES FIELD

ISOTROPIC (Field: Isotropic)
MATERIAL PROPERTIES FIELD
ISOTROPIC CONCRETE (Field:

Isotropic)

Orthotropic: MATERIAL PROPERTIES FIELD

ORTHOTROPIC (Field: Orthotropic)
MATERIAL PROPERTIES FIELD
ORTHOTROPIC CONCRETE (Field:

Orthotropic)

Linear Not applicable.

convection/radiation:

Arbitrary Not applicable.

convection/radiation:

Loading

Prescribed Value PDSP, TPDSP φ: field variable (temperature) at nodes.

Rate of Heat RGN Q: field loading at nodes.

Inflow at a Point

Element Loads Not applicable.

Distributed Loads UDL Not applicable.

FFL qa: (Q/unit area) at nodes (see FLD Face loading applied to thermal bars)

<u>loading applied to thermal bars</u>). qv: (Q/unit volume) for element.

Rate of Heat RBC Inflow/Unit Volume

RBV, RBVE qv: (Q/unit volume) at nodes/ for element.

Velocities Not applicable.

Accelerations Not applicable.

Viscous Support Not applicable.

Loads

Initial Velocities Not applicable.

Initial Not applicable.

Stress/Strains

Residual Stresses Not applicable.

Target Not applicable.

Stress/Strains

Temperatures Not applicable.

Field Loads ENVT Environmental boundary conditions. Oe,

hc, hr: external environmental

temperature, convective and radiative heat

transfer coefficients. (See Notes.)

Temp Dependent TDET <u>Temperature dependent environmental</u>

Loads boundary conditions. Oe, hc, hr, T:

external environmental temperature, convective and radiative heat transfer coefficients and temperature. (See *Notes*.)

RIHG Internal heat generation rate. Q, T:

coefficient/unit volume and temperature

for element. (See *Notes*.)

LUSAS Output

Solver Field variable (temperature). gx, gy, gz, qx, qy, qz: gradients and

flows in global directions.

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable.

Sign Convention

☐ Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity Default. 1-point (TXF3), 3-point (TXF6), 2x2

(QXF4, QXF8)

Fine (see 3x3 (QXF8)

Options).

Specific Heat Default. 1-point (TXF3), 3-point (TXF6), 2x2

(QXF4, QXF8)

Fine. As default.

Specific Heat Modelling

☐ Consistent specific heat (default)

☐ Lumped specific heat.

Options

18 Invokes fine integration rule for elements.

47 X-axis taken as axis of symmetry.

105 Lumped specific heat.

Notes on Use

- The element formulations are based on the standard <u>isoparametric</u> approach.
 The variation of field variable (temperature) within an element is linear low order (corner node only) elements and quadratic high order (mid-side node) elements.
- 2. All elements pass the **patch test** for convergence.
- 3. For linear field problems only one load case is allowed if an ENVT load is to be applied.
- 4. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
- 5. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
- 6. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
- 7. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.

Restrictions

ч	Ensure mid-side node centrality
	Avoid excessive element curvature
	Avoid excessive aspect ratio

Recommendations on Use

The axisymmetric field elements are suitable for analysing solid field problems which exhibit geometric and loading symmetry about a given axis, e.g. temperature distribution in a pipe or radial groundwater flow into a well.

2D Plane Field Elements

General

Element Group Field
Element Plane Field
Subgroup

Element A family of plane field elements in 2D with higher order elements capable of modelling curved boundaries. The elements are applicable to both steady state and transient field problems. The elements are numerically integrated.

Number Of 3, 4, 6 or 8 numbered anticlockwise. **Nodes**

 $\begin{tabular}{ll} \textbf{Freedoms} \\ \phi : field \ value \ (temperature) \ at \ each \ node. \end{tabular}$

Node X, Y: at each node. **Coordinates**

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Linear Not applicable
Matrix Not applicable
Joint Not applicable
Concrete Not applicable

Elasto-Plastic Not applicable Creep Not applicable

Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable

Rubber Not applicable.

Generic Polymer Not applicable

Composite Not applicable.

Field Isotropic: MATERIAL PROPERTIES FIELD

ISOTROPIC CONCRETE (Field:

Isotropic)

MATERIAL PROPERTIES FIELD
ISOTROPIC (Field: Isotropic)

Orthotropic: MATERIAL PROPERTIES FIELD

ORTHOTROPIC (Field: Orthotropic)
MATERIAL PROPERTIES FIELD
ORTHOTROPIC CONCRETE (Field:

Orthotropic)

Linear Not applicable.

convection/radiation:

Arbitrary Not applicable.

convection/radiation:

Loading

Rate of Heat RGN Q: field loading at nodes.

Inflow at a Point

Element Loads Not applicable.

Distributed Loads UDL Not applicable.

FFL qa: (Q/unit area) at nodes (see FLD Face

<u>loading applied to thermal bars</u>). qv: (Q/unit volume) for element.

Rate of Heat RBC Inflow/Unit Volume

RBV, RBVE qv: (Q/unit volume) at nodes/ for element.

Velocities Not applicable.

Accelerations Not applicable. **Viscous Support** Not applicable.

Loads

Initial Not applicable.

Stress/Strains

Residual Stresses Not applicable.

Target Not applicable.

Stress/Strains

Temperatures Not applicable.

Field Loads ENVT Environmental boundary conditions. Oe,

hc, hr: external environmental

temperature, convective and radiative heat

transfer coefficients. (See Notes.)

Temp Dependent TDET <u>Temperature dependent environmental</u>

Loads

boundary conditions. φ e, hc, hr, T: external environmental temperature, convective and radiative heat transfer coefficients and temperature. (See *Notes*.)

RIHG Internal heat generation rate. Q, T:

coefficient/unit volume and temperature

for element. (See *Notes*.)

LUSAS Output

Solver Field variable (temperature). gx, gy, qx, qy: gradients and flows

in global directions.

Modeller See Results Tables (Appendix K).

Local Axes

☐ Standard surface element

Sign Convention

☐ Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity Default. 1-point (TFD3), 3-point (TFD6), 2x2 (QFD4, QFD8).

Fine. As default.

Specific Heat Default. 1-point (TFD3), 3-point (TFD6), 2x2 (QFD4, QFD8).

Fine. Not applicable.

Specific Heat Modelling

☐ Consistent specific heat (default).

☐ Lumped specific heat.

Options

18 Invokes fine integration rule for elements.

105 Lumped specific heat.

Notes on Use

- The element formulations are based on the standard <u>isoparametric</u> approach.
 The variation of field variable (temperature) within an element is linear for low order (corner node only) elements and quadratic for high order (mid-side node) elements.
- 2. All elements pass the **patch test** for convergence.
- 3. For linear field problems only one load case is allowed if an ENVT load is to be applied.
- 4. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
- 5. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
- 6. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
- 7. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.

Restrictions

Ensure	mid	l-side	nod	le	central	lity
	Ensure	Ensure mid	Ensure mid-side	Ensure mid-side nod	Ensure mid-side node	Ensure mid-side node central

☐ Avoid excessive element curvature

Avoid	excessive	aspect	ratio

Recommendations on Use

The plane field elements may be utilised for analysing continuum field problems whose behaviour is essentially two dimensional, e.g. thermal analysis of a long tunnel . The elements are formulated using the 2D quasi-harmonic equation. See Theory Manuals for details.

3D Solid Field Elements

General

Element Group Element Subgroup Element Description Field Solid Field

A family of solid field elements in 3D with higher order elements capable of modelling curved boundaries. The elements are applicable to both steady state and transient field problems. The

elements are numerically integrated.

Number Of Nodes 4 and 10 (tetrahedra). 6, 12 and 15 (pentahedra). 8, 16 and 20 (hexahedra). The elements are numbered according to a right-hand screw rule in the local z-direction.

Freedoms

φ: field variable at each node.

Node Coordinates

Node X, Y, Z: at each node.

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable

Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable

Generic Polymer Not applicable
Composite Not applicable

Field Isotropic: MATERIAL PROPERTIES FIELD

ISOTROPIC CONCRETE (Field:

Isotropic)

MATERIAL PROPERTIES FIELD ISOTROPIC (Field: Isotropic) MATERIAL PROPERTIES FIELD

Orthotropic: MATERIAL PROPERTIES FIELD

ORTHOTROPIC SOLID (Field:

Orthotropic Solid)

MATERIAL PROPERTIES FIELD ORTHOTROPIC SOLID CONCRETE

(Field: Orthotropic Solid)

Linear Not applicable.

convection/radiation:

Arbitrary Not applicable.

convection/radiation:

Loading

Prescribed Value PDSP, TPDSP p: field variable (temperature) at nodes.

Rate of Heat RGN Q: field loading at nodes.

Inflow at a Point

Element Loads Not applicable.

Distributed Loads UDL Not applicable.

FFL qa: (Q/unit area) at nodes (see FLD Face

<u>loading applied to thermal bars</u>).

av: (O/unit volume) for element.

Rate of Heat RBC Inflow/Unit

Volume

RBV, RBVE qv: (Q/unit volume) at nodes/ for element.

Velocities Not applicable.

Accelerations Not applicable.

Viscous Support Not applicable.

Loads

Initial Not applicable.

Stress/Strains

Residual Stresses Not applicable.

Target Not applicable.

Stress/Strains

Temperatures Not applicable.

Field Loads ENVT Environmental boundary conditions. Oe,

hc, hr: external environmental

temperature, convective and radiative heat

transfer coefficients. (See *Notes*.)

Temp Dependent TDET Temperature dependent environmental

Loads

boundary conditions. φ e, hc, hr, T: external environmental temperature, convective and radiative heat transfer coefficients and temperature. (See *Notes*.)

RIHG Internal heat generation rate. Q, T:

coefficient/unit volume and temperature

for element. (See *Notes*.)

LUSAS Output

Solver Field variable (temperature). gx, gy, gz, qx, qy, qz: gradients and

flows in global directions.

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity Default. 1-point (TF4), 4-point (TF10),

3x2 (PF6, PF12, PF15), 2x2x2 (HF8,

HF16, HF20)

Fine (see *Options*). 5-point (TF10)

3x3x2 (HF16), 3x3x3 (HF20)

Coarse (see 1-point (HF20), 14-point (HF20)

Options).

Specific Heat Default. 1-point (TF4), 4-point (TF10),

3x2 (PF6, PF12, PF15), 2x2x2 (HF8,

HF16, HF20)

Fine (see *Options*). 5-point (TF10)

3x3x2 (HF16), 3x3x3 (HF20)

Coarse (see 13-point (HF20), 14-point (HF20)

Options).

Specific Heat Modelling

- ☐ Consistent specific heat (default).
- ☐ Lumped specific heat.

Options

- **18** Invokes fine integration rule for elements.
- 105 Lumped specific heat.
- 155 Use 14-point integration rule for HF20.
- **156** Use 13-point integration rule for HF20.
- **398** For HF20 and HF16 with fine integration use all integration points for stress extrapolation.

Notes on Use

- The element formulations are based on the standard isoparametric approach.
 The variation of potential within an element may be regarded as constant for low order (corner node only) elements and linear for high order (mid-side node) elements.
- 2. For linear field problems only one load case is allowed if an ENVT load is to be applied.
- 3. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
- 4. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
- 5. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
- 6. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.

Restrictions

Ensure mid-side node centrality
Avoid excessive element curvature

☐ Avoid excessive aspect ratio

Recommendations on Use

The solid field elements may be used to analyse continuum field problems where the response is fully 3D (i.e. it cannot be approximated using the plane or axisymmetric elements), e.g. temperature distribution in a pipe intersection.

3D Solid Composite Field Element (Tetrahedral)

General

Element Name TF10S

Element Group

Field

Element Subgroup

Solid Field

Element

Description

3D solid field element capable of modelling curved boundaries. The element is applicable to both steady state and transient field problems. The element is numerically integrated, can be arbitrarily oriented with respect to the laminate, and allows for the fully automatic mesh generation of laminate geometric models imported from CAD packages.

Number Of **Nodes Freedoms**

10. The element is numbered according to a right-hand screw rule in the local z-direction.

φ: field variable at each node.

Coordinates

Node X. Y. Z: at each node.

Geometric Properties

See **Composites** in the *Modeller Reference Manual*

Material Properties

Linear Not applicable Matrix Not applicable **Joint** Not applicable Concrete Not applicable Elasto-Plastic Not applicable **Creep** Not applicable DamageNot applicableViscoelasticNot applicableShrinkageNot applicableRubberNot applicable

Generic Polymer Not applicable

Composite COMPOSITE MATERIAL

Field Isotropic: MATERIAL PROPERTIES FIELD

ISOTROPIC (Field: Isotropic)
MATERIAL PROPERTIES FIELD
ISOTROPIC CONCRETE (Field:

Isotropic)

Orthotropic: MATERIAL PROPERTIES FIELD

ORTHOTROPIC SOLID (Field:

Orthotropic Solid)

MATERIAL PROPERTIES FIELD ORTHOTROPIC SOLID CONCRETE

(Field: Orthotropic Solid)

Linear Not applicable

convection/radiation:

Arbitrary Not applicable

convection/radiation:

Loading

Rate of Heat RGN Q: field loading at nodes.

Inflow at a Point

Element Loads Not applicable.

Distributed Loads UDL Not applicable.

FFL qa: (Q/unit area) at nodes

 $\begin{tabular}{lll} \textbf{Rate of Heat} & RBC & qv: (Q/unit \ volume) \ for \ element. \end{tabular}$

Inflow/Unit Volume

RBV, RBVE qv: (Q/unit volume) at nodes/ for element.

Velocities Not applicable.

Accelerations Not applicable.

Viscous Support Not applicable.

Loads

Initial Not applicable.

Stress/Strains

Residual Stresses Not applicable.

Target Not applicable.

Stress/Strains

Temperatures Not applicable.

Field Loads ENVT Environmental boundary conditions (pe,

hc, hr: external environmental temperature, convective and radiative heat transfer

coefficients. (See Notes.)

Temp Dependent TDET <u>Temperature dependent boundary</u>

Loads conditions. Oe, hc, hr, T: external

environmental temperature, convective and radiative heat transfer coefficients and

temperature. (See Notes.)

RIHG Internal heat generation rate. Q, T:

coefficient/unit volume and temperature for

element. (See Notes.)

LUSAS Output

Solver Field variable (temperature). gx, gy, gz, qx, qy, qz: gradients and

flows. Gauss point values are in local directions. Nodal values are

in global directions.

Modeller See Results tables (Appendix K)

Local Axes

The local axes for each layer are defined by the LAMINAR DIRECTIONS specified for its bottom surface. The three node set in LAMINAR DIRECTIONS define the local Cartesian set origin, the x-axis and the positive quadrant of the xy-plane respectively. The local z-axis forms an orthonormal coordinate system with x and y.

Sign Convention

☐ Standard field elements

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity Default. 1-point for a tetrahedral subdivision (see Notes),

3-point for a pentahedral/pyramid subdivision, 2x2

for a hexahedral/wrick subdivision

Fine (see 1-point for a tetrahedral subdivision (see Notes),

Options) 3x2 for a pentahedral/pyramid subdivision, 2x2 x2

for a hexahedral/wrick subdivision

Specific Heat Default. 5-point for the whole element or (see Options) 1-

point for a tetrahedral subdivision, 3x2 for a pentahedral/pyramid subdivision, 2x2 x2 for a

hexahedral/wrick subdivision

Fine (see 11-point or (see Options) 14 -point for the whole

Options) element

.

Specific Heat Modelling

• Consistent specific heat (default).

• Lumped specific heat.

Options

18 Invokes fine integration rule for elements.

91 Formulate element specific heat with fine integration

105 Lumped specific heat.

266 Layer by layer computation of specific heat matrix.

394 Lamina directions supported

395 Use 14-point fine integration rule for specific heat matrix of TH10 family (used together with 91)

Notes on Use

- The element formulations are based on the standard isoparametric approach.
 The variation of field gradients within an element may be regarded as linear.
- The LAMINAR DIRECTIONS and COMPOSITE MATERIAL data chapters must be used with this element in conjunction with the COMPOSITE ASSIGNMENTS data chapter.
- 3. If the whole tetrahedral element is embedded in a single lamina, a 4-point integration rule will be used for this tetrahedral subdivision; otherwise a 1-point rule will be used.
- 4. The specific heat matrix can be computed using a layer by layer integration (OPTION 266), however this should only be used when the thermal properties of the layers vary considerably because the computation time can be greatly increased when this OPTION is specified.
- 5. Numerical integration through the thickness is performed. The integration points are located in the subdivisions of each layer. Each subdivision forms the

- shape of a regular 3D solid field element and the integration points are located accordingly within the subdivision as described above.
- 6. For linear field problems only one load case is allowed if an ENVT load is to be applied.
- 7. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
- 8. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
- 9. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
- If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.
- 11. Layer 1 is always the bottom layer.

Restrictions

Ensure mid-side node centrality
Avoid excessive element curvature
Avoid excessive aspect ratio

Recommendations on Use

- 3D solid composite field elements should be used for modelling thick composite structures comprising laminae of differing material properties where the computational cost of modelling each lamina with an individual solid element would be prohibitive. This field element can be used to analyse continuum field problems where the response is fully 3D.
- As these elements can be arbitrarily oriented with respect to the laminate, they are particularly aimed at the use of fully automatic mesh generation of laminate geometric models imported from CAD packages.

3D Solid Composite Field Elements (Pentahedral and **Hexahedral**)

General

PF12C

HF8C

Element Group

Element Subgroup

Solid Field

Field

Element Description

3D solid field elements capable of modelling curved boundaries. The elements are applicable to both steady state and transient field problems. The elements are numerically integrated. The composite layers are parallel to the top and bottom faces and the bottom surface of the first layer coincides with the bottom surface of the element. The top and bottom faces of the element are as shown, e.g. nodes 1, 2, 3, 4 define the bottom face of HF8C

Number Of **Nodes**

6 or 12 (pentahedra), 8 or 16 (hexahedra). The elements are numbered according to a right-hand screw rule in the local zdirection.

Freedoms

Φ: field variable at each node.

Node Coordinates

X. Y. Z: at each node.

Geometric Properties

See **Composites** in the *Modeller Reference Manual*

Material Properties

Linear Not applicableMatrix Not applicableJoint Not applicableConcrete Not applicable

Concrete Not applicable Elasto-Plastic Not applicable

Creep Not applicable

Damage Not applicable Viscoelastic Not applicable

Shrinkage Not applicable **Rubber** Not applicable

Generic Polymer Not applicable

Composite COMPOSITE MATERIAL

Field Isotropic: MATERIAL PROPERTIES FIELD

ISOTROPIC (Field: Isotropic) MATERIAL PROPERTIES FIELD ISOTROPIC CONCRETE (Field:

Isotropic)

Orthotropic: MATERIAL PROPERTIES FIELD

ORTHOTROPIC SOLID (Field:

Orthotropic Solid)

MATERIAL PROPERTIES FIELD ORTHOTROPIC SOLID CONCRETE

(Field: Orthotropic Solid)

Linear Not applicable

convection/radiation:

Arbitrary Not applicable

convection/radiation:

Loading

Prescribed Value PDSP, TPDSP p: field variable (temperature) at nodes.

Rate of Heat RGN Q: field loading at nodes.

Inflow at a Point

Element Loads Not applicable.

Distributed Loads UDL Not applicable.

FFL qa: (Q/unit area) at nodes

Rate of Heat RBC qv: (Q/unit volume) for element.

Inflow/Unit Volume

> RBV, RBVE qv: (Q/unit volume) at nodes/ for element.

Velocities Not applicable. **Accelerations** Not applicable. **Viscous Support** Not applicable.

Loads

Initial Not applicable.

Stress/Strains

Residual Stresses Not applicable.

Target Not applicable.

Stress/Strains

Temperatures Not applicable.

Field Loads ENVT Environmental boundary conditions (Pe,

> hc, hr: external environmental temperature, convective and radiative heat transfer

coefficients. (See Notes.)

Temp Dependent TDET **Temperature dependent boundary** Loads

conditions. Oe, hc, hr, T: external

environmental temperature, convective and radiative heat transfer coefficients and

temperature. (See *Notes*.)

RIHG Internal heat generation rate. Q, T:

coefficient/unit volume and temperature for

element. (See Notes.)

LUSAS Output

Field variable (temperature). gx, gy, gz, qx, qy, qz: gradients and

flows. Gauss point values are in local directions. Nodal values are

in global directions.

Modeller See **Results tables** (Appendix K)

Local Axes

The local axes for each layer are defined using the convention for standard area elements. Local axes are computed at the top and bottom quadratic surfaces (at the Gauss points) and average values are interpolated for the mid-surface. Every layer uses the same averaged values.

Sign Convention

■ Standard field elements

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity Default. 1-point for each layer (PF6C), 3-point for each

layer (PF12C), 2x2 for each layer (HF8C, HF16C)

Fine (see 3-point for each layer (PF6C), 3x3 for each layer

Options) (HF16C)

Specific Heat Default. 3x2 for the whole element (PF6C, PF12C) or (see

Options) 1-point for each layer (PF6C), 3-point for

each layer (PF12C), 2x2x2 for the whole element

or 2x2 for each layer (HF8C, HF16C)

Fine (see 3x2 for the whole element or 3-point for each *Options*) layer (PF6C), 3x3x2 for the whole element or 3x3

for each layer (HF16C)

Specific Heat Modelling

- Consistent specific heat (default).
- Lumped specific heat.

Options

- 18 Invokes fine integration rule for elements.
- 105 Lumped specific heat.
- 266 Layer by layer computation of specific heat matrix.

Notes on Use

- 1. The element formulations are based on the standard isoparametric approach.
- 2. For linear field problems only one load case is allowed if an ENVT load is to be applied.
- The COMPOSITE GEOMETRY and COMPOSITE MATERIAL data chapters must be used with this element in conjunction with the COMPOSITE ASSIGNMENTS data chapter.
- 4. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.

- 5. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
- 6. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
- 7. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.
- 8. The through thickness integration is performed assuming a linear variation of the field gradient-variable matrix for each layer.
- 9. Layer 1 is always the bottom layer.
- 10. The simplifying assumptions which allow the uncoupling of in-plane and through thickness co-ordinates leads to the restriction that any individual layer should be of a constant thickness. This restriction should be considered when the finite element mesh is created and adhered to as closely as possible. In addition, out of plane lamina curvatures should also be minimised although inplane curvature (in the x-y plane) is not restricted.

Restrictions

Ensure mid-side node centrality
Avoid excessive element curvature
Avoid excessive aspect ratio
Constant layer thickness for each individual layer

Recommendations on Use

The 3D solid composite field elements should be used for modelling thick composite structures comprising laminae of differing material properties where the computational cost of modelling each lamina with an individual solid element would be prohibitive. These field elements can be used to analyse continuum field problems where the response is fully 3D.

Element Reference Manual	

Chapter 10: Hygro-Thermal Elements

2D Plane Hygro-Thermal Elements

General

Element Group

Element

Subgroup Element Description

Hygro-Thermal

Plane Hygro-Thermal

A family of plane hygro-thermal elements in 2D with higher order elements capable of modelling curved boundaries. The elements can be used in hygro-thermal transient analyses, i.e. heat and moisture flow in porous media, e.g. concrete.

Nodes

Coordinates

Number Of 3, 4, 6 or 8 numbered anticlockwise.

Freedoms T, Pc: Temperature and capillary pressure at each node.

Node X, Y: at each node.

Geometric Properties

t1... tn Thickness at each node.

Material Properties

MATERIAL PROPERTIES HYGRO-Hygro-Thermal Linear Isotropic

THERMAL LINEAR

MATERIAL PROPERTIES HYGRO-Nonlinear

Isotropic THERMAL CONCRETE

Loading

Initial Conditions TMPE Initial temperature (T_0) and concrete relative

humidity (RH) per element.

TMP Initial temperature (T_0) and concrete relative

humidity (RH) per global nodes.

Prescribed TDSP Temperature (T) and concrete relative

Values

humidity (RH) at nodes. **RGN** Rates of heat (QT) and/or water inflow (QW)

concentrated at nodes.

RBVE Rates of heat and/or water inflow per unit

volume, per element, can vary across the

element.

RBV Rates of heat and/or water inflow per unit

volume, per global nodes.

RIHG Rates of heat and/or water inflow per unit

volume, per element at a specific reference

nodal temperature (See Notes.)

Boundary FFL Rates of heat and/or water inflow per unit

area (flux).

ENVT Environmental boundary condtions. Tenv,

> hc, hr, RH, hw: external environmental temperature, convective and radiative heat transfer coefficients, environmental relative humidity, water mass transfer coefficient.

(See Notes.)

TDET Temperature dependent environmental

boundary conditions. Tenv, hc, hr, RH, hw,

T: external environmental temperature, convective and radiative heat transfer

coefficients, environmental relative humidity, water mass transfer coefficient and reference

nodal temperature. (See Notes.)

LUSAS Output

Conditions

Solver Temperature gradients G_TX , G_TY , (in global directions)

Water saturation gradients G_WX , G_WY , (in global directions)

qX, qY (in global directions) Temperature fluxes

Water fluxes J_wX, J_wY, (in global directions)

Vapour fluxes J_vX , J_vY , (in global directions)

Modeller See Results Tables (Appendix K).

Local Axes

■ Standard surface element

Sign Convention

☐ Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

1-point (THT3), 3-point (THT6), 2x2 (QHT4), 3x3 (QHT8).

Options

55 Output all element Gauss point derivatives and state variables

Notes on Use

- The element formulations are based on the standard isoparametric approach.
 The variation of temperature and capillary pressure within an element is linear for the low order triangle and bi-linear for the low order quadrilateral; similarly it is quadratic for the higher order triangle and bi-quadratic for the higher order quadrilateral.
- Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear transient solution progresses.
- Decreasing permeability and increasing water vapour convection coefficient in ENVT may result in divergence and an unstable solution. A rough estimate for the latter may be obtained by dividing the heat convection coefficient by a factor of 104 (obtained by the Chilton-Colburn analogy and scaled by an average porosity).
- 4. Variable thickness results in a heat and moisture transfer that is not in the plane of the element, this effect is neglected. The variable thickness influences only the amount of heat and moisture stored in the element's volume.

- 5. Heat of hydration loading is defined via the hygro-thermal concrete material properties.
- 6. Concrete relative humidity RH in TMPE, TMP and TPDSP is internally converted to capillary pressure (Pc).
- 7. ENVT load over the area of the element cannot be modelled.

Restrictions

Ensure mid-side node centrality
Avoid excessive element curvature
Avoid excessive aspect ratio
Certain combinations of permeability and convection boundary water vapour
transfer coefficient may result in problems that do not converge.

Recommendations on Use

The plane hygro-thermal elements may be utilised for analysing continuum problems involving the heat of hydration of concrete, when behaviour is essentially two dimensional. These elements are normally used in a hygro-thermal-structural coupled analysis. They can be coupled with plane strain structural elements (since the heat/moisture exchange over the area of the element would have effect only near both ends of the 'infinite' thickness), or with thin, plane stress elements, when they are ideally isolated on both sides of their area.

2D Axisymmetric Solid Hygro-Thermal Elements

General

Element Group

Hygro-Thermal

Element Subgroup

Axisymmetric Solid Hygro-Thermal

Element Description

A family of axi-symmetric solid hygro-thermal elements in 2D with higher order elements capable of modelling curved boundaries. The elements can be used in hygro-thermal transient analyses, i.e. heat and moisture flow in porous media, e.g. concrete.

Number Of Nodes 3, 4, 6, or 8 numbered anticlockwise.

Freedoms Node Coordinates

Freedoms T, Pc: Temperature and capillary pressure at each node.

Node X, Y: at each node

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Hygro-Thermal Linear Isotropic

MATERIAL PROPERTIES HYGRO-THERMAL LINEAR

MATERIAL PROPERTIES HYGRO-Nonlinear

Isotropic THERMAL CONCRETE

Loading

Initial Conditions TMPE Initial temperature (T_0) and concrete relative

humidity (RH) per element.

Initial temperature (T_0) and concrete relative **TMP**

humidity (RH) per global nodes.

Prescribed TDSP Temperature (T) and concrete relative Values

humidity (RH) at nodes.

RGN Rates of heat (OT) and/or water inflow (OW)

concentrated at nodes.

RBVE Rates of heat and/or water inflow per unit

volume, per element, can vary across the

RBV Rates of heat and/or water inflow per unit

volume, per global nodes.

RIHG Rates of heat and/or water inflow per unit

volume, per element at a specific reference

nodal temperature (See Notes.)

Boundary FFL Rates of heat and/or water inflow per unit

area (flux).

ENVT Environmental boundary condtions. Tenv,

> hc, hr, RH, hw: external environmental temperature, convective and radiative heat transfer coefficients, environmental relative humidity, water mass transfer coefficient.

(See Notes.)

TDET Temperature dependent environmental

> boundary conditions. Tenv, hc, hr, RH, hw, T: external environmental temperature, convective and radiative heat transfer coefficients, environmental relative humidity,

water mass transfer coefficient and reference

nodal temperature. (See Notes.)

LUSAS Output

Conditions

Solver Temperature gradients G_TX , G_TY , (in global directions)

Water saturation gradients G_WX , G_WY , (in global directions)

Temperature fluxes qX, qY (in global directions)

Water fluxes J_wX , J_wY , (in global directions)

Vapour fluxes J_vX , J_vY , (in global directions)

Modeller See Results Tables (Appendix K).

Local Axes

☐ Standard surface element

Sign Convention

☐ Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

1-point (TXHT3), 3-point (TXHT6), 2x2 (QXHT4), 3x3 (QXHT8).

Options

- 47 Axisymmetry about the global X-axis
- 55 Output all element Gauss point derivatives and state variables

Notes on Use

- The element formulations are based on the standard isoparametric approach.
 The variation of temperature and capillary pressure within an element is linear for the low order triangle and bi-linear for the low order quadrilateral; similarly it is quadratic for the higher order triangle and bi-quadratic for the higher order quadrilateral.
- Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear transient solution progresses.
- 3. Decreasing permeability and increasing water vapour convection coefficient in ENVT may result in divergence and an unstable solution. A rough estimate for the latter may be obtained by dividing the heat convection coefficient by a factor of 104 (obtained by the Chilton-Colburn analogy and scaled by an average porosity).

- 4. Variable thickness results in a heat and moisture transfer that is not in the plane of the element, this effect is neglected. The variable thickness influences only the amount of heat and moisture stored in the element's volume.
- 5. Heat of hydration loading is defined via the hygro-thermal concrete material properties.
- 6. Concrete relative humidity RH in TMPE, TMP and TPDSP is internally converted to capillary pressure (Pc).

Restrictions

ч	Ensure mid-side node centrality
	Avoid excessive element curvature
	Avoid excessive aspect ratio
	Certain combinations of permeability and convection boundary water vapour
	transfer coefficient may result in problems that do not converge.

Recommendations on Use

The axi-symmetric solid hygro-thermal elements may be utilised for analysing continuum problems involving the heat of hydration of concrete, which exhibit geometric and loading symmetry about a given axis. These elements are normally used in a hygro-thermal-structural coupled analysis.

3D Solid Hygro-Thermal Elements

General

Element Group Element Subgroup Element Description Hygro-Thermal Solid Hygro-Thermal

A family of solid hygro-thermal elements in 3D with higher order elements capable of modelling curved boundaries. The elements can be used in hygro-thermal transient analyses, i.e. heat and moisture

flow in porous media, e.g. concrete

Number Of **Nodes**

4 and 10 (tetrahedra). 6, 12 and 15 (pentahedra). 8, 16 and 20 (hexahedra). The elements are numbered according to a right-hand screw rule in the local z-direction.

Coordinates

Freedoms T, Pc: Temperature and capillary pressure at each node.

Node X, Y, Z: at each node.

Geometric Properties

Not applicable.

Material Properties

MATERIAL PROPERTIES HYGRO-**Hygro-Thermal** Linear Isotropic

THERMAL LINEAR

Nonlinear MATERIAL PROPERTIES HYGRO-

Isotropic THERMAL CONCRETE

Loading

Initial Conditions TMPE Initial temperature (T_0) and concrete relative

humidity (RH) per element.

Initial temperature (T_0) and concrete relative TMP

humidity (RH) per global nodes.

Prescribed TDSP Temperature (T) and concrete relative

Values humidity (RH) at nodes.

> **RGN** Rates of heat (OT) and/or water inflow (OW)

> > concentrated at nodes.

RBVE Rates of heat and/or water inflow per unit

volume, per element, can vary across the

element.

RBV Rates of heat and/or water inflow per unit

volume, per global nodes.

RIHG Rates of heat and/or water inflow per unit

volume, per element at a specific reference

nodal temperature (See Notes.)

Boundary FFL **Conditions**

Rates of heat and/or water inflow per unit

area (flux).

ENVT Environmental boundary condtions. Tenv.

> hc, hr, RH, hw: external environmental temperature, convective and radiative heat transfer coefficients, environmental relative humidity, water mass transfer coefficient.

(See Notes.)

TDET <u>Temperature dependent environmental</u>

boundary conditions. Tenv, hc, hr, RH, hw, T: external environmental temperature, convective and radiative heat transfer coefficients, environmental relative humidity, water mass transfer coefficient and reference

nodal temperature. (See Notes.)

LUSAS Output

Solver Temperature gradients G_TX , G_TY , G_TZ (in global directions)

Water saturation G_WX , G_WY , G_WZ (in global directions)

gradients

Temperature fluxes qX, qY, qZ (in global directions)

Water fluxes J_wX, J_wY, J_wZ (in global directions)

Vapour fluxes J_vX , J_vY , J_wZ (in global directions)

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

☐ Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

1-point (THT4), 5-point (THT10), 3x2 (PHT6, PHT12, PHT15), 2x2x2 (HHT8), 3x3x2 (HHT16), 3x3x3 (HHT20)

Options

55 Output all element Gauss point derivatives and state variables

Notes on Use

- The element formulations are based on the standard isoparametric approach.
 The distribution of temperature and capillary pressure within an element may be regarded as linear or bilinear for low order elements and quadratic or biquidratic for higher order elements.
- 2. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
- 3. Decreasing permeability and increasing water vapour convection coefficient in ENVT may result in divergence and an unstable solution. A rough estimate for the latter may be obtained by dividing the heat convection coefficient by a factor of 104 (obtained by the Chilton-Colburn analogy and scaled by an average porosity).
- 4. Heat of hydration loading is defined via the hygro-thermal concrete material properties.
- 5. Concrete relative humidity RH in TMPE, TMP and TPDSP is internally converted to capillary pressure (Pc).

Restrictions

Ч	Ensure mid-side node centrality
	Avoid excessive element curvature
	Avoid excessive aspect ratio
	Certain combinations of permeability and convection boundary water vapour
	transfer coefficient may result in problems that do not converge.

Recommendations on Use

The solid hygro-thermal elements may be used to analyse continuum problems where the response is fully 3D (i.e. it cannot be approximated using the plane or axisymmetric elements). These elements are generally used for problems involving the heat of hydration of concrete, and are normally used in a hygro-thermal-structural coupled analysis.

Element Reference Manual		

Chapter 11: Interface Elements

2D Interface Element

General

Element Group

Interface

Element Subgroup 2D Interface

Element Description

A family of 2D interface elements used for modelling standard Mohr-Coulomb friction contact as well as delamination for plane stress, plane strain and axisymmetric crack propagation. An initial gap is allowed for Mohr-Coulomb friction contact but not for

delamination.

Number Of 4,6

Nodes

Freedoms U, V: at each node.

Node X, Y: at each node.

Coordinates

Geometric Properties

Not applicable to plane strain and axisymmetric elements. For plane stress t1..tn for each node

Material Properties

Linear Not applicable Matrix Not applicable Joint Not applicable Concrete Not applicable **Elasto-Plastic** Not applicable Not applicable Creep **Damage** Not applicable Viscoelastic Not applicable **Shrinkage** Not applicable

Interface Interface MATERIAL PROPERTIES

NONLINEAR 25

Interface MATERIAL PROPERTIES

INTERFACE

Rubber Not applicable

Generic Polymer Not applicable

Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V: at each node.

Concentrated CL Concentrated loads. Px, Py: at each node.

Loads

Element Loads Not applicable. **Distributed Loads** Not applicable.

Body Forces Not applicable.

VelocitiesVELOVelocities. Vx, Vy: at nodes.AccelerationsACCEAcceleration Ax, Ay: at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy: at

Loads nodes.

Initial Not applicable.

Stress/Strains

Residual Stresses Not applicable.

Target Not applicable.

Stress/Strains

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0,

0, 0, To, 0, 0, 0

Overburden Not applicable.
Phreatic Surface Field Loads Not applicable.
Temp Dependent Not applicable.

Loads

LUSAS Output

Solver Stress (default): shear and direct tractions.

Strain: shear and direct relative displacements

Modeller See **Results Tables (Appendix K)**.

Local Axes

Element Name

Evaluated at each node.

Sign Convention

A positive traction occurs if the local relative displacement (with respect to the first line of the element) is a positive value, i.e. for the quadratic elements at nodes 3 > 6 the local relative displacement, Ez, would be positive if (DZ3 - DZ6) > 0, where DZi is the local displacement at node i.

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.

Updated Not applicable.

Lagrangian

Eulerian Not applicable.

Co-rotational Applicable to IPN4 and IAX4 elements.

Integration Schemes

Stiffness Default. 2 (Newton Cotes) (IPN4, IPM4, IAX4) 3 (Newton-Cotes)

(IPN6, IPM6, IAX6)

Fine. As default

Mass Modelling

Not applicable.

Options

- 62 Continue solution if more than one negative pivot occurs
- 64 Non-symmetric solver
- 229 Co-rotational geometric non-linearity.

- 252 Suppress pivot warning messages.
- 261 Select the root with the lowest residual norm with arc-length.

Notes on use in delamination analyses

- 1. When defining the transient analysis control the arc-length procedure should be adopted with the option to select the root with the lowest residual norm [option 261].
- 2. It is recommended that fine integration [option 18] is selected for the parent elements.
- The nonlinear convergence criteria should be selected to converge on the residual norm.
- 4. Option 62, Continue solution if more than one negative pivot occurs, should be selected to continue if more than one negative pivot is encountered and option 252 should be used to suppress pivot warning messages from the solution process.
- The non-symmetric solver is selected automatically when mixed mode delamination is specified.
- 6. Although the solution is largely independent of the mesh discretisation, to avoid convergence difficulties it is recommended that at least 2 elements are placed in the process zone.

Restrictions

None.

Recommendations on Use

These elements may be used to model contact between two bodies. For delamination problems they should be placed at sites of potential delamination between 2D plane and axisymmetric continuum elements. The non-symmetric solver should be used.

2D Two Phase Interface Element

General

Element Group Interface

Nodes

Element 2D Two-phase Interface

Subgroup Element

A family of 2D interface elements used for modelling standard Mohr-Coulomb friction contact in soil/structure interactions.

Description Number Of

6

Freedoms U, V, P: at end nodes, U,V at middle nodes.

Node X, Y: at each node. **Coordinates**

Geometric Properties

Not applicable to plane strain and axisymmetric elements. For plane stress t1..tn for each node

Material Properties

Linear Not applicable Matrix Not applicable Joint Not applicable Concrete Not applicable Elasto-Plastic Not applicable Not applicable Creep Not applicable **Damage** Viscoelastic Not applicable Not applicable Shrinkage Interface Interface

MATERIAL PROPERTIES

NONLINEAR 25

Interface MATERIAL PROPERTIES

INTERFACE

Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Two-Phase Interface TWO PHASE MATERIAL INTERFACE

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V, P: at end nodes,

U,V at middle nodes.

Concentrated CL Concentrated loads. Px, Py, Q: at end

nodes, Px, Py at middle nodes.

Element Loads Not applicable.

Distributed Loads Not applicable.

Loads

Body Forces Not applicable.

VelocitiesVELOVelocities. Vx, Vy: at nodes.AccelerationsACCEAcceleration Ax, Ay: at nodes.Viscous SupportVSLViscous support loads. VLx, VLy: at

Loads nodes.

Initial Not applicable.

Stress/Strains

Residual Stresses Not applicable.

Target Not applicable.

Stress/Strains

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0,

0, 0, To, 0, 0, 0

Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.

Loads

LUSAS Output

Solver Stress (default): shear and direct tractions.

Strain: shear and direct relative displacements

Modeller See Results Tables (Appendix K).

Local Axes

Sign Convention

A positive traction occurs if the local relative displacement (with respect to the first line of the element) is a positive value, i.e. for the quadratic elements at nodes 3 > 6 the local relative displacement, Ez, would be positive if (Dz3 - Dz6) > 0, where Dzi is the local displacement at node i.

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.

Updated Not applicable.

Lagrangian

Eulerian Not applicable. **Co-rotational** Not applicable.

Integration Schemes

Stiffness Default. 3 (Newton-Cotes)

Fine. As default

Mass Modelling

Not applicable.

Options

Non-symmetric solver

Restrictions

None.

Recommendations on Use

These elements should be used to model soil/structure and soil/soil interactions. The nonsymmetric solver should be used.

3D Interface Element

General

Element Group

Interface

Element Subgroup 3D Interface

Element

Description Number Of A family of 3D interface elements used for modelling delamination and crack propagation.

and crack propag

Nodes

r Of 6,8,12,16

Freedoms Node U, V, W: at each node.

X, Y, Z: at each node.

Coordinates

Geometric Properties

Not applicable (a zero thickness is assumed).

Material Properties

Linear Not applicableMatrix Not applicableJoint Not applicableConcrete Not applicable

Elasto-Plastic Not applicable

Creep DamageViscoelastic ShrinkageNot applicable Not applicableNot applicable Not applicable

Interface Interface MATERIAL PROPERTIES

NONLINEAR 25

Interface MATERIAL PROPERTIES

INTERFACE

Rubber Not applicable

Generic Polymer Not applicable

Composite Not applicable

Loading

Prescribed Value PDSP, Prescribed variable. U, V, W: at each node.

TPDSP

Concentrated CL Concentrated loads. Px, Py, Pz: at each node.

Loads

Element Loads Not

applicable.

Distributed Loads Not

applicable.

Body Forces Not

applicable.

VelocitiesVELOVelocities. Vx, Vy, Vz: at nodes.AccelerationsACCEAcceleration Ax, Ay, Az: at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy, VLz: at

Loads nodes.

Initial Not

Stress/Strains applicable.

Residual Stresses Not

applicable.

аррисс

Target Not

Stress/Strains applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

To, 0, 0, 0

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress (default): shear tractions in X and Y, and direct tractions.

Strain: relative displacements in X, Y and Z directions.

Modeller See Results Tables (Appendix K).

Local Axes

Element Name

Evaluated at each node.

Evaluated at each node.

Sign Convention

A positive traction occurs if the local relative displacement (with respect to the first surface of the element) is a positive value, i.e. for the IS16 element at nodes 3 > 11 the local relative displacement, Ez, would be positive if (DZ11 - DZ3) > 0, where DZi is the local displacement at node i.

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.

Updated Not applicable.

Lagrangian

Eulerian Not applicable.

Co-rotational Applicable to IS6 and IS8 elements.

Integration Schemes

Stiffness Default. 3x3 (Newton-Cotes) (IS16), 2x2 (Newton Cotes) (IS8), 7-point

cubic (IS12), 3-point (IS6)

Fine. As default

Mass Modelling

Not applicable.

Options

- 62 Continue solution if more than one negative pivot occurs.
- 64 Non-symmetric solver.
- **229** Co-rotational geometric non-linearity.
- 252 Suppress pivot warning messages
- 261 Select the root with the lowest residual norm with arc-length.

Notes on Use

- 1. When defining the transient analysis control the arc-length procedure should be adopted with the option to select the root with the lowest residual norm [option 261].
- 2. It is recommended that fine integration [option 18] is selected for the parent elements.
- The nonlinear convergence criteria should be selected to converge on the residual norm.
- 4. Option 62, Continue solution if more than one negative pivot occurs, should be selected to continue if more than one negative pivot is encountered and option 252 should be used to suppress pivot warning messages from the solution process.
- The non-symmetric solver is selected automatically when mixed mode delamination is specified.
- 6. Although the solution is largely independent of the mesh discretisation, to avoid convergence difficulties it is recommended that at least 2 elements are placed in the process zone.

Restrictions

None.

Recommendations on Use

These elements should be used at places of potential delamination between 3D continuum elements. The non-symmetric solver should be used.

3D Two Phase Interface Element

General

Element Group

Interface

Element Subgroup

3D Two Phase Interface

Element Description

interactions

Number Of Nodes

12,16

Freedoms

U, V, W, P: at corner nodes, U, V, W at midside nodes

A family of 3D interface elements used for modelling soil/structure

Node X, Y, Z: at each node. **Coordinates**

Geometric Properties

Not applicable (a zero thickness is assumed).

Material Properties

Linear Not applicable Not applicable Matrix Joint Not applicable Concrete Not applicable Not applicable **Elasto-Plastic** Not applicable Creep **Damage** Not applicable Not applicable Viscoelastic Shrinkage Not applicable Interface

e Interface MATERIAL PROPERTIES

NONLINEAR 25

Interface MATERIAL PROPERTIES

INTERFACE

Two-phase Interface TWO PHASE MATERIAL INTERFACE

Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value PDSP, Prescribed variable. U, V, W, Q: at corner

TPDSP nodes U,V,W at midside nodes.

Concentrated CL Concentrated loads. Px, Py, Pz, Q: at corner

nodes, Px, Py, Pz at midside nodes.

Loads Element Loads Not

applicable.

Distributed Loads Not

applicable.

Body Forces Not

applicable.

VelocitiesVELOVelocities. Vx, Vy, Vz: at nodes.AccelerationsACCEAcceleration Ax, Ay, Az: at nodes.

Viscous Support VSL Viscous support loads. VLx, VLy, VLz: at

nodes.

Loads
Initial Not

Stress/Strains applicable.

Residual Stresses Not

applicable.

Target Not

Stress/Strains applicable.

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,

 $T_0, 0, 0, 0$

Overburden Not

applicable.

Phreatic Surface Not

applicable.

Field Loads Not

applicable.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress (default): shear tractions in X and Y, and direct tractions.

Strain: relative displacements in X, Y and Z directions.

Modeller See Results Tables (Appendix K).

Local Axes

Sign Convention

A positive traction occurs if the local relative displacement (with respect to the first surface of the element) is a positive value, i.e. for the IS16 element at nodes 3 > 11 the local relative displacement, Ez, would be positive if (Dz11 - Dz3) > 0, where Dzi is the local displacement at node i.

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable. **Updated** Not applicable.

Lagrangian

Eulerian Not applicable.

Co-rotational Applicable to IS6 and IS8 elements.

Integration Schemes

Stiffness Default. 3x3 (Newton-Cotes) (IS16), 2x2 (Newton Cotes) (IS8), 7-point

cubic (IS12), 3-point (IS6)

Fine. As default

Mass Modelling

Not applicable.

Options

Non-symmetric solver.

Restrictions

None.

Recommendations on Use

These elements should be used to model soil/structure and soil/soil interactions. The non-symmetric solver should be used.

Chapter 12 : Non-Structural Elements

2D Point Mass Element

General

Element Group
Element
Subgroup
Element
Description

Non-Structural Mass

2D Point

A 2D point mass element to model mass at a point.

Number Of Nodes Freedoms 2. The 2^{nd} node is used to define the local x-axis.

Node Coordinates U, V: at each node. X, Y: at each node.

Geometric Properties

Not applicable.

Generic Polymer

Material Properties

Linear Not applicable Not applicable Matrix Not applicable Joint Mass 2D **MATERIAL PROPERTIES MASS 21** Concrete Not applicable Not applicable **Elasto-Plastic** Not applicable Creep Not applicable **Damage** Not applicable Viscoelastic Not applicable Shrinkage Rubber Not applicable

Not applicable

Composite Not applicable Field Not applicable

Loading

Prescribed CBF Constant body forces for element. Xcbf, Ycbf,

Value Zcbf (applied as accelerations)

LUSAS Output

None

Local Axes

The 2nd node is used to define the local x-axis.

Sign Convention

□ Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Not applicable.

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

105 Lumped mass matrix.

Notes on Use

1. Use to model point mass in a structure.

Restrictions

None.

Recommendations on Use

The 2D point mass element can be used to model point masses occur in a 2D structure.

3D Point Mass Element

General

Element Group

Non-Structural Mass

Element Subgroup

3D Point

Element Description

A 3D point mass element to model mass at a point.

Number Of Nodes 3. The 2nd node is used to define the local x-axis. The 2nd and 3rd node define the local x-y plane.

Freedoms Node Coordinates U, V, W: at each node. X, Y, Z: at each node.

Geometric Properties

Not applicable.

Material Properties

Linear Not applicableMatrix Not applicableJoint Not applicable

Mass 3D.

MATERIAL PROPERTIES MASS 3 1

Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable

DamageNot applicableViscoelasticNot applicableShrinkageNot applicable

Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value CBF Constant body forces for element. Xcbf, Ycbf, Zcbf

(applied as accelerations)

Output

None

Local Axes

The 2^{nd} node is used to define the local x-axis. The 2^{nd} and 3^{rd} node define the local x-y plane.

Sign Convention

☐ Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Not applicable.

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

105 Lumped mass matrix.

Notes on Use

1. Use to model point mass in a structure.

Restrictions

None.

Recommendations on Use

The 3D point mass element can be used to model point masses occur in a 3D structure.

3D Line Mass Elements

General

Element Group

Non-Structural Mass

Element Subgroup

3D Line

Element Description

3D straight (LMS3) and curved (LMS4) line mass elements to model mass along an edge. The elements can accommodate varying

mass along the length.

Number Of Nodes 3 (LMS3). The 3rd node is used to define the local x-y plane. 4 (LMS4). The 4th node is used to define the local x-y plane.

End Releases Freedoms

U, V, W, θx , θy , θz : at each active node (see Notes).

Node

X. Y. Z: at each node.

Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable Matrix Not applicable Not applicable. Joint

Mass 3D. MATERIAL PROPERTIES MASS 3 2 (or 3)

Concrete Not applicable **Elasto-Plastic** Not applicable Creep Not applicable Damage Not applicable Viscoelastic Not applicable

> Not applicable Shrinkage

Rubber Not applicable **Generic Polymer** Not applicable **Composite** Not applicable

Loading

Prescribed Value CBF Constant body forces for element. Xcbf, Ycbf,

Zcbf (applied as accelerations)

Output

None

Local Axes

☐ Standard Line Element

Sign Convention

☐ Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Mass Default. 2-point

Fine 2-point (LMS2), 3-point (LMS3)

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

18 Invokes fine integration rule.

105 Lumped mass matrix.

Notes on Use

- 1. Use to model mass on an edge in a structure.
- 2. There is no mass associated with the rotational degrees of freedom θx , θy , θz ; these freedoms are used purely to orientate the directions of the local element

axes. If the LMS3/LMS4 elements are connected to an element that does not possess the same rotational degrees of freedom (e.g. the edge of a continuum element), then the rotational degrees of freedom will automatically be restrained.

Restrictions

- ☐ Ensure mid-side node centrality
- ☐ Avoid excessive element curvature

Recommendations on Use

3D line mass elements can be used to model masses along an edge in a 3D structure.

2D Line Mass Elements

General

Element Group No

Non-Structural Mass

Element 2D Subgroup

2D Line

Element Description

2D straight (LM2) and curved (LM3) line mass elements to model mass along an edge. The elements can accommodate varying mass along the length.

Number Of

2 (LM2). 3 (LM3).

Nodes

End Releases

Freedoms U, V: at each node.

Node Coordinates

Node X, Y: at each node.

Geometric Properties

Not applicable.

Material Properties

LinearNot applicableMatrixNot applicableJointNot applicable

Mass 2D.

MATERIAL PROPERTIES MASS 2 2 (or 3)

Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable

Rubber Not applicable

Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value CBF Constant body forces for element. Xcbf, Ycbf,

Zcbf (applied as accelerations)

Output

None

Local Axes

☐ Standard Line Element

Sign Convention

☐ Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Mass Default. 2-point

Fine 2-point (LM2), 3-point (LM3)

Mass Modelling

- ☐ Consistent mass (default).
- ☐ Lumped mass.

Options

18 Invokes fine integration rule.

105 Lumped mass matrix.

Notes on Use

1. Use to model mass on an edge in a structure.

Restrictions

☐ Ensure mid-side node centrality

۱.: ۵ ۸		-1	
AVOIG	excessive	eiement	curvature

Recommendations on Use

2D line mass elements can be used to model masses along an edge in a 2D structure.

Surface Mass Elements

General

Element Group Element Subgroup Non-Structural Mass 3D Surface

Subgroup Element Description

3D surface mass elements to model mass on a surface.

Number Of Nodes End Releases 3,4,6 or 8.

Freedoms

U, V, W: at each node.

Node Coordinates X, Y, Z: at each node.

Geometric Properties

Not applicable.

Material Properties

Linear Not applicableMatrix Not applicable

Joint Not applicable

Mass 3D MATERIAL PROPERTIES MASS 3 (3,4,6

or 8)

Concrete Not applicable.
Creep Not applicable.
Not applicable Not applicable
Not applicable
Not applicable
Not applicable
Not applicable
Not applicable
Not applicable
Not applicable
Not applicable

Generic Polymer Not applicable

Composite Not applicable.

Loading

Prescribed Value CBF Constant body forces for element. Xcbf, Ycbf, Zcbf

(applied as accelerations)

Output

None

Local Axes

■ Standard Surface Element

Sign Convention

Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Mass Default. 1-point (TM3), 3-point (TM6), 4-point (QM4,QM8) Fine 3-point (TM3, TM6), 4-point (QM4), 9-point (QM8)

Mass Modelling

☐ Consistent mass (default).

☐ Lumped mass.

Options

18 Invokes fine integration rule.

105 Lumped mass matrix.

Notes on Use

1. Use to model mass on a surface in a structure.

Restrictions

	1	Ensure	mid-side	node	central	it	v
--	---	--------	----------	------	---------	----	---

☐ Avoid excessive element curvature

☐ Avoid excessive aspect ratio

Recommendations on Use

The surface mass elements can be used to model masses on a surface 3D structures.

Chapter 13 : Rigid Slideline Elements

Rigid Slideline Surface 2D Elements

General

Rigid

Element Group

Element

2D Rigid Slideline Surface

Subgroup

Element deformable surfaces in a contact analysis.

2D Rigid Slideline Surface elements capable of modelling non-

Description Number Of

Nodes

Coordinates

Freedoms U, V at each node

Node X. Y at each node.

Geometric Properties

Not applicable.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V at each node.

Concentrated Loads Not applicable.

Element Loads Not applicable. **Distributed Loads** Not applicable. **Body Forces** Not applicable.

Velocities **VELO** Velocities. Vx, Vy at nodes. Accelerations ACCE Acceleration Ax, Ay at nodes.

Not applicable.

Viscous Support

Loads

Initial Not applicable.

Stress/Strains

Residual Stresses
Temperatures
Field Loads
Temp Dependent
Not applicable.
Not applicable.
Not applicable.

Loads

LUSAS Output

Solver Displacements & Reactions only.

Modeller Displacements & Reactions only.

Formulation

Geometric Nonlinearity

Total Lagrangian Depends on the other surface (deformable surface) which is in

contact with the rigid surface. See the related section for the

deformable surface elements.

Updated As above.

Lagrangian

Eulerian As above. **Co-rotational** As above.

Integration Schemes

Not applicable.

Mass Modelling

Not applicable.

Restrictions

- A rigid slideline surface cannot contact another rigid slideline surface.
- Rigid slideline surface elements do not accept external applied forces.

Notes on use

1. All the rigid slideline surface element nodes must be fully restrained.

- 2. There is no stress and strain calculation for these elements.
- 3. If rigid slideline surfaces are defined there is no need to assign geometric and material properties to these elements. However, when using automatic contact surfaces, linear elastic isotropic material properties need to be assigned.
- 4. For saving analysis time a one pass contact algorithm can be used. In this case only the penetration of the deformable surface into the rigid slideline surface is checked. To avoid the penetration of the rigid surface into the deformable surface use either the default two pass algorithm or a finer mesh on the deformable surface.

Recommendations on Use

These elements should be used when one of the surfaces which come into contact is non-deformable. Using these elements will make the analysis faster.

Rigid Slideline Surface 3D Elements

General

Name

R3D4

Element Group

Element Subgroup 3D Rigid Slideline Surface

Element
Description
Number Of

3D Rigid Slideline Surface elements capable of modelling nondeformable surfaces in a contact analysis.

3/4

Rigid

Nodes Freedoms

Node

U, V, W at each node. X, Y, Z at each node.

Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic:

Isotropic)

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V, W at each

node.

Concentrated Not applicable.

Loads

Element Loads Not applicable.

Distributed Loads Not applicable.

Body Forces Not applicable.

VelocitiesVELOVelocities. Vx, Vy, Vz at nodes.AccelerationsACCEAcceleration Ax, Ay, Az at nodes.

Viscous Support Not applicable.

Loads

Initial Not applicable.

Stress/Strains

Residual StressesNot applicable.TemperaturesNot applicable.Field LoadsNot applicable.Temp DependentNot applicable.

Loads

LUSAS Output

Solver Displacements & Reactions only.

Modeller Displacements & Reactions only.

Formulation

Geometric Nonlinearity

Total Lagrangian Depends on the other surface (deformable surface) which is in

contact with the rigid surface. See the related section for the

deformable surface elements.

Updated As above.

Lagrangian

Eulerian As above. **Co-rotational** As above.

Integration Schemes

Not applicable.

Mass Modelling

Not applicable.

Restrictions

- A rigid slideline surface cannot contact another rigid surface.
- Rigid slideline surface elements do not accept external applied forces.

Notes on use

- 1. All the rigid slideline surface element nodes must be fully restrained.
- 2. There is no stress and strain calculation for these elements.
- 3. If rigid slideline surfaces are defined there is no need to assign geometric and material properties to these elements. However, when using automatic contact surfaces, linear elastic isotropic material properties need to be assigned.
- 4. For saving analysis time a one pass contact algorithm can be used. In this case only the penetration of the deformable surface into the rigid slideline surface is checked. To avoid the penetration of the rigid surface into the deformable surface use either the default two pass algorithm or a finer mesh on the deformable surface.

Recommendations on Use

These elements should be used when one of the surfaces which come into contact is non-deformable. Using these elements will make the analysis faster.

Element Reference Manual	

Chapter 14: Phreatic Elements

Phreatic Surface 2D Elements

General

Element Group Element Subgroup Phreatic surface
2D Phreatic Surface

Element Description 2D Phreatic surface elements for defiing phreatic surface

Number Of Nodes

f 2

Freedoms Node U, V at each node X. Y at each node.

Coordinates

Geometric Properties

Not applicable.

Material Properties

Not applicable.

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V at each node.

Concentrated Not applicable.

Loads

Element Loads Not applicable.

Distributed Loads Not applicable

Distributed Loads Not applicable.

Body Forces Not applicable.

VelocitiesVELOVelocities. Vx, Vy at nodes.AccelerationsACCEAcceleration Ax, Ay at nodes.

Viscous Support Not applicable.

Loads

Initial Not applicable.

Stress/Strains

Residual StressesNot applicable.TemperaturesNot applicable.Field LoadsNot applicable.Temp DependentNot applicable.

Loads

LUSAS Output

Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Not applicable.

Mass Modelling

Not applicable.

Restrictions

Not applicable.

Notes on use

- 1. All the phreatic surface element nodes must be fully restrained.
- 2. There are no stress or strain calculations.
- 3. There is no need to assign geometric and material properties.
- 4. The phreatic surface elements are used with the Phreatic Surface load type and are used to define the location and extent of a phreatic surface.

Recommendations on Use

These elements are for use in geotechnical problems for the definition of the nodal pore-water pressures and hydrostatic loads.

Phreatic Surface 3D Elements

General

PHS4

Element Group

Element Subgroup

Element Description

3/4

Number Of Nodes

Freedoms

Node Coordinates Phreatic Surface
3D Phreatic Surface

3D Phreatic surface elements for defiing phreatic surface.

U, V, W at each node.

X, Y, Z at each node.

Geometric Properties

Not applicable.

Material Properties

Not applicable.

Loading

Velocities

VELO

Velocities. Vx, Vy, Vz at nodes.

Temperatures Temp Dependent

Not applicable.

emp Depender Loo Not applicable.

Loads

Residual Stresses Not applicable.

Prescribed Value

PDSP, TPDSP

Prescribed variable. U, V, W at each node.

Viscous Support

Loads

Not applicable.

Initial Not applicable.

Stress/Strains

Field Loads Not applicable.

Element Loads Not applicable.

Distributed Loads Not applicable.

Concentrated Not applicable.

Loads

Body Forces Not applicable.

Accelerations ACCE Acceleration Ax, Ay, Az at nodes.

LUSAS Output

Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Not applicable.

Mass Modelling

Not applicable.

Restrictions

Not applicable.

Notes on use

- 1. All the phreatic surface element nodes must be fully restrained.
- 2. There are no stress or strain calculations.
- 3. There is no need to assign geometric and material properties.
- 4. The phreatic surface elements are used with the Phreatic Surface load type and are used to define the location and extent of a phreatic surface.

Recommendations on Use

These elements are for use in geotechnical problems for the definition of the nodal pore-water pressures and hydrostatic loads.

Element Reference Manual	

Appendix A: Element and Pressure Loads

ELDS Element Loads

These are referred to as Internal Beam Point Loads and Internal Beam Distributed Loads within LUSAS Modeller.

Parameter	Description
Itype	Element load type
S1, S2	Distances to specified loads
Px, Py, Pz	Point loads in local/global directions
Mx, My, Mz	Point moments in local/global directions
Wx, Wy, Wz	Distributed loads in local/global directions

Itype 11

Point loads and moments in local directions

Itype 12

Point loads and moments in global directions

Itype 21

Uniformly distributed loads in local directions

Itype 22

Uniformly distributed loads in global directions

Itype 23

Uniformly distributed projected loads in global directions

Itype 31

Distributed loads in local directions. Multiple load sets supported.

Itype 33

Distributed loads in global directions. Multiple load sets supported.

Distributed projected loads in global directions. Multiple load sets supported.

Itype 41

Trapezoidal loads in local directions
Definition only supported in LUSAS Solver. In
LUSAS Modeller trapezoidal beam loads are
defined in accordance with ltype 31.

Itype 42

Trapezoidal loads in global directions

Definition only supported in LUSAS Solver. In

LUSAS Modeller trapezoidal beam loads are
defined in accordance with ltype 32.

Itype 43

Trapezoidal projected loads in global directions Definition only supported in LUSAS Solver. In LUSAS Modeller trapezoidal beam loads are defined in accordance with Itype 33.

ENVT/TDET Environmental Boundary Conditions

Contains some or all of:

Parameter	Description
Tenv	External environmental temperature.
hc	Convective heat transfer coefficient.
RH	Radiative heat transfer coefficient.
hv	Vapour mass transfer coefficient.
Т	Temperature for element.

Face Numbering Convention for Thermal Bars

Note

The environmental temperature loading for node 2 cannot be specified for a 3 noded bar.

FLD Face loading applied to thermal bars

Face number = local node number

Face Numbering Convention for Thermal Bars

Face Loads On 2D Continuum Elements

Parameter	Description
Px, Py	Face pressures defined at nodes in local x, y directions

Notes

- In structural analysis note that the direction of the normal face load is not consistent between 2D and 3D continuum elements. For 2D continuum elements it is from the face towards the interior of the element. For 3D elements it is in the opposite direction from the face of the element outwards.
- Face loads for explicit dynamics elements are constant, i.e. the average of the input nodal pressures

Face Numbering Convention

Face Loads On 3D Continuum Elements

Paramet	Description
er	
Px, Py, Pz	Face pressures defined at nodes in local x, y directions acting positively in the local coordinate directions

Note

- In structural analysis note that the direction of the normal face load is not consistent between 2D and 3D continuum elements. For 2D continuum elements it is from the face towards the interior of the element. For 3D elements it is in the opposite direction from the face of the element outwards.
- Face loads for explicit dynamics elements are constant, i.e. the average of the input nodal pressures.+

Local Face Coordinates

Face Numbering Convention

The following diagrams show exploded view of the various 3D elements. The grey faces show the element external faces that can be seen from a single perspective point, the white faces depict the internal faces from the same view point.

Notes

• The views of the internal faces show the x-axis direction from the inside. Take care when converting this to a view from the outside of the element.

4-Noded Tetrahedra

10-Noded Tetrahedra

6-Noded Pentahedra

12-Noded Pentahedra

15-Node Pentahedra

8-Noded Hexahedra

16-Noded Hexahedra

20-Noded Hexahedra

UDL Loads on Shells

Element Reference Manual	

S2

S3

Appendix B: Element Restrictions

Mid-side Node Centrality

The mid-length node must be equidistant from the end nodes. Mid-side nodes may be automatically corrected for elements with global translational mid-side node freedoms using Option 49. The mid-side node is moved along the existing element edge until it is positioned centrally.

Excessive Element Curvature

Elements must not be excessively curved. A warning will be invoked (but the analysis will continue) if the element curvature is not in accordance with the following inequalities:

i) ABS (S1-S2) / (S1+S2) < 0.05

ii) (S1+S2) / S3 < 1.02

Where the function ABS returns the absolute value of the arguments.

Excessive Aspect Ratios

An aspect ratio can be defined as the ratio of the longest to shortest element side lengths, such that:

- \square R = max (a/b, b/a) for surface elements (e.g. 2D continuum, plates and shells)
- \square R = max (a/b, b/a, c/a, c/b, ...) for three dimensional solid elements

Elements must not have an excessive aspect ratio. A warning will be invoked (but the analysis will continue) if the element aspect ratio is greater than 10.

In general, severe distortion of an element will affect the accuracy of the stress distribution through an element. The type of stress field being imposed is also of importance, since a badly shaped element will still yield a good distribution in the presence of a constant uniaxial stress field, but not when subjected to a full stress field in which any of the components have a significant variation across the element.

The force equilibrium for the element will always be satisfied.

Excessive Warping

The four nodal points defining quadrilateral surface elements should be coplanar. However a small out of plane tolerance is permitted to allow a slightly warped shape according to

$z < 0.01(L_{12})$

where z is the out of plane distance of a node,

and L12 is the length between the first and second nodes.

If the above inequality is exceeded a warning will be issued but the analysis will proceed.

Appendix C : Local Element Axes

Standard Joint Element

Local x-axis The local x-axis is defined by the vector between the first and the third nodes of the element topology.

Note.

The third node must be different from nodes 1 and 2 of the topology.

Standard Line Element

Local x axis The local x-axis lies along the element in the direction in which the element nodes are defined. For curved elements the local x-axis is the tangent to the curve.

Local y axis The local xy plane is either defined by a dummy node and the two end nodes, or (in the absence of a dummy node), defined by the two end nodes and the central node. For the latter case, the local y-axis is perpendicular to the x-axis and on the positive convex side.

Local z axis The local z-axis forms a right-handed set with the local xy plane.

For cross-section beams the top surface is defined by the local +ve z direction.

Note

Default line axes are defined in Modeller with the local x axis of the element following the line direction. The element local z is then defined in the XZ plane unless the local x axis is aligned to the global Z axis in which case the element local z axis is aligned with the global Y axis.

Standard Surface Element

Local x axis For 3 or 4 noded elements the local x-axis is defined by a line joining the first and second element nodes. For 6 and 8 noded elements the local x-axis is the tangent to the curve between the first 3 nodes.

Local y axis The local xy-plane is defined by the remaining nodes, the local y-axis being perpendicular to the x-axis and forming a right-handed set with the x-axis and the xy plane.

Local z-axis The local z-axis forms a right-handed set with the local x and y-axes. For shell elements the top surface is defined by the local +ve z direction.

Appendix D : Sign Conventions

The sign convention for forces, moments, stresses, rotations, eccentricities and potentials for different element types is documented in the following section headings.

Standard Bar Element

Axial force

(+ve) Axial tension (-ve) Axial compression

Standard Beam Element

Numerically Integrated Beam Elements

Axial force

(+ve) Axial tension

(-ve) Axial compression

Bending Moment

(+ve) Hogging moment (Top of beam in tension)

(-ve) Sagging moment (Bottom of beam in tension)

Note: The top/bottom of the beam is determined by the element axes.

Torsion

- (+ve) Rotation at 1st node greater than rotation at other end node
- (-ve) Rotation at 1st node smaller than rotation at other end node

Grillage Elements

End Forces and Rotations

Positive end forces and rotations for grillage elements are those acting on the element nodes in local directions, and are as follows:

Note that when a reference path has been specified, additional force/moment components are available, and for this situation the x, y, and z element axes relate to longitudinal, transverse and vertical terms respectively. For instance My will relate to MF (longitudinal) - the flexural moment in longitudinal members that are following the path and MF (transverse) - the flexural moment in the transverse members that are orthogonal or skewed in relation to the reference path. Similarly, Fz will relate to FV (longitudinal) - the force in the vertical direction for longitudinal members that are following the path and FV (transverse) - the vertical direction for transverse members that are orthogonal or skewed in relation to the reference path.

Internal forces

These forces follow the sign convention for numerically integrated beams.

Axial force	Bending Moment	Torsion
Not	(+ve) Sagging	(+ve) Rotation at 1st node greater than rotation

applicable moment at other end node

(-ve) Hogging (-ve) Rotation at 1st node smaller than rotation

moment at other end node

Sign convention in Modeller for bending moment

(+ve) Top of beam in tension

(-ve) Bottom of beam in tension

Where the top/bottom of the beam are determined by the element axes

See <u>numerically integrated beam sign convention</u>.

2D Engineering Beam Elements

End Forces and Rotations

Positive end forces and rotations for 2D engineering beams are those acting on the element nodes in local directions, and are as follows:

Internal forces

These forces follow the sign convention for numerically integrated beams.

Axial force	Bending Moment	
(+ve) Axial tension	(+ve) Hogging moment	
(-ve) Axial compression	(-ve) Sagging moment	

Sign convention in Modeller for bending moment

(+ve) Top of beam in tension

(-ve) Bottom of beam in tension

Where the top/bottom of the beam are determined by the element axes

See <u>numerically integrated beam sign convention</u>.

3D Engineering Beam Elements

End Forces and Rotations

Positive end forces and rotations for 3D engineering beams are those acting on the element nodes in local directions, and are as follows:

Internal forces

These forces follow the sign convention for numerically integrated beams.

Axial force	Bending Moment	Torsion
(+ve) Axial tension (-ve) Axial compression	(+ve) Hogging moment (-ve) Sagging	(+ve) Rotation at 1st node greater than rotation at other end node(-ve) Rotation at 1st node smaller than rotation at other end node

Sign convention in Modeller for bending moment

(+ve) Top of beam in tension

(-ve) Bottom of beam in tension

Where the top/bottom of the beam are determined by the element axes

See numerically integrated beam sign convention.

Standard Beam Eccentricities

Eccentricities are optional geometric properties for some elements and may be specified if the nodal line of the element does not lie along the required bending line/plane for the structural component being modelled.

Measurement of Ez (see diagram) is **from** the required bending plane (the beam xy plane) **to** the nodal line in the local element axis z-direction. If a beam xy

plane is required such that it has negative local z coordinates relative to the nodal line, the eccentricity is positive.

Similarly, measurement of Ey is **from** the required bending plane (the beam xz plane) **to** the nodal line in the local element axis y-direction. If a beam xz plane is required such that it has negative local y coordinates relative to the nodal line, the eccentricity is positive.

Standard 2D Continuum Element

Direct stress

(+ve) Tension

(-ve) Compression

Shear stress

(+ve) Shear into XY quadrant

(-ve) Shear into XY quadrant

Note. Positive stress values are shown.

$Y \downarrow \qquad \qquad \sigma y \downarrow \qquad \sigma xy \downarrow \qquad \sigma x$

Standard 3D Continuum Element

Direct stress

(+ve) Tension

(-ve) Compression

Shear stress

(+ve) Shear into XY, YZ and XZ quadrants

(-ve) Shear into XY, YZ and XZ quadrants

Note. Positive stress values shown.

Standard Plate Element

Flexural stress

(+ve) Hogging moment (producing +ve stresses on the element top surface)

(-ve) Sagging moment (producing -ve stresses on the element top surface)

The +ve local z-direction defines the top surface.

Thin Shell Element

Membrane stress

(+ve)	Direct tension
(-ve)	Direct compression
(+ve)	In-plane shear into xy quadrant
(-ve)	In-plane shear into xy quadrant

Flexural stress

- (+ve) Hogging moment (producing +ve stresses on the element top surface)
- (-ve) Sagging moment (producing -ve stresses on the element top surface)

Notes

- Positive stress values shown.
- The +ve local z-direction defines the top surface.

Thin Shell Eccentricity

Eccentricity is an optional geometric property for this element type and may be specified if the nodal plane of the element does not lie along the required bending plane for the structural component being modelled.

Measurement of ez is **from** the required bending plane **to** the nodal plane in the local element axis z-direction.

Thick Shell Element

Thick shell stress (top, middle and bottom)

Direct stress (+ve) Tension (-ve) Compression

Shear stress (+ve) As shown in the following images

(-ve) In the reverse directions in following images

Stress Resultant

Membrane stress	(+ve) (-ve)	Direct tension Direct compression
	(+ve) (-ve)	In-plane shear into xy quadrant In-plane shear into xy quadrant
Flexural stress	(+ve) (-ve)	Hogging moment (producing +ve stresses on the element top surface) Sagging moment (producing -ve stresses on the element top surface)

The +ve local z-direction defines the top surface.

Cylindrical local coordinate system

The cylindrical local coordinate systems above are based upon the following:

Thick Shell Eccentricity

Eccentricity is an optional geometric property for this element type and may be specified if the nodal plane of the element does not lie along the required bending plane for the structural component being modelled.

Measurement of ez is **from** the required bending plane **to** the nodal plane in the local element axis z-direction.

Standard Membrane Element

Direct stress	(+ve)	Tension
	(-ve)	Compression
Shear stress	(+ve)	Shear into xy quadrant
	(-ve)	Shear into xy quadrant

Standard Field Element

Potential

(+ve) +ve field value, dT/dx rate of change of field in x direction

Standard Joint Element

Direct force: (+ve) Tension and (-ve) Compression

Spring Moment: (+ve) for positive rotational spring strain and (-ve) for negative rotational spring strain

The sign of joint results is dependent upon both the element direction(that is which geometry is the master, and which is the slave) and the orientation of the local coordinate axes chosen.

Coincident Master and Slave nodes, M = Master, S= Slave

Compression	Tension	Negative Moment	Positive Moment
Mu > Su	Su > Mu	$M_{\theta x} > S_{\theta x}$	$S_{\theta x} > M_{\theta x}$
Mv > Sv	Sv > Mv	$M_{\theta y} > S_{\theta y}$	$S_{\theta y}\!>M_{\theta y}$
Mw > Sw	Sw > Mw	$M_{\theta z} > S_{\theta z}$	$S_{\theta z} > M_{\theta z}$

Element Reference Manual	
-	

Appendix E: Thick Shell Notation

Thick Shell Nodal Rotation

Problems with Singularities

In general, five degrees of freedom will be associated with each shell node: three translations and two rotations. The first axis of rotation will be defined by one of the global axes. The second axis of rotation is defined by the vector product of the selected global axis and the nodal normal.

Choosing one global axis to define the first rotation is not possible for all cases as singularities can occur depending on the orientation of the shell. As the topology of the shell cannot be known a means of choosing suitable rotations after the shell orientation has been defined must be provided.

How the Nodal Systems are Defined

The axis defining the $\theta\alpha$ rotation is chosen by examining the global components of the nodal normal. The smallest (absolute) component of the normal vector defines the global axis to be chosen as the first axis of rotation. The vector product of this axis and the nodal normal defines the axis for the second rotation $\theta\beta$. If the nodal normal coincides with the global Z axis, the global X axis will be chosen to define

 $\theta\alpha$. In this instance, the X and Y components will both be minimum values. When two components define the same minimum value the order of priority for selection of the axis is X, Y, Z. Note that, in general, the axes of rotation and the nodal normal will form a non-orthogonal left-handed set. The rotations are indicated in the following figure where the global x axis has been used to define $\theta\alpha$:

Five or Six Degrees of Freedom at a Node

LUSAS Solver will automatically select five degrees of freedom at a node, with rotations defined as above, unless:

- ☐ The maximum angle between the normals of adjacent elements meeting at the node is greater than 20 degrees. The value of 20 degrees is selected by default and may be changed using the SYSTEM parameter SHLANG.
- ☐ Beam, joint or other shell element types are connected to the node
- ☐ <u>Concentrated loads</u> or <u>support conditions</u> have been specified at the node using LUSAS Modeller
- ☐ Option 278 has been specified
- □ Six degrees of freedom have been selected for the node within the NODAL FREEDOMS data chapter If six degrees of freedom are used at a node the rotations will relate to the global axes, θX, θY and θZ unless TRANSFORMED FREEDOMS have been specified. It is recommended that the default value for SHLANG is retained wherever possible.

When are Six Degrees of Freedom Necessary?

Rotations relating to global axes will be required in the following circumstances:

☐ When a branched shell connection exists in the structure to be analysed.

LUSAS Solver will automatically detect this and assign six degrees of freedom to nodes along the branch connection.

When connecting with other element types. Six degrees of freedom will
automatically be assigned to shell nodes connected to beams, joints or other
shell element types.

☐ When boundary conditions or loading cannot be easily specified using the above definition of rotations, e.g. when applying moments or using symmetry.

If the rotations $\theta\alpha$, θ_{β} will not allow the required loading or symmetry conditions to be applied, rotations about global axes may be enforced using NODAL FREEDOMS. The use of TRANSFORMED FREEDOMS will then allow the rotations to be related to a more convenient local orthogonal set if necessary. If six degrees of freedom at a node are enforced using NODAL FREEDOMS (i.e. not set automatically by LUSAS Solver) singularities may occur if the **in-plane rotation** (about the normal) **is not restrained**.

Element Reference Manual	

Appendix F: Newton Coates Integration

Newton-Cotes Integration Points

For beam elements BMX3, BSX4 and BXL4 the rigidity is computed by integration of the cross section. The default integration employs a 3x3 Newton Cotes rule for linear materials and a 5x5 rule for nonlinear materials. These may be altered by the user within the GEOMETRIC PROPERTIES definition. The locations of the default integration points are shown in the accompanying diagram, together with the local axes for the beam cross section (note the different corner numbering). The integration points are equally spaced along a particular natural ordinate for the section. The integration point numbers shown correspond with those given in the stress output for the element. More information on the cross sectional integration for these elements is available in the *LUSAS Theory Manual*.

Newton-Cotes Integration Points for 3D Elements

Newton-Cotes Integration Points for 2D Elements

Appendix G: Shear Area and Torsional Constant

Shear Areas

In beams of small span to depth ratio, the shear stresses are likely to be high and the resulting deflection due to shear may not be negligible. The shear area is used to control the amount of shear deformation which will occur (Asz, Asy). For various sections, approximate values are as follows:

- \square Rectangular beams = 5A/6
- ☐ I-beams (along web direction) = Area of web
- \Box I-beams (along flange direction) = Area of flanges
- \Box Thin walled, hollow circular section = A/2
- \Box Solid circular section = 9A/10
- \square No shear deformation = 1000A

Note

- If Asz or Asy equal zero, mechanisms may occur.
- For elements which support this geometric input, shear deformation effects may be removed by assigning an artificially large value.
- The section property calculator in Modeller can be used to accurately compute shear areas

Torsional Constant

The torsional constant provides a measure of the torsional rigidity of a line member. Approximate values are as follows:

Solid circle

(equivalent to the polar moment of inertia)

$$\frac{\pi r^4}{2}$$

where \mathbf{r} is the radius of the circle

Hollow circle

$$\frac{\pi}{2} \left(r_2^4 - r_1^4 \right)$$

where r2 is the outer radius and r1 is the inner radius

Solid square = 0.1406a⁴

where a is the side length

Solid rectangle =

$$ab^3 \left[\frac{16}{3} - 3.36 \frac{b}{a} \left(1 - \frac{b^4}{12a^4} \right) \right]$$

where **2a** is the length of the longest side and **2b** is the length of the shortest side

Equilateral triangle

$$\frac{a^4\sqrt{3}}{80}$$

where a is the side length

Rectangular tube

$$\frac{2 \cdot t_1 \cdot t_2 \cdot (a - t_2)^2 (b - t_1)^2}{at_2 + bt_1 - t^2_2 - t^2_1}$$

where

a is the length of the longest side

t1 is the thickness of the longest side

b is the length of the shortest side

t2 is the thickness of the shortest side

Thin rectangle

$$\frac{1}{3}$$
 bt³

where **b** is the rectangle length and **t** is the rectangle length thickness

Any section consisting of thin rectangles

$$\frac{1}{3} \Sigma \text{ bt}^3$$

Solid ellipse

where **2a** is the longest dimension and **2b** is the shortest dimension

Note

 The section property calculator in Modeller can be used to accurately compute torsional constants

Element Reference Manual	

Appendix H: Principal Stress Output

Output Notation for Principal Stresses

For a bi-axial stress state, the Mohr's circle representation of a stress field is:

where:

Smax is the maximum principal stress.

Smin is the minimum principal stress

Ss is the maximum shear stress

 β defines the orientation of the principal axis (the plane on which the principal stresses act).

Sx, σ y, σ xy represent an arbitrary two dimensional stress state.

Element Reference Manual	

Appendix I: Mass Lumping

Mass Lumping in LUSAS

Non-Structural mass elements are used to define a lumped mass at a point, or a distributed mass along a line and over a surface.

See Non-Structural Mass Elements in the Modeller Reference Manual for more details.

Element Reference Manual	

Appendix J: Moments of Inertia

Moments of Inertia Definitions

Second moment of area about line yy

$$I_{yy} = \int z^2 dA$$

Second moment of area about line zz

$$I_{zz} = \int y^2 dA$$

Product moment of inertia of section

$$I_{yz} = \int yz dA$$

(=0 for sections symmetric about **either** yy or zz)

First moment of area about yy

$$I_v = \int z dA$$

(=0 for sections symmetric about yy)

First moment of area about zz

$$I_z = \int y dA$$

(=0 for sections symmetric about zz)

Note

- The above definitions are for a section defined in the two dimensional yz plane. Similar expressions apply for a section in the three dimensional space.
- For a beam with eccentricity e from the nodal line, then:

$$I_{zz} = Ae^2 + I_{na}$$
 and $I_z = eA$

where na is the second moment of area about the centroidal axis.

• For the purpose of the moment inertia definitions above only, the eccentricity is measured **from the nodal line to the required bending plane** (the beam's xy plane in the figure above). For example, if a beam xy plane is required such that it has negative local z coordinates relative to the nodal line, the eccentricity to be used above is negative.

Appendix K: Results Tables

Key to Element Results Tables

This section contains the notation for the results in the Results Tables. Some results are available in local and global directions depending on the element type. The case of the direction indicator associated for each term in the table will indicate its default direction for that element. Lower case indicates local element directions and upper case indicates that results are available in global directions by default.

Displacements

DX	Displacement in X direction	THL1	First loof rotation
DY	Displacement in Y direction	THL2	Second loof rotation
DZ	Displacement in Z direction	DU	Hierarchical disp. at mid-node
RSLT	Resultant displacement	DTHX	Hierarchical rotation at mid-node
THX	Rotation about X	PRES	Pore Pressure
THY	Rotation about Y	THw	Rate of change of twisting angle (warping beams)
THZ	Rotation about Z		

Note: Rotations are output in radians.

Velocities and Accelerations

VX	Velocity in X direction	\mathbf{AX}	Acceleration in X direction
VY	Velocity in Y direction	\mathbf{AY}	Acceleration in Y direction
$\mathbf{V}\mathbf{Z}$	Velocity in Z direction	\mathbf{AZ}	Acceleration in Z direction
RSLT	Resultant velocity	RSLT	Resultant acceleration

VC Results calculator values

Strains

EX	Direct strain in X direction	Bx	Bending strain (curvature) about x axis
EY	Direct strain in Y direction	By	
EZ	Direct strain in Z direction	Bz	Bending strain (curvature) about z axis
EXY	Shear strain in XY plane	Bxy	Bending or torsional strain into xy plane
EYZ	Shear strain in YZ plane	Byz	Bending or torsional strain into yz plane
EZX	Shear strain in XZ plane	Bxz	Bending or torsional strain into xz plane
EMax	Maximum principal strain	BMax	Maximum principal bending strain
EMin	Minimum principal strain	BMin	Minimum principal bending strain
E1	Major principal strain	β	Angle between E1 and X axis
E2	Intermediate principal strain	EE	Equivalent strain (von Mises)
E3	Minor principal strain	EI	Maximum shear strain
Eabs	Signed largest value of principal strain	EV	Volumetric strain

Strains: Top/Middle/Bottom (TMB)

EX	Direct strain in X direction	E1	Major principal strain
EY	Direct strain in Y direction	E2	Intermediate principal strain
\mathbf{EZ}	Direct strain in Z direction	E3	Minor principal strain
EXY	Shear strain in XY plane	Eabs	Signed largest value of principal strain
EYZ	Shear strain in YZ plane	β	Angle between E1 and X axis
EXZ	Shear strain in XZ plane	EE	Equivalent strain (von Mises)
		EI	Maximum shear strain

Plastic Strains

EPX Plastic direct strain in X direction	EP1 Major principal strain
EPY Plastic direct strain in Y direction	EP2 Intermediate principal plastic strain
EPZ Plastic direct strain in Z	EP3 Minor principal plastic strain

	direction			
EPXY	Plastic shear strain in XY plane	EPabs Signed largest value of principal plastic strain		
EPYZ	Plastic shear strain in YZ plane		ngle between EP1 and X axis	
EPZX	Plastic shear strain in ZX plane		uivalent plastic strain (von ises)	
EPMax	Maximum principal plastic		aximum shear strain	
EPMin	strain Minimum principal plastic strain	CWMax M	aximum crack width	
		EFSMax M	aximum equivalent fracture strain	
Creep	Strains			
EC	X Creep direct strain in X direction	EC1 Maj	or principal creep strain	
EC	Y Creep direct strain in Y direction	EC2 Intermediate principal creep strain		
EC	Z Creep direct strain in Z direction	EC3 Minor principal creep strain		
ECX	Y Creep shear strain in XY plane	Ecabs Signed largest value of principal creep strain		
ECY	Z Creep shear strain in YZ plane	β Angle between EC1 and X axis		
ECZ	Creep shear strain in ZX plane	ECE Equivalent creep strain (von Mises)		
ECMa	x Maximum principal creep strain	ECI Max	timum shear creep strain	
ECMi	n Minimum principal creep strain			
Rubbe	er Stretches			
Stch	X Direct stretch tensor in X direction	Stch1	Major principal stretch	
Stch	Y Direct stretch tensor in Y direction	Stch2	Intermediate principal stretch	
Stch	Z Direct stretch tensor in Z direction	Stch3	Minor principal stretch	
StchX	Y Shear stretch tensor in XY plane	StchAbs	Signed largest value of principal stretch	
StchY	*	β	Angle between Stch1 and X axis	

StchXZ Shear stretch tensor in XZ StchE Equivalent stretch plane

StchMax Maximum principal stretch StchI Maximum shear stretch

StchMin Minimum principal stretch

Strains: Interface Elements

Ex Shear relative displacement in local x direction
Ez Relative normal displacement in the local z (thickness) direction

Ey Shear relative displacement in dP Pressure difference local y direction

Stresses: Continuum Elements

SX Direct stress in global X direction **S1** Major principal stress **SY** Direct stress in global Y direction **S2** Intermediate principal stress **SZ** Direct stress in global Z direction S3 Minor principal stress **SXY** Shear stress in Y-direction on a **Sabs** Signed largest value of plane normal to X principal stress **SYZ** Shear stress in yz plane β Angle between E1 and x axis SI Maximum shear stress **SXZ** Shear stress in xz plane SMax Maximum principal stress **SE** Equivalent stress (von Mises) **SMin** Minimum principal stress **Pres** Pore pressure

Force/Moment: Bar and Beam Elements

Fx Force in local x direction
 Fy Force in local y direction
 Fz Force in local z direction
 Fb Bi-shear or torque (warping)
 Mx Moment about local x direction
 My Moment about local y direction
 Mz Moment about local z direction
 Mb Bi-moment (warping)

Stresses: Bar and Beam Elements

Sx(Fx) Stress due to axial force in x

Sx(My) Stress due to bending about y

Sx(Mz) Stress due to bending about y

Sx(Mz) Stress due to bending about z

Sx(My, Stress due to bending about y

Sx(My, Stress due to bending about z

Sx(My, Stress due to bending

Mz) about y and z

Force/Moment: Plate Elements (per unit width)

SX Shear force in global YZ plane

SY Shear force in global XZ plane

MX Moment in global X

MY Moment in global Y

MXY Twisting moment in global XY plane

Mmax Major principal momentMmin Minor principal moment

β Angle between MMax and X axis

MI Maximum shear moment

Mabs Signed largest value of moment

ME Equivalent moment

Force/Moment: Membrane and Shell Elements (per unit width)

Nx In-plane force in local x direction

Ny In-plane force in local y direction

Nxy In-plane shear force

NMax Major principal in-plane forceNMin Minor principal in-plane force

Νβετα Angle between NMax and x axis

NI Maximum in-plane shear force

NE Equiv stress resultant (von Mises)

Nabs Signed largest value of in-plane force

Sx Shear force in local yz plane

Sy Shear force in local xz plane

Mx Moment in local x direction

My Moment in local y direction

Mxy Twisting moment in local xy

plane

Mmax Major principal moment

Mmin Minor principal moment

Mβετα Angle between MMax and X axis

MI Maximum shear moment

ME Equivalent moment

Mabs Signed largest value of moment

Stresses: Top/Middle/Bottom (TMB)

SX Direct stress in global X direction

SY Direct stress in global Y direction

SZ Direct stress in global Z direction

S1 Major principal stress

S2 Intermediate principal stress

S3 Minor principal stress

SXY Shear stress in XY plane
 SYZ Shear stress in YZ plane
 SXZ Shear stress in XZ plane
 SE Equivalent stress (von Mises)

Stresses: Interface Elements

Sx Shear traction in local x direction
 Sy Shear traction in local y direction
 Sy Grand stress in the local z (thickness) direction
 Q Flow

Force/Moment: Wood-Armer (per unit width for Shells)

Mx(T)	Top surface local x moment	Nx(T)	Top surface local x force
My(T)	Top surface local y moment	Ny(T)	Top surface local y force
Mx(B)	Bottom surface local x moment	Nx(B)	Bottom surface local x force
My(B)	Bottom surface local y moment	Ny(B)	Bottom surface local y force
Util(T)	Top surface utilisation factor	Fc(T)	Top surface concrete force
Util(B)	Bottom surface utilisation factor	Fc(B)	Bottom surface concrete force
MUtil(T)	Top surface utilisation factor for		
	bending only		
MUtil(B)	Bottom surface utilisation factor for bending only		

Force/Moment: Wood-Armer (per unit width for Plates and Grillages)

MX(T)	Top surface global X moment	MUtil(T)	Top surface utilisation factor for bending only
MY(T)	Top surface global Y moment	MUtil(B)	Bottom surface utilisation factor for bending only
MX(B)	Bottom surface global X moment		
MY(B)	Bottom surface global Y moment		

Additional Force/Moment Components

Note for influence analysis when a reference path has been specified, additional force/moment components are available for selection when transforming results. These are not listed for relevant elements in the Results tables.

FV Force in Vertical direction **MF** Flexural Moment in (longitudinal) for longitudinal members (longitudinal) longitudinal members that are following the that are following the reference path reference path **FV** Force in Vertical direction MF Flexural Moment in (transverse) for transverse members that (transverse) transverse members that are orthogonal or skewed in are orthogonal or skewed relation to the reference path in relation to the reference path

Stresses: Interface Elements

Sx Shear traction in local x direction Sy Shear traction in local y direction

Sz Direct traction in the thickness direction

Concrete Results

Max Crack width **CWmax** ESFmax Max fracture strain EPthm Thermal strain **EPshk** Shrinkage strain Temperature **Temp** Fcomp Compressive strength **Ftens** tensile strength Young Young's modulus **ECX** Creep strain in global X **ECY** Creep strain in global Y **ECZ** Creep strain in global Z

Potential

PHI Field variable PHIC Results calculator values

T Temperature

Gradients Fluxes

GX Field gradient in X direction
GY Field gradient in Y direction
GY Field gradient in Z direction

Hygro-Thermal Results

SW Water saturation RoWC Water content

PV Vapour pressure **DH** Degree of hydration at day 28

Por Porosity **TefH** Effective time of hydration

TC Thermal conductivity PMD Water permeability [m/s]

HR Relative humidity of concrete

Reactions / Residual Forces

FX Force in X direction **MZ** Moment about Z axis

FY Force in Y direction FDU Force due to hierarchical displacement

FZ Force in Z direction **MDX** Moment due to hierarchical rotation

RSLT Resultant force

MX Moment about X axis **QC** Flow at a point (field problems)

MY Moment about Y axis VFLW Velocity of Flow

Reaction Stress

PX Stress due to reaction in X direction **PZ** Stress due to reaction in Z direction

PY Stress due to reaction in Y direction

Fatigue Parameters

Damage A measure of damage **LogLife** Log repeats to failure

Note. The fatigue facility uses Miner's rule, that is:

 $n1/N1 + n2/N2 + \cdots + ni/Ni = Damage$

where Damage is the damage variable and is usually taken as unity (experiment usually gives values between 0.7 and 2.2). ni is the number of cycles of stress applied to the structure and Ni is the life corresponding to the stress. Loglife is the log (base 10) of the life expectancy of the structure according to the loading and the number of cycles specified. Life is measured in terms of cycles.

Damage Parameters

DDAMA Damage variable **DAMAM** Damage consistency parameter

CCURD Damage threshold **DFUNC** Damage function

Note. Damage parameters are only available when a damage model is in use.

Strain Energy and Plastic Work

SED Strain energy density (StEngD) **PWD** Plastic work density

Note. Strain energy density and plastic work density values can be accessed if turned on by selecting **Calculate Strain Energy and Plastic Work Densities** from the **Results** > **Options** dialog or by using the command: **SET RESULTS ENERGY**.

Adaptive Error

Eadp Adaptive error.

Note. Adaptive error results are only available when an adaptive results column is set. See the LUSAS User Manual for more details.

State Variables

State variables can be accessed with the command:

SET RESULTS STATE VARIABLES istvb nsvcmp isvloc

Where istub is the type of state variable required, nsvcmp is the number of state variables required, and isvloc is the start location of the first state variable required.

The results columns for these state variables vary according to the results type set. The column descriptors have the following prefixes:

	PL	Plastic,	Rubber
--	----	----------	--------

☐ CR Creep

□ DM Damage

- followed by the number of the state variable required. For example, if four creep state variables are required, the column descriptors will be CR1, CR2, CR3 and CR4.

Key to Slideline Results Components

This section contains the notation for slideline results. Note that slideline results components are not listed in the results tables.

TanGapFrcx	Tangential gap force in	NrmPen	Penetration normal to
	local x direction		contact surface
TanGapFrcy	Tangential gap force in	ContStatus	In-contact/out-of-contact
	local y direction		status
RsltTanGFc	Resultant tangential gap	ContacArea	Nodal contact area
	force		
NrmGapForc	Gap force normal to	Contact	In-contact/out-of-contact
_	contact surface		status
ForceX	Contact force in system x	Zone	Zonal contact parameter
	direction		
ForceY	Contact force in system y	ZnCnDetDst	Zonal contact detection
	direction		distance
ForceZ	Contact force in system z	IntStfCoef	Contact stiffness

	direction		coefficient
RsltForce	Resultant contact force	TanForcex	Tangential contact force in local x direction
ContStresx	Contact stress in local x direction	TanForcey	Tangential contact force in local y direction
ContStresy	Contact stress in local y direction	RsltTanFrc	Resultant tangential contact force
ContPress	Contact pressure normal to contat surface	NrmForce	Contact force normal to contact surface
ContStiff	Contact stiffness		

Transforming Results Directions

Important: Some results entities can be transformed. The results components will use alternative suffixes if results are calculated relative to a system other than the global axis set. The element results tables show the default results directions for all elements with lower case subscripts being used for local results.

See the <u>Local and Global Results</u> in the *LUSAS Modeller User Manual* for details of results transformation procedures.

2D Structural Bars BAR2, BAR3

Entity					Co	ompone	ent				
Displacement	DX	DY	RSLT								
Force/Moment	FX	Fabs	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp
Strain	EX	Eabs	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Loading	FX	FY	RSLT								
Reaction	FX	FY	RSLT								
Residual Force	FX	FY	RSLT								
Reaction Stress											
Velocity	VX	VY	RSLT								
Acceleration	AX	AY	RSLT								
Plastic Strain	EPX	EPabs	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Creep Strain	ECX	ECabs	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Rubber Stretches											
TMB Stress											
TMB Strain											
TMB Plastic Strain											

TMB Creep Strain

3D Structural Bars **BRS2**, **BRS3**

Entity					C	ompon	ent				
Displacement	DX	DY	DZ	RSLT							
Force/Moment	FX	Fabs	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp
Strain	EX	Eabs	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Loading	FX	FY	FZ	RSLT							
Reaction	FX	FY	FZ	RSLT							
Residual Force	FX	FY	FZ	RSLT							
Reaction Stress											
Velocity	VX	VY	VZ	RSLT							
Acceleration	AX	AY	AZ	RSLT							
Plastic Strain	EPX	EPabs	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Creep Strain	ECX	ECabs	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Rubber Stretches											
TMB Stress											
TMB Strain											
TMB Plastic Strain											

TMB Creep Strain

2D Engineering Grillage Thick Beam **GRIL**

Entity							Cor	npone	nt				
Displacement	DZ	RSLT	THX	THY									
Force/Moment	Fz	Mx	Му	Mx(T)	My(T)	Mx(B)	My(B)	Util(T)	Util(B)	Damage	LogLife	SED	Eadp
Strain													
Loading	FZ	RSLT	MX	MY									
Reaction	FZ	RSLT	MX	MY									
Residual Force													
Reaction Stress													
Velocity	VZ	RSLT											
Acceleration	ΑZ	RSLT											
Plastic Strain													
Creep Strain													
Rubber Stretches													
TMB Stress													
TMB Strain													
TMB Plastic Strain													
TMB Creep Strain													

Note: Wood-Armer results are only available for plotting /printing at nodes. They are not available unaveraged at nodes within elements or at Gauss points.

2D Thick Beam Elements **BMI2**, **BMI3**, **BMI2X**, **BMI3X**

Entity						Con	nponen	t					
Displacement	DX	DY	RSLT	THZ									
Force/Moment	Fx	Му	Mz	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
Strain	Ex	Exy	Bz	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Loading	FX	FY	RSLT	MZ									
Reaction	FX	FY	RSLT	MZ									
Residual Force	FX	FY	RSLT	MZ									
Reaction Stress													
Velocity	VX	VY	RSLT										
Acceleration	AX	AY	RSLT										
Plastic Strain	EPx	EPxy	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Creep Strain	ECx	ECxy	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Rubber Stretches	Sx	Sy											
TMB Stress	Ex	Exy											
TMB Strain	EPx	EPxy											
TMB Plastic Strain	ECx	ECxy											

Note: Plastic and creep strains are only available for BMI2X and BMI3X elements with the appropriate material models.

3D Thick Beam Elements <u>BMI21</u>, <u>BMI22</u>, <u>BMI31</u>, <u>BMI33</u>, <u>BMX21</u>, <u>BMX22</u>, <u>BMX31</u>, <u>BMX33</u>

Strain

Entity							Co	mpon	ent						
Displacement	DX	DY	DZ	RSLT	THX	THY	THZ								
Force/Moment	Fx	Му	Mz	Mx	Му	Mz	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp
Strain	Ex	Ву	Bz	Вх	Ву	Bz	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Loading	FX	FY	FZ	RSLT	MX	MY	MZ								
Reaction	FX	FY	FZ	RSLT	MX	MY	MZ								
Residual Force	FX	FY	FZ	RSLT	MX	MY	MZ								
Reaction Stress															
Velocity	VX	VY	VZ	RSLT											
Acceleration	AX	AY	AZ	RSLT											
Plastic Strain	EPx	EPxy	EPzx	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Creep Strain	ECx	ECxy	ECzx	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Rubber Stretches															
TMB Stress															
TMB Strain															
TMB Plastic															

Note: Plastic and creep strains are only available for BMX21, BMX31, BMX22, BMX33 elements with the appropriate material models.

Strain

3D Thick Beam Elements with Torsional Warping BMI21W, BMI22W, BMI31W, BMI33W, BMX21W, BMX22W, BMX31W, BMX33W

Entity								Co	mpon	ent							
Displacement	DX	DY	DZ	RSLT	THX	THY	THY	THw									
Force/Moment	Fx	Му	Mz	Mx	Му	Mz	Fb	Mb	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp
Strain	Ex	Ву	Bz	Вх	Ву	Bz	Efb	Emb	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Loading	FX	FY	FZ	RSLT	MX	MY	MZ										
Reaction	FX	FY	FZ	RSLT	MX	MY	MZ	Mw									
Residual Force	FX	FY	FZ	RSLT	MX	MY	MZ										
Reaction Stress																	
Velocity	VX	VY	VZ	RSLT													
Acceleration	AX	AY	ΑZ	RSLT													
Plastic Strain	EPx	EPxy	EPzx	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp							
Creep Strain	ECx	ECxy	ECzx	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp							
Rubber Stretches																	
TMB Stress																	
TMB Strain																	
TMB Plastic																	

Note: Plastic and creep strains are only available for BMX21W, BMX31W, BMX22W, BMX33W elements with the appropriate material models.

2D Kirchhoff Thin Beams BM3, BMX3

Entity							Co	mpon	ent					
Displacement	DX	DY	RSLT	THZ	DU									
Force/Moment	Fx	Fy	Mz	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Strain	Ex	Ey	Bz	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Loading	FX	FY	RSLT	MZ	FDU									
Reaction	FX	FY	RSLT	MZ	FDU									
Residual Force	FX	FY	RSLT	MZ	FDU									
Reaction Stress														
Velocity	VX	VY	RSLT											
Acceleration	AX	AY	RSLT											
Plastic Strain	EPx	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Creep Strain	ECx	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Rubber Stretches														
TMB Stress														
TMB Strain														
TMB Plastic Strain														
TMB Creep Strain														

Note: Plastic and creep strains are only available for BMX3 elements with the appropriate material models.

3D Kirchhoff Thin Beams <u>BS3</u>, <u>BS4</u>, <u>BSX4</u>

Entity							Co	mpon	ent					
Displacement	DX	DY	DZ	RSLT	THX	THY	THZ	DU	DTHX					
Force/Moment	Fx	Му	Mz	Tzx	Txy	Fy	Fz	Damage	LogLife	DDAMA	CURRD DAMAM	DFUNC	SED	PWD
(continued)	Eadp													
Strain	Ex	Ву	Bz	Bzx	Вху	Ey	Ez							
(continued)	Eadp													
Loading	FX	FY	FZ	RSLT	MX	MY	MZ	FDU	MDX					
Reaction	FX	FY	FZ	RSLT	MX	MY	MZ	FDU	MDX					
Residual Force	FX	FY	FZ	RSLT	MX	MY	MZ	FDU	MDX					
Reaction Stress														
Velocity	VX	VY	VZ	RSLT										
Acceleration	AX	AY	AZ	RSLT										
Plastic Strain	EPx	EPxy	EPzx	EPyz	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Creep Strain	ECx	ECxy	ECzx	ECyz	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Rubber Stretches														
TMB Stress														
TMB Strain														
TMB Plastic Strain														
TMB Creep Strain														

Note: Plastic and creep strains are only available for BSX4 elements with the appropriate material models.

3D Semiloof Thin Beams BSL3, BSL4, BXL4

Entity	Component														
Displacement	DX	DY	DZ	RSLT	THX	THY	THZ	THL1	THL2						
Force.Moment	Fx	Му	Mz	Tzx	Тху	Fy	Fz	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD
(continued)	Eadp														
Strain	Ex	Ву	Bz	Bzx	Вху	Ey	Ez	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
Loading	FX	FY	FZ	RSLT	MX	MY	MZ	ML1	ML2						
Reaction	FX	FY	FZ	RSLT	MX	MY	MZ	ML1	ML2						
Residual Force	FX	FY	FZ	RSLT	MX	MY	MZ	ML1	ML2						
Reaction Stress															
Velocity	VX	VY	VZ	RSLT											
Acceleration	AX	AY	AZ	RSLT											
Plastic Strain	EPx	EPxy	EPyz	EPzx	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Creep Strain	ECx	ECxy	ECyz	ECzx	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Rubber Stretches															
TMB Stress															
TMB Strain															
TMB Plastic Strain															
TMB Creep Strain															

Note: Plastic and creep strains are only available for BXL4 elements with the appropriate material models.

Plane Strain Beam Elements **BMI2N**, **BMI3N**

Entity						Component						
Displacement	DX	DY	RSLT	THZ								
Stress	Nx	Nz	Mx	Mz	Nxy	NMax	NMin	Ns	β	Nabs	Ne	
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Strain	Ex	Ez	Bx	Bz	Exy	EMax	EMin	El	β	Eabs	EE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Loading	FX	FY	RSLT	MZ								
Reaction	FX	FY	RSLT	MZ								
Residual Force	FX	FY	RSLT	MZ								
Reaction Stress	PX	PY										
Velocity	VX	VY	RSLT									
Acceleration	AX	AY										
Plastic Strain												
Creep Strain												
Rubber Stretches												
TMB Stress	Sx	Sz	Sxy	SMax	Smin	SI	β	Sabs	SE			
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
TMB Strain	Ex	Ez	Exy	EPmax	EMin	EI	β	Eabs	ECE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
TMB Plastic Strain	EPx	EPz	EPxy	EPMax	EPMin	EPI	β	EPabs	ECE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
TMB Creep Strain	ECx	ECz	ECxy	ECMax	ECMin	ECI	β	ECabs	ECE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	_				

2D Continuum (Plane Stress) <u>TPM3/6</u>, <u>QPM4/8</u>, <u>QPM4M</u>, <u>TPK6</u>, <u>QPK8</u>

Entity						Compo	nent				
Displacement	DX	DY	RSLT			•					
Stress	SX	SY	SXY	SMax	SMin	SI	β	Sabs	SE		
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Strain	EX	EY	EXY	EMax	EMin	El	β	Eabs	EE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Loading	FX	FY	RSLT								
Reaction	FX	FY	RSLT								
Residual Force	FX	FY	RSLT								
Reaction Stress	PX	PY									
Velocity	VX	VY	RSLT								
Acceleration	AX	AY	RSLT								
Plastic Strain	EPX	EPY	EPXY	EPMax	EPMin	EPI	β	EPabs	EPE	CWMax	EFSMax
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Creep Strain	ECX	ECY	ECXY	ECMax	ECMin	ECI	β	ECabs	ECE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Rubber Stretches	StchX	StchY	StchXY	StchMax	StchMin	Stchl	β	StchAbs	StchE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
TMB Stress											
TMB Strain											
TMB Plastic Strain											

TMB Creep Strain

Notes:

Rubber stretches are only available for QPM4M elements with rubber material models. Strains are not available for this element when using rubber materials.

Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Models (105 and 109) are used.

2D Continuum Plane Stress (Explicit Dynamics) TPM3E, QPM4E

Entity					Con	nponent				
Displacement	DX	DY	RSLT							
Stress	SX	SY	SXY	SMax	SMin	SI	β	Sabs	SE	
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
Strain	EX	EY	EXY	EMax	EMin	EI	β	Eabs	EE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Loading	FX	FY	RSLT							
Reaction	FX	FY	RSLT							
Residual Force	FX	FY	RSLT							
Reaction Stress	PX	PY								
Velocity	VX	VY	RSLT							
Acceleration	AX	AY	RSLT							
Plastic Strain	EPX	EPY	EPXY	EPMax	EPMin	EPI	β	EPabs	EPE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Creep Strain	ECX	ECY	ECXY	ECMax	ECMin	ECI	β	ECabs	ECE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Rubber Stretches										
TMB Stress										
TMB Strain										
TMB Plastic Strain										
TMB Creep Strain										

2D Continuum (Plane Strain) TPN3/6, QPN4/8, TNK6, QNK8, QPN4M

Entity						Com	ponent	i				
Displacement	DX	DY	RSLT									
Stress	SX	SY	SXY	SZ	S1	S2	S3	SI	Sabs	SE		
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Strain	EX	EY	EXY	EZ	E1	E2	E3	El	Eabs	EE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Loading	FX	FY	RSLT									
Reaction	FX	FY	RSLT									
Residual Force	FX	FY	RSLT									
Reaction Stress	PX	PY										
Velocity	VX	VY	RSLT									
Acceleration	AX	AY	RSLT									
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPabs	EPE	CWMax	EFSMax
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Creep Strain	ECX	ECY	ECXY	ECZ	EC1	EP2	EC3	ECI	ECabs	ECE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Rubber Stretches	StchX	StchY	StchXY	StchZ	Stch1	Stch2	Stch3	Stchl	StchAbs	StchE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
TMB Stress												
TMB Strain												
TMB Plastic Strain												

TMB Creep Strain

Notes:

Rubber stretches are only available for QPN4M elements with rubber material models. Strains are not available for this element when using rubber materials.

Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Models (105 and 109) are used.

2D Continuum (Plane Strain) **QPN4L**

Entity					Co	mponer	nt			
Displacement	DX	DY	RSLT							
Stress	SX	SY	SXY	SZ	S1	S2	S3	SI	SE	
Strain	StchX	StchY	StchXY	StchZ	Stch1	Stch2	Stch3	Stchl	StchE	
Loading	FX	FY	RSLT							
Reaction	FX	FY	RSLT							
Residual Force	FX	FY	RSLT							
Reaction Stress	PX	PY								
Velocity	VX	VY	RSLT							
Acceleration	AX	AY	RSLT							
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPE	
Creep Strain										
Rubber Stretches	StchX	StchY	StchXY	StchZ	Stch1	Stch2	Stch3	Stchl	StchE	
TMB Stress										
TMB Strain										
TMB Plastic Strain										
TMB Creep Strain										

2D Plane Strain Two Phase Continuum TPN6P, QPN8P

Entity					(Compo	nent						
Displacement	DX	DY	RSLT	Pres									
Stress	SX	SY	SXY	SZ	Pres	S1	S2	S3	SI	Sabs	SE		
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Strain	EX	EY	EXY	EZ	EV	E1	E2	E3	El	Eabs	EE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Loading	FX	FY	RSLT	Q									
Reaction	FX	FY	RSLT	Q									
Residual Force	FX	FY	RSLT										
Reaction Stress	PX	PY											
Velocity	VX	VY	RSLT										
Acceleration	AX	AY	RSLT										
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPabs	EPE	CWMax	EFSMax	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Creep Strain	ECX	ECY	ECXY	ECZ	EC1	EP2	EC3	ECI	ECabs	ECE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Rubber Stretches													
TMB Stress													
TMB Strain													
TMB Plastic Strain													
TMB Creep Strain													

Notes

Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Model (Model 109) is used.

2D Continuum Plane Strain (Explicit Dynamics) TPN3E, QPN4E

Entity					Comp	onent				
Displacement	DX	DY	RSLT							
Stress	SX	SY	SXY	SZ	S1	S2	S3	SI	Sabs	SE
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
Strain	EX	EY	EXY	EZ	E1	E2	E3	El	Eabs	EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Loading	FX	FY	RSLT							
Reaction	FX	FY	RSLT							
Residual Force	FX	FY	RSLT							
Reaction Stress	PX	PY								
Velocity	VX	VY	RSLT							
Acceleration	AX	AY	RSLT							
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPabs	EPE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Creep Strain	ECX	ECY	ECXY	ECZ	EC1	EP2	EC3	ECI	ECabs	ECE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Rubber Stretches										
TMB Stress										
TMB Strain										
TMB Plastic Strain										
TMB Creep Strain										

2D Continuum Axisymmetric Solid (Explicit Dynamics) TAX3E, QAX4E

Entity					Comp	onent					
Displacement	DX	DY	RSLT	Pres							
Stress	SX	SY	SXY	SZ	S1	S2	S3	SI	Sabs	SE	
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Strain	EX	EY	EXY	EZ	E1	E2	E3	El	Eabs	EE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Loading	FX	FY	RSLT								
Reaction	FX	FY	RSLT								
Residual Force	FX	FY	RSLT								
Reaction Stress	PX	PY									
Velocity	VX	VY	RSLT								
Acceleration	AX	AY	RSLT								
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPabs	EPE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Creep Strain	ECX	ECY	ECXY	ECZ	EC1	EP2	EC3	ECI	ECabs	ECE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Rubber Stretches											
TMB Stress											
TMB Strain											
TMB Plastic Strain											
TMB Creep Strain											

2D Axisymmetric Solid Two Phase Continuum <u>TAX6P</u>, QAX8P

Entity					(Compo	nent						
Displacement	DX	DY	RSLT	Pres									
Stress	SX	SY	SXY	SZ	Pres	S1	S2	S3	SI	Sabs	SE		
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Strain	EX	EY	EXY	EZ	EV	E1	E2	E3	El	Eabs	EE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Loading	FX	FY	RSLT	Q									
Reaction	FX	FY	RSLT	Q									
Residual Force	FX	FY	RSLT										
Reaction Stress	PX	PY											
Velocity	VX	VY	RSLT										
Acceleration	AX	AY	RSLT										
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPabs	EPE	CWMax	EFSMax	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Creep Strain	ECX	ECY	ECXY	ECZ	EC1	EP2	EC3	ECI	ECabs	ECE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Rubber Stretches													
TMB Stress													
TMB Strain													
TMB Plastic Strain													
TMB Creep Strain													

Notes

Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Model (Model 109) is used.

2D Continuum Axisymmetric Solid Fourier <u>TAX3/6F</u>, <u>QAX4/8F</u>

Entity					Compo	nent				
Displacement	DX	DY	DZ	RSLT						
Stress	SX	SY	SXY	SZ	S1	S2	S3	SI	Sabs	SE
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	Eadp		
Strain	EX	EY	EXY	EZ	E1	E2	E3	EI	Eabs	EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	Eadp				
Loading	FX	FY	FZ	RSLT						
Reaction	FX	FY	FZ	RSLT						
Residual Force										
Reaction Stress	PX	PY								
Velocity	VX	VY	VZ	RSLT						
Acceleration	AX	AY	AZ	RSLT						
Plastic Strain										
Creep Strain										
Rubber Stretches										
TMB Stress										
TMB Strain										
TMB Plastic Strain										
TMB Creep Strain										

Axisymmetric Solid <u>TAX3/6</u>, <u>QAX4/8</u>, <u>QAX4M</u>, <u>TXK6</u>, <u>QXK8</u>

Entity						Comp	onen	t					
Displacement	DX	DY	RSLT										
Stress	SX	SY	SXY	SZ	S1	S2	S3	SI	Sabs	SE			
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Strain	EX	EY	EXY	EZ	E1	E2	E3	El	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Loading	FX	FY	RSLT										
Reaction	FX	FY	RSLT										
Residual Force	FX	FY	RSLT										
Reaction Stress	PX	PY											
Velocity	VX	VY	RSLT										
Acceleration	AX	AY	RSLT										
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPabs	EPE	CWMax	EFSMax	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Creep Strain	ECX	ECY	ECXY	ECZ	EC1	EP2	EC3	ECI	ECabs	ECE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Rubber Stretches	StchX	StchY	StchXY	StchZ	Stch1	Stch2	Stch3	StchI	StchAbs	StchE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
TMB Stress													
TMB Strain													
TMB Plastic Strain													

TMB Creep Strain

Notes

Rubber stretches are only available for QAX4M elements with rubber material models. Strains are not available for this element when using rubber materials Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Models (105 and 109) are used.

Axisymmetric Solid Large Strain **QAX4L**

Entity					Compo	nent				
Displacement	DX	DY	RSLT	Pres						
Stress	SX	SY	SXY	SZ	S1	S2	S3	SI	Sabs	SE
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
Strain	StchX	StchY	StchXY	StchZ	Stch1	Stch2	Stch3	Stchl	StchE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Loading	FX	FY	RSLT							
Reaction	FX	FY	RSLT							
Residual Force	FX	FY	RSLT							
Reaction Stress	PX	PY								
Velocity	VX	VY	RSLT							
Acceleration	AX	AY	RSLT							
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPE	
Creep Strain										
Rubber Stretches	StchX	StchY	StchXY	StchZ	Stch1	Stch2	Stch3	Stchl	StchE	
TMB Stress										
TMB Strain										
TMB Plastic Strain										
TMB Creep Strain										

3D Solid Continuum <u>TH4/10</u>, <u>TH10S</u>, <u>PN6/12/15</u>, <u>PN6L/12L</u>, <u>HX8/16/20</u>, <u>HX8M</u>, <u>HX8L/16L</u>, <u>TH10K</u>, <u>PN15K</u>, <u>HX20K</u>

Entity						Comp	onen	t					
Displacement	DX	DY	DZ	RSLT									
Stress	SX	SY	SZ	SXY	SYZ	SZX	S1	S2	S3	SI	Sabs	SE	
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Strain	EX	EY	EZ	EXY	EYZ	EZX	E1	E2	E3	El	Eabs	EE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Loading	FX	FY	FZ	RSLT									
Reaction	FX	FY	FZ	RSLT									
Residual Force	FX	FY	FZ	RSLT									
Reaction Stress	PX	PY	PZ										
Velocity	VX	VY	VZ	RSLT									
Acceleration	AX	AY	ΑZ	RSLT									
Plastic Strain	EPX	EPY	EPZ	EPXY	EPYZ	EPZX	EP1	EP2	EP3	EPI	EPabs	EPE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	CWMax	EFSMax				
Creep Strain	ECX	ECY	ECZ	ECXY	ECYZ	ECZX	EC1	EC2	EC3	ECI	ECabs	ECE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Rubber Stretches	StchX	StchY	StchZ	StchXY	StchYZ	StchZX	Stch1	Stch2	Stch3	Stchl	StchAbs	StchE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
TMB Stress													
TMB Strain													
TMB Plastic Strain													

TMB Creep Strain

Notes:

Rubber stretches are only available for HX8M elements with rubber material models. Strains are not available for this element when using rubber materials.

Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Models (105 and 109) are used.

3D Solid Continuum Two Phase TH10P, PN12P, PN15P, HX16P, HX20P

Entity					(Compo	nent						
Displacement	DX	DY	DZ	RSLT	Pres								
Stress	SX	SY	SZ	SXY	SYZ	SZX	Pres	S1	S2	S3	SI	Sabs S	SE
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Strain	EX	EY	EZ	EXY	EYZ	EZX	EV	E1	E2	E3	El	Eabs E	ΞE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Loading	FX	FY	FZ	RSLT	Q								
Reaction	FX	FY	FZ	RSLT	Q								
Residual Force	FX	FY	FZ	RSLT									
Reaction Stress	PX	PY	PZ										
Velocity	VX	VY	VZ	RSLT									
Acceleration	AX	AY	ΑZ	RSLT									
Plastic Strain	EPX	EPY	EPZ	EPXY	EPYZ	EPZX	EP1	EP2	EP3	EPI	EPabs	EPE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	CWMax	EFSMax				
Creep Strain	ECX	ECY	ECZ	ECXY	ECYZ	ECZX	EC1	EC2	EC3	ECI	ECabs	ECE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Rubber Stretches													
TMB Stress													
TMB Strain													
TMB Plastic Strain													
TMB Creep Strain													

Notes

Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Model (Model 109) is used.

3D Solid Continuum Explicit Dynamics <u>TH4E</u>, <u>PN6E</u>, <u>HX8E</u>

Entity					Comp	onent							
Displacement	DX	DY	DZ	RSLT	Pres								
Stress	SX	SY	SZ	SXY	SYZ	SZX	S1	S2	S3	SI	Sabs	SE	
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Strain													
Loading	FX	FY	FZ	RSLT									
Reaction	FX	FY	FZ	RSLT									
Residual Force	FX	FY	FZ	RSLT									
Reaction Stress	PX	PY	PZ										
Velocity	VX	VY	VZ	RSLT									
Acceleration	AX	AY	AZ	RSLT									
Plastic Strain													
Creep Strain													
Rubber Stretches													
TMB Stress													
TMB Strain													
TMB Plastic Strain													

Isoflex Thin Plates TF3, QF4

Entity							Com	ponei	nt					
Displacement	DZ	RSLT	THX	THY										
Stress	MX	MY	MXY	MMax	MMin	MI	β	Nabs I	ME	Mx(T)	My(T)	Mx(B)	My(B)	Util(T) Util(B)
(continued)	Damage	LogLife	SED	PWD	Eadp									
Strain	BX	BY	BXY	BMax	BMin	BI	β	Eabs	BE	SED	PWD	Eadp		
Loading	FZ	RSLT	MX	MY										
Reaction	FZ	RSLT	MX	MY										
Residual Force	FZ	RSLT	MX	MY										
Reaction Stress	PZ													
Velocity	VZ	RSLT												
Acceleration	AZ	RSLT												
Plastic Strain														
Creep Strain														
Rubber Stretches														
TMB Stress	SX	SY	SXY	SMax	SMin	SI	β	Sabs	SE	Damage	LogLife	SED	PWD	Eadp
TMB Strain	EX	EY	EXY	EMax	EMin	El	β	Eabs	EE	SED	PWD	Eadp		
TMB Plastic Strain														

Isoflex Thick Plates **QSC4**

Entity							Co	mpone	ent						
Displacement	DZ	RSLT	THX	THY											
Stress	MX	MY	MXY	Sx	Sy	MMax	MMin	MI	β	Nabs	ME	Mx(T)	My(T)	Mx(B)	My(B)
(continued)	Util(T)	Util(B)	Damage	LogLife	SED	PWD	Eadp								
Strain	BX	BY	BXY	EZX	EYZ	BMax	BMin	BI	β	Eabs	BE	SED	PWD	Eadp	
Loading	FZ	RSLT	MX	MY											
Reaction	FZ	RSLT	MX	MY											
Residual Force	FZ	RSLT	MX	MY											
Reaction Stress	PZ														
Velocity	VZ	RSLT													
Acceleration	AZ	RSLT													
Plastic Strain															
Creep Strain															
Rubber Stretches															
TMB Stress	SX	SY	SXY	SMax	SMin	SI	β	Sabs	SE	Damage	LogLife	SED	PWD	Eadp	
TMB Strain	EX	EY	EXY	EMax	EMin	EI	β	Eabs	EE	SED	PWD	Eadp			
TMB Plastic Strain															

Mindlin Thick Plates TTF6, QTF8

Entity							Co	mpone	nt						
Displacement	DZ	RSLT	THX	THY											
Stress	MX	MY	MXY	Sx	Sy	MMax	MMin	MI	β	Nabs	ME	Mx(T)	My(T)	Mx(B)	My(B)
(continued)	Util(T)	Util(B)	Damage	LogLife	SED	PWD	Eadp								
Strain	ВХ	BY	BXY	EZX	EYZ	BMax	BMin	BI	β	Eabs	BE	SED	PWD	Eadp	
Loading	FZ	RSLT	MX	MY											
Reaction	FZ	RSLT	MX	MY											
Residual Force	FZ	RSLT	MX	MY											
Reaction Stress	PZ														
Velocity	VZ	RSLT													
Acceleration	AZ	RSLT													
Plastic Strain															
Creep Strain															
Rubber Stretches															
TMB Stress	SX	SY	SXY	SMax	SMin	SI	β	Sabs	SE	Damage	LogLife	SED	PWD	Eadp	
TMB Strain	EX	EY	EXY	EMax	EMin	EI	β	Eabs	EE	SED	PWD	Eadp			
TMB Plastic Strain															

2D Axisymmetric Membranes **BXM2**, **BXM3**

Entity					Comp	onent			
Displacement	DX	DY	RSLT						
Stress	Sx	Sz	SMax	SMin	SI	β	Sabs	SE	
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp
Strain	Ex	Ez	EMax	EMin	EI	β	Eabs	EE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Loading	FX	FY	RSLT						
Reaction	FX	FY	RSLT						
Residual Force	FX	FY	RSLT						
Reaction Stress	PX	PY							
Velocity	VX	VY	RSLT						
Acceleration	AX	AY	RSLT						
Plastic Strain	EPx	EPz	EPMax	EPMin	EPI	β	EPabs	EPE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Creep Strain	ECx	ECz	ECMax	ECMin	ECI	β	ECabs	ECE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Rubber Stretches									
TMB Stress									
TMB Strain									
TMB Plastic Strain									
TMB Creep Strain									

Note: Rubber models are available for use with the BXM2 element, however strains are output and rubber stretches are not available.

3D Space Membranes <u>TSM3</u>, <u>SMI4</u>

Entity					Co	mpone	ent						
Displacement	DX	DY	DZ	RSLT									
Stress	Nx	Ny	Nxy	NMax	NMin	Ns	β	Nabs	Ne				
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Strain	Ex	Ey	Exy	EMax	EMin	El	β	Eabs	EE				
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Loading	FX	FY	FZ	RSLT									
Reaction	FX	FY	FZ	RSLT									
Residual Force	FX	FY	FZ	RSLT									
Reaction Stress	PX	PY	PZ										
Velocity	VX	VY	VZ	RSLT									
Acceleration	AX	AY	ΑZ	RSLT									
Plastic Strain													
Creep Strain													
Rubber Stretches													
TMB Stress	SX	SY	SZ	SXY	SYZ	SZX	S1	S2	S3	SI	Sabs	SE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
TMB Strain	EX	EY	EZ	EXY	EYZ	EZX	E1	E2	E3	ΕI	Eabs	EE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
TMB Plastic Strain													
TMB Creep Strain													

2D Thin Axisymmetric Shells **BXS3**

Entity					C	Compone	nt				
Displacement	DX	DY	RSLT	THZ	DU						
Stress	Nx	Nz	Mx	Mz	Ny	NMax	NMin	Ns	β	Nabs	Ne
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Strain	Ex	Ez	Вх	Bz	Ey	EMax	EMin	El	β	Eabs	EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Loading	FX	FY	RSLT	MZ	FDU						
Reaction	FX	FY	RSLT	MZ	FDU						
Residual Force	FX	FY	RSLT	MZ	FDU						
Reaction Stress	PX	PY									
Velocity	VX	VY	RSLT								
Acceleration	AX	AY									
Plastic Strain											
Creep Strain											
Rubber Stretches											
TMB Stress	Sx	Sz	SMax	SMin	SI	β	Sabs	SE			
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
TMB Strain	Ex	Ez	EPMax	EMin	El	β	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
TMB Plastic Strain	EPx	EPz	EPMax	EPMin	EPI	β	EPabs	EPE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
TMB Creep Strain	ECx	ECz	ECMax	ECMin	ECI	β	ECabs	ECE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				

2D Thick Axisymmetric Shells **BXSI2**, **BXSI3**

Entity						Comp	onent			
Displacement	DX	DY	RSLT	THZ						
Stress	Nx	Nz	Mx	Mz	Nxy	NMax	NMin	Ns	β	Nabs Ne
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
Strain	Ex	Ez	Вх	Bz	Exy	EMax	EMin	El	β	Eabs EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Loading	FX	FY	RSLT	MZ						
Reaction	FX	FY	RSLT	MZ						
Residual Force	FX	FY	RSLT	MZ						
Reaction Stress	PX	PY								
Velocity	VX	VY	RSLT							
Acceleration	AX	AY								
Plastic Strain										
Creep Strain										
Rubber Stretches										
TMB Stress	Sx	Sz	Sxy	SMax	SMin	SI	β	Sabs	SE	
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
TMB Strain	Ex	Ez	Exy	EPMax	EMin	El	β	Eabs	EE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
TMB Plastic Strain	EPx	EPz	EPxy	EPMax	EPMin	EPI	β	EPabs	EPE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
TMB Creep Strain	ECx	ECz	ECxy	ECMax	ECMin	ECI	β	ECabs	ECE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			

3D Flat Thin Shells TS3, QSI4

Entity							Co	mpon	ent						
Displacement	DX	DY	DZ	RSLT	THX	THY	THZ								
Stress	Nx	Ny	Nxy	Mx	Му	Мху	NMax	NMin	Ns	β	Nabs	Ne	Nx(T)/ Mx(T)	Ny(T)/ Ny(T)	Nx(B)/ Mx(B)
(continued)	Ny(B)/ My(B)	Util(T)	Util(B)	MUtil(T)	MUtil(B)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	Fc(T)	Fc(B)	Eadp
Strain	Ex	Ey	Exy	Вх	Ву	Вху	EMax	EMin	EI	β	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	Eadp									
Loading	FX	FY	FZ	RSLT	MX	MY	MZ								
Reaction	FX	FY	FZ	RSLT	MX	MY	MZ								
Residual Force	FX	FY	FZ	RSLT	MX	MY	MZ								
Reaction Stress	PX	PY	PZ												
Velocity	VX	VY	VZ	RSLT											
Acceleration	AX	AY	AZ	RSLT											
Plastic Strain															
Creep Strain															
Rubber Stretches															
TMB Stress	SX	SY	SZ	SXY	SYZ	SZX	S1	S2	S3	SI	Sabs	SE			
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	Eadp							
TMB Strain	EX	EY	EZ	EXY	EYZ	EZX	E1	E2	E3	EI	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
TMB Plastic Strain															
TMB Creep Strain															

3D Flat Thin Nonlinear Shell TSR6

Entity							Co	mpon	ent						
Displacement	DX	DY	DZ	RSLT	THL1										
Stress	Nx	Ny	Nxy	Mx	Му	Мху	NMax	NMin	Ns	β	Nabs	Ne	Nx(T)/ Mx(T)	Ny(T)/ Ny(T)	Nx(B)/ Mx(B)
(continued)	Ny(B)/ My(B)	Util(T)	Util(B)	MUtil(T)	MUtil(B)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Fc(T)	Fc(B)
Eadp															
Strain	Ex	Ey	Exy	Bx	Ву	Вху	EMax	EMin	El	β	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
Loading	FX	FY	FZ	RSLT	ML1										
Reaction	FX	FY	FZ	RSLT	ML1										
Residual Force	FX	FY	FZ	RSLT	ML1										
Reaction Stress	PX	PY	PZ												
Velocity	VX	VY	VZ	RSLT											
Acceleration	AX	AY	AZ	RSLT											
Plastic Strain															
Creep Strain															
Rubber Stretches															
TMB Stress	SX	SY	SZ	SXY	SYZ	SZX	S1	S2	S3	SI	Sabs	SE			
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	Eadp							
TMB Strain	EX	EY	EZ	EXY	EYZ	EZX	E1	E2	E3	EI	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
TMB Plastic Strain	EPX	EPY	EPZ	EPXY	EPYZ	EPZX	EP1	EP2	EP3	EPI	EPabs	EPE	CWMax	EFSMax	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
TMB Creep Strain	ECX	ECY	ECZ	ECXY	ECYZ	ECZX	EC1	EC2	EC3	ECI	ECabs	ECE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								

Notes

TMB Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Model (Model 109) is used.

Semiloof Shells <u>TSL6</u>, <u>QSL8</u>

Entity							Co	mpon	ent						
Displacement	DX	DY	DZ	RSLT	THL1	THL2									
Stress	Nx	Ny	Nxy	Mx	Му	Мху	NMax	NMin	Ns	β	Nabs	Ne	Nx(T)/ Mx(T)	Ny(T)/ My(T)	Nx(B)/ Mx(B)
(continued)	Ny(B)/ My(B)	Util(T)	Util(B)	MUtil(T)	MUtil(B)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Fc(T)	Fc(B)
(continued)	Eadp														
Strain	Ex	Ey	Exy	Bx	Ву	Вху	EMax	EMin	El	β	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
Loading	FX	FY	FZ	RSLT	ML1	ML2									
Reaction	FX	FY	FZ	RSLT	ML1	ML2									
Residual Force	FX	FY	FZ	RSLT	ML1	ML2									
Reaction Stress	PX	PY	PZ												
Velocity	VX	VY	VZ	RSLT											
Acceleration	AX	AY	AZ	RSLT											
Plastic Strain															
Creep Strain															
Rubber Stretches															
TMB Stress	SX	SY	SZ	SXY	SYZ	SZX	S1	S2	S3	SI	Sabs	SE			
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
TMB Strain	EX	EY	EZ	EXY	EYZ	EZX	E1	E2	E3	EI	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
TMB Plastic Strain	EPX	EPY	EPZ	EPXY	EPYZ	EPZX	EP1	EP2	EP3	EPI	EPabs	EPE	CWMax	EFSMax	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
TMB Creep Strain	ECX	ECY	ECZ	ECXY	ECYZ	ECZX	EC1	EC2	EC3	ECI	ECabs	ECE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								

Notes

TMB Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Model (Model 109) is used.

3D Thick Shells TTS3, TTS6, QTS4, QTS8

Entity							Co	mpon	ent						
Displacement	DX	DY	DZ	RSLT	THX	THY	THZ								
Stress	Nx	Ny	Nxy	Mx	Му	Мху	Sx	Sy	NMax	NMin	β	Nabs	NE	Nx(T)/ Mx(T)	Ny(T)/ My(T)
(continued)	Nx(B)/M x(B)	Ny(B)/ My(B)	Util(T)	Util(B)	MUtil(T)	MUtil(B)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Fc(T)
(continued)	Fc(B)	Eadp													
Strain															
Loading	FX	FY	FZ	RSLT	MX	MY	MZ								
Reaction	FX	FY	FZ	RSLT	MX	MY	MZ								
Residual Force	FX	FY	FZ	RSLT	MX	MY	MZ								
Reaction Stress	PX	PY	PZ												
Velocity	VX	VY	VZ	RSLT											
Acceleration	AX	AY	AZ	RSLT											
Plastic Strain															
Creep Strain															
Rubber Stretches															
TMB Stress	SX	SY	SZ	SXY	SYZ	SZX	S1	S2	S3	SI	Nabs	SE			
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
TMB Strain	EX	EY	EZ	EXY	EYZ	EZX	E1	E2	E3	El	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
TMB Plastic Strain	EPX	EPY	EPZ	EPXY	EPYZ	EPZX	EP1	EP2	EP3	EPI	EPabs	EPE	CWMax	EFSMax	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
TMB Creep Strain	ECX	ECY	ECZ	ECXY	ECYZ	ECZX	EC1	EC2	EC3	ECI	ECabs	ECE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								

Notes

TMB Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Model (Model 109) is used.

2D Joints (for Bars, Plane Stress and Plane Strain) JNT3

Entity					Compon	ent	
Displacement	DX	DY	RSLT				
Stress	Fx	Fy	Damage	LogLife	SED	PWD	Eadp
Strain	Ex	Ey	SED	PWD	Eadp		
Loading	FX	FY	RSLT				
Reaction	FX	FY	RSLT				
Residual Force	FX	FY	RSLT				
Reaction Stress							
Velocity	VX	VY	RSLT				
Acceleration	AX	AY	RSLT				
Plastic Strain	EPx	EPy	SED	PWD	Eadp		
Creep Strain							
Rubber Stretches							
TMB Stress							
TMB Strain							
TMB Plastic Strain							
TMB Creep Strain							

2D Joints (for Engineering and Kirchhoff Beams) JPH3

Entity					Comp	onent		
Displacement	DX	DY	RSLT	THZ				
Stress	Fx	Fy	Mz	Damage	LogLife	SED	PWD	Eadp
Strain	Ex	Ey	Bz	SED	PWD	Eadp		
Loading	FX	FY	RSLT	MZ				
Reaction	FX	FY	RSLT	MZ				
Residual Force	FX	FY	RSLT	MZ				
Reaction Stress								
Velocity	VX	VY	RSLT					
Acceleration	AX	AY	RSLT					
Plastic Strain	EPx	EPy	BPz	SED	PWD	Eadp		
Creep Strain								
Rubber Stretches								
TMB Stress								
TMB Strain								
TMB Plastic Strain								
TMB Creep Strain								

2D Joints (for Grillage Beams and Plates) <u>JF3</u>

Entity					Compo	onent		
Displacement	DZ	RSLT	THXZ	THY				
Stress	Fz	Mx	Му	Damage	LogLife	SED	PWD	Eadp
Strain	Ez	Вх	Ву	SED	PWD	Eadp		
Loading	FZ	RSLT	MX	MY				
Reaction	FZ	RSLT	MX	MY				
Residual Force	FZ	RSLT	MX	MY				
Reaction Stress								
Velocity	VZ	RSLT						
Acceleration	ΑZ	RSLT						
Plastic Strain	EPx	EPy	BPz	SED	PWD	Eadp		
Creep Strain								
Rubber Stretches								
TMB Stress								
TMB Strain								
TMB Plastic Strain								
TMB Creep Strain								

2D Joints (for Axisymmetric Solids) **JAX3**

Entity				(Compon	ent	
Displacement	DX	DY	RSLT				
Stress	Fx	Fy	Damage	LogLife	SED	PWD	Eadp
Strain	Ex	Ey	SED	PWD	Eadp		
Loading	FX	FY	RSLT	MZ			
Reaction	FX	FY	RSLT	MZ			
Residual Force	FX	FY	RSLT	MZ			
Reaction Stress							
Velocity	VX	VY	RSLT				
Acceleration	AX	AY	RSLT				
Plastic Strain	EPx	EPy	SED	PWD	Eadp		
Creep Strain							
Rubber Stretches							
TMB Stress							
TMB Strain							
TMB Plastic Strain							
TMB Creep Strain							

2D Joints (for Axisymmetric Shells) **JXS3**

Entity					Comp	onent			
Displacement	DX	DY	RSLT	THZ					
Stress	Fx	Fy	Mz	Damage	LogLife	SED	PWD	Eadp	
Strain	Ex	Ey	Bz	SED	PWD	Eadp			
Loading	FX	FY	RSLT	MZ					
Reaction	FX	FY	RSLT	MZ					
Residual Force	FX	FY	RSLT	MZ					
Reaction Stress									
Velocity	VX	VY	RSLT						
Acceleration	AX	AY	RSLT						
Plastic Strain	EPx	EPy	BPz	SED	PWD	Eadp			
Creep Strain									
Rubber Stretches									
TMB Stress									
TMB Strain									
TMB Plastic Strain									
TMB Creep Strain									

3D Joints (for general 3 dof connection) JNT4, JL43

(for Bars, Solids, Space Membranes and Semiloof Shell Corners)

Entity					Com	ponent			
Displacement	DX	DY	DZ	RSLT					
Stress	Fx	Fy	Fz	Damage	LogLife	SED	PWD	Eadp	
Strain	Ex	Ey	Ez	SED	PWD	Eadp			
Loading	FX	FY	FZ	RSLT					
Reaction	FX	FY	FZ	RSLT					
Residual Force	FX	FY	FZ	RSLT					
Reaction Stress									
Velocity	VX	VY	VZ	RSLT					
Acceleration	AX	AY	AZ	RSLT					
Plastic Strain	EPx	EPy	EPz	SED	PWD	Eadp			
Creep Strain									
Rubber Stretches									
TMB Stress									
TMB Strain									
TMB Plastic Strain									
TMB Creep Strain									

3D Joints (for general 6 dof connection) JSH4, JL46

(for Engineering, Kirchhoff and Semiloof Beam End Nodes)

Entity							Compon	ent			
Displacement	DX	DY	DZ	RSLT	THX	THY	THZ				
Stress	Fx	Fy	Fz	Mx	Му	Mz	Damage	LogLife	SED	PWD	Eadp
Strain	Ex	Ey	Ez	Вх	Ву	Bz	SED	PWD	Eadp		
Loading	FX	FY	FZ	RSLT	MX	MY	MZ				
Reaction	FX	FY	FZ	RSLT	MX	MY	MZ				
Residual Force	FX	FY	FZ	RSLT	MX	MY	MZ				
Reaction Stress											
Velocity	VX	VY	VZ	RSLT							
Acceleration	AX	AY	ΑZ	RSLT							
Plastic Strain	EPx	EPy	EPz	BPx	BPy	BPz	SED	PWD	Eadp		
Creep Strain											
Rubber Stretches											
TMB Stress											
TMB Strain											
TMB Plastic Strain											
TMB Creep Strain											

3D Joints (for Semiloof Element Mid-side Nodes) <u>JSL4</u>

Entity						Com	ponent			
Displacement	DX	DY	DZ	RSLT	THL1	THL2				
Stress	Fx	Fy	Fz	M1	M2	Damage	LogLife	SED	PWD	Eadp
Strain	Ex	Ey	Ez	B1	B2	SED	PWD	Eadp		
Loading	FX	FY	FZ	RSLT	ML1	ML2				
Reaction	FX	FY	FZ	RSLT	ML1	ML2				
Residual Force	FX	FY	FZ	RSLT	ML1	ML2				
Reaction Stress										
Velocity	VX	VY	VZ	RSLT						
Acceleration	AX	AY	ΑZ	RSLT						
Plastic Strain	EPx	EPy	EPz	BP1	BP2	SED	PWD	Eadp		
Creep Strain										
Rubber Stretches										
TMB Stress										
TMB Strain										
TMB Plastic Strain										
TMB Creep Strain										

Thermal Bars BFD2/3, BFS2/3, BFX2/3

Entity	Component
Potential	PHI
Gradient	Gx Eadp
Flux	qx Eadp
Reaction	Q

Thermal Links <u>LFD2</u>, <u>LFS2</u>, <u>LFX2</u>

Entity	Component
Potential	PHI
Gradient	n.a. Eadp
Flux	qx Eadp
Reaction	Q

Plane and Axisymmetric Field <u>TFD3/6</u>, <u>QFD4/8</u>, <u>TXF3/6</u>, <u>QXF4/8</u>

Entity				Component
Potential	PHI			
Gradient	Gx	Gy	Eadp	
Flux	qx	qy	Eadp	
Reaction	Q			

Solid Field <u>TF4/10</u>, <u>PF6/12/15</u>, <u>HF8/16/20</u>, <u>TF10S</u>, <u>PF6C/12C</u>, <u>HF8C/16C</u>

Entity				(Component
Potential	PHI				
Gradient	Gx	Gy	Gz	Eadp	
Flux	qx	qy	qz	Eadp	
Reaction	Q				

Plane and Axisymmetric Hygro-Thermal <u>THT3/6</u>, <u>QHT4/8</u>, <u>TXHT3/6</u>, <u>QXHT4/8</u>

Entity				Comp	onent					
Nodal variable	Т									
Temperature flux	qX	qY	qZ	RSLT						
Water vapour flux	JVX	JyY	JVZ	RSLT						
Liquid water flux	JWX	JWY	JWZ	RSLT						
Temperature gradient	GTX	GTY	GTZ	RSLT						
Water saturation gradient	GWX	GWY	GWZ	RSLT						
Other hygro-thermal results	SW	ROWC	PV	DH	TEFH	POR	TC	PMD	Hr	

Hygro-thermal results components:

 $SW = Water\ saturation$

ROWC = Liquid water content

 $PV = Water\ vapour\ pressure$

 $DH = Degree \ of \ hydration$

TEFH = Effective time of hydration

POR = Porosity

TC = Thermal conductivity PMD = Water permeability

Hr = Relative humidity

Solid Hygro-Thermal THT4/10, PHT6/12/16, HHT8/16/20

Entity	Component	

Nodal variable	T									
Temperature flux	qX	qY	qZ	RSLT						
Water vapour flux	JVX	JyY	JVZ	RSLT						
Liquid water flux	JWX	JWY	JWZ	RSLT						
Temperature gradient	GTX	GTY	GTZ	RSLT						
Water saturation gradient	GWX	GWY	GWZ	RSLT						
Other hygro-thermal results	SW	ROWC	PV	DH	TEFH	POR	TC	PMD	Hr	

Hygro-thermal results components:

SW = Water saturation

ROWC = Liquid water content

PV = Water vapour pressure

DH = Degree of hydration

TEFH = Effective time of hydration

POR = Porosity

 $TC = Thermal\ conductivity$

PMD = Water permeability

Hr = Relative humidity

2D Interface Element <u>IPN4</u>, <u>IPN6</u>, <u>IAX4</u>, <u>IAX6</u>

Entity				Con	nponent		
Displacement	Dx	Dy	RSLT				
Stress	Sx	Sy	Damage	LogLife	Eadp		
Strain	Ex	Ey	Eadp				
Loading	Fx	Fy	RSLT	MZ			
Reaction	Fx	Fy	RSLT	MZ			
Residual Force	Fx	Fy	RSLT				
Reaction Stress							
Velocity	Vx	Vy	RSLT				
Acceleration	Ax	Ay	RSLT				
Plastic Strain							
Creep Strain							
Rubber Stretches							
TMB Stress							
TMB Strain							
TMB Plastic Strain							
TMB Creep Strain							

2D Two Phase Interface Elements <u>IPN6P</u>, <u>IPN8P</u>

Entity					Compone	nt	
Displacement	Dx	Dy	RSLT	Press			
Stress	Sx	Sy	Q	Damage	LogLife	Eadp	
Strain	Ex	Ey	dP	Eadp			
Loading	Fx	Fy	RSLT				
Reaction	Fx	Fy	RSLT	Q			
Residual Force	Fx	Fy	RSLT	Q			
Reaction Stress							
Velocity	Vx	Vy	RSLT				
Acceleration	Ax	Ay	RSLT				
Plastic Strain							
Creep Strain							
Rubber Stretches							
TMB Stress							
TMB Strain							
TMB Plastic Strain							
TMB Creep Strain							

3D Interface Element IS6 IS8 IS12 IS16

Entity					Component
Displacement	Dx	Dy	RSLT		
Stress	Sx	Sy	Sz	Ez	Eadp
Strain	Ex	Ey	Eadp		
Loading	Fx	Fy	RSLT		
Reaction	Fx	Fy	RSLT		
Residual Force	Fx	Fy	RSLT		
Reaction Stress					
Velocity	Vx	Vy	RSLT		
Acceleration	Ax	Ay	RSLT		
Plastic Strain					
Creep Strain					
Rubber Stretches					
TMB Stress					
TMB Strain					
TMB Plastic Strain					
TMB Creep Strain					

3D Two Phase Interface Element <u>IS12P</u>, <u>IS16P</u>

Entity					Co	mponent	
Displacement	Dx	Dy	Dz	RSLT	Press		
Stress	Sx	Sy	Sz	Q	Damage	LogLife	Eadp
Strain	Ex	Ey	Ez	dΡ	Eadp		
Loading	Fx	Fy	Fz	RSLT			
Reaction	Fx	Fy	Fz	RSLT	Q		
Residual Force	Fx	Fy	Fz	RSLT	Q		
Reaction Stress							
Velocity	Vx	Vy	Vz	RSLT			
Acceleration	Ax	Ay	Az	RSLT			
Plastic Strain							
Creep Strain							
Rubber Stretches							
TMB Stress							
TMB Strain							
TMB Plastic Strain							
TMB Creep Strain							

Appendix L : Joint Element Compatibility

Joint Element Compatibility and Notes

Joint elements are compatible with the following elements:

Joint Element		Compatible Finite Elements					
JNT3	Bars	BAR2, BAR3					
	2D Plane Stress	TPM3, TPM6, QPM4, QPM8, TPK6, QPK8, QPM4M, TPM3E, QPM4E,					
	2D Plane Strain	TPN3, TPN6, QPN4, QPN8, TNK6, QNK8, TPN6P, QPN8P, QPN4M, QPN4L					
JPH3	2D Beams	BMI2, BMI21, BMI2N, BMI3N, BMI3, BMI3N, BMI2X, BMI3X, BM3, BMX3					
JF3	2D Grillage	GRIL					
	2D Plates	TF3, QF4, TF6, QSC4, TTF6, QTF8					
JNT4	3D Bars	BRS2, BRS3,					
	3D Solids	TH4, TH10, PN6, PN12, PN15, HX8, HX16, HX20, TH10P, PN12P, PN15P, HX16P, HX20P, HX8M, PN6L, PN12L, HX8L, HX16L, TH10S					
	Space	TSM3, SMI4					

Joint Element		Compatible Finite Elements
	Membranes	
	3D Shell	TSR6 (corner nodes)
<u>JL43</u>	Semiloof Shells	TSL6, QSL8 (corner nodes)
JSH4	3D Beams	BS3, BS4, BSX4, BMI21, BMI31, BMI22, BMI33, BMX21, BMX31, BMX22, BMX33, BMI21W, BMI22W, BMI31W, BMI33W, BMX21W, BMX22W, BMX31W, BMX33W
	3D Shells	<u>TS3, QSI4, TTS3, TTS6, QTS4, QTS8</u>
<u>JL46</u>	Semiloof Beams	BSL3, BSL4, BXL4 (corner nodes)
JSL4	Semiloof Beams	BSL3, BSL4, BXL4 (mid-side nodes)
	Semiloof Shells	QSL8, TSL6 (mid-side nodes)
JAX3	Axisymmetric Solids	TAX3, TAX6, QAX4, QAX8, TAX6P, QAX8P, TAX3E, QAX4E, TAX6P, TXK6, QXK8, QAX4M, QAX4L
JXS3	Axisymmetric Shells	BXS3, BXSI2, BXSI3,

Notes on the use of Joints

1. The nodes of a joint element need not be coincident, but for correct response the distance between them should be as small as possible. This is particularly important with joint elements which contain rotational degrees of freedom, since the stiffness matrix is not formulated using engineering beam theory. This means that a joint moment is independent of both shear force and its length. For instance, the moment calculated with a joint length of zero will remain the same magnitude at any other joint length. These effects can be exacerbated significantly in dynamic analyses (e.g. eigenvalue extraction or Hilber dynamics). Non-coincident nodes will lead to additional forces in the solution which are not in equilibrium (usually small and swamped, but could be significant sometimes). It is not recommend to have joints "hanging off" the side of a modelled structure, having a large stiffness associated.

- 2. If eccentricity is defined for a joint element (JPH3/JSH4/JL46), the joint will behave in the same manner as an infinitesimally short eccentric beam.
- 3. Joints do not support any geometric nonlinearity. They may be used, however, in geometrically nonlinear analyses but will themselves remain geometrically linear (that is, infinitesimal strain is assumed and large deformation effects are ignored).
- 4. The strain for a joint element is measured as follows:
 - Strain measure = (displacement for 2nd node) (displacement for 1st node)
 - This strain being measured in the local axis system. Therefore, if node 1 is restrained, node 2 would need to be displaced in the negative local (x/y/z) direction to generate compressive contact forces.
- 4. The rotation output for a joint element is measured in radians.

Element Reference Manual	

Index

2

2D Continuum, 196, 203, 210, 216, 221, 228, 235, 240, 246, 251, 257, 264, 270, 275, 281, 287, 293

2D Interface, 530, 534

2D Joints, 424, 428, 433, 437, 442

2D Line, 557

2D Phreatic Surface, 572

2D Plane Strain Beam, 186

2D Point, 548

2D Rigid Surface, 564

2DThick Beams, 85

3

3D Continuum, 300, 307, 314, 321, 328, 335
3D Interface, 538, 543
3D Joints, 447, 452, 457, 462
3D Line, 554
3D Phreatic Surface, 574
3D Point, 551
3D Rigid Surface, 567
3D Surface, 560

A

arch, 101, 148, 155, 163 axial force, 71 Axisymmetric Shells, 364, 371 Axisymmetric Solid, 257, 264, 270, 275 Axisymmetric Solid Continuum, 281 Axisymmetric Solid Two-Phase, 287

B

bar elements 2D, 68 3D, 73 BAR2, 68, 631 BAR3, 68, 631 Bars, 68, 73 BEAM, 85, 186 Beam Elements, 80, 85, 94, 109, 119, 130, 142, 149, 157, 164, 171, 179, 186 Beams, 94, 142, 149 BFD2, 468, 674 BFD3, 468, 674 BFS2, 476, 674 BFS3, 476, 674 BFX2, 472, 674 BFX3, 472, 674 BM3, 142, 637

BMI2, 94, 634 BMI21, 102, 635, 636 BMI21W, 122 cable structures, 73 BMI22, 102, 635, 636 cables, 72, 76 BMI22W, 122 circular plates, 416 BMI2N, 640 composite, 504, 509 BMI2X, 634 BMI3, 94, 634 BMI31, 102, 635, 636 BMI31W, 122 BMI33, 102, 635, 636 delamination, 530 BMI33W, 122 BMI3N, 640 E BMI3X, 634 BMX21, 112 Element Loads, 577 BMX21W, 132 Engineering Beam Elements, 593, 595 BMX22, 112, 635, 636 Engineering Beams, 80 BMX22W, 132 Environmental Temperature Loading, BMX3, 149, 637 580 BMX31, 112, 635, 636 Excessive Aspect Ratios, 587 BMX31W, 132 Excessive Element Curvature, 587 BMX33, 112 Excessive Warping, 588 BMX33W, 132 Explicit Dynamics, 642, 646, 647 BRS2, 73, 632 BRS3, 73, 632 BS3, 157, 638 BS4, 157, 638 BSL3, 171, 639 Face loading, 581 Face Loads On 2D Continuum BSL4, 171, 639 Elements, 581 BSX4, 164, 638 Face Loads On 3D Continuum BXL4, 179, 639 Elements, 582 BXM2, 412, 658 For Thermal Bars, 581 BXM3, 412, 658 Field, 468, 472, 476, 480, 483, 486, 489, 494, 499, 504, 509 BXS3, 364, 371, 660 Flat Thin Shells, 378, 384 BXSI2, 371, 661 Fourier Ring, 293 BXSI3, 661

fracture mechanics, 245 Hygro-Thermal solid elements, 524 frame, 101, 146, 154, 162, 169, 177, 185 friction contact, 534 ı G IAX4, 530, 677, 678 IAX6, 530 GRIL, 80, 633 IAX6P, 534 grillage, 80 Interface, 530, 534, 538, 543 Grillage Elements, 592 IPM4, 530 groundwater, 493 IPM6, 530 IPN12P, 679, 680 IPN16P, 679, 680 н IPN4, 530, 677, 678 IPN6, 530, 677, 678 heat conduction, 471, 482, 488 IPN6P, 534 HF16, 499, 674 IS12, 538, 543, 679, 680 HF16C, 509, 674 IS16, 538, 543, 679, 680 HF20, 499, 674 IS6, 538 HF8, 499, 674 IS8, 538 HF8C, 509, 674 Isoflex Plates, 350, 354 HHT16, 524, 675 HHT20, 524, 675 HHT8, 524, 675 HX16, 300, 652 HX16L, 328, 652 JAX3, 437, 669 HX16P, 341, 653 JF3, 433, 668 HX20, 300, 652 JL43, 452, 671 HX20K, 314 JL46, 457, 672 HX20P, 341, 653 JNT3, 424, 666 HX8, 300, 652 JNT4, 447, 671 HX8E, 654 Joint Element Compatibility, 681 HX8L, 328, 652 Joints, 428, 433, 437, 442, 457, 462, 682 HX8M, 307, 652 JPH3, 428, 667 Hygro-thermal axisymmetric elements, 520 JSH4, 457, 672 plane elements, 516

JSL4, 462, 673 N JXS3, 442, 670 Newton-Cotes Integration Points, 609 Non-Structural Mass, 548, 551, 554, K 557, 560 Numerically Integrated Beam Kirchhoff Beams, 142, 149, 157, 164 Elements, 591 LFD2, 480, 674 Output Notation for Principal Stresses, LFS2, 483, 674 615 LFX2, 486, 674 Overview, 7 LM2, 557 LM3, 557 LMS3, 554 LMS4, 554 perforated thick plates, 357 Load types, 580 PF12, 499, 674 local axes standard joint element, 589 PF12C, 509, 674 standard line element, 589 PF15, 499, 524, 674 standard surface element, 589 PF6, 499, 674 LUSAS Element Types, 12 PF6C, 509, 674 Phreatic, 572 Phreatic Surface 3D Elements, 574 M PHS2, 572 PHS3, 574 Mass Lumping in LUSAS, 617 PHS4, 574 membrane elements, 412, 417 PHT12, 524, 675 Membranes, 417 PHT16, 675 Mid-side Node Centrality, 587 PHT6, 524, 675 Mindlin Plates, 358 pipes, 370, 377, 416 modelling reinforcement, 77 Plane Field, 489, 494 Moments of Inertia Definitions, 619 plane frames, 146, 154 Plane Strain Continuum, 221, 228, 235, 240, 246, 251

Plane Stress Continuum, 196, 203, QPM4, 196, 641 210, 216 QPM4E, 216, 642 Plates, 350, 354, 358 QPM4M, 203, 641 PM2, 548 QPM8, 196, 641 PM3, 551 QPN4, 221, 643 PN12, 300, 652 QPN4E, 246, 646 PN12L, 328, 652 QPN4L, 235, 644 PN12P, 341, 653 QPN4M, 228, 643 PN15, 300, 652 QPN8, 221, 643 PN15K, 314 QPN8P, 251, 645, 648 PN15P, 341, 653 QSC4, 354, 656 PN6, 300, 652 QSI4, 378, 662 PN6E, 335, 654 QSL8, 391, 664 PN6L, 328, 652 QTF8, 358, 657 pressure vessels, 370, 377 QTS4, 400, 665 QTS8, 400, 665 QXF4, 489, 674 QXF8, 489, 674 **QXHT4**, 675 QAX4, 257, 650 QXHT8, 675 QAX4E, 281, 647 QXK8, 275, 650 QAX4F, 293, 649 QAX4L, 270, 651 QAX4M, 264, 650 R QAX8, 257, 287, 650 QAX8F, 293, 649 R2D2, 564 QF4, 350, 655 R3D3, 567 QFD4, 494, 674 R3D4, 567 QFD8, 494, 674 reinforced concrete, 77 QHT4, 516, 675 Results Notation QHT8, 516, 675 Key to Results Tables, 621 Key to Slideline Results, 629 QHXT4, 520 Rigid, 564, 567, 574 QHXT8, 520 Rigid Surface 3D Elements, 567 QM4, 560 QM8, 560 QNK8, 240, 643

QPK8, 210, 641

5	local axes, 589
	Standard Membrane Element, 601
SED, 629	Standard Plate Element, 597
Semiloof Beams, 171, 179	Standard Surface Element, 589
Semiloof Shells, 391	Strain energy density, 629
Shear Areas, 611	Structural Bars, 68, 73
shell structures, 399	Surface Mass Elements, 560
Shells, 364, 371, 378, 384, 391, 400	2 411400 111455 210110115, 5 00
sign convention 2d continuum element, 597 2d engineering beam elements, 593, 595	т
grillage elements, 592	TAX3, 257, 650
standard bar element, 591	TAX3E, 281, 647
standard beam eccentricity, 596	TAX3F, 293, 649
standard beam element, 591 standard field element, 602	TAX6, 257, 650
standard field element, 602 standard joint element, 602	TAX6F, 293, 649
standard membrane element, 601	TAX6P, 287
standard plate element, 597	temperature, 472
thick shell eccentricity, 601 thick shell element, 599	temperature distribution, 493
thin shell eccentricity, 599	Tetrahedral, 321
SMI4, 417, 659	TF10, 499, 674
Solid Continuum, 300, 307, 314, 321,	TF10S, 504, 674
328, 335	TF3, 350, 655
Solid Continuum Crack Tip, 314	TF4, 499, 674
Solid Field, 499, 504, 509	TFD3, 494, 516, 674
space frames, 163, 170	TFD6, 494, 674
space frames., 185	TH10, 300, 652
Space Membranes, 417	TH10K, 314
Standard 2D Continuum Element, 597	TH10P, 341
Standard 3D Continuum Element, 597	TH10S, 321, 652
Standard Bar Element, 591	TH4, 300, 652
Standard Beam Eccentricity, 596	TH4E, 335, 654
Standard Beam Element, 591	thermal analysis, 498
Standard Field Element, 602	Thermal Bars, 468, 472, 476
Standard Joint Element, 602	Thermal Links, 480, 483, 486
local axes, 589	Thick Shell Eccentricity, 601

Standard Line Element

Thick Shell Element, 599

Thick Shell Nodal Rotation, 605

Thick Shells, 400, 665

Thin Shell Eccentricity, 599

Thin Shell Element, 598

THT10, 524, 675

THT3, 675

THT4, 524, 675

THT6, 516, 675

TM3, 560

TM6, 560

TNH10P, 653

TNK6, 240, 643

Torsional Constant, 612

TPK6, 210, 641

TPM3, 196, 641

TPM3E, 216, 642

TPM6, 196, 641

TPN3, 221, 643

TPN3E, 246, 646

TPN6, 221, 643

TPN6P, 251, 645, 648

Transforming Results Directions, 630

trusses, 76

TS3, 378, 662

TSL6, 391, 664

TSM3, 417, 659

TSR6, 384, 663

TTF6, 358, 657

TTS3, 400, 665

TTS6, 400, 665

two phase, 341

TXF3, 489, 674

TXF6, 489, 674

TXHT3, 520, 675

TXHT6, 520, 675

TXK6, 275, 650

UDL Loads on Shells, 585

Element Reference Manual	

