

Element Reference Manual

Version 19.1 Issue 1

LUSAS

Forge House, 66 High Street, Kingston upon Thames,

 Surrey, KT1 1HN, United KingdomTel: +44 (0)20 85411999
Fax +44 (0)20 85499399
Email: info@lusas.com http://www.lusas.com

Distributors Worldwide

Copyright © 1982-2021 LUSAS
All Rights Reserved.

Table of Contents

Notation1
Introduction.7
Overview 7
Element selection 7
Element uses 7
Element Groups 11
Element Sub-Groups 12
Element Types and Availability 12
Element Index 17
Element Summary Tables 43
Chapter 1 : Bar Elements. 67
2D Structural Bar Elements 68
3D Structural Bar Elements 73
Chapter 2 : Beam Elements. 79
2D Engineering Grillage Thick Beam Element 80
2D Thick Beam Elements 85
2D Thick Beam Element with Quadrilateral Cross-Section 94
3D Thick Beam Elements 102
3D Thick Beam Elements with Quadrilateral Cross-Section 112
3D Thick Beam Elements with Torsional Warping 122
3D Thick Beam Elements with Quadrilateral Cross-Section and Torsional Warping 132
2D Kirchhoff Thin Beam Elements 142
2D Kirchhoff Thin Beam Element with Quadrilateral Cross-Section 149
3D Kirchhoff Thin Beam Elements 157
3D Kirchhoff Thin Beam Element with Quadrilateral Cross-Section 164
3D Semiloof Thin Beam Elements 171
3D Semiloof Thin Beam Element with Quadrilateral Cross-Section 179
2D Plane Strain Beam Elements. 186
Chapter 3: 2D Continuum Elements 195
2D Plane Stress Continuum Elements 196
2D Plane Stress Continuum Element with Enhanced Strains 203
2D Plane Stress Continuum Crack Tip Elements 210
2D Plane Stress Explicit Dynamics Elements 216
2D Plane Strain Continuum Elements. 221
2D Plane Strain Continuum Element with Enhanced Strains 228
2D Plane Strain Continuum Element for Large Strains. 235
2D Plane Strain Continuum Crack Tip Elements 240
2D Plane Strain Explicit Dynamics Elements 246
2D Plane Strain Two Phase Continuum Elements 251
2D Axisymmetric Solid Continuum Elements 257
2D Axisymmetric Solid Continuum Element with Enhanced Strains 264
2D Axisymmetric Solid Continuum Element for Large Strains 270
2D Axisymmetric Solid Continuum Crack Tip Elements 275
2D Axisymmetric Solid Explicit Dynamics Elements 281
2D Axisymmetric Solid Two Phase Continuum Elements 287
2D Axisymmetric Fourier Ring Elements 293
Chapter 4:3D Continuum Elements. 299
3D Solid Continuum Elements 300
3D Solid Continuum Element with Enhanced Strains. 307
3D Solid Continuum Crack Tip Elements 314
3D Solid Continuum Composite Elements (Tetrahedral) 321
3D Solid Continuum Composite Elements (Pentahedral and Hexahedral) 328
3D Solid Continuum Explicit Dynamics Elements 335
3D Solid Two Phase Continuum Elements 341
Chapter 5 : Plate Elements 349
2D Isoflex Thin Plate Flexure Elements 350
2D Isoflex Thick Plate Flexure Element 354
2D Mindlin Thick Plate Flexure Element 358
Chapter 6: Shell Elements. 363
2D Axisymmetric Thin Shell Element 364
2D Axisymmetric Thick Shell Elements 371
3D Flat Thin Shell Elements. 378
3D Flat Thin Nonlinear Shell Element 384
Semiloof Curved Thin Shell Elements 391
3D Thick Shell Elements 400
Chapter 7 : Membrane Elements. 411
2D Axisymmetric Membrane Elements 412
3D Space Membrane Elements 417
Chapter 8 : Joint Elements 423
2D Joint Element for Bars, Plane Stress and Plane Strain 424
2D Joint Element for Engineering and Kirchhoff Beams 428
2D Joint Element for Grillage Beams and Plates 433
2D Joint Element for Axisymmetric Solids 437
2D Joint Element for Axisymmetric Shells 442
3D Joints for Bars, Solids and Space Membranes 447
3D Joints for Semiloof Shells 452
3D Joint Elements for Engineering, Kirchhoff and Semiloof Beams 457
3D Joint Element for Semiloof Beams 462
Chapter 9 : Thermal / Field Elements. 467
2D Bar Field Elements. 468
2D Axisymmetric Membrane Field Elements 472
3D Bar Field Elements 476
2D Link Field Element 480
3D Link Field Element 483
2D Axisymmetric Link Field Element 486
2D Axisymmetric Field Elements 489
2D Plane Field Elements 494
3D Solid Field Elements 499
3D Solid Composite Field Element (Tetrahedral) 504
3D Solid Composite Field Elements (Pentahedral and Hexahedral) 509
Chapter 10 : Hygro-Thermal Elements. 515
2D Plane Hygro-Thermal Elements 516
2D Axisymmetric Solid Hygro-Thermal Elements 520
3D Solid Hygro-Thermal Elements 524
Chapter 11 : Interface Elements. 529
2D Interface Element 530
2D Two Phase Interface Element. 534
3D Interface Element 538
3D Two Phase Interface Element 543
Chapter 12 : Non-Structural Elements 547
2D Point Mass Element 548
3D Point Mass Element 551
3D Line Mass Elements. 554
2D Line Mass Elements. 557
Surface Mass Elements 560
Chapter 13 : Rigid Slideline Elements 563
Rigid Slideline Surface 2D Elements 564
Rigid Slideline Surface 3D Elements 567
Chapter 14 : Phreatic Elements 571
Phreatic Surface 2D Elements 572
Phreatic Surface 3D Elements 574
Appendix A : Element and Pressure Loads. 577
ELDS Element Loads 577
ENVT/TDET Environmental Boundary Conditions 580
FLD Face loading applied to thermal bars 581
Face Loads On 2D Continuum Elements 581
Face Loads On 3D Continuum Elements 582
UDL Loads on Shells 585
Appendix B : Element Restrictions. 587
Mid-side Node Centrality 587
Excessive Element Curvature 587
Excessive Aspect Ratios 587
Excessive Warping 588
Appendix C : Local Element Axes 589
Standard Joint Element 589
Standard Line Element 589
Standard Surface Element 589
Appendix D : Sign Conventions. 591
Standard Bar Element 591
Standard Beam Element 591
Grillage Elements 592
2D Engineering Beam Elements. 593
3D Engineering Beam Elements 595
Standard Beam Eccentricities 596
Standard 2D Continuum Element 597
Standard 3D Continuum Element. 597
Standard Plate Element 597
Thin Shell Element 598
Thin Shell Eccentricity 599
Thick Shell Element 599
Thick Shell Eccentricity 601
Standard Membrane Element 601
Standard Field Element 602
Standard Joint Element 602
Appendix E: Thick Shell Notation 605
Thick Shell Nodal Rotation 605
Appendix F: Newton Coates Integration 609
Newton-Cotes Integration Points 609
Appendix G : Shear Area and Torsional Constant. 611
Shear Areas 611
Torsional Constant 612
Appendix H: Principal Stress Output. 615
Output Notation for Principal Stresses 615
Appendix I : Mass Lumping. 617
Mass Lumping in LUSAS 617
Appendix J: Moments of Inertia 619
Moments of Inertia Definitions 619
Appendix K : Results Tables. 621
Key to Element Results Tables 621
Key to Slideline Results Components 629
Transforming Results Directions 630
2D Structural Bars BAR2, BAR3 631
3D Structural Bars BRS2, BRS3 632
2D Engineering Grillage Thick Beam GRIL 633
2D Thick Beam Elements BMI2, BMI3, BMI2X, BMI3X 634
3D Thick Beam Elements BMI21, BMI22, BMI31, BMI33, BMX21, BMX22, BMX31, BMX33635
3D Thick Beam Elements with Torsional Warping BMI21W, BMI22W, BMI31W, BMI33W, BMX21W, BMX22W, BMX31W, BMX33W 636
2D Kirchhoff Thin Beams BM3, BMX3 637
3D Kirchhoff Thin Beams BS3, BS4, BSX4 638
3D Semiloof Thin Beams BSL3, BSL4, BXL4 639
Plane Strain Beam Elements BMI2N, BMI3N 640
2D Continuum (Plane Stress) TPM3/6, QPM4/8, QPM4M, TPK6, QPK8 641
2D Continuum Plane Stress (Explicit Dynamics) TPM3E, QPM4E 642
2D Continuum (Plane Strain) TPN3/6, QPN4/8, TNK6, QNK8, QPN4M 643
2D Continuum (Plane Strain) QPN4L 644
2D Plane Strain Two Phase Continuum TPN6P, QPN8P 645
2D Continuum Plane Strain (Explicit Dynamics) TPN3E, QPN4E 646
2D Continuum Axisymmetric Solid (Explicit Dynamics) TAX3E, QAX4E 647
2D Axisymmetric Solid Two Phase Continuum TAX6P, QAX8P 648
2D Continuum Axisymmetric Solid Fourier TAX3/6F, QAX4/8F 649
Axisymmetric Solid TAX3/6, QAX4/8, QAX4M, TXK6, QXK8 650
Axisymmetric Solid Large Strain QAX4L 651
3D Solid Continuum TH4/10, TH10S, PN6/12/15, PN6L/12L, HX8/16/20, HX8M, HX8L/16L TH10K, PN15K, HX20K 652
3D Solid Continuum Two Phase TH10P, PN12P, PN15P, HX16P, HX20P 653
3D Solid Continuum Explicit Dynamics TH4E, PN6E, HX8E 654
Isoflex Thin Plates TF3, QF4 655
Isoflex Thick Plates QSC4 656
Mindlin Thick Plates TTF6, QTF8 657
2D Axisymmetric Membranes BXM2, BXM3 658
3D Space Membranes TSM3, SMI4 659
2D Thin Axisymmetric Shells BXS3 660
2D Thick Axisymmetric Shells BXSI2, BXSI3 661
3D Flat Thin Shells TS3, QSI4 662
3D Flat Thin Nonlinear Shell TSR6 663
Semiloof Shells TSL6, QSL8 664
3D Thick Shells TTS3, TTS6, QTS4, QTS8 665
2D Joints (for Bars, Plane Stress and Plane Strain) JNT3 666
2D Joints (for Engineering and Kirchhoff Beams) JPH3 667
2D Joints (for Grillage Beams and Plates) JF3 668
2D Joints (for Axisymmetric Solids) JAX3 669
2D Joints (for Axisymmetric Shells) JXS3 670
3D Joints (for general 3 dof connection) JNT4, JL43 671
3D Joints (for general 6 dof connection) JSH4, JL46 672
3D Joints (for Semiloof Element Mid-side Nodes) JSL4 673
Thermal Bars BFD2/3, BFS2/3, BFX2/3 674
Thermal Links LFD2, LFS2, LFX2 674
Plane and Axisymmetric Field TFD3/6, QFD4/8, TXF3/6, QXF4/8 674
Solid Field TF4/10, PF6/12/15, HF8/16/20, TF10S, PF6C/12C, HF8C/16C 674
Plane and Axisymmetric Hygro-Thermal THT3/6, QHT4/8, TXHT3/6, QXHT4/8 675
Solid Hygro-Thermal THT4/10, PHT6/12/16, HHT8/16/20 675
2D Interface Element IPN4, IPN6, IAX4, IAX6 677
2D Two Phase Interface Elements IPN6P, IPN8P 678
3D Interface Element IS6 IS8 IS12 IS16 679
3D Two Phase Interface Element IS12P, IS16P 680
Appendix L : Joint Element Compatibility 681
Joint Element Compatibility and Notes 681
Index 685

Notation

A Cross sectional area
Ap Plastic area
As, Asy, Asz Effective shear area
$\mathbf{A}_{1} \ldots \mathbf{A}_{\mathrm{n}}$ Nodal cross sectional areas
ar Mass Rayleigh damping constant
α Coefficient of thermal expansion
α Softening parameter
$\alpha \mathbf{x}, \alpha \mathbf{y}, \alpha \mathbf{z}, \alpha \mathbf{x y}, \alpha \mathbf{x z}$, Orthotropic thermal expansion coefficients $\alpha y z$
$\alpha \mathbf{x}, \alpha \mathbf{y}, \alpha \mathbf{z}$ Angular accelerations
br Stiffness Rayleigh damping parameter
β Shear retention factor/parameter
β Principal stresses direction
C Specific heat capacity
$\mathbf{C i}$ (i)th hardening stiffness
\mathbf{C}_{0} Neo-Hookean rubber model constant
$\mathbf{C}_{1}, \mathbf{C}_{2}$ Mooney-Rivlin rubber model constants
c Cohesion
co Initial cohesion
Dij Rigidity coefficients
du, dq Relative displacement, rotation
E Modulus of elasticity (Young's modulus)
Ep Elasto-plastic modulus
$\mathbf{E x}, \mathbf{E y}, \mathbf{E z}$ Orthotropic moduli of elasticity ep Strain at peak compressive strength ey, ez Eccentricity $\varepsilon \mathbf{x}, \varepsilon \mathbf{y}, \varepsilon \mathbf{z}$ Direct strains (local or global)
Es Maximum shear strain عe Von Mises equivalent strain عc Creep strains \&p Equivalent plastic strain $\mathbf{F x}, \mathbf{F y}, \mathbf{F z}$ Forces (local or global) Fyld Yield force
F Deformation gradient fc' Compressive strength of concrete ft' Tensile strength of concrete $\psi \mathbf{x}, \psi \mathbf{y}, \psi \mathbf{z}$ Flexural (bending) strain resultants $\psi \mathbf{x y}, \psi \mathbf{x z}, \psi \mathbf{y z}$ Torsional strain resultants
G Shear modulus
Gf Fracture energy
Gxy, Gxz, Gyz Orthotropic shear moduli
$\gamma \mathbf{x}, \gamma \mathbf{y}, \gamma \mathbf{z}$ Membrane strain resultants
$\gamma \mathbf{x}, \gamma \mathbf{y}, \gamma \mathbf{z}$ Field gradients (local or global)
H Enthalpy
Hi1 Isotropic hardening parameter
Hk1 Kinematic hardening parameter
he Convective heat transfer coefficient
hf Heat fraction
hr Radiative heat transfer coefficient
$\theta \mathbf{x}, \theta \mathbf{y}, \theta \mathbf{z}$ Rotations (local or global)θ_{1}, θ_{2} Loof node rotations (local)$\theta \alpha, \theta \beta$ Nodal rotations for thick shells$\theta \lambda$ Angle defining principal directions of λ_{1}, λ_{2}
$\mathbf{I y}, \mathbf{I z}$ 1st moments of inertia
Iyy, Izz 2nd moments of inertia
Iyz Product moment of inertia
J Volume ratio (determinant of F)
K Spring stiffness
Kc Contact stiffness
Kl Lift-off stiffness
Ko Original gap conductance
Kt Torsional constant
k Thermal conductivity
$\mathbf{k x}, \mathbf{k y}, \mathbf{k z}$ Orthotropic thermal conductivities
$\mathbf{k r}$ Bulk modulus
κ Hardening stiffness
Li Limit of (i)th hardening stiffness
$\lambda_{1}, \lambda_{2}, \lambda_{3}$ Principal stretches
M Mass$\mathbf{M x}, \mathbf{M y}, \mathbf{M z}$ Concentrated moments (local or global)
$\mathbf{M x}, \mathbf{M y}, \mathbf{M z}, \mathbf{M}_{\theta}$ Flexural moments (local or global)
Mxy, Mxz, Myz Torsional moments (local or global)
$\mathbf{M}_{1}, \mathbf{M}_{2}$ Concentrated loof moments (local or global)
$\mathbf{m}_{\mathrm{x}}, \mathbf{m}_{\mathrm{y}}, \mathbf{m}_{\mathrm{z}}$ Mass in element local directions
μ Coulomb friction coefficient
$\mu \mathbf{r i}$, ari Ogden rubber model constants
$\mathbf{N x}, \mathbf{N y}, \mathbf{N z}, \mathbf{N} \theta$ Membrane resultants (local or global)
$\mathbf{N x}, \mathbf{N y}, \mathbf{N x y}$ Stress resultants
Nmax, Nmin Principal stress resultants
Ns Maximum shear stress resultant
Ne Von Mises equivalent stress resultant
u Poisson's ratio
vxy, vxz, vyz Orthotropic Poisson's ratio
$\mathbf{P x}, \mathbf{P y}, \mathbf{P z}$ Concentrated loads (global)ρ Mass density
Q Field loading
qa Field face loading flux/unit area
qv Field volume loading flux/unit volume
$\mathbf{q x}, \mathbf{q y}, \mathbf{q z}$ Field fluxes (local or global)
\mathbf{Q}_{H} Rate of internal heat generation per unit volume Rate of internal mass (liquid+vapour) generation per unit volume Heat flux
\mathbf{Q}_{w} Rate of internal heat generation per unit volume Rate ofinternal mass (liquid+vapour) generation per unit volumeHeat flux
\mathbf{q}_{H} Rate of internal heat generation per unit volume Rate of internal mass (liquid+vapour) generation per unit volume Heat flux
qs Stress potential parameters
\mathbf{q}_{w} Mass (liquid+vapour) flux Relative humidity Initial relativehumidity
RH Mass (liquid+vapour) flux Relative humidity Initial relative humidity
$\mathbf{R H}_{0}$ Mass (liquid+vapour) flux Relative humidity Initial relativehumidity
Sp Plastic shear area
$\sigma \mathbf{y}$ Yield stress
σ yo Initial uniaxial yield stress$\sigma \mathbf{x}, \sigma \mathbf{y}, \sigma \mathbf{z}$ Direct stresses (local or global)σ max, σ min Principal stresses$\sigma \mathbf{x y}, \sigma \mathbf{x z}, \sigma \mathbf{y z}$ Shear stresses (local or global)
os Maximum shear stress
$\sigma \mathbf{e}$ Von Mises equivalent stress
T Temperature
T, To Final, initial temperatures
$\mathbf{t}_{1} \ldots \mathbf{t}_{\mathrm{n}}$ Nodal thicknesses
U, V, W Displacements (global)
Φ Field variable
Фе External environmental temperature
ϕ Frictional angle
ϕ o Initial frictional angle
ϕ Body force potential
$\mathbf{V x}, \mathbf{V y}, \mathbf{V z}$ Nodal velocities (global)
V11, V12 ... V33 Left stretch tensor components
$\mathbf{W x}, \mathbf{W y}, \mathbf{W z}$ Uniformly distributed intensities
$\mathbf{X , Y , Z}$ Nodal coordinates (global)
Xcbf, Ycbf, Zcbf Constant body forces (global)
Xo, Yo, Zo Offsets of finite element model coordinate system from pointabout which global angular acceleration and velocities areapplied
$\mathbf{y}_{1}, \mathbf{z}_{1} \ldots \mathbf{y}_{4}, \mathbf{z}_{4}$ Cross sectional coordinates (local)
$\mathbf{Z y p}, \mathbf{Z z p}$ Torsional plastic moduli
Zyyp, Zzzp Flexural plastic moduli
ω Frequency of vibration
$\Omega \mathbf{x}, \Omega \mathbf{y}, \Omega \mathbf{z}$ Angular velocities (global)

Introduction

Overview

The LUSAS Element Reference Manual describes the elements currently available in LUSAS Solver. It has been designed to be used in conjunction with the Solver Reference Manual and provides input/output information which is specific to each element type.
If you require:

- General theoretical information - refer to Theory Manual Volume 1
- Element related theoretical / formulation information - refer to Theory Manual Volume 2

Element selection

Details of typical element uses are provided and, to assist you with choosing an element for a particular modelling task, three alternative selection methods are available for selecting by:

Element type - listing just element group, sub-group and element name
\square Element index - showing element name, geometry, nodal freedoms and element availability
\square Element summary - showing element names, material property, loading, nonlinear, integration, and mass modelling capabilities
Of these three methods, the element summary tables provide the most detail to enable correct element selection for a particular modelling task.

Element uses

The following brief descriptions of each element group are provided to assist you with element selection for a particular modelling task.
Additional more detailed and element-specific recommendations on use can be found by viewing the Recommendations on Use section provided within each element's listing. For an example see 3D Thick Beam Elements

Bar Elements

Bar elements are used to model plane and space truss structures, cables in cable-stayed structures, and stiffening reinforcement.

- LUSAS incorporates 2 and 3-dimensional bar elements which may either be straight or curved.
- Bar elements model axial force only.

Beam Elements

Beam elements are used to model plane frames, space frame structures, and cables in cable-stayed structures.

- LUSAS incorporates a variety of thin and thick beams in both 2 and 3 -dimensions. In addition, specialised beam elements for modelling grillage or eccentrically ribbed plate structures are available.
- LUSAS beam elements may be either straight or curved and may model axial force, bending and torsional behaviour.

2D Continuum Elements

2D continuum elements are used to model solid structures whose behaviour may reasonably be assumed to be 2dimensional.

- 2D continuum elements may be applied to plane stress, plane strain and axisymmetric solid problems.
- Triangular and quadrilateral elements are available.
- Fourier elements, which allow non-axisymmetric loading to be applied to axisymmetric models, are considered a special case of the 2D continuum elements since the mesh is defined entirely in the xy-plane, but the resulting displacements, strains and stresses are fully three-dimensional.
- Special crack tip elements are available to model the singularities encountered at crack opening
- Explicit elements are available to model high speed dynamics problems efficiently.

3D Continuum Elements

3D continuum elements are used to model fully3dimensional structures.

- Tetrahedral, pentahedral and hexahedral solid elements are available to model full 3-dimensional stress fields.

- Composites elements are available to model laminates.
- Special crack tip elements are available to model the singularities encountered at crack opening

Plate Elements

Plate elements are used to model flat structures whose deformation can be assumed to be predominantly flexural

- LUSAS incorporates both thin and thick plate elements.
- Triangular and quadrilateral flexural plate elements are available.

Shell Elements

Shell elements are used to model 3-dimensional structures whose behaviour is dependent upon both flexural and membrane effects.

- LUSAS incorporates both flat and curved shell elements.
- Triangular and quadrilateral elements are available
- Both thin and thick shell elements are available.

Membrane Elements

Membrane elements are used to model 2 and 3dimensional structures whose behaviour is dominated by in-plane membrane effects.

- LUSAS incorporates both axisymmetric and space (3-dimensional) membrane elements.
- Membrane elements incorporate in-plane (membrane) behaviour only (they include no bending behaviour).

Joint Elements

Joint elements are used to model flexible joints between other LUSAS elements.

- LUSAS incorporates a variety of joint elements which are designed to match the nodal freedoms of their associated elements.
- Joint elements may also be used to model point masses, elasto-plastic hinges, or smooth and frictional element contacts.

Non-Structural Mass Elements

Non-Structural Mass elements are used to model translational mass at a point, along an edge or on a surface.

- Non-Structural Mass elements must be used with other structural elements.

Thermal / Field Elements

Thermal / Field elements are used to model quasiharmonic equation problems such as thermal conduction or potential distribution.

- LUSAS incorporates bar, plane, axisymmetric solid and 3-dimensional solid field elements.

- Thermal link elements are also available.

Hygro-Thermal Elements

Hygro-thermal elements are used in hygro-thermal transient analyses, i.e. to model heat and moisture flow in porous media. The elements are generally used for problems involving the heat of hydration of concrete, and are normally used in a hygro-thermal-structural coupled
 analysis.

- LUSAS incorporates plane, axisymmetric solid and 3-dimensional solid hygro-thermal elements
- Thermal link elements can also be used in a hygro-thermal analysis.
Interface Elements

Mohr-Coulomb interface elements are used to model the
contact behaviour between two bodies.
Delamination interface elements model delamination and
crack propagation in composites. They are positioned at
places of potential delamination between continuum
elements

Rigid elements are used to define the shape of a rigid
surface which is not part of the analysis model.
Phreatic surface elements are used to define the shape of a
phreatic surface. They may be used with 2D and 3D
continuum and two-phase elements.

Element Groups

The LUSAS Element Library is arranged into the following element groups:
\square Bars

- Beams
- 2D Continuum elements
\square 3D Continuum elements
\square Plates
\square Shells
- Membranes
\square Joints
- Non-structural mass elements
\square Thermal/Field elements
\square Hygro-thermal elements
\square Interface elements
\square Rigid elements
\square Phreatic surface elements

Element Sub-Groups

Each element group is also sub-divided into element sub-groups according to the type of element formulation as shown in the following table. For example, the Beam element group contains the element sub-groups: Engineering beams, Thick beams, Kirchhoff beams and Semiloof beams.
Within each sub-group elements vary according to the geometry, the number of nodes, and the properties required by each element. The individual elements are referred to by their LUSAS name, for example: BMI21 or QTS4 .

Note

The dimensional classification of LUSAS elements is on the basis of the number of dimensions required for input of the nodal coordinates. For example, an engineering grillage element, (GRIL) requires X, Y coordinates and is hence classed as being 2dimensional (despite having an out of plane displacement freedom).

Element Types and Availability

Element Group	Element Subgroup	Element Name and Software Product Version Availability		
		LT	Standard (S)	Plus (+)
Bars	Structural bars	BAR2, BRS2	BAR3, BRS3	
Beams	Engineering beams	GRIL		
	Plain strain beams		$\begin{aligned} & \text { BMI2N, } \\ & \text { BMI3N } \\ & \hline \end{aligned}$	
	Thick beams	BMI2, BMI21		$\begin{aligned} & \text { BMI3, BMI2X, } \\ & \text { BMI3X, BMI22, } \\ & \text { BMI31, BMI33, } \\ & \begin{array}{l} \text { BMX21 } \end{array}, \underline{\text { BMX22 }}, \end{aligned}$
	Thick crosssection beams			$\begin{array}{\|l} \begin{array}{l} \text { BMI3, BMI2X, } \\ \text { BMI3X, BMI22, } \\ \text { BMI31, BMI33, } \\ \text { BMX21, BMX22, } \\ \text { BMX31 } \end{array}, \underline{\text { BMX33 }} \end{array}$

Element Group	Element Subgroup	Element Name and Software Product Version Availability		
		LT	Standard (S)	Plus (+)
	Warping beams			BMI21W, BMI22W, BMI31W, BMI33W, BMX21W, BMX22W, BMX31W, BMX33W
	Thin (Kirchhoff) beams		BM3, BMX3	BS3, BS4, BSX4
	Semiloof beams			$\frac{\text { BSL3 }}{\mathrm{BXL} 4} \text { BSL4, }$
2D Continuum	Plane stress continuum		$\begin{aligned} & \text { TPM3, } \\ & \text { TPM6, } \\ & \text { QPM4, } \\ & \text { QPM8, } \\ & \text { QPM4M, } \\ & \hline \text { TPK6, QPK8 } \\ & \hline \end{aligned}$	TPM3E, QPM4E
	Plane strain continuum		$\begin{array}{\|l} \text { TPN3, TPN6, } \\ \text { QPN4, QPN8, } \\ \text { QPN4M, } \\ \text { QPN4L, } \\ \hline \text { TNK6, QNK } 8 \\ \hline \end{array}$	TPN3E, QPN4E
	Plain strain two phase		$\begin{aligned} & \text { TPN6P } \\ & \hline \text { QPN8P } \end{aligned}$	
	Axisymmetric solid continuum		$\begin{aligned} & \text { TAX3, TAX6, } \\ & \text { QAX4, } \\ & \text { QAX8, } \\ & \text { QAX4M, } \\ & \text { QAX4L, } \\ & \hline \text { TXK6, }, \\ & \hline \text { QXK8, }, \\ & \hline \text { TAX3F }, \\ & \hline \text { TAX6F, } \\ & \hline \text { QAX4F, } \\ & \hline \text { QAX8F } \\ & \hline \end{aligned}$	TAX3E, QAX4E

Element Group	Element Subgroup	Element Name and Software Product Version Availability		
		LT	Standard (S)	Plus (+)
	Axisymmetric solid two-phase			TAX6P, QAX8P
	Fourier ring			$\begin{aligned} & \text { TAX3F, TAX6F }, \\ & \text { QAX4F, }, \underline{\text { QAX88F }} \end{aligned}$
3D Continuum	Solid continuum		$\begin{aligned} & \text { TH4, PN6, } \\ & \text { HX8, HX8M } \end{aligned}$	
	Solid continuum crack tip			$\begin{aligned} & \text { TH10K }, ~ P N 15 K \\ & \text { HX20K } \end{aligned}$
	Solid continuum two phase			$\begin{aligned} & \text { TH10P }, ~ \\ & \text { PN15P }, ~ H 2 P, \\ & \text { HX20P } \end{aligned}$
Plates	Isoflex plates Mindlin plates		$\begin{aligned} & \frac{\text { TF3 }}{2}, \underline{\text { QF4 }}, \\ & \frac{\text { QSC }}{} \\ & \text { TTF6, QTF8 } \end{aligned}$	
Shells	Axisymmetric thin shells		BXS3	
	Axisymmetric thick shells		$\begin{array}{\|l} \hline \text { BXSI2, } \\ \hline \mathbf{B X S I} 3 \\ \hline \end{array}$	
	Flat thin shells		TS3, QSI4	TSR6,
	Semiloof shells			TSL6, QSL8
	Thick shells		TTS3, OTS4	TTS6, QTS8
Membranes	Axisymmetric membranes		$\begin{array}{\|l} \text { BXM2, } \\ \hline \text { BXM3 } \\ \hline \end{array}$	
	Space membranes		TSM3, SMI4	

Element Group	Element Subgroup	Element Name and Software Product Version Availability		
		LT	Standard (S)	Plus (+)
Joints	2D joints		$\begin{aligned} & \mathrm{JNT} 3, \text { JPH3, } \\ & \begin{array}{l} \mathrm{JF} 3, ~ J A X 3 \end{array} \\ & \mathbf{J X S} 3 \end{aligned}$	
	3D joints		$\begin{aligned} & \text { JNT4, JL43, } \\ & \hline \text { JSH4, JL46 } \end{aligned}$	JSL4
Field	Thermal bars		$\begin{aligned} & \begin{array}{l} \mathrm{BFD} 2 \\ \frac{\mathrm{BFD} 3}{\mathrm{BFX2}}, \\ \mathrm{BFS2}, \\ \mathrm{BFS3} 3 \end{array} \end{aligned}$	
	Thermal links		$\frac{\text { LFD2 }}{\text { LFS2 }}, \text { LFX2, }$	
	Plane field		$\begin{aligned} & \frac{\text { TFD3 }}{}, \text { TFD6, } \\ & \text { QFD4, }, ~ \text { QFD } 8 \end{aligned}$	
	Axisymmetric field		$\begin{aligned} & \text { TXF3, TXF6, } \\ & \text { QXF4, }, \text { QXF8 } \end{aligned}$	
	Solid field		$\begin{aligned} & \begin{array}{l} \text { TF4, }, ~ T F 10, \\ \text { PF6 }, ~ \\ \text { PF12, }, \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { HF16, } \\ \text { PF6C, } \\ \text { HF20, } \\ \text { HF8C }, \\ \text { TF12C } \end{array} \end{aligned}$
HygroThermal	Plane hygrothermal			$\begin{aligned} & \text { THT3, THT6, } \\ & \text { QHT4, }, \text { QHT8 } \\ & \hline \end{aligned}$
	Axisymmetric hygro-thermal			$\begin{aligned} & \text { TXHT3, TXHT6, } \\ & \text { QXHT4, QXHT8 } \end{aligned}$
	Solid hygrothermal			THT4, THT10, PHT6, PHT12, PHT15,, HHT8, HHT20
Interface	2D Interface			$\begin{aligned} & \text { IPN4, IPN6, IPM4, } \\ & \underline{\text { IPM6, }} \text { IAX4, } \\ & \underline{\text { IAX6 }} \end{aligned}$
	2D Two-phase interface			IPN6P, IAX6P

Element Group	Element Subgroup	Element Name and Software Product Version Availability		
		LT	Standard (S)	Plus (+)
	3D Interface			$\frac{\text { IS6, IS8, IS12 }}{\text { IS16 }}$
	3D Two-phase interface			IS12P, IS16P
Mass	Point Mass			PM2, PM3
	Line Mass			$\frac{\text { LM2 }, ~ L M 3, ~ L M S 3, ~}{\text { LMS4 }}$
	Surface Mass			$\frac{\mathrm{TM} 3}{\mathrm{QM8}}, \mathrm{TM}, ~ \mathrm{QM4},$
Rigid Surface	2D Rigid			R2D2
	3D Rigid			R3D3, R3D4
Phreatic Surface	2D		PHS2	
	3D		PHS3, PHS4	

For details of the compatibility of joint elements with other elements see Appendix L $: \underline{\text { Joint Element Compatibility }}$

Element Index

The following element index tables provide a diagrammatic index for each element with a description of the element, the nodal freedoms, and the software product version in which it is available.
The tables are listed in the following order:
\square Bar elements
\square Beam elements

- 2D Continuum elements
\square 3D Continuum elements
\square Plate elements
\square Shell elements
\square Membrane elements
\square Joint elements
- Thermal / Field elements
\square Hygro-Thermal elements
\square Interface elements
\square Non-Structural Mass elements
\square Rigid elements
\square Phreatic elements

Bar Elements

Name	Geometry	Title	Freedoms	Product Version
$\underline{\text { BAR2 }}$		BAR element in 2D	U, V	LT
$\underline{\text { BAR3 }}$		BAR element in 2D	U, V	Standard

BRS2		BAR element in 3D	U, V, W	LT
BRS3		BAR element in 3D	$\mathrm{U}, \mathrm{V}, \mathrm{W}$	Standard

Beam Elements

Name	Geometry	Title	Freedoms	Product Version
GRIL		ENGINEERING grillage thick beam element in 2D	W, qx, qy	LT
BMI2		THICK beam element in 2D (corotational)	U, V, qz	LT
BMI3		THICK beam element in 2D (corotational)	U, V, qz	Plus
BMI2X		THICK beam element in 2D with quadrilateral crosssection (corotational)	U, V, qz	Plus
BMI3X		THICK beam element in 2D with quadrilateral crosssection (corotational)	U, V, qz	Plus

BMI21		THICK linear thick beam element in 3D	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \text { qy, qz } \end{aligned}$	LT
BMI21W		THICK linear thick beam element with torsional warping in 3D	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \text { qy, qz, } \alpha \end{aligned}$	Plus
BMX21		THICK linear thick beam element in 3D with quadrilateral cross-section	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \text { qy, qz } \end{aligned}$	Standard
BMX21W		THICK linear thick beam element with torsional warping in 3D with quadrilateral cross-section	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \text { qy, qz, } \alpha \end{aligned}$	Plus
BMI31		THICK quadratic thick beam element in 3D	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \text { qy, qz } \end{aligned}$	Plus
BMI31W		THICK quadratic thick beam element with torsional warping in 3D	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \text { qy, qz, } \alpha \end{aligned}$	Plus
BMX31		THICK quadratic thick beam element in 3D with quadrilateral crosssection	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \text { qy, qz } \end{aligned}$	Plus
BMX31W		THICK quadratic thick beam element with torsional warping in 3D with quadrilateral crosssection	$\begin{aligned} & \text { U, V, W, qx, } \\ & \text { qy, qz, } \alpha \end{aligned}$	Plus

BMI22		THICK twisted linear thick beam element in 3D	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \text { qy, qz } \end{aligned}$	Plus
BMI22W		THICK twisted linear thick beam element with torsional warping in 3D	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \text { qy, qz, } \alpha \end{aligned}$	Plus
BMX22		THICK twisted linear thick beam element in 3D with quadrilateral crosssection	$\begin{aligned} & \text { U, V, W, qx, } \\ & \text { qy, qz } \end{aligned}$	Plus
BMX22W		THICK twisted linear thick beam element with torsional warping in 3D with quadrilateral crosssection	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \text { qy, qz, } \alpha \end{aligned}$	Plus
BMI33		THICK twisted quadratic thick beam element in 3D	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \text { qy, qz } \end{aligned}$	Plus
BMI33W		THICK twisted quadratic thick beam element with torsional warping in 3D	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \text { qy, qz, } \alpha \end{aligned}$	Plus
BMX33		THICK twisted quadratic beam element in 3D with quadrilateral crosssection	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz} \end{aligned}$	Plus

BMX33W		THICK twisted quadratic beam element with torsional warping in 3D with quadrilateral cross-section	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz}, \alpha \end{aligned}$	Plus
BM3		KIRCHHOFF thin beam element in 2D	end nodes: U, V, qz mid-node: dU	Standard
BMX3		KIRCHHOFF thin beam element in 2D with quadrilateral cross-section	end nodes: $\mathrm{U}, \mathrm{V}, \mathrm{qz}$ mid-node: dU	Standard
BS3		KIRCHHOFF thin beam element in 3D	end nodes: $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{qx}$, qy, qz mid-node: dU, dqx	Plus
BS4		KIRCHHOFF thin beam element in 3D	end nodes: $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{qx}$, qy, qz mid-node: dU, dqx	Plus
BSX4		KIRCHHOFF thin beam element in 3D with quadrilateral cross-section	end nodes: U, V, W, qx, qy, qz mid-node: dU, dqx	Plus
BSL3		SEMILOOF thin beam element in 3D for use with TSL6	end nodes: $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{qx}$, qy, qz mid-node: $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{q} 1$, q2	Plus
BSL4		SEMILOOF thin beam element in 3D for use with QSL8	end nodes: U, V, W, qx, qy, qz mid-node: U, V, W, q1, q2	Plus

BXL4		SEMILOOF thin beam element in 3D with quadrilateral cross-section	end nodes: $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{qx}$, qy, qz mid-node: $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{q} 1$,	Plus
q 2				

2D Continuum Elements

Name	Geometry	Title	Freedoms	Product Version
TPM3		PLANE STRESS continuum element in 2D	U, V	Standard
TPM6	PLANE STRESS continuum element in 2D	U, V	Standard	
QPM4		PLANE STRESS continuum element in 2D	U, V	Standard
$\underline{\text { QPM8 }}$		PLANE STRESS continuum element in 2D	U, V	Standard

TPK6	PLANE STRESS continuum crack tip element in 2D	U, V	Standard
QPK8	PLANE STRESS continuum crack tip element in 2D	U, V	Standard
TPM3E	PLANE STRESS explicit dynamics element in 2D	U, V	Plus
QPM4E	PLANE STRESS explicit dynamics element in 2D	U, V	Plus
QPN3	PLANE STRAIN continuum element in 2D	U, V	Standard
QPN4	PLANE STRAIN continuum element in 2D	U, V	Standard
QPN4M	PLANE STRAIN continuum element in 2D	U, V	Standard

TNK6		PLANE STRAIN continuum crack tip element in 2D	U, V	Standard
ONK8		PLANE STRAIN continuum crack tip element in 2D	U, V	Standard
TPN3E		PLANE STRAIN explicit dynamics element in 2D	U, V	Plus
QPN4E		PLANE STRAIN explicit dynamics element in 2D	U, V	Plus
TPN6P		PLANE STRAIN continuum two phase element in 2D	U, V P: corner nodes U, V: Midside nodes	Standard
OPN8P		PLANE STRAIN continuum two phase element in 2D	U, V P: corner nodes U, V: Midside nodes	Standard
TAX3		AXISYMMETRIC solid continuum element in 2D	U, V	Standard
TAX6		AXISYMMETRIC solid continuum element in 2D	U, V	Standard
QAX4		AXISYMMETRIC solid continuum element in 2D	U, V	Standard
QAX8		AXISYMMETRIC solid continuum element in 2D	U, V	Standard

QAX4M		AXISYMMETRIC solid continuum element in 2D with enhanced strains	U, V	Standard
QAX4L	\square	AXISYMMETRIC solid continuum element in 2D for large strains	U, V	Standard
TXK6		AXISYMMETRIC solid continuum crack tip element in 2D	U, V	Standard
QXK8		AXISYMMETRIC solid continuum crack tip element in 2D	U, V	Standard
TAX3E		AXISYMMETRIC solid explicit dynamics element in 2D	U, V	Plus
QAX4E	\square	AXISYMMETRIC solid explicit dynamics element in 2D	U, V	Plus
TAX6P		AXISYMMETRIC solid two phase continuum element in 2D	$\begin{aligned} & \hline \text { U, V P: } \\ & \text { corner nodes } \\ & \text { U, } \\ & \text { V: Midside } \\ & \text { nodes } \\ & \hline \end{aligned}$	Plus
QAX8P	\square	AXISYMMETRIC solid two phase continuum element in 2D	U, V P: corner nodes U, V: Midside nodes	Plus
TAX3F		AXISYMMETRIC Fourier ring element in 2D	U, V, W	Plus
TAX6F		AXISYMMETRIC Fourier ring element in 2D	U, V, W	Plus

| QAX4F | AXISYMMETRIC
 Fourier ring element in
 2D | $\mathrm{U}, \mathrm{V}, \mathrm{W}$ | Plus |
| :--- | :--- | :--- | :--- | :--- |
| QAX8F | AXISYMMETRIC
 Fourier ring element in
 2D | $\mathrm{U}, \mathrm{V}, \mathrm{W}$ | Plus |

3D Continuum Elements

Name	Title	Freedoms	Product Version	
TH4	SOLID CONTINUUM element in 3D	$\mathrm{U}, \mathrm{V}, \mathrm{W}$	Standard	
TH10	SOLID CONTINUUM element in 3D	$\mathrm{U}, \mathrm{V}, \mathrm{W}$	Plus	
$\underline{\text { PN12 }}$	SOLID CONTINUUM element in 3D	$\mathrm{U}, \mathrm{V}, \mathrm{W}$	Standard	
$\underline{\text { PNX8 }}$		SOLID CONTINUUM element in 3D	$\mathrm{U}, \mathrm{V}, \mathrm{W}$	Plus
element in 3D		Plus		

HX20		SOLID CONTINUUM element in 3D	U, V, W	Plus
HX8M		SOLID CONTINUUM element in 3D with enhanced strains	U, V, W	Standard
TH10S		SOLID CONTINUUM composite element in 3D	U, V, W	Plus
PN6L		SOLID CONTINUUM composite element in 3D	U, V, W	Plus
PN12L		SOLID CONTINUUM composite element in 3D	U, V, W	Plus
HX8L		SOLID CONTINUUM composite element in 3D	U, V, W	Plus
HX16L		SOLID CONTINUUM composite element in 3D	U, V, W	Plus
TH10K		SOLID CONTINUUM crack tip element in 3D	U, V, W	Plus
PN15K		SOLID CONTINUUM crack tip element in 3D	U, V, W	Plus
HX20K		SOLID CONTINUUM crack tip element in 3D	U, V, W	Plus

TH4E	SOLID CONTINUUM explicit dynamics element in 3D	U, V, W	Plus
PN68E	SOLID CONTINUUM explicit dynamics element in 3D	$\mathrm{U}, \mathrm{V}, \mathrm{W}$	Plus
TH10P			
explement in 3D			

Plate Elements

Name	Geometry	Title	Freedoms	Product Version
TF3		ISOFLEX thin plate flexure element in 2D	W, qx, qy	Standard

QF4	ISOFLEX thin plate flexure element in 2D	W, qx, qy	Standard
OSC4	ISOFLEX thick plate flexure element in 2D	$\mathrm{W}, \mathrm{qx}, \mathrm{qy}$	Standard
TTF6	MINDLIN thick plate flexure element in 2D	$\mathrm{W}, \mathrm{qx}, \mathrm{qy}$	Standard
$\underline{\text { OTF8 }}$	MINDLIN thick plate flexure element in 2D	$\mathrm{W}, \mathrm{qx}, \mathrm{qy}$	Standard

Shell Elements

Name	Geometry	Title	Freedoms Product Version	
$\underline{\text { BXS3 }}$		AXISYMMETRIC thin shell element in 2D	end nodes: $\mathrm{U}, \mathrm{V}, \mathrm{qz}$	Standard
$\underline{\text { BXSI2 }}$		AXISYMMETRIC thick shell element in 2D	end nodes: $\mathrm{U}, \mathrm{V}, \mathrm{qz}$	Standard
$\underline{\text { BXSI3 }}$		AXISYMMETRIC thick shell element in 2D	end nodes: $\mathrm{U}, \mathrm{V}, \mathrm{qz}$ mid-node: dU	Standard
$\underline{\text { TS3 }}$		FLAT thin shell element in 3D	U, V, W, qx, qy, qz	Standard

QSI4		FLAT thin shell element in 3D	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \mathrm{qy}, \mathrm{qz} \end{aligned}$	Standard
TSR6		FLAT thin nonlinear shell element in 3D	corner nodes: U, V, W mid-side nodes: q1	Plus
TSL6		SEMILOOF curved thin shell element in 3D	corner nodes: U, V, W mid-side nodes: $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{q} 1$, q2	Plus
QSL8		SEMILOOF curved thin shell element in 3D	corner nodes: U, V, W mid-side nodes: $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{q} 1$, q2	Plus
TTS3		THICK SHELL flat element in 3D	$\begin{aligned} & \text { U, V, W, qa, } \\ & \text { qbor } \\ & \text { U, V, W, qx, } \\ & \text { qy, qz } \end{aligned}$	Standard
TTS6		THICK SHELL curved element in 3D	$\begin{aligned} & \text { U, V, W, qa, } \\ & \text { qbor } \\ & \text { U, V, W, qx, } \\ & \text { qy, qz } \end{aligned}$	Plus
OTS4		THICK SHELL flat element in 3D	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qa}, \\ & \text { qbor } \\ & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \text { qy, qz } \end{aligned}$	Standard
QTS8		THICK SHELL curved element in 3D	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qa}, \\ & \text { qbor } \\ & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \text { qy, qz } \end{aligned}$	Plus

Membrane Elements

Name	Geometry	Title	Freedoms	Product Version
$\underline{\text { BXM2 }}$		AXISYMMETRIC membrane element in 2D	U, V	Standard
$\underline{\text { BXM3 }}$		AXISYMMETRIC membrane element in 2D	U, V	Standard
$\underline{\text { TSM3 }}$	SPACE membrane element in 3D	$\mathrm{U}, \mathrm{V}, \mathrm{W}$	Standard	
$\underline{\text { SMI4 }}$		SPACE membrane element in 3D	$\mathrm{U}, \mathrm{V}, \mathrm{W}$	Standard

Joint Elements				
Name	Geometry	Title	Freedoms	Product Version
JNT3	JOINT ELEMENT in 2D for bars, plane stress and plane strain	U, V	Standard	
JPH3	JF3 for engineering and Kirchhoff beams	$\mathrm{U}, \mathrm{V}, \mathrm{qz}$	Standard	
$\underline{\text { JAX3 }}$	JOINT ELEMENT in 2D for grillage beams and plates	$\mathrm{W}, \mathrm{qx}, \mathrm{qy}$	Standard	

| JXS3 | JOINT ELEMENT in 2D
 for axisymmetric shells | $\mathrm{U}, \mathrm{V}, \mathrm{qz}$ | Standard |
| :--- | :--- | :--- | :--- | :--- |
| $\underline{\text { JNT4 }}$ | JOINT ELEMENT in 3D
 for bars, solids and space
 membranes | $\mathrm{U}, \mathrm{V}, \mathrm{W}$ | Standard |
| $\underline{\text { JSH4 }}$ | JOINT ELEMENT in 3D
 for corner nodes of
 semiloof elements | $\mathrm{U}, \mathrm{V}, \mathrm{W}$ | Standard |
| $\underline{\text { JSL4 }}$ | JOINT ELEMENT in 3D
 for engineering and
 Kirchhoff beams and the
 end/corner nodes of
 semiloof elements | $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{qx}$,
 qy, qZ | Standard |

Thermal / Field Elements

Name	Geometry	Title	Freedoms	Product Version
$\underline{\text { BFD2 }}$		THERMAL BAR element in 2D	F	Standard
$\underline{\text { BFD3 }}$		THERMAL BAR element in 2D	F	Standard
$\underline{\text { BFX2 }}$		Axisymmetric THERMAL MEMBRANE element in 2D	F	Standard
$\underline{\text { BFX3 }}$		Axisymmetric THERMAL MEMBRANE element in 2D	F	Standard

BFS2		THERMAL BAR element in 3D	F	Standard
BFS3		THERMAL BAR element in 3D	F	Standard
LFD2		THERMAL LINK element in 2D	F	Standard
LFX2		Axisymmetric THERMAL LINK element in 2D	F	Standard
LFS2		THERMAL LINK element in 3D	F	Standard
TFD3		PLANE FIELD element in 2D	F	Standard
TFD6		PLANE FIELD element in 2D	F	Standard
QFD4		PLANE FIELD element in 2D	F	Standard
QFD8		PLANE FIELD element in 2D	F	Standard
TF4	A-	SOLID FIELD element in 3D	F	Standard
TF10		SOLID FIELD element in 3D	F	Plus

PF6		SOLID FIELD element in 3D	F	Standard
PF12		SOLID FIELD element in 3D	F	Plus
PF15		SOLID FIELD element in 3D	F	Plus
HF8		SOLID FIELD element in 3D	F	Standard
HF16		SOLID FIELD element in 3D	F	Plus
HF20		SOLID FIELD element in 3D	F	Plus
TF10S	\sqrt{x}	SOLID FIELD composite element in 3D	F	Plus
PF6C		SOLID FIELD composite element in 3D	F	Plus
PF12C		SOLID FIELD composite element in 3D	F	Plus
HF8C		SOLID FIELD composite element in 3D	F	Plus

HF16C	SOLID FIELD composite element in 3D	Plus	
TXF3	AXISYMMETRIC FIELD element in 2D	F	Standard
QXF6	AXISYMMETRIC FIELD element in 2D	F	Standard
QXIELD element in 2D			

Hygro-Thermal Elements

Name	Geometry	Title	Freedoms	Product Version
THT3		PLANE HYGRO- THERMAL element in 2D	T, Pc	Plus
THT6	PLANE HYGRO- THERMAL element in 2D	T, Pc	Plus	
$\underline{\text { QHT4 }}$		PLANE HYGRO- THERMAL element in 2D	T, Pc	Plus
OHT8		PLANE HYGRO- THERMAL element in 2D	T, Pc	Plus

TXHT3	AXISYMMETRIC HYGRO-THERMAL element in 2D	Plus	
TXHT6	AXISYMMETRIC HYGRO-THERMAL element in 2D	T, Pc	Plus
QXHT4	AXISYMMETRIC HYGRO-THERMAL element in 2D	T, Pc	Plus
THT4	AXISYMMETRIC HYGRO-THERMAL element in 2D	T, Pc	Plus
PHT12	SOLID HYGRO- THERMAL element in 3D	T, Pc	Plus
PHT15		SOLID HYGRO- THERMAL element in 3D	T, Pc

HHT16	SOLID HYGRO- THERMAL element in 3D	T, Pc	Plus
HHT20	SOLID HYGRO- THERMAL element in 3D	T, Pc	Plus

Interface Elements

Name	Geometry	Title	Freedoms	Product Version
IPN4		PLANE STRAIN INTERFACE ELEMENT in 2D (Initial gap allowed for Mohr-Coulomb variant)	U, V	Plus
IPM4		PLANE STRESS INTERFACE ELEMENT in 2D (Initial gap allowed for Mohr-Coulomb variant)	U, V	Plus
IAX4		AXISYMMETRIC INTERFACE ELEMENT in 2D (Initial gap allowed for Mohr-Coulomb variant)	U, V	Plus
IPN6		PLANE STRAIN INTERFACE ELEMENT in 2D (Initial gap allowed for Mohr-Coulomb variant)	U, V, P corner nodes; U,V midside nodes	Plus
IPM6		PLANE STRESS INTERFACE ELEMENT in 2D (Initial gap allowed for Mohr-Coulomb variant)	U, V, P corner nodes; U,V midside nodes	Plus

IAX6		AXISYMMETRIC INTERFACE ELEMENT in 2D (Initial gap allowed for Mohr-Coulomb variant)	U, V	Plus
IPN6P		PLANE STRAIN TWO PHASE INTERFACE ELEMENT in 2D (Initial gap allowed for Mohr-Coulomb variant)	U, V	Plus
IAX6P		AXISYMMETRIC TWO PHASE INTERFACE ELEMENT in 2D (Initial gap allowed for Mohr-Coulomb variant)	U, V	Plus
IS6		INTERFACE ELEMENT in 3D (Initial gap allowed for Mohr-Coulomb variant)	U, V, W	Plus
IS8		INTERFACE ELEMENT in 3D (Initial gap allowed for Mohr-Coulomb variant)	U, V, W	Plus
IS12		INTERFACE ELEMENT in 3D (Initial gap allowed for Mohr-Coulomb variant)	U, V, W	Plus
IS16		INTERFACE ELEMENT in 3D (Initial gap allowed for Mohr-Coulomb variant)	U, V, W	Plus
IS12P		TWO PHASE INTERFACE ELEMENT in 3D	U, V, W, P corner nodes; U,V, W midside nodes	Plus

| IS16P | | U, V, W, P
 corner
 nodes; U, V,
 W midside
 nodes | |
| :--- | :--- | :--- | :--- | :--- |

Non-Structural Mass Elements

Name	Geometry	Title	Freedoms	Product Version
PM2		NON-STRUCTURAL MASS ELEMENT in 2D to model mass at a point	U, V	Plus
PM3		NON-STRUCTURAL MASS ELEMENT in 3D to model mass at a point	U, V, W	Plus
LMS3		NON-STRUCTURAL MASS ELEMENT in 3D to model mass along an edge	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qx}, \\ & \text { qy, qz } \end{aligned}$	Plus
LMS4		NON-STRUCTURAL MASS ELEMENT in 3D to model mass along an edge	$\begin{aligned} & \text { U, V, W, qx, } \\ & \text { qy, qz } \end{aligned}$	Plus
LM2	$+$	NON-STRUCTURAL MASS ELEMENT in 2D to model mass along an edge	U, V	Plus
LM3		NON-STRUCTURAL MASS ELEMENT in 2D to model mass along an edge	U, V	Plus
TM3		NON-STRUCTURAL MASS ELEMENT in 3D to model mass on a surface.	U,V,W	Plus
TM6		NON-STRUCTURAL MASS ELEMENT in 3D to model mass on a surface.	U,V,W	Plus

| QM4 | NON-STRUCTURAL
 MASS ELEMENT in
 3D to model mass on a
 surface. | U,V,W | Plus |
| :--- | :--- | :--- | :--- | :--- |
| OM8 | NON-STRUCTURAL
 MASS ELEMENT in
 3D to model mass on a
 surface. | U,V,W | Plus |

Rigid Slideline Elements

Name	Geometry	Title	Freedoms	Product Version
$\underline{\text { R2D2 }}$		RIGID SLIDELINE SURFAC E ELEMENT in 2D for modelling non- deformable surfaces in a contact analysis	U, V	Plus
$\underline{\text { R3D3 }}$		RIGID SLIDELINE SURFAC E ELEMENT in 3D for modelling non- deformable surfaces in a contact analysis	$\mathrm{U}, \mathrm{V}, \mathrm{W}$	Plus
$\underline{\text { R3D4 }}$	RIGID SLIDELINE SURFAC E ELEMENT in 3D for modelling non- deformable surfaces in a contact analysis	$\mathrm{U}, \mathrm{V}, \mathrm{W}$	Plus	

Phreatic Elements

Name	Geometry	Title	Freedoms	Product Version
PHS2		PHREATIC SURFACE ELEMENT in 2D for modelling phreatic surface.	U, V	Plus

| PHS3 | PHREATIC
 SURFACE ELEMENT
 in 3D for modelling
 phreatic surface. | U, V, W | Plus |
| :--- | :--- | :--- | :--- | :--- |
| PHS4 | PHREATIC
 SURFACE ELEMENT
 in 3D for modelling
 phreatic surface. | U, V, W | Plus |

Element Summary Tables

The following element summary tables list element facilities arranged by LUSAS element group:
\square Bar and Beam elements

- 2D Continuum elements
\square 3D Continuum elements
P Plate, Shell and Membrane elements
\square Joint elements
\square Thermal/Field elements
\square Hygro-Thermal elements
Interface, Non-Structural Mass, Rigid, Interface and Phreatic elements

Element Reference Manual

		Bars		Beams														
Bar and Beam Element Summary					$\sum_{n=1}^{N}$								$\left\|\sum_{\infty}^{\infty}\right\|$	$\sum_{n=0}^{n} \mid$			$\left\|\begin{array}{c} \underset{\sim}{ \pm} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \\ \mid \end{array}\right\|$	-
Product version	LT, Standard (S) or Plus (+)	LT	LT	LT	LT	LT	S	+	+	+	+	+	S	S	+	+	+	+
	Integrated																	
Mass modelling	$\begin{aligned} & \text { Consistent Mass } \\ & \text { (default) } \end{aligned}$	\checkmark																
	Lumped Mass	\checkmark																

		2D Continuum																
2D Continuum Element Summary			$\sum_{\hat{a}}^{\sum ⿹ 勹 巳}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			年	话			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		皆	穿	$\left.\begin{array}{\|c\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$			TAX3F／6F，QAX4F／8F
Product Version	LT，Standard （S）or Plus（＋）	S	S	S	＋	S	S	S	S	＋	＋	S	S	S	S	＋	＋	＋
	Volumetric Crushing／Foam					\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
	Stress Potential （Von Mises， Modified Von Mises）	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
	Interface（2D）	\checkmark																
	Creep（General）	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
	$\begin{aligned} & \text { Creep } \\ & \text { (AASHTO) } \end{aligned}$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark		\checkmark			
	$\begin{aligned} & \text { Creep (CEB- } \\ & \text { FIP) } \\ & \hline \end{aligned}$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark		\checkmark			
	Creep（Chinese）	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark		\checkmark			
	Creep （Eurocode）	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark		\checkmark			
	Creep（IRC）	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark		\checkmark			
	$\begin{aligned} & \text { Damage (Simo, } \\ & \text { Oliver) } \end{aligned}$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
	Viscoelastic					\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
	Shrinkage（CEB－ FIP，Eurocode． General，User）	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
	Ko Initialisation					\checkmark	\checkmark		\checkmark			\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
	Rubber（Ogden， Mooney－Rivlen， Neo－Hookean， Hencky）		\checkmark				\checkmark	\checkmark						\checkmark				
	Generic Polymer		\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	
	Composite																	
	Field																	
Loading	Prescribed Value	\checkmark																

Element Reference Manual

		2D Continuum																
2D Continuum Element Summary		\mid	\sum_{i}^{i}	$\begin{aligned} & 0 \\ & a \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & a \end{aligned}$	$\sum_{i=1}^{ \pm}$		$\stackrel{\sum}{\underset{a}{2}}$	$\frac{\vec{y}}{\dot{\lambda}}$	$\begin{aligned} & \infty \\ & \frac{\infty}{7} \\ & 0 \\ & 6 \\ & \frac{6}{7} \\ & i \end{aligned}$				$\frac{\sum}{8}$	$\stackrel{e}{4}$			$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 6 \\ & 4 \end{aligned}$	
Product Version	LT, Standard (S) or Plus (+)	S	S	S	+	S	S	S	S	+	+	S	S	S	S	+	+	+
	$\begin{aligned} & \text { Stress/Strain } \\ & \text { (TSSIG) } \\ & \hline \end{aligned}$																	
	Temperature (TEMP,TMPE)	\checkmark																
	Field Load																	
	Temp Dependent Load																	
	Overburden	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
	Phreatic Surface	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
Nonlinear	Total Lagrangian	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	
	Updated Lagrangian	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	
	Eulerian	\checkmark																
	Co-rotational	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark							
Integratio n schemes	Explicitly Integrated																	
	Numerically Integrated	\checkmark																
Mass modelling	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Consistent Mass } \\ \text { (default) } \end{array} \\ \hline \end{array}$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
	Lumped Mass	\checkmark																

* Linear anisotropic and rigidities material properties for elements marked are supported in LUSAS Solver but not supported in LUSAS Modeller.

		3D Continuum												
3D Con Elemen	nuum Summary	$\underset{H}{ \pm}$	$\stackrel{\theta}{7}$	気	$\begin{aligned} & 10 \\ & \underset{i n}{n} \\ & 7 \end{aligned}$		$\begin{aligned} & \hat{N} \\ & \stackrel{N}{0} \\ & \end{aligned}$	$\left.\begin{aligned} & \sum_{0}^{0} \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	㕠	$\stackrel{C}{E}$	$\stackrel{\rightharpoonup}{2}$	包		
Product Version	LT，Standard （S）or Plus（＋）	S	＋	S	＋	S	＋	S	＋	＋	＋	＋	＋	＋
Nodal freedoms	U，V													
	U，V，W	\checkmark												
（corner）	U，V，W（P）													\checkmark
Material	Linear（Isotropic）	\checkmark												
	Linear （Orthotropic）	\checkmark												
	$\begin{aligned} & \hline \text { Linear } \\ & \text { (Anisotropic) } \end{aligned}$	\checkmark		\checkmark										
	Linear （Rigidities）													
	Matrix													
	Joint													
	Concrete（Multi－ crack）	\checkmark		\checkmark										
	Concrete（Multi－ crack）Transient	\checkmark												
	Stress Resultant													
	Tresca	\checkmark												
	Optimised Implicit Von Mises	\checkmark												
	Mohr－Coulomb	\checkmark												
	Modified Mohr－Coulomb	\checkmark					\checkmark							
	Drucker－Prager	\checkmark												
	$\begin{aligned} & \text { Modified Cam- } \\ & \text { clay } \\ & \hline \end{aligned}$	\checkmark					\checkmark							

		3D Continuum												
3D Continuum Element Summary		蚛	불	\|	$\stackrel{i n}{2}$	$\underset{\sim}{\infty}$	刨	N	售	$\stackrel{:}{\mid}$		保	新	华
Product Version	LT，Standard （S）or Plus（＋）	S	＋	S	＋	S	＋	S	＋	＋	＋	＋	＋	＋
	Volumetric Crushing／Foam	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Stress Potential（Von Mises， Modified Von Mises｜Hill， Hoffman）	\checkmark												
	Creep（General）	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark	\checkmark
	Creep （AASHTO	\checkmark												
	Creep（CEB－FIP）	\checkmark												
	Creep（Chinese）	\checkmark												
	Creep（Eurocode）	\checkmark												
	Creep（IRC）	\checkmark												
	Damage	\checkmark												
	Viscoelastic	\checkmark		\checkmark										
	Shrinkage（CEB－ FIP，Eurocode， General，User）	\checkmark		\checkmark										
	Ko Initialisation	\checkmark					\checkmark							
	Elasto－plastic interface	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark					\checkmark
	Rubber（Ogden， Mooney－Rivlin， Neo－Hookean， Hencky							\checkmark						
	Generic Polymer	\checkmark		\checkmark										
	Resin Cure Model								－	\checkmark	\checkmark	\checkmark		
	Composite								．	\checkmark	\checkmark	\checkmark		

		3D Continuum												
3D Co Eleme	nuum Summary	$\underset{H}{ \pm}$	$\underset{A}{\underset{y}{\mid}}$	$\underset{i}{0}$	$\begin{aligned} & 10 \\ & \underset{i n}{N} \end{aligned}$	実		$\begin{array}{\|c\|} \substack{0 \\ \boldsymbol{\theta} \\ \hline} \end{array}$		$\stackrel{C}{E}$		包		等
Product Version	LT，Standard （S）or Plus（＋）	S	＋	S	＋	S	＋	S	＋	＋	＋	＋	＋	＋
	（Composite Solid）													
	Composite （Composite Shell）													
	Field													
Loading types	$\begin{aligned} & \text { Prescribed Value } \\ & \text { (PDSP,TPDSP) } \\ & \hline \end{aligned}$	\checkmark												
	Concentrated Loads（CL）	\checkmark												
	Element Loads													
	Distributed Load （UDL）													
	$\begin{aligned} & \text { Distributed Load } \\ & \text { (FLD) } \end{aligned}$	\checkmark												
	Body Force （CBF，BFP，BFPE）	\checkmark												
	Velocity（VELO）	\checkmark												
	$\begin{aligned} & \text { Acceleration } \\ & \text { (ACCE) } \end{aligned}$	\checkmark												
	Viscous Support Load（VSL）	\checkmark												
	Initial Stress／Strain （SSI，SSIE）	\checkmark												
	Initial Stress／Strain （SSIG）	\checkmark		\checkmark										
	$\begin{aligned} & \hline \begin{array}{l} \text { Residual Stress } \\ \text { (SSR,SSRE) } \end{array} \\ & \hline \end{aligned}$	\checkmark												
	$\begin{aligned} & \begin{array}{l} \text { Residual Stress } \\ \text { (SSRG) } \end{array} \\ & \hline \end{aligned}$	\checkmark												
	Target	\checkmark												

3D Continuum Element Summary		3D Continuum												
		㑭	봅ㅋN	运	$\stackrel{i n}{\wedge}$	음	⿹弋工⿹勹巳u	$\left\lvert\,\right.$		$\stackrel{5}{7}$				An:
Product Version	LT，Standard （S）or Plus（＋）	S	＋	S	＋	S	＋	S	＋	＋	＋	＋	＋	＋
	$\begin{aligned} & \begin{array}{l} \text { Stress/Strain } \\ \text { (TSSIE,TSSIA) } \end{array} \end{aligned}$													
	Target Stress／Strain （TSSIG）	\checkmark	－	\checkmark										
	$\begin{aligned} & \hline \text { Temperature } \\ & \text { (TEMP,TMPE) } \end{aligned}$	\checkmark												
	Field Load													
	Temp Dependent Load													
	Overburden	\checkmark		\checkmark										
	Phreatic Surface	\checkmark		\checkmark										
Nonlinear	Total Lagrangian	\checkmark					\checkmark							
	Updated Lagrangian	\checkmark					\checkmark							
	Eulerian	\checkmark				\checkmark	\checkmark							
	Co－rotational	\checkmark		\checkmark										
Integration schemes	Explicitly Integrated													
	Numerically Integrated	\checkmark												
Mass modelling	$\begin{aligned} & \begin{array}{l} \text { Consistent Mass } \\ \text { (default) } \end{array} \\ & \hline \end{aligned}$	\checkmark		\checkmark										
	Lumped Mass	\checkmark												

		Plates			Shells									Membranes	
Plate, Shell and Membrane Element Summary		$\begin{aligned} & \underset{y}{x} \\ & \text { 둡 } \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathscr{A} \end{aligned}$	$\begin{aligned} & \infty \\ & y_{0}^{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}$		$\left.\begin{gathered} \pm \\ 0 \\ 0 \\ N_{n}^{n} \\ \vdots \end{gathered} \right\rvert\,$	$\begin{aligned} & 0 \\ & \frac{10}{7 / 2} \\ & \underset{H}{2} \end{aligned}$	$\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	\hat{N}_{n}			$\stackrel{8}{0}_{0}^{0}$	$\sum_{i=n}^{\infty}$	\cdots
Product Version	LT, Standard (S) or Plus (+)	S	S	S	S	S	S	+	+	S	+	S	+	S	S
Nodal	U, V													\checkmark	
Freedoms	U, V, W														\checkmark
(mid-side)	W, qx, qy		\checkmark	\checkmark											
	W, qx, qy (dq)	\checkmark													
	U, V, W, qx, qy														
	U, V, qz					\checkmark									
	U, V, qz (dU)				\checkmark										
	U, V, W, qx, qy, qz						\checkmark								
	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}(\mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{q} 1, \\ & \mathrm{q} 2) \end{aligned}$								\checkmark						
	U, V, W (q1,)							\checkmark							
	$\begin{aligned} & \mathrm{U}, \mathrm{~V}, \mathrm{~W}, \mathrm{qa}, \mathrm{qb}(\mathrm{U}, \mathrm{~V}, \\ & \mathrm{W}, \mathrm{qx}, \mathrm{qy}, \mathrm{qz}) \end{aligned}$									\checkmark	\checkmark	\checkmark	\checkmark		
Material	Linear (Isotropic)	\checkmark													
	Linear (Orthotropic)	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark						
	Linear (Anisotropic)	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark						
	Linear (Rigidities)	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark						\checkmark
	Matrix														
	Joint														
	Concrete (Multi-crack)							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
	Stress Resultant				\checkmark			\checkmark	\checkmark						
	Tresca				\checkmark	\checkmark		\checkmark							
	Optimised Implicit Von Mises				\checkmark	\checkmark		\checkmark							
	Mohr-Coulomb				\checkmark	\checkmark		\checkmark							
	Drucker-Prager				\checkmark	\checkmark		\checkmark							
	Volumetric Crushing/Foam														
	Stress Potential (VonMises, Modified Von				\checkmark	\checkmark		\checkmark							

Plate, Shell and Membrane Element Summary		Plates			Shells									Membranes	
			$\left\|\begin{array}{l} \text { U } \\ \text { N } \end{array}\right\|$		$\begin{gathered} \infty \\ \hat{\theta} \\ \hat{\omega} \end{gathered}$		$\begin{aligned} & \pm \\ & \overbrace{2}^{2} \\ & N_{n}^{n} \end{aligned}$			$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \end{array}$			$\left\|\begin{array}{c} \infty \\ \underset{0}{0} \\ \stackrel{0}{0} \end{array}\right\|$	\sum_{n}^{∞}	
Product Version	LT, Standard (S) or Plus (+)	S	S	S	S	S	S	+	+	S	+	S	+	S	S
	Velocity (VELO)	\checkmark													
	Acceleration (ACCE)	\checkmark													
	Viscous Support Load (VSL)	\checkmark													
	$\begin{aligned} & \text { Initial Stress/Strain } \\ & \text { (SSI,SSIE) } \\ & \hline \end{aligned}$	\checkmark						\checkmark	\checkmark						
	$\begin{aligned} & \text { Initial Stress/Strain } \\ & \text { (SSIG) } \end{aligned}$				\checkmark	\checkmark		\checkmark							
	$\begin{aligned} & \hline \begin{array}{l} \text { Residual Stress } \\ \text { (SSR,SSRE) } \end{array} \\ & \hline \end{aligned}$							\checkmark							
	Residual Stress (SSRG)				\checkmark	\checkmark		\checkmark							
	Target Stress/Strain (TSSIE,TSSIA)	\checkmark						\checkmark	\checkmark						
	$\begin{aligned} & \text { Target Stress/Strain } \\ & \text { (TSSIG) } \end{aligned}$				\checkmark	\checkmark		\checkmark							
	Temperature (TEMP,TMPE)	\checkmark													
	Field Load														
	Temp Dependent Loads														
	Overburden									\checkmark	\checkmark	\checkmark	\checkmark		
	Phreatic surface			\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark		
Nonlinear	Total Lagrangian				\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	Updated Lagrangian				\checkmark				\checkmark						
	Eulerian														
	Co-rotational							\checkmark							
Integration	Explicitly Integrated														
	Numerically Integrated	\checkmark													
Mass modelling	Consistent Mass (default)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark							
	Lumped Mass	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark						

* Supported in LUSAS Solver but not supported in LUSAS Modeller for all joints listed.

		Field																		
Thermal／Field Element Summary		을	别\|		试	䜦	N			馿	올	制\|	$\begin{array}{\|l} 2 \\ \\ 2 \\ 2 \end{array}$	$$	츤	0				咸
Product version	$\begin{aligned} & \text { LT, Standard (S) } \\ & \text { or Plus (+) } \end{aligned}$	S	S	S	S	S	S	S	S	S	S	S	S	S	＋	＋	＋	＋	S	S
Freedoms		\checkmark																		
Material	Composite															\checkmark	\checkmark	\checkmark		
	Field（Isotropic）	\checkmark	\checkmark	\checkmark				\checkmark												
	\qquad	\checkmark	\checkmark	\checkmark				\checkmark												
	Field （Orthotropic）							\checkmark												
	Field（Orthotropic Concrete）							\checkmark												
	Field（Linear Conv／Rad）				\checkmark	\checkmark	\checkmark													
	Field（Arbitary Conv／Rad）				\checkmark	\checkmark	\checkmark													
Loading types	Prescribed （TPDSP）	\checkmark																		
	Rate of heat inflow， concentrated （RGN）	\checkmark	\checkmark	\checkmark				\checkmark												
	Face heat and water fluxes（FFL）	\checkmark	\checkmark	\checkmark				\checkmark												
	Rate of heat inflow，per unit volume（RBC， RBV，RBVE）	\checkmark	\checkmark	\checkmark				\checkmark												
	Temperature （TEMP， TMPE）	\checkmark	\checkmark	\checkmark																
	Environmental	\checkmark	\checkmark	\checkmark				\checkmark												

		Field																		
Thermal／Field Element Summary		N		$\left\|\begin{array}{l} n \\ \stackrel{n}{n} \\ \tilde{n} \\ \end{array}\right\|$	$\underset{\sim}{\mathrm{N}}$	叙	$\begin{aligned} & \stackrel{\rightharpoonup}{\mid} \\ & \stackrel{y}{-1} \end{aligned}$	年	年	槑	$\stackrel{-}{7}$	苗	$\stackrel{10}{\mathrm{~N}}$	$\left\|\begin{array}{c} \infty \\ \underline{\underline{\mid}} \\ \mid \end{array}\right\|$	No				$\left\|\begin{array}{c} \underset{y}{x} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	－
Product version	$\begin{aligned} & \text { LT, Standard (S) } \\ & \text { or Plus (+) } \end{aligned}$	S	S	S	S	S	S	S	S	S	S	S	S	S	＋	＋	＋	＋	S	S
	conditions（ENVT）																			
	Temp Dep Load （TDET／RIHG）	\checkmark	\checkmark	\checkmark				\checkmark												
Schemes	Numerically Integrated	\checkmark																		
Specific heat	Consistent （default）	\checkmark	\checkmark	\checkmark				\checkmark												
	Lumped	\checkmark	\checkmark	\checkmark				\checkmark												

Hygro-Thermal Element Summary		Hygro-Thermal							
			禺	志		$\begin{aligned} & 0 \\ & \underline{E} \end{aligned}$	$\begin{aligned} & n_{0}^{n} \\ & 0 \end{aligned}$	읍	N
Product version	LT, Standard (S) or Plus (+)	\+	+	+	+	+	+	+	+
Freedoms	T, Pc	\checkmark							
Material	Hygro-thermal concrete	\checkmark							
	Hygro-thermal linear	\checkmark							
Loading types	$\begin{aligned} & \text { Prescribed temperature and relative } \\ & \text { humidity (TPDSP) } \\ & \hline \end{aligned}$	\checkmark							
	Environmental conditions (ENVT)	\checkmark							
	Rate of heat and/or water inflow (concentrated) (RGN)	\checkmark							
	Rate of heat and/or water inflow per unit area - flux, (FFL)	\checkmark							
	$\begin{aligned} & \text { Rate of heat and/or water inflow } \\ & \text { per unit volume (RBC, RBV, } \\ & \text { RBVE) } \end{aligned}$	\checkmark							
	Temperature dependent environmental conditions (TDET)	\checkmark							
	Temperature dependent rate of heat and/or water inflow per unit volume (RIHG)	\checkmark							
Initial conditions	Initial conditions (TMPE, TMP)	\checkmark							
Integration schemes	Numerically Integrated	\checkmark							

		Interface						Mass					$\begin{array}{\|c} \hline \text { Rigid } \\ \text { Slideline } \end{array}$		Phreatic	
Interface, NonStructural Mass, Rigid Slideline and Phreatic Element Summary								$\underset{A}{N}$	$\sum_{i}^{\infty} \mid$	$\underset{\sim}{7}$			$\underset{\sim}{\mathrm{N}}$		N	式
Product version	$\begin{aligned} & \text { LT, Standard (S) } \\ & \text { or Plus (+) } \end{aligned}$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Nodal freedoms	U, V	\checkmark	\checkmark					\checkmark			\checkmark		\checkmark			
	U, V, P					\checkmark										
	U, V, W			\checkmark	\checkmark				\checkmark	\checkmark		\checkmark		\checkmark		
	U,V,W, P						\checkmark									
	U, V, qz															
	W, qx, qy															
	U, V, W, qx, qy															
	U, V, W, qx, qy, qz									\checkmark						
	U, V, W, q1, q2															
Material properties	Linear												\checkmark	\checkmark		
	Matrix															
	Joint															
	Mass							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
	Concrete															
	Elasto-Plastic															
	Creep															
	Damage															
	Shrinkage															
	Interface	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark									
	Rubber															
	Generic Polymer															
	Stress Potential															
	Composite															
	Field															
Loading types	Prescribed value (PDSP,TPDSP)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						\checkmark	\checkmark		
	Concentrated Loads	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark									

		Interface						Mass					$\begin{array}{\|c\|} \hline \text { Rigid } \\ \text { Slideline } \end{array}$		Phreatic		
Interface, NonStructural Mass, Rigid Slideline and Phreatic Element Summary								N	$\\| \sum_{i}^{n} \mid$		\mid				$\stackrel{\hat{N}}{\hat{2}}$	式	
Product version	$\begin{aligned} & \text { LT, Standard (S) } \\ & \text { or Plus (+) } \end{aligned}$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
	(CL)																
- Element Load																	
Distributed Load Body Force (CBF) Body Force (BFP,BFPE) (A)																	
								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
Velocity (VELO)		\checkmark	\checkmark	\checkmark	\checkmark								\checkmark	\checkmark			
Acceleration (ACCE)		\checkmark	\checkmark	\checkmark	\checkmark								\checkmark	\checkmark			
Viscous Support Load (VSL) Initial Stress/Strain (SSI,SSIE)		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark										
Initial Stress/Strain (SSIG)																	
Residual Stress Target Stress/Strain (TSSIE,TSSIA)																	
Target Stress/Strain (TSSIG)																	
	$\begin{aligned} & \hline \begin{array}{l} \text { Temperature } \\ \text { (TEMP,TMPE) } \end{array} \\ & \hline \end{aligned}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark										
	Field Load																
	Temp Dependent Load																
Nonlinear geometry	Total Lagrangian												$\checkmark *$	$\checkmark *$			
	Updated Lagrangian												$\checkmark *$	$\checkmark *$			
	Eulerian												$\checkmark *$	$\checkmark *$			
	Co-rotational	\checkmark		\checkmark									$\checkmark *$	$\checkmark *$			

		Interface						Mass					$\begin{array}{\|c} \hline \text { Rigid } \\ \text { Slideline } \end{array}$		Phreatic	
Interface, NonStructural Mass, Rigid Slideline and Phreatic Element Summary			븐					N	\sum_{i}^{∞}			$\stackrel{\infty}{\stackrel{\infty}{7}}$	N		运	烒
Product version	$\begin{aligned} & \text { LT, Standard (S) } \\ & \text { or Plus (+) } \end{aligned}$	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Integration schemes	Explicitly Integrated															
	Numerically Integrated	\checkmark														
Mass modelling	Consistent Mass (default)							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
	Lumped Mass							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				

* Dependent upon the other surface (deformable surface) that the element is in contact with.

Chapter 1 : Bar Elements

2D Structural Bar Elements

General

Element Name

BAR2

Bars

Element Group

Structural Bars
Subgroup
Element Straight and curved isoparametric bar elements in 2D which can
Description
accommodate varying cross sectional area.
Number Of 2 or 3 .
Nodes
Freedoms U, V at each node
Node X, Y at each node
Coordinates

Geometric Properties

A1 ... An Cross sectional area at each node.
SF1, MF1 Optional scale factor applied to the areas in the calculation of the stiffness and mass matrices

Material Properties

Linear Isotropic
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Stress resultant
Tresca:

Drucker-
Prager:

MATERIAL PROPERTIES (Elastic: Isotropic)

Not applicable
MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)

	Mohr- Coulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Optimised Implicit Von MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises,	
	Volumetric Crushing:	Hardening: Isotropic \& Kinematic)
	Stress Potential	STRESS POTicable
		(Isotropic: von Mises, Modified von Mises)
Creep		CREEP PROPERTIES (Creep)
Damage		DAMAGE PROPERTIES SIMO, OLIVER
	(Damage)	
Viscoelastic	VISCO ELASTIC PROPERTIES	
Shrinkage		SHRINKAGE CEB_FIP_90, EUROCODE_2,
Rubber	Not applicable	GENERAL, USER
Multi-linear		MATERIAL PROPERTIES NONLINEAR 104
Composite	Not applicable	

Loading

Prescribed Value Concentrated Loads	PDSP, TPDSP CL	Prescribed variable. U, V at each node. Concentrated loads. Px, Py at each node.
Element Loads	Not applicable.	
Distributed Loads Body Forces	Not applicable.	
	CBF	Constant body forces for element. Xcbf, Ycbf, $\Omega \mathrm{x}, \Omega \mathrm{y}, \Omega \mathrm{z}, \alpha \mathrm{z}$
	BFP, BFPE	Body force potentials at nodes/for element. 0, $0,0,0, \mathrm{Xcbf}, \mathrm{Ycbf}$
Velocities	VELO	Velocities. Vx, Vy at nodes.
Accelerations	ACCE	Acceleration Ax, Ay at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy: at nodes.
Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. $F x, \varepsilon x, \sigma x, \varepsilon x$
	SSIG	Initial stresses/strains at Gauss points. F , $\mathcal{E x}$, $\sigma x, \varepsilon x$
Residual Stresses	SSR, SSRE	Not applicable.
	SSRG	Residual stresses at Gauss points.
		Components (nonlinear material models): 0,0 ,

Target TSSIE, TSSIA Target stresses/strains at nodes/for element. Stress/Strains

TSSIG

Temperatures TEMP, TMPE Temperatures at nodes/for element. T, $0,0,0$, To, $0,0,0$ in local directions.
Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.
Loads

LUSAS Output

Solver	Force (default): Fx
	Strain: εx
Modeller	See Results Tables (Appendix K)

Local Axes

- Standard line element

Sign Convention

- Standard bar element

Formulation

Geometric Nonlinearity

$$
\begin{aligned}
\text { Total Lagrangian } & \text { For large displacements and small strains } \\
\text { Updated } & \text { Not applicable. } \\
\text { Lagrangian } & \\
\text { Eulerian } & \text { Not applicable. } \\
\text { Co-rotational } & \text { For large displacements and small strains. }
\end{aligned}
$$

Integration Schemes

Stiffness Default. Fine (see Options).
Mass Default.

1-point (BAR2), 2-point (BAR3).
2-point (BAR2).
2-point (BAR2), 3-point (BAR3).

Fine (see \quad As default.
Options).

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element.
55 Outputs strains as well as stresses
87 Total Lagrangian geometric nonlinearity.
105 Lumped mass matrix.
229 Co-rotational geometric nonlinearity.

Notes on Use

1. The bar formulation is based on the standard isoparametric approach. The variation of axial force is constant for BAR2, and linear for BAR3.
2. Since the 3-noded element has no bending stiffness mechanisms may occur when used as 'stand alone' elements if the central node is not constrained in some way.
3. When the BAR2 element is used with either varying cross-sectional area or temperature dependent material properties, the 2-point Gauss rule should be utilised. This provides an improved representation of the variation of the material properties along the length of the element.
4. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.

Restrictions

\square Ensure mid-side node centrality
\square Avoid excessive element curvature

Recommendations on Use

- The 2-node elements are the most effective bar elements for modelling 'stand-alone-elements' such as members of trusses or bars connecting two discrete structures.
- They can be used to model cables in cable-stayed structures.
- Both the 2-noded and 3-noded elements are suitable for modelling reinforcement with continuum elements e.g. BAR3 may be used with QPM8 for analysis of reinforced concrete structures, or for modelling rock bolts surrounding an excavation

Theory

For additional information see the LUSAS Theory Manual

3D Structural Bar Elements

General

Element Name
BRS2

BRS3

Element Group
Bars
Element
Structural Bars
Subgroup
Element Straight and curved isoparametric bar elements in 3D which can
Description accommodate varying cross-sectional area.
Number Of
2 or 3.
Nodes
Freedoms U, V, W at each node
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ at each node.
Coordinates

Geometric Properties

A1 ... An Cross sectional area at each node.
SF1, MF1 Optional scale factor applied to the areas in the calculation of the stiffness and mass matrices

Material Properties

Linear	Isotropic	MATERIAL PROPERTIES (Elastic: Isotropic)
Matrix	Not applicable	
Joint	Not applicable	
Concrete	Not applicable	
Elasto-Plastic	Stress resultant	Not applicable
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker- Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager,

		Hardening: Granular)
	MohrCoulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Optimised Implicit Von Mises:	MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
	Volumetric Crushing:	Not applicable
	Stress Potential	STRESS POTENTIAL VON_MISES (Isotropic: von Mises, Modified von Mises)
Creep		CREEP PROPERTIES (Creep)
Damage		DAMAGE PROPERTIES SIMO, OLIVER (Damage)
Viscoelastic		VISCO ELASTIC PROPERTIES
Shrinkage		SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER
Multi-linear		MATERIAL PROPERTIES NONLINEAR 104
Rubber	Not applicable	
Composite	Not applicable	
Loading		
Prescribed Value Concentrated Loads	$\begin{aligned} & \text { PDSP, TPDSP } \\ & \text { CL } \end{aligned}$	Prescribed variable. U, V, W at each node. Concentrated loads. Px, Py, Pz at each node.
Element Loads	Not applicable	
Distributed Loads Body Forces	Not applicable	
	CBF	Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{x}}, \alpha \mathrm{y}, \alpha_{\mathrm{z}}$
	BFP, BFPE	Body force potentials at nodes/for element. $0,0,0,0$, Xcbf, Ycbf, Zcbf
Velocities	VELO	Velocities. Vx, Vy, Vz at nodes.
Accelerations	ACCE	Acceleration Ax, Ay, Az at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. $\mathrm{Fx}_{\mathrm{x}}, \varepsilon \mathrm{x}, \sigma \mathrm{x}, \varepsilon \mathrm{x}$
	SSIG	Initial stresses/strains at Gauss points. F , εx, $\sigma \mathrm{x}, \varepsilon \mathrm{x}$
Residual Stresses	SSR, SSRE	Not applicable
	SSRG	Residual stresses at Gauss points.

Temperatures TEMP, TMPE
Target TSSI, TSSIA Stress/Strains

TSSIG

Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable
Temp Dependent Not applicable Loads

Components (nonlinear material models): 0 , $0, \sigma x$
Target stresses/strains at nodes/for element.
$F x, \varepsilon x, \sigma x, \varepsilon_{x}$
Target stresses/strains at nodes/for element. F, $\varepsilon x, \sigma x, \varepsilon x$
Temperatures at nodes/for element. T, 0,0 , 0 , To, $0,0,0$ in local directions.

LUSAS Output

Solver Force (default): Fx
Strain: ε_{x}
Modeller See Results Tables (Appendix K)

Local Axes

- Standard line element

Sign Convention

- Standard bar element

Formulation

Geometric Nonlinearity

$\begin{aligned} & \text { Total Lagrangian } \text { For large displacements and small strains } \\ & \text { Updated } \text { Not applicable. } \\ & \text { Lagrangian } \\ & \text { Eulerian } \text { Not applicable. } \\ & \text { Co-rotational } \text { For large displacements and small strains. } \\ & \text { Integration Schemes }\end{aligned}$

Stiffness	Default.	1-point (BRS2), 2-point (BRS3).
	Fine (see Options).	2-point (BRS2).
Mass	Default.	2-point (BRS2), 3-point (BRS3).

Fine (see Options). As default.
Mass Modelling
\square Consistent mass (default).
\square Lumped mass.
Options
18 Invokes fine integration rule for element.
55 Outputs strains as well as stresses
87 Total Lagrangian geometric nonlinearity.
105 Lumped mass matrix.
229 Co-rotational geometric nonlinearity.
Notes on Use
1.The bar formulation is based on the standard
2. Since the 3-noded element has no bending stiffness, mechanisms may occur,when used as 'stand alone' elements, if the central node is not constrained insome way.
3. When the BRS2 element is used with either varying cross-sectional area ortemperature dependent material properties, the 2-point Gauss rule should beutilised. This provides an improved representation of the variation of thematerial properties along the length of the element.
4. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.

Restrictions

- Ensure mid-side node centrality
- Avoid excessive element curvature

Recommendations on Use

- The 2-node elements are the most effective bar elements for modelling 'stand-alone-elements' such as members of trusses or bars connecting two discrete structures.
- They can be used to model cables in cable-stayed structures.
- Both the 2-noded and 3-noded elements are suitable for modelling reinforcement with continuum elements e.g. BRS3 may be used with HX20 for analysis of reinforced concrete structures, or for modelling rock bolts surrounding an excavation.

Chapter 2 : Beam Elements

2D Engineering Grillage Thick Beam Element

General

Element Name
GRIL

Element Group

 Element Subgroup Element Description Number Of NodesEnd Releases The element node numbers should be followed by: R restrained

The element node numbers should be followed by: R restrained
(default), F free defined in the order $\theta \mathrm{y}$ at node 1 and then $\theta \mathrm{y}$ at node 2 related to local element axes
Freedoms $\mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}$: at each node.
Node X, Y : at each node.

Beams
Engineering Beams
A straight grillage element for which shear deformations are included. The geometric properties are constant along the length.
2 with moment release end conditions

Geometric Properties

A, Iyy, Izz, Jxx, Asz, EFW for element
ASF1,SF2,SF3,SF4, SF5,SF6 Optional scale factors applied to the geometric MF1,MF2,MF3,MF4, MF5,MF6 properties in the calculation of the stiffness and mass matrices
A Cross sectional area
Iyy, Izz 2nd moments of area about local y, z axes (see Definition and Notes)
Jxx Torsional constant
Asz Effective shear area on local yz plane in local z directions
EFW Equivalent plate width

MATERIAL PROPERTIES (Elastic: Isotropic)

Material Properties

Linear Isotropic:

Matrix Not applicable

Joint Not applicable

Concrete Not applicable

Elasto-Plastic Not applicable

Creep Not applicable

Damage Not applicable

Viscoelastic Not applicable

Shrinkage Not applicable

Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable.
R Not
LTYPE, S1, Wz, Mx, 0LTYPE=41: trapezoidal loads inlocal directions.
Distributed Loads UDL
FLD, FLDG
Body Forces CBFBFP, BFPE
Velocities VELO
Accelerations ACCE
Viscous Support VSL
Loads
InitialStress/Strainsapplicable.
Residual Stresses Not
applicable.
Target Not
Stress/Strains applicable.
Temperatures TEMP, TMPE

Uniformly distributed loads. Wz:
Force/unit length in local directions for element (Local z and global Z are coincident).
Not applicable.
Constant body forces for element. Zcbf
Not applicable.
Velocities. Vz: at nodes.
Acceleration Az: at nodes.
Viscous support loads. VLz nodes.

Temperatures at nodes/for element.
$0,0,0, \mathrm{dT} / \mathrm{dz}, 0,0,0, \mathrm{dTo} / \mathrm{dz}$: in local directions.
Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not
Loads applicable.

Output

Solver Force (default): Fz, Mx, My: in local directions (see Notes). Element output is with respect to the beam centre line.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard line element

Sign Convention

- 2D engineering grillage thick beam element. Positive external forces and moments acting on the element nodes are in the direction of the local element axes.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Explicitly integrated.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

105 Lumped mass matrix

Notes on Use

1. The element formulation is based on the standard grillage element formulation. The force variations along the element are linear shear force, constant torsion and quadratic bending moment.
2. The displacement variations along the element are linear torsional rotations and cubic transverse flexural displacements.
3. Internal forces and moments are output at intervals of $1 / 10$ th of the element length by specifying the Gauss point option from the Output button on the File > LUSAS datafile dialog.
4. The second moment of area about local z , (Izz), is only required when assembling the mass matrix.
5. Strains are not available for GRIL elements.
6. Though this element cannot model nonlinear behaviour it can be mixed with other elements in a nonlinear analysis.
7. For restrictions on the use of Wood-Armer with grillages refer to the LUSAS User Guide and Theory Manual.
8. The element has constant material properties along its length. For analyses utilising temperature dependent material properties, the temperature used is the average of the nodal values.
9. A moment release option permits modelling of internal hinges (torsional rotations cannot be released). See Number of Nodes section.
10. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.

Restrictions

The element does not model material or geometric nonlinear effects.

Recommendations on Use

The element can be used to model two dimensional grillage type structures. Linear, eigen, and dynamic analysis procedures can be used with GRIL elements.

2D Thick Beam Elements

General

Element Name BMI2

个Y,v

Element Group
Element
Subgroup
Element
Description

Number Of
Nodes
Freedoms
End Releases

Partial Fixity

Rigid Ends

Node
Coordinates
Beams

BMI3

2D Thick Beams

Straight and curved isoparametric degenerate thick beam elements in 2D for which shearing deformations are included. The elements can accommodate varying geometric properties along the length.
2 (BMI2) 3 (BMI3)
$\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$ at each node.
The element node numbers should be followed by: R restrained (default) F free defined in the order $\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$ for node 1 and then U , $\mathrm{V}, \theta \mathrm{z}$ for the other end node (node 2 for BMI2, node 3 for BMI3). The releases relate to the local element axes (see Notes, Assumptions and Limitations).
Partial fixity at each end node can be defined for all freedoms; this can take the form of a fixity reduction factor or an explicitly defined stiffness value. Partial fixities are defined with respect to the local element axes (see Notes, Assumptions and Limitations).
Rigid lengths r_{1} and r_{2} measured from each end node can be specified for these elements. If these lengths are non zero then any end release or partial fixity is applied at the inner point defining the rigid end. A rigidity factor $(1.0>\lambda>0.0)$ can be specified to make the ends semi-rigid, and options to include/exclude the masses of the rigid ends are also provided (see Notes, Assumptions and Limitations).
X, Y : at each node.

Geometric Properties

A, Izz, Asy, ey for element

SF1,SF2,SF3,SF4, Optional scale factors applied to the geometric properties in MF1,MF2,MF3,MF4 the calculation of the stiffness and mass matrices

A Cross sectional area
Izz 2nd moment of area about local z-axis (see Definition)
Asy Effective shear area on local yz plane in local y directions
ey Eccentricity from beam xz-plane to nodal line (+ve in +ve local y-direction)
Note: For MATERIAL MODEL 29 additional geometric properties are appended to the previous 8 (BMI2) or 12 (BMI3) geometric properties (see Notes, Assumptions and Limitations).

Material Properties

Linear	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
Matrix	Not applicable	
Joint	Not applicable	
Concrete	Not applicable	
Elasto-Plastic	Stress resultant	MATERIAL PROPERTIES NONLINEAR 29 (Elastic: Isotropic, Plastic: Resultant) (ifcode=1 or 2, see Notes, Assumptions and Limitations)
Creep	AASHTO	MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE (Chinese creep model to Chinese Code of Practice)
	Eurocode	MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)
	IRC	MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC code of Practice)

Damage Not applicable Viscoelastic Not applicable Shrinkage

Rubber Not applicable Generic Polymer Not applicable Composite Not applicable

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Loading

$\begin{array}{ll}\text { Prescribed Value } & \text { PDSP, } \\ & \text { TPDSP }\end{array}$
Concentrated CL Loads
Element Loads ELDS

Prescribed variable. $\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$: at nodes.
Concentrated loads. Px, Py, Mz: at nodes (global).
Element loadson nodal line (load type number LTYPE *10 defines the corresponding element load type on beam axis, see Notes)
LTYPE, S1, Px, Py, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, 0 , Wx, Wy, 0
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions
LTYPE, S1, Wx1, Wy1, 0, S2, Wx2, Wy2, 0
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions
LTYPE, S1, Wx, Wy, 0
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected loads in

Distributed Loads UDL

FLD
Body Forces CBF

BFP, BFPE
Velocities VELO
Accelerations ACCE

Viscous Support	VSL
Loads Initial	SSI, SSIE
Stress/Strains	

Residual Stresses SSR, SSRE, SSRG

Target TSSIE, Stress/Strains TSSIA

Temperatures TEMP, TMPE
Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not
Loads applicable.
global directions
Uniformly distributed loads. Wx, Wy: forces/unit length for element in local directions.
Not applicable.
Constant body forces for element.
Xcbf, Ycbf, $\Omega_{\mathrm{x},} \Omega \mathrm{y}, \Omega_{\mathrm{z}}, \alpha \mathrm{z}$
Not applicable.
Velocities. Vx, Vy: at nodes.
Acceleration. Ax, Ay: at nodes.
Viscous support loads. VLx, Vly: at nodes.
Residual stresses at nodes/for element. Resultants (for material model 29). Fx, Fy, Mz : axial force, shear force and moment in local directions.
Residual stresses at Gauss points. These stresses are specified in the same manner as SSR and SSRE.
Target stresses/strains at nodes/for element. Fx, Fy, Mz: axial force, shear force and moment in local directions. $\varepsilon x, \varepsilon y, \psi z$: axial, shear and flexural strains in local directions.
Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA.
Temperatures at nodes/for elements. T, 0 , dT/dy, 0, To, $0, d T o / d y, 0$

LUSAS Output

Solver Stress resultants (default): Fx, Fy, Mz: axial force, shear force and moment in local directions.

Strain: $\varepsilon x, \varepsilon y, \psi z$: Axial, shear and flexural strains in local directions.
By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axes.
Modeller See Results Tables (Appendix K).

Local Axes

\square Standard line element

Sign Convention

- 2D engineering beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations (see Notes)
Updated Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational For large displacements and large rotations
P-Delta Displacements and rotations should be small (see Notes)

Integration Schemes

Stiffness Default. 1-point (BMI2), 2-point (BMI3).
Fine. Same as default.
Mass Default. 2-point (BMI2), 3-point (BMI3).
Fine. Same as default.
Note: A 3-point Newton-Cotes integration rule is also available for BMI3 using OPTION 134. This may be more applicable for infinitesimal strain, elasto-plastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory Manual.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

36 Follower loads

55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity. (see Notes)
102 Switch off load correction stiffness matrix due to centripetal acceleration
105 Lumped mass matrix.
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements
157 Material model 29 (non cross-section elements), see Notes.
229 Co-rotational geometric nonlinearity.
403 Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Notes, Assumptions and Limitations (on by default).
404 Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMI21, see Notes, Assumptions and Limitations (on by default).
405 Specify geometric properties along beam centroidal axes
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
418 Output stress resultants relative to beam centroidal axes for eccentric elements
421 P-Delta analysis, see Notes
432 Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis

Notes, Assumptions and Limitations

1. The element is formulated from the degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Plane cross-sections initially normal to the beam axis remain plane and undistorted (the shape of the cross-section remains unchanged) under deformation, but do not necessarily remain normal to the beam axis. Shearing deformations are included.
2. Input of geometric properties (OPTION 405) and loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axes. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line.
3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMI2, the axial force is constant, while the shear force and moment vary linearly along the length of the beam. For BMI3 the axial force, shear force and moment all vary linearly along the length.
4. When BMI2 is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic. Note that if OPTION 403 is used with eccentrically stacked elements, slippage can occur.
5. When BMI2 is used together with OPTION 404, loading that varies along the element length is accounted for in the force diagrams (i.e. for a beam under CBF or internal element loading). A post-processing technique has been introduced to obtain accurate quadratic bending moments for BMI3. For BMI2 (with OPTION 404) and BMI3, internal forces and moments are output at intervals of $1 / 10$ th of the element length by specifying the Gauss point option from the Output button of the LUSAS Datafile dialog.
6. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral. The rotations and translations remain in the local directions of the beam elements and support large deformations.
7. For nonlinear material model 29 the following geometric properties are appended to those already specified (see Geometric Properties).

- Ap, Zzzp, Sp at each node
- Ap Plastic area (=elastic area)
- Zzzp Plastic modulus for bending about z axes
- Sp Plastic area for shear $(\mathrm{Sp}=0)$.

Note that if eccentricity has been specified the plastic properties must be defined with reference to the nodal line and not the beam axes, i.e. the eccentricity is not used to automatically modify the plastic properties, they must be defined via modified geometry.
For nonlinear material model 29 the following ifcode parameters are applicable: ifcode $=1$ for circular hollow sections and ifcode $=2$ for solid rectangular sections.
8. Temperature dependent properties cannot be used with material model 29.
9. The rigidity matrix is evaluated explicitly from the geometric properties for both linear and nonlinear materials.
10. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.
11. OPTION 36 is only applicable for use with element load types ELDS and UDL. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
12. When a nonlinear material is used with this element the transverse shear stresses are excluded from the plasticity computations i.e. the transverse shear stresses are assumed to remain elastic. This means that if a nonlinear material is
used in applications where transverse shear tends to dominate the stress field the equivalent von Mises and maximum principal stresses can exceed the uniaxial yield stress.
13. When a step by step dynamic analysis is carried out using BMI elements with distributed loading, the "free body force diagrams" pertaining to applied loading, are not superimposed on the nodal values, to do so would lead to erroneous results until a steady state is reached. It should therefore be noted that different force diagrams will be obtained for BMI elements if static and dynamic analyses are directly compared.
14. OPTION 229 considers large displacements and large rotations using a corotational formulation. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework. Note that OPTION 87 has no effect when specified without OPTION 229. To model very flexible members like cables, it is beneficial to use the corotational formulation together with the total Lagrangian formulation to improve convergence and obtain sensible internal displacements.
15. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.
16. The P-Delta formulation is only applicable to lower order (2-noded) beams, higher order beams used in a P-Delta analysis will default to co-rotational GNL.
17. Partial fixities and rigid ends are defined via the ELEMENT TOPOLOGY data and follow on the same line after the end releases, for example:

The character K is used to identify that the partial fixity stiffnesses $\hat{\mathrm{k}}^{\hat{12}} \hat{\mathrm{k}}^{\hat{1}} \hat{13}$ are being explicitly defined, while the character N signifies that fixity factors, $\mathrm{n}_{12} \mathrm{n}_{13}$ are being defined. The fixity factors are used as follows:

$$
\hat{k}_{i j}=\frac{n_{i j}}{1-n_{i j}} \tilde{k}_{i j}
$$

The value of the factor n_{ij} ranges from zero for a pinned connection to 1.0 for a fully fixed connection.

The values r_{1} and r_{2} are the rigid end lengths at nodes 1 and 2 and λ is the rigidity factor ($1.0=$ fully rigid, the default). The factors m_{1} and m_{2} dictate how much mass to include for the rigid ends, full mass $=1.0$ (default $\left.\mathrm{m}_{1}=\mathrm{m}_{2}=0.0\right)$.

Restrictions

\square Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

- The element may be used for linear and nonlinear analysis of two dimensional beam, frame and arch structures.

2D Thick Beam Element with Quadrilateral CrossSection

General

Element Name BMI2X

BMI3X

Element Group

Element

Subgroup

Element
Description

Beams
2D Thick Beams

Number Of
Nodes
Freedoms
End Releases

Rigid Ends

Node X, Y: at each node.
Coordinates

The element node numbers should be followed by: R restrained (default) F free defined in the order $\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$ for node 1 and then U , $\mathrm{V}, \theta \mathrm{z}$ for the other end node (node 2 for BMI2X, node 3 for BMI3X). The releases relate to the local element axes (see Notes, Assumptions and Limitations).
Partial Fixity Partial fixity at each end node can be defined for all freedoms; this
Partial fixity at each end node can be defined for all freedoms; this
can take the form of a fixity reduction factor or an explicitly defined stiffness value. Partial fixities are defined with respect to the local element axes (see Notes, Assumptions and Limitations). Rigid lengths r_{1} and r_{2} measured from each end node can be specified for these elements. If these lengths are non zero then any end release or partial fixity is applied at the inner point defining the rigid end. A rigidity factor $(1.0>\lambda>0.0)$ can be specified to make the ends semi-rigid, and options to include/exclude the masses of the rigid ends are also provided (see Notes, Assumptions and Limitations).
Straight and curved isoparametric degenerate thick beam elements in 2D for which shearing deformations are included. The elements have a quadrilateral cross section which may vary along its length. 2 (BMI2X) 3 (BMI3X)
$\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$: at end nodes.

Geometric Properties

$\mathrm{y} 1, \mathrm{z} 1, \mathrm{y} 2, \mathrm{z} 2, \mathrm{y} 3, \mathrm{z} 3, \mathrm{y} 4, \mathrm{z} 4$: local cross section coordinate pairs at each node; followed by nt 12 , nt14: specifying the number of Newton-Cotes integration points in the direction defined by the local cross-section points 1-2 and 1-4 (zero indicates default values). See Notes. Multiple quadrilateral cross-sections can be used to build up complex beam cross-sections.

Note. The coordinates of the cross section are numbered clockwise about the local x-axis (the beam nodal line). That is, a right-hand screw rule in the direction of increasing x.

Material Properties

Linear Matrix Joint	Isotropic: Not applicable Not applicable	MATERIAL PROPERTIES (Elastic: Isotropic)
Concrete		MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi Crack Concrete)
Elasto-Plastic	Stress resultant:	Not applicable
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker- Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	MohrCoulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Optimised Implicit Von Mises:	MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
	Volumetric Crushing:	Not applicable
	Stress Potential	STRESS POTENTIAL VON_MISES (Isotropic: von Mises, Modified von Mises)
Creep		CREEP PROPERTIES (Creep)
	AASHTO	MATERIAL PROPERTIES NONLINEAR 86

AASHTO
(Concrete creep model to AASHTO code ofPractice)
CEB-FIP MATERIAL PROPERTIES NONLINEAR 86ChineseEurocode
Damage
Viscoelastic Not applicable
Shrinkage
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable
Loading
Prescribed Value PDSP, TPDSP
Concentrated CL Loads Element Loads ELDS
Prescribed variable. U, V, θ z: at end nodes. dU at mid-side node.
Concentrated loads. Px, Py, Mz: at end nodes (global). dPx: at mid-side node (local). number LTYPE * 10 defines the corresponding element load type on beam axis).
LTYPE, S1, Px, Py, Mz
LTYPE=11: point loads and moments in local directions. global directions.CEB-FIP(Concrete creep model to CEB-FIP ModelCode 1990)
MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)
IRC
IRC
MATERIAL PROPERTIES NONLINEAR 86IRC
(Concrete creep model to Indian IRC code ofPractice)DAMAGE PROPERTIES SIMO, OLIVER(Damage)
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

		LTYPE, $0, \mathrm{Wx}, \mathrm{Wy}, \mathrm{Mz}$ LTYPE=21: uniformly distributed loads in local directions. LTYPE=22: uniformly distributed loads in global directions. LTYPE=23: uniformly distributed projected loads in global directions LTYPE, S1, Wx1, Wy1, Mz1, S2, Wx2, Wy2, Mz2 LTYPE=31: distributed loads in local directions. LTYPE=32: distributed loads in global directions. LTYPE=33: distributed projected loads in global directions LTYPE, S1, Wx, Wy, Mz LTYPE=41: trapezoidal loads in local directions. LTYPE=42: trapezoidal loads in global directions. LTYPE=43: trapezoidal projected loads in global directions
Distributed LoadsBody Forces	UDL	Uniformly distributed loads. Wx, Wy: force/unit length in local directions.
	FLD	Not applicable.
	CBF	Constant body forces for element. Xcbf, Ycbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}, ~} \mathrm{z} \mathrm{z}$
	BFP, BFPE	Body force potentials at nodes/for element. φ_{1}, $\varphi 2,0,0$, Xcbf, Ycbf
Velocities	VELO	Velocities. Vx, Vy: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay: at nodes
Viscous Support Loads Initial Stress/Strains	VSL	Viscous support loads. VLx, Vly: at nodes.
	SSI, SSIE	Target stresses/strains at nodes/for element. Components: Fx, Fy, Mz, $\varepsilon x, \varepsilon y, \psi z$, ($\sigma x, \sigma x y, \varepsilon x, \varepsilon x y$) Bracketed terms repeated for each fibre integration point.
	SSIG	Initial stresses/strains at Gauss points. These stresses/strains are specified in the same manner as SSI and SSIE.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. Components: $0,0,0,0,0,0,(\sigma x, \sigma x y)$

		Bracketed terms repeated for each fibre integration point.
Target Stress/Strains	SSRG	Residual stresses at Gauss points. These stresses are specified in the same manner as SSR and SSRE.
	TSSIE, TSSIA	Target stresses/strains at nodes/for element. Components: Fx, Fy, Mz, $\varepsilon x, \varepsilon y, \psi z,(\sigma x$,
		$\sigma x y, \varepsilon x, \varepsilon x y)$ Bracketed terms repeated for each fibre integration point.
	TSSIG	Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element T, $0, \mathrm{dT} / \mathrm{dy}$, $0, \mathrm{To}, 0, \mathrm{dTo} / \mathrm{dy}, 0$: in local directions.
Phreatic surface	Face_Pressure	The fluid pressure is applied in the -y direction of the element y axis.
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver Stress resultants (default): Fx, Fy, Mz: axial force, shear forces and moment in local directions.
Continuum stresses: $\sigma x, \sigma x y$, in local directions.
Strain: $\mathcal{E x}, \varepsilon y, \psi z$: Axial, shear and flexural strains in local directions.
Continuum strains: $\varepsilon x, \varepsilon x y$ in local directions.
By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axes.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard line element

Sign Convention

Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, small rotations and small strains (see Notes).
Updated For large displacements, large rotations and small strains. Lagrangian

Eulerian Not applicable.
Co-rotational For large displacements and large rotations
P-Delta Displacements and rotations should be small (see Notes)

Integration Schemes

Stiffness	Default.	1-point (BMI2X), 2-point (BMI3X).
	Fine (see Options).	Same as default.
Mass	Default.	2-point (BMI2X), 3-point (BMI3X).
	Fine (see Options).	Same as default.

A 3-point Newton-Cotes integration rule is also available for BMI3X using OPTION 134. This may be more applicable for infinitesimal strain, elasto-plastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory Manual

Mass Modelling

Consistent mass (default).
\square Lumped mass.

Options

36 Follower loads

55 Output strains as well as stresses
87 Total Lagrangian geometric nonlinearity (see Notes).
102 Switch off load correction stiffness matrix due to centripetal acceleration
105 Lumped mass matrix
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
139 Output yielded integration points only
229 Co-rotational geometric nonlinearity
403 Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Notes, Assumptions and Limitations (on by default).
404 Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMI2X, see Notes (on by default).

406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
418 Output stress resultants relative to beam centroidal axes for eccentric elements
421 P-Delta analysis, see Notes
432 Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis

Notes on Use

1. The element is formulated from the degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Plane cross-sections initially normal to the beam axis remain plane and undistorted (the shape of the cross-section remains unchanged) under deformation, but do not necessarily remain normal to the beam axis. Shearing deformations are included.
2. Input of loads (OPTION 406) and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axis. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line. Fiber stress/strain results are output at the actual location.
3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMI2X, the axial force is constant, while the shear force and moment vary linearly along the length of the beam. For BMI3X the axial force, shear force and moment all vary linearly along the length.
4. When BMI2X is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic. Note that if OPTION 403 is used with eccentrically stacked elements, slippage can occur.
5. When BMI2X is used together with OPTION 404, loading that varies along the element length is accounted for in the force diagrams (i.e. for a beam under CBF or internal element loading). Internal forces and moments are output at intervals of $1 / 10$ th of the element length by specifying the Gauss point option from the Output button of the LUSAS Datafile dialog.
6. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral. The rotations and translations remain in the local directions of the beam elements and support large deformations
7. OPTION 36 is only applicable for use with element load types ELDS and UDL. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
8. OPTION 229 considers large displacements and large rotations using a corotational formulation. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework. Note that OPTION 87 has no effect when specified without OPTION 229. To
model very flexible members like cables, it is beneficial to use the corotational formulation together with the total Lagrangian formulation to improve convergence and obtain sensible internal displacements.
9. The P-Delta formulation is only applicable to lower order (2-noded) beams, higher order beams used in a P-Delta analysis will default to co-rotational GNL.
10. The Smoothed Multi Crack Concrete Model (109) can be used with this element, however, due to the "plane sections remaining plane" hypothesis, crack widths cannot be computed.
11. Partial fixities and rigid ends are defined via the ELEMENT TOPOLOGY data and follow on the same line after the end releases, for example:

The character K is used to identify that the partial fixity stiffnesses $\mathrm{k}^{\wedge}{ }_{12} \mathrm{k}^{\wedge}{ }_{13}$ are being explicitly defined, while the character N signifies that fixity factors, $\mathrm{n}_{12} \mathrm{n}_{13}$ are being defined. The fixity factors are used as follows:

$$
\widehat{k}_{i j}=\frac{n_{i j}}{1-n_{i j}} \tilde{k}_{i j}
$$

The value of the factor n_{ij} ranges from zero for a pinned connection to 1.0 for a fully fixed connection.

The values r_{1} and r_{2} are the rigid end lengths at nodes 1 and 2 and λ is the rigidity factor ($1.0=$ fully rigid, the default). The factors m_{1} and m_{2} dictate how much mass to include for the rigid ends, full mass $=1.0$ (default $\mathrm{m}_{1}=\mathrm{m}_{2}=0.0$).

Restrictions

\square Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

The element may be used for linear and nonlinear analysis of two dimensional beam, frame and arch structures.

3D Thick Beam Elements

General

BMI31

BMI22

BMI33

Partial Fixity Partial fixity at each end node can be defined for all freedoms; this can take the form of a fixity reduction factor or an explicitly defined stiffness value. Partial fixities are defined with respect to the local element axes (see Notes, Assumptions and Limitations).
Rigid lengths r_{1} and r_{2} measured from each end node can be specified for these elements. If these lengths are non zero then any end release or partial fixity is applied at the inner point defining the rigid end. A rigidity factor ($1.0>\lambda>0.0$) can be specified to make the ends semi-rigid, and options to include/exclude the masses of the rigid ends are also provided (see Notes, Assumptions and Limitations).
Node
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.
Coordinates

Geometric Properties

A, Iyy, Izz, Jxx, Asz, Asy, Iyz, ez, ey At each node
SF1,SF2,SF3,SF4,SF5,SF6,SF7,SF8,SF9 Optional scale factors applied to the
MF1,MF2,MF3,MF4, geometric properties in the calculation of
MF5,MF6,MF7,MF8,MF9 the stiffness and mass matrices

A Cross sectional area.
Iyy, Izz 2nd moment of area about local y, z directions (see Definition).
Jxx Torsional constant.
Asz, Asy Effective shear areas on local yz plane in local z, y directions (see shear areas).
$\mathbf{I y}, \mathbf{I z}$ 1st moment of area about local y, z directions (see Definition).
Iyz Product moment of area about local y, z axes (see Definition).
ez Eccentricity from beam xy-plane to nodal line. (+ve in the +ve local z direction). (See Notes)
ey Eccentricity from beam xz-plane to nodal line. (+ve in the +ve local y direction). (See Notes)

Note: For MATERIAL MODEL 29 additional geometric properties are appended to the previous 22 (BMI21 and BMI22) or 33 (BMI31 and BMI33) geometric properties (see Notes, Assumptions and Limitations).

Material Properties

Linear Isotropic:
MATERIAL PROPERTIES (Elastic:

Isotropic)
RIGIDITIES 6 (Rigidities: Beam)
Rigidities:
Matrix Not applicable Joint Not applicable Concrete Not applicable Elasto-Plastic Stress resultant:

Creep AASHTO

CEB-FIP

Chinese

Eurocode

IRC

Damage Not applicable
Viscoelastic Not applicable
Shrinkage
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP

Prescribed variable. U, V, W, $\theta \mathrm{x}, \theta \mathrm{y}$, θz : at active nodes.

Concentrated CL Loads
 Element Loads ELDS

Distributed Loads UDL

Concentrated loads in global directions. $\mathrm{Px}, \mathrm{Py}, \mathrm{Pz}, \mathrm{Mx}, \mathrm{My}, \mathrm{Mz}$: at active nodes.
Element loads on nodal line (load type number LTYPE *10 defines the corresponding element load type on beam axis, see Notes, Assumptions and Limitations) (see Notes, Assumptions and Limitations)
LTYPE, S1, Px, Py, Pz, Mx, My, Mz LTYPE=11: point loads and moments in local directions. LTYPE=12: point loads and moments in global directions.
LTYPE, 0 , Wx, Wy, Wz, Mx, My, Mz LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions ($\mathrm{Mx}=0$).
LTYPE=23: uniformly distributed projected loads in global directions.
LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1, S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions.
LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected loads in global directions.
Uniformly distributed loads. Wx, Wy, $\mathrm{Wz}, \mathrm{Mx}, \mathrm{My}, \mathrm{Mz}$ local forces and moments / unit length for element (see

FLD, FLDG
Body Forces CBF

BFP, BFPE

Velocities
Accelerations
Viscous Support
Loads
Initial SSI, SSIE
Stress/Strains

Residual Stresses
SSR, SSRE

SSRG

Target TSSIE, TSSIA Stress/Strains

TSSIG

Temperatures TEMP, TMPE

Notes, Assumptions and Limitations).
Not applicable.
Constant body forces for Element.

$$
\mathrm{Xcbf}, \mathrm{Ycbf}, \mathrm{Zcbf}, \Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z},} \alpha \mathrm{x},
$$ $\alpha y, \alpha z$

Body force potentials at nodes/for element. $\varphi 1, \varphi 2, \varphi 3,0, \mathrm{Xcbf}, \mathrm{Ycbf}$, Zcbf
Velocities. Vx, Vy, Vz: at nodes.
Acceleration. Ax, Ay, Az: at nodes
Viscous support loads. VLx, VLy, VLz: at nodes.
Initial stresses/strains at nodes/for element. Fx, Fy, Fz, Mx, My, Mz: axial force, shear forces, torque and moments in local directions. $\varepsilon x, \varepsilon y$, $\varepsilon z, \psi x, \psi y, \psi z$: axial, shear and flexural strains in local directions.
Initial stresses/strains at Gauss points. These stresses/strains are specified in the same manner as SSI and SSIE.
Residual stresses at nodes/for element. Resultants (for material model 29). Fx, Fy, Fz, Mx, My, Mz: axial force, shear forces, torque and moments in local directions.
Residual stresses at Gauss points. These stresses are specified in the same manner as SSR and SSRE.
Target stresses/strains at nodes/for element. Fx, Fy, Fz, Mx, My, Mz: axial force, shear forces, torque and moments in local directions. $\varepsilon x, \varepsilon y$, $\varepsilon z, \psi x, \psi y, \psi z$: axial, shear and flexural strains in local directions.
Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA.
Temperatures at nodes/for element. T, $0, \mathrm{dT} / \mathrm{dy}, \mathrm{dT} / \mathrm{dz}, \mathrm{To}, 0, \mathrm{dTo} / \mathrm{dy}$, dTo/dz in local directions

Overburden Not applicable.

Phreatic Surface Not applicable.
 Field Loads Not applicable.
 Temp Dependent Not applicable.
 Loads

LUSAS Output

Solver Stress resultants (default): Fx, Fy, Fz, Mx, My, Mz: axial force, shear forces, torque and moments in local directions.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, \psi z:$ Axial, shear, torsional and flexural strains in local directions.
By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axes.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard line element For each element/active node, the local xy-plane is defined by the local x -axis and the orientation node. The local y -axis is perpendicular to the local x-axis and positive on the side of the element where the orientation node lies. The local y and z-axes form a right-handed set with the local x-axis. See Local Element Axes for details

Sign Convention

- Standard beam element

Formulation

Geometric Nonlinearity

$$
\begin{aligned}
\text { Total Lagrangian } & \text { For large displacements and large rotations (see Notes) } \\
\text { Updated } & \text { Not applicable. } \\
\text { Lagrangian } & \\
\text { Eulerian } & \text { Not applicable. } \\
\text { Co-rotational } & \text { For large displacements and large rotations } \\
\text { P-Delta } & \text { Displacements and rotations should be small (see Notes) }
\end{aligned}
$$

Integration Schemes

Stiffness Default. 1-point (BMI21 and BMI22), 2-point (BMI31 and BMI33). Fine. Same as default.
Mass Default. 2-point (BMI21 and BMI22), 3-point (BMI31 and BMI33).

Fine. Same as default.
Note: A 3-point Newton-Cotes integration rule is also available for BMI31 and BMI33 using OPTION 134. This may be more applicable for infinitesimal strain, elasto-plastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory Manual.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

36 Follower loads
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity (see Notes).
102 Switch off load correction stiffness matrix due to centripetal acceleration
105 Lumped mass matrix.
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements
157 Material model 29 (non cross-section elements), see Notes.
229 Co-rotational geometric nonlinearity.
403 Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Notes, Assumptions and Limitations (on by default).
404 Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMI21, see Notes, Assumptions and Limitations.
405 Specify geometric properties along beam centroidal axes (on by default).
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
418 Output stress resultants relative to beam centroidal axes for eccentric elements
421 P-Delta analysis, see Notes
432 Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis

Notes, Assumptions and Limitations

1. The element is formulated from the so-called degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Plane cross-sections initially normal to the beam axis remain plane and undistorted (the shape of the cross-section remains unchanged) under deformation, but do not necessarily remain normal to the beam axis; the shear centre and centroid of cross-section coincide. Shearing deformations are included. The basic kinematic assumptions correspond to the Timoshenko beam theory and do not allow for warping effects in torsion.

Although warping effects can be considered approximately by using real torsional constants, inaccuracies are likely to occur when eccentricity is present.
2. Input of geometric properties (OPTION 405) and loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axes. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line.
3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMI21 and BMI22, the axial force and torsion are constant, while shear forces and moments vary linearly along the length of the beam. For BMI31 and BMI33 the axial force, shear forces, moments and torsion all vary linearly along the length.
4. When BMI21 is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic. Note that if OPTION 403 is used with eccentrically stacked elements, slippage can occur.
5. When BMI21 is used together with OPTION 404, loading that varies along the element length is accounted for in the force diagrams (i.e. for a beam under CBF or internal element loading). A post-processing technique has been introduced to obtain accurate quadratic bending moments for BMI31. For BMI21 (with OPTION 404) and BMI31, internal forces and moments are output at intervals of $1 / 10$ th of the element length by specifying the Gauss point option from the Output button of the LUSAS Datafile dialog.
6. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral. The rotations and translations remain in the local directions of the beam elements and support large deformations.
7. For nonlinear material model 29 the following geometric properties are appended to those already specified (see Geometric Properties).

- $\mathrm{A}^{\mathrm{p}}, \mathrm{Zyy}^{\mathrm{p}}, \mathrm{Zzz}^{\mathrm{p}}, \mathrm{Zy}^{\mathrm{p}}, \mathrm{Zz}^{\mathrm{p}}, \mathrm{S}^{\mathrm{p}}$ at each node
- $\quad A^{p}$ Plastic area (=elastic area)
- $\quad \mathrm{Zyy}^{\mathrm{p}}$, Zzz $^{\mathrm{p}}$ Plastic moduli for bending about y, z axes
- $\mathrm{Zy}^{\mathrm{p}}, \mathrm{Zz}^{\mathrm{p}}$ Plastic moduli for torsion about y, z axes.
- $\quad S^{p}$ Plastic area for shear $\left(S^{p}=0\right)$.

Where the fully plastic torsional moment $=\sigma y\left(\mathrm{Zy}^{\mathrm{p}}+\mathrm{Zz}^{\mathrm{p}}\right)$.
Note that if eccentricity has been specified the plastic properties must be defined with reference to the nodal line and not the beam axes, i.e. the eccentricity is not
used to automatically modify the plastic properties, they must be defined via modified geometry.
For nonlinear material model 29 the following ifcode parameters are applicable: ifcode $=\mathbf{1}$ for circular hollow sections and ifcode $=\mathbf{2}$ for solid rectangular sections
8. Temperature dependent properties cannot be used with material model 29.
9. The rigidity matrix is evaluated explicitly from the geometric properties for both linear and nonlinear materials.
10. OPTION 36 is only applicable for use with element load types ELDS and UDL. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
11. When a nonlinear material is used with this element the transverse shear stresses are excluded from the plasticity computations i.e. the transverse shear stresses are assumed to remain elastic. This means that if a nonlinear material is used in applications where transverse shear tends to dominate the stress field the equivalent von Mises and maximum principal stresses can exceed the uniaxial yield stress.
12. When a step by step dynamic analysis is carried out using BMI elements with distributed loading, the "free body force diagrams" pertaining to applied loading, are not superimposed on the nodal values, to do so would lead to erroneous results until a steady state is reached. It should therefore be noted that different force diagrams will be obtained for BMI elements if static and dynamic analyses are directly compared.
13. OPTION 229 considers large displacements and large rotations using a corotational formulation. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework. Note that OPTION 87 has no effect when specified without OPTION 229. To model very flexible members like cables, it is beneficial to use the corotational formulation together with the total Lagrangian formulation to improve convergence and obtain sensible internal displacements.
14. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.
15. The P-Delta formulation is only applicable to lower order (2-noded) beams, higher order beams used in a P-Delta analysis will default to co-rotational GNL.
16. Partial fixities and rigid ends are defined via the ELEMENT TOPOLOGY data and follow on the same line after the end releases, for example:

The character K is used to identify that the partial fixity stiffnesses $\mathrm{k}^{\wedge}{ }_{12} \mathrm{k}^{\wedge}{ }_{15}$ are being explicitly defined, while the character N signifies that fixity factors, n_{12} n_{15} are being defined. The fixity factors are used as follows:

$$
\hat{k}_{i j}=\frac{n_{i j}}{1-n_{i j}} \tilde{k}_{i j}
$$

The value of the factor n_{ij} ranges from zero for a pinned connection to 1.0 for a fully fixed connection.
The values r_{1} and r_{2} are the rigid end lengths at nodes 1 and 2 and λ is the rigidity factor $(1.0=$ fully rigid, the default $)$. The factors m_{1} and m_{2} dictate how much mass to include for the rigid ends, full mass $=1.0\left(\right.$ default $\left.\mathrm{m}_{1}=\mathrm{m}_{2}=0.0\right)$.

Restrictions

- Ensure mid-side node centrality
\square Avoid excessive element curvature

Recommendations on Use

- The elements may be used for linear and material nonlinear analysis of three dimensional beam, frame and arch structures, and can also be used to model cables in cable stayed structures. BMI21 and BMI22 may also be used as a stiffener for the QTS4 shell element; while BMI31 and BMI33 may be used as a stiffener for the QTS8 shell element, e.g. space frames.

3D Thick Beam Elements with Quadrilateral CrossSection

General

Element Name

BMX21

BMX31

BMX22

BMX33

Element Group Element Subgroup
Element Description

Number Of Nodes

Freedoms
End Releases
release conditions.
The orientation node(s) (3rd node of BMX21, 3rd and 4th nodes of
BMX22, 4th node of BMX31, 4th, 5th and 6th nodes of BMX33)
The orientation node(s) (3rd node of BMX21, 3rd and 4th nodes of
BMX22, 4th node of BMX31, 4th, 5th and 6th nodes of BMX33) are used to define the local xy-plane.
Beams
Thick Beams

Straight and curved isoparametric degenerate thick beam elements in 3D for which shearing deformations are included. The element has a quadrilateral cross section which may vary along the element length. BMX22 and BMX33 can consider initial twist.
3 (BMX21), 4 (BMX22 and BMX31) and 6 (BMX33) with end
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at each active node.
The element node numbers should be followed by: R restrained (default), F free defined in the order $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$ at node 1 and then $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$ at node 2 and node 3 (only for

Partial Fixity

End Conditions
Rigid lengths r_{1} and r_{2} measured from each end node can be specified for these elements. If these lengths are non zero then any end release or partial fixity is applied at the inner point defining the rigid end. A rigidity factor $(1.0>\lambda>0.0)$ can be specified to make the ends semi-rigid, and options to include/exclude the masses of the rigid ends are also provided (see Notes, Assumptions and Limitations).
X, Y, Z: at each node.
BMX31 and BMX33) related to local element axes (see Notes).
Partial fixity at each end node can be defined for all freedoms; this can take the form of a fixity reduction factor or an explicitly defined stiffness value. Partial fixities are defined with respect to the local element axes (see Notes, Assumptions and Limitations).

Node Coordinates ,

Geometric Properties

$\mathrm{y} 1, \mathrm{z} 1, \mathrm{y} 2, \mathrm{z} 2, \mathrm{y} 3, \mathrm{z} 3, \mathrm{y} 4, \mathrm{z} 4$: local cross section coordinate pairs at each node; followed by nt 12 , nt 14 : number of Newton-Cotes integration points in the direction defined by the local cross-section points 1-2 and 1-4 (zero indicates default values). Multiple quadrilateral cross-sections can be used to build up complex beam cross-sections.

Note. The corners of the quadrilateral are numbered clockwise about the local x -axis (the beam nodal line), that is, a right-hand screw rule in the direction of increasing x .

Material Properties

Linear Isotropic:
Matrix Not applicable
Joint Not applicable
Concrete

Elasto-Plastic Stress resultant: Tresca: MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
Drucker-Prager: MATERIAL PROPERTIES NONLINEAR
64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)Mohr-Coulomb: MATERIAL PROPERTIES NONLINEAR65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular withDilation)
Optimised MATERIAL PROPERTIES NONLINEARImplicit VonMises:75 (Elastic: Isotropic, Plastic: Von Mises,Hardening: Isotropic \& Kinematic)
Volumetric Not applicable.
Crushing:Stress Potential
CreepAASHTO
CEB-FIP
Chinese
Eurocode
IRC
Damage
STRESS POTENTIAL VON_MISES(Isotropic: von Mises, Modified vonMises)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO codeof Practice)
MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP(Concrete creep model to CEB-FIP ModelCode 1990)
MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR86 IRC(Concrete creep model to Indian IRC codeof Practice)
DAMAGE PROPERTIES SIMO, OLIVER
(Damage)
Viscoelastic Not applicable
Shrinkage
SHRINKAGE CEB_FIP_90,EUROCODE_2, GENERAL, USER

Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL Loads

Element Loads ELDS

Prescribed variable. U, V, W, $\theta \mathrm{x}, \theta \mathrm{y}$, $\theta \mathrm{z}$: at active nodes.
Concentrated loads in global directions. Px, Py, Pz, Mx, My, Mz: at active nodes (global).
Element loads on nodal line (load type number LTYPE *10 defines the corresponding element load type on beam axis, see Notes, Assumptions and Limitations)
LTYPE, S1, Px, Py, Pz, Mx, My, Mz LTYPE=11: point loads and moments in local directions. LTYPE=12: point loads and moments in global directions.
LTYPE, 0 , Wx, Wy, Wz, Mx, My, Mz LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions ($\mathrm{Mx}=0$). LTYPE=23: uniformly distributed projected loads in global directions.
LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1, S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions.
LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected

Distributed Loads UDL

FLD
Body Forces CBF
BFP, BFPE

Velocities VELO
Viscous Support VSL
Loads
Accelerations ACCE
Initial SSI, SSIE
Stress/Strains

SSIG

Residual Stresses SSR, SSRE

SSRG

Target TSSIE, TSSIA Stress/Strains

TSSIG
loads in global directions.
Uniformly distributed loads. Wx, Wy, $\mathrm{Wz}, \mathrm{Mx}, \mathrm{My}, \mathrm{Mz}$: local forces and moments / unit length for element in local directions. see Notes, Assumptions and Limitations.
Not applicable.
Constant body forces for Element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega \mathrm{y}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{x}}, \alpha \mathrm{y}, \alpha \mathrm{z}$
Body force potentials at nodes/for element. $\varphi 1, \varphi 2, \varphi 3,0, \mathrm{Xcbf}, \mathrm{Ycbf}$, Zcbf
Velocities. Vx, Vy, Vz: at nodes.
Viscous support loads. VLx, VLy, VLz: at nodes.
Acceleration. Ax, Ay, Az: at nodes
Initial stresses/strains at nodes/for element. Components: Fx, Fy, Fz, Mx, $\mathrm{My}, \mathrm{Mz}, \varepsilon x, \varepsilon y, \varepsilon z, \psi \mathrm{x}, \psi \mathrm{y}, \psi \mathrm{z},(\sigma \mathrm{x}$, $\sigma x y, \sigma x z, \varepsilon x, \varepsilon x y, \varepsilon x z)$ Bracketed terms repeated for each fibre integration point.
Initial stresses/strains at Gauss points. These stresses/strains are specified in the same manner as SSI and SSIE.
Residual stresses at nodes/for element. Components: $0,0,0,0,0,0,0,0,0,0$, $0,0,(\sigma x, \sigma x y, \sigma x z)$ Bracketed terms repeated for each fibre integration point.
Residual stresses at Gauss points. These stresses are specified in the same manner as SSR and SSRE.
Target stresses/strains at nodes/for element.Components: Fx, Fy, Fz, Mx, $\mathrm{My}, \mathrm{Mz}, \varepsilon x, \varepsilon y, \varepsilon z, \psi \mathrm{x}, \psi \mathrm{y}, \psi z$, ($\sigma \mathrm{x}$, $\sigma x y, \sigma x z, \varepsilon x, \varepsilon x y, \varepsilon x z)$ Bracketed terms repeated for each fibre integration point.
Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA.

Temperatures TEMP, TMPE

Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.
Loads

Temperatures at nodes/for element. T, 0 , $\mathrm{dT} / \mathrm{dy}, \mathrm{dT} / \mathrm{dz}, \mathrm{To}, 0, \mathrm{dTo} / \mathrm{dy}, \mathrm{dTo} / \mathrm{dz}$ in local directions

LUSAS Output

Solver Stress resultants (default): Fx, Fy, Fz, Mx, My, Mz: axial force, shear forces, torque and moments in local directions.
Continuum stresses (OPTION 172): $\sigma x, \sigma x y, \sigma x z$: in local directions.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, \psi z:$ Axial, shear, torsional and flexural strains in local directions.
Continuum strains (OPTION 172): $\varepsilon x, \varepsilon x y, \varepsilon_{x}$: in local directions.
By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axes.
Modeller See Results Tables (Appendix K).

Local Axes

Standard line element For each element/active node, the local xy-plane is defined by the local x-axis and the orientation node. The local y-axis is perpendicular to the local x -axis and positive on the side of the element where the orientation node lies. The local y and z-axes form a right-handed set with the local x-axis. See Local Element Axes for details

Sign Convention

\square Standard beam element

Formulation

Geometric Nonlinearity

$$
\begin{aligned}
\text { Total Lagrangian } & \text { For large displacements and rotations (see Notes) } \\
\text { Updated } & \text { Not applicable. } \\
\text { Lagrangian } & \\
\text { Eulerian } & \text { Not applicable. }
\end{aligned}
$$

Corotational For large displacements and rotations
 P-Delta Displacements and rotations should be small (see Notes)

Integration Schemes

Stiffness Default. 1-point (BMX21 and BMX22), 2-point (BMX31 and BMX33).
Fine. Same as default.
Mass Default. 2-point (BMX21 and BMX22), 3-point (BMX31 and BMX33).
Fine. Same as default.
Note: A 3-point Newton-Cotes integration rule is also available for BMX31 and BMX33 using OPTION 134. This may be more applicable for infinitesimal strain, elasto-plastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory Manual.

Mass Modelling

- Consistent mass (default).
\square Lumped mass.

Options

36 Follower loads
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity (see Notes).
102 Switch off load correction stiffness matrix due to centripetal acceleration
105 Lumped mass matrix.
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
139 Output yielded integration points only.
172 Form the rigidity matrix by numerical cross section integration.
229 Co-rotational geometric nonlinearity.
403 Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Notes, Assumptions and Limitations (on by default).
404 Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMX21, see Notes (on by default).
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
418 Output stress resultants relative to beam centroidal axes for eccentric elements
421 P-Delta analysis, see Notes
432 Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis

Notes, Assumptions and Limitations

1. The element is formulated from the so-called degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Plane cross-sections initially normal to the beam axis remain plane and undistorted (the shape of the cross-section remains unchanged) under deformation, but do not necessarily remain normal to the beam axis; the shear centre and centroid of cross-section coincide. Shearing deformations are included.
2. Input of loads (OPTION 406) and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axis. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line. Fiber stress/strain results are output at the actual location.
3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMX21 and BMX22, the axial force and torsion are constant, while shear forces and moments vary linearly along the length of the beam. For BMX31 and BMX33 the axial force, shear forces, moments and torsion all vary linearly along the length.
4. When BMX21 is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic. Note that if OPTION 403 is used with eccentrically stacked elements, slippage can occur.
5. When BMX21 is used together with OPTION 404, loading that varies along the element length is accounted for in the force diagrams (i.e. for a beam under CBF or internal element loading). Internal forces and moments are output at intervals of $1 / 10$ th of the element length by specifying the Gauss point option from the Output button of the LUSAS Datafile dialog.
6. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral. The rotations and translations remain in the local directions of the beam elements and support large deformations.
7. Computation of the rigidity matrix by integration through the cross-section depth of the beam is necessary for all nonlinear material models. By default OPTION 172 is invoked automatically and a $5 * 5$ point Newton-Cotes integration rule is used. This allows the output of stresses at the numerical cross section integration points.
8. By default, the rigidity matrix is evaluated explicitly for linear materials. A 3*3 point Newton-Cotes integration rule may be invoked using OPTION 172. Numerical cross section integration enables top, middle and bottom stress output.
9. OPTION 36 is only applicable for use with element load types ELDS and UDL. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
10. For nonlinear material models, fibre integration is used across the crosssectional area of the beam. Only axial deformation is considered in the plasticity computations, any torsional deformation is assumed to remain elastic.
11. OPTION 229 considers large displacements and large rotations using a corotational formulation. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework. Note that OPTION 87 has no effect when specified without OPTION 229. To model very flexible members like cables, it is beneficial to use the corotational formulation together with the total Lagrangian formulation to improve convergence and obtain sensible internal displacements.
12. The P-Delta formulation is only applicable to lower order (2-noded) beams, higher order beams used in a P-Delta analysis will default to co-rotational GNL.
13. The Smoothed Multi Crack Concrete Model (109) can be used with this element, however, due to the "plane sections remaining plane" hypothesis, crack widths cannot be computed.
14. Partial fixities and rigid ends are defined via the ELEMENT TOPOLOGY data and follow on the same line after the end releases, for example:

The character K is used to identify that the partial fixity stiffnesses $\mathrm{k}_{12} \mathrm{k}_{15}$ are being explicitly defined, while the character N signifies that fixity factors, $\mathrm{n}_{12} \mathrm{n}_{15}$ are being defined. The fixity factors are used as follows:

$$
\hat{k}_{i j}=\frac{n_{i j}}{1-n_{i j}} \tilde{k}_{i j}
$$

The value of the factor n_{ij} ranges from zero for a pinned connection to 1.0 for a fully fixed connection.
The values r_{1} and r_{2} are the rigid end lengths at nodes 1 and 2 and λ is the rigidity factor $(1.0=$ fully rigid, the default $)$. The factors m_{1} and m_{2} dictate how much mass to include for the rigid ends, full mass $=1.0$ (default $\mathrm{m}_{1}=\mathrm{m}_{2}=0.0$).

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature

BMX22 and BMX33 elements are not available for selection currently within LUSAS Modeller.

Recommendations on Use

- The elements may be used for linear and nonlinear analysis of three dimensional beam, frame and arch structures. BMX21 and BMX22 may also be used as a stiffener for the QTS4 shell element; while BMX31 and BMX33 may be used as a stiffener for the QTS8 shell element.

3D Thick Beam Elements with Torsional Warping

General

Element BMI21W
Name

BMI31W

BMI22W

BMI33W

Element Group
Element
Subgroup
Element
Description
Number Of
Nodes
Freedoms
End ReleasesBeamsIsoparametric Degenerate Beams

Straight and curved isoparametric degenerate beam elements in 3D for which shearing deformations and torsional warping are included. The elements can accommodate varying geometric properties along the length. BMI22W and BMI33W can consider initial twisting.
3 (BMI21W), 4 (BMI22W and BMI31W) and 6 (BMI33W) with end release conditions.
The orientation node(s) (3rd node of BMI21W, 3rd and 4th nodes of BMI22W, 4th node of BMI31W, 4th, 5th and 6th nodes of BMI33W) are used to define the local xy-plane.
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}, \alpha$: at each active node.
The element node numbers should be followed by: R restrained (or continuous or unreleased) (default), F free (or discontinuous or released), C discontinuous and constrained, defined in the order U , V, W, $\theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$ at node 1 and then $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$ at at node 2 and node 3 (only for BMI31W and BMI33W) related to local

Partial Fixity

End Conditions
Rigid lengths r_{1} and r_{2} measured from each end node can be specified for these elements. If these lengths are non zero then any end release or partial fixity is applied at the inner point defining the rigid end. A rigidity factor $(1.0>\lambda>0.0)$ can be specified to make the ends semi-rigid, and options to include/exclude the masses of the rigid ends are also provided (see Notes, Assumptions and Limitations).
Node
Coordinates
element axes (see Notes, see Notes, Assumptions and Limitations).).
Partial fixity at each end node can be defined for all freedoms; this can take the form of a fixity reduction factor or an explicitly defined stiffness value. Partial fixities are defined with respect to the local element axes (see Notes, Assumptions and Limitations).

X, Y, Z: at each node.

Geometric Properties

A, Iyy, Izz, Jxx, Asz, Asy, Iy, Iz, Iyz, Cw, Cwy, Cwz, At each node Iyr, Izr, Irr, Iwr (default) or A, Iyy, Izz, Jxx, Asz, Asy, ez, ey, Iyz, Cw, zo, yo, Iyr, Izr, Irr, Iwr (option 405)
SF1,SF2,SF3,SF4,SF5,SF6,SF7,SF8,SF9, Optional scale factors
SF10,SF11,SF12,SF13, SF14,SF15,SF16 applied to the geometric
MF1,MF2,MF3,MF4,MF5,MF6,MF7,MF8, properties in the
MF9,MF10,MF11,MF12,MF13,MF14,MF15,MF16 calculation of the stiffness and mass matrices

A Cross sectional area.
Iyy, Izz 2nd moment of area about local y, z directions (see Definition).
Jxx Torsional constant.
Asz, Asy Effective shear areas on local yz plane in local z, y directions (see shear areas).
$\mathbf{I y}, \mathbf{I z}$ 1st moment of area about local y , z directions (see Definition).
Iyz Product moment of area about local y, z axes (see Definition).
Cw Warping constant (see Definition).

> Cwy, Cwz 1st moment of warping about local y, z directions (see Definition).
> ez Eccentricity from beam xy-plane to nodal line. (+ve in the + ve local z direction). (See Notes)
> ey Eccentricity from beam xz-plane to nodal line. (+ve in the +ve local y direction). (See Notes)
> Zo z-coordinate of the shear center with respect to the centroid (+ve in +ve local z-direction)
> Yo y-coordinate of the shear center with respect to the centroid (+ve in +ve local y-direction)

Material Properties

Linear	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
	Rigidities:	RIGIDITIES 6 (Rigidities: Beam)
Matrix	Not applicable	
Joint	Not applicable	
Concrete	Not applicable	
Elasto-Plastic	Stress resultant:	MATERIAL PROPERTIES NONLINEAR 29 (Elastic: Isotropic, Plastic: Resultant) (ifcode=1 or 2, see Notes, Assumptions and Limitations)
Creep	AASHTO	MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP (Concrete creep model to CEB-FIP Mode Code 1990)

MATERIAL PROPERTIES (Elastic: Isotropic)
RIGIDITIES 6 (Rigidities: Beam)

MATERIAL PROPERTIES NONLINEAR 29
(Elastic: Isotropic, Plastic: Resultant) (ifcode=1 or 2, see Notes, Assumptions and Limitations)

MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)

[^0]Chinese

Eurocode

IRC

Damage Not applicable Viscoelastic Not applicable Shrinkage

Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL Loads

Element Loads ELDS

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86 IRC
(Concrete creep model to Indian IRC code of Practice)

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Prescribed variable. U, V, W, $\theta \mathrm{x}, \theta \mathrm{y}$, $\theta z, \alpha$: at active nodes.
Concentrated loads in global directions.
$\mathrm{Px}, \mathrm{Py}, \mathrm{Pz}, \mathrm{Mx}, \mathrm{My}, \mathrm{Mz}, \mathrm{Mb}$: at active nodes.
Element loads on nodal line (load type number LTYPE *10 defines the corresponding element load type on beam axis, see Notes, Assumptions and Limitations) (see Notes, Assumptions and Limitations)
LTYPE, S1, Px, Py, Pz, Mx, My, Mz LTYPE=11: point loads and moments in local directions. LTYPE=12: point loads and moments in global directions.
LTYPE, 0, Wx, Wy, Wz, Mx, My, Mz LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global

		directions ($\mathrm{Mx}=0$). LTYPE=23: uniformly distributed projected loads in global directions. LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1, S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2 LTYPE=31: distributed loads in local directions. LTYPE=32: distributed loads in global directions. LTYPE=33: distributed projected loads in global directions. LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz LTYPE=41: trapezoidal loads in local directions. LTYPE=42: trapezoidal loads in global directions. LTYPE=43: trapezoidal projected loads in global directions.
	DLDL, DLDG DLEL,DLEG PLDL, PLDG	Not applicable. Not applicable. Not applicable.
Distributed Loads	UDL	Uniformly distributed loads. Wx, Wy, Wz, Mx, My, Mz: local forces and moments / unit length for element (see Notes, Assumptions and Limitations).
	FLD, FLDG	Not applicable.
Body Forces	CBF	Constant body forces for Element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega \mathrm{y}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{x}}$, $\alpha y, \alpha z$
	BFP, BFPE	Body force potentials at nodes/for element. $\varphi 1, \varphi 2, \varphi 3,0$, Xcbf, Ycbf, Zcbf
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Acceleration. Ax, Ay, Az: at nodes
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy, VLz: at nodes.
Initial	SSI, SSIE	Initial stresses/strains at nodes/for

Stress/Strains		element. Fx, Fy, Fz, Mx, My, Mz, 0, 0 : axial force, shear forces, torque and moments in local directions. εx, $\varepsilon y, \varepsilon z, \psi x, \psi y, \psi z, 0,0:$ axial, shear and flexural strains in local directions.
Residual Stresses	SSIG	Initial stresses/strains at Gauss points. These stresses/strains are specified in the same manner as SSI and SSIE.
	SSR, SSRE	Residual stresses at nodes/for element. Resultants (for material model 29). Fx, Fy, Fz, Mx, My, Mz: axial force, shear forces, torque and moments in local directions.
	SSRG	Residual stresses at Gauss points. These stresses are specified in the same manner as SSR and SSRE.
Target Stress/Strains	TSSIE, TSSIA	Target stresses/strains at nodes/for element. Fx, Fy, Fz, Mx, My, Mz, 0,0 : axial force, shear forces, torque and moments in local directions. εx, $\varepsilon y, \varepsilon z, \psi x, \psi y, \psi z, 0,0$: axial, shear and flexural strains in local directions.
	TSSIG	Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0, \mathrm{dT} / \mathrm{dy}, \mathrm{dT} / \mathrm{dz}, \mathrm{To}, 0, \mathrm{dTo} / \mathrm{dy}$, $\mathrm{dTo} / \mathrm{dz}$ in local directions
Overburden	Not applicable.	
Phreatic Surface	Not applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver Force (default): Fx, Fy, Fz, Mx, My, Mz, Fb, Mb: axial force, shear forces, torque, moments, bishear (or warping torsion) and bimoment in local directions.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, \psi z, \alpha, \alpha ':$ axial, shear, torsional,
flexural strains and torsional warping strains in local directions. By default element output is with respect to the nodal line. Option 380 outputs stress/strain resultants with respect to the beam centreline.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard line element For each element/active node, the local xy-plane is defined by the local x-axis and the orientation node. The local y-axis is perpendicular to the local x-axis and positive on the side of the element where the orientation node lies. The local y and z-axes form a right-handed set with the local x-axis. See Local Element Axes for details

Sign Convention

- Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, large rotations and small strains (see Notes).
Updated Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational For large displacements, large rotations and small strains.
P-Delta Displacements and rotations should be small (see Notes)

Integration Schemes

Stiffness Default. 1-point (BMI21W and BMI22W), 2-point (BMI31W and BMI33W).
Fine. Same as default.
Mass Default. 2-point (BMI21W and BMI22W), 3-point (BMI31W and BMI33W).
Fine. Same as default.
Note: A 3-point Newton-Cotes integration rule is also available for BMI31W and BMI33W using option 134. This may be more applicable for infinitesimal strain, elastoplastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory Manual

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

36 Follower loads
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity (see Notes).
102 Switch off load correction stiffness matrix due to centripetal acceleration
105 Lumped mass matrix.
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements
157 Material model 29 (non cross-section elements), see Notes.
229 Co-rotational geometric nonlinearity.
380 Output stress/strain resultants relative to beam axes for eccentric elements.
403 Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Notes, Assumptions and Limitations.
404 Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMI21, see Notes, Assumptions and Limitations.
405 Specify geometric properties along beam centroidal axes
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
421 P-Delta analysis, see Notes
424 Include the Wagner effect in the large deformation formulation for beams
432 Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis

Notes, Assumptions and Limitations

1. The element is formulated from the so-called degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Shearing deformations and torsional warping are included.
2. By default input of geometric properties and loads, and output of element stress/strain resultants are with respect to the nodal line. Option 405 inputs geometric properties, option 406 inputs loads, and option 380 outputs stress/strain resultants with respect to the beam centreline. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line.
3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMI21W and BMI22W, the axial force, bishear, bimoment and torsion are constant, while the other shear forces and moments
vary linearly along the length of the beam. For BMI31W and BMI33W the axial force, all shear forces, all moments and torsion vary linearly along the length
4. When BMI21W is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic.
5. When BMI21W is used together with OPTION 404, loading that varies along the element length is accounted for in the force diagrams (i.e. for a beam under CBF or internal element loading). Internal forces and moments are output at intervals of $1 / 10$ th of the element length by specifying the Gauss point option from the Output button of the LUSAS Datafile dialog.
6. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral as well as different warping conditions in adjacent elements. The rotations and translations remain in the local directions of the beam elements and support large deformations.
7. The rigidity matrix is evaluated explicitly from the geometric properties for both linear and nonlinear materials.
8. Option 36 is only applicable for use with element load types ELDS and UDL. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
9. For large deformation analyses the following geometric properties (Wagner constants) are required (see Geometric Properties) if Option $424=\mathrm{T}$: Iyr, Igr, Irr and Iwr at each node. If these constants are set to zero, the Wagner effect will be ignored, and the results may not be correct if twist rotations are not small.
10. When a step by step dynamic analysis is carried out using BMI elements with distributed loading, the "free body force diagrams" pertaining to applied loading, are not superimposed on the nodal values, to do so would lead to erroneous results until a steady state is reached. It should therefore be noted that different force diagrams will be obtained for BMI elements if static and dynamic analyses are directly compared.
11. OPTION 229 considers large displacements and large rotations using a corotational formulation. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework. Note that OPTION 87 has no effect when specified without OPTION 229.
12. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric
properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.
13. The P-Delta formulation is only applicable to lower order (2-noded) beams, higher order beams used in a P-Delta analysis will default to co-rotational GNL.
14. Partial fixities and rigid ends are defined via the ELEMENT TOPOLOGY data and follow on the same line after the end releases, for example:

The character K is used to identify that the partial fixity stiffnesses $k_{12} k_{15}$ are being explicitly defined, while the character N signifies that fixity factors, $\mathrm{n}_{12} \mathrm{n}_{15}$ are being defined. The fixity factors are used as follows:

$$
\hat{k}_{i j}=\frac{n_{i j}}{1-n_{i j}} \tilde{k}_{i j}
$$

The value of the factor n_{ij} ranges from zero for a pinned connection to 1.0 for a fully fixed connection.
The values r_{1} and r_{2} are the rigid end lengths at nodes 1 and 2 and λ is the rigidity factor ($1.0=$ fully rigid, the default). The factors m_{1} and m_{2} dictate how much mass to include for the rigid ends, full mass $=1.0$ (default $\mathrm{m}_{1}=\mathrm{m}_{2}=0.0$).

Restrictions

E Ensure mid-side node centrality
\square Avoid excessive element curvature
\square Ensure correct warping condition at connections.

Recommendations on Use

- The elements may be used for linear and material nonlinear analysis of three dimensional beam, frame and arch structures. BMI21W and BMI22W may also be used as a stiffener for the QTS4 shell element; while BMI31W and BMI33W may be used as a stiffener for the QTS8 shell element.

3D Thick Beam Elements with Quadrilateral CrossSection and Torsional Warping

General

Element Name

BMX21W

BMX31W

BMX22W

BMX33W

Element Group
Element Subgroup
Element Description

Number Of Nodes

Freedoms
End Releases

Straight and curved isoparametric degenerate beam elements in 3D for which shearing deformations and torsional warping are included. The element has a quadrilateral cross section which may vary along the element length. BMX22W and BMX33W can consider initial twisting.
3(BMX21W), 4 (BMX22W and BMX31W) and 6(BMX33W) with end release conditions. The orientation node(s) (3rd node of BMX21W, 3rd and 4th nodes of BMX22W, 4th node of BMX31W, 4th, 5th and 6th nodes of BMX33W) are used to define the local xyplane.
Beams
Isoparametric Degenerate Beams
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at each active node.
The element node numbers should be followed by: R restrained (default), F free defined in the order $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$ at node 1 and then $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$ at node 2 and node 3 (only for BMX31 and BMX33) related to local element axes (see Notes).

The element node numbers should be followed by: R restrained (or continuous or unreleased) (default), F free (or discontinuous or released), C discontinuous and constrained, defined in the order U , V, W, $\theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}, \alpha$ and then $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}, \alpha$ at node 2 and node 3 (only for BMX31W and BMX33W) related to local element axes (see Notes).
Partial Fixity Partial fixity at each end node can be defined for all freedoms; this can take the form of a fixity reduction factor or an explicitly defined stiffness value. Partial fixities are defined with respect to the local element axes (see Notes, Assumptions and Limitations).
End Conditions
Rigid lengths r_{1} and r_{2} measured from each end node can be specified for these elements. If these lengths are non zero then any end release or partial fixity is applied at the inner point defining the rigid end. A rigidity factor ($1.0>\lambda>0.0$) can be specified to make the ends semi-rigid, and options to include/exclude the masses of the rigid ends are also provided (see Notes, Assumptions and Limitations).
Node
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

Geometric Properties

$\mathrm{y} 1, \mathrm{z} 1, \mathrm{y} 2, \mathrm{z} 2, \mathrm{y} 3, \mathrm{z} 3, \mathrm{y} 4, \mathrm{z} 4$: local cross section coordinate pairs for a triangle at each node; followed by nt12, nt14: specifying the number of integration points nt12* nt14 (the value nt $12 *$ nt 14 determines the integration rule no matter what the values nt12 and nt 14 are except when nt $12 *$ nt $14=7$, nt $12=1$ defines a cubic rule, while nt $12=7$ defines a quintic rule)
or
$y 1, z 1, y 2, z 2, y 3, z 3, y 4, z 4$: local cross section coordinate pairs for a quadrilateral at each node; followed by nt12, nt14: specifying the number of Newton-Cotes integration points in the direction defined by the local cross-section points 1-2 and 1-4 (zero indicates default values). Multiple quadrilateral cross-sections can be used to build up complex beam cross-sections. Number of divisions for each coarse quadrilateral (default $=5$) can be specified for the computation of warping of cross-section
Note. The corners of the quadrilateral are numbered clockwise about the local x -axis (the beam nodal line), that is, a right-hand screw rule in the direction of increasing x .

Material Properties

Linear	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
Matrix	Not applicable	
Joint	Not applicable	
Concrete		MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi Crack Concrete)
Elasto-Plastic	Stress resultant:	Not applicable.
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker-Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: DruckerPrager, Hardening: Granular)
	Mohr-Coulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: MohrCoulomb, Hardening: Granular with Dilation)
	Optimised Implicit Von Mises:	MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
	Volumetric Crushing:	Not applicable.
	Stress Potential	STRESS POTENTIAL VON_MISES (Isotropic: von Mises, Modified von Mises)
Creep		CREEP PROPERTIES (Creep)
	AASHTO	MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE (Chinese creep model to Chinese Code of Practice)

LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1, S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions. LTYPE=33: distributed projected loads in global directions.
LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected loads in global directions.

DLDL, DLDG
DLEL,DLEG
PLDL, PLDG
Distributed UDL Loads

Body Forces CBF

BFP, BFPE

Velocities	VELO
Accelerations	ACCE
Viscous Support	VSL
Loads	
Initial	SSI, SSIE
Stress/Strains	

SSIG

Not applicable.
Not applicable.
Not applicable.
Uniformly distributed loads. Wx, Wy, $\mathrm{Wz}, \mathrm{Mx}, \mathrm{My}, \mathrm{Mz}$: local forces and moments / unit length for element in local directions. see Notes, Assumptions and Limitations.
Not applicable.
Constant body forces for Element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{x}}, \alpha \mathrm{y}, \alpha_{\mathrm{z}}$
Body force potentials at nodes/for element. $\varphi 1, \varphi 2, \varphi 3,0, \mathrm{Xcbf}, \mathrm{Ycbf}$, Zcbf
Velocities. Vx, Vy, Vz: at nodes.
Acceleration. Ax, Ay, Az: at nodes
Viscous support loads. VLx, VLy, VLz: at nodes.
Initial stresses/strains at nodes/for element. Components: Fx, Fy, Fz, Mx, $\mathrm{My}, \mathrm{Mz}, 0,0, \varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, \psi z$, $0,0,(\sigma x, \sigma x y, \sigma x z, \varepsilon x, \varepsilon x y, \varepsilon x z)$
Bracketed terms repeated for each fibre integration point.
Initial stresses/strains at Gauss points.

Residual Stresses SSR, SSRE

SSRG

Target TSSIE, TSSIA Stress/Strains

TSSIG

Temperatures TEMP, TMPE

Overburden Not applicable. Phreatic Surface Not applicable. Field Loads Not applicable. Temp Dependent Not applicable. Loads

These stresses/strains are specified in the same manner as SSI and SSIE.
Residual stresses at nodes/for element. Components: $0,0,0,0,0,0,0,0,0,0$, $0,0,(\sigma x, 0,0)$ Bracketed terms repeated for each fibre integration point.
Residual stresses at Gauss points. These stresses are specified in the same manner as SSR and SSRE.

Target stresses/strains at nodes/for element.Components: Fx, Fy, Fz, Mx, My, Mz, $0,0, \varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, 0,0$, $\psi z,(\sigma x, \sigma x y, \sigma x z, \varepsilon x, \varepsilon x y, \varepsilon x z)$ Bracketed terms repeated for each fibre integration point.
Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA.
Temperatures at nodes/for element. T, 0 , dT/dy, dT/dz, To, $0, d T o / d y, d T o / d z$ in local directions

LUSAS Output

Solver Force (default): Fx, Fy, Fz, Mx, My, Mz, Fb and Mb: axial force, shear forces, torque, moments, bishear and bimoments in local directions.
Continuum stresses (OPTION 172): $\sigma x, \sigma x y, \sigma x z$: in local directions.

Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, \psi z, \alpha, \alpha^{\prime}:$ axial, shear, torsional, flexural strains and torsional warping strainsin local directions.
Continuum strains (OPTION 172): $\varepsilon x, \varepsilon x y, \varepsilon x z: ~ i n ~ l o c a l ~$ directions.
By default element output is with respect to the nodal line. Option 380 outputs stress/strain resultants with respect to the beam centreline.

Modeller See Results Tables (Appendix K).

Local Axes

\square Standard line element For each element/active node, the local xy-plane is defined by the local x-axis and the orientation node. The local y-axis is perpendicular to the local x-axis and positive on the side of the element where the orientation node lies. The local y and z-axes form a right-handed set with the local x-axis. See Local Element Axes for details

Sign Convention

\square Standard beam element

Formulation

Geometric Nonlinearity

$\begin{aligned} \text { Total Lagrangian } & \text { For large displacements and large rotations (see Notes). } \\ \text { Updated } & \text { Not applicable. } \\ \text { Lagrangian } & \\ \text { Eulerian } & \text { Not applicable. } \\ \text { Co-rotational } & \text { For large displacements and large rotations. } \\ \text { P-Delta } & \text { Displacements and rotations should be small (see Notes) }\end{aligned}$

Integration Schemes

Stiffness Default. 1-point (BMX21W and BMX22W), 2-point (BMX31W and BMX33W).
Fine. Same as default.
Mass Default. 2-point (BMX21W and BMX22W), 3-point (BMX31W and BMX33W).
Fine. Same as default.
Note: A 3-point Newton-Cotes integration rule is also available for BMX31W and BMX33W using option 134. This may be more applicable for infinitesimal strain, elastoplastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory manual.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

36 Follower loads
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity (see Notes)
102 Switch off load correction stiffness matrix due to centripetal acceleration
105 Lumped mass matrix.
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
139 Output yielded integration points only.
172 Form the rigidity matrix by numerical cross section integration.
229 Co-rotational geometric nonlinearity.
380 Output stress/strain resultants relative to beam axes for eccentric elements
403 Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Notes, Assumptions and Limitations (on by default).
404 Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMX21, see Notes (on by default).
405 Specify geometric properties along beam centroidal axes.
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
418 Output stress resultants relative to beam centroidal axes for eccentric elements
421 P-Delta analysis, see Notes
432 Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis

Notes, Assumptions and Limitations

1. The element is formulated from the so-called degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Shearing deformations and torsional warping are included.
2. By default input of loads and output of element stress/strain resultants are with respect to the nodal line. Option 381 inputs loads, and option 380 outputs stress/strain resultants with respect to the beam centreline. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line.
3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMX21W and BMX22W, the axial force, torsion, bi-shear and bi-moment are constant, while the other shear forces and moments vary linearly along the length of the beam. For BMX31W and BMX33W the axial force, all shear forces, all moments and the torsion vary linearly along the length.
4. When BMX21W is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic. Note that if OPTION 403 is used with eccentrically stacked elements, slippage can occur.
5. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral as well as different warping conditions in adjacent elements. The rotations and translations remain in the local directions of the beam elements and support large deformations.
6. Computation of the rigidity matrix by integration through the cross-section depth of the beam is necessary for all linear and nonlinear material models. By default OPTION 172 is invoked automatically and a $3 * 3$ and $5 * 5$ point Newton-Cotes integration rule is used respectively for linear and nonlinear materials for quadrilaterals; and a 7 point cubic rule is used for both linear and nonlinear materials for triangles. This allows the output of stresses at the numerical cross section integration points.
7. OPTION 36 is only applicable for use with element load types ELDS and UDL. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
8. For large deformation analyses the following geometric properties (Wagner constants) are required (see Geometric Properties) if Option $424=\mathrm{T}$: Iyr, Igr, Irr and Iwr at each node. If these constants are set to zero, the Wagner effect will be ignored, and the results may not be correct if twist rotations are not small.
9. When a step by step dynamic analysis is carried out using BMI elements with distributed loading, the "free body force diagrams" pertaining to applied loading, are not superimposed on the nodal values, to do so would lead to erroneous results until a steady state is reached. It should therefore be noted that different force diagrams will be obtained for BMI elements if static and dynamic analyses are directly compared.
10. OPTION 229 considers large displacements and large rotations using a corotational formulation. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework. Note that OPTION 87 has no effect when specified without OPTION 229.
11. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.
12. The P-Delta formulation is only applicable to lower order (2-noded) beams, higher order beams used in a P-Delta analysis will default to co-rotational GNL.
13. The Smoothed Multi Crack Concrete Model (109) can be used with this element, however, due to the "plane sections remaining plane" hypothesis, crack widths cannot be computed
14. Partial fixities and rigid ends are defined via the ELEMENT TOPOLOGY data and follow on the same line after the end releases, for example:

The character K is used to identify that the partial fixity stiffnesses $k_{12} k_{15}$ are being explicitly defined, while the character N signifies that fixity factors, $\mathrm{n}_{12} \mathrm{n}_{15}$ are being defined. The fixity factors are used as follows:

$$
\hat{k}_{i j}=\frac{n_{i j}}{1-n_{i j}} \tilde{k}_{i j}
$$

The value of the factor n_{ij} ranges from zero for a pinned connection to 1.0 for a fully fixed connection.
The values r_{1} and r_{2} are the rigid end lengths at nodes 1 and 2 and λ is the rigidity factor ($1.0=$ fully rigid, the default). The factors m_{1} and m_{2} dictate how much mass to include for the rigid ends, full mass $=1.0$ (default $\left.\mathrm{m}_{1}=\mathrm{m}_{2}=0.0\right)$.

Restrictions

- Ensure mid-side node centrality
- Avoid excessive element curvature

B BMX22 and BMX33 are not available for selection currently within LUSAS Modeller.

Recommendations on Use

- The elements may be used for linear and nonlinear analysis of three dimensional beam, frame and arch structures. BMX21W and BMX22W may also be used as a stiffener for the QTS4 shell element; while BMX31W and BMX33W may be used as a stiffener for the QTS8 shell element.

2D Kirchhoff Thin Beam Elements

General

Element Name

Element
Subgroup
Element
Description
Parabolically curved thin beam element in which shear
deformations are excluded. The element can accommodate varying geometric properties along the length.
Number Of
Nodes
Freedoms
dU : (relative displacement) at mid-side node.

Beams
Kirchhoff Beams

3
$\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$: at end nodes.

Node X, Y: at each node.

Geometric Properties

A, Izz, ey At each node
SF1,SF2,SF3 Optional scale factors applied to the geometric properties in the MF1,MF2,MF3 calculation of the stiffness and mass matrices

A Cross sectional area
Izz 2nd moment of area about local z-axis (see Definition).
ey Eccentricity from beam xz-plane to nodal line (+ve in +ve local y -direction)
For a beam with eccentricity \mathbf{e} from the nodal line then $I z z=e^{2} A+I_{n a}$ and $I z=e A$ ($I_{n a}=I$ about centroidal axis).
For MATERIAL MODEL 29 additional geometric properties are appended to the previous 9 geometric properties; see Notes.

Material Properties

Linear .. Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
Rigidities:	RIGIDITIES 3 (Rigidities:Beam)

Matrix Not applicable
Joint Not applicable
Concrete Not applicable Elasto-Plastic Stress resultant:

Creep
AASHTO

CEB-FIP

Chinese

Eurocode

IRC

Damage Not applicable
Viscoelastic Not applicable

Shrinkage

Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

MATERIAL PROPERTIES NONLINEAR 29
(Elastic: Isotropic, Plastic: Resultant) (ifcode=1 or 2, see Notes)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP
(Concrete creep model to CEB-FIP Model Code 1990)

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86 IRC
(Concrete creep model to Indian IRC code of Practice)

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Loading

Prescribed Value PDSP, TPDSP
 Concentrated CL Loads Element Loads ELDS

Distributed Loads UDL

FLD, FLDG
Body Forces CBF

Prescribed variable. U, V, θ z: at end nodes.
Concentrated loads. Px, Py, Mz: at end nodes. dPx : in local x direction at mid-side node.
Element loads on nodal line (load type number LTYPE * 10 defines the corresponding element load type on beam axis).
LTYPE, S1, Px, Py, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, 0, Wx, Wy, Mz
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions
LTYPE, S1, Wx1, Wy1, Mz1, S2, Wx2, Wy2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions
LTYPE, S1, Wx, Wy, Mz
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected loads in global directions
Uniformly distributed loads. Wx, Wy: force/unit length in local directions.
Not applicable.
Constant body forces for element. Xcbf, Ycbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha z^{z}$
BFP, BFPE Body force potentials at nodes/for element. φ_{1}, $\varphi_{2, ~ 0, ~ 0, ~ X c b f, ~ Y c b f ~}^{\text {, }}$

Velocities	VELO	Velocities. Vx, Vy: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, Vly: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay: at nodes
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. Fx, $\mathrm{Mz}, 0$: forces, moments in local directions. εx, $\psi \mathrm{z}, 0$: strains in local directions.
	SSIG	Initial stresses/strains at Gauss points Fx, Mz, 0: forces, moments in local directions. $\varepsilon x, \psi z, 0$: strains in local directions.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. Fx, Mz, 0 : forces, moments in local directions.
	SSRG	Residual stresses at Gauss points $\mathrm{Fx}, \mathrm{Mz}, 0$: forces, moments in local directions.
Temperatures	$\begin{aligned} & \text { TEMP, } \\ & \text { TMPE } \end{aligned}$	Temperatures at nodes/for element. T, $0, \mathrm{dT} / \mathrm{dy}$, $0, \mathrm{To}, 0, \mathrm{dTo} / \mathrm{dy}, 0$
Target Stress/Strains	$\begin{aligned} & \text { TSSIE, } \\ & \text { TSSIA } \end{aligned}$	Target stresses/strains at nodes/for element. Fx, $\mathrm{Mz}, 0$: forces, moments in local directions. Ex, $\psi \mathrm{z}, 0$: strains in local directions.
	TSSIG	```Target stresses/strains at Gauss points Fx, Mz, 0: forces, moments in local directions. &x, \psiz, 0: strains in local directions.```
Overburden	Not applicable.	
Phreatic Surface	Not applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver Force (default): Fx, Fy, Mz: forces, moments in local directions (see Notes).
Strain: $\varepsilon x, \varepsilon y, \psi z:$ axial, flexural strains in local directions.
By default element output is with respect to the nodal line.
OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axis.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard line element

Sign Convention

- Standard beam element

Formulation

Geometric Nonlinearity

$$
\begin{aligned}
\text { Total Lagrangian } & \text { For large displacements, small rotations and small strains. } \\
\text { Updated } & \text { For large displacements, large rotations and small strains. } \\
\text { Lagrangian } & \\
\text { Eulerian } & \text { Not applicable. } \\
\text { Co-rotational } & \text { Not applicable. }
\end{aligned}
$$

Integration Schemes

Stiffness	Default.	2-point.
	Fine (see Options).	3-point.
Mass	Default.	2-point.
	Fine (see Options).	3-point.

A 3-point Newton-Cotes integration rule is also available using option 134. This may be more applicable for infinitesimal strain, elastoplastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory manual.

Mass Modelling

- Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element.
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
105 Lumped mass matrix
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
157 Material model 29 (non cross-section elements), see Notes.

170 Suppress transfer of shape function arrays to disk.
405 Specify geometric properties along beam centroidal axes
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes.
418
Output stress resultants relative to beam centroidal axes for eccentric elements

Notes on Use

1. The element formulation is based on the constrained super-parametric approach. The variation of axial force along the beam is linear. The variation of displacement is quadratic in the local x -direction and cubic in the local y direction. Shear force is constant.
2. Input of geometric properties (OPTION 405) and loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axis. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line
3. For nonlinear material model 29 the following geometric properties are appended to those already specified (see Geometric Properties).

- $\quad \mathrm{A}^{\mathrm{p}}, \mathrm{Zzz}{ }^{\mathrm{p}}, \mathrm{S}^{\mathrm{p}}$ at each node (i.e. nodes $1,2,3$)
- $\quad A^{\mathrm{p}}$ Plastic area (=elastic area)
- $\quad \mathrm{Zzz}^{\mathrm{p}}$ Plastic modulus for bending about z axis
- $\quad S^{p}$ Plastic area for shear $\left(S^{p}=0\right)$

4. For nonlinear material model 29 the following ifcode parameters should be

- ifcode $=1$ for circular hollow sections.
- \quad ifcode $=2$ for solid rectangular sections.

5. Temperature dependent properties cannot be used with material model 29.
6. The element should not be coupled to the face of a two dimensional continuum element because of the midside node incompatibility.
7. The rigidity matrix for BM3 is evaluated explicitly from the material and geometric properties for both linear and nonlinear materials.
8. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command

Restrictions

\square Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

The element may be used for linear and nonlinear analysis of two dimensional beam, frame and arch structures. The 2-noded straight beam (BMI2 is more effective for the linear analysis of structures containing straight members of constant cross-section, e.g. plane frames.

2D Kirchhoff Thin Beam Element with Quadrilateral Cross-Section

General

Element Name BMX3

Beams
Kirchhoff Beams

Parabolically curved thin beam elements in which shear deformations are excluded. The quadrilateral cross-section may be eccentric and can vary along the element length.
Number Of
3
Nodes
Freedoms

Node X, Y: at each node.
$\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$: at end nodes. dU: (relative displacement) at mid-side node.

Coordinates

Geometric Properties

$\mathrm{y} 1, \mathrm{z} 1, \mathrm{y} 2, \mathrm{z} 2, \mathrm{y} 3, \mathrm{z} 3, \mathrm{y} 4, \mathrm{z} 4$: local cross section coordinate pairs at each node; followed by $n t 12$, nt14: specifying the number of Newton-Cotes integration points in the direction defined by the local cross-section points 1-2 and 1-4 (zero indicates default values). See Notes. Multiple quadrilateral cross-sections can be used to build up complex beam cross-sections.

Note. The coordinates of the cross section are numbered clockwise about the local x-axis (the beam nodal line). That is, a right-hand screw rule in the direction of increasing x.

Material Properties

Linear Isotropic: Matrix Not applicable Joint Not applicable
Concrete Not applicable Elasto-Plastic Stress resultant:

Tresca:

DruckerPrager:

MohrCoulomb:

Optimised Implicit Von Mises:
Volumetric
Crushing:
Stress Potential

AASHTO

Chinese

Eurocode

MATERIAL PROPERTIES (Elastic: Isotropic)

MATERIAL PROPERTIES NONLINEAR 29
(Elastic: Isotropic, Plastic: Resultant) (ifcode=2, see Notes)
MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
Not applicable

STRESS POTENTIAL VON_MISES
(Isotropic: von Mises, Modified von Mises)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP (Concrete creep model to CEB-FIP Model Code 1990)

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)

IRC

Damage
Viscoelastic Not applicable Shrinkage

Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

MATERIAL PROPERTIES NONLINEAR 86 IRC
(Concrete creep model to Indian IRC code of Practice)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Loading

PDSP, TPDSP

Concentrated CL Loads
Element Loads ELDS

Prescribed variable. U, V, $\theta \mathrm{z}$: at end nodes. dU at mid-side node.
Concentrated loads. Px, Py, Mz: at end nodes (global). dPx: at mid-side node (local).
Element loads on nodal line (load type number LTYPE *10 defines the corresponding element load type on beam axis).
LTYPE, S1, Px, Py, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, 0, Wx, Wy, Mz
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions
LTYPE, S1, Wx1, Wy1, Mz1, S2, Wx2, Wy2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions
LTYPE, S1, Wx, Wy, Mz
LTYPE=41: trapezoidal loads in local

Distributed Loads		directions. LTYPE=42: trapezoidal loads in global directions. LTYPE=43: trapezoidal projected loads in global directions
	UDL	Uniformly distributed loads. Wx, Wy: force/unit length in local directions.
Body Forces	FLD, FLDG	Not applicable.
	CBF	Constant body forces for element. Xcbf, Ycbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z},} \alpha_{\mathrm{z}}$
	BFP, BFPE	Body force potentials at nodes/for element. φ, Q2, 0,0, Xcbf, Ycbf
Velocities	VELO	Velocities. Vx, Vy: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay: at nodes
Viscous Support Loads	VSL	Viscous support loads. VLx, Vly: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. Resultants (for linear material models without numerical cross section integration and model 29, see Notes): Fx, Mz, 0: forces, moments in local directions. $\varepsilon x, \psi z, 0$: strains in local directions.
	SSIG	Initial stresses/strains at Gauss points. (1) Resultants (for linear material models without numerical cross section integration and model 29, see Notes). Fx, Mz, 0: forces, moments in local directions. $\varepsilon x, \psi z, 0$ strains in local directions. (2) Components (for linear material models with numerical cross section integration and all non-linear material models except 29): Fx,
		$\mathrm{Mz}, 0, \varepsilon \mathrm{x}, \psi_{\mathrm{z}}, 0,\left(\sigma \mathrm{x}, \varepsilon_{\mathrm{x}}\right)$. Bracketed terms repeated at each fibre integration point.
Residual Stresses	SSR, SSRE	Not applicable.
	SSRG	Residual stresses at Gauss points. (1) Resultants (material model 29): Fx, Mz, 0 (2) Components (all nonlinear material models except 29 , also linear material models with numerical cross section integration): 0 ,
		$0,0,0,0,0,(\sigma x, \varepsilon x)$ Bracketed term repeated for each fibre integration point.
Target	TSSIE,	Target stresses/strains at nodes/for element.

Stress/Strains TSSIA

TSSIG

Temperatures TEMP, TMPE
Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not
applicable.

Loads applicable.

Resultants (for linear material models without numerical cross section integration and model 29, see Notes): Fx, Mz, 0: forces, moments in local directions. $\varepsilon x, \psi z, 0$: strains in local directions.
Target stresses/strains at Gauss points.
(1) Resultants (for linear material models without numerical cross section integration and model 29, see Notes). Fx, Mz, 0: forces, moments in local directions. $\varepsilon \mathrm{x}, \psi \mathrm{z}, 0$ strains in local directions.
(2) Components (for linear material models with numerical cross section integration and all non-linear material models except 29): Fx,
$\mathrm{Mz}, 0, \varepsilon x, \psi z, 0,(\sigma x, \varepsilon x)$. Bracketed terms repeated at each fibre integration point.
Temperatures at nodes/for element T, $0, \mathrm{dT} / \mathrm{dy}$, $0, \mathrm{To}, 0, \mathrm{dTo} / \mathrm{dy}, 0$: in local directions.

LUSAS Output

Solver Force (default): Fx, Mz, Fy: forces, moment in local directions (see Notes)
Continuum stresses (OPTION 172): σx : in local directions.
Strain: $\varepsilon x, \psi z, 0$: axial, flexural strains in local directions.
Continuum strains (OPTION 172): εx : in local directions.
By default element output is with respect to the nodal line.
OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axis.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard line element

Sign Convention

\square Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, small rotations and small strains.
Updated For large displacements, large rotations and small strains.
Lagrangian
Eulerian Not applicable.
Co-rotational Not applicable.

Integration Schemes

Stiffness	Default.	2-point.
	Fine (see Options).	3-point.
Mass	Default.	2-point.
	Fine (see Options).	3-point.

A 3-point Newton-Cotes integration rule is also available using option 134. This may be more applicable for infinitesimal strain, elastoplastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory manual.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element.
32 Suppress stress output but not resultants
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses
87 Total Lagrangian geometric nonlinearity
105 Lumped mass matrix
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
157 Material model 29 (non cross-section elements), see Notes.
170 Suppress transfer of shape function arrays to disk.
172 Formulate rigidity matrix by integrating across the cross-section

406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
Output stress resultants relative to beam centroidal axes for eccentric elements

Notes on Use

1. The element formulation is based on the constrained super-parametric approach. The variation of axial force along the beam is linear. The variation of displacement is quadratic in the local x -direction and cubic in the local y direction. Shear force is constant.
2. Input of loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axis. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line. Fiber stress/strain results are output at the actual location
3. Initial strain resultants may be input for any material model.
4. The number of numerical cross-section integration points, nt12 and nt14, may be specified but for improved performance the number of integration points corresponding to the y direction can be defined correctly (the beam bends about the local z-axis) and the integration rule in the other direction may be set to 1 .
5. For nonlinear material model 29 ifcode must be set to 2 for solid rectangular sections. Multiple quadrilateral cross-sections can be used to build up complex beam cross-sections.
6. Temperature dependent properties cannot be used with material model 29.
7. The element should not be coupled to the face of a two dimensional continuum element because of the midside node incompatibility.
8. Computing the rigidity matrix by integration through the cross-section depth of the beam is necessary for all nonlinear material models (except 29). By default option 172 is invoked automatically and a 5 point Newton-Cotes integration rule is used.
9. By default, the rigidity matrix is evaluated explicitly for linear materials. A 3 point Newton-Cotes rule may be invoked using option 172. Numerical cross section integration enables top, middle and bottom stress output.

Restrictions

\square Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

The element may be used for linear and nonlinear analysis of two dimensional beam, frame and arch structures. The 2-noded straight beam (BMI2) is more effective for

Element Reference Manual

linear analysis of structures containing straight members of constant cross-section, e.g. plane frames.

3D Kirchhoff Thin Beam Elements

General

BS4

Element Group Beams

Element
Kirchhoff Beams
Subgroup
Element Description

Curved beam elements in 3D for which shearing deformations are excluded. The elements can accommodate varying geometric properties along the length.
Number Of 3 (BS3).
Nodes 4 (BS4). The 4th node is used to define the local xy-plane.
Freedoms
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at end nodes (1 and 3)
$\mathrm{dU}, \mathrm{d} \theta \mathrm{x}$:(relative displacement/rotation) at mid-length node.
Node
Coordinates

Geometric Properties

A, Iyy, Izz, Jxx, Iy, Iz, Iyz, ez, ey At each node
SF1,SF2,SF3,SF4,SF5,SF6,SF7,SF8,SF9 Optional scale factors applied to MF1,MF2,MF3,MF4,MF5,MF6,MF7,MF8,MF9 the geometric properties in the calculation of the stiffness and mass matrices
A Cross sectional area
Iyy, Izz 2nd moment of area about local y, z directions (see Definition)
Jxx Torsional constant.
$\mathbf{I y}, \mathbf{I z}$ 1st moment of area about local y, z directions (see Definition)
Iyz Product moment of area (see Definition)
ez Eccentricity from beam xy-plane to nodal line. (+ve in the +ve
local z direction). (See Notes)
ey Eccentricity from beam xz-plane to nodal line. (+ve in the +ve local y direction). (See Notes)
For MATERIAL MODEL 29 additional geometric properties are appended to the previous 21 geometric properties (see Notes).

Material Properties

Linear	Isotropic: Rigidities:	MATERIAL PROPERTIES (Elastic: Isotropic) RIGIDITIES 6 (Rigidities: Beam)
Matrix	Not applicable	
Joint	Not applicable	
Concrete	Not applicable	
Elasto-Plastic	Stress resultant:	MATERIAL PROPERTIES NONLINEAR 29 (Elastic: Isotropic, Plastic: Resultant) (ifcode=1 or 2, see Notes)
Creep	AASHTO	CREEP PROPERTIES (Creep)
		MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE (Chinese creep model to Chinese Code of Practice)
	Eurocode	MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)
	IRC	MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC code of Practice)
Damage	Not applicable	

Viscoelastic NotapplicableShrinkage
Rubber Notapplicable
Generic Polymer Notapplicable
Composite Notapplicable
Loading

Prescribed Value PDSP, TPDSP

Concentrated CL Loads
Element Loads ELDS

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Prescribed variable. U, V, W, $\theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at end nodes (1 and 3). dU, d $\theta \mathrm{x}$: at mid-length node.
Concentrated loads. Px, Py, Pz, Mx, My, Mz: at end nodes. $\mathrm{dPx}, \mathrm{dMy}$: at mid-length node.
Element loads on nodal line (load type number LTYPE * 10 defines the corresponding element load type on beam axis)
LTYPE, S1, Px, Py, Pz, Mx, My, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, 0 , Wx, Wy, Wz, Mx, My, Mz
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions.
LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1, S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions.
LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global

		directions. LTYPE=43: trapezoidal projected loads in global directions.
Distributed Loads	UDL	Uniformly distributed loads. Wx, Wy, Wz: local forces/unit length.
	FLD, FLDG	Not applicable.
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf,
		Zcbf, $\Omega x, \Omega y, \Omega z$

Field Loads Not
 applicable.
 Temp Dependent Not
 Loads applicable.

LUSAS Output

Solver Force (default): Fx, Fy, Fz, My, Mz, Txz, Txy: axial force, moments, torques and shear forces in local directions. (Total torque $=\mathrm{Txz}+\mathrm{Txy})$.
Strain: $\mathcal{E x}, \psi y, \psi z, \psi x z, \psi x y, 0:$ axial, flexural and torsional strains in local directions.
By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axes.

Modeller See Results Tables (Appendix K).

Local Axes

For BS3 the local xy-plane is defined by the 3 element nodes. The local y-axis is perpendicular to the local x -axis and positive on the convex side of the element. The local y and z -axes form a right handed set with the local x -axis.

For BS4 the local xy-plane is defined by the 2 end nodes of the beam and the 4th node. The local y-axis is perpendicular to the local x-axis and positive on the side of the element where the 4th node lies. The local y and z-axes form a right handed set with the local x-axis. See Local Element Axes for more details.

Sign Convention

Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian
 For large displacements, small rotations and small strains.
 Updated For large displacements, large rotations and small strains.
 Lagrangian
 Eulerian Not applicable.
 Co-rotational Not applicable.
 Integration Schemes

Stiffness Default. 2-point.
Fine (see 3-point.

$$
\begin{array}{cc}
\text { Options). } & \\
\text { Mass Default. } & \text { 2-point. } \\
\text { Fine (see } & \text { 3-point. } \\
\text { Options). } &
\end{array}
$$

A 3-point Newton-Cotes integration rule is also available using option 134. This may be more applicable for infinitesimal strain, elastoplastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory manual.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element.
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
102 Switch off load correction stiffness matrix due to centripetal acceleration.
105 Lumped mass matrix.
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
157 Material model 29 (non cross-section elements), see Notes.
170 Suppress transfer of shape function arrays to disk.
405 Specify geometric properties along beam centroidal axes
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
418 Output stress resultants relative to beam centroidal axes for eccentric elements

Notes on Use

1. The element formulation is based on the Kirchhoff hypothesis for thin beams (i.e. the exclusion of shearing deformations).
2. The variation of axial force, moments and torsion along the length of the beam can be regarded as linear. Shear force variations are constant.
3. Input of geometric properties (OPTION 405) and loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axes. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line.
4. For nonlinear material model 29 the following geometric properties are appended to those already specified (see Geometric Properties).

- $\mathrm{A}^{\mathrm{p}}, \mathrm{Zyy}^{\mathrm{p}}, \mathrm{Zzz}^{\mathrm{p}}, \mathrm{Zy}^{\mathrm{p}}, \mathrm{Zz}^{\mathrm{p}}, \mathrm{S}^{\mathrm{p}}$ at each node (i.e. nodes $1,2,3$).
- $\quad A^{p}$ Plastic area (=elastic area)
- $\mathrm{Zyy}^{\mathrm{p}}, \mathrm{Zzz}^{\mathrm{p}}$ Plastic moduli for bending about y, z axes
- $\mathrm{Zy}^{\mathrm{p}}, \mathrm{Zz}^{\mathrm{p}}$ Plastic moduli for torsion about y, z axes.
- $\quad S^{p}$ Plastic area for shear $\left(S^{p}=0\right)$.

Where the fully plastic torsional moment $=\sigma y\left(\mathrm{Zy}^{\mathrm{p}}+\mathrm{Zz}^{\mathrm{p}}\right)$.
5. For nonlinear material model 29 the following ifcode parameters should be used

- ifcode $=1$ for circular hollow sections.
- \quad ifcode $=2$ for solid rectangular sections.

6. Temperature dependent properties cannot be used with material model 29.
7. The element should not be coupled to the edges of either continuum or shell elements because of midside node incompatibility.
8. The rigidity matrix for BS 3 and BS 4 is evaluated explicitly from the geometric properties for both linear and nonlinear materials.
9. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command.

Restrictions

\square Ensure mid-side node centrality
\square Avoid excessive element curvature

Recommendations on Use

The elements may be used for linear and nonlinear analysis of three dimensional beam, frame and arch structures. The 2-noded straight beam (BMI21) is more effective for linear analysis of structures containing straight members of constant cross-section, e.g. space frames.

3D Kirchhoff Thin Beam Element with Quadrilateral Cross-Section

General

Element Name BSX4

Element Group Beams
Element
Kirchhoff Beams
Subgroup
Element
Description
Curved beam elements in 3D for which shearing deformations are excluded. The element has a quadrilateral cross section which may vary along the element length.
Number Of 4. The 4th node is used to define the local xy-plane.
Nodes
Freedoms
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at the end nodes (1 and 3) $\mathrm{dU}, \mathrm{d} \theta \mathrm{x}$: (relative displacement/rotation) at the mid-length node.
Node X, Y, Z: at each node.

Coordinates

Geometric Properties

$\mathrm{y} 1, \mathrm{z} 1, \mathrm{y} 2, \mathrm{z} 2, \mathrm{y} 3, \mathrm{z} 3, \mathrm{y} 4, \mathrm{z} 4$: local cross section coordinate pairs at each node; followed by $n t 12$, nt14: specifying the number of Newton-Cotes integration points in the direction defined by the local cross-section points 1-2 and 1-4 (zero indicates default values). Multiple quadrilateral cross-sections can be used to build up complex beam crosssections.

Note. The coordinates of the cross section are numbered clockwise about the local x-axis (the beam nodal line). That is, a right-hand screw rule in the direction of increasing x.

Material Properties

Linear Matrix Joint Concrete	Isotropic: Not applicable Not applicable Not applicable	MATERIAL PROPERTIES (Elastic: Isotropic)
Elasto-Plastic	Stress resultant:	Not applicable.
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker- Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	MohrCoulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Optimised Implicit Von Mises:	MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
	Volumetric Crushing:	Not applicable
	Stress Potential	STRESS POTENTIAL VON_MISES (Isotropic: von Mises, Modified von Mises)
Creep		CREEP PROPERTIES (Creep)
	AASHTO	MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE (Chinese creep model to Chinese Code of Practice)
	Eurocode	MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)
	IRC	MATERIAL PROPERTIES NONLINEAR 86

MATERIAL PROPERTIES (Elastic: Isotropic)

Not applicable.

MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular) (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
(Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
Not applicable

STRESS POTENTIAL VON_MISES
(Isotropic: von Mises, Modified von Mises) CREEP PROPERTIES (Creep)

MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP
(Concrete creep model to CEB-FIP Model

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)

MATERIAL PROPERTIES NONLINEAR 86
EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86

IRC
(Concrete creep model to Indian IRC code of Practice)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)
Viscoelastic Not applicable Shrinkage

Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Prescribed variable. U, V, W, $\theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at the end nodes. $\mathrm{dU}, \mathrm{d} \theta \mathrm{x}$: at the mid-length node.
Concentrated loads. Px, Py, Pz, Mx, My, Mz: at end nodes (global). dPx, dMx: at mid-length local node.
Element loads on nodal line (load type number LTYPE * 10 defines the corresponding element load type on beam axis)
LTYPE, S1, Px, Py, Pz, Mx, My, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, 0 , Wx, Wy, Wz, Mx, My, Mz
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions.
LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1,
S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions.
LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz
LTYPE=41: trapezoidal loads in local

Distributed Loads	UDL
	FLD, FLDG
Body Forces	CBF
	BFP, BFPE
Velocities	VELO
Accelerations	ACCE
Viscous Support	VSL
Loads Initial	SSI, SSIE
Stress/Strains	

Residual Stresses SSR, SSRE
SSIG

SSRG

Target TSSIE, Stress/Strains TSSIA

TSSIG
directions.
LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected loads in global directions.
Uniformly distributed loads. Wx, Wy, Wz: forces/unit length in local directions.
Not applicable
Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{x}}, \alpha \mathrm{y}, \alpha_{\mathrm{z}}$

Body force potentials at nodes/for element. φ_{1}, $\varphi_{2}, \varphi_{3}, 0, X c b f, Y c b f, Z c b f$
Velocities. Vx, Vy, Vz: at nodes.
Acceleration Ax, Ay, Az: at nodes
Viscous support loads. VLx, VLy, VLz: at nodes.
Initial stresses/strains at nodes/for element. Components: Fx, My, Mz, $0,0,0, \varepsilon x, \psi y$, $\psi z, 0,0,0,(\sigma x, \sigma x y, \sigma x z, \sigma y z, \varepsilon y z, \varepsilon x$, $\varepsilon x z, \varepsilon y z)$ Bracketed terms repeated for each fibre integration point.
Initial stresses/strains at Gauss points. These stresses/strains are specified in the same manner as SSI and SSIE.
Residual stresses at nodes/for element. Components: $0,0,0,0,0,0,0,0,0,0,0,0,($ $\sigma x, \sigma x y, \sigma x z, \sigma y z$,$) Bracketed terms$ repeated for each fibre integration point.
Residual stresses at Gauss points. These stresses are specified in the same manner as SSR and SSRE.
Target stresses/strains at nodes/for element. Components: Fx, My, Mz, $0,0,0, \varepsilon_{x}, \psi y$, $\psi z, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,($ $\sigma x, \sigma x y, \sigma x z, \sigma y z, \varepsilon y z, \varepsilon x, \varepsilon x z, \varepsilon y z)$ Bracketed terms repeated for each fibre integration point.
Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA.
Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, dT/dy,
dT/dz, To, 0, dTo/dy, dTo/dz: in local directions.

Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable
Temp Dependent Not
Loads applicable

LUSAS Output

Solver Force (default): Fx, My, Mz, Txz, Txy, Fy, Fz: axial force, moments, torques and shear forces in local directions. (Total Torque $=$ Txz + Txy).
Continuum stresses (OPTION 172): $\sigma x, \sigma x y, \sigma x z, \sigma y z:$ in local directions.
Strain: $\varepsilon_{x}, \psi y, \psi z, \psi \mathrm{xz}, \psi \mathrm{xy}:$ axial, flexural and torsional strains in local directions.
Continuum strains (OPTION 172): $\varepsilon x, \varepsilon x y, \varepsilon x z, \varepsilon y z: ~ i n ~ l o c a l ~$ directions.
By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axes.
Modeller See Results Tables (Appendix K).

Local Axes

Standard line element. The local xy-plane is defined by the 2 end nodes of the beam and the 4th node. The local y-axis is perpendicular to the x-axis and positive on the side of the element where the 4th node lies.
The local y and z -axes form a right-hand set with the local x -axis.

Sign Convention

- Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, small rotations and small strains.
Updated For large displacements, large rotations and small strains.
Lagrangian
Eulerian Not applicable.Co-rotational Not applicable.
Integration Schemes
Stiffness Default. Fine (see Options).

Mass Default.
Fine (see Options).

2-point.
3-point.
2-point.
3-point.
A 3-point Newton-Cotes integration rule is also available using option 134. This may be more applicable for infinitesimal strain, elastoplastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory manual.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element.
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
102 Switch off load correction stiffness matrix due to centripetal acceleration.
105 Lumped mass matrix.
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
139 Output yielded integration points only.
170 Suppress transfer of shape function arrays to disk.
172 Form the rigidity matrix by numerical cross section integration.
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
418 Output stress resultants relative to beam centroidal axes for eccentric elements

Notes, Assumptions and Limitations

1. The element formulation is based on the Kirchhoff hypothesis for thin beams (i.e. the exclusion of shearing deformations)
2. The variation of axial force, moments and torsion along the length of the beam can be regarded as linear. Shear force is constant.
3. Input of loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axes. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line. Fiber stress/strain results are output at their actual location
4. Computation of the rigidity matrix by integration over the thickness is necessary for all nonlinear material models. For nonlinear models a 5×5 Newton-Cotes integration rule is used as default. For linear models a 3×3 rule is used as the default. This allows the output of stresses at the numerical cross section integration points.
5. The torsional constant is estimated from the computed values for Iyy and Izz, $\mathrm{Jxx}=\mathrm{Iyy}+\mathrm{Izz}$.
6. For nonlinear material models, fibre integration is used across the crosssectional area of the beam. Only axial deformation is considered in the plasticity computations, any torsional deformation is assumed to remain elastic.
7. The element should not be coupled to the face of a two dimensional continuum element because of the midside node incompatibility
8. Computing the rigidity matrix by integration through the cross-section depth of the beam is necessary for all nonlinear material models (except 29). By default OPTION 172 is invoked automatically and a $5 * 5$ point Newton-Cotes integration rule is used.
9. By default, the rigidity matrix is evaluated explicitly for linear materials. A 3*3 point Newton-Cotes integration rule may be invoked using OPTION 172. Numerical cross section integration enables top, middle and bottom stress output.

Restrictions

E Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

The elements may be used for linear and nonlinear analysis of three dimensional beam, frame and arch structures. The 2-noded straight beam (BMI21) is more effective for linear analysis of structures containing straight members of constant cross-section, e.g. space frames.

3D Semiloof Thin Beam Elements

General

Element Name BSL3, BSL4

Element Group Beams
Element
Subgroup
Element
Description
Curved beam elements in 3D which can be mixed with the semiloof shell elements TSL6 and QSL8. The elements can accommodate varying geometric properties. Shearing deformations are excluded.
Number Of
Nodes
Freedoms

Node
Semiloof Beams

3 or 4. For BSL4 the 4th node is used to define the local xy-plane.
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta_{\mathrm{z}}$: at end nodes (1 and 3). $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta_{1}, \theta_{2}$: at mid-side node (node 2) (see Notes).
X, Y, Z: at each node.
Coordinates

Geometric Properties

A, Iyy, Izz, Jxx, Iy, Iz, Iyz, ez, ey at nodes 1, 2 and 3
SF1,SF2,SF3,SF4,SF5,SF6,SF7,SF8,SF9 Optional scale factors applied to MF1,MF2,MF3,MF4,MF5,MF6,MF7,MF8,MF9 the geometric properties in the calculation of the stiffness and mass matrices
A Cross sectional area
Iyy, Izz 2 nd moments of area in local y, z axes (see Definition)
Jxx Torsional constant.
Iy, Iz 1st moment of area in local y, z axes (see Definition)
Iyz Product moment of area (see Definition).
ez Eccentricity from beam xy-plane to nodal line (+ve in +ve local zdirection)
ey Eccentricity from beam xz-plane to nodal line (+ve in +ve local ydirection)
For MATERIAL MODEL 29 additional geometric properties are appended to the 21 properties above; see Notes.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic) Rigidities: RIGIDITIES Rigidities 6 (Rigidities: Beam)
Matrix Not applicable
Joint Not applicable
Concrete Not applicable

Elasto-Plastic Stress resultant:

Creep

AASHTO

CEB-FIP

Chinese

Eurocode

IRC

Damage Not applicable
Viscoelastic Not

MATERIAL PROPERTIES NONLINEAR 29 (Elastic: Isotropic, Plastic: Resultant) (ifcode=1 or 2, see Notes)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP (Concrete creep model to CEB-FIP Model Code 1990)

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)

MATERIAL PROPERTIES NONLINEAR 86 IRC
(Concrete creep model to Indian IRC code of Practice)applicable
Shrinkage
Rubber Notapplicable
Generic Polymer Notapplicable
Composite Not

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Prescribed variable. U, V, W, $\theta x, \theta y, \theta z$: at end nodes. $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta_{1}, \theta_{2}$: at mid-side node.
Concentrated loads. Px, Py, Pz, Mx, My, Mz: at end nodes (global). Px, Py, Pz, M1, M2: at mid-side node (M_{1} and M_{2} local).
Element loads on nodal line (load type number LTYPE * 10 defines the corresponding element load type on beam axis)
LTYPE, S1, Px, Py, Pz, Mx, My, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, 0, Wx, Wy, Wz, Mx, My, Mz LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions.
LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1, S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions.
LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global

		directions. LTYPE=43: trapezoidal projected loads in global directions.
Distributed Loads	UDL	Uniformly distributed loads. Wx, Wy, Wz: force/unit length in local directions for element.
	FLD, FLDG	Not applicable.
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha \mathrm{z}$
	BFP, BFPE	Body force potentials at nodes/for element. φ_{1}, $\varphi_{2}, \varphi_{3}, 0$, Xcbf, Ycbf, Zcbf
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Accelerations. Ax, Ay, Az: at nodes.
$\begin{array}{r} \text { Viscous Support } \\ \text { Loads } \\ \text { Initial } \\ \text { Stress/Strains } \end{array}$	VSL	Viscous support loads. VLx, VLy, VLz: at nodes.
	SSI, SSIE	Initial stresses/strains at nodes/for element. Fx, $\mathrm{My}, \mathrm{Mz}, \mathrm{Txz}, \mathrm{Txy}, 0$ in local directions. Ex, $\psi y, \psi z, \psi x z, \psi x y, 0$: in local directions. (see Notes). Total torque $=$ Txz + Txy
	SSIG	Not applicable.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. Resultants (nonlinear model 29): Fx, My, Mz, Txz, Txy, 0: in local directions.
	SSRG	Not applicable.
Target Stress/Strains	TSSE, TSSIA	Target stresses/strains at nodes/for element. Fx, $\mathrm{My}, \mathrm{Mz}, \mathrm{Txz}, \mathrm{Txy}, 0$ in local directions. Ex, $\psi y, \psi z, \psi x z, \psi x y, 0$: in local directions. (see Notes). Total torque $=\mathrm{Txz}+\mathrm{Txy}$
	TSSIG	Not applicable.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0, \mathrm{dT} / \mathrm{dy}$, dT/dz, To, $0, d T o / d y, d T o / d z:$ in local directions.
Overburden	Not applicable.	
Phreatic Surface	Not applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver Force (default): Fx, My, Mz, Txz, Txy, Fy, Fz: in local directions.
(Total torque $=T x z+T x y)$
Strain: $\mathcal{E x}, \psi y, \psi z, \psi \mathrm{xz}, \psi \mathrm{xy}$: in local directions. (see Notes).
Total torsional strain $=\psi x z+\psi x y$
By default element output is with respect to the nodal line.
OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axes.

Modeller See Results Tables (Appendix K).

Local Axes

Standard line element. For BSL3 the local xy-plane is defined by the 3 element nodes. The local y -axis is perpendicular to the local x -axis and positive on the convex side of the element. The local y and z -axes form a right-hand set with the local x -axis.
For BSL4 the local xy-plane is defined by the 2 end nodes of the beam and the 4th node. The local y-axis is perpendicular to the x-axis and positive on the side of the element where the 4th node lies. The local y and z-axes form a right-hand set with the local x -axis.

Sign Convention

\square Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, small rotations and small strains.
Updated Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 3-point torsion, 2-point bending.
Fine. As default.
Mass Default. 3-point.
Fine. As default.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity
102 Switch off load correction stiffness matrix due to centripetal acceleration.
105 Lumped mass matrix.
157 Material model 29 (non cross-section elements), see Notes.
170 Suppress transfer of shape function arrays to disk.
405 Specify geometric properties along beam centroidal axes
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
418 Output stress resultants relative to beam centroidal axes for eccentric elements

Notes on Use

1. The semiloof beam element is based on a Kirchhoff hypothesis for thin beams (i.e. the exclusion of shearing deformations).
2. The variation of axial force, moments and torsion can be regarded as linear along the length of the element. Shear forces are constant along the length of the element.
3. The loof rotations θ_{1} and θ_{2} refer to rotations about the element at the loof positions. A positive loof rotation is defined by a right-hand screw rule applied to a vector running in the local x -axis direction along the element edge.
4. Input of geometric properties (OPTION 405) and loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axes. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line.
5. For nonlinear material model 29 the following geometric properties are appended to those already specified (see Geometric Properties).

- $\mathrm{A}^{\mathrm{p}}, \mathrm{Zyy}^{\mathrm{p}}, \mathrm{Zzz}^{\mathrm{p}}, \mathrm{Zy}^{\mathrm{p}}, \mathrm{Zz}^{\mathrm{p}}, \mathrm{S}^{\mathrm{p}}$ at each node (i.e. nodes $1,2,3$).
- $\quad \mathrm{A}^{\mathrm{p}}$ Plastic area (=elastic area)
- \quad Zyy ${ }^{\mathrm{p}}$, Zzz $^{\mathrm{p}}$ Plastic moduli for bending about y, z axes
- $\mathrm{Zy}^{\mathrm{p}}, \mathrm{Zz}^{\mathrm{p}}$ Plastic moduli for torsion about y, z axes.
- $\quad S^{\mathrm{p}}$ Plastic area for shear $\left(S^{\mathrm{p}}=0\right)$.

Where the fully plastic torsional moment $=\sigma y\left(\mathrm{Zy}^{\mathrm{p}}+\mathrm{Zz}^{\mathrm{p}}\right)$
6. For nonlinear material model 29 the following ifcode parameters should be

- ifcode $=1$ for circular hollow sections.
- \quad ifcode $=2$ for solid rectangular sections.

7. Semiloof beam elements should be used with semiloof shell elements. For beam only problems, BS3/BS4 elements should be used.
8. Temperature dependent properties cannot be used with material model 29.
9. Integration of the element stiffness matrix is performed using selective integration, with a 2-point Gauss rule for the axial and flexural strain energy, and a 3-point Gauss rule for the torsional strain energy. The selective integration technique is implemented in a similar manner to the method proposed by Hughes [H4], i.e. the strain-displacement matrix for the bending and axial strains is evaluated at the reduced rule quadrature points and then extrapolated to the sampling locations of the 3 -point quadrature rule. The material response is then assessed at the 3-point Gauss rule.
10. The rigidity matrix for BSL3 and BSL4 is evaluated explicitly from the geometric properties for both linear and nonlinear materials.
11. Stiffness and mass factors allow different geometric properties to be used in the calculation of the stiffness and mass matrices. Stiffness factors are also used in the processing of stress and strains loads whilst the mass factors are used in the processing of body forces loads. The values are input after all geometric properties and the keyword MODIFICATION_FACTORS must be added to the GEOMETRIC PROPERTIES input command

Restrictions

\square Ensure mid-side node centrality
\square Avoid excessive element curvature

Recommendations on Use

- The primary use of this element is to provide a beam stiffener for the semiloof shell (QSL8) for analysing stiffened shell structures.
- The BS3 and BS4 elements are more effective for linear analysis of 3D frame structures with curved members and nonlinear analysis of three dimensional beam, frame and arch structures.

Element Reference Manual

- The 2-noded straight beam (BMI21) is the most effective for linear analysis of structures containing straight members of constant cross-section, e.g. space frames.

3D Semiloof Thin Beam Element with Quadrilateral Cross-Section

General

Beams
Semiloof Beams

A curved beam element in 3D which can be mixed with the semiloof shell element. The element has a quadrilateral cross section which may vary along the element. Shearing deformations are excluded.
4. The 4th node is used to define the local xy-plane.

Nodes
Freedoms

Node
Coordinates
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta_{\mathrm{x}}, \theta \mathrm{y}, \theta_{\mathrm{z}}$ at end nodes. $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta_{1}, \theta_{2}$: at mid-length node.

X, Y, Z: at each node.

Geometric Properties

$\mathrm{y} 1, \mathrm{z} 1, \mathrm{y} 2, \mathrm{z} 2, \mathrm{y} 3, \mathrm{z} 3, \mathrm{y} 4, \mathrm{z} 4$: local cross section coordinate pairs at each node; followed by nt 12 , nt 14 : number of Newton-Cotes integration points in the direction defined by the local cross-section points 1-2 and 1-4 (zero indicates default values). Multiple quadrilateral cross-sections can be used to build up complex beam cross-sections.
Note. The corners of the quadrilateral are numbered clockwise about the local x -axis (the beam nodal line), that is, a right-hand screw rule in the direction of increasing x .

Material Properties

Linear Isotropic:
MATERIAL PROPERTIES (Elastic: Isotropic)

Matrix Joint Concrete	Not applicable Not applicable Not applicable	
Elasto-Plastic	Stress resultant:	Not applicable.
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker- Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	MohrCoulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Optimised Implicit Von Mises:	MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
	Volumetric Crushing:	Not applicable
	Stress Potential	STRESS POTENTIAL VON_MISES (Isotropic: von Mises, Modified von Mises)
Creep		CREEP PROPERTIES (Creep)
	AASHTO	MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE (Chinese creep model to Chinese Code of Practice)
	Eurocode	MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)
	IRC	MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC code of Practice)

 Matrix Not applicable
 Joint Not applicable
 Concrete Not applicable
 Stress
 resultant:
 Tresca:
 Drucker-
 Prager:
 Mohr-
 Coulomb:
 Optimised
 MATERIAL PROPERTIES NONLINEAR 75
 (Elastic: Isotropic, Plastic: Von Mises,
 Hardening: Isotropic \& Kinematic)
 Not applicable
 STRESS POTENTIAL VON_MISES
 (Isotropic: von Mises, Modified von Mises)
 CREEP PROPERTIES (Creep)
 MATERIAL PROPERTIES NONLINEAR 86
 AASHTO
 (Concrete creep model to AASHTO code of
 Practice)
 MATERIAL PROPERTIES NONLINEAR 86
 CEB-FIP
 (Concrete creep model to CEB-FIP Model
 Code 1990)
 MATERIAL PROPERTIES NONLINEAR 86
 CHINESE
 (Chinese creep model to Chinese Code of
 Practice)
 MATERIAL PROPERTIES NONLINEAR 86
 EUROCODE
 (Concrete creep model to EUROCODE_2)
 MATERIAL PROPERTIES NONLINEAR 86
 IRC
 (Concrete creep model to Indian IRC code of
 Practice)
 Damage

Viscoelastic Not applicable Shrinkage

Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

DAMAGE PROPERTIES SIMO, OLIVER (Damage)

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Loading

PDSP, TPDSP

Concentrated CL Loads

Element Loads ELDS

Prescribed variable. U, V, W, $\theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at end nodes. U, V, W, θ_{1}, θ_{2} at mid-side node.
Concentrated loads Px, Py, Pz, Mx, My, Mz at end nodes (global). Px, Py, Pz, M1, M2: at mid-side node (M_{1} and M_{2} local).
Element loads on nodal line (load type number LTYPE * 10 defines the corresponding element load type on beam axis)
LTYPE, S1, Px, Py, Pz, Mx, My, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, 0, Wx, Wy, Wz, Mx, My, Mz
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions.
LTYPE, S1, Wx1, Wy1, Wz1, Mx1, My1, Mz1, S2, Wx2, Wy2, Wz2, Mx2, My2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions.
LTYPE, S1, Wx, Wy, Wz, Mx, My, Mz
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.

Distributed Loads	UDL	Uniformly distributed loads. Wx, Wy, Wz: for element in local directions.
	FLD, FLDG	Not applicable.
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, $\mathrm{Zcbf}, \Omega \mathrm{x}, \Omega \mathrm{y}, \Omega_{\mathrm{z}}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha \mathrm{z}$
	BFP, BFPE	Body force potentials at nodes/for element. φ_{1}, $\varphi_{2}, \varphi_{3}, 0$, Xcbf, Ycbf, Zcbf
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Accelerations. Ax, Ay, Az: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy, VLz: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element.
		Components: $\mathrm{Fx}, \mathrm{My}, \mathrm{Mz}, 0,0,0, \varepsilon x, \psi y, \psi z$, $0,0,0,(\sigma x, \sigma x y, \sigma x z, \sigma y z, \varepsilon x, \varepsilon x y, \varepsilon x z$, $\varepsilon y z)$ Bracketed terms repeated for each fibre integration point.
	SSIG	Initial stresses/strains at Gauss points. These stresses/strains are specified in the same manner as SSI and SSIE
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. Components: $0,0,0,0,0,0,0,0,0,0,0,0,($ $\sigma x, \sigma x y, \sigma x z, \sigma y z$,) Bracketed terms repeated for each fibre integration point.
	SSRG	Residual stresses at Gauss points. These stresses are specified in the same manner as SSR and SSRE.
Target Stress/Strains	TSSIE, TSSIA	
		Components: Fx, My, Mz, 0,0, 0, $\varepsilon x, \psi y, \psi z$, $0,0,0,(\sigma x, \sigma x y, \sigma x z, \sigma y z, \varepsilon x, \varepsilon x y, \varepsilon x z$, $\varepsilon y z)$ Bracketed terms repeated for each fibre integration point.
	TSSIG	Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0, \mathrm{dT} / \mathrm{dy}$, dT/dz, To, 0, dTo/dy, dTo/dz
Overburden	Not applicable.	
Phreatic Surface	Not	

Phreatic Surface Not
Uniformly distributed loads. Wx, Wy, Wz: for element in local directions.
Not applicable.
Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{x}}, \alpha \mathrm{y}, \alpha z_{\mathrm{z}}$
Body force potentials at nodes/for element. φ_{1}, $\varphi 2, \varphi_{3}, 0$, Xcbf, Ycbf, Zcbf
Velocities. Vx, Vy, Vz: at nodes.
Accelerations. Ax, Ay, Az: at nodes.
Viscous support loads. VLx, VLy, VLz: at nodes.
Initial stresses/strains at nodes/for element.
Components: Fx, My, Mz, 0, 0, 0, \&x, $\psi y, \psi z$, $0,0,0,(\sigma x, \sigma x y, \sigma x z, \sigma y z, \varepsilon x, \varepsilon x y, \varepsilon x z$, $\varepsilon y z)$ Bracketed terms repeated for each fibre integration point.
Initial stresses/strains at Gauss points. These stresses/strains are specified in the same manner as SSI and SSIE
Residual stresses at nodes/for element. Components: $0,0,0,0,0,0,0,0,0,0,0,0,($ $\sigma x, \sigma x y, \sigma x z, \sigma y z$,$) Bracketed terms$ repeated for each fibre integration point.
Residual stresses at Gauss points. These stresses are specified in the same manner as SSR and SSRE.
Target stresses/strains at nodes/for element. Components: Fx, My, Mz, 0,0, 0, $\varepsilon x, \psi y, \psi z$, $0,0,0,(\sigma x, \sigma x y, \sigma x z, \sigma y z, \varepsilon x, \varepsilon x y, \varepsilon x z$, $\varepsilon y z)$ Bracketed terms repeated for each fibre integration point.
Target stresses/strains at Gauss points. These stresses/strains are specified in the same manner as TSSIE and TSSIA
Temperatures at nodes/for element. T, $0, \mathrm{dT} / \mathrm{dy}$, dT/dz, To, 0, dTo/dy, dTo/dz

LTYPE=43: trapezoidal projected loads in global directions.
applicable.
Field Loads
Not
applicable.
Temp Dependent
Not
Loads applicable.

LUSAS Output

Solver Force (default): Fx, My, Mz, Txz, Txy, Fy, Fz: in local directions. Total torque = Txz+Txy.
Continuum stresses (Option 172): $\sigma x, \sigma x y, \sigma x z, \sigma y z$: in local directions.
Strain/curvatures (default): $\varepsilon x, \psi y, \psi z, \psi x z, \psi x y, \gamma y z:$ in local directions (see Notes). Total torsional strain $=\psi x y+\psi y z$. Continuum strains (Option 172): $\varepsilon x, \varepsilon x y, \varepsilon x z, \varepsilon y z:$ in local directions.
By default element output is with respect to the nodal line. OPTION 418 outputs stress/strain resultants with respect to the beam centroidal axes.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard line element The local xy-plane is defined by the 2 end nodes of the beam and the 4th node. The local y-axis is perpendicular to the x-axis and positive on the side of the element where the 4th node lies. The local y and zaxes form a right-hand set with the local x-axis.

Sign Convention

\square Standard beam element

Formulation

Geometric Nonlinearity

Total Lagrangian
Updated
For large displacements, large rotations and small strains.

Lagrangian
Eulerian Not applicable.
Co-rotational Not applicable.

Integration Schemes

Stiffness	Default.	2-point torsion, 2-point bending.
	Fine.	As default.
Mass	Default.	3-point.
	Fine.	As default.

Mass Modelling

- Consistent mass (default).
\square Lumped mass.

Options

32 Suppress stress output (but not stress resultant).
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
102 Disable load correction stiffness matrix due to centripetal acceleration.
105 Lumped mass matrix
139 Output inelastic Gauss points only
170 Suppress transfer of shape function arrays to disk
172 Form the rigidity matrix by numerical cross section integration.
406 Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes
418 Output stress resultants relative to beam centroidal axes for eccentric elements

Notes, Assumptions and Limitations

1. The semiloof beam element formulation is based on a Kirchhoff hypothesis for thin beams (i.e. shearing deformations are excluded). The variation of axial force, bending and torsion along the length of the element may be considered as linear. Shear forces are constant.
2. Input of loads (OPTION 406), and output of stress/strain resultants (OPTION 418) are with respect to the beam centroidal axes. CL is always input with respect to the nodal line; displacements are output with respect to the nodal line. Fiber stress/strain results are output at their actual location.
3. The torsional constant is estimated from the computed values for Iyy and Izz, $\mathrm{Jxx}=\mathrm{Iyy}+\mathrm{Izz}$.
4.For nonlinear material models, fibre integration is used across the crosssectional area of the beam. Only axial deformation is considered in the plasticity computations, any torsional deformation is assumed to remain elastic.
4. Computing the rigidity matrix by integration through the cross-section depth of the beam is necessary for all nonlinear material models (except 29). By
default option 172 is invoked automatically and a $5 * 5$ point Newton-Cotes integration rule is used.
5. By default, the rigidity matrix is evaluated explicitly for linear materials. A 3*3 point Newton-Cotes integration rule may be invoked using option 172. Numerical cross section integration enables top, middle and bottom stress output.
6. Integration of the element stiffness matrix is performed using selective integration, with a 2-point Gauss rule for the axial and flexural strain energy, and a 3-point Gauss rule for the torsional strain energy. The selective integration technique is implemented in a similar manner to the method proposed by Hughes, i.e. the strain-displacement matrix for the bending and axial strains is evaluated at the reduced rule quadrature points and then extrapolated to the sampling locations of the 3-point quadrature rule. The material response is then assessed at the 3-point Gauss rule.

Restrictions

\square Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

- The element's primary use is to provide a beam stiffener for the semiloof shell (QSL8) for analysing stiffened shell structures.
- The BSX4 element is more effective for linear analysis of 3D frame structures with curved members and nonlinear analysis of three dimensional beam, frame and arch structures.
- The 2-noded straight beam (BMS21) is the most effective for linear analysis of structures containing straight members of constant cross-section, e.g. space frames.

2D Plane Strain Beam Elements

General

Element BMI2N
Name

BMI3N

Element Group
 Subgroup
 Description

Beams
Element Plane Strain Beam

Element Straight and curved isoparametric degenerate thick beam elements in 2D for which shearing deformations are included. The element thickness may vary along its length.
Number Of 2 (BMI2N) 3 (BMI3N)
Nodes
Freedoms
End Releases

Coordinates

The element node numbers should be followed by: R restrained (default) F free defined in the order $\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$ for node 1 and then U , $\mathrm{V}, \theta \mathrm{z}$ for the other end node (node 2 for BMI2N, node 3 for BMI3N). The releases relate to the local element axes (see Notes, Assumptions and Limitations).
Node X, Y: at each node.
$\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$: at each node.

Geometric Properties

$\mathbf{t 1}, \mathbf{t 2}, \mathbf{t 3}$ Thickness at each node.
Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)
Matrix Not applicable
Joint Not applicable
Concrete Not applicable

Elasto-Plastic Stress resultant Tresca:

Drucker-Prager:

Optimised Implicit Von Mises:
Volumetric Crushing: Stress Potential

Creep

AASHTO

CEB-FIP

Chinese

Eurocode

IRC

Mohr-Coulomb: MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: MohrCoulomb, Hardening: Granular with Dilation)
Not applicable.
MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: DruckerPrager, Hardening: Granular)

MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
Not applicable.
STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP
 (Concrete creep model to CEB-FIP Model

 Code 1990)MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86 IRC
(Concrete creep model to Indian IRC code of Practice)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)

SHRINKAGE CEB_FIP_90,

 EUROCODE_2, GENERAL, USER
Loading

Prescribed Value PDSP, TPDSP
Concentrated CL
Loads
Element Loads ELDS

Prescribed variable. U, V, $\theta \mathrm{z}$: at nodes. Concentrated loads. Px, Py, Mz: at nodes (global).
Element loadson nodal line (load type number LTYPE *10 defines the corresponding element load type on beam axis, see Notes)
LTYPE, S1, Px, Py, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, 0, Wx, Wy, 0
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions
LTYPE, S1, Wx1, Wy1, 0, S2, Wx2, Wy2, 0
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions
LTYPE, S1, Wx, Wy, 0
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global

		directions. LTYPE=43: trapezoidal projected loads in global directions
Distributed Loads	UDL	Uniformly distributed loads. Wx, Wy: forces/unit length for element in local directions.
		Not applicable.
Body Forces	FLD	Constant body forces for element.
		Xcbf, Ycbf, $\Omega x, \Omega y, \Omega z, \alpha z$

directions.

Phreatic surface Face_Pressure

Field Loads Not applicable. Temp Dependent Not applicable. Loads

The fluid pressure is applied in the -y direction of the element y axis..

LUSAS Output

Solver Force. Nx, Nz, Mx, Mz, Sxy: axial and normal forces, moments/unit width in local directions, shear force. NB. The plate/shell convention is used for the moment definition.
Strain. $\varepsilon x, \varepsilon z, \gamma x, \gamma z, \varepsilon x y$ axial, normal, flexural and shear strains. Continuum stresses: $\sigma x, \sigma x y, \sigma z$ in local directions.
Strain: $\varepsilon x, \varepsilon x y, \varepsilon z:$ Axial, shear and normal strains in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

The local x-axis lies along the line of the element in the direction in which the nodes are numbered. The local y and z-axes form a right-hand set with the local x -axis such that the y -axis lies in the global XY-plane with the z -axis parallel to the global Z-axis.

Sign Convention

- Standard shell element. Axial and circumferential moments are positive for tension on element top fibre (the top fibre lies on the positive local y side of the element).

Formulation

Geometric Nonlinearity

Total Lagrangian
For large displacements, small rotations and small strains
Updated Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 1-point (BMI2N), 2-point (BMI3N).

Fine. Same as default.
Mass Default. 2-point (BMI2N), 3-point (BMI3N).
Fine. Same as default.

Note: A 3-point Newton-Cotes integration rule is also available for BMI3N using OPTION 134. This may be more applicable for infinitesimal strain, elasto-plastic analyses of plane frames with straight members since the first and third quadrature points will coincide with the frame joints. See Appendix I of the Theory Manual.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

36 Follower loads
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
102 Switch off load correction stiffness matrix due to centripetal acceleration
105 Lumped mass matrix.
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements
139 Output yielded integration points only.
403 Introduce residual bending flexibility correction for 2-node thick beam BMI21, see Notes, Assumptions and Limitations.
404 Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMI21, see Notes, Assumptions and Limitations.

Notes, Assumptions and Limitations

1. The element is formulated from the degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Plane cross-sections initially normal to the beam axis remain plane and undistorted (the shape of the cross-section remains unchanged) under deformation, but do not necessarily remain normal to the beam axis. Shearing deformations are included.
2. OPTION 36 is only applicable for use with element load types FLD, ELDS, UDL and phreatic surface pressure. Specifying this option makes these element loads follow the element geometry as the analysis progresses.
3. When OPTION 403 is specified to introduce residual bending flexibility correction (on by default), for BMI2N, the axial force is constant, while the shear force and moment vary linearly along the length of the beam. For BMI3N the axial force, shear force and moment all vary linearly along the length
4. When BMI2N is used together with OPTION 403 to introduce residual bending flexibility correction, its stiffness matrix is enhanced to the order of a cubic. As the plane strain beam can only be of rectangular cross section, a shear area based on $5 / 6$ of the nodal thicknesses is assumed in this process.
5. When BMI2N is used together with OPTION 404, loading that varies along the element length is accounted for in the force diagrams (i.e. for a beam under CBF or internal element loading). A post-processing technique has been introduced to obtain accurate quadratic bending moments for BMI3N. For BMI2N (with OPTION 404) and BMI3, internal forces and moments are output at intervals of $1 / 10$ th of the element length by specifying the Gauss point option from the Output button of the LUSAS Datafile dialog.
6. The end releases for this element allow a joint to be modelled between adjacent elements. These joints allow rotation and translation of one beam with respect to another without load transferral. The rotations and translations remain in the local directions of the beam elements and support large deformations.
7. When a nonlinear material is used with this element the transverse shear stresses are excluded from the plasticity computations i.e. the transverse shear stresses are assumed to remain elastic. This means that if a nonlinear material is used in applications where transverse shear tends to dominate the stress field the equivalent von Mises and maximum principal stresses can exceed the uniaxial yield stress.
8. When a step by step dynamic analysis is carried out using BMI elements with distributed loading, the "free body force diagrams" pertaining to applied loading, are not superimposed on the nodal values, to do so would lead to erroneous results until a steady state is reached. It should therefore be noted that different force diagrams will be obtained for BMI elements if static and dynamic analyses are directly compared.
9. OPTION 87 considers large displacements and large rotations using a Total Lagrangian formulation; OPTION 229 considers large displacements and large rotations using a co-rotational formulation. In general the co-rotational formulation works better. When both options 87 and 229 are true, a local Total Lagrangian formulation will be used within a global co-rotational framework.
10. End releases for these elements are currently not valid for use in step-by-step dynamic analyses.

Restrictions

Ensure mid-side node centrality
\square Avoid excessive element curvature

Recommendations on Use

- The element may be used for linear and nonlinear analysis of two dimensional long structures of box girder cross-sections such as tunnel linings and retaining walls for which the plane strain assumption is appropriate.

Chapter 3: 2D Continuum Elements

2D Plane Stress Continuum Elements

General

QPM4

Element Group 2D Continuum

Element Plane Stress Continuum
Subgroup
Element A family of 2D isoparametric elements with the higher order
Description elements capable of modelling curved boundaries. The elements are numerically integrated.
Number Of 3, 4, 6 or 8 , numbered anticlockwise.
Nodes
Freedoms
Node
Coordinates

TPM6

QPM8

U, V : at each node.
X, Y : at each node.

Geometric Properties

$$
\mathbf{t}_{1 . .} \mathbf{t n}^{\text {n }} \text { Thickness at each node. }
$$

Material Properties

Linear Isotropic
MATERIAL PROPERTIES (Elastic: Isotropic)
Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC (Elastic: Orthotropic Plane Stress)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 3 (Elastic: Anisotropic Thin Plate)
Rigidities.
RIGIDITIES 3 (Rigidities: Membrane/Thin Plate)
Matrix Not applicable
Joint Not applicable Concrete

> MATERIAL PROPERTIES NONLINEAR 105 (Elastic: Isotropic, Plastic: Transient Smoothed Multi-Crack Concrete)
> MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi-Crack Concrete)
Elasto-Plastic Stress resultant: Not applicable.
Tresca: MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
Drucker-Prager: MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
Mohr- MATERIAL PROPERTIES NONLINEAR 65
Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
Volumetric Not applicable
Crushing:
Interface:
MATERIAL PROPERTIES NONLINEAR 27
Stress Potential STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises
Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
AASHTO
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)
CEB-FIP
MATERIAL PROPERTIES NONLINEAR 86

		CEB-FIP
		(Concrete creep model to CEB-FIP Model
	Chinese	Code 1990)
		MATERIAL PROPERTIES NONLINEAR 86
		CHINESE
		(Chinese creep model to Chinese Code of
		Practice)

Accelerations	ACCE	Accelerations. Ax, Ay: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. σx, $\sigma y, \sigma x y:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
	SSIG	Initial stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y$: global stresses. $\mathcal{E x}, \varepsilon y, \gamma x y$: global strains.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. $\sigma x, \sigma y$, $\sigma x y$: global stresses.
	SSRG	Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$: global stresses.
Target Stress/Strains	TSSIE,	Target stresses/strains at nodes/for element.
	TSSIA	$\sigma x, \sigma y, \sigma x y:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
	TSSIG	Target stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y:$ global strains.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0$, To, $0,0,0$
Overburden	Applicable.	
Phreatic Surface	Applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Accelerations. Ax, Ay: at nodes.
Viscous support loads. VLx, VLy: at nodes.

Initial stresses/strains at nodes/for element. σx, $\sigma y, \sigma x y:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.

Initial stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y:$ global strains.

Residual stresses at nodes/for element. $\sigma x, \sigma y$, $\sigma x y$: global stresses.
Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$: global stresses.
Target stresses/strains at nodes/for element. $\sigma x, \sigma y, \sigma x y:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Target stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Temperatures at nodes/for element. T, $0,0,0$, To, 0, 0, 0

Stress resultants: Nx, Ny, Nxy, Nmax, Nmin, β, Ns, Ne
Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma \max , \sigma \mathrm{~min}, \beta, \sigma \mathrm{~s}, \sigma \mathrm{e}$ (see description of principal stresses)
Strain: $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon \max , \varepsilon \min , \beta, \varepsilon s, \varepsilon \mathrm{e}$
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacement, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations.
Integration Schemes
Stiffness Default. 1-point (TPM3), 3-point (TPM6), 2x2 (QPM4, QPM8)
Fine (see Options). 3×3 (QPM8), 3-point (TPM3).
Mass Default. 1-point (TPM3), 3-point (TPM6), 2x2 (QPM4, QPM8)
Fine (see Options). 3x3 (QPM8), 3-point (TPM3).
Mass Modelling
\square Consistent mass (default).
\square Lumped mass.
Options
18 Invokes fine integration rule.
34 Output element stress resultants.
36 Follower loads (see Notes)
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.

139 Output yielded Gauss points only
167 Eulerian geometric nonlinearity.
229 Co-rotational geometric nonlinearity

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of stresses within an element can be regarded as constant for the lower order (corner node only) elements, and linear for the higher (mid-side node) elements.
2. All elements pass the patch test.
3. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the face loading (FLD).
4. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
5. If applying an initial stress/strain or thermal load that varies across an element, a higher order element (6 or 8 nodes) should be used. A limitation of the standard isoparametric approach when used for lower order elements (3 or 4 nodes) is that only constant stress/strain fields can be imposed correctly.

Restrictions

\square Ensure mid-side node centrality
\square Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- The 8 -noded element with a $2 * 2$ Gauss rule is usually the most effective element, as the under-integration of the stiffness matrix prevents locking, which may occur either when the element is subjected to parasitic shear, or as the material reaches the incompressible limit (elasto-plasticity). The Gauss point stresses are also sampled at the most accurate locations for the element. However, the element does possess one spurious zero energy mode. This mode is very rarely activated in linear analysis, but it may occur in both materially and geometrically nonlinear analyses. Therefore, a careful examination of the solution should be performed, to check for spurious stress oscillations and peculiarities in the deformed configuration.
- The 8 -noded element with a $3 * 3$ Gauss rule may be used if a spurious mechanism is excited with the $2 * 2$ Gauss rule.
- The 4-noded element should not be used for analyses where in-plane bending effects are significant as the element tends to lock in parasitic shear [C1], e.g. if QPM4 elements are employed to model a cantilever subject to a point load, the solution obtained will be over-stiff.

2D Plane Stress Continuum Element with Enhanced Strains

General

Geometric Properties

t1... $\mathbf{t n}_{\mathbf{n}}$ Thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)
Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC (Elastic: Orthotropic Plane Stress)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 3 (Elastic: Anisotropic Thin Plate)
Rigidities: RIGIDITIES 3 (Rigidities: Membrane/Thin Plate)
Matrix Not applicable
Joint Not applicable
Concrete
MATERIAL PROPERTIES NONLINEAR 105

Elasto-Plastic Stress

 resultant: Tresca:DruckerPrager:

MohrCoulomb:

Volumetric
Crushing:
Stress Potential

Creep

AASHTO

CEB-FIP

Chinese

Eurocode

IRC
(Elastic: Isotropic, Plastic: Transient Smoothed Multi-Crack Concrete)
MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed MultiCrack Concrete)
Not applicable
MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
Not applicable
STRESS POTENTIAL VON_MISES, HILL, HOFFMAN (Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP
(Concrete creep model to CEB-FIP Model Code 1990)

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86 IRC
(Concrete creep model to Indian IRC code of
Practice)DAMAGE PROPERTIES SIMO, OLIVER(Damage)

Viscoelastic Not applicable ShrinkageKo Initialisation Not applicableRubber Ogden:

Mooney-
Rivlin:

Neo-Hookean:

Hencky:

Generic Polymer Isotropic

Composite Not applicable
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER
MATERIAL PROPERTIES RUBBER OGDEN(Rubber: Ogden) (Rubber: Ogden)MATERIAL PROPERTIES RUBBERMOONEY_RIVLIN (Rubber: Mooney-Rivlin)MATERIAL PROPERTIES RUBBERNEO_HOOKEAN (Rubber: Neo-Hookean)
MATERIAL PROPERTIES RUBBERHENCKY (Rubber: Hencky)

MATERIAL PROPERTIES NONLINEAR 89 (Generic Polymer Model)

Loading

Prescribed Value PDSP, TPDSP CL
Loads

Element Loads Not
applicable.

FLD

Body Forces CBF

BFP, BFPE

Velocities VELO
Accelerations ACCE
Viscous Support VSL
Loads
Initial SSI, SSIE
Stress/Strains

Prescribed variable. U, V: at nodes.
Concentrated loads. Px, Py: at nodes.

Not applicable.
Face loads. Px, Py: local face axis pressures at nodes.

Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodes
Constant body forces for element. Xcbf, Ycbf, $\Omega \mathrm{x}, \Omega \mathrm{y}, \Omega_{\mathrm{z},} \alpha \mathrm{z}$
Body force potentials at nodes/for element. 0, $0,0, \varphi 4$, Xcbf, Ycbf
Velocities. Vx, Vy: at nodes.
Accelerations. Ax, Ay: at nodes.
Viscous support loads. VLx, VLy: at nodes.

Initial stresses/strains at nodes/for element. σx, $\sigma y, \sigma x y:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.

	SSIG	Initial stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. $\sigma x, \sigma y$, $\sigma x y$: global stresses.
	SSRG	Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$: global stresses.
Target Stress/Strains	TSSIE,	Target stresses/strains at nodes/for element.
		$\sigma x, \sigma y, \sigma x y:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
	TSSIG	Target stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y:$ global strains.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0$, To, $0,0,0$
Overburden	Applicable.	
Phreatic Surface	Applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

Output

$$
\begin{aligned}
& \text { Solver } \text { Stress resultants: } \mathrm{Nx}, \mathrm{Ny}, \mathrm{Nxy}, \mathrm{Nmax}, \mathrm{Nmin}, \beta, \mathrm{Ns}, \mathrm{Ne} \\
& \text { Stress (default): } \sigma x, \sigma y, \sigma x y, \sigma \max , \sigma \min , \beta, \sigma \mathrm{~s}, \sigma \mathrm{e} \text { (see } \\
& \text { description of principal stresses) } \\
& \text { Strain: } \varepsilon x, \varepsilon y, \gamma_{\mathrm{xy}}, \varepsilon \max , \varepsilon \min , \beta, \varepsilon s, \varepsilon \mathrm{e} \\
& \text { Stretch (for rubber only): } \mathrm{V}_{11}, \mathrm{~V}_{22}, \mathrm{~V}_{12}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \theta \lambda, \operatorname{det} \mathrm{~F} . \\
& \text { Where } \mathrm{V}_{\mathrm{ii}} \text { are components of the left stretch tensors, } \lambda_{\mathrm{i}} \text { the } \\
& \text { principal stretches, } \theta \lambda \text { the angle between the maximum principal } \\
& \text { stretch and the global } \mathrm{X} \text { axis, and det } \mathrm{F} \text { the determinant of the } \\
& \text { deformation gradient or volume ratio. }
\end{aligned}
$$

Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).
Sign Convention
\square Standard 2D continuum element
Formulation
Geometric Nonlinearity
Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations (large strains with rubber).
Integration Schemes
Stiffness Default. 2×2
Fine. As default.
Mass Default. 2x2
Fine. As default.
Mass Modelling
Consistent mass (default).
\square Lumped mass.

Options

34 Output element stress resultants.
36 Follower loads.
39 Stress smoothing for rubber material models.
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering (see Notes).
139 Output yielded Gauss points only
167 Eulerian geometric nonlinearity.
225 Use alternative number of parameters for enhanced strain interpolation (see Notes).

229 Co-rotational geometric nonlinearity.

Notes on Use

1. The variation of stresses within an element can be regarded as linear.
2. The element passes the patch test and the large strain patch test for rubber.
3. The strain field for this element consists of two parts: the compatible strains derived from an assumed displacement field and the assumed enhanced strains (see LUSAS Theory Manual). The assumed enhanced strain field is defined using 5 or 4 parameters for linear and nonlinear applications respectively. Option 225 switches on the higher 5 parameter enhanced strain interpolation function for nonlinear analysis.
4. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility. The load does not have to be normal to the face and may also vary over the face.
5. To apply a non-conservative (follower) pressure load (load type FLD) with corotational geometric nonlinearity, Option 36 must be specified. Note that this load must be normal to the face and constant for all the nodes of the element face.
6. The converged stresses for rubber are Kirchoff stresses (see LUSAS Theory Manual).
7. When using the rubber material model, converged strain output is replaced by the left stretch tensor, the principal stretches and the angle defining these principal directions. The value of $\operatorname{det} \mathrm{F}=\lambda_{1} \lambda_{2}$ (the Volume ratio) is only available for Gauss-point output. (Refer to the LUSAS Theory Manual for more details.)
8. For rubber, the iterative values of stress and strain are output in local co-rotated directions at the Gauss points only.
9. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
10. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
11. Convergence difficulties can sometimes arise when using enhanced strain elements with nonlinear materials, particularly if the material is elastic perfectly plastic or if a very shallow hardening curve is defined. In such cases it is recommended that the standard element formulation is used.
12. In analyses where significant in-plane bending is thermally induced it is recommended that a nonlinear solution is used. If a linear solution is required, then quadratic plane strain elements QPN8 are recommended.

Restrictions

\square Avoid excessive aspect ratio
\square Rubber material models can only be applied in conjunction with the corotational formulation, Option 229.

Recommendations on Use

These elements exhibit an improved performance when compared with the parent element QPM4. The integration rules are the same as those given for QPM4, but the elements do not suffer from locking due to parasitic shear when the material approaches the incompressible limit. The elements are also free of any zero energy modes.

2D Plane Stress Continuum Crack Tip Elements

General

Element Name

TPK6

Crack specified at Node 1

QPK8

Crack specified at Node 1

Element Group
Element
2D Continuum
Plane Stress Continuum Subgroup
Element Description

Number Of Nodes
End Releases
Freedoms
Node
Coordinates
6 or 8 numbered anticlockwise.

A family of 2D isoparametric crack tip elements where the crack tip can be located at any corner node. The mid-side nodes are moved to the quarter points to produce a singularity at the crack tip. The strains vary as the square root of $1 / R$, where R is the distance from the crack tip. These elements are used at the crack tip only and should be mixed with the higher order plane strain continuum elements. The elements are numerically integrated.

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)
Orthotropic MATERIAL PROPERTIES ORTHOTROPIC (Elastic: Orthotropic Plane Stress)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 3 (Elastic: Anisotropic Thin Plate)
Rigidities. RIGIDITIES 3 (Rigidities: Membrane/Thin Plate)
Matrix Not applicable
Joint Not applicable

Concrete

Elasto-Plastic
Stress resultant: Interface: Tresca:

Drucker-
Prager:
MohrCoulomb:

Volumetric
Crushing:
Stress

Potential

Creep

AASHTO

CEB-FIP

Chinese

Eurocode

IRC

MATERIAL PROPERTIES NONLINEAR 109
(Elastic: Isotropic, Plastic: Smoothed Multi-
Crack Concrete)
Not applicable.

MATERIAL PROPERTIES NONLINEAR 27
MATERIAL PROPERTIES NONLINEAR 61
(Elastic: Isotropic, Plastic: Tresca, Hardening:
Isotropic Hardening Gradient, Isotropic
Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64
(Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65
(Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
Not applicable.
STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP
(Concrete creep model to CEB-FIP Model Code 1990)

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE

(Concrete creep model to EUROCODE_2)

MATERIAL PROPERTIES NONLINEAR 86
IRC

		(Concrete creep model to Indian IRC code of Practice)
Damage		DAMAGE PROPERTIES SIMO, OLIVER (Damage)
Viscoelastic	Not applicable	
Shrinkage		SHRINKAGE CEB_FIP_9, EUROCODE_2, GENERAL, USER
Ko Initialisation	Not applicable	
Rubber	Not applicable	
Generic Polymer	Isotropic	MATERIAL PROPERTIES NONLINEAR 89
Composite	Not applicable	
(Generic Polymer Model)		

	SSRG	Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$: global stresses.
Target Stress/Strains	TSSIE,	Target stresses/strains at nodes/for element.
	TSSIA	$\sigma x, \sigma y, \sigma x y:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
	TSSIG	Target stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0$, To, $0,0,0$
Overburden	Applicable.	
Phreatic Surface	Applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver Stress resultants: Nx, Ny, Nxy, Nmax, Nmin, β, Ns, Ne Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e($ see description of principal stresses)
Strain: $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon \max , \varepsilon \min , \beta, \varepsilon s, \varepsilon e$
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.

Updated For large displacements and large rotations.

Lagrangian

Eulerian For large displacements, large rotations and moderately large
strains.

Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness	Default.	6-point (TPK6), 3x3 (QPK8)
	Fine (see Options).	12-point (TPK6).
Mass	Default.	6-point (TPK6), 3x3 (QPK8)
	Fine (see Options).	12-point (TPK6).

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes finer integration rule.
34 Output element stress resultants.
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.
139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.
229 Co-rotational geometric nonlinearity.

Notes on Use

1. The element formulations are based on the standard isoparametric approach. Moving the mid-side nodes to the quarter points creates a singularity with theoretically infinite stress at the corner node.
2. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
3. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
4. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.

Restrictions

\square Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

The QPK8 and TPK6 elements are specifically designed for application to fracture mechanics problems and may used to model the singularities that occur at the crack tip. The mid-side nodes near the crack tip are shifted to the quarter point. This ensures a singularity is present at the crack tip and that the strains vary as $1 /$ square root of r where r is the distance from the crack tip. The triangular TPK6 element is more effective than the quadrilateral element.

2D Plane Stress Explicit Dynamics Elements

General

Element Name TPM3E

Element Group
2D Continuum
Element
Plane Stress Continuum
Subgroup
Element Description
Number Of
A family of 2D isoparametric elements for explicit dynamic analyses. The elements are numerically integrated.
3 or 4 numbered anticlockwise.
Nodes
End Releases
Freedoms
Node
U, V : at each node.
X, Y : at each node.
Coordinates

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)
Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC (Elastic: Orthotropic Plane Stress)
Anisotropic: Not applicable
Rigidities. Not applicable
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Stress Not applicable resultant:

Tresca:

DruckerPrager:

MohrCoulomb:

Volumetric
Crushing:
Stress
Potential

MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64
(Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
Not applicable
STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)

Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Ko Initialisation Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value PDSP,TPDSPConcentrated CLLoadsElement Loads Notapplicable.Distributed Loads UDL
FLD
FLDG
Body Forces CBF
BFP, BFPE
Velocities VELO
Accelerations ACCE

Concentrated loads. Px, Py: at each node.

Not applicable.
Face loads. Px, Py: local face axis pressures at nodes.
Not applicable.
Constant body forces for element. Xcbf, Ycbf, $\Omega \mathrm{x}, \Omega \mathrm{y}, \Omega_{\mathrm{z},} \alpha_{\mathrm{z}}$
Body force potentials at nodes/for element. 0, $0,0, \varphi 4, \mathrm{Xcbf}, \mathrm{Ycbf}$
Velocities. Vx, Vy: at nodes.
Accelerations. Ax, Ay: at nodes.

Viscous Support Loads	VSL	Viscous support loads. VLx, VLy: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. σx, $\sigma y, \sigma x y:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
	SSIG	Initial stresses/strains at Gauss points $\sigma x, \sigma y$, $\sigma x y$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. $\sigma x, \sigma y$, $\sigma x y$: global stresses.
	SSRG	Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$: global stresses.
Target	Not	
Stress/Strains	applicable.	
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0$, To, $0,0,0$
Overburden	Not applicable.	
Phreatic Surface	Not applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver \quad Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)
Strain: $\varepsilon x, \varepsilon y, \gamma \mathrm{xy}, \varepsilon \max , \varepsilon \min , \beta, \varepsilon s, \varepsilon \mathrm{e}$
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.
Updated Not applicable.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default. 1-point (see Notes). Fine. As default.
Mass Default. 1-point (see Notes).
Fine. As default.

Mass Modelling

Lumped mass only (see Notes).

Options

34 Output element stress resultants.
55 Output strains as well as stresses.
105 Lumped mass matrix (see Notes).
139 Output yielded Gauss points only.

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of stresses within an element can be regarded as constant.
2. The system parameter HGVISC is used to restrict element mechanisms due to under-integration. The default value is usually sufficient.
3. The bulk viscosity coefficients are used to restrict numerical oscillations due to the traversal of stress waves. The default bulk viscosity coefficients (BULKLF and BULKQF) may be altered as SYSTEM parameters.
4. These elements must be used with the dynamic central difference scheme and a lumped mass matrix.
5. These elements are not applicable. for static or eigenvalue analyses.
6. Automatic time step calculations are implemented.
7. As the element geometry is always updated in an explicit dynamic analysis, a nonlinear solution is obtained. When using explicit dynamics elements nonlinear control must be specified.
8. If creep properties are defined, explicit time integration must be specified.
9. Non-conservative loading is invoked when the FLD loading facility is applied.
10. Rayleigh damping coefficients are not supported by these elements.
11. Constraint equations are not available for use with these elements.
12. Nodes must be specified in an anticlockwise order. Option 123 is not applicable for this element. When using Modeller ensure surface normal is in the +ve z direction.

Restrictions

\square Avoid excessive aspect ratio

Recommendations on Use

Explicit dynamics elements may be used to define surface boundaries which will be active in a slideline analysis.

2D Plane Strain Continuum Elements

General

Element Name

TPN3

QPN4

2D Continuum
Plane Strain Continuum
Element Subgroup
Element Description

A family of 2D isoparametric elements with higher order models capable of modelling curved boundaries. The elements are numerically integrated.
Number Of $3,4,6$, or 8 numbered anticlockwise.
Nodes
Freedoms
Node
U, V : at each node.
X, Y : at each node.

Coordinates

Geometric Properties

Not applicable (a unit thickness is assumed).

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)
Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC

		PLANE STRAIN (Elastic: Orthotropic Plane Strain)
	Anisotropic:	MATERIAL PROPERTIES ANISOTROPIC 4 (Not supported in LUSAS Modeller)
	Rigidities.	RIGIDITIES 4 (Not supported in LUSAS Modeller)
Matrix	Not applicable	
Joint	Not applicable	
Concrete		MATERIAL PROPERTIES NONLINEAR 105 (Elastic: Isotropic, Plastic: Transient Smoothed Multi-Crack Concrete)
		MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed MultiCrack Concrete)
Elasto-Plastic	Stress resultant:	Not applicable.
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker- Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	MohrCoulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Modified MohrCoulomb:	MATERIAL PROPERTIES
		MODIFIED MOHR_COULOMB (Elastic:
		Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
	Modified Cam-clay	MATERIAL PROPERTIES CAM_CLAY
		MODIFIED (Elastic: Isotropic, Plastic)
	Optimised Implicit Von Mises:	MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
	Volumetric Crushing:	MATERIAL PROPERTIES NONLINEAR 81 (Volumetric Crushing or Crushable Foam)
	Interface:	MATERIAL PROPERTIES NONLINEAR 27
	Stress Potential	STRESS POTENTIAL VON_MISES, HILL,
		HOFFMAN

(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)
CEB-FIP MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP
(Concrete creep model to CEB-FIP Model Code 1990)

Chinese MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)

Damage
Viscoelastic
Shrinkage

Ko Initialisation Applicable Rubber Not applicable Generic Isotropic Polymer
 Composite Not applicable

Eurocode

IRC
AASHTO ,

MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86 IRC
(Concrete creep model to Indian IRC code of Practice)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)
VISCO ELASTIC PROPERTIES
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

MATERIAL PROPERTIES NONLINEAR 89
(Generic Polymer Model)

Prescribed variable. U, V: at nodes.
Concentrated loads. Px, Py: at nodes. Loads
Element Loads Not applicable.

Distributed Loads	$\begin{aligned} & \text { UDL } \\ & \text { FLD } \end{aligned}$	Not applicable. Face Loads. Px, Py: local face axis pressures at nodes.
	FLDG	Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodes
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, $0,0, \Omega_{z}, \alpha z$
	BFP, BFPE	Body force potentials at nodes/for element. 0 , $0,0, \varphi 4, \mathrm{Xcbf}, \mathrm{Ycbf}$
Velocities	VELO	Velocities. Vx, Vy: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. σx, $\sigma y, \sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y:$ global strains.
	SSIG	Initial stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses.
	SSRG	Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$, σz global stresses.
Target Stress/Strains	$\begin{aligned} & \text { TSSIE, } \\ & \text { TSSIA } \end{aligned}$	Target stresses/strains at nodes/for element. $\sigma x, \sigma y, \sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y$, $\gamma x y$: global strains.
	TSSIG	Target stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0$, To, 0, 0, 0
Overburden	Applicable.	
Phreatic Surface	Applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

$$
\begin{aligned}
\text { Solver } & \begin{array}{l}
\text { Stress (default): } \sigma x, \sigma y, \sigma x y, \sigma z, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e(\text { see } \\
\text { description of principal stresses })
\end{array} \\
& \text { Strain: } \varepsilon x, \varepsilon y, \gamma x y, \varepsilon z=0, \varepsilon \max , \varepsilon \min , \beta, \varepsilon s, \varepsilon \mathrm{e} \\
\text { Modeller } & \text { See Results Tables (Appendix K). }
\end{aligned}
$$

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.

Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness	Default.	1-point (TPN3), 3-point (TPN6), 2x2 (QPN4, Mass Fine (see Options).
Default.	3x3 (QPN8), 3-point (TPN3).	
		1-point (TPN3), 3-point (TPN6), 2x2 (QPN4,
	Fine (see Options).	QPN8)
	3x3 (QPN8), 3-point (TPN3).	

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes finer integration rule.

36 Follower loads.
54 Updated Lagrangian geometric nonlinearity
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.
139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.
229 Co-rotational geometric nonlinearity

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of stresses within an element can be regarded as constant for the lower order (corner node only) elements, and linear for the higher order (midside node) elements.
2. All elements pass the patch test.
3. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
4. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
5. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
6. If applying an initial stress/strain or thermal load that varies across an element, a higher order element (6 or 8 nodes) should be used. A limitation of the standard isoparametric approach when used for lower order elements (3 or 4 nodes) is that only constant stress/strain fields can be imposed correctly.

Restrictions

- Ensure mid-side node centrality
- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- The 8 -noded element with a $2 * 2$ Gauss rule is usually the most effective element, as the under-integration of the stiffness matrix prevents locking, which
may occur either when the element is subjected to parasitic shear, or as the material reaches the incompressible limit (elasto-plasticity). The Gauss point stresses are also sampled at the most accurate locations for the element. However, the element does possess one spurious zero energy mode. This mode is very rarely activated in linear analysis, but it may occur in both materially and geometrically nonlinear analyses. Therefore, a careful examination of the solution should be performed, to check for spurious stress oscillations and peculiarities in the deformed configuration.
- The 8 -noded element with a $3 * 3$ Gauss rule may be used if a spurious mechanism is excited with the $2 * 2$ Gauss rule.
- The 4-noded element should not be used for analyses where in-plane bending effects are significant as the element tends to lock in parasitic shear, e.g. if QPN4 elements are employed to model a cantilever subject to a point load, the solution obtained will be over-stiff.

2D Plane Strain Continuum Element with Enhanced Strains

General

Geometric Properties

Not applicable (a unit thickness is assumed).

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)
Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC PLANE STRAIN (Elastic: Orthotropic Plane Strain)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 4 (Not supported in LUSAS Modeller)
Rigidities. RIGIDITIES 4 (Not supported in LUSAS Modeller)
Matrix Not
applicable
Joint Not

Concrete	applicable	
		MATERIAL PROPERTIES NONLINEAR 105 (Elastic: Isotropic, Plastic: Transient Smoothed Multi-Crack Concrete) MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed MultiCrack Concrete)
Elasto-Plastic	Stress resultant:	Not applicable.
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker- Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	Modified	MATERIAL PROPERTIES
	Mohr-	MODIFIED MOHR_COULOMB (Elastic:
	Coulomb:	Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
	Modified	MATERIAL PROPERTIES CAM_CLAY
	Cam-clay	MODIFIED (Elastic: Isotropic, Plastic)
	Optimised	MATERIAL PROPERTIES NONLINEAR 75
	Implicit Von	(Elastic: Isotropic, Plastic: Von Mises,
	Mises:	Hardening: Isotropic \& Kinematic)
	Volumetric	MATERIAL PROPERTIES NONLINEAR 81
	Crushing:	(Volumetric Crushing or Crushable Foam)
	Stress	STRESS POTENTIAL VON_MISES, HILL,
	Potential	HOFFMAN (Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
Creep	AASHTO	MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE

		(Chinese creep model to Chinese Code of Practice)
	Eurocode	MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)
	IRC	MATERIAL PROPERTIES NONLINEAR 86 IRC (Concrete creep model to Indian IRC code of Practice)
Damage		DAMAGE PROPERTIES SIMO, OLIVER (Damage)
Viscoelastic		VISCO ELASTIC PROPERTIES
Shrinkage		SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER
Ko Initialisation Rubber	Applicable	
	Ogden	MATERIAL PROPERTIES RUBBER OGDEN (Rubber: Ogden)
	Mooney-	MATERIAL PROPERTIES RUBBER
	Rivlin	MOONEY_RIVLIN (Rubber: Mooney-Rivlin)
	Neo-Hookean	MATERIAL PROPERTIES RUBBER NEO_HOOKEAN (Rubber: Neo-Hookean)
	Hencky	MATERIAL PROPERTIES RUBBER HENCKY (Rubber: Hencky)
Generic Polymer	Isotropic	MATERIAL PROPERTIES NONLINEAR 89 (Generic Polymer Model)
Composite	Not applicable	

Loading

Prescribed Value PDSP, TPDSP Prescribed variable. U, V: at nodes.
Concentrated CL Concentrated loads. Px, Py: at nodes.
Loads
Element Loads Not applicable.
Distributed Loads UDL
FLD

FLDG
Body Forces CBF
Not applicable.
Face loads. Px, Py: local face axis pressures at nodes.
Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodes
Constant body forces for element. Xcbf, Ycbf, $0,0, \Omega z, \alpha z$
BFP, BFPE Body force potentials at nodes/for element. 0,

Velocities VELO
Accelerations ACCE
Viscous Support VSL
Loads
Initial SSI, SSIE
Stress/Strains

Residual Stresses SSR, SSRE

SSRG

Target TSSIE TSSIA Stress/Strains

TSSIG

Temperatures TEMP, TMPE

Overburden Applicable.
Phreatic Surface Applicable.
applicable.
Temp Dependent Not
Loads applicable.

Field Loads Not

$0,0, \varphi 4, \mathrm{Xcbf}, \mathrm{Ycbf}$
Velocities. Vx, Vy: at nodes.
Acceleration Ax, Ay: at nodes.
Viscous support loads. VLx, VLy: at nodes.

Initial stresses/strains at nodes/for element. σx, $\sigma y, \sigma x y, \sigma z:$ global stresses. $\mathcal{E x}, \varepsilon y, \gamma x y$: global strains.

Initial stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.

Residual stresses at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses.

Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$, σ z global stresses.
Target stresses/strains at nodes/for element. $\sigma x, \sigma y, \sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y$, $\gamma x y$: global strains.
Target stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Temperatures at nodes/for element. T, 0, 0, 0, To, 0, 0, 0

LUSAS Output

Solver
Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma \max , \sigma m i n, \beta, \sigma s, \sigma e$ (see description of principal stresses)

Strain: $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \gamma \mathrm{xy}, \varepsilon z=0, \varepsilon \max , \varepsilon \min , \beta, \varepsilon s, \varepsilon \mathrm{e}$
Stretch (for rubber only): $V_{11}, V_{22}, V_{12}, \lambda_{1}, \lambda_{2}, \lambda_{3}=1, \theta \lambda$, $\operatorname{det} F$.
Where V_{ii} are components of the left stretch tensors, λ_{i} the principal stretches, $\theta \lambda$ the angle between the maximum principal
stretch and the global X axis, and $\operatorname{det} \mathrm{F}$ the determinant of the deformation gradient or volume ratio.
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations (large strains with rubber).

Integration Schemes

Stiffness Default. 2x2
Fine. As default.
Mass Default. 2x2
Fine. As default.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Output

36 Follower loads.
39 Stress smoothing for rubber material models.
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.

91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.
139 Output yielded Gauss points only
167 Eulerian geometric nonlinearity.
225 Use alternative number of parameters for enhanced strain interpolation (see Notes).
229 Co-rotational geometric nonlinearity.

Notes on Use

1. The variation of stresses within an element can be regarded as linear.
2. The element passes the patch test and the large strain patch test for rubber.
3. The strain field for this element consists of two parts: the compatible strains derived from an assumed displacement field and the assumed enhanced strains; see LUSAS Theory Manual. The assumed enhanced strain field is defined using 5 or 4 parameters for linear and nonlinear applications respectively. Option 225 switches on the higher 5 parameter enhanced strain interpolation function for nonlinear analysis.
4. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility. The load does not have to be normal to the face and may also vary over the face.
5. To apply a non-conservative (follower) pressure load (load type FLD) with corotational geometric nonlinearity, Option 36 must be specified. Note that this load should be normal to the face and constant for all the nodes of the element face.
6. The converged stresses for rubber are Kirchhoff stresses (see LUSAS Theory Manual).
7. Option 39 is used to smooth the stress output. It is particularly useful when the rubber material model is applied and the element is under very high compression where oscillatory stresses may appear (checker-board pattern).
8. When using the rubber material model, converged strain output is replaced by the left stretch tensor, the principal stretches and the angle defining these principal directions. The value of $\operatorname{det} \mathrm{F}=\lambda_{1} \lambda_{2}$ (the Volume ratio) is only available for Gauss-point output. (Refer to the LUSAS Theory Manual for more details.)
9. For rubber, the iterative values of stress and strain are output in local co-rotated directions at the Gauss points only.
10. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
11. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
12. Convergence difficulties can sometimes arise when using enhanced strain elements with nonlinear materials, particularly if the material is elastic-perfectly plastic or if a very shallow hardening curve is defined. In such cases it is recommended that the standard element formulation is used.
13. In analyses where significant in-plane bending is thermally induced it is recommended that a nonlinear solution is used. If a linear solution is required, then quadratic plane strain elements QPN8 are recommended.

Restrictions

\square Rubber material models can only be applied in conjunction with the corotational formulation, Option 229.
\square Avoid excessive aspect ratio

Recommendations on Use

These elements exhibit an improved performance when compared with the parent element QPN4. The integration rules are the same as the parent element. The elements do not suffer from locking due to parasitic shear or when the material approaches the incompressible limit. The elements are also free of any zero energy modes.

2D Plane Strain Continuum Element for Large Strains

General

Element Name
QPN4L

Element Group 2D Continuum

Element
Subgroup
Element Description

A 2D isoparametric element incorporating an internal pressure variable. This element should be used for analyses involving large strains. The element is numerically integrated
Number Of 4, numbered anticlockwise.
Nodes
Freedoms U, V: at each node.
Node X, Y: at each node.
Coordinates

Geometric Properties

Not applicable (a unit thickness is assumed).

Material Properties

Linear Not
applicable
Matrix Not
applicable
Joint Not
applicable
Concrete Not
applicable
Elasto-Plastic Implicit
Optimised
Von Mises
Stress STRESS POTENTIAL VON_MISES (Isotropic:
Potential von Mises)
Creep Notapplicable
Damage Notapplicable
Viscoelastic Notapplicable
Shrinkage Notapplicable
Ko Initialisation Not
applicable
Rubber OgdenMooney-RivlinNeo-HookeanHencky
Generic Polymer Not
applicable
Composite
applicable
Loading
Prescribed Value PDSP, TPDSP Prescribed variable. U, V: at nodes.
MATERIAL PROPERTIES RUBBER OGDEN (Rubber: Ogden)
MATERIAL PROPERTIES RUBBER MOONEY_RIVLIN (Rubber: Mooney-Rivlin) MATERIAL PROPERTIES RUBBER NEO_HOOKEAN (Rubber: Neo-Hookean) MATERIAL PROPERTIES RUBBER HENCKY (Rubber: Hencky)Concentrated CL
Loads
Loads
Element Loads Not

Not
applicable.
Distributed Loads UDL

UDLFLDFLDG
Body Forces CBF

Body Forces CBF
BFP, BFPE

BFP, BFPE
Velocities VELO

ELO
Accelerations ACCE

Concentrated CL

FLD

FLDG

Viscous Support VSL

Concentrated loads. Px, Py: at nodes.

Not applicable.
Face loads. Px, Py: local face axis pressures at nodes.

Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodes
Constant body forces for element. Xcbf, Ycbf, $0,0, \Omega \mathrm{z}, \alpha \mathrm{z}$
Body force potentials at nodes/for element. 0, $0,0, \varphi 4, X c b f, Y c b f$
Velocities. Vx, Vy: at nodes.
Acceleration Ax, Ay: at nodes.
Viscous support loads. VLx, VLy: at nodes.

Loads

Initial SSI, SSIE Stress/Strains

Residual Stresses SSR, SSRE

SSRG

Target TSSIE, Stress/Strains TSSIA

TSSIG

Temperatures TEMP, TMPE

Initial stresses/strains at nodes/for element. σx, $\sigma y, \sigma x y, \sigma z:$ global stresses. $\mathcal{\varepsilon x}, \varepsilon y, \gamma x y$: global strains.
Initial stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.

Residual stresses at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses.

Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$, σ z global stresses.
Target stresses/strains at nodes/for element. $\sigma x, \sigma y, \sigma x y, \sigma z:$ global stresses. $\mathcal{E x}, \varepsilon y$, $\gamma \mathrm{xy}$: global strains.

Target stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses. $\mathcal{E x}, \varepsilon y, \gamma x y$: global strains.
Temperatures at nodes/for element. T, $0,0,0$, To, 0, 0, 0

Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Not
applicable.
Temp Dependent Not
Loads applicable.

LUSAS Output

Solver
Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e($ see description of principal stresses)
Principal stretches, $\lambda_{1}, \lambda_{2}, \lambda_{3}=1, \theta \lambda$, det F. Where $V_{i i}$ are components of the left stretch tensors, λ_{i} the principal stretches, $\theta \lambda$ the angle between the maximum principal stretch and the global X axis, and $\operatorname{det} \mathrm{F}$ the determinant of the deformation gradient or volume ratio.
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.

Updated Not applicable.
Lagrangian
Eulerian For large displacements and large strains.
Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default. 2x2
Fine. As default.
Mass Default. 2x2
Fine. As default.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

55 Output stretches as well as stresses.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.

Notes on Use

1. The element formulations are based on the standard isoparametric approach.

The variation of stresses within an element can be regarded as linear.
2. The element passes the large strain patch test for rubber.
3. Non-conservative loading is available with this element when using FLD loading.
4. The stresses output are Kirchhoff stresses (see LUSAS Theory Manual).
5. Stretch output consists of the principal stretches and the angle defining the principal directions. The value of $\operatorname{det} \mathrm{F}=\lambda_{1} \lambda_{2}$ is also output. (Refer to the LUSAS Theory Manual.)
6. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
7. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
8. This element is based on a formulation that tackles the problem of volumetric locking in a different way to that used in QPN4M. It should be preferred to the QPN4M in cases where Eulerian description (with a current configuration taken as reference) is more appropriate than the co-rotational description (e.g. inflation problems).

Restrictions

\square Avoid excessive aspect ratio
Avoid non-uniform initial and thermal strains with coarse meshes.

2D Plane Strain Continuum Crack Tip Elements

General

Element Name

TNK6

Crack specified at Node 1

QNK8

Crack specified at Node 1

Element Group

2D Continuum
Element
Plane Strain Continuum
Subgroup
Element Description

Number Of
A family of 2D isoparametric crack tip elements where the crack tip can be located at any corner node. The mid-side nodes are moved to the quarter points to produce a singularity at the crack tip. The strains vary as the square root of $1 / R$, where R is the distance from the crack tip. These elements are used at the crack tip only and should be mixed with the higher order plane strain continuum elements. The elements are numerically integrated.

Number 6 or 8 , numbered anticlockwise.

Freedoms U, V: at each node.
Node
X, Y : at each node.

Coordinates

Geometric Properties

Not applicable (a unit thickness is assumed).

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)
Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC PLANE STRAIN (Elastic: Orthotropic Plane Strain)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 4 (Not supported in LUSAS Modeller)

	Rigidities.	RIGIDITIES 4 (Not supported in LUSAS Modeller)
Matrix	Not applicable	
Joint	Not applicable	
Concrete		MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi-
		Crack Concrete)
Elasto-Plastic	Stress	Not applicable.
	resultant:	
	Interface:	MATERIAL PROPERTIES NONLINEAR 27
		Mresca:
		MATERIAL PROPERTIES NONLINEAR 61
		(Elastic: Isotropic, Plastic: Tresca, Hardening:
		Isotropic Hardening Gradient, Isotropic Plastic

AASHTOCEB-FIP
Chinese
Eurocode
IRC
Damage
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP(Concrete creep model to CEB-FIP ModelCode 1990)
MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86IRC(Concrete creep model to Indian IRC code ofPractice)
DAMAGE PROPERTIES SIMO, OLIVER(Damage)ViscoelasticVISCO ELASTIC PROPERTIES
ShrinkageSHRINKAGE CEB_FIP_90, EUROCODE_2,GENERAL, USER
Ko Initialisation Applicable
Rubber Not applicable
Generic IsotropicMATERIAL PROPERTIES NONLINEAR 89Polymer
(Generic Polymer Model)
Composite Not applicable
Loading
Prescribed Value PDSP, TPDSPPrescribed variable. U, V: at nodes.Concentrated loads. Px, Py: at nodes.
Loads
Element Loads Not
applicable.
Distributed Loads UDL

Not applicable.

Body Forces	FLD	Face loads. Px, Py: local face axis pressures at nodes.
	FLDG	Global Face Loads. $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \sigma_{\mathrm{xy}}$ at nodes
	CBF	Constant body forces for element. Xcbf, Ycbf, $0,0, \Omega z, \alpha z$
	BFP, BFPE	Body force potentials at nodes/for element. 0, $0,0, \varphi 4$, Xcbf, Ycbf
Velocities	VELO	Velocities. Vx, Vy: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. σx, $\sigma y, \sigma x y, \sigma z: ~ g l o b a l ~ s t r e s s e s . ~ \varepsilon x, ~ \varepsilon y, ~ \gamma x y: ~$ global strains.
	SSIG	Initial stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y, \sigma z$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z$: global stresses.
	SSRG	Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$, σ z: global stresses.
Target Stress/Strains	TSSIE,	Target stresses/strains at nodes/for element.
		$\sigma x, \sigma y, \sigma x y, \sigma z: ~ g l o b a l ~ s t r e s s e s . ~ \varepsilon x, ~ \varepsilon y, ~$ $\gamma \mathrm{xy}$: global strains.
	TSSIG	Target stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y, \sigma z$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0$, To, $0,0,0$
Overburden Phreatic Surface Field Loads	Applicable.	
	Applicable.	
	Not applicable.	
Temp Dependent Loads	Not	
	applicable.	

LUSAS Output
Solver $\operatorname{Stress}($ default): $\sigma x, \sigma y, \sigma x y, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (seedescription of principal stresses)
Strain: $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon \max , \varepsilon \min , \beta, \varepsilon s, \varepsilon e$Modeller See Results Tables (Appendix K).
Local Axes
Not applicable (global axes are the reference).
Sign Convention
\square Standard 2D continuum element
Formulation
Geometric Nonlinearity
Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
LagrangianEulerian For large displacements, large rotations and moderately largestrains.
Co-rotational For large displacements and large rotations.
Integration Schemes
Stiffness
Fine (see Options).
6-point (TNK6), 3x3 (QNK8)
12-point (TNK6)
Mass Default. 6-point (TNK6), 3x3 (QNK8)
Fine (see Options).

Default.
Mass Modelling\square Consistent mass (default).\square Lumped mass.
Options
18 Invokes finer integration rule.
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.

91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.
139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.
229 Co-rotational geometric nonlinearity.

Notes on Use

1.The element formulations are based on the standard isoparametric approach. Moving the mid-side nodes to the quarter points creates a singularity with theoretically infinite stress at the corner node.
2.Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
3. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
4. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.

Restrictions

\square Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

Elements QNK8 and TNK6 are specifically designed for application to fracture mechanics problems and may be used to model the singularities that occur at the crack tip. The mid-side nodes near the crack tip are shifted to the quarter point. This ensures a singularity is present at the crack tip and that the strains vary as $1 /$ square root of r where r is the distance from the crack tip. The triangular TNK6 element is more effective than the quadrilateral element.

2D Plane Strain Explicit Dynamics Elements

General

Element Name TPN3E

Element Group
2D Continuum
Element
Plane Strain Continuum
Subgroup
Element Description

A family of 2D isoparametric elements for explicit dynamic analyses. The elements are numerically integrated.
Number Of 3 or 4 numbered anticlockwise. Nodes
Freedoms U, V: at each node.
Node X, Y: at each node.
Coordinates

Geometric Properties

Not applicable (a unit thickness is assumed).

Material Properties

Elasto-Plastic Stress Not applicable.

Not applicable.resultant:Tresca:Drucker-Prager:

Mohr-Coulomb:ModifiedMohr-Coulomb:OptimisedImplicit VonMises:
VolumetricCrushing:StressPotential

Viscoelastic
Shrinkage
Not applicable Ko Initialisation

Not applicable
Rubber Not applicable
Generic Not
Polymer applicable
Composite Not applicable
Ko Initialisation

Creep

Damage

MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain) MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
MATERIAL PROPERTIES
MODIFIED MOHR_COULOMB (Elastic: Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
MATERIAL PROPERTIES NONLINEAR 81
(Volumetric Crushing or Crushable Foam)
STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep) (see Notes)
DAMAGE PROPERTIES SIMO, OLIVER
(Damage)
VISCO ELASTIC PROPERTIES Hardening. Granular)

Loading

Prescribed Value PDSP,

	TPDSP	
Concentrated Loads	CL	Concentrated loads. Px, Py: at each node.
Element Loads	Not applicable.	
Distributed Loads	UDL	Not applicable.
	FLD	Face loads. Px, Py: local face axis pressures at nodes.
	FLDG	Not applicable
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, $0,0, \Omega_{z}, \alpha z$
	BFP, BFPE	Body force potentials at nodes/for element. 0 , $0,0, \varphi 4, \mathrm{Xcbf}, \mathrm{Ycbf}$
Velocities	VELO	Velocities. Vx, Vy: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. σx, $\sigma y, \sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$ global strains.
	SSIG	Initial stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y, \sigma z$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. $\sigma \mathrm{x}, \sigma \mathrm{y}$, $\sigma x y, \sigma z$: global stresses.
	SSRG	Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$, σz : global stresses.
Target	Not	
Stres//Strains	applicable.	
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0$, To, $0,0,0$
Overburden	Not applicable.	
Phreatic Surface	Not applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output
Solver Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma \max , \sigma \min , \beta, \sigma \mathrm{~s}, \sigma \mathrm{e}$ (seedescription of principal stresses)Strain: $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon \max , \varepsilon \min , \beta, \varepsilon s, \varepsilon e$Modeller See Results Tables (Appendix K).
Local Axes
Not applicable (global axes are the reference).
Sign Convention
\square Standard 2D continuum element
Formulation
Geometric Nonlinearity
Total Lagrangian Not applicable.
Updated Not applicable.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations.
Integration Schemes
Stiffness Default. 1-point (see Notes).
Fine. As default.
Mass Default. 1-point (see Notes).
Fine. As default.
Mass Modelling
L Lumped mass only (see Notes).
Options
55 Output strains as well as stresses.
105 Lumped mass matrix (see Notes).
139 Output yielded Gauss points only.

Notes on Use

1. The element formulations are based on the standard
2. The system parameter HGVISC is used to restrict element mechanisms due to under-integration. The default value is usually sufficient.
3. The bulk viscosity coefficients are used to restrict numerical oscillations due to the traversal of stress waves. The default bulk viscosity coefficients (BULKLF and BULKQF) may be altered as SYSTEM parameters.
4. These elements must be used with a dynamic central difference scheme and a lumped mass matrix in order to obtain the maximum efficiency from the numerical algorithms.
5. These elements are not applicable for static or eigenvalue analyses.
6. Automatic time step calculations are implemented.
7. As the element geometry is always updated in an explicit dynamic analysis, a nonlinear solution is obtained. When using explicit dynamics elements NONLINEAR CONTROL must be specified.
8. If CREEP PROPERTIES are defined, explicit time integration must be specified in VISCOUS CONTROL.
9. Non-conservative loading is invoked when the FLD loading facility is applied.
10. Rayleigh damping coefficients are not supported by these elements.
11. Constraint equations are not available for use with these elements.
12. Nodes must be specified in an anticlockwise order. Option 123 is not applicable for this element. When using Modeller ensure surface normal is in the +ve z direction.

Restrictions

\square Avoid excessive aspect ratio

Recommendations on Use

Explicit dynamics elements may be used to define surface boundaries which will be active in a slideline analysis.

2D Plane Strain Two Phase Continuum Elements

General

Element Name

TPN6P

Element Group

2D Continuum
Plane Strain Continuum
Subgroup
Element Description

A family of 2D isoparametric elements with higher order models capable of modelling curved boundaries. The elements are numerically integrated.
Number Of
Nodes
Freedoms
Node
$\mathrm{U}, \mathrm{V}, \mathrm{P}$ at corner nodes. U, V at midside nodes.
X, Y : at each node.
Coordinates

Geometric Properties

Not applicable (a unit thickness is assumed).

Material Properties

Linear Isotropic:
MATERIAL PROPERTIES (Elastic: Isotropic)
Orthotropic:
MATERIAL PROPERTIES ORTHOTROPIC PLANE STRAIN (Elastic: Orthotropic Plane Strain)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 4 (Not supported in LUSAS Modeller)
Rigidities. RIGIDITIES 4 (Not supported in LUSAS Modeller)
Matrix Not
applicable
Joint Not
applicable

Concrete

Elasto-Plastic Stress resultant: Tresca:

Drucker-
Prager:
Mohr-
Coulomb:

Modified
Mohr-
Coulomb:

Modified

Cam-clay

Optimised Implicit Von Mises:
Volumetric
Crushing:
Interface
Stress
Potential

Creep

Damage
Viscoelastic
Shrinkage

MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi Crack Concrete)
Not applicable.
MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64
(Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65
(Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
MATERIAL PROPERTIES
MODIFIED MOHR_COULOMB (Elastic:
Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
MATERIAL PROPERTIES CAM_CLAY MODIFIED (Elastic: Isotropic, Plastic)
MATERIAL PROPERTIES NONLINEAR 75
(Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
MATERIAL PROPERTIES NONLINEAR 81
(Volumetric Crushing or Crushable Foam)
MATERIAL PROPERTIES NONLINEAR 27
STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)
VISCOELASTIC PROPERTIES
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Ko Initialisation Not

applicable
Rubber Not
applicable

Generic Polymer Composite	Not applicable	MATERIAL PROPERTIES NONLINEAR 89 (Generic Polymer Model)
Loading		
Prescribed Value	PDSP, TPDSP	Prescribed variable. U, V, P at corner nodes. U, V at midside nodes.
Concentrated Loads	CL	Concentrated loads. Px, Py, Q at corner nodes. Px, Py at midside nodes.
Element Loads	Not applicable.	
Distributed Loads	UDL	Not applicable.
	FLD	Face Loads. Px, Py, Q: face pressures/flux per unit area at corner nodes relative to local face axes. Px, Py: face pressures at midside nodes relative to local face axes.
	FLDG	Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodes
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, $0,0, \Omega z, \alpha z, g x, g y$ (see Notes on Use)
	BFP, BFPE	Body force potentials at nodes/for element. 0, $0,0, \varphi 4, \mathrm{Xcbf}, \mathrm{Ycbf}, \mathrm{gx}, \mathrm{gy}$ (see Notes on Use)
Velocities	VELO	Velocities. Vx, Vy: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. σx, $\sigma y, \sigma x y, \sigma z, \sigma p$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$: global strains.
	SSIG	Initial stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y, \sigma z, \sigma p:$ global stresses. $\mathcal{E x}, \varepsilon y, \gamma x y$: global strains.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z, \sigma p:$ global stresses.
	SSRG	Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma z, \sigma p$ global stresses.
Target Stress/Strains	$\begin{aligned} & \text { TSSIE, } \\ & \text { TSSIA } \end{aligned}$	Target stresses/strains at nodes/for element. $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma p$ global stresses. $\varepsilon x, \varepsilon y$,

```
                                    \gammaxy: global strains.
    TSSIG
    Target stresses/strains at Gauss points. }\sigmax,\sigmay
    \sigmaxy, \sigmaz, \sigmap: global stresses. &x, \varepsilony, }\gamma\textrm{xy
    global strains.
    Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0,
    To, 0, 0, 0
    Overburden Applicable.
Phreatic Surface Applicable.
    Field Loads Not
        applicable.
Temp Dependent Not
    Loads applicable.
```


LUSAS Output

Solver \quad Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma p, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)
Strain: $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z=0, \varepsilon v, \varepsilon \max , \varepsilon \mathrm{~min}, \beta, \varepsilon \mathrm{~s}, \varepsilon \mathrm{e}$
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default.

	Fine (see Options).	$3 \times 3(\mathrm{QPN8P})$
Mass	Default.	3-point (TPN6P), 2x2 (QPN8P)
	Fine (see Options).	$3 \times 3(\mathrm{QPN8P})$

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes finer integration rule.
36 Follower loads.
54 Updated Lagrangian geometric nonlinearity
55 Output strains as well as stresses
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.
139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.
229 Co-rotational geometric nonlinearity.

Notes on Use

1. Two phase material parameters must be used with these elements for undrained and consolidation analysis.
2. The element formulations are based on the standard isoparametric approach. The variation of isoparametric stresses and pore pressures within an element can be considered linear.
3. All elements pass the patch test.
4. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
5. Non-conservative loading is available with these elements when using Updated Lagrangian, Eulerian or co-rotational (with OPTION 36) geometric nonlinear formulations together with the FLD loading facility.
6. The global components of gravity acting on the fluid phase are defined by gx and gy under CBF and BFP loading.

Restrictions

\square Ensure mid-side node centrality

- Avoid excessive element curvature

A Avoid excessive aspect ratio

2D Axisymmetric Solid Continuum Elements

General

Element Name

TAX3

QAX4

2D Continuum
Element Group Element Subgroup Element Description

A family of 2D isoparametric elements with higher order models capable of modelling curved boundaries. The formulations apply over a unit radian segment of the structure and the loading and boundary conditions are axisymmetric. By default, the Y-axis is taken as the axis of symmetry. The elements are numerically integrated.
Number Of
Nodes
Freedoms U, V: at each node.
Node X, Y: at each node.
Coordinates

TAX6

QAX8

$3,4,6$, or 8 numbered anticlockwise.

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
	Orthotropic:	MATERIAL PROPERTIES ORTHOTROPIC AXISYMMETRIC (Elastic: orthotropic Axisymmetric)
	Anisotropic:	MATERIAL PROPERTIES ANISOTROPIC 4 (Not supported in LUSAS Modeller)
	Rigidities.	Not applicable.
Matrix	Not applicable	
Joint	Not applicable	
Concrete		MATERIAL PROPERTIES NONLINEAR 105 (Elastic: Isotropic, Plastic: Transient Smoothed Multi-Crack Concrete)
		MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed MultiCrack Concrete)
Elasto-Plastic	Stress resultant:	Not applicable.
	Interface:	MATERIAL PROPERTIES NONLINEAR 27.
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker- Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	MohrCoulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Modified	MATERIAL PROPERTIES
	Mohr-	MODIFIED MOHR_COULOMB (Elastic:
	Coulomb:	Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
	Modified Camclay	MATERIAL PROPERTIES CAM_CLAY MODIFIED (Elastic: Isotropic, Plastic)
	Optimised	MATERIAL PROPERTIES NONLINEAR 75
	Implicit Von	(Elastic: Isotropic, Plastic: Von Mises,
	Volumetric	MATERIAL PROPERTIES NONLINEAR
	Crushing:	(Volumetric Crushing or Crushable Foam)
	Stress Potential	STRESS POTENTIAL VON_MISES, HILL, HOFFMAN

(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP (Concrete creep model to CEB-FIP Model Code 1990)

AASHTO

CEB-FIP

Chinese

Eurocode

IRC

Damage

Viscoelastic
Shrinkage

Ko Initialisation Applicable
 Rubber Not applicable
 Generic Isotropic Polymer
 Composite Not applicable

MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)

MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP
(Concrete creep model to CEB-FIP Model Code 1990)

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE

(Concrete creep model to EUROCODE_2)

MATERIAL PROPERTIES NONLINEAR 86 IRC
(Concrete creep model to Indian IRC code of Practice)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)
VISCO ELASTIC PROPERTIES
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

MATERIAL PROPERTIES NONLINEAR 89 (Generic Polymer Model)

Loading

Prescribed Value PDSP, TPDSP
Prescribed variable. U, V: at nodes.
Concentrated CL Loads

Concentrated loads. Px, Py: force per unit radian at nodes.
Element Loads Notapplicable.
Distributed Loads UDLFLDFLDGBody Forces CBF
BFP, BFPE
Velocities VELOAccelerations ACCEViscous Support VSLLoadsInitial SSI, SSIE
Stress/Strains
SSIG
Residual Stresses SSR, SSRESSRGTarget TSSIE, TSSIAStress/Strains
TSSIG
Temperatures TEMP, TMPEResidual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$,$\sigma$ z: global stresses.
Target stresses/strains at nodes/for element. σx,$\sigma y, \sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:$global strains.Target stresses/strains at Gauss points. $\sigma x, \sigma y$,$\sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:$global strains.Temperatures at nodes/for element. T, $0,0,0$,To, $0,0,0$
Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Notapplicable.
Temp Dependent Not

Loads applicable.

LUSAS Output

$$
\begin{aligned}
\text { Solver } & \begin{array}{l}
\text { Stress (default): } \sigma x, \sigma y, \sigma x y, \sigma z, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e(s e e \\
\text { description of principal stresses) }
\end{array} \\
& \text { Strain: } \varepsilon x, \varepsilon y, \gamma x y, \varepsilon z, \varepsilon \max , \varepsilon \min , \beta, \varepsilon s, \varepsilon \mathrm{e} \\
\text { Modeller } & \text { See Results Tables (Appendix K). }
\end{aligned}
$$

Local Axes

Not applicable (global axes are the reference).

Sign Convention

\square Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations. Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.

Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 1-point (TAX3), 3-point (TAX6), 2x2 (QAX4, QAX8)
Fine (see Options). 3x3 (QAX8), 3-point (TAX3).
Mass Default. 1-point (TAX3), 3-point (TAX6), 2x2 (QAX4, QAX8)
Fine (see Options). 3x3 (QAX8), 3-point (TAX3).

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes finer integration rule.
$47 \quad \mathrm{X}$-axis taken as axis of symmetry
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.
139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of stresses within an element can be regarded as constant for the lower order (corner node only) elements, and linear for the higher order (midside node) elements.
2. All elements pass the patch test.
3. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
4. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
5. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
6. The maximum and minimum principal stress computations for axisymmetric elements do not include the σz term as this is implicitly a principal stress in a biaxial stress field.
7. An initial stress/strain or thermal load that varies across an element should not be applied to this element. A limitation of the standard isoparametric approach when used for lower order elements is that only constant stress/strain fields can be imposed correctly.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- The 8 -noded element with a $2 * 2$ Gauss rule is usually the most effective element, as the under-integration of the stiffness matrix prevents locking, which may occur either when the element is subjected to parasitic shear, or as the material reaches the incompressible limit (elasto-plasticity). The Gauss point stresses are also sampled at the most accurate locations for the element. However, the element does possess one spurious zero energy mode. This mode is very rarely activated in linear analysis, but it may occur in both materially and geometrically nonlinear analyses. Therefore, a careful examination of the solution should be performed, to check for spurious stress oscillations and peculiarities in the deformed configuration.
- The 8 -noded element with a $3 * 3$ Gauss rule may be used if a spurious mechanism is excited with the $2 * 2$ Gauss rule.
- The 4-noded element should not be used for analyses where in-plane bending effects are significant as the element tends to lock in parasitic shear.

2D Axisymmetric Solid Continuum Element with Enhanced Strains

General

QAX4M

Element Group

2D Continuum
Element
Axisymmetric Solid Subgroup
Element Description

A 2D isoparametric element with an assumed strain field. This mixed assumed strain element demonstrates a superior performance to QAX4 (see Notes). The formulations apply over a unit radian segment of the structure, and the loading and boundary conditions are axisymmetric. By default, the Y -axis is taken as the axis of symmetry. The element is numerically integrated.
Number Of 4, numbered anticlockwise.
Nodes
Freedoms U, V: at each node.
Node
X, Y : at each node.

Coordinates

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
	Orthotropic:	MATERIAL PROPERTIES ORTHOTROPIC
		AXISYMMETRIC (Elastic: Orthotropic
		Axisymmetric)
	Anisotropic:	MATERIAL PROPERTIES ANISOTROPIC 4
		(Not supported in LUSAS Modeller)
	Rigidities.	Not applicable
Matrix	Not	

$$
\begin{aligned}
& \text { Joint } \begin{array}{l}
\text { applicable } \\
\text { Not } \\
\text { applicable }
\end{array} \\
& \text { Concrete }
\end{aligned}
$$

Elasto-Plastic
Stress resultant: Tresca:

Drucker-
Prager:
MohrCoulomb:

Modified
Mohr-
Coulomb:

Modified
Cam-clay
Optimised Implicit Von Mises:
Volumetric
Crushing:
Stress
Potential

Creep

AASHTO

CEB-FIP

MATERIAL PROPERTIES NONLINEAR 105
(Elastic: Isotropic, Plastic: Transient Smoothed Multi-Crack Concrete)
MATERIAL PROPERTIES NONLINEAR 109
(Elastic: Isotropic, Plastic: Smoothed MultiCrack Concrete)
Not applicable.

MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
MATERIAL PROPERTIES MODIFIED MOHR_COULOMB (Elastic: Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
MATERIAL PROPERTIES CAM_CLAY MODIFIED (Elastic: Isotropic, Plastic)
MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
MATERIAL PROPERTIES NONLINEAR 81 (Volumetric Crushing or Crushable Foam)
STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code of Practice)
CEB-FIP
(Concrete creep model to CEB-FIP Model Code 1990)
Chinese
Eurocode
IRC
MATERIAL PROPERTIES NONLINEAR 86
CHINESE
(Chinese creep model to Chinese Code ofPractice)
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2) 2)
MATERIAL PROPERTIES NONLINEAR 86 IRC(Concrete creep model to Indian IRC code ofPractice)
Damage
DAMAGE PROPERTIES SIMO, OLIVER (Damage)
Viscoelastic
Shrinkage
Ko Initialisation Applicable Rubber Not applicable
Generic Isotropic Polymer
Composite Not
applicable
VISCO ELASTIC PROPERTIES
SHRINKAGE CEB_FIP_90, EUROCODE_2,GENERAL, USER
MATERIAL PROPERTIES NONLINEAR 89
(Generic Polymer Model)
Loading
Prescribed Value PDSP, TPDSP Prescribed variable. U, V: at nodes.Concentrated CLLoadsCL
Element Loads Notapplicable.
Distributed Loads UDL
FLD
FLDG
Body Forces CBF
Not available.Face loads. Px, Py: local face pressures atnodes (force per unit area).
Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodes
Constant body forces for element. Xcbf, Ycbf,$\Omega \mathrm{x}, \Omega_{\mathrm{y}}$ (angular velocity must be applied
about axis of symmetry), 0,0 .BFP, BFPE Body force potentials at nodes/for element. 0,

Velocities VELO
Accelerations ACCE
Viscous Support VSL
Loads
Initial SSI, SSIE
Stress/Strains

Residual Stresses SSR, SSRE

SSRG

Target TSSIE, Stress/Strains TSSIA

TSSIG

Temperatures TEMP, TMPE

Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Not applicable.
Temp Dependent Not
Loads applicable.
$0,0, \varphi 4, \mathrm{Xcbf}, \mathrm{Ycbf}$
Velocities. Vx, Vy: at nodes.
Acceleration Ax, Ay: at nodes.
Viscous support loads. VLx, VLy: at nodes.

Initial stresses/strains at nodes/for element. σx, $\sigma y, \sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:$ global strains.

Initial stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y, \sigma z$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:$ global strains.

Residual stresses at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses.

Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$, σ z: global stresses.
Target stresses/strains at nodes/for element. $\sigma x, \sigma y, \sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$, εz : global strains.
Target stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y, \sigma z$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:$ global strains.
Temperatures at nodes/for element. T, 0, 0, 0, To, 0, 0, 0

LUSAS Output

Solver
Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma \max , \sigma m i n, \beta, \sigma s, \sigma e$ (see description of principal stresses)

Strain: $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z, \varepsilon \max , \varepsilon \min , \beta, \varepsilon s, \varepsilon e$
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately largestrains.
Co-rotational Not applicable.
Integration Schemes
Stiffness Default. 2×2
Fine. As default.
Mass Default. 2×2
Fine. As default.
Mass Modelling
\square Consistent mass (default).
\square Lumped mass.
Options
$47 \quad \mathrm{X}$-axis taken as axis of symmetry
54 Updated Lagrangian geometric nonlinearity
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.
139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of stresses within an element can be regarded as linear.
2. All elements pass the patch test.
3. The strain field for this element consists of two parts: the compatible strains derived from an assumed displacement field and the assumed enhanced strains; see LUSAS Theory Manual. The assumed enhanced strain field is defined using 5 parameters for both linear and nonlinear applications.
4. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
5. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it will only work if every element is numbered clockwise. The best way to avoid a mixture is to check and appropriately reverse the surface definitions in the pre-processing stage of modelling.
6. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
7. The maximum and minimum principal stress computations for axisymmetric elements do not include the σz term as this is implicitly a principal stress in a biaxial stress field.
8. Convergence difficulties can sometimes arise when using enhanced strain elements with nonlinear materials, particularly if the material is elastic-perfectly plastic or if a very shallow hardening curve is defined. In such cases it is recommended that the standard element formulation is used.
9. This element exhibits an improved performance when compared with its parent element QAX4. The integration rules are the same as the parent element. The elements do not suffer from locking due to parasitic shear or when the material approaches the incompressible limit. The elements are also free of any zero energy modes.
10. In analyses where significant in-plane bending is thermally induced it is recommended that a nonlinear solution is used. If a linear solution is required, then quadratic plane strain elements QPN8 are recommended.

Restrictions

A Avoid excessive aspect ratio

2D Axisymmetric Solid Continuum Element for Large Strains

General

Element Group 2D Continuum

Element Axisymmetric Solid
Subgroup
Element A 2D isoparametric element incorporating an internal pressure Description variable. This element should be used for analyses involving large strains. The formulations apply over a unit radian segment of the structure and the loading and boundary conditions are axisymmetric. By default, the Y-axis is taken as the axis of symmetry. The element is numerically integrated.
Number Of 4, numbered anticlockwise. Nodes
Freedoms U, V: at each node.
Node X, Y: at each node.
Coordinates

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear Notapplicable
Matrix Notapplicable
Joint Notapplicable
Concrete Notapplicable

Elasto-Plastic Implicit
Optimised Von Mises Stress Potential

Creep Not

 applicableDamage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Ko Initialisation Not applicable
Rubber Ogden
Mooney-
Rivlin
Neo-Hookean

Hencky
Generic Polymer Not
applicable
Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP
Concentrated CL
Loads
Element Loads Not applicable.
Distributed Loads UDL
FLD

FLDG
Body Forces CBF

BFP, BFPE

MATERIAL PROPERTIES NONLINEAR 75
(Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic)
STRESS POTENTIAL VON_MISES (Isotropic: von Mises)
MATERIAL PROPERTIES RUBBER OGDEN
(Rubber: Ogden)
MATERIAL PROPERTIES RUBBER
MOONEY_RIVLIN (Rubber: Mooney-Rivlin)
MATERIAL PROPERTIES RUBBER
NEO_HOOKEAN (Rubber: Neo-Hookean)
MATERIAL PROPERTIES RUBBER
HENCKY (Rubber: Hencky)

Prescribed variable. U, V: at nodes.
Concentrated loads. Px, Py: force per unit radian at nodes.

Not available.
Face loads. Px, Py: local face pressures at nodes (force per unit area).
Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodes Constant body forces for element. Xcbf, Ycbf, $\Omega \mathrm{x}, \Omega \mathrm{y}$, (angular velocity must be applied about axis of symmetry), 0,0 .
Body force potentials at nodes/for element. 0, $0,0, \varphi 4, \mathrm{Xcbf}, \mathrm{Ycbf}$

Velocities	VELO	Velocities. Vx, Vy: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. $\sigma x, \sigma y, \sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y$, $\gamma \mathrm{xy}, \varepsilon z$: global strains.
	SSIG	Initial stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y, \sigma z$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:$ global strains.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. σx, $\sigma y, \sigma x y, \sigma z:$ global stresses.
	SSRG	Residual stresses at Gauss points. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses.
Target Stress/Strains	TSSIE, TSSIA	Target stresses/strains at nodes/for element. $\sigma x, \sigma y, \sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y$, $\gamma \mathrm{xy}, \varepsilon z$: global strains.
	TSSIG	Target stresses/strains at Gauss points. σx, $\sigma y, \sigma x y, \sigma z:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$, εz : global strains.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0$, To, $0,0,0$
Overburden	Applicable.	
Phreatic Surface	Applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver
Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)
Principal stretches, $\lambda_{1}, \lambda_{2}, \lambda_{3} 1, \theta \lambda$, $\operatorname{det} F$. Where λ_{i} are the principal stretches, $\theta \lambda$ the angle between the maximum principal stretch and the global X axis, and $\operatorname{det} \mathrm{F}$ the determinant of the deformation gradient or volume ratio.
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.
Updated Not applicable.
Lagrangian
Eulerian For large displacements and large strains.
Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 2x2
Fine. As default.
Mass Default. 2x2
Fine. As default.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

47 X-axis taken as axis of symmetry.
55 Output stretches as well as stresses.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix
123 Clockwise node numbering.

Notes on Use

1. The element formulations are based on the standard isoparametric approach.

The variation of stresses within an element can be regarded as linear.
2. The element passes the large strain patch test for rubber.
3. Non-conservative loading is available with this element when using FLD loading.
4. The stresses output are Kirchhoff stresses (see LUSAS Theory Manual).
5. Stretch output consists of the principal stretches and the angle defining the principal directions. The value of $\operatorname{det} \mathrm{F}=\lambda_{1} \lambda_{2}$ is also output. (Refer to the LUSAS Theory Manual for more details.)
6. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it will only work if every element is numbered clockwise. The best way to avoid a mixture is to check and appropriately reverse the surface definitions in the pre-processing stage of modelling.
7. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
8. The maximum and minimum principal stress computations for axisymmetric elements do not include the σz term as this is implicitly a principal stress in a biaxial stress field.

Restrictions

A Avoid excessive aspect ratio
A Avoid non-uniform initial and thermal strains with coarse meshes

2D Axisymmetric Solid Continuum Crack Tip Elements

General

Element Name

TXK6

Crack specified at Node 1

QXK8

Crack specified at Node 1

Element Group
Element Subgroup
Element Description

Number Of Nodes
Freedoms
Node Coordinates

2D Continuum
Axisymmetric Solid
A family of 2D isoparametric crack tip elements where the crack tip can be located at any node. The mid-side nodes are moved to the quarter points to produce a singularity at the crack tip. The strains vary as the square root of $1 / \mathrm{R}$, where R is the distance from the crack tip. These elements are used at the crack tip only and should be mixed with the higher order axisymmetric solid continuum elements. The formulations apply over a unit radian segment of the structure, and the loading and boundary conditions are axisymmetric. By default, the Y -axis is taken as the axis of symmetry. The elements are numerically integrated.
6 or 8 numbered anticlockwise.
U, V : at each node.
X, Y: at each node.

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear Isotropic:
MATERIAL PROPERTIES (Elastic: Isotropic)
Orthotropic:
MATERIAL PROPERTIES ORTHOTROPIC AXISYMMETRIC (Elastic: Orthotropic Axisymmetric)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 4

(Not supported in LUSAS Modeller)		
	Rigidities.	Not applicable.
Matrix	Not applicable	
Joint	Not applicable	
Concrete		MATERIAL PROPERTIES NONLINEAR 109
		(Elastic: Isotropic, Plastic: Smoothed Multi-
		Crack Concrete)
Elasto-Plastic	Stress resultant:	Not applicable.
	Interface:	MATERIAL PROPERTIES NONLINEAR 27
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker- Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	MohrCoulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Modified	MATERIAL PROPERTIES
	Mohr-	MODIFIED MOHR_COULOMB (Elastic:
	Coulomb:	Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
	Modified Camclay	MATERIAL PROPERTIES CAM_CLAY MODIFIED (Elastic: Isotropic, Plastic)
	Optimised Implicit Von Mises:	MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
	Volumetric Crushing:	MATERIAL PROPERTIES NONLINEAR 81 (Volumetric Crushing or Crushable Foam)
	Stress Potential	STRESS POTENTIAL VON_MISES, HILL, HOFFMAN (Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
Creep		CREEP PROPERTIES (Creep)
	AASHTO	MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86

CEB-FIP
(Concrete creep model to CEB-FIP Model Code 1990)
Chinese
MATERIAL PROPERTIES NONLINEAR 86Eurocode
Damage
IRC
Viscoelastic
Shrinkage
Shrinkage Applicable
Rubber Not applicable
Generic IsotropicPolymerComposite Not applicableCHINESE(Chinese creep model to Chinese Code ofPractice)
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86
IRC
(Concrete creep model to Indian IRC code ofPractice)
DAMAGE PROPERTIES SIMO, OLIVER
(Damage)
VISCO ELASTIC PROPERTIES
SHRINKAGE CEB_FIP_90, EUROCODE_2,GENERAL, USER
Loading
Prescribed PDSP, TPDSPPrescribed variable. U, V: at nodes.Value
Concentrated CL
Loads
Element Loads Not applicable.

Distributed UDL Loads

FLD

FLDG
Body Forces CBF

BFP, BFPE

Not applicable.
Face loads. Px, Py: local face axis pressures at nodes.

Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodes
Constant body forces for element. Xcbf, Ycbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}$ (angular velocity must be applied about axis of symmetry), 0,0 .
Body force potentials at nodes/for element. 0, 0, 0,

LUSAS Output

Solver \quad Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)

Strain: $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \gamma \mathrm{xy}, \varepsilon \mathrm{z}, \varepsilon \mathrm{max}, \varepsilon \min , \beta, \varepsilon \mathrm{s}, \varepsilon \mathrm{e}$
Modeller See Results Tables (Appendix K).
Local Axes
Not applicable (global axes are the reference).
Sign Convention
\square Standard 2D continuum element
Formulation
Geometric Nonlinearity
Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational Not applicable.
Integration Schemes
Stiffness Default. 6-point (TXK6), 3x3 (QXK8) Fine (see Options). 12-point (TXK6).
Mass Default. 6-point (TXK6), 3x3 (QXK8)
Fine (see Options). 12-point (TXK6).
Mass Modelling
\square Consistent mass (default).
\square Lumped mass.
Options
18 Invokes finer integration rule.
47 X-axis taken as axis of symmetry.
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix
123 Clockwise node numbering.

139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.

Notes on Use

1. The element formulations are based on the standard isoparametric approach. Moving the mid-side nodes to the quarter points creates a singularity with theoretically infinite stress at the corner node.
2. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
3. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it will only work if every element is numbered clockwise. The best way to avoid a mixture is to check and appropriately reverse the surface definitions in the pre-processing stage of modelling.
4. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
5. The maximum and minimum principal stress computations for axisymmetric elements do not include the σz term as this is implicitly a principal stress in a biaxial stress field.

Restrictions

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

The QXK8 and TXK6 elements are specifically designed for application to fracture mechanics problems and may used to model the singularities that occur at the crack tip. The mid-side nodes near the crack tip are shifted to the quarter point. This ensures a singularity is present at the crack tip and that the strains vary as $1 /$ square root of r where r is the distance from the crack tip. The triangular TPK6 element is more effective than the quadrilateral element.

2D Axisymmetric Solid Explicit Dynamics Elements

General

QAX4E

Element Group

2D Continuum
Element
Axisymmetric Solid Continuum Subgroup
Element Description

A family of 2D isoparametric elements for explicit dynamic analyses. The formulations apply over a unit radian segment of structure and loading boundary conditions are axisymmetric. By default, the Y-axis is taken as the axis of symmetry. The elements are numerically integrated.
Number Of 3 or 4 numbered anticlockwise. Nodes Freedoms U, V: at each node.

Node X, Y: at each node. Coordinates

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
	Orthotropic:	MATERIAL PROPERTIES ORTHOTROPIC AXISYMMETRIC (Elastic: Orthotropic
		Axisymmetric)
	Anisotropic:	Not applicable
Matrix	Rigidities.	Not applicable
applicable		
Joint	Not	

	applicable	
Concrete	Not applicable	
Elasto-Plastic	Stress resultant:	Not applicable
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker- Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	MohrCoulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Modified	MATERIAL PROPERTIES
	Mohr-	MODIFIED MOHR_COULOMB (Elastic:
	Coulomb:	Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
	Optimised	MATERIAL PROPERTIES NONLINEAR 75
	Implicit Von	(Elastic: Isotropic, Plastic: Von Mises,
		Hardening: Isotropic \& Kinematic)
	Volumetric	MATERIAL PROPERTIES NONLINEAR 81
	Crushing:	(Volumetric Crushing or Crushable Foam)
	Stress	STRESS POTENTIAL VON_MISES, HILL,
	Potential	HOFFMAN
		(Isotropic: von Mises, Modified von Mises
		Orthotropic: Hill, Hoffman)
Creep		CREEP PROPERTIES (Creep) (See Notes)
	AASHTO	MATERIAL PROPERTIES NONLINEAR 86
		AASHTO
		(Concrete creep model to AASHTO code of Practice)
	CEB-FIP	
		MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP
		(Concrete creep model to CEB-FIP Model Code
		1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86
		CHINESE
		(Chinese creep model to Chinese Code of
		Practice)

	Eurocode	MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
	IRC	(Concrete creep model to EUROCODE_2) MATERIAL PROPERTIES NONLINEAR 86
		IRC (Concrete creep model to Indian IRC code of Practice)
Damage		DAMAGE PROPERTIES SIMO, OLIVER
(Damage)		

Initial SSI, SSIE Initial stresses/strains at nodes/for element. σx,

Stress/Strains

Residual Stresses SSR, SSRE

SSRG

Target
Not Stress/Strains applicable.
Temperatures TEMP, TMPE

Overburden Not

 applicablePhreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not
Loads applicable. ,
$\sigma y, \sigma x y, \sigma z$: global stresses. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:$ global strains.

Initial stress/strains at Gauss points. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stress. $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:$ global strains.

Residual stresses at nodes/for element $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses.
Residual stresses at Gauss points. $\sigma x, \sigma y$, $\sigma x y, \sigma z:$ global stresses.

Temperatures at nodes/for element. T, $0,0,0$, To, $0,0,0$

LUSAS Output

Solver
Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma \max , \sigma \min , \beta, \sigma \mathrm{~s}, \sigma \mathrm{e}$ (see description of principal stresses)
Strain: $\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z, \varepsilon \max , \varepsilon \min , \beta, \varepsilon s, \varepsilon e$
Modeller See Results Tables (Appendix K)

Local Axes

Not applicable.

Sign Convention

\square Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.
Updated Not applicable.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational Not applicable.

Integration Schemes

Stiffness Default. 1-point (see Notes)
Fine. As default.
Mass Default. 1-point (see Notes)
Fine. As default.

Mass Modelling

Lumped mass (see Notes).

Options

$47 \quad$ X-axis taken as axis of symmetry
55 Output strains as well as stresses.
105 Lumped mass matrix (see Notes).
139 Output yielded Gauss points only.

Notes on Use

1. The element formulations are based on the standard
2. The system parameter HGVISC is used to restrict element mechanisms due to under-integration. The default value is usually sufficient.
3. The bulk viscosity coefficients are used to restrict numerical oscillations due to the traversal of stress waves. The default bulk viscosity coefficients (BULKLF and BULKQF) may be altered as a SYSTEM parameter.
4. These elements must be used with a dynamic central difference scheme and a lumped mass matrix.
5. These elements are not applicable to static or eigenvalue analyses.
6. Automatic time step calculations are implemented.
7. As the element geometry is always updated in an explicit dynamic analysis, a nonlinear solution is obtained. When using explicit dynamics elements Nonlinear Control must be specified.
8. If CREEP PROPERITES are defined explicit time integration must be specified in VISCOUS CONTROL.
9. Non-conservative loading is invoked when the face loading (FLD) is applied.
10. Rayleigh damping coefficients are not supported by these elements.
11. Constraint equations are not available for use with these elements.
12. Nodes must be specified in an anticlockwise order. Option 123 is not applicable for this element. When using Modeller ensure surface normal is in the +ve z direction.
13. The maximum and minimum principal stress computations for axisymmetric elements do not include the σz term as this is implicitly a principal stress in a biaxial stress field.

Restrictions

\square Avoid excessive aspect ratio

Recommendations on Use

Explicit dynamics elements may be used to define surface boundaries which will be active in a slideline analysis.

2D Axisymmetric Solid Two Phase Continuum Elements

General

Element Name

TAX6P

2D Continuum
Axisymmetric Solid

A family of 2D isoparametric elements with higher order models capable of modelling curved boundaries. The formulations apply over a unit radian segment of the structure and the loading and boundary conditions are axisymmetric. By default, the Y-axis is taken as the axis of symmetry. The elements are numerically integrated.
Number Of 6 or 8 numbered anticlockwise.
Nodes
Freedoms
$\mathrm{U}, \mathrm{V}, \mathrm{P}$: at corner nodes. U, V : at midside nodes.
X, Y: at each node.

QAX8P

Element Subgroup Element Description
 Element Group

Node

Geometric Properties

Not applicable (a unit radian segment is assumed).

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)
Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC AXISYMMETRIC (Elastic: orthotropic, Axisymmetric)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 4 (Not supported in LUSAS Modeller)
Rigidities. Not applicable.
Matrix Not applicableJoint Not applicableConcreteElasto-Plastic Stressresultant:Interface: MATERIAL PROPERTIES NONLINEAR 27.Tresca: MATERIAL PROPERTIES NONLINEAR 61
(Elastic: Isotropic, Plastic: Tresca, Hardening:Isotropic Hardening Gradient, Isotropic PlasticStrain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64
(Elastic: Isotropic, Plastic: Drucker-Prager,Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65
(Elastic: Isotropic, Plastic: Mohr-Coulomb,Hardening: Granular with Dilation)
MATERIAL PROPERTIESMODIFIED MOHR_COULOMB (Elastic:Isotropic, Plastic: Mohr-Coulomb/Tresca, non-associative Hardening withtension/compression cut-off)Modified Cam- MATERIAL PROPERTIES CAM_CLAYclay MODIFIED (Elastic: Isotropic, Plastic)OptimisedImplicit VonMises:MATERIAL PROPERTIES NONLINEAR 75(Elastic: Isotropic, Plastic: Von Mises,Hardening: Isotropic \& Kinematic)
Volumetric MATERIAL PROPERTIES NONLINEAR 81Crushing:Stress Potential
CreepDamage(Volumetric Crushing or Crushable Foam)STRESS POTENTIAL VON_MISES, HILL,HOFFMAN
(Isotropic: von Mises, Modified von MisesOrthotropic: Hill, Hoffman)CREEP PROPERTIES (Creep)DAMAGE PROPERTIES SIMO, OLIVER(Damage)
VISCO ELASTIC PROPERTIESSHRINKAGE CEB_FIP_90, EUROCODE_2,GENERAL, USER
Ko Initialisation Applicable
Rubber Not applicable
Generic Isotropic MATERIAL PROPERTIES NONLINEAR 89
Polymer (Generic Polymer Model)Composite Not applicable
Loading
Prescribed Value PDSP, TPDSPConcentrated CLLoads
Element Loads Notapplicable.
Distributed Loads UDLFLD
FLDGBody Forces CBF

BFP, BFPE

Velocities VELO
Accelerations ACCE
Viscous Support VSL Loads
Initial SSI, SSIE
Stress/Strains

SSIG

Residual Stresses SSR, SSRE

SSRG

Target TSSIE, TSSIA Stress/Strains

Prescribed variable. U, V, P: at corner nodes. U, V:at midsaide nodes.
Concentrated loads. Px, Py, Q: force/flux per unit radian at corner nodes. Px,Py: force per unit radian at midside nodes.

Not available.
Face loads. Px, Py, Q: local face pressures/flux at corner nodes (force/flux per unit area). Px, Py: local face pressures at midside nodes.
Global Face Loads. $\sigma x, \sigma y, \sigma x y$ at nodes Constant body forces for element. Xcbf, Ycbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}$ (angular velocity must be applied about axis of symmetry), 0, 0, gx, gy. (See Notes on Use)
Body force potentials at nodes/for element. 0, 0, $0, \varphi 4$, Xcbf, Ycbf, gx, gy. (See Notes on Use)
Velocities. Vx, Vy: at nodes.
Acceleration Ax, Ay: at nodes.
Viscous support loads. VLx, VLy: at nodes.

Initial stresses/strains at nodes/for element. σx, $\sigma y, \sigma x y, \sigma z, \sigma p:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$, εz : global strains.
Initial stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma \mathrm{xy}, \sigma \mathrm{z}, \sigma \mathrm{p}$: global stresses. $\varepsilon \mathrm{x}, \varepsilon \mathrm{y}, \gamma \mathrm{xy}, \varepsilon z$: global strains.

Residual stresses at nodes/for element. $\sigma x, \sigma y$, $\sigma x y, \sigma z, \sigma p$: global stresses.

Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma x y$, $\sigma z, \sigma p:$ global stresses.
Target stresses/strains at nodes/for element. σx, $\sigma y, \sigma x y, \sigma z, \sigma p:$ global stresses. $\varepsilon x, \varepsilon y, \gamma x y$, εz : global strains.

```
TSSIG Target stresses/strains at Gauss points. \(\sigma x, \sigma y\), \(\sigma x y, \sigma z, \sigma p\) : global stresses. \(\varepsilon x, \varepsilon y, \gamma x y, \varepsilon z:\) global strains.
Temperatures TEMP, TMPE Temperatures at nodes/for element. T, \(0,0,0\), To, \(0,0,0\)
Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Not
applicable.
Temp Dependent Not
Loads applicable.
```


LUSAS Output

Solver \quad Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma z, \sigma p, \sigma \max , \sigma \min , \beta, \sigma s, \sigma e$ (see description of principal stresses)
Strain: $\varepsilon x, \varepsilon y, \gamma \mathrm{xy}, \varepsilon z, \varepsilon \max , \varepsilon \min , \beta, \varepsilon \mathrm{~s}, \varepsilon \mathrm{e}$
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 2D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational Not applicable.

Integration Schemes

Stiffness \quad Default. 3-point (TAX6P), 2x2 (QAX8P)

Fine (see Options). $\quad 3 \times 3$ (QAX8P)
Mass Default. 3-point (TAX6P), 2x2 (QAX8P)
Fine (see Options). 3x3 (QAX8P)
Mass Modelling
\square Consistent mass (default).
\square Lumped mass.
Options
18 Invokes finer integration rule.
$47 \quad$ X-axis taken as axis of symmetry
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
91 Invokes fine integration rule for mass matrix.
105 Lumped mass matrix.
123 Clockwise node numbering.
139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.

Notes on Use

1. Two phase material parameters must be used with these elements for undrained and consolidation analysis.
2. The element formulations are based on the standard isoparametric approach. The variation of isoparametric stresses and pore pressures within an element can be regarded as linear.
3. All elements pass the patch test.
4. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.
5. Option 123 will not operate on a mesh with a mixture of clockwise and anticlockwise elements, it is only applicable if every element is numbered clockwise. Surface normals should be visualised and if necessary corrected in the pre-processing stage.
6. Using Option 123 with local loading types, such as FLD and UDL, will cause load reversal.
7. The global components of gravity acting on the fluid phase are defined by gx and gy under CBF and BFP loading.
8. The maximum and minimum principal stress computations for axisymmetric elements do not include the $\square \mathrm{z}$ term as this is implicitly a principal stress in a biaxial stress field.

Restrictions

E Ensure mid-side node centrality

- Avoid excessive element curvature
- Avoid excessive aspect ratio

Recommendations on Use

- The 8 -noded element with a $2 * 2$ Gauss rule is usually the most effective element, as the under-integration of the stiffness matrix prevents locking, which may occur either when the element is subjected to parasitic shear, or as the material reaches the incompressible limit (elasto-plasticity). The Gauss point stresses are also sampled at the most accurate locations for the element. However, the element does possess one spurious zero energy mode. This mode is very rarely activated in linear analysis, but it may occur in both materially and geometrically nonlinear analyses. Therefore, a careful examination of the solution should be performed, to check for spurious stress oscillations and peculiarities in the deformed configuration.
- The 8 -noded element with a $3 * 3$ Gauss rule may be used if a spurious mechanism is excited with the $2 * 2$ Gauss rule.

2D Axisymmetric Fourier Ring Elements

Geometric Properties

Not applicable.

Material Properties

Linear Isotropic:
Orthotropic:

Anisotropic:
Rigidities.
Matrix Not applicable
Joint Not applicable
Concrete Not applicable Elasto-Plastic Not applicable

Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Ko Initialisation Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

MATERIAL PROPERTIES (Elastic: Isotropic)
MATERIAL PROPERTIES ORTHOTROPIC (Elastic: Orthotropic Plane Stress)
MATERIAL PROPERTIES
ORTHOTROPIC SOLID (Elastic:
Orthotropic Solid)
Not applicable
Not applicable

Loading

Prescribed Value PDSP, TPDSP
Concentrated CL Loads

Element Loads Not applicable.
Distributed Loads UDL
FLD

FLDG
Body Forces CBF

Prescribed variable. U, V, W: at each node.

Concentrated loads. Px, Py, Pz: at each node (global, may also be applied locally, see options).

Not applicable.

Face loads. Px, Py, Pz: local face axis pressures at nodes Pz in the direction of increasing θ. Not applicable.
Constant body forces for element (see Notes).

		Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}} \Omega_{\mathrm{z}}, \alpha_{\mathrm{x}}, \alpha \mathrm{y}, \alpha \mathrm{z}$, Xo, Yo, Zo, d θ / dt
	BFP, BFPE	Body force potentials at nodes/for element. Xcbf, Ycbf, Zcbf
Velocities	VELO	Velocities. Vx, Vy, Vz at nodes.
Accelerations	ACCE	Acceleration. Ax, Ay, Az at nodes.
Viscous Support Loads	VSL	Not applicable.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. σx, $\sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ local stresses. $\varepsilon x, \varepsilon y$, $\varepsilon z, \gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}$: local strains.
	SSIG	Initial stresses/strains at Gauss points. $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z:$ local stresses. $\varepsilon x, \varepsilon y, \varepsilon z$, $\gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}$: local strains.
Residual Stresses	Not applicable.	
Target	Not	
Stress/Strains	applicable.	
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0$, To, $0,0,0$
Overburden	Not applicable.	
Phreatic Surface	Not applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver Stress (default): $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z, \sigma \max , \sigma \min , \beta, \sigma s$, $\sigma \mathrm{e}$ (see description of principal stresses)

Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}, \varepsilon \max , \varepsilon \mathrm{min}, \beta, \varepsilon s, \varepsilon \mathrm{e}$
Use LUSAS Modeller to access results at various angles around the structure. See Local and Global Results in the Modeller User Manual

Modeller See Results Tables (Appendix K).

Local Axes

Cylindrical coordinates (see Appendix F).

- The element axes are defined in the cylindrical coordinate system $\mathrm{x}, \mathrm{y}, \mathrm{z}$, with associated displacements $\mathrm{u}, \mathrm{v}, \mathrm{w}$. The tangential displacement w is positive in the direction of increasing θ, where θ is the positive rotation defined by the righthand coordinate system about the axis of symmetry. u and v are positive in the direction of increasing x and y respectively and may be either axial or radial displacements depending on the definition of the axis of symmetry.

Sign Convention

- Standard 3D continuum element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness	Default.	1-point (TAX3F), 3-point (TAX6F), 2x2 (QAX4F, QAX8F)
	Fine (see	3x3 (QAX8F), 3-point (TAX3F)
Options).	1-point (TAX3F), 3-point (TAX6F), 2x2 (QAX4F,	
Mass	Default.	QAX8F)
	Fine (see	3x3 (QAX8F), 3-point (TAX3F)
Options).		

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
47 X -axis taken as axis of symmetry.
55 Output strains as well as stresses.
102 Switch off load correction stiffness matrix due to centripetal acceleration.
105 Lumped mass matrix.
202 Apply concentrated loads in cylindrical coordinates.

Notes on Use

1. CBF loads are always applied as acceleration loading. Xo, Yo, Zo, permit a shift in the original point of the global coordinate system (about which the rotations are applied). $\mathrm{d} \theta / \mathrm{dt}$ is the local angular velocity about the finite element coordinate system.
2. The application of the CBF loading depends on the particular element material model selected. See the description of Fourier analysis in Chapter 2 of the LUSAS User Guide .
3. If CBF loads are used the structure must be axisymmetric about the X -axis (option 47).
4. Fourier elements cannot be mixed with other element types.
5. Temperature fields cannot be used in dynamic or harmonic response analyses.
6. Centripetal load stiffening has been applied to the $\mathrm{n}=0$ term, but there is no nonlinear stress stiffening contribution. The centripetal load stiffening matrix, contrary, to its name, actually decreases the stiffness of the structure. Centripetal forces are proportional to the angular rotation squared and the lever arm of the mass from the centre of rotation. As the body spins, the lever arm is lengthened by positive displacements, which increases the applied load. This may, conversely, be thought of as reducing the stiffness. The centripetal load stiffness is applied by default, but is may be omitted by setting option 102.
7. The maximum and minimum principal stress computations for axisymmetric elements do not include the σz term as this is implicitly a principal stress in a biaxial stress field.

Restrictions

\square Ensure mid-side node centrality
\square Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- The element is designed to model fairly solid structures, but it also performs well in comparison to standard shell analyses and may be an effective alternative for axisymmetric problems. The QAX8F is the most effective element of the family.
- If eigenvalues are required from a thin shelled structure such as a cylinder, the Fourier elements provide an efficient means of checking a range of circumferential harmonics and will indicate the permissible coarseness of a finite element mesh which will adequately represent the 3D variation.

Chapter 4: 3D Continuum Elements

3D Solid Continuum Elements

General

Element Group 3D Continuum

Element
Solid Continuum

Subgroup

Element
A family of 3D isoparametric solid continuum elements with higher Description order models capable of modelling curved boundaries. The elements are numerically integrated.

Number Of 4 or 10 (tetrahedra). 6, 12 or 15 (pentahedra). 8, 16 or 20
 Nodes (hexahedra). The elements are numbered according to a right-hand screw rule in the local z-direction.
 Freedoms U, V, W: at each node.
 Node X, Y, Z: at each node.
 Coordinates

 Geometric Properties

 Geometric Properties}

Not applicable.

Material Properties

Linear	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
	Orthotropic:	MATERIAL PROPERTIES ORTHOTROPIC
		SOLID (Elastic: Orthotropic Solid)
	Anisotropic:	MATERIAL PROPERTIES ANISOTROPIC
	Rigidities.	SOLID (Elastic: Anisotropic Solid)
Matrix	Not	
	applicable.	
Joint	Not applicable.	

Concrete

Elasto-Plastic Stress resultant: MohrCoulomb:

Tresca: MATERIAL PROPERTIES NONLINEAR 61
MATERIAL PROPERTIES NONLINEAR 61
(Elastic: Isotropic, Plastic: Tresca, Hardening:
Isotropic Hardening Gradient, Isotropic Plastic
MATERIAL PROPERTIES NONLINEAR 61
(Elastic: Isotropic, Plastic: Tresca, Hardening:
Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
Drucker- MATERIAL PROPERTIES NONLINEAR 64 Prager: (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
Mohr- MATERIAL PROPERTIES NONLINEAR 65
Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
Modified MATERIAL PROPERTIES
MATERIAL PROPERTIES NONLINEAR 105
(Elastic: Isotropic, Plastic: Transient Smoothed Multi-Crack Concrete)
MATERIAL PROPERTIES NONLINEAR 109
(Elastic: Isotropic, Plastic: Smoothed MultiCrack Concrete)
Not applicable. MODIFIED MOHR_COULOMB (Elastic: Isotropic, Plastic: Mohr-Coulomb/Tresca, non-

Ko Initialisation Applicable
Elasto- PlasticMATERIAL PROPERTIES NONLINEAR 26InterfaceRubberNotapplicable.

Generic Isotropic Polymer
Composite Notapplicable

MATERIAL PROPERTIES NONLINEAR 26 Interface Rubber

Not applicable.路

MATERIAL PROPERTIES NONLINEAR 89 (Generic Polymer Model)

Loading

Prescribed Value Concentrated CL Loads

Element Loads Not applicable.
Distributed Loads UDL
FLD

FLDG

Body Forces CBF

BFP, BFPE

Velocities VELO
Accelerations ACCE
Viscous Support VSL
Loads
Initial SSI, SSIE
Stress/Strains

Residual Stresses SSR, SSRE

SSRG

Prescribed variable. U, V, W: at each node. Concentrated loads. Px, Py, Pz: at each node.

Not applicable.
Face Loads. Px, Py, Pz: local face pressures at nodes.

Global Face Loads. $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z$ at nodes
Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega \mathrm{x}, \Omega \mathrm{y}, \Omega \mathrm{z}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha \mathrm{z}$
Body force potentials at nodes/for element. 0, $0,0, \varphi_{4}, \mathrm{Xcbf}, \mathrm{Ycbf}, \mathrm{Zcbf}$
Velocities. Vx, Vy, Vz: at nodes.
Acceleration Ax, Ay, Az: at nodes.
Viscous support loads. VLx, VLy, VLz: at nodes.

Initial stresses/strains at nodes/for element. σx, $\sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. εx, $\varepsilon y, \varepsilon z, \gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}$: global strains.

Initial stresses/strains at Gauss points $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y$, $\varepsilon z, \gamma x y, \gamma y z, \gamma x z$: global strains.

Residual stresses at nodes/for element. $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses.

Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma z$,
$\sigma x y, \sigma y z, \sigma x z$ global stresses.
Target stresses/strains at nodes/for element. σx, $\sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. εx, $\varepsilon y, \varepsilon z, \gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}:$ global strains.
TSSIG
Target TSSIE, Stress/Strains TSSIA

Target stresses/strains at Gauss points $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y$, $\varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ global strains.
Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0, To, $0,0,0$
Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Not applicable.
Temp Dependent Not
Loads applicable.

LUSAS Output

Solver
Stress (default): $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z, \sigma e:$ global stresses.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \gamma \mathrm{xy}, \gamma_{\mathrm{yz}}, \gamma \mathrm{xz}, \varepsilon_{\mathrm{e}}$ global strains.
For optional principal stress/strain output, together with the corresponding direction cosines, use Option 77.
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large
strains.
Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness	Default.	1-point (TH4), 4-point (TH10), 3x2 (PN6, PN12, PN15), 2x2x2 (HX8, HX16, HX20)
	Fine (see	5 -point (TH10), $3 \times 3 \times 2$ (HX16), $3 \times 3 \times 3$ (HX20)
	Options).	
	Coarse (see Options)	13-point (HX20), 14-point (HX20)
Mass	Default.	1-point (TH4), 4-point (TH10), 3x2 (PN6, PN12, PN15), 2x2x2 (HX8, HX16, HX20)
	Fine (see	4-point (TH4) 11-point (TH10), 14-point (TH10)
	Options).	$3 \times 3 \times 2$ (HX16), $3 \times 3 \times 3$ (HX20)
	Coarse (see	13-point (HX20), 14-point (HX20)
	Options)	

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
36 Follower loads
54 Updated Lagrangian geometric nonlinearity
55 Output strains as well as stresses.
77 Output principal stresses and direction cosines.
87 Total Lagrangian geometric nonlinearity.
91 Invoke finer integration of the mass matrix.
102 Switch off load correction stiffness due to centripetal acceleration.
105 Lumped mass matrix.
139 Output yielded Gauss points only.
155 Use 14-point integration rule for HX20.
156 Use 13-point integration rule for HX20.
167 Eulerian geometric nonlinearity.
229 Co-rotational geometric nonlinearity.
395 Use 14-point integration rule for mass matrix of TH10 (used together with Option 91).
398 For HX20 and HX16 with fine integration use all integration points for stress
extrapolation.

Notes on Use

1. The elements are based on the standard isoparametric approach. The variation of stresses within an element may be regarded as constant for the lower order elements (corner nodes only), and linear for the higher order elements (with mid-side nodes).
2. All elements pass the patch test.
3. When using table input format for temperature dependent ORTHOTROPIC SOLID or ANISOTROPIC SOLID material properties, the value of nset used is that defined in the first line of the property table.
4. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.

Restrictions

Ensure mid-side node centrality
\square Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- The 3D solid elements should be used if the stress field is fully 3D, i.e. it cannot be approximated with any of the 2D elements, e.g. as for a non-axisymmetric pressure vessel.
- For linear materials, the 20 -noded element with a $2 * 2 * 2$ Gauss rule is usually the most effective element, as this under-integration of the stiffness matrix prevents locking, i.e. over-stiff solutions will occur if the elements are used with a $3 * 3 * 3$ Gauss integration rule to model structures subjected to bending. However, the element possesses six zero energy modes. Therefore, a careful examination of the solution should be performed to check for spurious stress oscillations and peculiarities in the deformed configuration. Either the 14-point or $3 * 3 * 3$ Gauss rules should be used for materially nonlinear problems or materially linear problems that exhibit spurious deformations.
- The 8 -noded element should not be used for analyses where bending effects are significant as the element tends to lock in parasitic shear [C1]. The 8 -noded element will perform poorly if it is highly distorted. The 4 -noded tetrahedron TH4 element is generally not effective and should only be used if the geometry requires elements of this shape.

3D Solid Continuum Element with Enhanced Strains

General

Element Name
HX8M

Element Group
3D Continuum
Element
Solid Continuum
Subgroup
Element
Description Nodes
Freedoms
Node

This mixed assumed strain element demonstrates a much superior performance to that of the HX8 element.
Number Of 8. The element is numbered according to a right-hand screw rule in the local z-direction.
$\mathrm{U}, \mathrm{V}, \mathrm{W}$: at each node.
X, Y, Z: at each node.
A 3D isoparametric solid element with an incompatible strain field.

Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
	Orthotropic:	MATERIAL PROPERTIES ORTHOTROPIC SOLID (Elastic: Orthotropic Solid)
	Anisotropic:	MATERIAL PROPERTIES ANISOTROPIC SOLID (Elastic: Anisotropic Solid)
	Rigidities.	Not applicable.
Matrix	Not applicable.	
Joint	Not applicable.	

$\left.\begin{array}{lll} & & \begin{array}{c}\text { Multi-Crack Concrete) } \\ \text { MAERIAL PROPERTIES NONLINEAR 109 } \\ \text { (Elastic: Isotropic, Plastic: Smoothed Multi- }\end{array} \\ & & \text { Crack Concrete) } \\ \text { Elasto-Plastic } \\ & \text { Stress } & \text { Not applicable. } \\ & \text { resultant: } & \text { Mresca: } \\ & & \text { MATERIAL PROPERTIES NONLINEAR 61 } \\ & \text { (Elastic: Isotropic, Plastic: Tresca, Hardening: } \\ & \text { Istropic Hardening Gradient, Isotropic Plastic }\end{array}\right\}$
Practice)EurocodeIRC
DamageViscoelasticShrinkage
Ko Initialisation Rubber Ogden:Mooney-Rivlin:Neo-Hookean:Hencky:Generic IsotropicPolymerCompositeNotapplicable.

MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86 IRC
(Concrete creep model to Indian IRC code of Practice)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)
VISCO ELASTIC PROPERTIES
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

MATERIAL PROPERTIES RUBBER OGDEN (Rubber: Ogden)
MATERIAL PROPERTIES RUBBER MOONEY_RIVLIN (Rubber: Mooney-Rivlin)
MATERIAL PROPERTIES RUBBER NEO_HOOKEAN (Rubber: Neo-Hookean)
MATERIAL PROPERTIES RUBBER HENCKY (Rubber: Hencky)
MATERIAL PROPERTIES NONLINEAR 89 (Generic Polymer Model)

Loading

Prescribed Value
Concentrated
, TPDSP
CL Loads
Element Loads Not applicable.
Distributed Loads UDL
FLD

FLDG

Body Forces CBF

BFP, BFPE

Prescribed variable. U, V, W: at each node.
Concentrated loads. Px, Py, Pz: at each node.
applicable.
Face Loads. Px, Py, Pz: local face pressures at nodes.

Global Face Loads. $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z$ at nodes

Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{x}}, \alpha_{\mathrm{y}}, \alpha_{\mathrm{z}}$
Body force potentials at nodes/for element. 0,

		0, 0, $\varphi_{4}, \mathrm{Xcbf}, \mathrm{Ycbf}, \mathrm{Zcbf}$
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay, Az: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy, VLz: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. σx, $\sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. εx, $\varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ global strains.
	SSIG	Initial stresses/strains at Gauss points $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y$, $\varepsilon z, \gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}$: global strains.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses.
	SSRG	Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma z$, $\sigma x y, \sigma y z, \sigma x z$ global stresses.
Target Stress/Strains	$\begin{aligned} & \text { TSSIE, } \\ & \text { TSSIA } \end{aligned}$	Target stresses/strains at nodes/for element. σx, $\sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. εx, $\varepsilon y, \varepsilon z, \gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}:$ global strains.
	TSSIG	Target stresses/strains at Gauss points $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y$, $\varepsilon z, \gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}$: global strains.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0$, To, 0, 0, 0
Overburden	Applicable.	
Phreatic Surface	Applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver

Stress (default): $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z, \sigma e$: global stresses. Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma \mathrm{xz}, \varepsilon_{\mathrm{e}}$ global strains.
Stretch (for rubber only): $\mathrm{V}_{11}, \mathrm{~V}_{22}, \mathrm{~V}_{33}, \mathrm{~V}_{12}, \mathrm{~V}_{23}, \mathrm{~V}_{13}, \lambda_{1}, \lambda_{2}, \lambda_{3}$, $\operatorname{det} \mathrm{F}$. Where V_{ii} are components of the left stretch tensors, λ_{i} the

> principal stretches, $\theta \lambda$ the angle between the maximum principal stretch and the global X axis, and det F the determinant of the deformation gradient or volume ratio.
> For optional principal stress/strain output, together with the corresponding direction cosines, use Option 77.
> Modeller

Local Axes

Not applicable (global axes are the reference).

Sign Convention

\square Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations (large strains with the rubber material model).

Integration Schemes

Stiffness	Default.	$2 \times 2 \times 2$
	Fine.	As default.
Mass	Default.	$2 \times 2 \times 2$
	Fine.	As default.

Mass Modelling

- Consistent mass (default).
\square Lumped mass.

Options

39 Stress smoothing for rubber material models.
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.

77 Output principal stresses and direction cosines.
87 Total Lagrangian geometric nonlinearity.
102 Switch off load correction stiffness due to centripetal acceleration.
105 Lumped mass matrix.
139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.
225 Use alternative number of parameters for enhanced strain interpolation (see Notes).
229 Co-rotational geometric nonlinearity.

Notes on Use

1. The element is based on the standard isoparametric approach. The variation of stresses within an element may be regarded as linear.
2. The strain field for this element consists of two parts: the compatible strains derived from the assumed displacement field and the assumed enhanced strains; see LUSAS Theory Manual. By default, 18 parameters are used to define the assumed enhanced strain. In general, the default number of parameters should be used. However, 9 parameters may be specified using Option 225. In most cases the use of 9 or 18 parameters will give an equivalent solution. However, in some instances a better response may be obtained using more parameters at the expense of increased computation time.
3. The element passes the patch test and the large strain patch test for rubber.
4. When using table input format for temperature dependent ORTHOTROPIC SOLID or ANISOTROPIC SOLID material properties, the value of nset used is that defined in the first line of the property table.
5. Non-conservative (follower) loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility. The load does not have to be normal to the face and may also vary over the face.
6. To apply a non-conservative (follower) pressure load (load type FLD) with corotational geometric nonlinearity, Option 36 must be specified. Note that this load must be normal to the face and constant for all the nodes of the element face.
7. The converged stresses for the rubber material model are Kirchhoff stresses (see LUSAS Theory Manual).
8. Option 39 is used to smooth the stress output. It is particularly useful when the rubber material model is applied and the element is under very high compression where oscillatory stresses may appear (checker-board pattern).
9. For the rubber material model, converged values for strain output are replaced by the left stretch tensor V , the principal stretches of the vectors defining these
principal directions. The principal stretches and directions can be obtained using Option 77. The value of $\operatorname{det} \mathrm{F}=\lambda_{1} \lambda_{2} \lambda_{3}$ (the volume ratio) is only available for Gauss point output.
10. For the rubber material model, the iterative values of stress and strain are output in local co-rotated directions at the Gauss points only.
11. Convergence difficulties can sometimes arise when using enhanced strain elements with nonlinear materials, particularly if the material is elastic-perfectly plastic or if a very shallow hardening curve is defined. In such cases it is recommended that the standard element formulation is used.

Restrictions

\square Avoid excessive aspect ratio
R Rubber material models can only be applied in conjunction with the corotational formulation, Option 229.

Recommendations on Use

This element exhibits an improved performance when compared with the parent element HX8. The integration rules are the same as the parent element. The HX8M element does not suffer from locking due to parasitic shear or when the material approaches the incompressible limit. No zero energy modes exist for this element.

3D Solid Continuum Crack Tip Elements

General

Element Name

TH10K

Crack specified at Node 1
PN15K

Crack specified at Node 1

HX20K

Crack specified at Node 1

Crack specified along edge 1-2-3

Crack specified along edge 1-2-3

Crack specified along edge 1-2-3
Element Group
Element Subgroup

Element Description3D ContinuumSolid Continuum

A family of 3D isoparametric crack tip elements where the crack tip can be located at any corner node or along any edge of an element. The mid-side nodes are moved to the quarter points to produce a singularity at the crack tip. The strains vary as the square root of
$1 / \mathrm{R}$, where R is the distance from the crack tip. These elements are used at the crack tip only. The elements are numerically integrated.
Number Of 10 (tetrahedra). 15 (pentahedra). 20 (hexahedra). The elements are Nodes numbered according to a right-hand screw rule in the local zdirection.
Freedoms U, V, W: at each node.
Node X, Y, Z: at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Isotropic:
Orthotropic:

Anisotropic:
Rigidities.
Matrix Not applicable.
Joint Not applicable.

Concrete

Elasto-Plastic Stress resultant:
Tresca: MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
Drucker- MATERIAL PROPERTIES NONLINEAR 64 Prager:

MohrCoulomb:

Modified
Mohr-
Coulomb:
MATERIAL PROPERTIES (Elastic: Isotropic) MATERIAL PROPERTIES ORTHOTROPIC SOLID (Elastic: Orthotropic Solid)
MATERIAL PROPERTIES ANISOTROPIC SOLID (Elastic: Anisotropic Solid)
Not applicable.
pplicable.

Concrete		MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed Multi- Crack Concrete)
Elasto-Plastic	Stress resultant:	Not applicable.
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening:
		Isotropic Hardening Gradient, Isotropic Plastic
		Strain or Isotropic Total Strain)
	Drucker-	MATERIAL PROPERTIES NONLINEAR 64
Prager:	(Elastic: Isotropic, Plastic: Drucker-Prager,	
		Hardening: Granular)
	Mohr-	MATERIAL PROPERTIES NONLINEAR 65
	Coulomb:	(Elastic: Isotropic, Plastic: Mohr-Coulomb,
		Hardening: Granular with Dilation)
	Modified	MATERIAL PROPERTIES
	Mohr-	MODIFIED MOHR_COULOMB (Elastic:
	Coulomb:	Isotropic, Plastic: Mohr-Coulomb/Tresca, non-
		associative Hardening with

Rubber Not applicable.

Generic Isotropic Polymer

Composite Not applicable

MATERIAL PROPERTIES NONLINEAR 89
(Generic Polymer Model)

Loading

Prescribed Value	PDSP, TPDSP
Concentrated	Loads
Element Loads	Not
	applicable.
Distributed Loads	UDL
	FLD
	FLDG
	BFP, BFPE
Body Forces	CBF
Velocities	VELO
Accelerations	ACCE
Viscous Support	VSL
Loads	
Initial	SSI, SSIE
Stress/Strains	

SSIG

Residual Stresses SSR, SSRE

SSRG

Target TSSIE,

Prescribed variable. U, V, W: at each node.
Concentrated loads. Px, Py, Pz: at each node.

Not applicable.
Face Loads. Px, Py, Pz: local face pressures at nodes.

Global Face Loads. $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z$ at nodes
Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega \mathrm{y}, \Omega_{\mathrm{z},} \alpha_{\mathrm{x}}, \alpha \mathrm{y}, \alpha \mathrm{z}$
Body force potentials at nodes/for element. 0, $0,0, \varphi_{4}, \mathrm{Xcbf}, \mathrm{Ycbf}, \mathrm{Zcbf}$
Velocities. Vx, Vy, Vz: at nodes.
Acceleration Ax, Ay, Az: at nodes.
Viscous support loads. VLx, VLy, VLz: at nodes.

Initial stresses/strains at nodes/for element. σx, $\sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. εx, $\varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ global strains.
Initial stresses/strains at Gauss points $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y$, $\varepsilon z, \gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}$: global strains.

Residual stresses at nodes/for element. $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses.

Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma z$, $\sigma x y, \sigma y z, \sigma x z$ global stresses.
Target stresses/strains at nodes/for element. σx,
Stress/Strains TSSIA $\quad \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. εx, $\varepsilon y, \varepsilon z, \gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}:$ global strains.
TSSIG
Target stresses/strains at Gauss points $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y$, $\varepsilon z, \gamma \mathrm{xy}, \gamma_{\mathrm{yz}}, \gamma_{\mathrm{xz}}$: global strains.
Temperatures TEMP, TMPE Temperatures at nodes/for element. T, 0, 0, 0, To, $0,0,0$
Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Not
applicable.
Temp Dependent Not
Loads applicable.

LUSAS Output

Solver
Stress (default): $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z, \sigma e:$ global stresses.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \gamma \mathrm{xy}, \gamma_{\mathrm{yz}}, \gamma \mathrm{xz}, \varepsilon_{\mathrm{e}}$ global strains.
For optional principal stress/strain output, together with the corresponding direction cosines, use Option 77.
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness	Default.	4-point (TH10K), 6×3 (PN15K), $3 \times 3 \times 3$ (HX20K)
	Fine (see Options).	11-point (TH10K), 12×4 (HX15K)
Mass	Default.	4-point (TH10K), 6×3 (PN15K), $3 \times 3 \times 3$
		(HX20K)

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
36 Follower loads
54 Updated Lagrangian geometric nonlinearity
55 Output strains as well as stresses.
77 Output principal stresses and direction cosines.
87 Total Lagrangian geometric nonlinearity.
91 Invoke finer integration of the mass matrix.
102 Switch off load correction stiffness due to centripetal acceleration.
105 Lumped mass matrix.
139 Output yielded Gauss points only.
167 Eulerian geometric nonlinearity.
229 Co-rotational geometric nonlinearity.
395 Use 14-point integration rule for mass matrix of TH10 (used together with Option 91).
398 For HX20 and HX16 with fine integration use all integration points for stress extrapolation.

Notes on Use

1. The elements are based on the standard isoparametric approach. Moving the mid-side nodes to the quarter points creates a singularity with theoretically infinite stress at the crack tip.
2. When using table input format for temperature dependent ORTHOTROPIC SOLID or ANISOTROPIC SOLID material properties, the value of nset used is that defined in the first line of the property table.
3. Non-conservative loading is available with these elements when using either Updated Lagrangian or Eulerian geometric nonlinear formulations together with the FLD loading facility.

Restrictions

\square Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- The 3D solid crack tip elements should be used if the stress field is fully 3D, i.e. it cannot be approximated with any of the 2D crack tip elements.
- Elements TH10K, PN15K and HX20K are specifically designed for application to fracture mechanics problems and may be used to model the singularities that occur at the crack tip. The mid-side nodes near the crack tip are shifted to the quarter point. This ensures a singularity is present at the crack tip and that strains vary as 1 over the square root of r - where r is the distance from the crack tip.

3D Solid Continuum Composite Elements (Tetrahedral)

General

Element Name TH10S

Element Group
 3D Continuum

 ElementSolid Continuum
Subgroup
Element
Description
A 3D tetrahedral element capable of modelling curved boundaries.
The element can be arbitrarily oriented with respect to the laminate and allows for the fully automatic mesh generation of laminate geometric models imported from CAD packages.
Number Of
10. The element is numbered according to a right-hand screw rule

Nodes
Freedoms
$\mathrm{U}, \mathrm{V}, \mathrm{W}$: at each node.
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

```Coordinates
```


Geometric Properties

See Composites in the Modeller Reference Manual

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic) Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC SOLID (Elastic: Orthotropic Solid)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC SOLID (Elastic: Anisotropic Solid)
Rigidities. Not applicable.
Matrix Not applicable.
Joint Not applicable.

Concrete		MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed MultiCrack Concrete)
Elasto-Plastic	Stress resultant:	Not applicable.
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	Drucker- Prager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	MohrCoulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Modified	MATERIAL PROPERTIES
	Mohr-	MODIFIED MOHR_COULOMB (Elastic:
	Coulomb:	Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
	Volumetric Crushing:	Not applicable.
	Stress	STRESS POTENTIAL VON_MISES, HILL,
	Potential	HOFFMAN
		(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
Creep	AASHTO	MATERIAL PROPERTIES NONLINEAR 86 AASHTO (Concrete creep model to AASHTO code of Practice)
	CEB-FIP	MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP (Concrete creep model to CEB-FIP Model Code 1990)
	Chinese	MATERIAL PROPERTIES NONLINEAR 86 CHINESE (Chinese creep model to Chinese Code of Practice)
	Eurocode	MATERIAL PROPERTIES NONLINEAR 86 EUROCODE (Concrete creep model to EUROCODE_2)
	IRC	MATERIAL PROPERTIES NONLINEAR 86

IRC
(Concrete creep model to Indian IRC code ofPractice)

Damage

ViscoelasticShrinkage
Ko Initialisation Notapplicable
Rubber Notapplicable.
GenericPolymer
Resin CureModel
CompositeCompositesolid:

DAMAGE PROPERTIES SIMO, OLIVER (Damage)
VISCO ELASTIC PROPERTIESSHRINKAGE CEB_FIP_90, EUROCODE_2,GENERAL, USERMATERIAL PROPERTIES NONLINEAR 89(Generic Polymer Model)MATERIAL PROPERTIES NONLINEARCURE LAYER, FIBRE_RESINCOMPOSITE PROPERTIES (Elastic:Orthotropic Solid)

Loading

Prescribed Value
PDSP, TPDSP
Concentrated CL Loads
Element Loads Not applicable.
Distributed Loads UDL
FLD

FLDG

Body Forces CBF

BFP, BFPE

Velocities VELO
Accelerations ACCE
Viscous Support VSL Loads
Initial SSI, SSIE
Stress/Strains

Prescribed variable. U, V, W: at each node. Concentrated loads. Px, Py, Pz: at each node. Not applicable. Face Loads. Px, Py, Pz: local face pressures at nodes.

Global Face Loads. $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z$, $\sigma x z$ at nodes
Constant body forces for element. Xcbf, Ycbf, $Z \mathrm{zbf}, \Omega_{\mathrm{x}}, \Omega \mathrm{y}, \Omega_{\mathrm{z}}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha \mathrm{z}$
Body force potentials at nodes/for element. 0, $0,0, \varphi_{4}, \mathrm{Xcbf}, \mathrm{Ycbf}, \mathrm{Zcbf}$
Velocities. Vx, Vy, Vz: at nodes.
Acceleration Ax, Ay, Az: at nodes.
Viscous support loads. VLx, VLy, VLz: at nodes.
Initial stresses/strains at nodes/for element.
$\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses.

Residual Stresses	SSIG	$\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ global strains. Initial stresses/strains at Gauss points (see Notes).
	SSR, SSRE	$\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. $\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ global strains. Residual stresses at nodes/for element.
	SSRG	$\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. Residual stresses at Gauss points (see Notes). $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z$ global stresses.
Target Stress/Strains	$\begin{aligned} & \text { TSSIE, } \\ & \text { TSSIA } \end{aligned}$	Target stresses/strains at nodes/for element. $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses.
	TSSIG	$\varepsilon x, \varepsilon y, \varepsilon z, \gamma_{\mathrm{xy}}, \gamma_{\mathrm{yz}}, \gamma_{\mathrm{xz}}$: global strains. Target stresses/strains at Gauss points (see Notes).
		$\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z: ~ g l o b a l ~ s t r e s s e s . ~$
		$\varepsilon x, \varepsilon y, \varepsilon z, \gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma_{\mathrm{xz}}$: global strains.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0$, To, $0,0,0$
Overburden Phreatic Surface Field Loads	Applicable.	
	Applicable.	
	Not applicable.	
Temp Dependent Loads	Not	
	applicable.	

LUSAS Output

Solver

Stress (default): $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ local stresses.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ local strains.
Stresses and strains are output at the Gauss and corner points of the subdivision(s) of each layer. For optional principal stress/strain output, together with the corresponding direction cosines, use Option 77.
Modeller See Results Tables (Appendix K).

Local Axes

The local axes for each layer are defined by the LAMINAR DIRECTIONS specified for its bottom surface. The three node set in LAMINAR DIRECTIONS define the local

Cartesian set origin, the x -axis and the positive quadrant of the xy -plane respectively. The local z -axis forms an orthonormal coordinate system with x and y .

Sign Convention

\square Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.

Updated Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness	Default.	1-point for a tetrahedral subdivision (see Notes), 3-point for a pentahedral/pyramid subdivision, 2×2 for a hexahedral/wrick subdivision
	Fine (see Options).	1-point for a tetrahedral subdivision (see Notes), 3×2 for a pentahedral/pyramid subdivision, $2 \times 2 \times 2$ for a hexahedral/wrick subdivision
Mass	Default	5-point for the whole element or (see Options) 1-point for a tetrahedral subdivision, 3×2 for a pentahedral/pyramid subdivision, $2 \times 2 \times 2$ for a hexahedral/wrick subdivision
	Fine (see Options).	11-point or (see Options) 14 -point for the whole element

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
36 Follower loads.
55 Output strains as well as stresses.
77 Output principal stresses and direction cosines.
91 Formulate element mass with fine integration.
105 Lumped mass matrix.

139 Output yielded Gauss points only.
229 Co-rotational geometric nonlinearity.
266 Layer by layer computation of mass matrix.
394 Lamina directions supported.
395 Use 14-point fine integration rule for mass matrix of TH10 family (used together with 91).

Notes on Use

1. The element is based on the standard isoparametric approach. The variation of strains within an element may be regarded as linear.
2. All elements pass the patch test.
3. The LAMINAR DIRECTIONS and COMPOSITE PROPERTIES data chapters must be used with this element in conjunction with the COMPOSITE ASSIGNMENTS data chapter.
4. The stresses obtained from a geometric nonlinear analysis are Kirchhoff stresses.
5. If the whole tetrahedral element is embedded in a single lamina, a 4-point integration rule will be used for this tetrahedral subdivision; otherwise a 1-point rule will be used.
6. The mass matrix can be computed using a layer by layer integration (OPTION 266), however this should only be used when the densities of the layers vary considerably because the computation time can be greatly increased when this OPTION is specified.
7. Numerical integration through the thickness is performed. The integration points are located in the subdivisions of each layer. Each subdivision forms the shape of a regular 3D solid continuum element and the integration points are located accordingly within the subdivision as described above.
8. SSIG and SSRG loads have to be applied at the Gauss point positions for the subdivision(s) of each layer.
9. Layer 1 is always the bottom layer.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature
- Avoid excessive aspect ratio

Recommendations on Use

- 3D solid composite elements should be used for modelling thick composite structures comprising laminae of differing material properties where the computational cost of modelling each lamina with an individual solid element would be prohibitive.
- As these elements can be arbitrarily oriented with respect to the laminate, they are particularly aimed at the use of fully automatic mesh generation of laminate geometric models imported from CAD packages.

3D Solid Continuum Composite Elements (Pentahedral and Hexahedral)

General

Element Name PN6L

HX8L

PN12L

HX16L

Element Group 3D Continuum
Element Solid Continuum
Subgroup

Element Description

Number Of Nodes

Freedoms U, V, W: at each node.
Node X, Y, Z: at each node.

Coordinates

Geometric Properties

See Composites in the Modeller Reference Manual

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)
Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC SOLID (Elastic: Orthotropic Solid)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC SOLID (Elastic: Anisotropic Solid)
Rigidities. Not applicable.
Matrix Not
applicable.
Joint Not
applicable.

Concrete

Elasto-Plastic
Stress resultant: Tresca:

Volumetric Not applicable.
Crushing: Potential

Drucker- MATERIAL PROPERTIES NONLINEAR 64
Prager: (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
Mohr- MATERIAL PROPERTIES NONLINEAR 65
Coulomb: (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
Modified MATERIAL PROPERTIES
Mohr- MODIFIED MOHR_COULOMB (Elastic:
Coulomb: Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)

Stress STRESS POTENTIAL VON_MISES, HILL,
MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed MultiCrack Concrete)
Not applicable.

MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain) HOFFMAN
(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)

Creep AASHTO

IRC
Eurocode Eurocode
Chinese
CEB-FIP

Damage

ViscoelasticShrinkage
Ko Initialisation Notapplicable
Rubber Not
applicable.
Generic
Polymer
Resin Cure
Model
Composite Composite
solid:

Loading

applicable.
Distributed Loads UDL
FLD

FLDG

Body Forces CBF

BFP, BFPE

Velocities VELO
Accelerations ACCE
Viscous Support VSL Loads
Initial SSI, SSIE Stress/Strains

Residual Stresses SSR, SSRE

SSRG

Target TSSIE, Stress/Strains TSSIA

TSSIG

Temperatures TEMP, TMPE

Overburden Applicable.
Phreatic Surface Applicable.
Field Loads Not
applicable.

Not applicable.
Face Loads. Px, Py, Pz: local face pressures at nodes.

Global Face Loads. $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z$, $\sigma x z$ at nodes
Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{x}}, \alpha \mathrm{y}, \alpha_{\mathrm{z}}$
Body force potentials at nodes/for element. 0, $0,0, \varphi_{4}, \mathrm{Xcbf}, \mathrm{Ycbf}, \mathrm{Zcbf}$
Velocities. Vx, Vy, Vz: at nodes.
Acceleration Ax, Ay, Az: at nodes.
Viscous support loads. VLx, VLy, VLz: at nodes.
Initial stresses/strains at nodes/for element.
$\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses.
$\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ global strains.
Initial stresses/strains at Gauss points (see Notes).
$\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses.
$\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ global strains.
Residual stresses at nodes/for element.
$\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses. Residual stresses at Gauss points (see Notes).
$\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z$ global stresses.
Target stresses/strains at nodes/for element.
$\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses.
$\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ global strains.
Target stresses/strains at Gauss points (see Notes).
$\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ global stresses.
$\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ global strains.
Temperatures at nodes/for element.
T, $0,0,0$, To, $0,0,0$

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver
Stress (default): $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z:$ local stresses.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ local strains.
Stresses and strains are output at the top and bottom of each layer. For optional principal stress/strain output, together with the corresponding direction cosines, use Option 77.
Modeller See Results Tables (Appendix K).

Local Axes

The local axes for each layer are defined using the convention for standard area elements. Local axes are computed at the top and bottom surfaces (at the Gauss points) and average values are interpolated for the mid-surface. The top and bottom faces of the element are as shown, e.g. nodes 1, 2, 3, 4 define the bottom face of HX8L. Every layer uses the same averaged values.

Sign Convention

\square Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian
Not applicable.
Updated Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default. 1-point for each layer (PN6L), 3-point for each layer (PN12L), 2 x 2 for each layer (HX8L,HX16L)
Fine (see 3-point for each layer (PN6L), 3x3 for each layer (HX16L) Options).
Mass Default 3×2 for the whole element (PN6L,PN12L) or (see Options) 1-
point for each layer (PN6L), 3-point for each layer (PN12L), $2 \times 2 \times 2$ for the whole element or 2×2 for each layer (HX8L,HX16L)
Fine (see 3×2 for the whole element or 3-point for each layer Options). (PN6L), $3 \times 3 \times 2$ for the whole element or 3×3 for each layer (HX16L)

Mass Modelling

- Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
36 Follower loads.
55 Output strains as well as stresses.
77 Output principal stresses and direction cosines.
105 Lumped mass matrix.
139 Output yielded Gauss points only.
229 Co-rotational geometric nonlinearity.
266 Layer by layer computation of mass matrix.
303 Exclude incompatible modes for solid composite elements.

Notes on Use

1. The elements are based on the standard isoparametric approach. The variation of stresses within an element may be regarded as constant for the lower order elements (corner nodes only), and linear in the plane of the quadratic element faces for the higher order elements.
2. All elements pass the patch test.
3. The COMPOSITE GEOMETRY and COMPOSITE PROPERTIES data chapters must be used with this element in conjunction with the COMPOSITE ASSIGNMENTS data chapter.
4. The stresses obtained from a geometric nonlinear analysis are Kirchhoff stresses.
5. The mass matrix can be computed using a layer by layer integration (Option 266), however this should only be used when the densities of the layers vary considerably because the computation time can be greatly increased applying this option.
6. Numerical integration through the thickness is performed. The integration points are located at the top and bottom surface of each layer.
7. SSIG and SSRG loads have to be applied at the Gauss point positions for the top and bottom surfaces of each layer.
8. Layer 1 is always the bottom layer.

Restrictions

- Ensure mid-side node centrality
\square Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- The 3D solid composite elements should be used for modelling thick composite structures comprising laminae of differing material properties where the computational cost of modelling each lamina with an individual solid element would be prohibitive.
- Because of the numerical integration through the thickness, by increasing the number of layers the accuracy of solution will increase. This can be achieved by dividing each single layer into two or three identical layers.

3D Solid Continuum Explicit Dynamics Elements

General

Element Group 3D Continuum
Element Solid Continuum
Subgroup
Element
Description
Number Of
Nodes

Freedoms
Node
Coordinates

A family of 3D isoparametric solid elements for explicit dynamic analyses. The elements are numerically integrated.
4 (tetrahedra), 6 (pentahedra), 8 (hexahedra).
The elements are numbered according to a right-hand screw rule in the local z-direction.
$\mathrm{U}, \mathrm{V}, \mathrm{W}$: at each node.
X, Y, Z: at each node.

Geometric Properties

Not applicable.

Material Properties

Linear ..	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
	Orthotropic:	MATERIAL PROPERTIES ORTHOTROPIC SOLID (Elastic: Orthotropic Solid)
	Anisotropic:	Not applicable.
	Rigidities.	Not applicable.
Matrix	Not applicable	
Joint	Not applicable	

Concrete Notapplicable
Elasto-Plastic Stress resultant: Tresca:
Drucker- Prager:
Mohr-Coulomb:
Modified
Mohr-
Coulomb:
Modified
Cam-clayOptimisedImplicit Von
Mises:
Volumetric
Crushing:
Stress
Potential
CreepDamage
Viscoelastic
Shrinkage Not
applicable
Ko Initialisation NotapplicableRubber Notapplicable
Generic NotPolymer applicableCompositeNot

Not applicable.
MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain) MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65
(Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
MATERIAL PROPERTIES MODIFIED MOHR_COULOMB (Elastic: Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
MATERIAL PROPERTIES CAM_CLAY MODIFIED (Elastic: Isotropic, Plastic)
MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
MATERIAL PROPERTIES NONLINEAR 81 (Volumetric Crushing or Crushable Foam) STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep) (see Notes)
DAMAGE PROPERTIES SIMO, OLIVER (Damage)
VISCO ELASTIC PROPERTIES
applicable

Loading

Prescribed Value	PDSP,	Prescribed variable. U, V, W: at each node.			
Concentrated					
Loads			CL	TPDSP	Concentrated loads. Px, Py, Pz: at each node.
---:	:---				
Element Loads	Not				
	applicable.				

Temp Dependent NotLoads applicable.
LUSAS Output
SolverStress(default): $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z, \sigma e:$ global stresses.Strain: not available (see Notes).For optional principal stress output, together with thecorresponding direction cosines, use Option 77.
Modeller See Results Tables (Appendix K).
Local Axes
Not applicable (global axes are the reference).
Sign Convention
\square Standard 3D continuum element
Formulation
Geometric Nonlinearity
Total Lagrangian Not applicable.
Updated Not applicable.
Lagrangian
Eulerian For large displacements, large rotations and moderately largestrains.
Co-rotational For large displacements and large rotations.
Integration Schemes
Stiffness Default. 1-point (see Notes).
Fine. As default.
Mass Default. 1-point (see Notes).
Fine. As default.
Mass Modelling
\square Lumped mass only (see Notes).

Options

77 Output principal stresses and direction cosines.
105 Lumped mass matrix.
139 Output yielded Gauss points only.

Notes on Use

1. The elements are based on the standard isoparametric approach. Stresses within an element may be regarded as constant.
2. When using tabular input for ORTHOTROPIC SOLID the value of nset used is that defined in the first line of the property table.
3. The system parameter HGVISC is used to restrict element mechanisms due to under-integration. The default value is usually sufficient.
4. The bulk viscosity coefficients are used to restrict numerical oscillations due to the traversal of stress waves. The default bulk viscosity coefficients (BULKLF and BULKQF) may be altered as SYSTEM parameters.
5. These elements must be used with a dynamic central difference scheme and a lumped mass matrix.
6. These element are Not applicable. for static or eigenvalue analyses.
7. Automatic time step length calculations are implemented.
8. As element geometry is always updated in an explicit dynamic analysis, the solution is nonlinear. When using explicit dynamic elements NONLINEAR CONTROL must be specified.
9. If CREEP PROPERTIES are defined, explicit time integration must be specified in VISCOUS CONTROL.
10. Strains are computed incrementally and therefore total strains are not available for output.
11. Non-conservative loading is invoked when the FLD loading facility is applied.
12. Rayleigh damping coefficients are not supported by these elements.
13. Constraint equations are not available for use with these elements.

Restrictions

\square Avoid excessive aspect ratio

Recommendations on Use

- Explicit dynamics elements may be used to define surface boundaries which will be active in a slideline analysis.

Element Reference Manual

- The 3D explicit dynamics elements should be used if the stress field is fully 3D, i.e. it cannot be approximated with any of the 2D elements, e.g. a nonaxisymmetric pressure vessel.

3D Solid Two Phase Continuum Elements

General

PN12P

HX16P

PN15P

HX20P

| Element Group | 3D Continuum |
| ---: | :--- | :--- |
| Element | Solid Continuum |
| Subgroup | |
| Element | A family of 3D isoparametric solid two phase continuum elements |
| Description | capable of modelling curved boundaries. The elements are
 numerically integrated. |
| Number Of | 10 (tetrahedra). 12 or 15 (pentahedra). 16 or 20 (hexahedra). The |
| Nodes | elements are numbered according to a right-hand screw rule in the
 local z-direction. |

Freedoms U, V, W, P: at corner nodes, U, V, W at mid-side nodes. Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic) Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC SOLID (Elastic: Orthotropic Solid)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC SOLID (Elastic: Anisotropic Solid)
Rigidities. Not applicable.
Matrix Not applicable.
Joint Not applicable.

Concrete

Elasto-Plastic Stress resultant: Prager:

Mohr-
Coulomb:

Mohr-
Coulomb:

Modified
Cam-clay
Optimised Implicit Von

Tresca: MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
Drucker- MATERIAL PROPERTIES NONLINEAR 64

Modified MATERIAL PROPERTIES
MATERIAL PROPERTIES NONLINEAR 109
(Elastic: Isotropic, Plastic: Smoothed MultiCrack Concrete)
Not applicable. (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation) MODIFIED MOHR_COULOMB (Elastic: Isotropic, Plastic: Mohr-Coulomb/Tresca, nonassociative Hardening with tension/compression cut-off)
MATERIAL PROPERTIES CAM_CLAY MODIFIED (Elastic: Isotropic, Plastic)
MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises,
Mises: Hardening: Isotropic \& Kinematic)Crushing:StressPotential:
CreepDamageViscoelasticShrinkage
Ko InitialisationElasto- Plastic
ApplicableInterfaceRubberNotapplicable.Generic IsotropicPolymer
Composite Notapplicable
Volumetric

MATERIAL PROPERTIES NONLINEAR 81 (Volumetric Crushing or Crushable Foam)
STRESS POTENTIAL VON_MISES, HILL,HOFFMAN(Isotropic: von Mises, Modified von MisesOrthotropic: Hill, Hoffman)CREEP PROPERTIES (Creep)DAMAGE PROPERTIES SIMO, OLIVER(Damage)VISCO ELASTIC PROPERTIESSHRINKAGE CEB_FIP_90, EUROCODE_2,GENERAL, USER
MATERIAL PROPERTIES NONLINEAR 26 26
MATERIAL PROPERTIES NONLINEAR 89

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL Loads
Element Loads Not applicable.
Distributed Loads UDL
FLD

FLDG

Body Forces CBF

Prescribed variable. U, V, W, P: at corner nodes, $\mathrm{U}, \mathrm{V}, \mathrm{W}$ at mid-side nodes.
Concentrated loads. Px, Py, Pz, Q: at corner nodes, . Px, Py, Pz at mid-side nodes.

Not applicable.
Face Loads. Px, Py, Pz, Q: face pressures/flux per unit area at corner nodes relative to local face axes. Px, Py, Pz: face pressures at midside nodes relative to local face axes.

Global Face Loads. $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z$ at nodes
Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{x}}, \alpha \mathrm{y}, \alpha \mathrm{z}, \mathrm{gx}$, gy, gz.

	(See notes on use)	
	BFP, BFPE	Body force potentials at nodes/for element. 0, $0,0, \varphi 4$, Xcbf, Ycbf, Zcbf, gx, gy, gz. (See notes on use)
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Acceleration Ax, Ay, Az: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy, VLz: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. σx, $\sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z, \sigma p$ global stresses. $\varepsilon x, \varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ global strains.
	SSIG	Initial stresses/strains at Gauss points $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z, \sigma p:$ global stresses. εx, $\varepsilon y, \varepsilon z, \gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}$: global strains.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z, \sigma p:$ global stresses.
	SSRG	Residual stresses at Gauss points. $\sigma x, \sigma y, \sigma z$, $\sigma x y, \sigma y z, \sigma x z, \sigma p$ global stresses.
Target Stress/Strains	$\begin{aligned} & \text { TSSIE, } \\ & \text { TSSIA } \end{aligned}$	Target stresses/strains at nodes/for element. σx, $\sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z, \sigma p$ global stresses. $\varepsilon x, \varepsilon y, \varepsilon z, \gamma \mathrm{xy}, \gamma_{\mathrm{yz}}, \gamma_{\mathrm{xz}}$: global strains.
	TSSIG	Target stresses/strains at Gauss points $\sigma x, \sigma y$, $\sigma z, \sigma x y, \sigma y z, \sigma x z, \sigma p:$ global stresses. εx, $\varepsilon y, \varepsilon z, \gamma x y, \gamma y z, \gamma x z:$ global strains.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0$, To, $0,0,0$
Overburden	Applicable.	
Phreatic Surface	Applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver

Stress (default): $\sigma x, \sigma y, \sigma z, \sigma x y, \sigma y z, \sigma x z, \sigma p, \sigma e:$ global stresses.

$$
\begin{array}{ll}
\text { Strain: } \varepsilon x, \varepsilon y, \varepsilon z, \gamma \mathrm{xy}, \gamma_{\mathrm{yz}}, \gamma \mathrm{xz}, \varepsilon \mathrm{v}, \varepsilon \mathrm{e}: \text { global strains. } \\
& \text { For optional principal stress/strain output, together with the } \\
\text { corresponding direction cosines, use Option } 77 . \\
\text { Modeller } & \text { See Results Tables (Appendix K). }
\end{array}
$$

Local Axes

Not applicable (global axes are the reference).

Sign Convention

\square Standard 3D continuum element

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements and large rotations.
Updated For large displacements and large rotations.
Lagrangian
Eulerian For large displacements, large rotations and moderately large strains.
Co-rotational For large displacements and large rotations.

Integration Schemes

Stiffness Default.

Fine (see Options). Coarse (see Options)

Fine (see Options). Coarse (see Options)

Mass Default. 4-point (TH10P), 3x2 (PN12P, PN15P), 2x2x2 (HX16P, HX20P)
4-point (TH10P), 3x2 (PN12P, PN15P), 2x2x2 (HX16P, HX20P)
5-point (TH10P), $3 \times 3 \times 2$ (HX16P), $3 \times 3 \times 3$ (HX20P)
13-point (HX20P), 14-point (HX20P)

11-point (TH10P), 14-point (TH10P), $3 \times 3 \times 2$
(HX16P), 3x3x3 (HX20P)
13-point (HX20P), 14-point (HX20P)

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
36 Follower loads
54 Updated Lagrangian geometric nonlinearity
55 Output strains as well as stresses.
77 Output principal stresses and direction cosines.
87 Total Lagrangian geometric nonlinearity.
91 Invoke finer integration of the mass matrix.
102 Switch off load correction stiffness due to centripetal acceleration.
105 Lumped mass matrix.
139 Output yielded Gauss points only.
155 Use 14-point integration rule for HX20P.
156 Use 13-point integration rule for HX20P.
167 Eulerian geometric nonlinearity.
229 Co-rotational geometric nonlinearity.
398 For HX20P and HX16P with fine integration use all integration points for stress extrapolation.

Notes on Use

1. Two phase material parameters must be used with these elements for undrained and consolidation analysis.
2. The elements are based on the standard isoparametric approach. The variation of stresses and pore pressures within an element may be regarded linear, except for elements PN12P and HX16P where the stress is constant in the z direction.
3. All elements pass the patch test.
4. When using table input format for temperature dependent ORTHOTROPIC SOLID or ANISOTROPIC SOLID material properties, the value of nset used is that defined in the first line of the property table.
5. Non-conservative loading is available with these elements when using Updated Lagrangian, Eulerian or co-rotational (with OPTION 36) geometric nonlinear formulations together with the FLD loading facility.
6. The global components of gravity acting on the fluid phase are defined by gx and gy under CBF and BF loading.

Restrictions

\square Ensure mid-side node centrality
\square Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- The 3D solid two phase elements should be used if the stress field is fully 3D, i.e. it cannot be approximated with any of the 2D elements, e.g. a nonaxisymmetric pressure vessel.
- For linear materials, the 20 -noded element with a $2 * 2 * 2$ Gauss rule is usually the most effective element, as this under-integration of the stiffness matrix prevents locking, i.e. over-stiff solutions will occur if the elements are used with a 3*3*3 Gauss integration rule to model structures subjected to bending. However, the element possesses six zero energy modes. Therefore, a careful examination of the solution should be performed to check for spurious stress oscillations and peculiarities in the deformed configuration. Either the 14-point or $3 * 3 * 3$ Gauss rules should be used for materially nonlinear problems or materially linear problems that exhibit spurious deformations.
- In general, PN15P and HX20P give the best performance; TH10P is less accurate and needs to be used with a finer mesh. HX16P and PN12P should only be used to overcome connectivity problems when meshing.

Chapter 5 : Plate Elements

2D Isoflex Thin Plate Flexure Elements

General

TF3

Plates

Element Group

Element
Subgroup
Element
Description
A family of thin plate flexure elements in 2D with higher order models capable of modelling curved boundaries. The element formulation takes account of varying thickness and anisotropic properties. As required by thin plate theory, transverse shearing effects are excluded.
Number Of 3 or 4 numbered anticlockwise.
Nodes
Freedoms
$\mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}$: at the corner nodes.
Node
X, Y : at each node.

Coordinates

Isoflex Plates

Geometric Properties

t1 ... tn Thickness at each node.

Material Properties

Linear Isotropic:
Orthotropic:
Anisotropic:
Rigidities.
Matrix Not applicable
Joint Not applicable

MATERIAL PROPERTIES (Elastic: Isotropic)
MATERIAL PROPERTIES ORTHOTROPIC (Elastic: Orthotropic Plane Stress)
MATERIAL PROPERTIES ANISOTROPIC 3 (Elastic: Anisotropic Thin Plate)
RIGIDITIES 3 (Rigidities: Membrane/Thin Plate)
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL
Loads
Element Loads Not applicable.
Distributed Loads UDL

FLD, FLDG
Body Forces CBF
BFP, BFPE

Velocities VELO
Accelerations ACCE
Viscous Support VSL
Loads
Initial SSI, SSIE
Stress/Strains

SSIG
Residual Stresses Not applicable.
Target TSSIE,
Stress/Strains TSSIA

TSSIG
Temperatures TEMP, TMPE

Prescribed variable. W, $\theta \mathrm{x}, \theta \mathrm{y}$: at the corner nodes.

Concentrated loads. Pz, Mx, My: at corner nodes.

Uniformly distributed loads. Wz: normal pressure for element (global).
Not applicable.
Constant body forces for element. Zcbf
Body force potentials at nodes/for element. φ_{1}, Zcbf
Velocities. Vz: at nodes.
Accelerations. Az: at nodes.
Viscous support loads. VLz at nodes.

Initial stresses/strains at nodes/for element. Mx, My, Mxy: moments/unit width (global). $\psi x, \psi y, \psi x y$: flexural strains (global).
Not applicable.

Target stresses/strains at nodes/for element. Mx, My, Mxy: moments/unit width (global). $\psi x, \psi y, \psi x y$: flexural strains (global).
Not applicable.
Temperatures at nodes/for element. $0,0,0, \mathrm{dT} / \mathrm{dz}, 0,0,0, \mathrm{dTo} / \mathrm{dz}$
Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not
Loads applicable.

LUSAS Output

Solver Stress resultant: Mx, My, Mxy: moments/unit width (global).
Strain: $\psi \mathrm{x}, \psi \mathrm{y}, \psi \mathrm{xy}$: flexural strains (global).
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard plate element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness	Default.	3-point (TF3), 2×2 (QF4).
	Fine.	As default.
Mass	Default.	3-point (TF3), 2×2 (QF4).
	Fine.	As default.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element.
55 Output strains as well as stresses.

143 Output shear forces for low order thin plate bending elements.
170 Suppress transfer of shape function arrays to disk.

Notes on Use

1. The element formulations are based on an Kirchhoff hypothesis for thin plates.
2. The variation of moments within the elements can be regarded as linear.
3. The elements pass the patch test for convergence for mixed triangular and quadrilateral element geometry.
4. The averaged nodal values produced with ELEMENT OUTPUT do not include the thin isoflex plate shear stresses if Option 143 is invoked.
5. When Option 143 is invoked shear stresses are only computed for the low order isoflex elements (QF4,TF3).

Restrictions

\square Avoid excessive aspect ratio

Recommendations on Use

- This element may be used to analyse any 2D plate type structures where transverse shear effects do not influence the solution, e.g. thin cantilever plates.
- The thick plate elements QTF8 and TTF6 are recommended for thick plates where transverse shear strains are no longer negligible.

The following element combinations should be used for ribbed plates;

Ribs with small or no eccentricity

\square QSI4/TS3 elements with BMI21 elements,
\square QTS4/TTS3 elements with BMI21 elements.

Ribs with large eccentricity

Q QSL8/TSL6 elements with BSL3/BSL4/BXL4 elements.
\square QTS4/TTS3 elements with BMI21 elements.
The through thickness integration is performed explicitly.

2D Isoflex Thick Plate Flexure Element

General

Element Name
 QSC4

Element Group

Plates

Element
Isoflex Plates

Subgroup

Element A thick plate flexure element in 2D. The element formulation takes Description into account varying thickness and anisotropic properties. Transverse shearing effects are included.
Number Of 4, numbered anticlockwise.
Nodes
Freedoms
$\mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}$: at each node.
Node
X, Y : at each node.
Coordinates

Geometric Properties

t1... tn At each node.

Material Properties

Linear Isotropic:
Orthotropic:
MATERIAL PROPERTIES (Elastic: Isotropic)
MATERIAL PROPERTIES ORTHOTROPIC THICK (Elastic: Orthotropic Thick)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 5
(Elastic: Anisotropic Thick Plate)
Rigidities:
Matrix Not applicabl
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not
applicable.
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable Rubber Not applicable Generic Polymer Not applicable Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL
Loads
Element Loads Not applicable.
Distributed Loads UDL

FLD, FLDG
Body Forces CBF
BFP, BFPE

Velocities VELO
Accelerations ACCE
Viscous Support VSL
Loads
Initial SSI, SSIE
Stress/Strains

SSIG
Residual Stresses Not applicable.
Target TSSIE, Stress/Strains TSSIA

TSSIG
Temperatures TEMP, TMPE

Prescribed variable. W, $\theta \mathrm{x}, \theta \mathrm{y}$: at nodes.
Concentrated loads. Pz, Mx, My: at nodes.

Uniformly distributed loads. Wz: normal pressure for element (global).
Not applicable.
Constant body forces for element. Zcbf
Body force potentials at nodes/for element. φ, Zcbf

Velocities. Vz: at nodes.
Accelerations. Az: at nodes.
Viscous support loads. VLz at nodes.

Initial stresses/strains at nodes/for element. Mx, My, Mxy: moments/unit width (global).
$\psi x, \psi y, \psi x y$: flexural strains (global).
Not applicable.

Target stresses/strains at nodes/for element. Mx, My, Mxy: moments/unit width (global).
$\psi x, \psi y, \psi x y$: flexural strains (global).
Not applicable.
Temperatures at nodes/for element. 0, 0, 0, dT/dz, 0, 0, 0, dTo/dz
Overburden Not applicable.
Phreatic Surface Not applicable.

Field Loads Not applicable.
Temp Dependent Not
Loads applicable.

LUSAS Output

Solver Stress resultant: Mx, My, Mxy, Sx, Sy: moments, shear forces/unit width (global)

Strain: $\psi x, \psi y, \psi x y, \gamma x z, \gamma y z:$ flexural, shear strains (global).
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard plate element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness	Default.	2×2
	Fine.	As default.
	Default.	2×2
	Fine.	As default.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

55 Output strains as well as stresses.
105 Lumped mass matrix.
170 Suppress transfer of shape function arrays to disk.

Notes on Use

1. The element formulation involves imposing an assumed bi-linear shear strain field on the isoflex thin plate element QF4.
2. Though this element cannot model nonlinear behaviour, it can be mixed with other elements in a nonlinear analysis.
3. The element passes the patch test for convergence with rectangular and parallelogram element geometry.
4. The QF4,QF8,TF3,TF8 elements are usually more effective elements for thin plate analyses.
5. The QTF8 and TTF6 elements are usually more effective for thick plate analyses, and in such cases should be preferred to QSC4.
6. 3D solid elements should be used if the normal stress in the transverse direction is not insignificant in comparison with the in-plane stresses.
7. The following element combinations should be used for ribbed plates

Ribs with small or no eccentricity

- QSI4/TS3 elements with BMI21 elements,
- QTS4/TTS3 elements with BMI21 elements.

Ribs with large eccentricity

- QSL8/TSL6 elements with BSL3/BSL4/BXL4 elements,
- QTS4/TTS3 elements with BMI21 elements.

8. The through-thickness integration is performed explicitly.

Restrictions

\square Avoid excessive aspect ratio

Recommendations on Use

This element may be used to analyse any 2D plate type structures where transverse shear effects influence the solution, e.g. perforated thick plates.

2D Mindlin Thick Plate Flexure Element

General

TTF6

QTF8

Element Group Plates

Element Mindlin Plates
Subgroup
Element
Description
A family of thick plate flexure elements based on a Mindlin plate formulation. The elements can accommodate curved boundaries and varying thicknesses. Transverse shear deformations are included.
Number Of Nodes Freedoms
$\mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}$: at each node.
Node X, Y: at each node. Coordinates

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Linear Isotropic:

Orthotropic:

Anisotropic:

Rigidities.
Matrix Not applicable
Joint Not applicable
Concrete Not applicable

MATERIAL PROPERTIES (Elastic: Isotropic)
MATERIAL PROPERTIES ORTHOTROPIC THICK (Elastic: Orthotropic Thick)
MATERIAL PROPERTIES ANISOTROPIC 5 (Elastic: Anisotropic Thick Plate)
RIGIDITIES 5 (Rigidities: Thick Plate)
Elasto-Plastic Not applicable
Creep Not applicableDamage Not applicableViscoelastic Not applicable
Shrinkage Not applicableRubber Not applicable
Generic Polymer Not applicable
Composite Not applicable
Loading

Prescribed Value PDSP, TPDSP

Concentrated CL Loads
Element Loads Not applicable.
Distributed Loads UDL

FLD, FLDG
Body Forces CBF BFP, BFPE

Velocities VELO
Accelerations ACCE
Viscous Support VSL
Loads
Initial SSI, SSIE
Stress/Strains

SSIG
Residual Stresses Not applicable.
Target TSSIE, Stress/Strains TSSIA

Prescribed variable. $\mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}$: at nodes.
Concentrated loads. Pz, Mx, My: at nodes.

Uniformly distributed loads. Wz: normal pressure for element (global).
Not applicable.
Constant body forces for element. Zcbf
Body force potentials at nodes/for element. φ_{1}, Zcbf
Velocities. Vz: at nodes.
Accelerations. Az: at nodes.
Viscous support loads. VLz at nodes.
Initial stresses/strains at nodes/for element. Mx, My, Mxy, Sx, Sy: moments, shear forces/unit width (global).
$\psi \mathrm{x}, \psi \mathrm{y}, \psi \mathrm{xy}, \gamma \mathrm{xz}, \gamma \mathrm{yz}:$ flexural, shear strains /unit width (global).
Not applicable.

Target stresses/strains at nodes/for element. Mx, My, Mxy, Sx, Sy: moments, shear forces/unit width (global).
$\psi \mathrm{x}, \psi \mathrm{y}, \psi \mathrm{xy}, \gamma \mathrm{xz}, \gamma \mathrm{yz}$: flexural, shear strains /unit width (global).
Not applicable.
Temperatures at nodes/for element.
$0,0,0, \mathrm{dT} / \mathrm{dz}, 0,0,0, \mathrm{dTo} / \mathrm{dz}$

$$
\begin{aligned}
& \text { Overburden } \begin{array}{l}
\text { Not } \\
\text { applicable. }
\end{array} \\
& \text { Phreatic Surface } \text { Not } \\
& \text { applicable. } \\
& \text { Field Loads } \begin{array}{l}
\text { Not } \\
\text { applicable. }
\end{array} \\
& \text { Temp Dependent } \text { Not } \\
& \text { Loads } \text { applicable. }
\end{aligned}
$$

Output

> Solver Stress resultant: Mx, My, Mxy, Sx, Sy: moments, shear forces/unit width (global).
> Strain: $\psi \mathrm{x}, \psi \mathrm{y}, \psi \mathrm{xy}, \gamma \mathrm{xz}, \gamma \mathrm{yz}:$ flexural, shear strains /unit width (global).
> Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

\square Standard plate element

Formulation

Geometric Nonlinearity

Not applicable.
Integration Schemes

Stiffness Default.
Fine (see Options). 3×3 (QTF8).
Mass Default. 3-point (TTF6), 2x2 (QTF8)
Fine (see Options). 3×3 (QTF8).

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element.
55 Output strains as well as stresses.
105 Lumped mass matrix.
170 Suppress transfer of shape function arrays to disk.

Notes on Use

1. The element formulations are based on an isoparametric approach. The variation of moments and shears within the element may be regarded as linear.
2. Though this element cannot model nonlinear behaviour, it can be mixed with other elements in a nonlinear analysis.
3. The elements pass the patch test for convergence with triangular and parallelogram element geometry.
4. These elements are usually more effective than the QSC4 thick shell element (section 7.6.2).
5. The elements tend to lock as the plate thickness approaches the thin plate limit since shear strain energy dominates the element stiffness. Therefore, a thin plate or shell element should be used when the depth/span ratio exceeds $1 / 50$.
6. 3D solid elements should be used if the normal stress in the transverse direction is not insignificant in comparison with the in-plane stresses.
7. The following element combinations should be used for ribbed plates

Ribs with small or no eccentricity

- QSI4/TS3 elements with BMI21 elements,
- QTS4/TTS3 elements with BMI21 elements.

Ribs with large eccentricity

- QSL8/TSL6 elements with BSL3/BSL4/BXL4 elements,
- QTS4/TTS3 elements with BMI21 elements.

8. The QTF8 element with $2 * 2$ Gauss quadrature is generally more effective than the $3 * 3$ rule. The $2 * 2$ rule does, however, exhibit one zero energy mode which can be eliminated using option 18.
9. The through-thickness integration is performed explicitly.

Restrictions

\square Ensure mid-side node centrality

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

These elements may be used to analyse any 2D plate type structures where transverse shear effects influence the solution, e.g. perforated thick plates.

Chapter 6: Shell Elements

2D Axisymmetric Thin Shell Element

General

Element Name BXS3

Element Group
Shells
Element
Subgroup
Element
Description
Number Of
Nodes
End Releases
Freedoms

Node
Coordinates
3.

Axisymmetric Shells
A parabolically curved axisymmetric thin shell element in 2D in which shear deformations are excluded. The geometric properties may vary along the length of the element.
$\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$: at end nodes.
dU : (relative local in-plane displacement) at the mid-length node.
X, Y : at each node.

Geometric Properties

$\mathbf{t}, \mathbf{t} 2, \mathbf{t} \mathbf{3}$ Thickness at each node.

Material Properties

Linear	Isotropic:	MATERIAL PROPERTIES (Elastic: Isotropic)
	Orthotropic:	MATERIAL PROPERTIES ORTHOTROPIC
		(Elastic: Orthotropic Plane Stress)
		MATERIAL PROPERTIES ORTHOTROPIC
		SOLID (Elastic: Orthotropic Thick)
Anisotropic:	MATERIAL PROPERTIES ANISOTROPIC 2	
	(Not supported in LUSAS Modeller)	
	Rigidities:	Not applicable.

Matrix Notapplicable.
Joint Notapplicable.
Concrete Notapplicable.
Elasto-Plastic Stressresultant:
Tresca:
Drucker-Prager:
Coulomb:
OptimisedImplicit VonMises:VolumetricCrushing:StressPotential
Creep
AASHTO
CEB-FIP
Chinese
Mohr- MATERIAL PROPERTIES NONLINEAR 65

MATERIAL PROPERTIES NONLINEAR 29(Elastic: Isotropic, Plastic: Resultant) (ifcodenot required)MATERIAL PROPERTIES NONLINEAR 61(Elastic: Isotropic, Plastic: Tresca, Hardening:Isotropic Hardening Gradient, IsotropicPlastic Strain or Isotropic Total Strain)
MATERIAL PROPERTIES NONLINEAR 64(Elastic: Isotropic, Plastic: Drucker-Prager,Hardening: Granular)(Elastic: Isotropic, Plastic: Mohr-Coulomb,Hardening: Granular with Dilation)MATERIAL PROPERTIES NONLINEAR 75(Elastic: Isotropic, Plastic: Von Mises,Hardening: Isotropic \& Kinematic)Not applicable.
STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)MATERIAL PROPERTIES NONLINEAR 86AASHTO
(Concrete creep model to AASHTO Code ofPractice)
MATERIAL PROPERTIES NONLINEAR 86CEB-FIP(Concrete creep model to CEB-FIP ModelCode 1990)
MATERIAL PROPERTIES NONLINEAR 86CHINESE
(Chinese creep model to Chinese Code ofPractice)
EUROCODE
(Concrete creep model to EUROCODE_2)
IRC
Damage
Viscoelastic Notapplicable.
Shrinkage
Rubber Not
Rubber Not applicable. applicable.
Generic Polymer Not applicable
Generic Polymer Not applicable
Composite Not
Composite Not
applicable.
applicable.

Loading
 Loading

Prescribed Value PDSP, TPDSP
Concentrated CLLoads
Element Loads ELDS
都

Prescribed Value PDSP, TPDSP

Concentrated CL Loads
MATERIAL PROPERTIES NONLINEAR 86 IRC(Concrete creep model to Indian IRC Code ofPractice)
DAMAGE PROPERTIES SIMO, OLIVER(Damage)
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Prescribed variable. U, V, $\theta \mathrm{z}$: at end nodes. dU: at the mid-length node.
Concentrated loads. Px, Py, Mx: point loads, moments/unit length/radian at end nodes (global).
DPx: point load/unit length/radian at midlength node (local).

Element loads

LTYPE, S1, Px, Py, Mx
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, 0, Wx, Wy, Mx
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions
LTYPE, S1, Wx1, Wy1, Mx1, S2, Wx2, Wy2, Mx2
LTYPE=31: distributed loads in local directions.

Distributed Loads UDL
FLD
FLDG
Body Forces CBF
BFP, BFPE
Velocities VELO
Accelerations ACCE
Viscous Support VSL
Loads
Initial SSI, SSIE
Stress/Strains

LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in global directions
LTYPE, S1, Wx, Wy, Mx
LTYPE=41: trapezoidal loads in local directions.
LTYPE=42: trapezoidal loads in global directions.
LTYPE=43: trapezoidal projected loads in global directions
Uniformly distributed loads. Wx, Wy: forces/unit length/radian in local x, y directions for element.
Face Loads. Px, Py: local face pressures at nodes.
Not applicable.
Constant body forces for element. Xcbf, Ycbf, $\Omega \mathrm{x}, \Omega \mathrm{y}, \Omega_{\mathrm{z}}, \alpha \mathrm{z}$
Body force potentials at nodes/for element. φ_{1}, $\varphi_{2}, 0,0, \mathrm{Xcbf}, \mathrm{Ycbf}$
Velocities. Vx, Vy: at nodes.
Accelerations. Ax, Ay: at nodes.
Viscous support loads. VLx, VLy: at nodes.
Initial stresses/strains at nodes/for element. Resultants (for linear material models without cross section integration and material model 29). $\mathrm{Nx}, \mathrm{N} \theta, \mathrm{Mx}, \mathrm{M} \theta, 0$: axial and circumferential forces, moments/unit width.
$\varepsilon \mathrm{x}, \varepsilon_{\theta}, \psi_{\mathrm{x}}, \psi_{\theta}, 0$, axial and circumferential strains (all models).
Initial stresses/strains at Gauss points.
(1) Resultants (for linear material models without cross section integration and material model 29). $\mathrm{Nx}, \mathrm{N} \theta, \mathrm{Mx}, \mathrm{M} \theta, 0$: axial and circumferential forces, moments/unit width.
$\varepsilon \mathrm{x}, \varepsilon_{\theta}, \psi_{\mathrm{x}}, \psi \theta, 0$: axial and circumferential strains (all models).
(2) Components (for linear material models with cross section integration and all nonlinear material models except 29). $0,0,0$,

LUSAS Output

Solver Force. $\mathrm{Nx}, \mathrm{N} \theta, \mathrm{Mx}, \mathrm{M}_{\theta}$: axial and circumferential forces, moments/unit width in local directions.

Strain. $\varepsilon_{x}, \varepsilon_{\theta}, \gamma_{\mathrm{x}}, \gamma_{\theta}$: axial and circumferential strains.
Layer stress and strain output is also available when using the nonlinear continuum material models.

Modeller See Results Tables (Appendix K).

Local Axes

The local x -axis lies along the line of the element in the direction in which the nodes are numbered. The local y and z -axes form a right-hand set with the local x -axis such that the y -axis lies in the global XY-plane with the z -axis parallel to the global Z-axis.

Sign Convention

- Standard shell element. Axial and circumferential moments are positive for tension on element top fibre (the top fibre lies on the positive local y side of the element).

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, rotations up to 1 radian, and small strains.
Updated For large displacements, rotation increments up to 1 radian and Lagrangian small strains.

Eulerian Not applicable.
Co-rotational Not applicable.

Integration Schemes

Stiffness	Default.	2-point.
	Fine (see Options).	3-point.
Mass	Default.	2-point.
	Fine (see Options).	3-point.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element
$47 \quad$ X-axis taken as axis of symmetry
54 Updated Lagrangian geometric nonlinearity.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity
105 Lumped mass matrix.
157 Material model 29 (non cross-section elements), see Notes.
170 Suppress transfer of shape function arrays to disk.

Notes on Use

1. The element formulation is based on a constrained super-parametric approach.
2. The variation of axial force and moment along the length of the element is linear. The variation of displacements is cubic in the local y-direction, and quadratic in the local x direction.
3. Temperature dependent properties cannot be used with material model 29.
4. The through-thickness integration is performed explicitly for linear and stress resultant plasticity models and with a 5-point Newton-Cotes rule for all other material models.

Restrictions

E Ensure mid-side node centrality
\square Avoid excessive element curvature

Recommendations on Use

The element can be used for analysing shell structures which are axisymmetric, e.g. pressure vessels or pipes.

2D Axisymmetric Thick Shell Elements

General

Element
BXSI2
Name

BXSI3

Element Group Shells
Element Axisymmetric Shells
Subgroup
Element
Description
and curved isoparametric degenerate thick axisymmetric shell elements in 2D for which shearing deformations are included. The element thickness may vary along the length.
Number Of 2 (BXSI2), 3 (BXSI3)
Nodes
End Releases
Freedoms
$\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$: at end nodes.
Node X, Y : at each node.

Coordinates

Geometric Properties

$\mathbf{t}, \mathbf{t}, \mathbf{t} 3$ Thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)
Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC
(Elastic: Orthotropic Plane Stress)
MATERIAL PROPERTIES ORTHOTROPIC
SOLID (Elastic: Orthotropic Thick)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 2 (Not supported in LUSAS Modeller)
Rigidities: Not applicable.
Matrix Notapplicable.
Joint Notapplicable.
Concrete Notapplicable.
Elasto-Plastic Stress Not applicable.resultant:Tresca:Drucker-Prager:Mohr-Coulomb:Implicit VonMises:Tresca:
Optimised
VolumetricMATERIAL PROPERTIES NONLINEAR 61(Elastic: Isotropic, Plastic: Tresca, Hardening:Isotropic Hardening Gradient, IsotropicPlastic Strain or Isotropic Total Strain)MATERIAL PROPERTIES NONLINEAR 64(Elastic: Isotropic, Plastic: Drucker-Prager,Hardening: Granular)
MATERIAL PROPERTIES NONLINEAR 65
(Elastic: Isotropic, Plastic: Mohr-Coulomb,Hardening: Granular with Dilation)
MATERIAL PROPERTIES NONLINEAR 75
(Elastic: Isotropic, Plastic: Von Mises,Hardening: Isotropic \& Kinematic)
Crushing:
Stress STRESS POTENTIAL VON_MISES, HILL,Potential
CreepAASHTO
CEB-FIP
Chinese
EurocodeHOFFMAN(Isotropic: von Mises, Modified von MisesOrthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO
(Concrete creep model to AASHTO code ofPractice)
MATERIAL PROPERTIES NONLINEAR 86
CEB-FIP
(Concrete creep model to CEB-FIP ModelCode 1990)
MATERIAL PROPERTIES NONLINEAR 86CHINESE
(Chinese creep model to Chinese Code ofPractice)
MATERIAL PROPERTIES NONLINEAR 86
EUROCODE
(Concrete creep model to EUROCODE_2)
DamageViscoelastic Notapplicable.
Shrinkage
Rubber Notapplicable.
Generic Polymer Not applicable
Composite Notapplicable.
MATERIAL PROPERTIES NONLINEAR 86 IRC
(Concrete creep model to Indian IRC code ofPractice)
DAMAGE PROPERTIES SIMO, OLIVER(Damage)
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Loading

Prescribed Value PDSP,TPDSP
Concentrated CLLoads

Prescribed variable. $\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$: at end nodes.
Concentrated loads. Px, Py, Mx at nodes.

Element loads on nodal line

LTYPE, S1, Px, Py, Mz
LTYPE=11: point loads and moments in local directions.
LTYPE=12: point loads and moments in global directions.
LTYPE, 0, Wx, Wy, Mz
LTYPE=21: uniformly distributed loads in local directions.
LTYPE=22: uniformly distributed loads in global directions.
LTYPE=23: uniformly distributed projected loads in global directions
LTYPE, S1, Wx1, Wy1, Mz1, S2, Wx2, Wy2, Mz2
LTYPE=31: distributed loads in local directions.
LTYPE=32: distributed loads in global directions.
LTYPE=33: distributed projected loads in

		global directions
		LTYPE, S1, Wx, Wy, Mz LTYPE=41: trapezoidal loads in local directions. LTYPE=42: trapezoidal loads in global directions. LTYPE=43: trapezoidal projected loads in global directions
Distributed Loads	UDL	Uniformly distributed loads. Wx, Wy: forces/unit length/radian in local x, y directions for element.
	FLD	Face Loads. Px, Py: local face pressures at nodes.
	FLDG	Not applicable.
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{z}}$
	BFP, BFPE	Body force potentials at nodes/for element. $\varphi 1$, $\varphi 2,0,0$, Xcbf, Ycbf
Velocities	VELO	Velocities. Vx, Vy: at nodes.
Accelerations	ACCE	Accelerations. Ax, Ay: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. Components: $0,0,0,0,0,0,0,0,0,0,(\sigma x$, $\sigma x y, \sigma z, \varepsilon x, \varepsilon x y, \varepsilon z)$ Bracketed terms repeated for each fibre integration point
	SSIG	Initial stresses/strains at Gauss points. These stresses/strains are specified in the same manner as SSI and SSIE.
Residual Stresses	SSR, SSRE	Residual stresses at nodes/for element. Components: $0,0,0,0,0,0,0,0,0,0,(\sigma x$, $\sigma x y, \sigma z)$ Bracketed terms repeated for each fibre integration point.
	SSRG	Residual stresses at Gauss points for element. Components: $0,0,0,0,0,0,0,0,0,0,(\sigma x$, $\sigma x y, \sigma z)$ Bracketed terms repeated for each fibre integration point.
Target Stress/Strains	$\begin{aligned} & \text { TSSIE, } \\ & \text { TSSIA } \end{aligned}$	Target stresses/strains at nodes/for element.
		$\sigma x y, \sigma z)$ Bracketed terms repeated for each fibre integration point.

| TSSIG | Target stresses/strains at Gauss points. These
 stresses/strains are specified in the same
 manner as TSSIE and TSSIA. |
| :--- | :--- | :--- |
| Temperatures TEMP, TMPE | Temperatures at nodes/for element.
 T, $0, \mathrm{dT} / \mathrm{dy}, 0, \mathrm{To}, 0, \mathrm{dTo}$ /dy, $0:$ in local
 directions. |
| OverburdenNot
 applicable. | |

Phreatic Surface Face pressure.

Field Loads Not
applicable.
Temp Dependent Not
Loads applicable.

The fluid pressure is applied in the -y direction of the element y axis.

LUSAS Output

Solver Force. Nx, Ne, Mx, Me, Sxy: axial and hoop forces, moments/unit width in local directions, shear force

Strain. $\varepsilon_{x}, \varepsilon_{\square}, \gamma \mathrm{x}, \square \theta, \varepsilon_{x y}$ axial, hoop, flexural and shear strains. Continuum stresses: $\sigma x, \sigma x y, \sigma \theta$ in local directions.
Strain: $\varepsilon x, \varepsilon_{x y}, \varepsilon_{\square}$: Axial, shear and hoop strains in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

The local x -axis lies along the line of the element in the direction in which the nodes are numbered. The local y and z -axes form a right-hand set with the local x -axis such that the y -axis lies in the global XY-plane with the z -axis parallel to the global Z-axis.

Sign Convention

\square Standard shell element. Axial and circumferential moments are positive for tension on element top fibre (the top fibre lies on the positive local y side of the element).

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, rotations up to 1 radian, and small strains.

Updated Not applicable.
 Lagrangian
 Eulerian Not applicable.
 Co-rotational Not applicable.

Integration Schemes

Stiffness Default.
Fine (see Options).
Mass Default.
Fine (see Options).

1-point (BXSI2), 2-point (BXSI3).
Same as default.
2-point (BXSI2), 3-point (BXSI3).
Same as default.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule for element
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity
102 Switch off load correction stiffness matrix due to centripetal acceleration
105 Lumped mass matrix.
134 Gauss to Newton-Cotes in plane (in the local x direction) integration for elements.
139 Output yielded integration points only.

Notes on Use

1. The element is formulated from the degenerate continuum concept, i.e. enforcing directly the modified Timoshenko hypothesis for thick beams to the continuum theory. Plane cross-sections initially normal to the x axis remain plane and undistorted (the shape of the cross-section remains unchanged) under deformation, but do not necessarily remain normal to the x axis. Shearing deformations are included.
2. The axial force, hoop force, shear force and moments are constant in BXSI2 and vary linearly along the length of the beam in BXSI3.
3. OPTION 36 is only applicable for use with element load types FLD, ELDS, UDL and phreatic surface pressure. Specifying this option makes these element loads follow the element geometry as the analysis progresses.

Restrictions

\square Ensure mid-side node centrality
\square Avoid excessive element curvature

Recommendations on Use

The element can be used for analysing linear and nonlinear shell structures which are axisymmetric, e.g. pressure vessels or pipes.

3D Flat Thin Shell Elements

General

TS3

A family of flat thin shells in 3D which include a high performance incompatible model. The elements take into account both membrane and flexural deformations. As required by thin plate theory, transverse shearing deformations are excluded. An average thickness value for each element is obtained from the specified nodal thicknesses. Since the elements are formulated in local element axes, directional material properties may be defined

QSI4

Shells
Flat Thin Shells
Element Group
Element
Subgroup
Element
Description
Element Group
Element
Subgroup
Element
Description
Element Group
Element
Subgroup
Element
Description
Element Group
Element
Subgroup
Element
Description relative to the element orientation.
Number Of 3 or 4 numbered anticlockwise.
Nodes
Freedoms
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at each node.
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

Geometric Properties

Ez, $\mathbf{t} 1 .$. tn Eccentricity and thickness at each node.

Material Properties

Linear Isotropic:

Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC (Elastic: Orthotropic Plane Stress)
MATERIAL PROPERTIES
ORTHOTROPIC SOLID (Elastic:
Orthotropic Thick)
Anisotropic: MATERIAL PROPERTIES

Rigidities.

Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage

Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

ANISOTROPIC 3 (Elastic: Anisotropic Thin Plate)
RIGIDITIES 6 (Rigidities: Shell) (D7, D8, D9, D11, D12, D13, D16, D17, D18=0)

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Prescribed variable. U, V, W, $\theta x, \theta y, \theta z$: at nodes.
Concentrated loads. Px, Py, Pz, Mx, My, Mz: at nodes.

Uniformly distributed loads. Wx, Wy, Wz: local surface pressures for element (see Notes).
Not applicable.
Constant body forces for element. Xcbf, Ycbf, Zcbf (see Notes).
Body force potentials at nodes/for element. φ_{1}, φ_{2}, φ_{3} (see Notes).
Velocities. Vx, Vy, Vz: at nodes.
Accelerations. Ax, Ay, Az: at nodes.
Viscous support loads. VLx, VLy, VLz: at nodes.
Initial stresses/strains at nodes/for element. Resultants. Nx, Ny, Nxy, Mx, My, Mxy: forces, moments/unit width in local

LUSAS Output

Solver Stress resultant: Nx, Ny, Nxy, Mx, My, Mxy: forces, moments/unit width in local directions.

Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma \max , \sigma \min , \beta, \sigma e:$ in local directions (see Notes).

Strain: $\varepsilon x, \varepsilon y, \gamma x y, \psi x, \psi y, \psi x y:$ membrane, flexural strains in local directions.

Modeller See Results Tables (Appendix K).

Local Axes

\square Standard area element

Sign Convention

\square Thin shell element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point for the in-plane incompatible modes, (QSI4),
2×2 for the in-plane compatible modes, (QSI4), 2×2 for bending (QSI4).
1-point for in-plane (TS3), 3-point for bending (TS3).
Fine. As default.
Mass Default. 1-point for the in-plane incompatible modes, (QSI4),
2×2 for the in-plane compatible modes, (QSI4), 2×2 for bending (QSI4).
1-point for in-plane (TS3), 3-point for bending (TS3).
Fine. As default.

Mass Modelling

Lumped mass only.

Options

32 Suppress stress output but not stress resultants.
34 Outputs stress resultants.
55 Outputs strains as well as stresses.
59 Outputs local direction cosines for elements.
170 Suppresses transfer of shape function arrays to disk.

Notes on Use

1. The element formulations are based on the standard isoflex approach for the flexural matrices.
2. The variation of membrane stresses within the element can be regarded as constant for TS3 and linear for QSI4. The higher order membrane performance of QSI4 is due to the addition of four incompatible in-plane displacement modes. The variation of flexural stresses can be regarded as linear for all elements.
3. The stress results are most easily interpreted if the local element axes are all parallel.
4. The elements pass the patch test for mixed triangular and quadrilateral geometry.
5. Stress output to the LUSAS output file is on 4 lines:

- Stresses due to membrane action.
- Top surface stresses due to bending action.
- Top surface stresses due to membrane and bending action.
- Bottom surface stresses due to membrane and bending action.

Gauss point output is not available.
6. All distributed loading will be lumped at the nodes.
7. For effective analysis of curved shell structures, a flat shell element should not extend over more than 15 degrees of arc.
8. Though this element cannot model nonlinear behaviour, it can be mixed with other elements in a nonlinear analysis.
9. A system variable is used to alter the artificial stiffness for in-plane rotations.
10. A fine discretisation will be required to reproduce the correct behavioural response for curved structures. Therefore, the Semiloof shell elements (QSL8,TSL6) or the thick shell elements (QTS8, TTS6) may be more appropriate.
11. The ORTHOTROIC SOLID material model may be used with either composite or non-composite thin shell elements. Using a Solid rather than a Thick orthotropic material means that a local coordinate may be used to orientate the material.
12. Element loading on elements with eccentricity is applied as follows:

- SSI, SSIE, TSSIE, TSSIA, TEMP, TMPE - at the mid-plane of the element.
- UDL, CBF, BFP, BFPE - at the nodal plane.

Restrictions

\square Avoid excessive aspect ratio.
\square Avoid excessive warping.

Recommendations on Use

- The flat thin shell elements are suitable for modelling both flat and curved thin shell structures which exhibit negligible transverse shear deformations.
- A fine discretisation will be required to reproduce the correct behavioural response for curved structures. Therefore, the Semiloof shell elements (QSL8,TSL6) or the thick shell elements (QTS8, TTS6) may be more appropriate.
- The Semiloof shell elements (QSL8,TSL6) or the thick shell elements (QTS8, TTS6) are more effective for structures containing multiple shell intersections.
- The Semiloof shell elements (QSL8,TSL6) or the thick shell elements (QTS4, QTS8, TTS3, TTS6) may be more effective for eigen-analyses since a consistent mass matrix is available.
- The Semiloof shell elements (QSL8,TSL6) should be utilised for nonlinear analyses.
- The elements can be combined with BMI21 beam elements for analysing ribbed shells with small or no eccentricity. However, the Semiloof shell (QSL8,TSL6) and beam (BSL3,BSL4,BXL4) are more effective for thin ribbed shells with larger eccentricity. For thick ribbed shells with larger eccentricity the thick shell (QTS4, QTS8, TTS3, TTS6) and co-rotational beam (BMI21) are recommended.

3D Flat Thin Nonlinear Shell Element

General

Element Name TSR6

Element Flat Thin Shells
Subgroup
Element
Description
A triangular shell element for the analysis of faceted shell geometries, including multiple branched junctions. The elements can accommodate varying thickness and anisotropic material properties. The element is based on the "Morley shell" formulation and assumes constant membrane and bending strains across the element. As required by thin shell theory, transverse shearing

Number Of Nodes Freedoms $\mathrm{U}, \mathrm{V}, \mathrm{W}:$ at corner nodes. θ_{1} : (loof rotation) at mid-side nodes (see

Shells deformations are excluded. 6 numbered anticlockwise. Notes).
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Linear Isotropic: MATERIAL PROPERTIES (Elastic: Isotropic)
Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC (Elastic: Orthotropic Plane Stress)
MATERIAL PROPERTIES ORTHOTROPIC SOLID (Elastic: Orthotropic Thick)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 3 (Elastic: Anisotropic Thin Plate)

Rigidities.

Matrix Not applicable

Joint Not applicable

Concrete

Elasto-Plastic Stress resultant:

Tresca:

DruckerPrager:

MohrCoulomb:

Volumetric Not applicable. Crushing:

Stress
Potential

Creep

AASHTO

CEB-FIP

MATERIAL PROPERTIES NONLINEAR 109
(Elastic: Isotropic, Plastic: Smoothed MultiCrack Concrete)
MATERIAL PROPERTIES NONLINEAR 29 (Elastic: Isotropic, Plastic: Resultant) (ifcode not required)

MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)

MATERIAL PROPERTIES NONLINEAR 64
(Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)

MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)

STRESS POTENTIAL VON_MISES, HILL, HOFFMAN
(Isotropic: von Mises, Modified von Mises
Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)

Not applicable
Chinese
IRC IRC
Damage
Not applicable
EurocodeNot applicable
Viscoelastic Not applicable
Shrinkage
GENERAL, USER
Rubber Notapplicable.
Generic Polymer Not applicable
Composite Not applicable
Loading
Prescribed Value PDSP,TPDSP
Concentrated CL
Loads
Element Loads Notapplicable.
Distributed Loads UDL
FLD, FLDGBody Forces CBF

Prescribed variable. U, V, W: at corner nodes. θ_{1} : at mid-side nodes.
Concentrated loads. Px, Py, Pz: at corner nodes. M_{1} : at mid-side nodes.

Uniformly distributed loads. Wx, Wy, Wz: midsurface local pressures for element.
Not applicable.
Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha_{\mathrm{z}}$

Body force potentials at nodes/for element. $\varphi 1$, $\varphi_{2}, \varphi_{3}, 0$, Xcbf, Ycbf, Zcbf, where $\varphi_{1}, \varphi_{2}, \varphi_{3}$ are the face loads in the local coordinate

Velocities	VELO
Accelerations	ACCE
Viscous Support	VSL
Loads	
Initial	SSI, SSIE
Stress/Strains	

SSIG

Residual Stresses SSR, SSRE

 SSRGTarget TSSIE, Stress/Strains TSSIA TSSIG

Temperatures TEMP, TMPE
Overburden Not applicable.
system.
Velocities. Vx, Vy, Vz: at corner nodes.
Accelerations. Ax, Ay, Az: at corner nodes.
Viscous support loads. VLx, VLy, VLz: at nodes.
Initial stresses/strains at nodes/for element.

Initial stresses/strains at Gauss points.
(1) Resultants (for model 29 and RIGIDITIES) Nx, Ny, Nxy, Mx, My, Mxy,
$\varepsilon x, \varepsilon y, \gamma x y, \psi x, \psi y, \psi x y:$ forces, moments/unit width and membrane/flexural strains in local directions.
(2) Components (in all other cases except for nonlinear model 29 and RIGIDITIES), $0,0,0$,
$0,0,0,0,0,0,0,0,0,(\sigma x, \sigma y, \sigma x y, \varepsilon x, \varepsilon y$,
γ ху). Bracketed terms repeat for each layer.
Residual stresses at nodes/for element
Residual stresses at Gauss points.
(1) Resultants (for model 29) Nx, Ny, Nxy, Mx, My, Mxy: forces, moments/unit width in local directions.
(2) Components (for all nonlinear material models except model 29): $0,0,0,0,0,0,0,0$,
$0,0,0,0,(\sigma x, \sigma y, \sigma x y)$. Bracketed terms repeat for each layer.
Target stresses/strains at nodes/for element.

Target stresses/strains at Gauss points.
(1) Resultants (for model 29 and RIGIDITIES) Nx, Ny, Nxy, Mx, My, Mxy, $\varepsilon x, \varepsilon y, \gamma x y, \psi x, \psi y, \psi x y$: forces, moments/unit width and membrane/flexural strains in local directions.
(2) Components (in all other cases except for nonlinear model 29 and RIGIDITIES), $0,0,0$, $0,0,0,0,0,0,0,0,0,(\sigma x, \sigma y, \sigma x y, \varepsilon x, \varepsilon y$, $\gamma x y)$. Bracketed terms repeat for each layer.
Temperatures at nodes/for element. T, 0,0 , dT/dz, To, 0, 0, dTo/dz
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent NotLoads applicable.
LUSAS Output
Solver Stress resultant: Nx, Ny, Nxy, Mx, My, Mxy: forces, moments/unit width in local directions.
Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma \max , \sigma \min , \beta, \sigma \mathrm{e}$: in localdirections (see Notes).Strain: $\varepsilon x, \varepsilon y, \gamma x y, \psi x, \psi y, \psi x y:$ membrane, flexural strains inlocal directions.
Modeller See Results Tables (Appendix K).
Local Axes

- Standard area element
Sign Convention
\square Thin shell element
Formulation
Geometric Nonlinearity
Total Lagrangian Not applicable.
Updated Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational For large displacements and rotations
Integration Schemes
Stiffness Default. 1-point
Fine.
Coarse. 1-point
Mass Default. 1-point

Fine.
1-point

Mass Modelling

- Consistent mass.

Options

32 Suppresses stress output but not resultants.
34 Outputs element stress resultants.
55 Outputs strains as well as stresses.
59 Outputs local direction cosines at nodes and Gauss points.
77 Output principal stresses and directions.
139 Output yielded Gauss points only.

Notes on Use

1. The element formulations are based on a Kirchhoff hypothesis for thin shells.
2. The stresses are constant within the elements.
3. The loof rotations refer to rotations about the element edge at the mid-side nodes. The positive direction of a loof rotation is defined by a right-hand screw rule applied to a vector running in the direction of the lower to higher numbered corner nodes. It should be noted that this direction is enforced on a global level which means that the loof rotations along the adjoining edge of several elements will be consistent in terms of direction and ordering.
4. The element edges must remain straight even though the elements have midside nodes.
5. The elements pass the patch test for convergence.
6. Stresse will not be output when using RIGIDITIES or material model 29.
7. The through-thickness integration is performed explicitly for linear analyses and a 5-point Newton-Cotes rule is utilised for materially nonlinear analyses with continuum material models. The through-thickness integration rules are as follows:

- Linear models: 3-layers.
- Nonlinear models: 5-layers.

Restrictions

\square Ensure mid-side node centrality and straight element edges
\square Avoid excessive aspect ratio

Recommendations on Use

- These elements may be utilised for analysing flat and faceted 3D shell structures where the transverse shear effects do not influence the solution. The configuration of the nodal freedoms provides an element suitable for modelling intersecting shells.
- The elements are recommended for geometrically nonlinear problems where large displacements and rotations occur. The single Gauss point integration scheme gives rise to a computationally efficient solution, however, the mesh may need to be refined if there is an unacceptable differentiation in stresses between adjacent elements..

Semiloof Curved Thin Shell Elements

General

Element Name

TSL6

QSL8

Element Group
Shells
Element
Semiloof Shells
Subgroup

Element Description

Number Of Nodes Freedoms

Node

Coordinates

A family of shell elements for the analysis of arbitrarily curved shell geometries, including multiple branched junctions. The elements can accommodate generally curved geometry with varying thickness and anisotropic and composite material properties. The element formulation takes account of both membrane and flexural deformations. As required by thin shell theory, transverse shearing deformations are excluded.
6 or 8 numbered anticlockwise.
$\mathrm{U}, \mathrm{V}, \mathrm{W}$: at corner nodes. $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta_{1}, \theta_{2}$: (loof rotations) at midside nodes (see Notes).
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

Geometric Properties

t1... tn Thickness at each node. Also see Composite Geometry data chapter.

Material Properties

Linear Isotropic:
MATERIAL PROPERTIES (Elastic: Isotropic)
Orthotropic: MATERIAL PROPERTIES ORTHOTROPIC
(Elastic: Orthotropic Plane Stress)
MATERIAL PROPERTIES ORTHOTROPIC
SOLID (Elastic: Orthotropic Solid)
Anisotropic: MATERIAL PROPERTIES ANISOTROPIC 3 (Elastic: Anisotropic Thin Plate)Rigidities. RIGIDITIES 6 (Rigidities: Shell)Matrix Not applicable
Joint Not applicable
Concrete
Elasto-Plastic Stressresultant:
Tresca: MATERIAL PROPERTIES NONLINEAR 61(Elastic: Isotropic, Plastic: Tresca, Hardening:Isotropic Hardening Gradient, IsotropicPlastic Strain or Isotropic Total Strain)
Drucker-
Prager:
Mohr-
Coulomb:
Volumetric Not applicable.
Crushing:
Stress STRESS POTENTIAL VON_MISES, HILL,Potential
CreepHOFFMAN
(Isotropic: von Mises, Modified von MisesOrthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
AASHTO
MATERIAL PROPERTIES NONLINEAR 86 AASHTO(Concrete creep model to AASHTO code ofPractice)
CEB-FIP

MATERIAL PROPERTIES NONLINEAR 86ChineseEurocode
Damage
IRC
Viscoelastic Not applicableSHRINKAGE CEB_FIP_90, EUROCODE_2,GENERAL, USER
Loading
Prescribed Value PDSP,TPDSP
Concentrated CL CL
Loads
Element Loads Notapplicable.Distributed Loads UDL

CEB-FIP
(Concrete creep model to CEB-FIP Model Code 1990)

MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 EUROCODEMATERIAL PROPERTIES NONLINEAR 86IRC(Concrete creep model to Indian IRC code ofPractice)DAMAGE PROPERTIES SIMO, OLIVER(Damage)

Viscoelastic Not applicable
Shrinkage

Shrinkage

Rubber Not

Rubber Notapplicable.
Generic Polymer Not applicable
Composite Compositeshell: applicable. shell:

COMPOSITE PROPERTIES

Prescribed variable. U, V, W: at corner nodes. $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta_{1}, \theta_{2}$: at mid-side nodes. Concentrated loads. Px, Py, Pz: at corner nodes. $\mathrm{Px}, \mathrm{Py}, \mathrm{Pz}, \mathrm{M}_{1}, \mathrm{M}_{2}$: at mid-side nodes.

Uniformly distributed loads. Wx, Wy, Wz: mid-
surface local pressures for element.
FLD, FLDG Not applicable.

Body Forces CBF

BFP, BFPE

Velocities VELO
Accelerations ACCE
Viscous Support VSL
Loads
Initial SSI, SSIE
Stress/Strains
SSIG

Residual Stresses
SSR, SSRE
SSRG

Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha z$

Body force potentials at nodes/for element. φ_{1}, $\varphi_{2}, \varphi_{3}, 0$, Xcbf, Ycbf, Zcbf, where $\varphi_{1}, \varphi_{2}, \varphi_{3}$ are the face loads in the local coordinate system.
Velocities. Vx, Vy, Vz: at nodes.
Accelerations. Ax, Ay, Az: at nodes.
Viscous support loads. VLx, VLy, VLz: at nodes.
Not applicable.
Initial stresses/strains at Gauss points.
(1) Resultants (for linear analysis and model
29) $\mathrm{Nx}, \mathrm{Ny}, \mathrm{Nxy}, \mathrm{Mx}, \mathrm{My}, \mathrm{Mxy}, \varepsilon x, \varepsilon y, \gamma x y$, $\psi x, \psi y, \psi x y:$ forces, moments/unit width and membrane/flexural strains in local directions.
(2) Components (for all other nonlinear material models) are: $0,0,0,0,0,0,0,0,0,0$, $0,0,(\sigma x, \sigma y, \sigma x y, \varepsilon x, \varepsilon y, \gamma x y)-$ with the bracketed terms repeated for each of the five layers. (See note 7 in the Notes of Use) section.
Not applicable.
Residual stresses at Gauss points.
(1) Resultants (for model 29) Nx, Ny, Nxy, Mx, My, Mxy: forces, moments/unit width in local directions.
(2) Components (for all other nonlinear material models) are: $0,0,0,0,0,0,0,0,0,0$, $0,0,(\sigma x, \sigma y, \sigma x y)$ - with the bracketed terms repeated for each of the five layers. (See note 7 in the Notes of Use) section.
Not applicable.
Target stresses/strains at Gauss points.
(1) Resultants (for linear analysis and model
29) $\mathrm{Nx}, \mathrm{Ny}, \mathrm{Nxy}, \mathrm{Mx}, \mathrm{My}, \mathrm{Mxy}, \varepsilon x, \varepsilon y, \gamma x y$,
$\psi x, \psi y, \psi x y:$ forces, moments/unit width and
membrane/flexural strains in local directions.
(2) Components (for all other nonlinear material models) are: $0,0,0,0,0,0,0,0,0,0$, $0,0,(\sigma x, \sigma y, \sigma x y, \varepsilon x, \varepsilon y, \gamma x y)$ - with the bracketed terms repeated for each of the five layers. (See note 7 in the Notes of Use) section.

Temperatures TEMP, TMPE
Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not
Loads applicable.

Temperatures at nodes/for element. T, 0,0 , dT/dz, To, 0, $0, \mathrm{dTo} / \mathrm{dz}$

LUSAS Output

Solver Stress resultant: Nx, Ny, Nxy, Mx, My, Mxy: forces, moments/unit width in local directions.
Stress (default): $\sigma \mathrm{x}, \sigma \mathrm{y}, \sigma \mathrm{xy}, \sigma \max , \sigma \min , \beta, \sigma \mathrm{e}$: in local directions (see Notes).

Strain: $\mathcal{E x}, \varepsilon_{y}, \gamma \mathrm{xy}, \psi \mathrm{x}, \psi y, \psi \mathrm{xy}:$ membrane, flexural strains in local directions.

Modeller See Results Tables (Appendix K).

Local Axes

- Local y axis The local element y-axis at a point coincides with a curvilinear line $\xi=$ constant in the natural coordinate system which lies in the shell midsurface.
- Local \mathbf{x} axis The local x-axis at a point is perpendicular to the local y-axis in the positive η direction and is tangential to the shell mid-surface.
- Local z axis The local z -axis forms a right-hand set with the x and y axes and the direction is given by the ordering of the element nodes according to a righthand screw rule. The local z-axis + ve direction defines the element top surface.

TSL6

QSL8

Sign Convention

\square Thin shell element (seeNotes).

Formulation

Geometric Nonlinearity

Total Lagrangian For large displacements, rotations up to 1 radian and small strains.
Updated For large displacements, rotation increments up to 1 radian and Lagrangian small strains.

Eulerian Not applicable.
Co-rotational Not applicable.

Integration Schemes

Stiffness Default.	3-point (TSL6), 5-point (QSL8).
Fine (see	3x3 (QSL8)
Options).	
Coarse (see Options).	2x2 (QSL8)
Mass Default.	3-point (TSL6), 5-point (QSL8).
Fine (see	3x3 (QSL8)
Options).	

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
19 Invokes coarse integration rule.
32 Suppresses stress output but not resultants.
34 Outputs element stress resultants.
54 Updated Lagrangian geometric nonlinearity.
55 Outputs strains as well as stresses
59 Outputs local direction cosines at nodes and Gauss points.
87 Total Lagrangian geometric nonlinearity.
102 Switch off load correction stiffness due to centripetal acceleration.
105 Lumped mass matrix.
138 Output yield flags only.
139 Output yielded Gauss points only.
169 Suppress extrapolation of stresses to nodes.
170 Suppress transfer of shape function arrays to disk.

Notes on Use

1. The element formulations are based on a Kirchhoff hypothesis for thin shells.
2. The variation of stresses within the elements may be regarded as linear.
3. The loof rotations refer to rotations about the element edge at the loof points. The positive direction of a loof rotation is defined by a right-hand screw rule applied to a vector running in the direction of the lower to higher numbered corner nodes. It should be noted that this direction is enforced on a global level which means that the loof rotations along the adjoining edge of several elements will be consistent in terms of direction and ordering. The ordering is such that loof point 1 is located between the lower numbered node and the appropriate mid-side node. Similarly loof point 2 lies between the mid-side node and the higher numbered node along an element edge. The loof rotations are actually specified at the element mid-side nodes.
4. The elements pass the patch test for convergence for mixed triangular and quadrilateral element geometry.
5. Stress output to the LUSAS output file is on 4 lines:

- Stresses due to membrane action.
- Top surface stresses due to bending action.
- Top surface stresses due to membrane and bending action.
- Bottom surface stresses due to membrane and bending action.

6. Stresses will not be output when using RIGIDITIES or material model 29. Averaged stresses will not be processed when using RIGIDITIES.
7. The through-thickness integration is performed explicitly for linear analyses and a 5-point Newton-Cotes rule is utilised for materially nonlinear analyses with continuum material models. The through-thickness integration rules are as follows:

- Linear models: 3-layers.
- Nonlinear models: 5-layers.
- Composite model: Variable.

8. The quadrature points of the 3-point rule are non-standard.
9. The coarse $2 * 2$ quadrature rule provides the most effective element if the mesh is highly constrained. However, the element possesses two mechanisms, the usual in-plane hourglass mechanism encountered when reduced integration is utilised with 8 -noded elements and an out of plane mechanism. The in-plane mechanism is rarely activated but the out-of-plane mechanism may be more troublesome, particularly where elements are regular and have one zero principal curvature, e.g. a cylinder subject to internal pressure. Provided the mechanisms are not activated the element with $2 * 2$ provides the best results.
10. The 5-point quadrature rule provides an element with a performance below that of the element with $2 * 2$ quadrature, but considerably better than the element with 3*3 quadrature. However, the element possesses a 'near' mechanism which may be activated for lightly constrained meshes, particularly if out of plane loads are present.
11. The middle integration point of the 5 point rule is only implemented as a method of reducing the excitation of spurious modes (or mechanisms) which are present with the $2 * 2$ integration rule. The 5 th integration point is actually weighted with an arbitrarily small value which has the effect of stabilising the results. For these reasons, values from the middle integration point are not taken into account for the nodal extrapolation.
12. The $3 * 3$ quadrature rule provides an element that has no mechanisms but tends to provide over-stiff solutions. Therefore, a finer discretisation is required than if the 5 -point quadrature rule is used.

Restrictions

\square Ensure mid-side node centrality

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- These elements may be utilised for analysing flat and curved 3D shell structures where the transverse shear effects do not influence the solution. The configuration of the nodal freedoms provides an element suitable for modelling intersecting shells, e.g. tubular joints and also for use with solid elements (HX20).
- The elements may be combined with the Semiloof beam (BSL3,BSL4,BXL4) for analysing ribbed plates and shells.

3D Thick Shell Elements

General

Element Name
TTS3

QTS4

Shells
Element
Subgroup
Element
Description

Number Of
Nodes
Freedoms

A family of shell elements for the analysis of arbitrarily thick and thin curved shell geometries, including multiple branched junctions. The quadratic elements can accommodate generally curved geometry while all elements account for varying thickness. Anisotropic and composite material properties can be defined. These degenerate continuum elements are also capable of modelling warped configurations. The element formulation takes account of membrane, shear and flexural deformations. The quadrilateral elements use an assumed strain field to define transverse shear which ensures that the element does not lock when it is thin (see Notes). $3,4,6$ or 8 numbered anticlockwise.
Thick Shells

Default: 5 degrees of freedom are associated with each node U, V, $\mathrm{W}, \theta \alpha, \theta \beta$. To avoid singularities, the rotations $\theta \alpha$ and $\theta \beta$ relate to axes defined by the orientation of the normal at a node, see Thick

	Shell Nodal Rotation. These rotations may be transformed to relate to the global axes in some instances (see Notes). Degrees of freedom relating to global axes: $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$ may be enforced using the Nodal Freedom data input, or for all shell nodes by using option 278 (see Notes).	
Geometric Properties		
$e_{\text {e }}, \mathrm{t}_{1} \ldots \mathrm{tn}^{\text {Eccentricity }}$ and thickness at each node.		
Material Properties		
Linear	Isotropic: Orthotropic:	MATERIAL PROPERTIES (Elastic: Isotropic) MATERIAL PROPERTIES ORTHOTROPIC THICK (Elastic: Orthotropic Thick) MATERIAL PROPERTIES ORTHOTROPIC SOLID (Elastic: Orthotropic Thick)
	Anisotropic:	MATERIAL PROPERTIES ANISOTROPIC 5 (Elastic: Anisotropic Thick Plate)
Rigidities. Matrix Not applicable Joint Not applicable Concrete		Not applicable.
		MATERIAL PROPERTIES NONLINEAR 109 (Elastic: Isotropic, Plastic: Smoothed MultiCrack Concrete)
Elasto-Plastic	Stress resultant:	Not applicable.
	Tresca:	MATERIAL PROPERTIES NONLINEAR 61 (Elastic: Isotropic, Plastic: Tresca, Hardening: Isotropic Hardening Gradient, Isotropic Plastic Strain or Isotropic Total Strain)
	DruckerPrager:	MATERIAL PROPERTIES NONLINEAR 64 (Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	MohrCoulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Volumetric Crushing:	Not applicable.
	Stress	STRESS POTENTIAL VON_MISES, HILL,

Potential

HOFFMANCreepAASHTO
CEB-FIP
Chinese
Eurocode
(Isotropic: von Mises, Modified von Mises Orthotropic: Hill, Hoffman)
CREEP PROPERTIES (Creep)
MATERIAL PROPERTIES NONLINEAR 86 AASHTO(Concrete creep model to AASHTO Code ofPractice)
MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP
(Concrete creep model to CEB-FIP Model Code 1990)
MATERIAL PROPERTIES NONLINEAR 86 CHINESE
(Chinese creep model to Chinese Code of Practice)
MATERIAL PROPERTIES NONLINEAR 86 EUROCODE
(Concrete creep model to EUROCODE_2)
MATERIAL PROPERTIES NONLINEAR 86IRC(Concrete creep model to Indian IRC Code ofPractice)
DAMAGE PROPERTIES SIMO, OLIVER(Damage)
SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER
IRC

IRC
Damage
Viscoelastic Not applicable
Shrinkage
shell:

Rubber Not applicable

Rubber Not applicable

Rubber Not applicable
Generic Polymer
Generic Polymer
Generic Polymer Not applicable Not applicable Not applicable
Composite
Composite
Composite Composite Composite Composite

Loading

Prescribed Value PDSP, TPDSP

Concentrated CL Loads

Prescribed variable. 5 degrees of freedom: U, $\mathrm{V}, \mathrm{W}, \theta \alpha, \theta \beta$ or 6 degrees of freedom: U, V, $\mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$
Concentrated loads. 5 degrees of freedom: Px, $\mathrm{Py}, \mathrm{Pz}, \mathrm{M} \alpha, \mathrm{M} \beta$, where $\mathrm{M} \alpha$ and $\mathrm{M} \beta$ relate to axes defined by $\theta \alpha$ and $\theta \beta$ respectively. 6

Element Loads	Not applicable.	
Distributed Loads	UDL	Uniformly distributed loads. Wx, Wy, Wz: mid-surface local pressures for element (see Notes).
	FLD, FLDG	Not applicable.
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega \mathrm{x}, \Omega \mathrm{y}, \Omega_{\mathrm{z}}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha_{\mathrm{z}}$ (see Notes).
	BFP, BFPE	Body force potentials at nodes/for element. φ_{1}, $\varphi_{2}, \varphi_{3}, 0$, Xcbf, Ycbf, Zcbf, where $\varphi_{1}, \varphi_{2}, \varphi_{3}$ are the face loads in the local coordinate system (see Notes).
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Accelerations. Ax, Ay, Az: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy, VLz: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element (see Notes).
	SSIG	Initial stresses/strains at Gauss points. Stress/strain components relating to local axes at Gauss points: $\sigma x, \sigma y, \sigma x y, \sigma y z, \sigma x z, \varepsilon x$, $\varepsilon y, \gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}$. All of these 10 terms are repeated for each fibre integration point through the thickness (see Notes).
Residual Stresses	SSR, SSRE	Not applicable.
	SSRG	Residual stresses at Gauss points. Stress components relating to local axes at Gauss points: $\sigma x, \sigma y, \sigma x y, \sigma y z, \sigma x z$ all of these 5 terms are repeated for each fibre integration point through the thickness (see Notes).
Target Stress/Strains	$\begin{aligned} & \text { TSSIE, } \\ & \text { TSSIA } \end{aligned}$	Target stresses/strains at nodes/for element (see Notes).
	TSSIG	Target stresses/strains at Gauss points. Stress/strain components relating to local axes at Gauss points: $\sigma x, \sigma y, \sigma x y, \sigma y z, \sigma x z, \varepsilon x$, $\varepsilon y, \gamma_{x y}, \gamma_{y z}, \gamma_{\mathrm{xz}}$. All of these 10 terms are repeated for each fibre integration point through the thickness (see Notes).
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, 0,0 , $\mathrm{dT} / \mathrm{dz}, \mathrm{To}, 0,0, \mathrm{dTo} / \mathrm{dz}$ (see Notes).

Overburden Applicable.
 Phreatic Surface Applicable.
 Field Loads Not
 applicable.
 Temp Dependent Not
 Loads applicable.

LUSAS Output

Solver Stress resultant: Nx, Ny, Nxy, Mx, My, Mxy, Sx, Sy: forces, moments/unit width in local directions.

Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma y z \sigma x z, \sigma e:$ in local directions (see Notes).

Strain: $\varepsilon x, \varepsilon_{y}, \gamma \mathrm{xy}, \gamma \mathrm{yz}, \gamma \mathrm{xz}, \varepsilon^{e}$: in local directions (see Notes).
Modeller See Results Tables (Appendix K).

Local Axes

The local element x-axis at a point coincides with a curvilinear line $\eta=$ constant in the natural coordinate system which lies in the shell mid-surface. The local z-axis at a point is obtained from the cross product of a curvilinear line $\xi=$ constant in the natural coordinate system and the local x-axis. The local y-axis forms a right-hand set with the x and z axes and the direction is given by the ordering of the element nodes according to a right-hand screw rule. The local z-axis +ve direction defines the element top surface.

QTS8

Sign Convention

\square Thick shell element (seeNotes).
Formulation
Geometric Nonlinearity
Total Lagrangian For large displacements, large rotations and small strains. Updated Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational Not applicable.
Integration Schemes
Stiffness Default. 1-point (TTS3), 3-point (TTS6), 2x2 (QTS4, QTS8).
Fine (see Options) 3-point (TTS3), 5-point (QTS8)
Mass Default. QTS8).
Fine (see Options). 3-point (TTS3), 5 point (QTS8)
Mass Modelling
Consistent mass (default).
\square Lumped mass.
Options
18 Invokes fine integration rule.
32 Suppresses stress output but not resultants.
34 Outputs element stress resultants.
55 Outputs strains as well as stresses.
59 Outputs local direction cosines at nodes and Gauss points.
77 Outputs principal stresses.
87 Total Lagrangian geometric nonlinearity.
102 Switch off load correction stiffness due to centripetal acceleration.
105 Lumped mass matrix.
110 Use assumed shear strain field for TTS6 and QTS8 thick shell elements.
139 Output yielded Gauss points only.
169 Suppress extrapolation of stresses to nodes.
171 Switch off assumed strain field for QTS4 elements.
278 Six degrees of freedom.
396 Invokes the improved transverse shear calculation ('on' by default for models created by version 14.4 and above, and 'off' - for models created by
previous versions).
417 Introduce residual bending flexibility correction for 3-node thick shell TTS3.
422 Use assumed transverse shear strain field for TTS3 thick shell element.

Notes on Use

1. For TTS3 elements all moments and shears are constant for the element. For QTS4 the variations of moments, out of plane shears and in-plane loads is nearconstant and the variation of in-plane shear is near-linear. For TTS6 and QTS8 elements the variation of moments and in-plane shear is near-linear while the variation of out of plane shears is near constant.
2. Shear locking is much more of an issue for lower order elements, and hence an assumed shear strain field is always switched on for TTS3/QTS4 elements; if it were switched off, these elements would always lock and perform very badly. Higher order elements are less prone to shear locking, and the situation is not quite so clear cut. It has been found that using an assumed shear strain field with QTS8 elements when transverse shear strain dominates can lead to poor results. The view has therefore been taken that the assumed shear strain field should be switched off by default for the higher order TTS6/QTS8 elements.
3. The QTS8 element fails the shear patch test when the assumed strain field is utilised with $2 * 2$ or 5 point integration rule. When carrying out analyses involving these elements that are dominated by transverse shear effects, e.g. a shear wall, it is recommended, as discussed above, that the assumed strain field is disabled. This is the default setting for QTS8 elements. Option 110 may be used to invoke the assumed strain interpolation but this is not recommended for general use.
4. The assumed strain field is invoked automatically for QTS4 elements. The assumed strain field may be revoked for QTS4 by specifying Option 171.
5. The introduction of assumed transverse shear strains (Option 422) significantly improves the performance of the TTS3 element. The RBF correction (Option 417) further improves the TTS3 element, especially for very thin shells. For elasto-plastic materials, the correction matrix is computed using the linear material properties
6. Continuum stresses (and strains using Option 55) at each fibre integration point are output by default. For linear materials these stresses relate to the top, middle and bottom surfaces of the element. If a nonlinear material is specified then stresses are output at 5 points through the thickness after material yield.
7. Option 55 must be specified if nonlinear state variables are to be written to the LUSAS output file.
8. The through-thickness integration rules are as follows:

- Linear material models: 3-layers.
- Nonlinear material models: 5-layers.
- Composite model: variable

7. Initial stresses/strains must be specified at 3 layers for a linear material or 5 layers for a nonlinear material. Residual stresses must be specified for 5 layers. In all instances the stresses/strains are specified sequentially from the bottom surface to the top.
8. There are usually 2 rotational degrees of freedom and a common nodal normal associated with each node giving a smooth surface to the shell assembly:

The direction of the axes defining the rotations depends upon the orientation of the normal at a node (see Thick Shell Nodal Rotation). In certain circumstances 3 rotational degrees of freedom relating to global axes will be assigned to a node. This is done automatically:

- When connecting with beam elements, joint elements or other types of shells, eg.QSI4.
- When a Concentrated Load is applied in LUSAS Modeller.
- When a Support is applied in LUSAS Modeller.
- When the angle between adjacent shell normals exceeds the SYSTEM parameter SHLANG (see below).
- When option 278 is specified.

If Option 278 is specified then all nodes for these shell element types will be assigned six global degrees of freedom. To overcome the problems associated with in-plane drilling rotations an artificial stiffness is automatically included for the rotation about the shell normal. The use of Option 278 is not recommended for analyses that involve large displacements or rotations. LUSAS Modeller will automatically specify Option 278 but it can be switched off in Modeller via File > Model Properties > Solution > Element options.

Option 278 should be switched off if QTS4 elements are to be used to model thick curved shells in which membrane action leads to a significant difference between the in-plane strains in the top and bottom surface of the shell. If Option 278 is not disabled under these circumstances the moments associated with this in-plane strain differential are not accurately accounted for. An alternative approach would be to switch to QTS8 elements as these elements produce more accurate moments under these conditions.

When the maximum angle between adjacent normals at a node is greater than 20 degrees, e.g., branched shell structures. (20 degrees is a default value which may be changed using the SYSTEM parameter SHLANG); if the nodal freedom command has not been specified for that node.

9. A system variable (STFINP) is used to alter the artificial stiffness for in-plane rotations. This system parameter can only be used in conjunction with Option 278.
10. The desired number of rotational degrees of freedom for a node may be enforced through the NODAL FREEDOMS data input. Care must be taken if 6 degrees of freedom are specified in this manner as a singularity may occur if appropriate in-plane rotations are not restrained. This facility is provided together with the TRANSFORMED FREEDOMS data chapter to allow more flexibility in the specification of boundary conditions. In these circumstances, the in-plane rotation about the normal of the shell must usually be restrained to avoid singularities. In general, wherever possible, 5 degrees of freedom should be used when the shell surface is smooth.
11. The TTS3 and QTS8 elements possess one out of plane mechanism when using the default integration rules. The 3 noded element is most effective using the one point rule.
12. The through-thickness integration is performed by utilising a 3 point NewtonCotes rule for linear materials and a 5 point rule for nonlinear materials and
creep. In an analysis involving material nonlinearity, a 3 point rule is used until the material yields and then a 5 point rule is invoked.
13. The thick shell formulation assumes constant transverse shear deformation. In the post-processing stage, after the application of the constitutive relationship, this results in a constant transverse shear stress. This result can be improved by taking into account the true parabolic shear stress distribution while preserving the same shear resultant. Thus, when Option 396 is used, the transverse shear stresses for a non-layered shell are set to zero at the top and bottom and to 1.5 times the constant value at the middle. For a layered shell, the distribution of the transverse shear depends on the in-plane stiffness of the layers. The output results are for the middle of the layer, thus the top and bottom layers will not have zero transverse shear.
14. The ORTHOTROPIC SOLID material model may be used with either composite or non-composite thick shell elements. Using a Solid rather than a Thick orthotropic material means that a local coordinate may be used to orientate the material.
15. If applying an initial stress/strain or thermal load that varies across an element, a higher order element (6 or 8 nodes) should be used. A limitation of the standard isoparametric approach when used for lower order elements (3 or 4 nodes) is that only constant stress/strain fields can be imposed correctly.
16. For an element with eccentricity the following load types are applied at the midplane of the element (not the nodal plane): UDL, CBF, BFP, BFPE, SSI, SSIE, SSIG, SSRG, TSSIE, TSSIA, TSSIG, TEMP, TMPE.
17. The Smoothed Multi Crack Concrete Model (109) can be used with this element, however, due to the "plane sections remaining plane" hypothesis, crack widths cannot be computed.

Restrictions

Ensure mid-side node centrality
\square Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- These elements may be utilised for analysing flat and curved 3D shell structures where it is necessary to account for transverse shear. This typically involves thick shell structures where transverse shear deformation can have a considerable influence on the response. The degenerate continuum formulation also allows the low order quadrilateral element (QTS4) to successfully model warped shell configurations.
- The elements may be used for modelling intersecting shells or branched shell junctions. In this instance the nodal rotation freedoms are transformed to relate to the global axes. For modelling stiffened shell structures, the shells may be connected to beam elements BMI21.
- This family of thick shell elements offers a consistent formulation of the tangent stiffness which makes them particularly effective in geometrically nonlinear applications.
- Be aware that when the shell is defined with eccentricity to a reference surface and this reference surface does not pass through the centroid of the cross section, membrane forces or displacements prescribed/calculated at the nodes will cause bending.

Chapter 7 : Membrane Elements

2D Axisymmetric Membrane Elements

General

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Linear Isotropic:

Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Tresca:

MATERIAL PROPERTIES (Elastic: Isotropic)

Matrix	Not applicable	
Joint	Not applicable	
Concrete	Not applicable	
Elasto-Plastic	Tresca:	MATERIAL PROPERTIES NONLINEAR 61
		(Elastic: Isotropic, Plastic: Tresca,
		Hardening: Isotropic Hardening Gradient,
		Isotropic Plastic Strain or Isotropic Total
		Strain)
	Drucker-Prager:	MATERIAL PROPERTIES NONLINEAR 64

Drucker-Prager: MATERIAL PROPERTIES NONLINEAR 64

		(Elastic: Isotropic, Plastic: Drucker-Prager, Hardening: Granular)
	Mohr-Coulomb:	MATERIAL PROPERTIES NONLINEAR 65 (Elastic: Isotropic, Plastic: Mohr-Coulomb, Hardening: Granular with Dilation)
	Optimised Implicit Von Mises:	MATERIAL PROPERTIES NONLINEAR 75 (Elastic: Isotropic, Plastic: Von Mises, Hardening: Isotropic \& Kinematic)
	Volumetric Crushing:	Not applicable.
	Stress Potential	STRESS POTENTIAL VON_MISES (Isotropic: von Mises, Modified von Mises)
Creep		CREEP PROPERTIES (Creep)
Damage		DAMAGE PROPERTIES SIMO, OLIVER (Damage)
Viscoelastic Shrinkage	Not applicable	
		SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER
Rubber	Ogden:	MATERIAL PROPERTIES RUBBER OGDEN (Rubber: Ogden) (See Restrictions)
	Mooney-Rivlin:	MATERIAL PROPERTIES RUBBER MOONEY_RIVLIN (Rubber: MooneyRivlin) (See Restrictions)
	Neo-Hookean:	MATERIAL PROPERTIES RUBBER NEO_HOOKEAN (Rubber: Neo-Hookean) (See Restrictions)
	Hencky:	Not applicable.
Generic	Not applicable	
Polymer		
Composite	Not applicable	
Field	Not applicable	

Loading

Prescribed PDSP, TPDSP
Value
Concentrated CL
Loads
Element Loads Not applicable.
Distributed UDL Not applicable.
Loads
FLD Face Loads. Px, Py: local face pressure at
nodes.

FLDG
Body Forces CBF

BFP, BFPE
Velocities VELO
Accelerations
Viscous Support
ACCE

Loads
Initial SSI, SSIE
Stress/Strains

SSIG

Residual SSR, SSRE

Stresses

> SSRG

Target TSSIE, TSSIA Stress/Strains

TSSIG

Temperatures TEMP, TMPE

Not applicable
Constant body forces for element. Xcbf, Ycbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha \mathrm{z}$
Body force potentials at nodes/for element. 0, $0,0,0, \mathrm{Xcbf}, \mathrm{Ycbf}$
Velocities. Vx, Vy: at nodes.
Accelerations. Ax, Ay: at nodes.
Viscous support loads. VLx, VLy: at nodes.
Initial stresses/strains at nodes/for element. $\sigma x, \sigma_{\theta}$: axial, circumferential stress. $\varepsilon x, \varepsilon_{\theta}$: axial, circumferential strain.
Initial stresses/strains at Gauss points. $\sigma_{x}, \sigma_{\theta}$: axial, circumferential stress. $\varepsilon x, \varepsilon_{\theta}$: axial, circumferential strain.
Not applicable.

Residual stresses at Gauss points. $\sigma x, \sigma \theta$: axial, circumferential stress.
Target stresses/strains at nodes/for element. $\sigma x, \sigma_{\theta}$ axial, circumferential stress. $\varepsilon x, \varepsilon_{\theta}$: axial, circumferential strain. Target stresses/strains at Gauss points. $\sigma x, \sigma_{\theta}$ axial, circumferential stress. $\varepsilon x, \varepsilon_{\theta}$: axial, circumferential strain.
Temperatures at nodes/for element. T, $0,0,0$, To, 0, 0, 0
Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Not applicable.
Dependent
Loads

LUSAS Output

Solver

Stress (default): $\sigma x, \sigma_{\theta}$: axial, circumferential stress.
Strain: $\mathcal{E x}, \mathcal{E}_{\theta}$: axial, circumferential strain.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard line element

Sign Convention

\square Standard membrane element

Formulation

Geometric Nonlinearity

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
36 Follower loads (see Notes).
47 Use the X-axis as the axis of symmetry.
55 Output strains as well as stresses.
87 Total Lagrangian geometric nonlinearity.
105 Lumped mass matrix.

170 Suppress transfer of shape function arrays to disk

Notes on Use

1. The element formulation is based on the standard isoparametric approach.
2. The variation of stress along the element is constant for BXM2 and linear for BXM3.
3. To apply a non-conservative (follower) pressure load (load type FLD), Option 36 must be specified. Note that this load should be normal to the face and constant for all the nodes of the element. Follower load can only be used with BXM2 elements.
4. The elements should not be used as 'stand-alone' elements if any bending effects are present. The thin axisymmetric shell element BXS3 should be used for this case.
5. The BXM3 element has a zero energy mode which may be excited if the midside node is free and not connected to any other element.
6. When BXM2 elements are used with either variable nodal thicknesses, temperature dependent material properties or utilised in materially nonlinear analyses the 2-point Gauss rule is most effective.

Restrictions

E Ensure mid-side node centrality

- Avoid excessive element curvature
\square Rubber material models can only be used with element BXM2 and must be used with Total Lagrangian geometric nonlinearity (Option 87).

Recommendations on Use

The elements may be used alone to model circular plates or pipes, or coupled with axisymmetric solid elements to provide stiffeners, e.g. radial reinforcement.

3D Space Membrane Elements

General

Element Name TSM3

Membranes
Space Membranes
Subgroup
Element Description
umber Of
Nodes
Freedoms
Node
Coordinates

SMI4

A family of space membrane elements in 3D which include a high performance incompatible model (SMI4 only). The elements are intended for 3D membrane structures (they possess no bending stiffness). The elements are formulated in the local element axes which allows directional material properties to be defined relative to the element orientation. The elements can accommodate varying thickness.
3 or 4 numbered anticlockwise.
$\mathrm{U}, \mathrm{V}, \mathrm{W}$: at each node.
X, Y, Z: at each node.

Geometric Properties

tı... tn Thickness at each node.

Material Properties

Linear Isotropic:
Orthotropic:

Anisotropic:

Rigidities:

MATERIAL PROPERTIES (Elastic: Isotropic)
MATERIAL PROPERTIES ORTHOTROPIC (Elastic: Orthotropic Plane Stress)
MATERIAL PROPERTIES ANISOTROPIC 3 (Elastic: Anisotropic Thin Plate)
RIGIDITIES 3 (Rigidities: Membrane/Thin Plate)

Matrix Not applicable
Joint Not applicable
Concrete Not applicable Elasto-Plastic Not applicable Creep Not applicable Damage Not applicable Viscoelastic Not applicable Shrinkage

Rubber Not applicable
Composite Not applicable

Loading

SSIG applicable.
Target TSSIE,

SHRINKAGE CEB_FIP_90, EUROCODE_2, GENERAL, USER

Prescribed variable. U, V, W: at nodes.

Concentrated loads. Px, Py, Pz: at nodes.

Uniformly distributed loads. Wx, Wy, Wz: local surface pressures for element.
Not applicable.
Constant body forces for element. Xcbf, Ycbf, $Z \mathrm{cbf}, \Omega \mathrm{x}, \Omega \mathrm{y}, \Omega \mathrm{z}, \alpha \mathrm{x}, \alpha \mathrm{y}, \alpha \mathrm{z}$
Body force potentials at nodes/for element. φ_{1}, ب2, φ_{3}
Velocities. Vx, Vy, Vz: at nodes.
Accelerations. Ax, Ay, Az: at nodes.
Viscous support loads. VLx, VLy, VLz: at nodes.
Initial stresses/strains at nodes/for element. Nx, $\mathrm{Ny}, \mathrm{Nxy}$: forces in local directions. $\varepsilon x, \varepsilon y$, γ_{xy} : membrane strains in local directions.
Initial stresses/strains at Gauss points. Nx, Ny, Nxy: forces in local directions. $\varepsilon x, \varepsilon y, \gamma x y$: membrane strains in local directions.

Target stresses/strains at nodes/for element. Nx,
Stress/Strains TSSIATSSIG Target stresses/strains at Gauss points. Nx, Ny,Nxy: forces in local directions. $\varepsilon x, \varepsilon y, \gamma x y$:membrane strains in local directions.
Temperatures TEMP, TMPE Temperatures at nodes/for element. T, $0,0,0$, To, $0,0,0$
Overburden Notapplicable.
Phreatic Surface Notapplicable.Field Loads Notapplicable.
Temp Dependent Not
Loads applicable.

Output

Solver Stress resultant: Nx, Ny, Nxy, Nmax, Nmin, β : forces/unit length in local directions.
Stress (default): $\sigma x, \sigma y, \sigma x y, \sigma \max , \sigma \min , \beta$: membrane stresses in local directions.
Strain: $\varepsilon x, \varepsilon y, \gamma \mathrm{xy}, \varepsilon \max , \varepsilon \min , \beta$: membrane strains in local directions.
Modeller See Results Tables (Appendix K).
Local Axes
\square Standard area element
Sign Convention

- Standard membrane element
Formulation
Geometric Nonlinearity
Not applicable.
Integration SchemesStiffness Default. 1-point (TSM3), 2x2 (SMI4).

Fine. As default.
Mass Default. 1-point (TSM3), 2x2 (SMI4).
Fine. As default.

Mass Modelling

Lumped mass only.

Options

32 Suppress stress output but not stress resultants.
34 Output stress resultants.
55 Output strains as well as stresses.
59 Output local direction cosines for elements.
77 Output averaged global stresses.

Notes on Use

1. The element formulations are based on the standard
2. The variation of stresses within an element may be regarded as constant for TSM3 and linear for SMI4.
3. The higher performance of SMI4 is due to the addition of 4 incompatible displacement modes.
4. The elements pass the patch test for mixed triangular and quadrilateral geometry.
5. Distributed loads are lumped at the nodes.
6. The element is formulated so that the material response is evaluated in the local Cartesian system.
7. The SMI4 element is generally the most effective element due to its quadratic displacement accuracy. However, its behaviour tends to deteriorate as the element becomes distorted.
8. The element matrices are formed using 1-point Gauss quadrature for TSM3. Selective integration is utilised for the evaluation of the element matrices for SMI4. The method used is similar to that proposed by Hughes, with the contribution of the incompatible modes to the strain-displacement matrix being evaluated at the 1-point Gauss rule sampling location and then extrapolated to the $2 * 2$ Gauss rule sampling locations. The element matrices are then formed using the $2 * 2$ Gauss rule.

Restrictions

\square Avoid excessive aspect ratio.
\square Avoid excessive warping.

Recommendations on Use

- The space membrane elements have limited 'stand-alone' use because of their inability to support any loading except membrane loading. However, they can be utilised with the flat shell elements (QSI4, TS3) to model very thin membranes in structural components.
- If a structure is composed of exactly co-planar flat space membrane elements that are not stiffened by plate or shell elements, singularities may arise since there is no out-of-plane stiffness.
- If there is a possibility of bending behaviour then a thin shell should be utilised for the analysis.

Chapter 8 : Joint Elements

2D Joint Element for Bars, Plane Stress and Plane Strain

General

Element Name

JNT3

Element Group
Joints
Element
Subgroup
Element
Description
Number Of Nodes

Coordinates

A 2D joint element which connects two nodes by two springs in the

Freedoms U, V: at nodes 1 and 2 (active nodes).
Node X, Y: at each node.
2D Joints local x and y -directions.
3. The 3rd node is used to define the local x-direction.

Geometric Properties

Not applicable.

Material Properties

Linear	Not applicable	
Matrix	Stiffness:	MATRIX PROPERTIES STIFFNESS 4
		K1,..., K10 element stiffness matrix (Not
	Mass:	supported in LUSAS Modeller)
		MATRIX PROPERTIES MASS 4 M1,...,
		M10 element mass matrix (Not supported
	Damping:	in LUSAS Modeller)
		MATRIX PROPERTIES DAMPING 4
		C1,..., C10 element damping matrix (Not
Joint	Standard:	supported in LUSAS Modeller)
		Stiffness Only)

	Dynamic general:	JOINT PROPERTIES GENERAL 2 (Joint: 2/General Properties)
	Elasto-plastic:	JOINT PROPERTIES NONLINEAR 312 (Joint: 2/Elasto-Plastic (Tension and Compression Equal))
	Elasto-plastic:	JOINT PROPERTIES NONLINEAR 322 (Joint: 2/Tension and Compression Unequal)
	Nonlinear contact:	JOINT PROPERTIES NONLINEAR 332 (Joint: 2/Smooth Contact)
	Nonlinear friction:	JOINT PROPERTIES NONLINEAR 442 (Joint: 2/Frictional Contact)
	Viscous damping:	JOINT PROPERTIES NONLINEAR 352 (Joint: 2/Viscous Damper)
	Lead-rubber:	JOINT PROPERTIES NONLINEAR 362 (Joint: 2/Lead Rubber Bearing)
	Friction pendulum:	JOINT PROPERTIES NONLINEAR 372 (Joint: 2/Frictional Pendulum System)
	Multi-linear elastic	JOINT PROPERTIES NONLINEAR 402 (Joint: 2/Multi-Linear Elastic)
	Multi-linear	JOINT PROPERTIES NONLINEAR 412
	hysteresis	(Joint: 2/Multi-Linear Hysteresis)
	Multi-linear compound	JOINT PROPERTIES NONLINEAR 422 (Joint: 2/Multi-Linear Compound
	hysteresis	Hysteresis)
	Axial force dependent multilinear elastic	JOINT PROPERTIES NONLINEAR 432 (Joint: 2/Axial Force Dependent MultiLinear Elastic)
Concrete	Not applicable	
Elasto-Plastic	Not applicable	
Creep	Not applicable	
Damage	Not applicable	
Viscoelastic	Not applicable	
Shrinkage	Not applicable	
Rubber	Not applicable	
Generic Polymer	Not applicable	
Composite	Not applicable	
Loading		
Prescribed Value	PDSP, TPDSP	Prescribed variable. U, V: at active nodes.
Concentrated Loads	CL	Concentrated loads. Px, Py: at active nodes.

Element Loads Notapplicable.
Distributed Loads Notapplicable.Body Forces CBFVelocities VELO
Accelerations ACCE
Viscous Support VSLLoadsInitial SSI, SSIE
Stress/Strains
SSIG
Residual Stresses Notapplicable.
Target TSSIE,

Target TSSIE,
Stress/Strains TSSIA

Stress/Strains TSSIATSSIGTemperatures TEMP, TMPE

Residual Stresses $\begin{aligned} & \text { Not } \\ & \text { applicable. }\end{aligned}$ TSSIG

Temperatures TEMP, TMPE

Constant body forces for element. Xcbf, Ycbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z},} \alpha \mathrm{z}$
Not applicable.
Velocities. Vx, Vy: at nodes.
Accelerations. Ax, Ay: at nodes.
Viscous support loads. VLx, VLy: at nodes.
Initial stresses/strains at nodes/for element. Fx, Fy: at active nodes. $\varepsilon x, \varepsilon y$: at active nodes. Not applicable.

Target stresses/strains at nodes/for element. Fx, Fy: at active nodes. $\mathcal{E x}, \mathcal{E} y$: at active nodes. Not applicable.
Temperatures at nodes/for element. $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{10}$, T20: actual and initial spring temperatures.
Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not Loads applicable.

LUSAS Output

Solver Force: Fx, Fy: spring forces in local directions.
Strain: $\varepsilon x, \varepsilon y$: spring strains in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

Standard joint element

Sign Convention

\square Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point.
Fine. As default.
Mass Default. 1-point.
Fine. As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

55 Output strains as well as stresses.
119 Invokes temperature input for joints.

Notes on Use

See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

2D Joint Element for Engineering and Kirchhoff Beams

General

Element Name
JPH3

Element Group

Joints
Element
Subgroup
Element
Description
A 2D joint element which connects two nodes by two springs in the local x and y -direction and one spring about the local z -direction.
Number Of 3. The 3rd node is used to define the local x-direction.

Nodes
Freedoms
Node
$\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$: at nodes 1 and 2 (active nodes).
X, Y : at each node.
Coordinates
2D Joints

X, Y:

Geometric Properties

ey Eccentricity measured from the joint x axis to the nodal line (i.e. parallel to the joint y axis).
dy Parametric distance factor (between 0.0 and 1.0), which defines the position of the shear spring for the local y direction between nodes 1 and 2 . It is measured from node 1 $(\mathrm{dy}=0)$ along the local x direction

Material Properties

Linear Not applicable
Matrix Stiffness:

Mass:

Damping:

MATRIX PROPERTIES STIFFNESS 6 K1,..., K21 element stiffness matrix (Not supported in LUSAS Modeller)
MATRIX PROPERTIES MASS 6 M1,..., M21
element mass matrix (Not supported in LUSAS Modeller)
MATRIX PROPERTIES DAMPING 6 C1,..., C21 element damping matrix (Not supported
in LUSAS Modeller)

Joint Standard:
Dynamic general:
Elasto-plastic:
Elasto-plastic:Nonlinearcontact:Nonlinearfriction:Viscousdamping:Lead-rubber:Frictionpendulum:Multi-linearelasticMulti-linearhysteresisMulti-linearcompoundhysteresisAxial forcedependentmulti-linearelastic
Joint Standard:Dynamicgeneral:
Concrete Notapplicable
Elasto-Plastic Notapplicable
Creep Notapplicable
Damage Notapplicable

JOINT PROPERTIES 3 (Joint: 3/Spring Stiffness Only)
JOINT PROPERTIES GENERAL 3 (Joint: 3/General Properties)
JOINT PROPERTIES NONLINEAR 313 (Joint: 3/Elasto-Plastic (Tension and Compression Equal))
JOINT PROPERTIES NONLINEAR 323 (Joint: 3/Tension and Compression Unequal)
JOINT PROPERTIES NONLINEAR 333 (Joint: 3/Smooth Contact)
JOINT PROPERTIES NONLINEAR 443 (Joint: 3/Frictional Contact)
JOINT PROPERTIES NONLINEAR 353 (Joint: 3/Viscous Damper)
JOINT PROPERTIES NONLINEAR 363 (Joint: 3/Lead Rubber Bearing)
JOINT PROPERTIES NONLINEAR 373 (Joint: 3/Frictional Pendulum System) JOINT PROPERTIES NONLINEAR 403 (Joint: 3/Multi-Linear Elastic) JOINT PROPERTIES NONLINEAR 413 (Joint: 3/Multi-Linear Hysteresis) JOINT PROPERTIES NONLINEAR 423 (Joint: 3/Multi-Linear Compound Hysteresis)

JOINT PROPERTIES NONLINEAR 433 (Joint: 3/Axial Force Dependent Multi-Linear Elastic)

JOINT PROPERTIES 3 (Joint: 3/Spring Stiffness Only)
JOINT PROPERTIES GENERAL 3 (Joint: 3/General Properties)
applicable
Shrinkage Notapplicable
Rubber Notapplicable
Generic Polymer Not
applicable
Composite Not
applicable
Loading
Prescribed Value PDSP, TPDSP
Concentrated CL Loads
Element Loads Not
Distributed Loads Not applicable
Body Forces CBF
BFP, BFPEVelocities VELOAccelerations ACCEViscous Support VSLLoadsInitial SSI, SSIE
Stress/Strains
SSIG
Residual Stresses Notapplicable
Target TSSIE,Stress/Strains TSSIA
TSSIG

Not applicable.Temperatures TEMP, TMPE

Prescribed variable. $\mathrm{U}, \mathrm{V}, \theta \mathrm{z}$: at active nodes.
Concentrated loads. Px, Py, Mz: at active nodes.

Constant body forces for element. Xcbf, Ycbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{z}}$
Not applicable.
Velocities. Vx, Vy: at nodes.
Accelerations. Ax, Ay: at nodes.
Viscous support loads. VLx, VLy: at nodes.
Initial stresses/strains at nodes/for element. Resultants. Fx, Fy, Mz: spring forces and moment in local directions. $\varepsilon x, \varepsilon y, \psi z$: strains at nodes.
Not applicable.

Target stresses/strains at nodes/for element. Resultants. Fx, Fy, Mz: spring forces and moment in local directions. $\varepsilon x, \varepsilon y, \psi z$: strains at nodes.

Temperatures at nodes/for element. $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$, $\mathrm{T}_{10}, \mathrm{~T}_{20}, \mathrm{~T}_{30}$: actual and initial spring
temperatures.

Abstract

Overburden Not applicable. Phreatic Surface Not applicable. Field Loads Not applicable

Temp Dependent Not Loads applicable

\section*{LUSAS Output}

Solver Force: Fx, Fy, Mz: spring forces and moment in local directions. Strain: $\varepsilon x, \varepsilon y, \psi z$: spring strains in local directions. Modeller See Results Tables (Appendix K).

Local Axes

\square Standard joint element

Sign Convention

\square Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point.
Fine. As default.
Mass Default. 1-point.
Fine. As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

55 Output strains as well as stresses.
119 Invokes temperature input for joints.

Notes on Use

See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

2D Joint Element for Grillage Beams and Plates

General

Element Name
JF3

Element Group
 Joints

Element
2D Joints
Subgroup
Element A 2D joint element which connects two nodes by one spring in the Description local z -direction and two springs about the x and y directions.
Number Of
3. The 3 rd node is used to define the local x -direction.

Nodes
Freedoms
$\mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}$: at nodes 1 and 2 (active nodes).
Node
X, Y : at each node.

Geometric Properties

dz Parametric distance factor (between 0.0 and 1.0), which defines the position of the shear spring for the local z direction between nodes 1 and 2 . It is measured from node 1 ($\mathrm{dz}=0$) along the local x direction.

Material Properties

Linear Not applicable
Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 6
K1,..., K21 element stiffness matrix (Not supported in LUSAS Modeller)
Mass:
MATRIX PROPERTIES MASS 6 M1,..., M21 element mass matrix (Not supported in LUSAS Modeller)
Damping: MATRIX PROPERTIES DAMPING 6
$\mathrm{C} 1, \ldots, \mathrm{C} 21$ element damping matrix (Not supported in LUSAS Modeller)
Joint Standard: JOINT PROPERTIES 3 (Joint: 3/Spring Stiffness Only)
Dynamic general: JOINT PROPERTIES GENERAL 3 (Joint: 3/General Properties)
Elasto-plastic: JOINT PROPERTIES NONLINEAR 313 (Joint: 3/Elasto-Plastic (Tension and Compression Equal))
Elasto-plastic: JOINT PROPERTIES NONLINEAR 323
(Joint: 3/Tension and Compression Unequal)
Nonlinear contact: JOINT PROPERTIES NONLINEAR 333 (Joint: 3/Smooth Contact)
Nonlinear Not applicable
friction:
Viscous damping:
Lead-rubber: Not applicable
Friction pendulum:
Multi-linear elastic
Multi-linear hysteresis
Multi-linear compound hysteresis
Axial force dependent multilinear elastic
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable.
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value PDSP, TPDSP
Prescribed variable. $\omega, \theta \mathrm{x}, \theta \mathrm{y}$: at active

Concentrated CL Loads
Element Loads Not applicable Distributed Loads Not applicable
Body Forces CBF BFP, BFPE
Velocities VELO
Accelerations ACCE
Viscous Support VSL
Loads
Initial SSI, SSIE
Stress/Strains

SSIG
Residual Stresses Not applicable
Target TSSIE, TSSIA
Stress/Strains

TSSIG
Temperatures TEMP, TMPE
nodes.
Concentrated loads. Pz, Mx, My: at active nodes.

Constant body forces for element. Zcbf Not applicable.
Velocities. Vz: at nodes.
Accelerations. Az: at nodes.
Viscous support loads. VLz: at nodes.
Initial stresses/strains at nodes/for element. Fz, Mx, My: at active nodes. $\varepsilon z, \psi x, \psi y$: at active nodes.
Not applicable.

Target stresses/strains at nodes/for element. $\mathrm{Fz}, \mathrm{Mx}, \mathrm{My}$: at active nodes. $\varepsilon \mathrm{z}, \psi \mathrm{x}, \psi \mathrm{y}$: at active nodes.
Not applicable.
Temperatures at nodes/for element. $\mathrm{T}_{1}, \mathrm{~T}_{2}$, $\mathrm{T}_{3}, \mathrm{~T}_{10}, \mathrm{~T}_{20}, \mathrm{~T}_{30}$: actual and initial spring temperatures.

Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable
Temp Dependent Not applicable
Loads

LUSAS Output

Solver Force: $\mathrm{Pz}, \mathrm{Mx}, \mathrm{My}$: spring forces in local directions.
Strain: $\varepsilon z, \psi x, \psi y$: spring strains in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

\square Standard joint element

Sign Convention

- Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness	Default.	1-point.
	Fine.	As default.
Mass	Default.	1-point.
	Fine.	As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

55 Output strains as well as stresses.
119 Invokes temperature input for joints.

Notes on Use

See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

2D Joint Element for Axisymmetric Solids

General

Element Name

JAX3

Joints
2D Joints

An axisymmetric joint element for use with axisymmetric solid elements, which connects two nodes by two springs in the local x and y-directions and a 3 rd spring in the circumferential direction.
Number Of
3. The 3rd node is used to define the local x-direction.

Nodes
Freedoms
Node
Coordinates
U, V : at nodes 1 and 2 (active nodes).
X, Y : at each node.

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable
Matrix Stiffness:

Joint Standard:

Mass:

Damping:
MATRIX PROPERTIES STIFFNESS 6 K1,..., K10 element stiffness matrix (Not supported in LUSAS Modeller) MATRIX PROPERTIES MASS 6 M1,..., M10 element mass matrix (Not supported in LUSAS Modeller)
MATRIX PROPERTIES DAMPING 6 C1,..., C10 element damping matrix (Not supported in LUSAS Modeller)
JOINT PROPERTIES 2 (Joint: 2/Spring Stiffness Only) (See notes on use)
Dynamic general: JOINT PROPERTIES GENERAL 2 (Joint:

Loading

Prescribed Value	PDSP, TPDSP	Prescribed variable. U, V: at active nodes.
Concentrated Loads	CL	Concentrated loads. Px, Py: at active nodes.
Element Loads	Not applicable.	
Distributed Loads	Not applicable.	
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z},} \alpha_{\mathrm{z}}$
	BFP, BFPE	Not applicable.
Velocities	VELO	Velocities. Vx, Vy: at nodes.
Accelerations	ACCE	Accelerations. Ax, Ay: at nodes..
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. Fx, Fy: spring forces in local directions. $\varepsilon x, \varepsilon y$: spring strains in local directions.
	SSIG	Not applicable.
Residual Stresses	Not applicable.	
Target Stress/Strains	$\begin{aligned} & \text { TSSIE, } \\ & \text { TSSIA } \end{aligned}$	Target stresses/strains at nodes/for element. Fx, Fy: spring forces in local directions. Ex, εy : spring strains in local directions.
	TSSIG	Not applicable.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{10}$, T20: actual and initial spring temperatures.
Overburden	Not applicable.	
Phreatic Surface	Not applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver Force: Fx, Fy, Fz: spring forces in local directions.
Strain: $\mathcal{E x}, \varepsilon y, \varepsilon z$: spring strains in local directions.

Modeller \quad See Results Tables (Appendix K).

Local Axes

- Standard joint element

Sign Convention

\square Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point. Fine. As default.
Mass Default. 1-point.
Fine. As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

$47 \quad \mathrm{X}$-axis taken as axis of symmetry.
55 Output strains as well as stresses.
119 Invokes temperature input for joints.

Notes on Use

- This joint has only two degrees of freedom but requires 3 inputs. The 3rd input required is the circumferential stiffness.
- For problems where the circumferential forces are to be transmitted by adjacent elements the circumferential stiffness should be input as zero.
- This element cannot be used with axisymmetric Fourier elements.

See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

2D Joint Element for Axisymmetric Shells

General

Element Name

JXS3

Joints
2D Joints

An axisymmetric joint element for use with axisymmetric shell elements, which connects two nodes by two springs in the local x and y-directions, one spring about the local z-direction and a 4th spring in the circumferential direction.
Number Of Nodes Freedoms

Node
Coordinates
3. The 3 rd node is used to define the local x -direction.
$\mathrm{U}, \mathrm{V}, \theta$: at nodes 1 and 2 (active nodes).
X, Y : at each node.

Geometric Properties

dy Parametric distance factor (between 0.0 and 1.0), which defines the position of the shear spring for the local y direction between nodes 1 and 2 . It is measured from node 1 $(d y=0)$ along the local x direction.

Material Properties

Linear Not applicable
Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 8 K1,..., K21 element stiffness matrix (Not supported in LUSAS Modeller)
Mass: MATRIX PROPERTIES MASS 8 M1,..., M21 element mass matrix (Not supported in LUSAS Modeller)
Damping: MATRIX PROPERTIES DAMPING 8 C1,..., C21 element damping matrix (Not supported

Joint		in LUSAS Modeller)
	Standard:	JOINT PROPERTIES 3 (Joint: 3/Spring Stiffness Only) (See notes on use)
	Dynamic general:	JOINT PROPERTIES GENERAL 3 (Joint: 3/General Properties) (See notes on use)
	Elasto-plastic:	JOINT PROPERTIES NONLINEAR 313 (Joint: 3/Elasto-Plastic (Tension and Compression Equal)) (See notes on use)
	Elasto-plastic:	JOINT PROPERTIES NONLINEAR 323 (Joint: 3/Tension and Compression Unequal) (See notes on use)
	Nonlinear contact:	JOINT PROPERTIES NONLINEAR 333 (Joint: 3/Smooth Contact) (See notes on use)
	Nonlinear friction:	JOINT PROPERTIES NONLINEAR 443 (Joint: 3/Frictional Contact) (See notes on use)
	Viscous damping:	JOINT PROPERTIES NONLINEAR 353 (Joint: 3/Viscous Damper) (See notes on use)
	Lead-rubber:	JOINT PROPERTIES NONLINEAR 363 (Joint:3/Lead Rubber Bearing) (See notes on use)
	Friction pendulum:	JOINT PROPERTIES NONLINEAR 373 (Joint: 3/Frictional Pendulum System) (See notes on use)
	Multi-linear elastic	JOINT PROPERTIES NONLINEAR 403 (Joint: 3/Multi-Linear Elastic)
	Multi-linear hysteresis	JOINT PROPERTIES NONLINEAR 413 (Joint: 3/Multi-Linear Hysteresis)
	Multi-linear compound hysteresis	JOINT PROPERTIES NONLINEAR 423 (Joint: 3/Multi-Linear Compound Hysteresis)
	Axial force dependent multilinear elastic	JOINT PROPERTIES NONLINEAR 433 (Joint: 3/Axial Force Dependent MultiLinear Elastic)
Concrete	Not applicable	
Elasto-Plastic	Not applicable	
Creep	Not applicable	
Damage	Not applicable	
Viscoelastic	Not applicable	
Shrinkage	Not applicable	
Rubber	Not applicable	
Generic	Not applicable	
Polymer		

Composite Not applicable

Loading

Prescribed Value	PDSP, TPDSP	Prescribed variable. U, V, θ : at active nodes.
Concentrated Loads	CL	Concentrated loads. Px, Py, M: at active nodes.
Element Loads	Not applicable.	
Distributed Loads	Not applicable.	
Body Forces	CBF	Constant body forces for element. Xcbf, Ycbf, $\Omega \mathrm{x}, \Omega \mathrm{y}, \Omega_{\mathrm{z}}, \alpha \mathrm{z}$
	BFP, BFPE	Not applicable.
Velocities	VELO	Velocities. Vx, Vy: at nodes.
Accelerations	ACCE	Accelerations. Ax, Ay: at nodes.
Viscous Support Loads	VSL	Viscous support loads. VLx, VLy: at nodes.
Initial Stress/Strains	SSI, SSIE	Initial stresses/strains at nodes/for element. Fx, Fy: spring forces in local directions. Ex, εy : spring strains in local directions.
	SSIG	Not applicable.
Residual Stresses	Not applicable.	
Target Stress/Strains	$\begin{aligned} & \text { TSSIE, } \\ & \text { TSSIA } \end{aligned}$	Target stresses/strains at nodes/for element. Fx, Fy: spring forces in local directions. $\varepsilon x, \varepsilon y$: spring strains in local directions.
	TSSIG	Not applicable.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$, $\mathrm{T}_{10}, \mathrm{~T}_{20}, \mathrm{~T}_{30}$: actual and initial spring temperatures.
Overburden	Not applicable.	
Phreatic Surface	Not applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver Force: Fx, Fy, Fz,M: spring forces in local directions.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \psi z$: spring strains in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

\square Standard joint element

Sign Convention

\square Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default. 1-point.
Fine. As default.
Mass Default. 1-point.
Fine. As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

$47 \quad$ X-axis taken as axis of symmetry.
55 Output strains as well as stresses.
119 Invokes temperature input for joints.

Notes on Use

This joint has only three degrees of freedom but requires 4 inputs. The 4th input required is the circumferential stiffness.
See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

3D Joints for Bars, Solids and Space Membranes

General

Element Name
JNT4

Element Group Joints

Element 3D Joints
Subgroup
Element A 3D joint element which connects two nodes by three springs in Description the local x, y and z -directions.
Number Of
4. The 3rd and 4th nodes are used to define the local x-axis and Nodes local xy-plane.
Freedoms
U, V, W: at nodes 1 and 2 (active nodes).
Node X, Y, Z: at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable
Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 6 K1,..., K21 element stiffness matrix (Not supported in LUSAS Modeller)
Mass:
MATRIX PROPERTIES MASS 6 M1,..., M21 element mass matrix (Not supported in LUSAS Modeller)
Damping: MATRIX PROPERTIES DAMPING 6
C1,..., C21 element damping matrix (Not supported in LUSAS Modeller)
Joint Standard:
Stiffness Only)Dynamic general: JOINT PROPERTIES GENERAL 3 (Joint:3/General Properties)
Elasto-plastic: JOINT PROPERTIES NONLINEAR 313(Joint: 3/Elasto-Plastic (Tension andCompression Equal))
Elasto-plastic: JOINT PROPERTIES NONLINEAR 323
Nonlinearcontact:
Nonlinearfriction:Viscous damping:(Joint: 3/Tension and CompressionUnequal)
JOINT PROPERTIES NONLINEAR 333
(Joint: 3/Smooth Contact)
JOINT PROPERTIES NONLINEAR 443
(Joint: 3/Frictional Contact)
JOINT PROPERTIES NONLINEAR 353
(Joint: 3/Viscous Damper)
Lead-rubber: JOINT PROPERTIES NONLINEAR 363
(Joint: 3/Lead Rubber Bearing)
Frictionpendulum:Multi-linearelasticMulti-linearhysteresisMulti-linearcompoundhysteresisAxial forcedependent multi-linear elastic
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Loading

Loads
Element Loads Not
applicable.
Distributed Loads Notapplicable.Body Forces CBF
BFP, BFPE
Velocities VELO
Accelerations ACCE
Viscous Support VSL Loads
Initial SSI, SSIE
Stress/Strains
SSIG
Residual Stresses Notapplicable.Target TSSIE,Stress/Strains TSSIATSSIGNot applicable.
Temperatures TEMP, TMPE Temperatures at nodes/for element. $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$,$\mathrm{T}_{10}, \mathrm{~T}_{20}, \mathrm{~T}_{30}$: actual and initial springtemperatures.
Overburden Notapplicable.
Phreatic Surface Notapplicable.Field Loads Notapplicable.
Temp Dependent Not
Loads applicable.

LUSAS Output

Solver Force: Fx, Fy, Fz: spring forces in local directions.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z:$ spring strains in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard joint element

Sign Convention

- Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default.	1-point.
Fine.	As default.
Mass Default.	1-point.
Fine	As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

55 Output strains as well as stresses.
119 Invokes temperature input for joints.

Notes on Use

See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

3D Joints for Semiloof Shells

General

Element Name
JL43

Element Group
Subgroup
Description
Number Of Nodes
Freedoms
Coordinates

Joints
3D Joints
Element A 3D joint element which connects two nodes by three springs in the local x, y and z -directions.
4. The 3rd and 4th nodes are used to define the local x-axis and local xy-plane.
$\mathrm{U}, \mathrm{V}, \mathrm{W}$: at nodes 1 and 2 (active nodes).
Node X, Y, Z: at each node.

Geometric Properties

Not applicable.

Material Properties

Linear	Not applicable	
Matrix	Stiffness:	MATRIX PROPERTIES STIFFNESS 6
		K1,..., K21 element stiffness matrix (Not
		supported in LUSAS Modeller)
		MATRIX PROPERTIES MASS 6 M1,...,
		M21 element mass matrix (Not supported
	Damping:	MA LUSAS Modeller)
		MATRIX PROPERTIES DAMPING 6
Joint	Cl,.., C21 element damping matrix (Not	
		Supported in LUSAS Modeller)
		JOINT PROPERTIES 3 (Joint: 3/Spring
		Stiffness Only)

3/General Properties)
Elasto-plastic: JOINT PROPERTIES NONLINEAR 313
(Joint: 3/Elasto-Plastic (Tension andCompression Equal))
Elasto-plastic: JOINT PROPERTIES NONLINEAR 323
(Joint: 3/Tension and Compression
Unequal)
JOINT PROPERTIES NONLINEAR 333
(Joint: 3/Smooth Contact)
JOINT PROPERTIES NONLINEAR 443
(Joint: 3/Frictional Contact)
JOINT PROPERTIES NONLINEAR 353(Joint: 3/Viscous Damper)
Lead-rubber:Frictionpendulum:Multi-linearelastic
Multi-linearhysteresisMulti-linearcompoundhysteresisAxial forcedependent multi-linear elastic
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable
Loading
Prescribed Value PDSP,TPDSP
Concentrated CLLoads

Element Loads Not
JOINT PROPERTIES NONLINEAR 363
(Joint: 3/Lead Rubber Bearing)
JOINT PROPERTIES NONLINEAR 373(Joint: 3/Frictional Pendulum System)
JOINT PROPERTIES NONLINEAR 403
(Joint: 3/Multi-Linear Elastic)
JOINT PROPERTIES NONLINEAR 413
(Joint: 3/Multi-Linear Hysteresis)
JOINT PROPERTIES NONLINEAR 423(Joint: 3/Multi-Linear CompoundHysteresis)
JOINT PROPERTIES NONLINEAR 433(Joint: 3/Axial Force Dependent Multi-Linear Elastic)Prescribed variable. U, V, W: at active nodes.Concentrated loads. Px, Py, Pz: at active nodes.

Prescribed variable. U, V, W: at active nodes. Concentrated loads. Px, Py, Pz: at active nodes.

LUSAS Output

Solver Force: Fx, Fy, Fz: spring forces in local directions.
Strain: $\mathcal{E x}, \varepsilon$ y, ε z: spring strains in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard joint element

Sign Convention

\square Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness	Default.	1-point.
	Fine.	As default.
Mass	Default.	1-point.
	Fine.	As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

55 Output strains as well as stresses.
119 Invokes temperature input for joints.

Notes on Use

- When using Modeller to assign this semiloof joint element to interface lines a JL43 joint element will be created at the semiloof shell corner nodes and a JSL4 joint element will be created at the semiloof shell mid-side nodes.

See Joint Element Compatibility and Notes (Appendix L).

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g.
friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

3D Joint Elements for Engineering, Kirchhoff and Semiloof Beams

General

Element Name JSH4, JL46

Element Group
 Joints

Element
3D Joints
Subgroup
Element
Description
Number Of
Nodes
Freedoms
3D joint elements which connects two nodes by six springs in the local x, y and z-directions. Use JL46 for semiloof beam end nodes. 4. The 3rd and 4th nodes are used to define the local x-axis and local xy-plane respectively.
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at nodes 1 and 2 (active nodes).
Node
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

Coordinates

Geometric Properties

ez Eccentricity measured from the joint xy-plane to the nodal line.
dy Parametric distance factor (between 0.0 and 1.0), which defines the position of the shear spring for the local y direction between nodes 1 and 2 . It is measured from node $1(\mathrm{dy}=0)$ along the local x direction.
dz Parametric distance factor (between 0.0 and 1.0), which defines the position of the shear spring for the local z direction between nodes 1 and 2 . It is measured from node $1(\mathrm{dz}=0)$ along the local x direction

Material Properties

Linear Not applicable
Matrix Stiffness:
MATRIX PROPERTIES STIFFNESS 12
K1,..., K78 element stiffness matrix (Not supported in LUSAS Modeller)
Mass:
M78 element mass matrix (Not supported in LUSAS Modeller)

Damping:

Joint Standard:

Elasto-plastic:

Nonlinear contact:
Nonlinear friction:
Viscous damping:
Lead-rubber:
Friction
pendulum:
Multi-linear elastic
Multi-linear hysteresis
Multi-linear compound hysteresis Axial force dependent multilinear elastic
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable

Dynamic general: JOINT PROPERTIES GENERAL 6 (Joint: 6/General Properties)
Elasto-plastic: JOINT PROPERTIES NONLINEAR 316
(Joint: 6/Elasto-Plastic (Tension and Compression Equal))

MATRIX PROPERTIES DAMPING 12

 C1,..., C78 element damping matrix (Not supported in LUSAS Modeller)JOINT PROPERTIES 6 (Joint: 6/Spring Stiffness Only)

JOINT PROPERTIES NONLINEAR 326 (Joint: 6/Tension and Compression Unequal)
JOINT PROPERTIES NONLINEAR 336 (Joint: 6/Smooth Contact)
JOINT PROPERTIES NONLINEAR 446
(Joint: 6/Frictional Contact)
JOINT PROPERTIES NONLINEAR 356 (Joint: 6/Viscous Damper)
JOINT PROPERTIES NONLINEAR 366 (Joint: 6/Lead Rubber Bearing)
JOINT PROPERTIES NONLINEAR 376 (Joint: 6/Frictional Pendulum System)
JOINT PROPERTIES NONLINEAR 406
(Joint: 6/Multi-Linear Elastic)
JOINT PROPERTIES NONLINEAR 416
(Joint: 6/Multi-Linear Hysteresis)
JOINT PROPERTIES NONLINEAR 426
(Joint: 6/Multi-Linear Compound Hysteresis)
JOINT PROPERTIES NONLINEAR 436 (Joint: 6/Axial Force Dependent MultiLinear Elastic)

Composite Not applicable

Loading

Prescribed Value	PDSP, TPDSP	Prescribed variable. $\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$: at active nodes.
Concentrated Loads	CL	Concentrated loads. Px, Py, Pz, Mx, My, Mz : at active nodes.
Element Loads	Not applicable.	
Distributed Loads Body Forces	Not applicable.	
	CBF	Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{x}}, \alpha_{\mathrm{y}}, \alpha_{\mathrm{z}}$
	BFP, BFPE	Not applicable.
Velocities	VELO	Velocities. Vx, Vy, Vz: at nodes.
Accelerations	ACCE	Accelerations. Ax, Ay, Az: at nodes.
Viscous Support Loads Initial Stress/Strains	VSL	Viscous support loads. VLx, VLy, VLz: at nodes.
	SSI, SSIE	Initial stresses/strains at nodes/for element. $\mathrm{Fx}, \mathrm{Fy}, \mathrm{Fz}, \mathrm{Mx}, \mathrm{My}, \mathrm{Mz}$: spring forces in
		local directions. $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, y y, y z$: spring strains in local directions.
	SSIG	Not applicable.
Residual Stresses Target Stress/Strains	Not applicable.	
	TSSIE, TSSIA	Target stresses/strains at nodes/for element. $\mathrm{Fx}, \mathrm{Fy}, \mathrm{Fz}, \mathrm{Mx}, \mathrm{My}, \mathrm{Mz}$: spring forces in
		local directions. $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, y y, y z$: spring strains in local directions.
	TSSIG	Not applicable.
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. $\mathrm{T}_{1}, \mathrm{~T}_{2}$, $\mathrm{T}_{3}, \mathrm{~T}_{4}, \mathrm{~T}_{5}, \mathrm{~T}_{6}, \mathrm{~T}_{10}, \mathrm{~T}_{20}, \mathrm{~T}_{30}, \mathrm{~T}_{40}, \mathrm{~T}_{50}$, T60: actual and initial spring temperatures.
Overburden	Not applicable.	
Phreatic Surface	Not applicable.	
Field Loads	Not applicable.	
Temp Dependent Loads	Not applicable.	

LUSAS Output

Solver Force: Fx, Fy, Fz, Mx, My, Mz spring forces in local directions.
Strain: $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, \psi z$: spring strains in local directions.

Modeller See Results Tables (Appendix K).

Local Axes

- Standard joint element

Sign Convention

\square Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness Default.	1-point.
Fine.	As default.
Mass Default.	1-point.
Fine	As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

55 Output strains as well as stresses.
119 Invokes temperature input for joints

Notes on Use

See Joint Element Compatibility and Notes.

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g.
friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

3D Joint Element for Semiloof Beams

General

Element Name
JSL4

Element Group

Element Subgroup Element Description

Number Of Nodes Freedoms

Coordinates

A 3D joint element which connects two nodes by three springs in the local x, y and z -directions and two springs about the local x direction at the 1 st and 2 nd loof points. 4. The 3rd and 4th nodes are used to define the local x-axis and local xy-plane respectively.
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \theta_{1}, \theta_{2}$: at nodes 1 and 2 (active nodes).
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.
Joints
3D Joints

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable
Matrix Stiffness: MATRIX PROPERTIES STIFFNESS 10 K1,..., K55 element stiffness matrix (Not supported in LUSAS Modeller)
Mass: MATRIX PROPERTIES MASS $10 \mathrm{M} 1, \ldots$, M55 element mass matrix (Not supported in LUSAS Modeller)
Damping: MATRIX PROPERTIES DAMPING 10 C1,..., C55 element damping matrix (Not supported in LUSAS Modeller)
Joint Standard: JOINT PROPERTIES 5 (Joint: 5/Spring
Stiffness Only)Dynamic general: JOINT PROPERTIES GENERAL 5 (Joint:5/General Properties)
Elasto-plastic: JOINT PROPERTIES NONLINEAR 315(Joint: 5/Elasto-Plastic (Tension andCompression Equal))
Elasto-plastic: JOINT PROPERTIES NONLINEAR 325(Joint:5/Tension and CompressionUnequal)contact:

Nonlinear friction:Viscous damping:Frictionpendulum:Multi-linearelasticMulti-linearhysteresisMulti-linearcompoundhysteresisAxial forcedependent multi-linear elasticConcrete Not applicableElasto-Plastic Not applicableCreep Not applicableDamage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable
Nonlinear

JOINT PROPERTIES NONLINEAR 335
Lead-rubber:
JOINT PROPERTIES NONLINEAR 365 (Joint: 5/Smooth Contact)
JOINT PROPERTIES NONLINEAR 445 (Joint: 5/Frictional Contact) JOINT PROPERTIES NONLINEAR 355 (Joint: 5/Viscous Damper) (Joint: 5/Lead Rubber Bearing) JOINT PROPERTIES NONLINEAR 375 (Joint: 5/Frictional Pendulum System) JOINT PROPERTIES NONLINEAR 405 (Joint: 5/Multi-Linear Elastic) JOINT PROPERTIES NONLINEAR 415 (Joint: 5/Multi-Linear Hysteresis) JOINT PROPERTIES NONLINEAR 425 (Joint: 5/Multi-Linear Compound Hysteresis)
JOINT PROPERTIES NONLINEAR 435 (Joint: 5/Axial Force Dependent MultiLinear Elastic)

Loading

Prescribed Value PDSP, TPDSP

Prescribed variable. U, V, W, θ_{1}, θ_{2} : at active nodes.

Concentrated CL
Loads
Element Loads Not applicable. Distributed Loads Not applicable. Body Forces CBF

BFP, BFPE
Velocities VELO
Accelerations ACCE
Viscous Support VSL
Loads
Initial SSI, SSIE
Stress/Strains

SSIG
Residual Stresses Not applicable.
Target TSSIE, TSSIA Stress/Strains

TSSIG
Temperatures TEMP, TMPE

Concentrated loads. Px, Py, Pz, M1, M2: at active nodes.

Constant body forces for element. Xcbf, Ycbf, Zcbf, $\Omega_{\mathrm{x}}, \Omega_{\mathrm{y}}, \Omega_{\mathrm{z}}, \alpha_{\mathrm{x}}, \alpha_{\mathrm{y}}, \alpha_{\mathrm{z}}$ Not applicable.
Velocities. Vx, Vy, Vz: at nodes. Accelerations. Ax, Ay, Az: at nodes.
Viscous support loads. VLx, VLy, VLz: at nodes.
Initial stresses/strains at nodes/for element. Fx, Fy, Fz, Mx, My, Mz: spring forces in local directions. $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, \psi z$: spring strains in local directions.
Not applicable.
Target stresses/strains at nodes/for element. Fx, Fy, Fz, Mx, My, Mz: spring forces in local directions. $\varepsilon x, \varepsilon y, \varepsilon z, \psi x, \psi y, \psi z$: spring strains in local directions.
Not applicable.
Temperatures at nodes/for element. $\mathrm{T}_{1}, \mathrm{~T}_{2}$, $\mathrm{T}_{3}, \mathrm{~T}_{4}, \mathrm{~T}_{5}, \mathrm{~T}_{10}, \mathrm{~T}_{20}, \mathrm{~T}_{30}, \mathrm{~T}_{40}$, T50: actual and initial spring temperatures.

LUSAS Output

Solver Force: Fx, Fy, Fz, M1, M2: spring forces in local directions.
Strain: $\mathcal{E x}, \varepsilon_{y}, \varepsilon_{z}, \psi_{1}, \psi_{2}$: spring strains in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard joint element

Sign Convention

\square Standard joint element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Stiffness	Default.	1-point.
	Fine.	As default.
Mass	Default.	1-point.
	Fine.	As default.

Mass Modelling

Lumped mass only. The position of the mass relative to the two active joint nodes is defined in the joint material data. Point mass elements should be used to model lumped masses when no stiffness modelling is required.

Options

55 Output strains as well as stresses.
119 Invokes temperature input for joints.

Notes on Use

See Joint Element Compatibility and Notes.

Restrictions

Not applicable.

Recommendations on Use

- The joint elements may be used to release degrees of freedom between elements, e.g. a hinged shell, or to provide nonlinear support conditions, e.g. friction-gap condition. Also, point masses may be represented by including a joint at an element node.
- See Joint Element Compatibility (Appendix L)

Chapter 9 : Thermal / Field Elements

2D Bar Field Elements

General

Element Group
 Field

Element
Subgroup
Element
Description
Number Of Nodes
Freedoms
Node
Coordinates

BFD3

Geometric Properties

A1 ... An Cross-sectional area at each node.

Material Properties

Matrix Not applicable
Joint Not applicable
Composite Not applicable
Field Isotropic
MATERIAL PROPERTIES FIELD ISOTROPIC (Field: Isotropic)
MATERIAL PROPERTIES FIELD ISOTROPIC CONCRETE(Field: Isotropic)
Orthotropic: Not applicable
Linear Not applicable convection/radiation:
Arbitrary Not applicable convection/radiation:

Loading

Prescribed Value	PDSP, TPDSP	Q: field variable (temperature) at nodes.
Rate of Heat	RGN	Q: field loading at nodes.
Inflow at a Point		
Element Loads	Not applicable.	Not applicable.
Distributed Loads	UDL	qa: (Q/unit area) at nodes (positive defines
	heat input) (see FLD Face loading	
applied to thermal bars).		

LUSAS Output

Solver Field variable (temperature). gx, qx: gradient and flow in local
axes.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard line element

Sign Convention

- Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity	Default.	1-point (BFD2), 2-point (BFD3).
	Fine (see Options).	2-point (BFD2), 3-point (BFD3).
Specific Heat	Default.	1-point (BFD2), 2-point (BFD3).
	Fine (see Options).	2-point (BFD2), 3-point (BFD3).

Specific Heat Modelling

\square Consistent specific heat (default).
\square Lumped specific heat.

Options

18 Invokes fine integration rule.
105 Lumped specific heat.

Notes on Use

1. TEMP/TMPE loading can be used to initialise the temperature field on the first step of a nonlinear field analysis. The temperature will be applied on the first pass of iteration 0 only and the load must be specified as a manual increment.
2. For linear field problems only one load case is allowed if an ENVT load is to be applied.
3. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
4. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
5. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
6. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.

Restrictions

\square Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

These elements may be used to analyse heat conduction along bars either individually or in conjunction with continuum field elements, e.g. supporting struts.

2D Axisymmetric Membrane Field Elements

General

Element Group Field
Element Thermal Bars
Subgroup
Element Straight and curved isoparametric axisymmetric thermal bar Description elements in 2D which can accommodate varying cross sectional area.
Number Of 2 or 3 .
Nodes
Freedoms j: field variable (temperature) at each node.
Node X, Y: at each node.
Coordinates

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Matrix Not applicable.
Composite Not applicable.
Field Isotropic

Orthotropic: Not applicable
Linear convection/radiation:
Arbitrary convection/radiation:
MATERIAL PROPERTIES FIELD ISOTROPIC (Field: Isotropic)
MATERIAL PROPERTIES FIELD ISOTROPIC CONCRETE (Field: Isotropic)

Not applicable

Loading

Prescribed Value	PDSP, TPDSP	φ : field variable (temperature) at nodes.
Rate of Heat Inflow at a Point	RGN	Q: field loading at nodes.
Element Loads Distributed Loads	Not applicable.	
	UDL	Not applicable.
	FFL	qa: ($\mathrm{Q} /$ unit area) at nodes (positive defines heat input) (see FLD Face loading applied to thermal bars).
Rate of Heat Inflow/Unit Volume	RBC	qv: (Q/unit volume) for element.
	RBV, RBVE	qv : (Q/unit volume) at nodes/ for element.
Velocities	Not applicable.	
Accelerations	Not applicable.	
Support Loads		
Initial Stress/Strains	Not applicable.	
Residual Stresses	Not applicable.	
Stress/Strains		
Temperatures	TEMP, TMPE	Temperatures at nodes/for element. T, $0,0,0$, $0,0,0,0$ (See Notes.)
Field Loads	ENVT	Environmental boundary conditions. $\varphi \mathrm{e}, \mathrm{hc}$, hr: external environmental temperature, convective and radiative heat transfer coefficients. (See Notes.)
Temp	TDET	Temperature dependent environmental
Dependent Loads		boundary conditions. $\varphi \mathrm{e}, \mathrm{hc}, \mathrm{hr}, \mathrm{T}$: external environmental temperature, convective and radiative heat transfer coefficients and temperature. (See Notes.)
	RIHG	Internal heat generation rate. Q, T : coefficient/unit volume and temperature for element. (See Notes.)

LUSAS Output

Solver Field variable (temperature). gx, qx: gradient and flow in local axes.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard line element

Sign Convention

- Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity	Default.	1-point (BFX2), 2-point (BFX3).
	Fine (see Options).	2-point (BFX2), 3-point (BFX3).
Specific Heat	Default.	1-point (BFX2), 2-point (BFX3).
	Fine (see Options).	2-point (BFX2), 3-point(BFX3).

Specific Heat Modelling

\square Consistent specific heat (default).
\square Lumped specific heat.

Options

18 Invokes fine integration rule.
$47 \quad$ X-axis taken as axis of symmetry.
105 Lumped specific heat.

Notes on Use

1. TEMP/TMPE loading can be used to initialise the temperature field on the first step of a nonlinear field analysis. The temperature will be applied on the first pass of iteration 0 only and the load must be specified as a manual increment.
2. For linear field problems only one load case is allowed if an ENVT load is to be applied.
3. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
4. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
5. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
6. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.

Restrictions

\square Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

One example of the usage of these elements is the analysis of in-plane temperature flow in a thin circular plate.

3D Bar Field Elements

General

BFS3

Element Group
Element Subgroup
Element Description
Number Of Nodes Freedoms

Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.
Field
Thermal Bars

Straight and curved
2 or 3.
φ : field value (temperature) at each node

Field Isotropic

Orthotropic:
Linear convection/radiation:
Arbitrary convection/radiation:

MATERIAL PROPERTIES FIELD ISOTROPIC (Field: Isotropic)
MATERIAL PROPERTIES FIELD ISOTROPIC CONCRETE (Field: Isotropic)
Not applicable.
Not applicable.
Not applicable.

Loading

Prescribed Value PDSP, TPDSP
Rate of Heat RGN
Inflow at a Point
Element Loads Not applicable.
Distributed Loads UDL
FFL

Rate of Heat RBC
Inflow/Unit
Volume
RBV, RBVE
Velocities Not applicable.
Accelerations Not applicable.
Viscous Support Not applicable.
Loads
Initial Not applicable.
Stress/Strains
Residual Stresses Not applicable.
Target Not applicable.
Stress/Strains
Temperatures TEMP, TMPE
Field Loads ENVT

Temp Dependent TDET
Loads
φ : field variable (temperature) at nodes.
Q : field loading at nodes.

Not applicable.
qa: (Q/unit area) at nodes (positive defines heat input) (see FLD Face loading applied to thermal bars).
qv : ($\mathrm{Q} /$ unit volume) for element.
$\mathrm{qv}:(\mathrm{Q} /$ unit volume $)$ at nodes/ for element.

Temperatures at nodes/for element. T, 0, 0, $0,0,0,0,0$ (See Notes.)
Environmental boundary conditions. $\varphi \mathrm{e}$, hc , hr: external environmental temperature, convective and radiative heat transfer coefficients. (See Notes.)
Temperature dependent environmental boundary conditions. $\varphi \mathrm{e}, \mathrm{hc}, \mathrm{hr}, \mathrm{T}$: external environmental temperature,
convective and radiative heat transfer coefficients and temperature. (See Notes.)
RIHG
Internal heat generation rate. Q, T:
coefficient/unit volume, and temperature for element. (See Notes.)

LUSAS Output

Solver Field variable (temperature). gx, qx: gradient and flow in local axes.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard line element

Sign Convention

- Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity Default. 1-point (BFS2), 2-point (BFS3).
Fine (see Options). 2-point (BFS2), 3-point (BFS3).
Specific Heat Default. 1-point (BFS2), 2-point (BFS3).
Fine (see Options). 2-point (BFS2), 3-point (BFS3).

Specific Heat Modelling

\square Consistent specific heat (default).
\square Lumped specific heat.

Options

18 Invokes fine integration rule.
105 Lumped specific heat.

Notes on Use

1. TEMP/TMPE loading can be used to initialise the temperature field on the first step of a nonlinear field analysis. The temperature will be applied on the first pass of iteration 0 only and the load must be specified as a manual increment.
2. For linear field problems only one load case is allowed if an ENVT load is to be applied.
3. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
4. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
5. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
6. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.

Restrictions

\square Ensure mid-side node centrality
\square Avoid excessive element curvature

2D Link Field Element

General

Element Name LFD2

Element Group
 Field

Element
 Thermal Links

Subgroup
Element Straight conductive, convective or radiative thermal link element
Description for 2D field analysis.
Number Of
2.

Nodes
Freedoms
φ : field value (temperature) at each node.
Node X, Y at each node.
Coordinates

Geometric Properties

A1 ... An Cross sectional area at each node.

Material Properties

Linear Not applicable
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable
Field Isotropic: Not applicable.

Orthotropic:	Not applicable.
Linear	MATERIAL PROPERTIES FIELD
convection/radiation:	LINK 18 (Field: Linear Link)
Arbitrary	MATERIAL PROPERTIES FIELD
convection/radiation:	LINK 19 (Field: Nonlinear Link)

Loading

(Fild: Nonlinear Link)

Prescribed Value PDSP, TPDSP

Concentrated Not applicable.
Loads

Element Loads Not applicable.

Distributed Loads Not applicable.

Body Forces Not applicable.

Velocities Not applicable.

Accelerations Not applicable.

Viscous Support Not applicable.

Loads

Initial Not applicable.

Stress/Strains

Residual Stresses Not applicable.

Target Not applicable.

Stress/Strains

Temperatures Not applicable.

Field Loads Not applicable.

Temp Dependent Not applicable.

Loads

φ : field variable (temperature) at nodes.

Concentrat

or
Pres
Not applicable.
Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conduction, Default. 1-point (at element centroid).
Convection, Radiation

Fine. As default.
Specific Heat Default. Not applicable.
Fine. Not applicable.

Specific Heat Modelling

Not applicable.

Options

Not applicable.

Notes on Use

No notes at present.

Restrictions

Not applicable.

Recommendations on Use

An example of the usage of these elements is the analysis of heat conduction at contacting interfaces.

3D Link Field Element

General

Element Name LFS2

Element Group

Field
Element
Thermal Links
Subgroup
Element
Straight conductive, convective or radiative thermal link element
Description for 3D field analysis.
Number Of 2.

Nodes
End Releases
Freedoms
φ : field value (temperature) at each node.
Node X, Y, Z at each node.
Coordinates

Geometric Properties

A1 ... An Cross sectional area at each node.

Material Properties

Linear Not applicable.
Matrix Not applicable.
Joint Not applicable.
Concrete Not applicable.
Elasto-Plastic Not applicable.
Rubber Not applicable.
Generic Polymer Not applicable
Composite Not applicable.
Field Isotropic: Not applicable.
Orthotropic: Not applicable.
Linear MATERIAL PROPERTIES FIELD convection/radiation: LINK 18 (Field: Linear Link)
Arbitrary MATERIAL PROPERTIES FIELD
convection/radiation: LINK 19 (Field: Nonlinear Link)
Stress Potential Not applicable.
Creep Not applicable.
Damage Not applicable.
Viscoelastic Not applicable.
Shrinkage Not applicable
Loading
Prescribed Value PDSP, TPDSP φ : field variable (temperature) at nodes.
Concentrated Not applicable.
Loads
Element Loads Not applicable.
Distributed Loads Not applicable.
Body Forces Not applicable.
Velocities Not applicable.
Accelerations Not applicable.
Viscous Support Not applicable.
Loads
Initial Not applicable.
Stress/Strains
Residual Stresses Not applicable.
Target Not applicable.
Stress/Strains
Temperatures Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.
Loads
LUSAS OutputSolver Field variable (temperature). qx: flow at nodes in local directions.
Modeller See Results Tables (Appendix K).
Local Axes

- Standard line element

Sign Convention
 \square Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conduction, Default. 1-point (at element centroid).
Convection,
Radiation
Specific Heat Default. Not applicable.Fine. Not applicable.

Specific Heat Modelling

Not applicable.

Options

Not applicable.

Notes on Use

No notes at present.

Restrictions

Not applicable.

Recommendations on Use

An example of the usage of these elements is the analysis of heat conduction at contacting interfaces.

2D Axisymmetric Link Field Element

General

Element Name LFX2

Element Group Field Element Thermal Links Subgroup
Element Straight conductive, convective or radiative thermal link element
Description for 2D axisymmetric field analysis.
Number Of
2.

Nodes
End Releases
Freedoms
φ : field value (temperature) at each node.
Node X, Y at each node.
Coordinates

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Linear Not applicable.
Matrix Not applicable.
Joint Not applicable.
Concrete Not applicable.
Elasto-Plastic Not applicable.
Rubber Not applicable.
Generic Polymer Not applicable
Composite Not applicable.
Field Isotropic: Not applicable.
Orthotropic: Not applicable.
Linear MATERIAL PROPERTIES FIELD
convection/radiation: LINK 18 (Field: Linear Link)

Arbitrary
convection/radiation:

MATERIAL PROPERTIES FIELD
LINK 19 (Field: Nonlinear Link)

Loading

Prescribed Value PDSP, TPDSP

Concentrated Not applicable. Loads
Element Loads Not applicable.
Distributed Loads Not applicable.
Body Forces Not applicable.
Velocities Not applicable.
Accelerations Not applicable.
Viscous Support Not applicable.

Loads

Initial Not applicable.

Stress/Strains

Residual Stresses Not applicable.

Target Not applicable.

Stress/Strains

Temperatures Not applicable.

Field Loads Not applicable.

Temp Dependent Not applicable.

Loads
Loads
Not applicable.
Not applicable.
Loads
φ : field variable (temperature) at nodes.

LUSAS Output

Solver Field variable (temperature). qx: flow at nodes in local directions.
Modeller See Results Tables (Appendix K).

Local Axes

- Standard line element

Sign Convention

Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

> Conduction, Default. 1-point (at element centroid). Convection, Radiation
> Fine. As default.
> Specific Heat Default. Not applicable.
> Fine. Not applicable.

Specific Heat Modelling

Not applicable.

Options

$47 \quad \mathrm{X}$-axis taken as axis of symmetry.

Notes on Use

No notes at present.

Restrictions

Not applicable.

Recommendations on Use

An example of the usage of these elements is the analysis of heat conduction at contacting interfaces.

2D Axisymmetric Field Elements

General

Geometric Properties

Not applicable (a unit radian segment is assumed).
Material Properties
Linear Not applicable.
Matrix Not applicable.
Joint Not applicable.
Concrete Not applicable.
Elasto-Plastic Not applicable.
Rubber Not applicable.
Generic Not applicable
Polymer
Composite Not applicable.
Field Isotropic:

Orthotropic:

Linear convection/radiation:Arbitraryconvection/radiation:convection/radiation:
MATERIAL PROPERTIES FIELD ISOTROPIC (Field: Isotropic)
MATERIAL PROPERTIES FIELD ISOTROPIC CONCRETE (Field: Isotropic)
MATERIAL PROPERTIES FIELD ORTHOTROPIC (Field: Orthotropic) MATERIAL PROPERTIES FIELD ORTHOTROPIC CONCRETE (Field: Orthotropic)
Not applicable.
Not applicable.

Loading

Prescribed Value	PDSP, TPDSP	$\varphi:$ field variable (temperature) at nodes. Rate of Heat
RGN	Q: field loading at nodes.	
Inflow at a Point		
Element Loads	Not applicable.	Not applicable.
Distributed Loads	UDL	qa: (Q/unit area) at nodes (see FLD Face
	FFL	$\underline{\text { loading applied to thermal bars). }}$
Rate of Heat	RBC	qv: (Q/unit volume) for element.
Inflow/Unit		
Volume		qB: $(\mathrm{Q} /$ unit volume) at nodes/ for element.
Velocities	Not applicable.	
Accelerations	Not applicable.	
Viscous Support	Not applicable.	
Loads		

Initial Velocities Not applica		
Initial	Not applicable.	
Stress/Strains		
Residual Stresses Not applicable		
Target	Not applicable.	
Stress/Strains		
Temperatures	Not applicable.	
Field Loads	ENVT	Environmental boundary conditions. φ e,
		hc, hr: external environmental temperature, convective and radiative heat transfer coefficients. (See Notes.)
Temp Dependent Loads	TDET	Temperature dependent environmental
		boundary conditions. $\varphi \mathrm{e}, \mathrm{hc}, \mathrm{hr}, \mathrm{T}$: external environmental temperature, convective and radiative heat transfer coefficients and temperature. (See Notes.)
	RIHG	Internal heat generation rate. Q, T : coefficient/unit volume and temperature for element. (See Notes.)

LUSAS Output

Solver Field variable (temperature). gx, gy, gz, qx, qy, qz: gradients and flows in global directions.
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable.

Sign Convention

\square Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity Default. 1-point (TXF3), 3-point (TXF6), 2x2 (QXF4, QXF8)

	Fine (see Options).	3×3 (QXF8)
Specific Heat		
Default.	1-point (TXF3), 3-point (TXF6), 2x2 (QXF4, QXF8)	
	Fine.	As default.

Specific Heat Modelling

- Consistent specific heat (default)
\square Lumped specific heat.

Options

18 Invokes fine integration rule for elements.
$47 \quad \mathrm{X}$-axis taken as axis of symmetry.
105 Lumped specific heat.

Notes on Use

1. The element formulations are based on the standard isoparametric approach.

The variation of field variable (temperature) within an element is linear low order (corner node only) elements and quadratic high order (mid-side node) elements.
2. All elements pass the patch test for convergence.
3. For linear field problems only one load case is allowed if an ENVT load is to be applied.
4. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
5. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
6. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
7. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.

Restrictions

E Ensure mid-side node centrality

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

The axisymmetric field elements are suitable for analysing solid field problems which exhibit geometric and loading symmetry about a given axis, e.g. temperature distribution in a pipe or radial groundwater flow into a well.

2D Plane Field Elements

General

Material Properties
Linear Not applicable
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable.
Generic Polymer Not applicable
Composite Not applicable.
Field Isotropic:
Orthotropic:
Linearconvection/radiation:
Arbitrary
MATERIAL PROPERTIES FIELD ISOTROPIC CONCRETE (Field: Isotropic)
MATERIAL PROPERTIES FIELD ISOTROPIC (Field: Isotropic)
MATERIAL PROPERTIES FIELD ORTHOTROPIC (Field: Orthotropic) MATERIAL PROPERTIES FIELD ORTHOTROPIC CONCRETE (Field: Orthotropic)

Not applicable.

Loading

Prescribed Value PDSP, TPDSP
Rate of Heat RGN
Inflow at a Point
Element Loads
Not applicable.
Distributed Loads UD
FFL

RBC Inflow/Unit Volume

Velocities Not applicable.
φ : field variable (temperature) at nodes.
Q: field loading at nodes.

Not applicable.
qa: (Q/unit area) at nodes (see FLD Face loading applied to thermal bars).
qv: (Q/unit volume) for element.
$\mathrm{qv}:(\mathrm{Q} /$ unit volume) at nodes/ for element.

Accelerations Not applicable.
Viscous Support Not applicable.
Loads
Initial Not applicable.
Stress/Strains
Residual Stresses Not applicable.
Target Not applicable.
Stress/Strains
Temperatures Not applicable.
Field Loads ENVT
Environmental boundary conditions. $\varphi \mathrm{e}$, hc, hr: external environmental temperature, convective and radiative heat transfer coefficients. (See Notes.)
Temp Dependent TDET
Loads

RIHG
Temperature dependent environmental
boundary conditions. $\varphi \mathrm{e}, \mathrm{hc}, \mathrm{hr}, \mathrm{T}$: external environmental temperature, convective and radiative heat transfer coefficients and temperature. (See Notes.)
Internal heat generation rate. Q, T :
coefficient/unit volume and temperature for element. (See Notes.)

LUSAS Output

Solver Field variable (temperature). gx, gy, qx, qy: gradients and flows in global directions.
Modeller See Results Tables (Appendix K).

Local Axes

\square Standard surface element

Sign Convention

- Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity Default. 1-point (TFD3), 3-point (TFD6), 2x2 (QFD4, QFD8). Fine. As default.
Specific Heat Default. 1-point (TFD3), 3-point (TFD6), 2x2 (QFD4, QFD8).
Fine. Not applicable.

Specific Heat Modelling

\square Consistent specific heat (default).
\square Lumped specific heat.

Options

18 Invokes fine integration rule for elements.
105 Lumped specific heat.

Notes on Use

1. The element formulations are based on the standard isoparametric approach.

The variation of field variable (temperature) within an element is linear for low order (corner node only) elements and quadratic for high order (mid-side node) elements.
2. All elements pass the patch test for convergence.
3. For linear field problems only one load case is allowed if an ENVT load is to be applied.
4. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
5. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
6. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
7. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.

Restrictions

\square Ensure mid-side node centrality
\square Avoid excessive element curvature

Element Reference Manual

- Avoid excessive aspect ratio

Recommendations on Use

The plane field elements may be utilised for analysing continuum field problems whose behaviour is essentially two dimensional, e.g. thermal analysis of a long tunnel . The elements are formulated using the 2D quasi-harmonic equation. See Theory Manuals for details.

3D Solid Field Elements

General

TF10

PF12

PF15

HF16

HF20

Element Group Field

Element
Solid Field

Subgroup

Element A family of solid field elements in 3D with higher order elements Description capable of modelling curved boundaries. The elements are applicable to both steady state and transient field problems. The
elements are numerically integrated.

Number Of Nodes

Freedoms
Node

Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable
Field Isotropic: MATERIAL PROPERTIES FIELD ISOTROPIC CONCRETE (Field: Isotropic)
MATERIAL PROPERTIES FIELD ISOTROPIC (Field: Isotropic)
Orthotropic:

Linear
convection/radiation:
Arbitrary
convection/radiation:

4 and 10 (tetrahedra). 6, 12 and 15 (pentahedra). 8, 16 and 20
(hexahedra). The elements are numbered according to a right-hand screw rule in the local z-direction.
φ : field variable at each node.
X, Y, Z: at each node.Linear Not applicableMatrix Not applicableJoint Not applicableElasto-Plastic Not applicableDamage Not applicable
Field Isotropic:
Orthotropic:

Loading

Prescribed Value Rate of Heat	$\begin{aligned} & \text { PDSP, TPDSP } \\ & \text { RGN } \end{aligned}$	φ : field variable (temperature) at nodes. Q : field loading at nodes.
Inflow at a Point		
Element Loads	Not applicable.	
Distributed Loads	$\begin{aligned} & \text { UDL } \\ & \text { FFL } \end{aligned}$	Not applicable. qa: (Q/unit area) at nodes (see FLD Face loading applied to thermal bars).
Rate of Heat Inflow/Unit Volume	RBC	qv : (Q/unit volume) for element.
	RBV, RBVE	qv : (Q/unit volume) at nodes/ for element.
Velocities	Not applicable.	
Accelerations	Not applicable.	
Viscous Support Loads	Not applicable.	
Initial Stress/Strains	Not applicable.	
Residual Stresses	Not applicable.	
Target Stress/Strains	Not applicable.	
Temperatures	Not applicable. ENVT	
Field Loads		Environmental boundary conditions. $\varphi \mathrm{e}$, hc , hr: external environmental temperature, convective and radiative heat transfer coefficients. (See Notes.)
Temp Dependent	TDET	Temperature dependent environmental
Loads		boundary conditions. $\varphi \mathrm{e}, \mathrm{hc}, \mathrm{hr}, \mathrm{T}$: external environmental temperature, convective and radiative heat transfer coefficients and temperature. (See Notes.)
	RIHG	Internal heat generation rate. Q, T : coefficient/unit volume and temperature for element. (See Notes.)

LUSAS Output

Solver Field variable (temperature). gx, gy, gz, qx, qy, qz: gradients and flows in global directions.
Modeller See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity Default. 1-point (TF4), 4-point (TF10), 3x2 (PF6, PF12, PF15), 2x2x2 (HF8, HF16, HF20)
Fine (see Options). 5-point (TF10) 3x3x2 (HF16), $3 \times 3 \times 3$ (HF20)
Coarse (see 1-point (HF20), 14-point (HF20)
Options).
Specific Heat Default. 1-point (TF4), 4-point (TF10), 3x2 (PF6, PF12, PF15), 2x2x2 (HF8, HF16, HF20)
Fine (see Options). 5-point (TF10)
3x3x2 (HF16), $3 \times 3 \times 3$ (HF20)
Coarse (see
13-point (HF20), 14-point (HF20)
Options).

Specific Heat Modelling

\square Consistent specific heat (default).

- Lumped specific heat.

Options

18 Invokes fine integration rule for elements.
105 Lumped specific heat.
155 Use 14-point integration rule for HF20.
156 Use 13-point integration rule for HF20.
398 For HF20 and HF16 with fine integration use all integration points for stress extrapolation.

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of potential within an element may be regarded as constant for low order (corner node only) elements and linear for high order (mid-side node) elements.
2. For linear field problems only one load case is allowed if an ENVT load is to be applied.
3. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
4. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
5. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
6. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.

Restrictions

\square Ensure mid-side node centrality
\square Avoid excessive element curvature
A Avoid excessive aspect ratio

Recommendations on Use

The solid field elements may be used to analyse continuum field problems where the response is fully 3D (i.e. it cannot be approximated using the plane or axisymmetric elements), e.g. temperature distribution in a pipe intersection.

3D Solid Composite Field Element (Tetrahedral)

General

Element Group
Field
Element
Solid Field
Subgroup
Element
Description
3D solid field element capable of modelling curved boundaries. The element is applicable to both steady state and transient field problems. The element is numerically integrated, can be arbitrarily oriented with respect to the laminate, and allows for the fully automatic mesh generation of laminate geometric models imported from CAD packages.
Number Of 10. The element is numbered according to a right-hand screw rule
Nodes
Freedoms
in the local z -direction.

Node
Coordinates
φ : field variable at each node.
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

Geometric Properties

See Composites in the Modeller Reference Manual

Material Properties

$$
\begin{aligned}
\text { Linear } & \text { Not applicable } \\
\text { Matrix } & \text { Not applicable } \\
\text { Joint } & \text { Not applicable } \\
\text { Concrete } & \text { Not applicable } \\
\text { Elasto-Plastic } & \text { Not applicable } \\
\text { Creep } & \text { Not applicable }
\end{aligned}
$$

Damage Not applicable
Viscoelastic Not applicableShrinkage Not applicableRubber Not applicable
Generic Polymer Not applicable
CompositeField Isotropic:Orthotropic:
LinearArbitraryNot applicable
convection/radiation:
COMPOSITE MATERIALMATERIAL PROPERTIES FIELDISOTROPIC (Field: Isotropic)MATERIAL PROPERTIES FIELDISOTROPIC CONCRETE (Field:Isotropic)MATERIAL PROPERTIES FIELDORTHOTROPIC SOLID (Field:Orthotropic Solid)MATERIAL PROPERTIES FIELDORTHOTROPIC SOLID CONCRETE(Field: Orthotropic Solid)
Not applicable
convection/radiation:Not applicable
Loading
Prescribed Value PDSP, TPDSP
Rate of Heat RGN
Inflow at a Point Element Loads Not applicable.
Distributed Loads UDL
FFL
Rate of Heat RBC
Inflow/Unit Volume
Viscous Support Not applicable.
Loads
Initial Not applicable.
Stress/Strains
Residual Stresses Not applicable.
Target Not applicable.
Stress/Strains

Accelerations Not applicable.
RBV, RBVE qv: (Q/unit volume) at nodes/ for element.
φ : field variable (temperature) at nodes.
Q : field loading at nodes.

Not applicable.
qa: (Q/unit area) at nodes
qv: (Q/unit volume) for element.
$\mathrm{qv}:(\mathrm{Q} /$ unit volume) at nodes/ for element.

Temperatures Field Loads	Not applicable. ENVT	
		Environmental boundary conditions φe, hc, hr: external environmental temperature, convective and radiative heat transfer coefficients. (See Notes.)
Temp Dependent Loads	TDET	Temperature dependent boundary
		conditions. $\varphi \mathrm{e}, \mathrm{hc}, \mathrm{hr}, \mathrm{T}$: external environmental temperature, convective and radiative heat transfer coefficients and temperature. (See Notes.)
	RIHG	Internal heat generation rate. Q, T : coefficient/unit volume and temperature for element. (See Notes.)

LUSAS Output

Solver Field variable (temperature). gx, gy, gz, qx, qy, qz: gradients and flows. Gauss point values are in local directions. Nodal values are in global directions.
Modeller See Results tables (Appendix K)

Local Axes

The local axes for each layer are defined by the LAMINAR DIRECTIONS specified for its bottom surface. The three node set in LAMINAR DIRECTIONS define the local Cartesian set origin, the x -axis and the positive quadrant of the xy -plane respectively. The local z-axis forms an orthonormal coordinate system with x and y.

Sign Convention

\square Standard field elements

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity Default. 1-point for a tetrahedral subdivision (see Notes), 3-point for a pentahedral/pyramid subdivision, 2×2 for a hexahedral/wrick subdivision
Fine (see 1-point for a tetrahedral subdivision (see Notes),

Options) 3×2 for a pentahedral/pyramid subdivision, $2 \times 2 \times 2$ for a hexahedral/wrick subdivision
Specific Heat Default. 5-point for the whole element or (see Options) 1point for a tetrahedral subdivision, 3×2 for a pentahedral/pyramid subdivision, $2 \times 2 \times 2$ for a hexahedral/wrick subdivision
Fine (see 11-point or (see Options) 14 -point for the whole Options) element

Specific Heat Modelling

- Consistent specific heat (default).
- Lumped specific heat.

Options

18 Invokes fine integration rule for elements.
91 Formulate element specific heat with fine integration
105 Lumped specific heat.
266 Layer by layer computation of specific heat matrix.
394 Lamina directions supported
395 Use 14-point fine integration rule for specific heat matrix of TH10 family (used together with 91)

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of field gradients within an element may be regarded as linear.
2. The LAMINAR DIRECTIONS and COMPOSITE MATERIAL data chapters must be used with this element in conjunction with the COMPOSITE ASSIGNMENTS data chapter.
3. If the whole tetrahedral element is embedded in a single lamina, a 4-point integration rule will be used for this tetrahedral subdivision; otherwise a 1-point rule will be used.
4. The specific heat matrix can be computed using a layer by layer integration (OPTION 266), however this should only be used when the thermal properties of the layers vary considerably because the computation time can be greatly increased when this OPTION is specified.
5. Numerical integration through the thickness is performed. The integration points are located in the subdivisions of each layer. Each subdivision forms the
shape of a regular 3D solid field element and the integration points are located accordingly within the subdivision as described above.
6. For linear field problems only one load case is allowed if an ENVT load is to be applied.
7. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
8. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
9. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
10. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.
11. Layer 1 is always the bottom layer.

Restrictions

E Ensure mid-side node centrality

- Avoid excessive element curvature
\square Avoid excessive aspect ratio

Recommendations on Use

- 3D solid composite field elements should be used for modelling thick composite structures comprising laminae of differing material properties where the computational cost of modelling each lamina with an individual solid element would be prohibitive. This field element can be used to analyse continuum field problems where the response is fully 3D.
- As these elements can be arbitrarily oriented with respect to the laminate, they are particularly aimed at the use of fully automatic mesh generation of laminate geometric models imported from CAD packages.

3D Solid Composite Field Elements (Pentahedral and Hexahedral)

General

Element Name

PF6C

HF8C

PF12C

HF16C

Element Group
Element Subgroup
Element Description

Number Of
Nodes

Freedoms
Node Coordinates

Field
Solid Field
3D solid field elements capable of modelling curved boundaries.
The elements are applicable to both steady state and transient field problems. The elements are numerically integrated. The composite layers are parallel to the top and bottom faces and the bottom surface of the first layer coincides with the bottom surface of the element. The top and bottom faces of the element are as shown, e.g. nodes $1,2,3,4$ define the bottom face of HF8C
6 or 12 (pentahedra), 8 or 16 (hexahedra). The elements are numbered according to a right-hand screw rule in the local zdirection.
φ : field variable at each node.
X, Y, Z: at each node.

Geometric Properties

See Composites in the Modeller Reference Manual
Material Properties

Loading

Prescribed Value	PDSP, TPDSP	φ : field variable (temperature) at nodes.
Rate of Heat	RGN	Q: field loading at nodes.
Inflow at a Point		
Element Loads	Not applicable.	
Distributed Loads	UDL	Not applicable.
	FFL	qa: (Q/unit area) at nodes
Rate of Heat	RBC	qv: $(\mathrm{Q} /$ /unit volume) for element.

Inflow/Unit Volume		
Velocities	RBV, RBVE Not applicable.	qv: (Q/unit volume) at nodes/ for element.
Accelerations	Not applicable. Viscous Support Loads Initial	Not applicable.

LUSAS Output

Solver Field variable (temperature). gx, gy, gz, qx, qy, qz: gradients and flows. Gauss point values are in local directions. Nodal values are in global directions.
Modeller See Results tables (Appendix K)

Local Axes

The local axes for each layer are defined using the convention for standard area elements. Local axes are computed at the top and bottom quadratic surfaces (at the Gauss points) and average values are interpolated for the mid-surface. Every layer uses the same averaged values.

Sign Convention

\square Standard field elements

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Conductivity Default.
1-point for each layer (PF6C), 3-point for each layer (PF12C), 2×2 for each layer (HF8C, HF16C)
Fine (see 3-point for each layer (PF6C), 3x3 for each layer Options) (HF16C)

Specific Heat Default. 3×2 for the whole element (PF6C, PF12C) or (see Options) 1-point for each layer (PF6C), 3-point for each layer (PF12C), $2 \times 2 \times 2$ for the whole element or 2×2 for each layer (HF8C, HF16C)
Fine (see 3×2 for the whole element or 3-point for each Options) layer (PF6C), $3 \times 3 \times 2$ for the whole element or 3×3 for each layer (HF16C)

Specific Heat Modelling

- Consistent specific heat (default).
- Lumped specific heat.

Options

18 Invokes fine integration rule for elements.
105 Lumped specific heat.
266 Layer by layer computation of specific heat matrix.

Notes on Use

1. The element formulations are based on the standard isoparametric approach.
2. For linear field problems only one load case is allowed if an ENVT load is to be applied.
3. The COMPOSITE GEOMETRY and COMPOSITE MATERIAL data chapters must be used with this element in conjunction with the COMPOSITE ASSIGNMENTS data chapter.
4. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
5. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET or RIHG loading.
6. When using load curves with TDET loading, the environmental temperatures will be factored but the heat coefficients will remain constant. If ENVT loading is used with load curves, any component can be controlled via a load curve.
7. If radiation is to be considered the problem becomes nonlinear and NONLINEAR CONTROL must be specified.
8. The through thickness integration is performed assuming a linear variation of the field gradient-variable matrix for each layer.
9. Layer 1 is always the bottom layer.
10. The simplifying assumptions which allow the uncoupling of in-plane and through thickness co-ordinates leads to the restriction that any individual layer should be of a constant thickness. This restriction should be considered when the finite element mesh is created and adhered to as closely as possible. In addition, out of plane lamina curvatures should also be minimised although inplane curvature (in the $x-y$ plane) is not restricted.

Restrictions

\square Ensure mid-side node centrality
\square Avoid excessive element curvature

- Avoid excessive aspect ratio

C Constant layer thickness for each individual layer

Recommendations on Use

The 3D solid composite field elements should be used for modelling thick composite structures comprising laminae of differing material properties where the computational cost of modelling each lamina with an individual solid element would be prohibitive. These field elements can be used to analyse continuum field problems where the response is fully 3D.

Chapter 10 : Hygro-Thermal Elements

2D Plane Hygro-Thermal Elements

General

QHT4

QHT8

THT6

Element Group Hygro-Thermal

Number Of Nodes
Freedoms
Node
T, Pc: Temperature and capillary pressure at each node.
X, Y : at each node.
Coordinates
A family of plane hygro-thermal elements in 2D with higher order elements capable of modelling curved boundaries. The elements can be used in hygro-thermal transient analyses, i.e. heat and moisture flow in porous media, e.g. concrete.
$3,4,6$ or 8 numbered anticlockwise.

Element Subgroup
 Element Description

Plane Hygro-Thermal 3, 6 . 8 mober
\qquad

Geometric Properties

t1... tn Thickness at each node.

Material Properties

Hygro-Thermal Linear Isotropic MATERIAL PROPERTIES HYGRO-

THERMAL LINEAR
Nonlinear
Isotropic
MATERIAL PROPERTIES HYGROTHERMAL CONCRETE

Loading

Initial Conditions TMPE

TMP
Prescribed TDSP Values

RGN

RBVE

RBV

RIHG

Boundary FFL
Conditions
ENVT

TDET

Initial temperature (T_{0}) and concrete relative humidity (RH) per element.
Initial temperature (T_{0}) and concrete relative humidity (RH) per global nodes.
Temperature (T) and concrete relative humidity (RH) at nodes.
Rates of heat (QT) and/or water inflow (QW) concentrated at nodes.
Rates of heat and/or water inflow per unit volume, per element, can vary across the element.
Rates of heat and/or water inflow per unit volume, per global nodes.
Rates of heat and/or water inflow per unit volume, per element at a specific reference nodal temperature (See Notes.)
Rates of heat and/or water inflow per unit area (flux).
Environmental boundary condtions. Tenv, hc, hr, RH, hw: external environmental temperature, convective and radiative heat transfer coefficients, environmental relative humidity, water mass transfer coefficient. (See Notes.)
Temperature dependent environmental boundary conditions. Tenv, hc, hr, RH, hw, T : external environmental temperature, convective and radiative heat transfer coefficients, environmental relative humidity, water mass transfer coefficient and reference nodal temperature. (See Notes.)

LUSAS Output

$$
\begin{array}{ll}
\text { Solver Temperature gradients } & \mathrm{G}_{\mathrm{T}} \mathrm{X}, \mathrm{G}_{\mathrm{T}} \mathrm{Y} \text {, (in global directions) } \\
\text { Water saturation gradients } & \mathrm{G}_{\mathrm{W}} \mathrm{X}, \mathrm{G}_{\mathrm{W}} \mathrm{Y} \text {, (in global directions) } \\
\text { Temperature fluxes } & \mathrm{qX}, \mathrm{qY} \text { (in global directions) }
\end{array}
$$

Water fluxes
Vapour fluxes
Modeller
$\mathrm{J}_{\mathrm{w}} \mathrm{X}, \mathrm{J}_{\mathrm{w}} \mathrm{Y}$, (in global directions)
$\mathrm{J}_{\mathrm{v}} \mathrm{X}, \mathrm{J}_{\mathrm{v}} \mathrm{Y}$, (in global directions)
See Results Tables (Appendix K).

Local Axes

- Standard surface element

Sign Convention

Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

1-point (THT3), 3-point (THT6), 2x2 (QHT4), 3x3 (QHT8).

Options

55 Output all element Gauss point derivatives and state variables

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of temperature and capillary pressure within an element is linear for the low order triangle and bi-linear for the low order quadrilateral; similarly it is quadratic for the higher order triangle and bi-quadratic for the higher order quadrilateral.
2. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear transient solution progresses.
3. Decreasing permeability and increasing water vapour convection coefficient in ENVT may result in divergence and an unstable solution. A rough estimate for the latter may be obtained by dividing the heat convection coefficient by a factor of 104 (obtained by the Chilton-Colburn analogy and scaled by an average porosity).
4. Variable thickness results in a heat and moisture transfer that is not in the plane of the element, this effect is neglected. The variable thickness influences only the amount of heat and moisture stored in the element's volume.
5. Heat of hydration loading is defined via the hygro-thermal concrete material properties.
6. Concrete relative humidity RH in TMPE, TMP and TPDSP is internally converted to capillary pressure (Pc).
7. ENVT load over the area of the element cannot be modelled.

Restrictions

\square Ensure mid-side node centrality
\square Avoid excessive element curvature

- Avoid excessive aspect ratio

Certain combinations of permeability and convection boundary water vapour transfer coefficient may result in problems that do not converge.

Recommendations on Use

The plane hygro-thermal elements may be utilised for analysing continuum problems involving the heat of hydration of concrete, when behaviour is essentially two dimensional. These elements are normally used in a hygro-thermal-structural coupled analysis. They can be coupled with plane strain structural elements (since the heat/moisture exchange over the area of the element would have effect only near both ends of the 'infinite' thickness), or with thin, plane stress elements, when they are ideally isolated on both sides of their area.

2D Axisymmetric Solid Hygro-Thermal Elements

General

Element Group Hygro-Thermal
Element Subgroup
Element Description

A family of axi-symmetric solid hygro-thermal elements in 2D with higher order elements capable of modelling curved boundaries. The elements can be used in hygro-thermal transient analyses, i.e. heat and moisture flow in porous media, e.g. concrete.
Number Of
Nodes
Freedoms
T, Pc: Temperature and capillary pressure at each node.
Node
X, Y: at each node
Coordinates
Axisymmetric Solid Hygro-Thermal
$3,4,6$, or 8 numbered anticlockwise.

Coordinates

Geometric Properties

Not applicable (a unit radian segment is assumed).
Material Properties

Hygro-Thermal Linear Isotropic	MATERIAL PROPERTIES HYGRO-
	THERMAL LINEAR

Nonlinear	MATERIAL PROPERTIES HYGRO-
Isotropic	THERMAL CONCRETE

Loading

Initial Conditions TMPE
TMP Initial temperature $\left(\mathrm{T}_{0}\right)$ and concrete relative humidity (RH) per global nodes.
Prescribed TDSP
Values
RGN

RBVE

RBV

RIHG

Boundary FFL Conditions

ENVT

TDET
Initial temperature $\left(\mathrm{T}_{0}\right)$ and concrete relative humidity (RH) per element.

	TMP	Initial temperature (T_{0}) and concrete relative humidity (RH) per global nodes.
Prescribed Values	TDSP	Temperature (T) and concrete relative humidity (RH) at nodes.
	RGN	Rates of heat (QT) and/or water inflow (QW) concentrated at nodes.
	RBVE	Rates of heat and/or water inflow per unit volume, per element, can vary across the element.
	RBV	Rates of heat and/or water inflow per unit volume, per global nodes.
	RIHG	Rates of heat and/or water inflow per unit volume, per element at a specific reference nodal temperature (See Notes.)
Boundary Conditions	FFL	Rates of heat and/or water inflow per unit area (flux).
	ENVT	Environmental boundary condtions. Tenv, hc, hr, RH, hw: external environmental temperature, convective and radiative heat transfer coefficients, environmental relative humidity, water mass transfer coefficient. (See Notes.)
	TDET	Temperature dependent environmental boundary conditions. Tenv, hc, hr, RH, hw, T: external environmental temperature, convective and radiative heat transfer coefficients, environmental relative humidity, water mass transfer coefficient and reference nodal temperature. (See Notes.)

LUSAS Output

Solver Temperature gradients $\quad \mathrm{G}_{\mathrm{T}} \mathrm{X}, \mathrm{G}_{\mathrm{T}} \mathrm{Y}$, (in global directions)
Water saturation gradients $\mathrm{G}_{\mathrm{W}} \mathrm{X}, \mathrm{G}_{\mathrm{W}} \mathrm{Y}$, (in global directions)

Temperature fluxes	qX, qY (in global directions)
Water fluxes	$\mathrm{J}_{\mathrm{w}} \mathrm{X}, \mathrm{J}_{\mathrm{w}} \mathrm{Y}$, (in global directions)
Vapour fluxes	$\mathrm{J}_{\mathrm{v}} \mathrm{X}, \mathrm{J}_{\mathrm{v}} \mathrm{Y}$, (in global directions)
Modeller	See $\underline{\text { Results Tables (Appendix K) }}$.

Local Axes

Standard surface element

Sign Convention

\square Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

1-point (TXHT3), 3-point (TXHT6), 2x2 (QXHT4), 3x3 (QXHT8).

Options

47 Axisymmetry about the global X-axis
55 Output all element Gauss point derivatives and state variables

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The variation of temperature and capillary pressure within an element is linear for the low order triangle and bi-linear for the low order quadrilateral; similarly it is quadratic for the higher order triangle and bi-quadratic for the higher order quadrilateral.
2. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear transient solution progresses.
3. Decreasing permeability and increasing water vapour convection coefficient in ENVT may result in divergence and an unstable solution. A rough estimate for the latter may be obtained by dividing the heat convection coefficient by a factor of 104 (obtained by the Chilton-Colburn analogy and scaled by an average porosity).
4. Variable thickness results in a heat and moisture transfer that is not in the plane of the element, this effect is neglected. The variable thickness influences only the amount of heat and moisture stored in the element's volume.
5. Heat of hydration loading is defined via the hygro-thermal concrete material properties.
6. Concrete relative humidity RH in TMPE, TMP and TPDSP is internally converted to capillary pressure (Pc).

Restrictions

Ensure mid-side node centrality
\square Avoid excessive element curvature

- Avoid excessive aspect ratio
\square Certain combinations of permeability and convection boundary water vapour transfer coefficient may result in problems that do not converge.

Recommendations on Use

The axi-symmetric solid hygro-thermal elements may be utilised for analysing continuum problems involving the heat of hydration of concrete, which exhibit geometric and loading symmetry about a given axis. These elements are normally used in a hygro-thermal-structural coupled analysis.

3D Solid Hygro-Thermal Elements

General

PHT6

HHT8

PHT12

PHT15

THT10

HHT20

Element Group

Hygro-Thermal
Element Solid Hygro-Thermal
Subgroup
Element A family of solid hygro-thermal elements in 3D with higher order Description elements capable of modelling curved boundaries. The elements can be used in hygro-thermal transient analyses, i.e. heat and moisture
flow in porous media, e.g. concrete
Number Of 4 and 10 (tetrahedra). 6, 12 and 15 (pentahedra). 8, 16 and 20

Nodes
(hexahedra). The elements are numbered according to a right-hand screw rule in the local z-direction.
Freedoms T, Pc: Temperature and capillary pressure at each node.
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Hygro-Thermal	Linear Isotropic	MATERIAL PROPERTIES HYGRO- Nonlinear
	Isotropic	MATERIAL PROPERTIES HYGRO-
	THERMAL CONCRETE	

Loading

Initial Conditions TMPE
TMP

Prescribed TDSP
Values
RGN

RBVE

RBV
RIHG

Boundary FFL
Conditions
ENVT

Initial temperature (T_{0}) and concrete relative humidity (RH) per element.
Initial temperature (T_{0}) and concrete relative humidity (RH) per global nodes.
Temperature (T) and concrete relative humidity (RH) at nodes.
Rates of heat (QT) and/or water inflow (QW) concentrated at nodes.
Rates of heat and/or water inflow per unit volume, per element, can vary across the element.
Rates of heat and/or water inflow per unit volume, per global nodes.
Rates of heat and/or water inflow per unit volume, per element at a specific reference nodal temperature (See Notes.)
Rates of heat and/or water inflow per unit area (flux).
Environmental boundary condtions. Tenv, hc, hr, RH, hw: external environmental temperature, convective and radiative heat transfer coefficients, environmental relative humidity, water mass transfer coefficient. (See Notes.)

TDET Temperature dependent environmental boundary conditions. Tenv, hc, hr, RH, hw, T : external environmental temperature, convective and radiative heat transfer coefficients, environmental relative humidity, water mass transfer coefficient and reference nodal temperature. (See Notes.)

LUSAS Output

Solver Temperature gradients $\mathrm{G}_{\mathrm{T}} \mathrm{X}, \mathrm{G}_{\mathrm{T}} \mathrm{Y}, \mathrm{G}_{\mathrm{T}} \mathrm{Z}$ (in global directions)
Water saturation $\quad G_{W} X, G_{W} Y, G_{W} Z$ (in global directions)
gradients
Temperature fluxes
$\mathrm{qX}, \mathrm{qY}, \mathrm{qZ}$ (in global directions)
Water fluxes
$\mathrm{J}_{\mathrm{w}} \mathrm{X}, \mathrm{J}_{\mathrm{w}} \mathrm{Y}, \mathrm{J}_{\mathrm{w}} \mathrm{Z}$ (in global directions)
Vapour fluxes $\quad \mathrm{J}_{\mathrm{v}} \mathrm{X}, \mathrm{J}_{\mathrm{v}} \mathrm{Y}, \mathrm{J}_{\mathrm{w}} \mathrm{Z}$ (in global directions)
Modeller
See Results Tables (Appendix K).

Local Axes

Not applicable (global axes are the reference).

Sign Convention

- Standard field element

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

1-point (THT4), 5-point (THT10), 3×2 (PHT6, PHT12, PHT15), $2 \times 2 \times 2$ (HHT8), $3 \times 3 \times 2$ (HHT16), $3 \times 3 \times 3$ (HHT20)

Options

55 Output all element Gauss point derivatives and state variables

Notes on Use

1. The element formulations are based on the standard isoparametric approach. The distribution of temperature and capillary pressure within an element may be regarded as linear or bilinear for low order elements and quadratic or biqudratic for higher order elements.
2. Load curves can be used to maintain or increment ENVT, TDET or RIHG loading as a nonlinear solution progresses.
3. Decreasing permeability and increasing water vapour convection coefficient in ENVT may result in divergence and an unstable solution. A rough estimate for the latter may be obtained by dividing the heat convection coefficient by a factor of 104 (obtained by the Chilton-Colburn analogy and scaled by an average porosity).
4. Heat of hydration loading is defined via the hygro-thermal concrete material properties.
5. Concrete relative humidity RH in TMPE, TMP and TPDSP is internally converted to capillary pressure (Pc).

Restrictions

\square Ensure mid-side node centrality
\square Avoid excessive element curvature
A Avoid excessive aspect ratio
\square Certain combinations of permeability and convection boundary water vapour transfer coefficient may result in problems that do not converge.

Recommendations on Use

The solid hygro-thermal elements may be used to analyse continuum problems where the response is fully 3D (i.e. it cannot be approximated using the plane or axisymmetric elements). These elements are generally used for problems involving the heat of hydration of concrete, and are normally used in a hygro-thermal-structural coupled analysis.

Chapter 11 : Interface Elements

2D Interface Element

General

Element Group Interface
Element 2D Interface
Subgroup
Element A family of 2D interface elements used for modelling standard Description Mohr-Coulomb friction contact as well as delamination for plane stress, plane strain and axisymmetric crack propagation. An initial gap is allowed for Mohr-Coulomb friction contact but not for delamination.
Number Of 4,6
Nodes
Freedoms U, V: at each node.
Node X, Y : at each node.
Coordinates

Geometric Properties

Not applicable to plane strain and axisymmetric elements.
For plane stress t ..tn for each node

Material Properties

Linear	Not applicable
Matrix	Not applicable
Joint	Not applicable
Concrete	Not applicable
Elasto-Plastic	Not applicable
Creep	Not applicable
Damage	Not applicable
Viscoelastic	Not applicable

Shrinkage Not applicable
Interface Interface
Interface
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Loading

Prescribed Value
Concentrated
Loads
Element Loads Not applicable.
Distributed Loads Not applicable.
Body Forces Not applicable.
Velocities VELO
Accelerations
Viscous Support
ACCE
VSL
Loads
Initial
Stress/Strains
Residual Stresses Not applicable.
Target Not applicable.
Stress/Strains
Temperatures TEMP, TMPE
PDSP, TPDSP
CL

Not applicable.

Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.
Loads

MATERIAL PROPERTIES NONLINEAR 25
MATERIAL PROPERTIES INTERFACE

Prescribed variable. U, V: at each node. Concentrated loads. Px, Py: at each node.

Velocities. Vx, Vy: at nodes.
Acceleration Ax, Ay: at nodes.
Viscous support loads. VLx, VLy: at nodes.

Temperatures at nodes/for element. T, 0 , $0,0, \mathrm{To}, 0,0,0$

LUSAS Output

Solver Stress (default): shear and direct tractions. Strain: shear and direct relative displacements
Modeller See Results Tables (Appendix K).

Local Axes

Element
IPN4, IPM4, IAX4
Name
Evaluated at each node.

IPN6, IPM6, IAX6

Sign Convention

A positive traction occurs if the local relative displacement (with respect to the first line of the element) is a positive value, i.e. for the quadratic elements at nodes $3>6$ the local relative displacement, EZ, would be positive if (DZ3-DZ6) >0, where DZi is the local displacement at node i.

Formulation

Geometric Nonlinearity

> Total Lagrangian Not applicable.

Updated Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational Applicable to IPN4 and IAX4 elements.

Integration Schemes

Stiffness Default. 2 (Newton Cotes) (IPN4, IPM4, IAX4) 3 (Newton-Cotes) (IPN6, IPM6, IAX6)
Fine. As default

Mass Modelling

Not applicable.

Options

62 Continue solution if more than one negative pivot occurs
64 Non-symmetric solver
229 Co-rotational geometric non-linearity.

252 Suppress pivot warning messages.
261 Select the root with the lowest residual norm with arc-length.

Notes on use in delamination analyses

1. When defining the transient analysis control the arc-length procedure should be adopted with the option to select the root with the lowest residual norm [option 261].
2. It is recommended that fine integration [option 18] is selected for the parent elements.
3. The nonlinear convergence criteria should be selected to converge on the residual norm.
4. Option 62, Continue solution if more than one negative pivot occurs, should be selected to continue if more than one negative pivot is encountered and option 252 should be used to suppress pivot warning messages from the solution process.
5. The non-symmetric solver is selected automatically when mixed mode delamination is specified.
6. Although the solution is largely independent of the mesh discretisation, to avoid convergence difficulties it is recommended that at least 2 elements are placed in the process zone.

Restrictions

None.

Recommendations on Use

These elements may be used to model contact between two bodies. For delamination problems they should be placed at sites of potential delamination between 2D plane and axisymmetric continuum elements. The non-symmetric solver should be used.

2D Two Phase Interface Element

General

$$
\begin{aligned}
& \text { Element Name } \\
& \text { IPN6P, IAX6P } \\
& \text { Element Group } \text { Interface } \\
& \text { Element } \text { 2D Two-phase Interface } \\
& \text { Subgroup } \\
& \text { Element } \text { A family of 2D interface elements used for modelling standard } \\
& \text { Description } \text { Mohr-Coulomb friction contact in soil/structure interactions. } \\
& \text { Number Of } 6 \\
& \text { Nodes } \\
& \text { Freedoms } \\
& \text { Node } \mathrm{U}, \mathrm{~V}, \mathrm{P} \text { : at end nodes, U, } \mathrm{V} \text { at middle nodes. } \\
& \text { Coordinates }
\end{aligned}
$$

Geometric Properties
Not applicable to plane strain and axisymmetric elements.
For plane stress t1..tn for each node
Material Properties
Linear Not applicable
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Interface Interface
MATERIAL PROPERTIES
NONLINEAR 25
Interface MATERIAL PROPERTIES INTERFACE
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable
Two-Phase Interface
TWO PHASE MATERIAL INTERFACE
Loading
Prescribed Value

PDSP, TPDSP
Concentrated CL
Loads
Element Loads
Distributed LoadsNot applicable.Body ForcesVelocitiesAccelerationsViscous SupportLoads
InitialNot applicable.
Stress/Strains
Residual Stresses Not applicable.

Not applicable.
Target Not applicable.

Not applicable.
Stress/Strains
Temperatures TEMP, TMPE

TEMP, TMPE
Overburden Not applicable.
Phreatic Surface Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.

Not applicable.
Not applicable.
VELO
ACCE
VSL

Not applicable.

> Temperatures at nodes/for element. T, 0 , $0,0, \mathrm{To}, 0,0,0$

LUSAS Output

Solver Stress (default): shear and direct tractions. Strain: shear and direct relative displacements
Modeller See Results Tables (Appendix K).

Local Axes

Element Name IPN6P, IAX6P
Evaluated at each node.

Sign Convention

A positive traction occurs if the local relative displacement (with respect to the first line of the element) is a positive value, i.e. for the quadratic elements at nodes $3>6$ the local relative displacement, Ez, would be positive if (Dz3 - DZ6) >0, where DZi is the local displacement at node i.

Formulation

Geometric Nonlinearity

Total Lagrangian	Not applicable.
Updated Lagrangian	Not applicable.
Eulerian	Not applicable.
Co-rotational	Not applicable.

Integration Schemes

Stiffness Default. 3 (Newton-Cotes)

> Fine. As default

Mass Modelling

Not applicable.

Options

64 Non-symmetric solver

Restrictions

None.

Recommendations on Use

These elements should be used to model soil/structure and soil/soil interactions. The nonsymmetric solver should be used.

3D Interface Element

General

IS6

IS12

IS8

IS16

Element Group Interface
Element 3D Interface
Subgroup
Element A family of 3D interface elements used for modelling delamination
Description and crack propagation.
Number Of
6,8,12,16
Nodes
Freedoms U, V, W: at each node.
Node X, Y, Z: at each node.
Coordinates

Geometric Properties

Not applicable (a zero thickness is assumed).

Material Properties

Linear Not applicable
Matrix Not applicable
Joint Not applicable
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicableInterface Interface
Interface
Rubber Not applicable
Generic Polymer Not applicable
Composite
Loading
Prescribed Value PDSP, TPDSP
Concentrated CL
Loads
Element Loads Not
applicable.
Distributed Loads Not
applicable.
Body Forces Notapplicable.
Velocities VELOACCE
VSL
Viscous SupportLoadsInitialNotapplicable.Stress/StrainsResidual StressesNotapplicable.
Target Not
Stress/Strains applicable.
Temperatures TEMP, TMPE

Temperatures at nodes/for element. T, $0,0,0$, To, 0, 0, 0
Velocities. Vx, Vy, Vz: at nodes.
Acceleration Ax, Ay, Az: at nodes.
Viscous support loads. VLx, VLy, VLz: atnodes.
Overburden Not
applicable.
Phreatic Surface Notapplicable.
Field Loads

Not
applicable.

MATERIAL PROPERTIES NONLINEAR 25 MATERIAL PROPERTIES INTERFACE

Prescribed variable. U, V, W: at each node.

Concentrated loads. Px, Py, Pz: at each node. nodes.

Temp Dependent Not

Loads applicable.

LUSAS Output

Solver Stress (default): shear tractions in X and Y , and direct tractions.
Strain: relative displacements in X, Y and Z directions.
Modeller See Results Tables (Appendix K).

Local Axes

Element Name
IS6
Evaluated at each node.

IS12
Evaluated at each node.

IS8

IS16

Sign Convention

A positive traction occurs if the local relative displacement (with respect to the first surface of the element) is a positive value, i.e. for the IS16 element at nodes $3>11$ the local relative displacement, Ez, would be positive if $($ DZ11 $-\mathrm{DZ3})>0$, where DZi is the local displacement at node i.

Formulation

Geometric Nonlinearity

$$
\begin{aligned}
\text { Total Lagrangian } & \text { Not applicable. } \\
\text { Updated } & \text { Not applicable. } \\
\text { Lagrangian } & \\
\text { Eulerian } & \text { Not applicable. }
\end{aligned}
$$

Co-rotational Applicable to IS6 and IS8 elements.

Integration Schemes

Stiffness Default. 3×3 (Newton-Cotes) (IS16), 2×2 (Newton Cotes) (IS8), 7-point cubic (IS12), 3-point (IS6)
Fine. As default

Mass Modelling

Not applicable.

Options

62 Continue solution if more than one negative pivot occurs.
64 Non-symmetric solver.
229 Co-rotational geometric non-linearity.
252 Suppress pivot warning messages
261 Select the root with the lowest residual norm with arc-length.

Notes on Use

1. When defining the transient analysis control the arc-length procedure should be adopted with the option to select the root with the lowest residual norm [option 261].
2. It is recommended that fine integration [option 18] is selected for the parent elements.
3. The nonlinear convergence criteria should be selected to converge on the residual norm.
4. Option 62, Continue solution if more than one negative pivot occurs, should be selected to continue if more than one negative pivot is encountered and option 252 should be used to suppress pivot warning messages from the solution process.
5. The non-symmetric solver is selected automatically when mixed mode delamination is specified.
6. Although the solution is largely independent of the mesh discretisation, to avoid convergence difficulties it is recommended that at least 2 elements are placed in the process zone.

Restrictions

None.

Recommendations on Use

These elements should be used at places of potential delamination between 3D continuum elements. The non-symmetric solver should be used.

3D Two Phase Interface Element

General

IS12P

IS16P

Element Group
Element
Subgroup
Element
Description
A family of 3D interface elements used for modelling soil/structure
interactions
Number Of
12,16
Nodes
Freedoms
Node
Coordinates

U, V, W, P: at corner nodes, U, V, W at midside nodes $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

Geometric Properties

Not applicable (a zero thickness is assumed).

Material Properties

Linear	Not applicable
Matrix	Not applicable
Joint	Not applicable
Concrete	Not applicable
Elasto-Plastic	Not applicable
Creep	Not applicable
Damage	Not applicable
Viscoelastic	Not applicable
Shrinkage	Not applicable
Interface	Interface

Interface

MATERIAL PROPERTIES NONLINEAR 25

MATERIAL PROPERTIES INTERFACE

Two-phase Interface
Rubber Not applicable
Generic Polymer Not applicable
Composite Not applicable

Loading

$$
\begin{aligned}
\text { Prescribed Value } & \text { PDSP, } \\
& \text { TPDSP } \\
\text { Concentrated } & \text { CL } \\
\text { Loads } &
\end{aligned}
$$

Element Loads Notapplicable.
Distributed Loads Notapplicable.
Body Forces Not
applicable.
Velocities VELO
Accelerations ACCEVSLLoads
Initial Not
Stress/Strains applicable.
Residual Stresses Not
applicable.
Target Not
Stress/Strains applicable.
Temperatures TEMP, TMPE
Temperatures at nodes/for element. T, $0,0,0$,To, 0, 0, 0
Overburden Notapplicable.
Phreatic Surface Notapplicable.Field Loads Notapplicable.
Temp Dependent Not
Loads applicable.

LUSAS Output

Solver Stress (default): shear tractions in X and Y , and direct tractions. Strain: relative displacements in X, Y and Z directions.

Modeller See Results Tables (Appendix K).

Local Axes

Sign Convention

A positive traction occurs if the local relative displacement (with respect to the first surface of the element) is a positive value, i.e. for the IS16 element at nodes $3>11$ the local relative displacement, Ez, would be positive if $($ DZ11 - DZ3) >0, where DZi is the local displacement at node i.

Formulation

Geometric Nonlinearity

Total Lagrangian Not applicable.
Updated Not applicable.
Lagrangian
Eulerian Not applicable.
Co-rotational Applicable to IS6 and IS8 elements.

Integration Schemes

Stiffness Default. 3×3 (Newton-Cotes) (IS16), 2×2 (Newton Cotes) (IS8), 7-point cubic (IS12), 3-point (IS6)
Fine. As default

Mass Modelling

Not applicable.

Options

64 Non-symmetric solver.

Restrictions

None.

Recommendations on Use

These elements should be used to model soil/structure and soil/soil interactions. The non-symmetric solver should be used.

Chapter 12 : NonStructural Elements

2D Point Mass Element

General

Element Name

```
PM2
```

$\uparrow Y, v$

Element Group
Non-Structural Mass
Element
2D Point
Subgroup
Element
A 2D point mass element to model mass at a point.
Description
Number Of
2. The $2^{\text {nd }}$ node is used to define the local x -axis. Nodes
Freedoms U, V: at each node.
Node X, Y : at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable
Matrix Not applicable
Joint Not applicable
Mass 2D
MATERIAL PROPERTIES MASS 21
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicable

Composite Not applicable
Field Not applicable

Loading

Prescribed CBF Value

Constant body forces for element. Xcbf, Ycbf, Zcbf (applied as accelerations)

LUSAS Output

None

Local Axes

The 2 nd node is used to define the local x -axis.

Sign Convention

\square Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Not applicable.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

105 Lumped mass matrix.

Notes on Use

1. Use to model point mass in a structure.

Restrictions

None.

Recommendations on Use

The 2 D point mass element can be used to model point masses occur in a 2 D structure.

3D Point Mass Element

General

Element Name
 PM3

Element Group Non-Structural Mass
Element
3D Point
Subgroup
Element A 3D point mass element to model mass at a point.
Description
Number Of 3. The 2nd node is used to define the local x-axis. The 2nd and 3rd
Nodes node define the local x-y plane.
Freedoms U, V, W: at each node.
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable
Matrix Not applicable
Joint Not applicable
Mass 3D.
MATERIAL PROPERTIES MASS 31
Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable

Rubber Not applicable
 Generic Polymer Not applicable
 Composite Not applicable

Loading

Prescribed Value CBF Constant body forces for element. Xcbf, Ycbf, Zcbf (applied as accelerations)

Output

None

Local Axes

The $2^{\text {nd }}$ node is used to define the local x-axis. The $2^{\text {nd }}$ and $3^{\text {rd }}$ node define the local $x-y$ plane.

Sign Convention

\square Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Not applicable.

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

105 Lumped mass matrix.

Notes on Use

1. Use to model point mass in a structure.

Restrictions

None.

Recommendations on Use

The 3D point mass element can be used to model point masses occur in a 3D structure.

3D Line Mass Elements

General

Element Name

LMS3

Element Group Non-Structural Mass
Element 3D Line
Subgroup
Element Description

3D straight (LMS3) and curved (LMS4) line mass elements to model mass along an edge. The elements can accommodate varying mass along the length.
Number Of 3 (LMS3). The $3^{\text {rd }}$ node is used to define the local $x-y$ plane.
Nodes 4 (LMS4). The $4^{\text {th }}$ node is used to define the local $x-y$ plane.
End Releases
Freedoms
Node Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear	Not applicable	
Matrix	Not applicable	
Joint	Not applicable.	
Mass	3D.	MATERIAL PROPERTIES MASS 32 (or
Concrete	Not applicable	
o-Plastic	Not applicable	
Creep	Not applicable	
Damage	Not applicable	
coelastic	Not applicable	
rinkage	Not applicable	

\author{

Rubber Not applicable
 Generic Polymer Not applicable
 Composite Not applicable
 \section*{Loading}
 \begin{tabular}{rl}

Prescribed Value CBF \& | Constant body forces for element. Xcbf, Ycbf, |
| :--- |
| Zcbf (applied as accelerations) |

\end{tabular}

}

Output

None

Local Axes

- Standard Line Element

Sign Convention

\square Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Mass Default. 2-point
Fine 2-point (LMS2), 3-point (LMS3)

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
105 Lumped mass matrix.

Notes on Use

1. Use to model mass on an edge in a structure.
2. There is no mass associated with the rotational degrees of freedom $\theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}$; these freedoms are used purely to orientate the directions of the local element
axes. If the LMS3/LMS4 elements are connected to an element that does not possess the same rotational degrees of freedom (e.g. the edge of a continuum element), then the rotational degrees of freedom will automatically be restrained.

Restrictions

Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

3D line mass elements can be used to model masses along an edge in a 3D structure.

2D Line Mass Elements

General

Element Name
$\uparrow Y, v$

LM2

LM3

Element Group Non-Structural Mass
Element
2D Line
Subgroup
Element Description

Number Of Nodes
End Releases
Freedoms U, V: at each node.
Node X, Y: at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable
Matrix Not applicable
Joint Not applicable
Mass 2D.
MATERIAL PROPERTIES MASS 22 (or 3)

Concrete Not applicable
Elasto-Plastic Not applicable
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable

Generic Polymer Not applicable

Composite Not applicable

Loading

$$
\begin{array}{lll}
\text { Prescribed Value } & \text { CBF } & \text { Constant body forces for element. Xcbf, Ycbf, } \\
& \text { Zcbf (applied as accelerations) }
\end{array}
$$

Output

None

Local Axes

- Standard Line Element

Sign Convention

- Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Mass Default. 2-point
Fine 2-point (LM2), 3-point (LM3)

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
105 Lumped mass matrix.

Notes on Use

1. Use to model mass on an edge in a structure.

Restrictions

E Ensure mid-side node centrality

- Avoid excessive element curvature

Recommendations on Use

2D line mass elements can be used to model masses along an edge in a 2D structure.

Surface Mass Elements

General

TM3

TM6

QM8

Element Group
Element
Subgroup
Element Description
Number Of
$3,4,6$ or 8 .
Nodes
End Releases
Freedoms
Node
Coordinates
3D Surface

Non-Structural Mass

3D surface mass elements to model mass on a surface.

U, V, W: at each node.
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: at each node.

Geometric Properties

Not applicable.

Material Properties

Linear Not applicable
Matrix Not applicable
Joint Not applicable
Mass 3D MATERIAL PROPERTIES MASS 3 (3,4,6 or 8)Concrete Not applicable.
Elasto-Plastic Not applicable.
Creep Not applicable
Damage Not applicable
Viscoelastic Not applicable
Shrinkage Not applicable
Rubber Not applicable
Generic Polymer Not applicableComposite Not applicable.
Loading
Prescribed Value CBF Constant body forces for element. Xcbf, Ycbf, Zcbf (applied as accelerations)

Output

None

Local Axes

- Standard Surface Element

Sign Convention

Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Mass Default. 1-point (TM3), 3-point (TM6), 4-point (QM4,QM8)
Fine 3-point (TM3, TM6), 4-point (QM4), 9-point (QM8)

Mass Modelling

\square Consistent mass (default).
\square Lumped mass.

Options

18 Invokes fine integration rule.
105 Lumped mass matrix.

Notes on Use

1. Use to model mass on a surface in a structure.

Restrictions

E Ensure mid-side node centrality

- Avoid excessive element curvature
- Avoid excessive aspect ratio

Recommendations on Use

The surface mass elements can be used to model masses on a surface 3D structures.

Chapter 13: Rigid Slideline Elements

Rigid Slideline Surface 2D Elements

General
 Element Name
 R2D2

 Element Group
 Rigid
 Element Subgroup
 Element 2D Rigid Slideline Surface elements capable of modelling non-
 Description deformable surfaces in a contact analysis.
 Number Of
 2
 Nodes
 Freedoms U, V at each node
 Node X, Y at each node.
 Coordinates
 Geometric Properties
 Not applicable.
 Material Properties
 Linear Isotropic: \quad MATERIAL PROPERTIES (Elastic:
 Loading
 Prescribed Value
 Concentrated Loads
 Element Loads Not applicable.
 Distributed Loads Not applicable.
 Body Forces Not applicable.
 Velocities VELO
 Accelerations ACCE
 Viscous Support Not applicable.
 Loads
 PDSP, TPDSP
 Not applicable.
 Prescribed variable. U, V at each node.
 Velocities. Vx, Vy at nodes.
 Acceleration Ax, Ay at nodes.

Initial Not applicable.
Stress/Strains
Residual Stresses Not applicable.
Temperatures Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.
Loads

LUSAS Output

Solver Displacements \& Reactions only.
Modeller Displacements \& Reactions only.

Formulation

Geometric Nonlinearity

$$
\begin{aligned}
\text { Total Lagrangian } & \begin{array}{l}
\text { Depends on the other surface (deformable surface) which is in } \\
\text { contact with the rigid surface. See the related section for the } \\
\text { deformable surface elements. }
\end{array} \\
\text { Updated } & \text { As above. } \\
\text { Lagrangian } & \\
\text { Eulerian } & \text { As above. } \\
\text { Co-rotational } & \text { As above. }
\end{aligned}
$$

Integration Schemes

Not applicable.

Mass Modelling

Not applicable.

Restrictions

- A rigid slideline surface cannot contact another rigid slideline surface.
- Rigid slideline surface elements do not accept external applied forces.

Notes on use

1. All the rigid slideline surface element nodes must be fully restrained.
2. There is no stress and strain calculation for these elements.
3. If rigid slideline surfaces are defined there is no need to assign geometric and material properties to these elements. However, when using automatic contact surfaces, linear elastic isotropic material properties need to be assigned.
4. For saving analysis time a one pass contact algorithm can be used. In this case only the penetration of the deformable surface into the rigid slideline surface is checked. To avoid the penetration of the rigid surface into the deformable surface use either the default two pass algorithm or a finer mesh on the deformable surface.

Recommendations on Use

These elements should be used when one of the surfaces which come into contact is non-deformable. Using these elements will make the analysis faster.

Rigid Slideline Surface 3D Elements

General

Geometric Properties

Not applicable.

Material Properties

Linear Isotropic:
MATERIAL PROPERTIES (Elastic: Isotropic)

Loading

Prescribed Value PDSP, TPDSP

Concentrated Not applicable.

 LoadsElement Loads Not applicable.
Distributed Loads Not applicable.
Body Forces Not applicable.
Velocities VELO
Accelerations ACCE

Prescribed variable. U, V, W at each node. .
Viscous Support Not applicable.LoadsInitial Not applicable.
Stress/Strains
Residual Stresses Not applicable.
Temperatures Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.
Loads
LUSAS Output
Solver Displacements \& Reactions only.
Modeller Displacements \& Reactions only.
Formulation
Geometric Nonlinearity
Total Lagrangian Depends on the other surface (deformable surface) which is in contact with the rigid surface. See the related section for the deformable surface elements.
Updated As above.
Lagrangian
Eulerian As above.
Co-rotational As above.
Integration Schemes
Not applicable.
Mass Modelling
Not applicable.

Restrictions

- A rigid slideline surface cannot contact another rigid surface.
- Rigid slideline surface elements do not accept external applied forces.

Notes on use

1. All the rigid slideline surface element nodes must be fully restrained.
2. There is no stress and strain calculation for these elements.
3. If rigid slideline surfaces are defined there is no need to assign geometric and material properties to these elements. However, when using automatic contact surfaces, linear elastic isotropic material properties need to be assigned.
4. For saving analysis time a one pass contact algorithm can be used. In this case only the penetration of the deformable surface into the rigid slideline surface is checked. To avoid the penetration of the rigid surface into the deformable surface use either the default two pass algorithm or a finer mesh on the deformable surface.

Recommendations on Use

These elements should be used when one of the surfaces which come into contact is non-deformable. Using these elements will make the analysis faster.

Chapter 14 : Phreatic Elements

Phreatic Surface 2D Elements

General

Element Name
PHS2

Element Group

Phreatic surface
Element
Subgroup
Element Description
Number Of
Nodes
Freedoms U, V at each node
Coordinates

2

Node X, Y at each node.
2D Phreatic Surface

2D Phreatic surface elements for defiing phreatic surface

Geometric Properties

Not applicable.

Material Properties

Not applicable.

Loading

Prescribed Value	PDSP, TPDSP	Prescribed variable. U, V at each node.
Concentrated	Not applicable.	
Loads		
Element Loads	Not applicable.	
Distributed Loads	Not applicable.	
Body Forces	Not applicable.	Velocities. Vx, Vy at nodes.
Velocities	VELO	Acceleration Ax, Ay at nodes.
Accelerations	ACCE	
Viscous Support	Not applicable.	
Lnitial	Not applicable.	

Stress/Strains
Residual Stresses Not applicable.
Temperatures Not applicable.
Field Loads Not applicable.
Temp Dependent Not applicable.
Loads

LUSAS Output

Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Not applicable.

Mass Modelling

Not applicable.

Restrictions

Not applicable.

Notes on use

1. All the phreatic surface element nodes must be fully restrained.
2. There are no stress or strain calculations.
3. There is no need to assign geometric and material properties.
4. The phreatic surface elements are used with the Phreatic Surface load type and are used to define the location and extent of a phreatic surface.

Recommendations on Use

These elements are for use in geotechnical problems for the definition of the nodal pore-water pressures and hydrostatic loads.

Phreatic Surface 3D Elements

General

Element Group
Element
Phreatic Surface
3D Phreatic Surface
Subgroup
Element
3D Phreatic surface elements for defiing phreatic surface.
Description
Number Of
$3 / 4$
Nodes
Freedoms U, V, W at each node.
Node $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ at each node.
Coordinates

Geometric Properties

Not applicable.

Material Properties

Not applicable.

Loading

Velocities	VELO	Velocities. Vx, Vy, Vz at nodes.
Temperatures	Not applicable.	
Temp Dependent	Not applicable.	
Loads		
Residual Stresses	Not applicable.	Prescribed variable. U, V, W at each
Prescribed Value	PDSP, TPDSP	node.
Viscous Support	Not applicable.	
Loads		

Initial	Not applicable.
Stress/Strains	
Field Loads	Not applicable.
Element Loads	Not applicable.
Distributed Loads	Not applicable.
Concentrated	Not applicable.
Loads	
Body Forces	Not applicable.
Accelerations	ACCE

LUSAS Output

Not applicable.

Formulation

Geometric Nonlinearity

Not applicable.

Integration Schemes

Not applicable.

Mass Modelling

Not applicable.

Restrictions

Not applicable.

Notes on use

1. All the phreatic surface element nodes must be fully restrained.
2. There are no stress or strain calculations.
3. There is no need to assign geometric and material properties.
4. The phreatic surface elements are used with the Phreatic Surface load type and are used to define the location and extent of a phreatic surface.

Recommendations on Use

These elements are for use in geotechnical problems for the definition of the nodal pore-water pressures and hydrostatic loads.

Appendix A: Element and Pressure Loads

ELDS Element Loads

These are referred to as Internal Beam Point Loads and Internal Beam Distributed Loads within LUSAS Modeller.

Parameter
Description
Itype
Element load type
S1, S2 Distances to specified loads
$\mathbf{P x}, \mathbf{P y}, \mathbf{P z} \quad$ Point loads in local/global directions
$\mathbf{M x}, \mathbf{M y}, \mathbf{M z} \quad$ Point moments in local/global directions
Wx, Wy, Wz Distributed loads in local/global directions

Itype 11
Point loads and moments in local directions

Itype 21
Uniformly distributed loads in local directions

Itype 23
Uniformly distributed projected loads in global directions

1

Itype 12
Point loads and moments in global directions

Global
Itype 22
Uniformly distributed loads in global directions

Itype 31
Distributed loads in local directions. Multiple load sets supported.

Wx2, Wy2, Wz2
Mx2, My2, Mz2

Wx1, Wy1, Wz1
Mx1, My1, Mz1

Itype 32

Distributed loads in global directions. Multiple load sets supported.

Global
Itype 41
Trapezoidal loads in local directions
Definition only supported in LUSAS Solver. In LUSAS Modeller trapezoidal beam loads are defined in accordance with Itype 31.
Wx, Wy, Wz

Itype 43
Trapezoidal projected loads in global directions Definition only supported in LUSAS Solver. In LUSAS Modeller trapezoidal beam loads are defined in accordance with ltype 33.

Distributed projected loads in global directions. Multiple load sets supported.

Itype 42
Trapezoidal loads in global directions
Definition only supported in LUSAS Solver. In LUSAS Modeller trapezoidal beam loads are defined in accordance with Itype 32.
Wx, Wy, Wz

Global

ENVT/TDET Environmental Boundary Conditions

Contains some or all of:

Parameter		Description
Tenv		External environmental temperature.
hc		Convective heat transfer coefficient.
RH		Radiative heat transfer coefficient.
hv		Vapour mass transfer coefficient.
T		Temperature for element.

Face Numbering Convention for Thermal Bars

Note

The environmental temperature loading for node 2 cannot be specified for a 3 noded bar.

FLD Face loading applied to thermal bars

Face number $=$ local node number

Face Numbering Convention for Thermal Bars

Face Loads On 2D Continuum Elements

$\frac{\text { Parameter }}{\text { Px, Py }}$	
Face pressures defined at nodes in local x, y directions	

2-Noded Element Faces

3-Noded Element Faces

Notes

- In structural analysis note that the direction of the normal face load is not consistent between 2D and 3D continuum elements. For 2D continuum elements it is from the face towards the interior of the element. For 3D elements it is in the opposite direction - from the face of the element outwards.
- Face loads for explicit dynamics elements are constant, i.e. the average of the input nodal pressures

Face Numbering Convention

Face Loads On 3D Continuum Elements

Paramet er	Description
Px, Py, Pz	Face pressures defined at nodes in local x, y directions acting positively in the local coordinate directions

Note

- In structural analysis note that the direction of the normal face load is not consistent between 2D and 3D continuum elements. For 2D continuum elements it is from the face towards the interior of the element. For 3D elements it is in the opposite direction - from the face of the element outwards.
- Face loads for explicit dynamics elements are constant, i.e. the average of the input nodal pressures.+

Local Face Coordinates

Face Numbering Convention

The following diagrams show exploded view of the various 3D elements. The grey faces show the element external faces that can be seen from a single perspective point, the white faces depict the internal faces from the same view point.

Notes

- The views of the internal faces show the x -axis direction from the inside. Take care when converting this to a view from the outside of the element.

UDL Loads on Shells

Appendix B: Element Restrictions

Mid-side Node Centrality

The mid-length node must be equidistant from the end nodes. Mid-side nodes may be automatically corrected for elements with global translational mid-side node freedoms using Option 49. The mid-side node is moved along the existing element edge until it is positioned centrally.

Excessive Element Curvature

Elements must not be excessively curved. A warning will be invoked (but the analysis will continue) if the element curvature is not in accordance with the following inequalities:
i) $\mathrm{ABS}(\mathrm{S} 1-\mathrm{S} 2) /(\mathrm{S} 1+\mathrm{S} 2)<0.05$
ii) (S1+S2) / S3 < 1.02

Where the function ABS returns the absolute value of the arguments.

Excessive Aspect Ratios

An aspect ratio can be defined as the ratio of the longest to shortest element side lengths, such that:

D \quad = max ($\mathrm{a} / \mathrm{b}, \mathrm{b} / \mathrm{a}$) for surface elements (e.g. 2D continuum, plates and shells)
$\square \mathrm{R}=\max (\mathrm{a} / \mathrm{b}, \mathrm{b} / \mathrm{a}, \mathrm{c} / \mathrm{a}, \mathrm{c} / \mathrm{b}, \ldots)$ for three dimensional solid elements

Elements must not have an excessive aspect ratio. A warning will be invoked (but the analysis will continue) if the element aspect ratio is greater than 10.
In general, severe distortion of an element will affect the accuracy of the stress distribution through an element. The type of stress field being imposed is also of importance, since a badly shaped element will still yield a good distribution in the presence of a constant uniaxial stress field, but not when subjected to a full stress field in which any of the components have a significant variation across the element.
The force equilibrium for the element will always be satisfied.

Excessive Warping

The four nodal points defining quadrilateral surface elements should be coplanar. However a small out of plane tolerance is permitted to allow a slightly warped shape according to

$$
\mathrm{z}<0.01(\mathrm{~L} 12)
$$

where \mathbf{z} is the out of plane distance of a node, and $\mathbf{L 1 2}$ is the length between the first and second nodes.
If the above inequality is exceeded a warning will be issued but the analysis will proceed.

Appendix C : Local Element Axes

Standard Joint Element

Local \mathbf{x}-axis The local x -axis is defined by the vector between the first and the third nodes of the element topology.

Note.

The third node must be different from nodes 1 and 2 of the topology.

Standard Line Element

Local \mathbf{x} axis The local x -axis lies along the element in the direction in which the element nodes are defined. For curved elements the local x-axis is the tangent to the curve.
Local y axis The local xy plane is either defined by a dummy node and the two end nodes, or (in the absence of a dummy node), defined by the two end nodes and the central node. For the latter case, the local y-axis is perpendicular to the x-axis and on the positive convex side.
Local z axis The local z -axis forms a right-handed set with the local xy plane.
For cross-section beams the top surface is defined by the local +ve z direction.

Note

Default line axes are defined in Modeller with the local x axis of the element following the line direction. The element local z is then defined in the XZ plane unless the local x axis is aligned to the global Z axis in which case the element local z axis is aligned with the global Y axis.

Standard Surface Element

Local \mathbf{x} axis For 3 or 4 noded elements the local x-axis is defined by a line joining the first and second element nodes. For 6 and 8 noded elements the local x-axis is the tangent to the curve between the first 3 nodes.

Local \mathbf{y} axis The local xy -plane is defined by the remaining nodes, the local y -axis being perpendicular to the x -axis and forming a right-handed set with the x -axis and the xy plane.
Local z-axis The local z -axis forms a right-handed set with the local x and y -axes.
For shell elements the top surface is defined by the local +ve z direction.

Appendix D: Sign Conventions

The sign convention for forces, moments, stresses, rotations, eccentricities and potentials for different element types is documented in the following section headings.

Standard Bar Element

Axial force

(+ve) Axial tension
(-ve) Axial compression

Standard Beam Element

Numerically Integrated Beam Elements

Axial force

(+ve) Axial tension
(-ve) Axial compression

Bending Moment

(+ve) Hogging moment (Top of beam in tension)
(-ve) Sagging moment (Bottom of beam in tension)
Note: The top/bottom of the beam is determined by the element axes.

Torsion

(+ve) Rotation at 1st node greater than rotation at other end node
(-ve) Rotation at 1st node smaller than rotation at other end node

Grillage Elements

End Forces and Rotations

Positive end forces and rotations for grillage elements are those acting on the element nodes in local directions, and are as follows:

Note that when a reference path has been specified, additional force/moment components are available, and for this situation the x, y, and z element axes relate to longitudinal, transverse and vertical terms respectively. For instance My will relate to MF (longitudinal) - the flexural moment in longitudinal members that are following the path and MF (transverse) - the flexural moment in the transverse members that are orthogonal or skewed in relation to the reference path. Similarly, Fz will relate to FV (longitudinal) - the force in the vertical direction for longitudinal members that are following the path and FV (transverse) - the vertical direction for transverse members that are orthogonal or skewed in relation to the reference path.

Internal forces

These forces follow the sign convention for numerically integrated beams.
$\frac{\text { Axial force }}{\text { Not }} \frac{\text { Bending Moment }}{(+\mathrm{ve}) \text { Sagging }} \frac{\text { Torsion }}{(+\mathrm{ve}) \text { Rotation at 1st node greater than rotation }}$
applicable
moment
(-ve) Hogging moment
at other end node
(-ve) Rotation at 1st node smaller than rotation at other end node

Sign convention in Modeller for bending moment

(+ve) Top of beam in tension
(-ve) Bottom of beam in tension
Where the top/bottom of the beam are determined by the element axes
See numerically integrated beam sign convention.

2D Engineering Beam Elements

End Forces and Rotations

Positive end forces and rotations for 2D engineering beams are those acting on the element nodes in local directions, and are as
 follows:

Internal forces

These forces follow the sign convention for numerically integrated beams.

Axial force	
(+ve) Axial tension (-ve) Axial compression Moment	
(+ve) Hogging moment	
(-ve) Sagging moment	

Sign convention in Modeller for bending moment

(+ve) Top of beam in tension
(-ve) Bottom of beam in tension
Where the top/bottom of the beam are determined by the element axes See numerically integrated beam sign convention.

3D Engineering Beam Elements

End Forces and Rotations

Positive end forces and rotations for 3D engineering beams are those acting on the element nodes in local directions, and are as
 follows:

Internal forces

These forces follow the sign convention for numerically integrated beams.
Axial force
(+ve) Axial tension
(-ve) Axial
compression
Bending Moment
(+ve) Hogging
moment
(-ve) Sagging
moment

Torsion
(+ve) Rotation at 1 st node greater than rotation at other end node
(-ve) Rotation at 1 st node smaller than rotation at other end node

Sign convention in Modeller for bending moment

(+ve) Top of beam in tension
(-ve) Bottom of beam in tension
Where the top/bottom of the beam are determined by the element axes
See numerically integrated beam sign convention.

Standard Beam Eccentricities

Eccentricities are optional geometric properties for some elements and may be specified if the nodal line of the element does not lie along the required bending line/plane for the structural component being modelled.
Measurement of Ez (see diagram) is from the required bending plane (the beam xy plane) to the nodal line in the local element axis z-direction. If a beam $x y$
 plane is required such that it has negative local z coordinates relative to the nodal line, the eccentricity is positive.
Similarly, measurement of Ey is from the required bending plane (the beam xz plane) to the nodal line in the local element axis y-direction. If a beam xz plane is required such that it has negative local y coordinates relative to the nodal line, the eccentricity is positive.

Standard 2D Continuum Element

Direct stress

(+ve) Tension
(-ve) Compression

Shear stress

(+ve) Shear into XY quadrant
(-ve) Shear into XY quadrant

Note. Positive stress values are shown.

Standard 3D Continuum Element

Direct stress

(+ve) Tension
(-ve) Compression

Shear stress

(+ve) Shear into XY, YZ and XZ quadrants
(-ve) Shear into XY, YZ and XZ quadrants

Note. Positive stress values shown.

Standard Plate Element

Flexural stress

(+ve) Hogging moment (producing +ve stresses on the element top surface)
(-ve) Sagging moment (producing -ve stresses on the element top surface)

The + ve local z-direction defines the top surface.

Thin Shell Element

Membrane stress

$(+\mathrm{ve})$	Direct tension
$(-\mathrm{ve})$	Direct compression
$(+\mathrm{ve})$	In-plane shear into xy quadrant
$(-\mathrm{ve})$	In-plane shear into xy quadrant

Flexural stress

(+ve) Hogging moment (producing +ve stresses on the element top surface)
(-ve) Sagging moment (producing -ve stresses on the element top surface)

Notes

- Positive stress values shown.
- The + ve local z-direction defines the top surface.

Thin Shell Eccentricity

Eccentricity is an optional geometric property for this element type and may be specified if the nodal plane of the element does not lie along the required bending plane for the structural component being modelled.

Measurement of e_{z} is from the required bending plane to the nodal plane in the local element axis z-direction.

Thick Shell Element

Thick shell stress (top, middle and bottom)

Direct stress	$(+\mathrm{ve})$ $(-\mathrm{ve})$	Tension Compression
Shear stress	$(+\mathrm{ve})$ $(-\mathrm{ve})$	As shown in the following images In the reverse directions in following images

Stress Resultant

$$
\begin{array}{lll}
\text { Membrane stress } & \begin{array}{l}
(+\mathrm{ve}) \\
(-\mathrm{ve})
\end{array} & \begin{array}{l}
\text { Direct tension } \\
\text { Direct compression } \\
(+\mathrm{ve})
\end{array} \\
& \begin{array}{l}
\text { In-plane shear into xy quadrant } \\
(-\mathrm{ve})
\end{array} & \begin{array}{l}
\text { In-plane shear into xy quadrant }
\end{array} \\
\text { Flexural stress } & (+\mathrm{ve}) & \begin{array}{l}
\text { Hogging moment (producing +ve stresses on the element top } \\
(-\mathrm{ve})
\end{array} \\
\begin{array}{l}
\text { surface) } \\
\text { Sagging moment (producing -ve stresses on the element top } \\
\text { surface) }
\end{array}
\end{array}
$$

The + ve local z -direction defines the top surface.

Cylindrical local coordinate system

The cylindrical local coordinate systems above are based upon the following:

Thick Shell Eccentricity

Eccentricity is an optional geometric property for this element type and may be specified if the nodal plane of the element does not lie along the required bending plane for the structural component being modelled.

Measurement of ez is from the required bending plane to the nodal plane in the local element axis z-direction.

Standard Membrane Element

Direct stress	$(+\mathrm{ve})$ $(-\mathrm{ve})$	Tension Compression
Shear stress	$(+\mathrm{ve})$	Shear into xy quadrant
	$(-\mathrm{ve})$	Shear into xy quadrant

Element Reference Manual

Standard Field Element

Potential

$(+\mathrm{ve}) \quad+\mathrm{ve}$ field value, $\mathrm{dT} / \mathrm{dx}$ rate of change of field in x direction

Standard Joint Element

Direct force : (+ve) Tension and (-ve) Compression
Spring Moment : (+ve) for positive rotational spring strain and (-ve) for negative rotational spring strain
The sign of joint results is dependent upon both the element direction(that is which geometry is the master, and which is the slave) and the orientation of the local coordinate axes chosen.

Coincident Master and Slave nodes, $M=$ Master, $S=$ Slave

Compression	Tension	Negative Moment	Positive Moment
$\mathrm{Mu}>\mathrm{Su}$	$\mathrm{Su}>\mathrm{Mu}$	$\mathrm{M}_{\theta \mathrm{x}}>S_{\text {өx }}$	$\mathrm{S}_{\theta \mathrm{x}}>\mathrm{M}_{\theta \mathrm{x}}$
$\mathrm{Mv}>\mathrm{Sv}$	Sv > Mv	$\mathrm{M}_{\theta \mathrm{y}}>\mathrm{S}_{\theta \mathrm{y}}$	$\mathrm{S}_{\theta \mathrm{y}}>\mathrm{M}_{\theta \mathrm{el}}$
$\mathrm{Mw}>\mathrm{Sw}$	$\mathrm{Sw}>\mathrm{Mw}$	$\mathrm{M}_{\theta \mathrm{z}}>\mathrm{S}_{\theta \mathrm{z}}$	$S_{\theta z}>M_{\theta z}$

Appendix E: Thick Shell Notation

Thick Shell Nodal Rotation

Problems with Singularities

In general, five degrees of freedom will be associated with each shell node: three translations and two rotations. The first axis of rotation will be defined by one of the global axes. The second axis of rotation is defined by the vector product of the selected global axis and the nodal normal.
Choosing one global axis to define the first rotation is not possible for all cases as singularities can occur depending on the orientation of the shell. As the topology of the shell cannot be known a means of choosing suitable rotations after the shell orientation has been defined must be provided.

How the Nodal Systems are Defined

The axis defining the $\theta \alpha$ rotation is chosen by examining the global components of the nodal normal. The smallest (absolute) component of the normal vector defines the global axis to be chosen as the first axis of rotation. The vector product of this axis and the nodal normal defines the axis for the second rotation $\theta \beta$. If the nodal normal coincides with the global Z axis,
 the global X axis will be chosen to define
$\theta \alpha$. In this instance, the X and Y components will both be minimum values. When two components define the same minimum value the order of priority for selection of the axis is $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$. Note that, in general, the axes of rotation and the nodal normal will form a non-orthogonal left-handed set. The rotations are indicated in the following figure where the global x axis has been used to define $\theta \alpha$:

Five or Six Degrees of Freedom at a Node

LUSAS Solver will automatically select five degrees of freedom at a node, with rotations defined as above, unless:

The maximum angle between the normals of adjacent elements meeting at the node is greater than 20 degrees. The value of 20 degrees is selected by default and may be changed using the SYSTEM parameter SHLANG.
\square Beam, joint or other shell element types are connected to the node
\square Concentrated loads or support conditions have been specified at the node using LUSAS Modeller
Option 278 has been specified

- Six degrees of freedom have been selected for the node within the NODAL FREEDOMS data chapter If six degrees of freedom are used at a node the rotations will relate to the global axes, $\theta \mathrm{X}, \theta \mathrm{Y}$ and $\theta \mathrm{Z}$ unless TRANSFORMED FREEDOMS have been specified. It is recommended that the default value for SHLANG is retained wherever possible.

When are Six Degrees of Freedom Necessary?

Rotations relating to global axes will be required in the following circumstances:

- When a branched shell connection exists in the structure to be analysed. LUSAS Solver will automatically detect this and assign six degrees of freedom to nodes along the branch connection.
- When connecting with other element types. Six degrees of freedom will automatically be assigned to shell nodes connected to beams, joints or other shell element types.
- When boundary conditions or loading cannot be easily specified using the above definition of rotations, e.g. when applying moments or using symmetry.
If the rotations $\theta \alpha, \theta_{\beta}$ will not allow the required loading or symmetry conditions to be applied, rotations about global axes may be enforced using NODAL FREEDOMS. The use of TRANSFORMED FREEDOMS will then allow the rotations to be related to a more convenient local orthogonal set if necessary. If six degrees of freedom at a node are enforced using NODAL FREEDOMS (i.e. not set automatically by LUSAS Solver) singularities may occur if the in-plane rotation (about the normal) is not restrained.

Appendix F: Newton Coates Integration

Newton-Cotes Integration Points

For beam elements BMX3, BSX4 and BXL4 the rigidity is computed by integration of the cross section. The default integration employs a 3×3 Newton Cotes rule for linear materials and a 5×5 rule for nonlinear materials. These may be altered by the user within the GEOMETRIC PROPERTIES definition. The locations of the default integration points are shown in the accompanying diagram, together with the local axes for the beam cross section (note the different corner numbering). The integration points are equally spaced along a particular natural ordinate for the section. The integration point numbers shown correspond with those given in the stress output for the element. More information on the cross sectional integration for these elements is available in the LUSAS Theory Manual.

Element Reference Manual

Newton-Cotes Integration Points for 3D Elements

Newton-Cotes Integration Points for 2D Elements

Appendix G: Shear Area and Torsional Constant

Shear Areas

In beams of small span to depth ratio, the shear stresses are likely to be high and the resulting deflection due to shear may not be negligible. The shear area is used to control the amount of shear deformation which will occur (Asz, Asy). For various sections, approximate values are as follows:

- Rectangular beams $=5 \mathrm{~A} / 6$

I I-beams (along web direction) $=$ Area of web
\square I-beams (along flange direction) = Area of flanges

- Thin walled, hollow circular section $=\mathrm{A} / 2$
- Solid circular section $=9 \mathrm{~A} / 10$
- No shear deformation $=1000 \mathrm{~A}$

Note

- If Asz or Asy equal zero, mechanisms may occur.
- For elements which support this geometric input, shear deformation effects may be removed by assigning an artificially large value.
- The section property calculator in Modeller can be used to accurately compute shear areas

Torsional Constant

The torsional constant provides a measure of the torsional rigidity of a line member.
Approximate values are as follows:

Solid circle

(equivalent to the polar moment of inertia)

$$
\frac{\pi \cdot r^{4}}{2}
$$

where \mathbf{r} is the radius of the circle

Hollow circle

$$
\frac{\pi}{2}\left(r_{2}^{4}-r_{1}^{4}\right)
$$

where $r 2$ is the outer radius and r 1 is the inner radius

Solid square $=0.1406 \mathrm{a}^{4}$

where a is the side length

Solid rectangle $=$

$$
a b^{3}\left[\frac{16}{3}-3.36 \frac{b}{a}\left(1-\frac{b^{4}}{12 a^{4}}\right)\right]
$$

where $\mathbf{2 a}$ is the length of the longest side
and $\mathbf{2 b}$ is the length of the shortest side

Equilateral triangle

$$
\frac{a^{4} \sqrt{3}}{80}
$$

where \mathbf{a} is the side length

Rectangular tube

$$
\frac{2 \cdot t_{1} \cdot t_{2} \cdot\left(a-t_{2}\right)^{2}\left(b-t_{1}\right)^{2}}{a t_{2}+b t_{1}-t^{2}{ }_{2}-t^{2}{ }_{1}}
$$

where
\mathbf{a} is the length of the longest side
$\mathbf{t} \mathbf{1}$ is the thickness of the longest side
b is the length of the shortest side
$\mathbf{t} \mathbf{2}$ is the thickness of the shortest side

Thin rectangle

$$
\frac{1}{3} b t^{3}
$$

where \mathbf{b} is the rectangle length
and \mathbf{t} is the rectangle length thickness

Any section consisting of thin rectangles

$$
\frac{1}{3} \Sigma b t^{3}
$$

Solid ellipse

$$
\frac{\pi a^{3} b^{3}}{a^{2}+b^{2}}
$$

where $\mathbf{2 a}$ is the longest dimension
and $\mathbf{2 b}$ is the shortest dimension

Note

- The section property calculator in Modeller can be used to accurately compute torsional constants

Appendix H: Principal Stress
 Output

Output Notation for Principal Stresses

For a bi-axial stress state, the Mohr's circle representation of a stress field is:

where:
Smax is the maximum principal stress.
$\mathbf{S m i n}$ is the minimum principal stress
Ss is the maximum shear stress
$\boldsymbol{\beta}$ defines the orientation of the principal axis (the plane on which the principal stresses act).
$\mathbf{S x}, \sigma \mathbf{y}, \sigma \mathbf{x y}$ represent an arbitrary two dimensional stress state.

Appendix I : Mass Lumping

Mass Lumping in LUSAS

Non-Structural mass elements are used to define a lumped mass at a point, or a distributed mass along a line and over a surface.
See Non-Structural Mass Elements in the Modeller Reference Manual for more details.

Appendix J: Moments of Inertia

Moments of Inertia Definitions

Second moment of area about line yy

$$
I_{w y}=\int z^{2} d A
$$

Second moment of area about line zz

$$
I_{Z Z}=\int y^{2} d A
$$

Product moment of inertia of section

$$
I_{y z}=\int y z d A
$$

(=0 for sections symmetric about either yy or zz)
First moment of area about yy

$$
I_{y}=\int z d A
$$

(=0 for sections symmetric about yy)
First moment of area about $\mathbf{z z}$

$$
I_{z}=\int y d A
$$

(=0 for sections symmetric about zz)

Note

- The above definitions are for a section defined in the two dimensional yz plane. Similar expressions apply for a section in the three dimensional space.
- For a beam with eccentricity e from the nodal line, then:

$$
I_{z z}=A e^{2}+I_{n a} \text { and } I_{z}=\mathrm{eA}
$$

where $I_{n a}$ is the second moment of area about the centroidal axis.

- For the purpose of the moment inertia definitions above only, the eccentricity is measured from the nodal line to the required bending plane (the beam's xy plane in the figure above). For example, if a beam xy plane is required such that it has negative local z coordinates relative to the nodal line, the eccentricity to be used above is negative.

Appendix K: Results Tables

Key to Element Results Tables

This section contains the notation for the results in the Results Tables. Some results are available in local and global directions depending on the element type. The case of the direction indicator associated for each term in the table will indicate its default direction for that element. Lower case indicates local element directions and upper case indicates that results are available in global directions by default.

Displacements

DX Displacement in X
direction

DY Displacement in Y
direction

DZ Displacement in Z direction
RSLT Resultant displacement
THX Rotation about X
THY Rotation about Y

THZ Rotation about Z

THL1 First loof rotation

THL2 Second loof rotation
DU Hierarchical disp. at mid-node
DTHX Hierarchical rotation at mid-node
PRES Pore Pressure
THw Rate of change of twisting angle (warping beams)

Note: Rotations are output in radians.

Velocities and Accelerations

VX Velocity in X direction
VY Velocity in Y direction
$\mathbf{V Z}$ Velocity in \mathbf{Z} direction
RSLT Resultant velocity

AX Acceleration in X direction
AY Acceleration in Y direction
AZ Acceleration in Z direction
RSLT Resultant acceleration
VC Results calculator values
Strains
EX Direct strain in X direction
EY Direct strain in Y direction
EZ Direct strain in Z direction
EXY Shear strain in XY plane
EYZ Shear strain in YZ plane
EZX Shear strain in XZ plane
EMax Maximum principal strain
EMin Minimum principal strain
E1 Major principal strain
E2 Intermediate principal strain
E3 Minor principal strain
Eabs Signed largest value of principal strain

Plastic Strains

EPX Plastic direct strain in X direction
EPY Plastic direct strain in Y direction
EPZ Plastic direct strain in Z

Bx Bending strain (curvature) about x axis
By Bending strain (curvature) about y axis
Bz Bending strain (curvature) about z axis
Bxy Bending or torsional strain into xy plane
Byz Bending or torsional strain into yz plane
Bxz Bending or torsional strain into $x z$ plane
BMax Maximum principal bending strain
BMin Minimum principal bending strain
$\boldsymbol{\beta}$ Angle between E1 and X axis
EE Equivalent strain (von Mises)
EI Maximum shear strain
EV Volumetric strain

Strains: Top/Middle/Bottom (TMB)

EX Direct strain in X direction
EY Direct strain in Y direction
EZ Direct strain in Z direction
EXY Shear strain in XY plane
EYZ Shear strain in YZ plane
EXZ Shear strain in XZ plane

E1 Major principal strain
E2 Intermediate principal strain
E3 Minor principal strain
Eabs Signed largest value of principal strain
$\boldsymbol{\beta}$ Angle between E1 and X axis
EE Equivalent strain (von Mises)
EI Maximum shear strain

EP1 Major principal strain

EP2 Intermediate principal plastic strain
EP3 Minor principal plastic strain
direction
EPXY Plastic shear strain in XY plane
EPYZ Plastic shear strain in YZ plane
EPZX Plastic shear strain in ZX plane
EPMax Maximum principal plastic strain
EPMin Minimum principal plastic strain

Creep Strains

ECX Creep direct strain in X direction
ECY Creep direct strain in Y direction
ECZ Creep direct strain in Z direction
ECXY Creep shear strain in XY plane
ECYZ Creep shear strain in YZ plane
ECZX Creep shear strain in ZX plane
ECMax Maximum principal creep strain
ECMin Minimum principal creep strain

Rubber Stretches

StchX Direct stretch tensor in X direction
StchY Direct stretch tensor in Y direction
StchZ Direct stretch tensor in Z direction
StchXY Shear stretch tensor in XY plane
StchYZ Shear stretch tensor in YZ plane

EPabs Signed largest value of principal plastic strain
$\boldsymbol{\beta}$ Angle between EP1 and X axis
EPE Equivalent plastic strain (von Mises)
EPI Maximum shear strain

CWMax Maximum crack width
EFSMax Maximum equivalent fracture strain

EC1 Major principal creep strain
EC2 Intermediate principal creep strain
EC3 Minor principal creep strain
Ecabs Signed largest value of principal creep strain
$\boldsymbol{\beta}$ Angle between EC1 and X axis
ECE Equivalent creep strain (von Mises)
ECI Maximum shear creep strain

Stch1 Major principal stretch
Stch2 Intermediate principal stretch
Stch3 Minor principal stretch
StchAbs Signed largest value of principal stretch
$\boldsymbol{\beta}$ Angle between Stch1 and X axis

StchXZ Shear stretch tensor in XZ plane
StchMax Maximum principal stretch

StchE Equivalent stretch
StchI Maximum shear stretch

Strains: Interface Elements

| Ex | Shear relative displacement in | Ez
 Relative normal displacement in the local z
 (thickness) direction |
| :--- | :--- | :--- | :--- |
| local x direction | | |

Stresses: Continuum Elements

SX Direct stress in global X direction
SY Direct stress in global Y direction
SZ Direct stress in global Z direction
SXY Shear stress in Y-direction on a plane normal to X
SYZ Shear stress in yz plane
SXZ Shear stress in xz plane
SMax Maximum principal stress
SMin Minimum principal stress

S1 Major principal stress
S2 Intermediate principal stress
S3 Minor principal stress
Sabs Signed largest value of principal stress
$\boldsymbol{\beta}$ Angle between E1 and x axis
SI Maximum shear stress
SE Equivalent stress (von Mises)
Pres Pore pressure

Force/Moment: Bar and Beam Elements

Fx Force in local x direction
Fy Force in local y direction
Fz Force in local z direction
Fb Bi-shear or torque (warping)

Stresses: Bar and Beam Elements

$\mathbf{S x}(\mathbf{F x})$ Stress due to axial force in x
$\mathbf{S x}(\mathbf{M y})$ Stress due to bending about y
$\mathbf{S x}(\mathbf{M z})$ Stress due to bending about z
$\mathbf{S x}(\mathbf{M y}$, Stress due to bending

Mx Moment about local x direction
My Moment about local y direction
Mz Moment about local z direction
Mb Bi-moment (warping)
$\mathbf{S x}(\mathbf{F x}$, Stress due to axial force and My) bending about y
$\mathbf{S x}(\mathbf{F x}$, Stress due to axial force and $\mathbf{M z}$) bending about y
$\mathbf{S x}(\mathbf{F x}$, Stress due to axial force and $\mathbf{M y}, \mathbf{M z}$) bending about y and z
Mz) about y and z
Force/Moment: Plate Elements (per unit width)
SX Shear force in global YZ plane MX Moment in global X
SY Shear force in global XZ plane MY Moment in global Y
MXY Twisting moment in global XY plane
Mmax Major principal moment
Mmin Minor principal moment
$\boldsymbol{\beta}$ Angle between MMax and X axis
MI Maximum shear moment
Mabs Signed largest value of moment
ME Equivalent moment
Force/Moment: Membrane and Shell Elements (per unit width)

Nx In-plane force in local x direction
Ny In-plane force in local y direction
Nxy In-plane shear force
NMax Major principal in-plane force
NMin Minor principal in-plane force
$\mathrm{N} \beta \varepsilon \tau \boldsymbol{\alpha}$ Angle between NMax and x axis
NI Maximum in-plane shear force
NE Equiv stress resultant (von Mises)
Nabs Signed largest value of in-plane force
Sx Shear force in local yz plane
Sy Shear force in local xz plane

Mx Moment in local x direction

My Moment in local y direction
Mxy Twisting moment in local xy plane
Mmax Major principal moment
Mmin Minor principal moment
Mßeta Angle between MMax and X axis
MI Maximum shear moment
ME Equivalent moment
Mabs Signed largest value of moment

Stresses: Top/Middle/Bottom (TMB)

SX Direct stress in global X direction
SY Direct stress in global Y direction
SZ Direct stress in global Z direction

S2 Intermediate principal stress

S3 Minor principal stress

SXY Shear stress in XY plane

SYZ Shear stress in YZ plane
$\mathbf{S X Z}$ Shear stress in XZ plane

Sabs Signed largest value of principal stress
SI Maximum shear stress
SE Equivalent stress (von Mises)

Stresses: Interface Elements

Sx	Shear traction in local x direction	SzNormal stress in the local z (thickness) direction
Sy	Shear traction in local y direction	Q

Force/Moment: Wood-Armer (per unit width for Shells)

$\mathbf{M x}(\mathbf{T})$ Top surface local x moment
$\mathbf{M y}(\mathbf{T})$ Top surface local y moment
$\mathbf{M x}(\mathbf{B})$ Bottom surface local x moment
$\mathbf{M y}(\mathbf{B})$ Bottom surface local y moment
Util(T) Top surface utilisation factor
Util(B) Bottom surface utilisation factor
MUtil(T) Top surface utilisation factor for bending only
MUtil(B) Bottom surface utilisation factor for bending only
$\mathbf{N x}(\mathbf{T})$ Top surface local x force
$\mathbf{N y}(\mathbf{T})$ Top surface local y force
$\mathbf{N x}(\mathbf{B})$ Bottom surface local x force
$\mathbf{N y}(B)$ Bottom surface local y force
$\mathbf{F c}(\mathbf{T})$ Top surface concrete force
$\mathbf{F c}(\mathbf{B})$ Bottom surface concrete force

Force/Moment: Wood-Armer (per unit width for Plates and Grillages)

MX(T) Top surface global X moment
MY(T) Top surface global Y moment
MX(B) Bottom surface global
X moment
MY(B) Bottom surface global Y moment

MUtil(T) Top surface utilisation factor for bending only
MUtil(B) Bottom surface utilisation factor for bending only

Additional Force/Moment Components

Note for influence analysis when a reference path has been specified, additional force/moment components are available for selection when transforming results. These are not listed for relevant elements in the Results tables.

$\begin{array}{r} \mathrm{FV} \\ \text { (longitudinal) } \end{array}$	Force in Vertical direction for longitudinal members that are following the reference path	$\begin{array}{r} \text { MF } \\ \text { (longitudinal) } \end{array}$	Flexural Moment in longitudinal members that are following the reference path
$\begin{array}{r} \text { FV } \\ \text { (transverse) } \end{array}$	Force in Vertical direction for transverse members that are orthogonal or skewed in relation to the reference path	$\begin{array}{r} \text { MF } \\ \text { (transverse) } \end{array}$	exural Moment in ansverse members that e orthogonal or skewed relation to the ference path

Stresses: Interface Elements

Sx Shear traction in local x direction
$\mathbf{S z}$ Direct traction in the thickness direction

Sy Shear traction in local y direction

Concrete Results

CWmax Max Crack width
EPshk Shrinkage strain
Temp Temperature
Ftens tensile strength
ECX Creep strain in global X
ECZ Creep strain in global Z

ESFmax Max fracture strain
EPthm Thermal strain
Fcomp Compressive strength
Young Young's modulus
ECY Creep strain in global Y

PHIC Results calculator values

Fluxes

qX Field flux in X direction
qY Field flux in Y direction
qZ Field flux in Z direction

Hygro-Thermal Results

| SW | Water saturation | | RoWC Water content |
| ---: | :--- | ---: | ---: | :--- |
| PV | Vapour pressure | DH | Degree of hydration at day 28 |
| Por | Porosity | | TefH Effective time of hydration |
| TC | Thermal conductivity | | PMD Water permeability [m/s] |
| HR | Relative humidity of concrete | | |
| | | | |
| Reactions / Residual Forces | | | |
| FX | Force in X direction | MZ | Moment about Z axis |
| FY | Force in Y direction | FDU | Force due to hierarchical displacement |
| FZ | Force in Z direction | MDX | Moment due to hierarchical rotation |
| RSLT | Resultant force | | |
| MX | Moment about X axis | QC | Flow at a point (field problems) |
| MY | Moment about Y axis | VFLW | Velocity of Flow |

Reaction Stress

PX Stress due to reaction in X direction
PZ Stress due to reaction in Z direction
PY Stress due to reaction in Y direction

Fatigue Parameters

Damage A measure of damage
 LogLife Log repeats to failure

Note. The fatigue facility uses Miner's rule, that is:
$\mathrm{n} 1 / \mathrm{N} 1+\mathrm{n} 2 / \mathrm{N} 2+\cdots+\mathrm{ni} / \mathrm{Ni}=$ Damage
where Damage is the damage variable and is usually taken as unity (experiment usually gives values between 0.7 and 2.2). ni is the number of cycles of stress applied to the structure and Ni is the life corresponding to the stress. Loglife is the \log (base 10) of the life expectancy of the structure according to the loading and the number of cycles specified. Life is measured in terms of cycles.

Damage Parameters

DDAMA Damage variable DAMAM Damage consistency parameter
CCURD Damage threshold DFUNC Damage function
Note. Damage parameters are only available when a damage model is in use.

Strain Energy and Plastic Work

SED Strain energy density (StEngD) PWD Plastic work density
Note. Strain energy density and plastic work density values can be accessed if turned on by selecting Calculate Strain Energy and Plastic Work Densities from the Results > Options dialog or by using the command: SET RESULTS ENERGY.

Adaptive Error

Eadp Adaptive error.

Note. Adaptive error results are only available when an adaptive results column is set. See the LUSAS User Manual for more details.

State Variables

State variables can be accessed with the command:
SET RESULTS STATE_VARIABLES istvb nsvcmp isvloc
Where istvb is the type of state variable required, nsvcmp is the number of state variables required, and isvloc is the start location of the first state variable required. The results columns for these state variables vary according to the results type set. The column descriptors have the following prefixes:

- PL Plastic, Rubber
\square CR Creep
\square DM Damage
- followed by the number of the state variable required. For example, if four creep state variables are required, the column descriptors will be CR1, CR2, CR3 and CR4.

Key to Slideline Results Components

This section contains the notation for slideline results. Note that slideline results components are not listed in the results tables.

TanGapFrcx	Tangential gap force in local x direction	NrmPen	Penetration normal to contact surface
TanGapFrcy	Tangential gap force in local y direction	ContStatus	In-contact/out-of-contact status
RsitTanGFc	Resultant tangential gap force	ContacArea	Nodal contact area
NrmGapForc	Gap force normal to contact surface	Contact	In-contact/out-of-contact status
ForceX	Contact force in system x direction	Zone	Zonal contact parameter
ForceY	Contact force in system y direction	ZnCnDetDst	Zonal contact detection distance
ForceZ	Contact force in system z	IntStfCoef	Contact stiffness

direction
RsltForce Resultant contact force
ContStresx Contact stress in local x direction
ContStresy Contact stress in local y direction
ContPress Contact pressure normal to contat surface
coefficient
TanForcex Tangential contact force in local x direction
TanForcey Tangential contact force in local y direction
RsltTanFrc Resultant tangential contact force
NrmForce Contact force normal to contact surface
ContStiff Contact stiffness

Transforming Results Directions

Important: Some results entities can be transformed. The results components will use alternative suffixes if results are calculated relative to a system other than the global axis set. The element results tables show the default results directions for all elements with lower case subscripts being used for local results.
See the Local and Global Results in the LUSAS Modeller User Manual for details of results transformation procedures.

2D Structural Bars BAR2, BAR3

Entity	Component										
Displacement	DX	DY	RSLT								
Force/Moment	FX	Fabs	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED		Eadp
Strain	EX	Eabs	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Loading	FX	FY	RSLT								
Reaction	FX	FY	RSLT								
Residual Force	FX	FY	RSLT								
Reaction Stress											
Velocity	VX	VY	RSLT								
Acceleration	AX	AY	RSLT								
Plastic Strain	EPX	EPabs	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Creep Strain	ECX	ECabs	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Rubber Stretches											
TMB Stress											
TMB Strain											
TMB Plastic Strain											
TMB Creep Strain											

3D Structural Bars BRS2, BRS3

2D Engineering Grillage Thick Beam GRIL

Entity	Component												
Displacement	DZ	RSLT	THX	THY									
Force/Moment	Fz	Mx	My	Mx(T $^{\text {) }}$	My(T)	Mx(B)	My(B)	Util (T)	Util(B)	Damage	LogLife	SED	Eadp
Strain													
Loading	FZ	RSLT	MX	MY									
Reaction	FZ	RSLT	MX	MY									
Residual Force													
Reaction Stress													
Velocity	VZ	RSLT											
Acceleration	AZ	RSLT											
Plastic Strain													
Creep Strain													
Rubber Stretches													
TMB Stress													
TMB Strain													
TMB Plastic Strain													
TMB Creep Strain													

Note: Wood-Armer results are only available for plotting /printing at nodes. They are not available unaveraged at nodes within elements or at Gauss points.

2D Thick Beam Elements BMI2, BMI3, BMI2X, BMI3X

Entity	Component										
Displacement	DX DY	RSLT	THZ								
Force/Moment	Fx My	Mz	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Ea
Strain	Ex Exy	Bz	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Loading	FX FY	RSLT	MZ								
Reaction	FX FY	RSLT	MZ								
Residual Force	FX FY	RSLT	MZ								
Reaction Stress											
Velocity	VX VY	RSLT									
Acceleration	AX AY	RSLT									
Plastic Strain	EPx EPxy	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Creep Strain	ECx ECxy	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Rubber Stretches	Sx Sy										
TMB Stress	Ex Exy										
TMB Strain	EPx EPxy										
TMB Plastic Strain	ECx ECxy										

Note: Plastic and creep strains are only available for BMI2X and BMI3X elements with the appropriate material models.

3D Thick Beam Elements BMI21, BMI22, BMI31, BMI33, BMX21, BMX22, BMX31, BMX33

Entity	Component														
Displacement	DX	DY	DZ	RSLT	THX	THY	THZ								
Force/Moment	Fx	My	Mz	Mx	My	Mz	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp
Strain	Ex	By	Bz	Bx	By	Bz	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Loading	FX	FY	FZ	RSLT	MX	MY	MZ								
Reaction	FX	FY	FZ	RSLT	MX	MY	MZ								
Residual Force	FX	FY	FZ	RSLT	MX	MY	MZ								
Reaction Stress															
Velocity	vx	VY	VZ	RSLT											
Acceleration	AX	AY	AZ	RSLT											
Plastic Strain	EPx	EPxy	EPzx	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Creep Strain	ECx	ECxy	ECzx	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Rubber Stretches															
TMB Stress															
TMB Strain															
TMB Plastic Strain															

Note: Plastic and creep strains are only available for BMX21, BMX31, BMX22, BMX33 elements with the appropriate material models.

3D Thick Beam Elements with Torsional Warping BMI21W, BMI22W, BMI31W, BMI33W, BMX21W, BMX22W, BMX31W, BMX33W

Entity	Component															
Displacement	DX	DY	DZ	RSLT	THX	THY	THY	THw								
Force/Moment	Fx	My	Mz	Mx	My	Mz	Fb	Mb	Damage	LogLife	DDAMA CURRD	DAMAM	DFUNC	SED	PWD	Eadp
Strain	Ex	By	Bz	Bx	By	Bz	Efb	Emb	DDAMA	CURRD	DAMAM DFUNC	SED	PWD	Eadp		
Loading	FX	FY	FZ	RSLT	MX	MY	MZ									
Reaction	FX	FY	FZ	RSLT	MX	MY	MZ	Mw								
Residual Force	FX	FY	FZ	RSLT	MX	MY	MZ									
Reaction Stress																
Velocity	VX	VY	VZ	RSLT												
Acceleration	AX	AY	AZ	RSLT												
Plastic Strain	EPx	EPxy	EPzx	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Creep Strain	ECx	ECxy	ECzx	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
Rubber Stretches																
TMB Stress																
TMB Strain																
TMB Plastic Strain																

Note: Plastic and creep strains are only available for BMX21W, BMX31W, BMX22W, $B M X 33 W$ elements with the appropriate material models.

2D Kirchhoff Thin Beams BM3, BMX3

Note: Plastic and creep strains are only available for BMX3 elements with the appropriate material models.

3D Kirchhoff Thin Beams BS3, BS4, BSX4

Entity	Component												
Displacement	DX	DY	DZ	RSLT	THX	THY	THZ	DU	DTHX				
Force/Moment	Fx	My	Mz	Tzx	Txy	Fy	Fz	Damage	LogLife	DDAMA	CURRD DAMAM DFUNC	SED	PWD
(continued)	Eadp												
Strain	Ex	By	Bz	Bzx	Bxy	Ey	Ez						
(continued)	Eadp												
Loading	FX	FY	FZ	RSLT	MX	MY	MZ	FDU	MDX				
Reaction	FX	FY	FZ	RSLT	MX	MY	MZ	FDU	MDX				
Residual Force	FX	FY	FZ	RSLT	MX	MY	MZ	FDU	MDX				
Reaction Stress													
Velocity	vx	VY	VZ	RSLT									
Acceleration	AX	AY	AZ	RSLT									
Plastic Strain	EPx	EPxy	EPzx	EPyz	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Creep Strain	ECx	ECxy	ECzx	ECyz	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Rubber Stretches													
TMB Stress													
TMB Strain													
TMB Plastic Strain													
TMB Creep Strain													

Note: Plastic and creep strains are only available for BSX4 elements with the appropriate material models.

3D Semilloof Thin Beams BSL3, BSL4, BXL4

Entity	Component														
Displacement	DX	DY	DZ	RSLT	THX	THY	THZ	THL1	THL2						
Force.Moment	Fx	My	Mz	Tzx	Txy	Fy	Fz	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD
(continued)	Eadp														
Strain	Ex	By	Bz	Bzx	Bxy	Ey	Ez	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
Loading	FX	FY	FZ	RSLT	MX	MY	MZ	ML1	ML2						
Reaction	FX	FY	FZ	RSLT	MX	MY	MZ	ML1	ML2						
Residual Force	FX	FY	FZ	RSLT	MX	MY	MZ	ML1	ML2						
Reaction Stress															
Velocity	vX	VY	VZ	RSLT											
Acceleration	AX	AY	AZ	RSLT											
Plastic Strain	EPx	EPxy	EPyz	EPzx	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Creep Strain	ECx	ECxy	ECyz	ECzx	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Rubber Stretches															
TMB Stress															
TMB Strain															
TMB Plastic Strain															
TMB Creep Strain															

Note: Plastic and creep strains are only available for BXL4 elements with the appropriate material models.

Plane Strain Beam Elements BMI2N, BMI3N

Entity	Component										
Displacement	DX	DY	RSLT	THZ							
Stress	Nx	Nz	Mx	Mz	Nxy	NMax	NMin	Ns	β	Nabs	Ne
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Strain	Ex	Ez	Bx	Bz	Exy	EMax	EMin	El	β	Eabs	EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Loading	FX	FY	RSLT	MZ							
Reaction	FX	FY	RSLT	MZ							
Residual Force	FX	FY	RSLT	MZ							
Reaction Stress	PX	PY									
Velocity	VX	VY	RSLT								
Acceleration	AX	AY									
Plastic Strain											
Creep Strain											
Rubber Stretches											
TMB Stress	Sx	Sz	Sxy	SMax	Smin	SI	β	Sabs	SE		
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
TMB Strain	Ex	Ez	Exy	EPmax	EMin	El	β	Eabs	ECE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
TMB Plastic Strain	EPx	EPz	EPxy	EPMax	EPMin	EPI	β	EPabs	ECE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
TMB Creep Strain	ECx	ECz	ECxy	ECMax	ECMin	ECI	β	ECabs	ECE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				

2D Continuum (Plane Stress) TPM3/6, QPM4/8, QPM4M, TPK6, QPK8

Entity	Component									
Displacement	DX	DY	RSLT							
Stress	SX	SY	SXY	SMax	SMin	SI	β	Sabs	SE	
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
Strain	EX	EY	EXY	EMax	EMin	El	β	Eabs	EE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Loading	FX	FY	RSLT							
Reaction	FX	FY	RSLT							
Residual Force	FX	FY	RSLT							
Reaction Stress	PX	PY								
Velocity	vx	VY	RSLT							
Acceleration	AX	AY	RSLT							
Plastic Strain	EPX	EPY	EPXY	EPMax	EPMin	EPI	β	EPabs	EPE	CWMax EFSMax
(continued)	DDAMA	CURRD	damam	DFUNC	SED	PWD	Eadp			
Creep Strain	ECX	ECY	ECXY	ECMax	ECMin	ECI	β	ECabs	ECE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Rubber Stretches	StchX	StchY	StchXY	StchMax	StchMin	Stchl	β	StchAbs	StchE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
TMB Stress										
TMB Strain										
TMB Plastic Strain										
TMB Creep Strain										

Notes:

Rubber stretches are only available for QPM4M elements with rubber material models. Strains are not available for this element when using rubber materials.
Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Models (105 and 109) are used.

2D Continuum Plane Stress (Explicit Dynamics) TPM3E, QPM4E

Entity	Component								
Displacement	DX	DY	RSLT						
Stress	SX	SY	SXY	SMax	SMin	SI	β	Sabs	SE
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp
Strain	EX	EY	EXY	EMax	EMin	El	β	Eabs	EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Loading	FX	FY	RSLT						
Reaction	FX	FY	RSLT						
Residual Force	FX	FY	RSLT						
Reaction Stress	PX	PY							
Velocity	vx	VY	RSLT						
Acceleration	AX	AY	RSLT						
Plastic Strain	EPX	EPY	EPXY	EPMax	EPMin	EPI	β	EPabs	EPE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Creep Strain	ECX	ECY	ECXY	ECMax	ECMin	ECI	β	ECabs	ECE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Rubber Stretches									
TMB Stress									
TMB Strain									
TMB PlasticStrain									
TMB Creep Strain									

2D Continuum (Plane Strain) TPN3/6, QPN4/8, TNK6, QNK8, QPN4M

Entity	Component										
Displacement	DX	DY	RSLT								
Stress	SX	SY	SXY	SZ	S1	S2	S3	SI	Sabs	SE	
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Strain	EX	EY	EXY	EZ	E1	E2	E3	EI	Eabs	EE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Loading	FX	FY	RSLT								
Reaction	FX	FY	RSLT								
Residual Force	FX	FY	RSLT								
Reaction Stress	PX	PY									
Velocity	vX	VY	RSLT								
Acceleration	AX	AY	RSLT								
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPabs	EPE	CWMax EFSMax
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Creep Strain	ECX	ECY	ECXY	ECZ	EC1	EP2	EC3	ECI	ECabs	ECE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Rubber Stretches	Stch X	StchY	StchXY	StchZ	Stch1	Stch2	Stch3	Stchl	StchAbs	StchE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
TMB Stress											
TMB Strain											
TMB Plastic Strain											
TMB Creep Strain											

Notes:
Rubber stretches are only available for QPN4M elements with rubber material models. Strains are not available for this element when using rubber materials.
Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Models (105 and 109) are used.

2D Continuum (Plane Strain) QPN4L

Entity		Component							
Displacement	DX	DY	RSLT						
Stress	SX	SY	SXY	SZ	S1	S2	S3	SI	SE
Strain	StchX	StchY	StchXY	StchZ	Stch1	Stch2	Stch3	Stchl	StchE
Loading	FX	FY	RSLT						
Reaction	FX	FY	RSLT						
Residual Force	FX	FY	RSLT						
Reaction Stress	PX	PY							
Velocity	VX	VY	RSLT						
Acceleration	AX	AY	RSLT						
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPE
Creep Strain									
Rubber Stretches	StchX	StchY	StchXY	StchZ	Stch1	Stch2	Stch3	Stchl	StchE
TMB Stress									
TMB Strain									
TMB Plastic Strain									
TMB Creep Strain									

2D Plane Strain Two Phase Continuum TPN6P, QPN8P

Entity	Component										
Displacement	DX	DY	RSLT	Pres							
Stress	SX	SY	SXY	SZ	Pres	S1	S2	S3	SI	Sabs	SE
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Strain	EX	EY	EXY	EZ	EV	E1	E2	E3	EI	Eabs	EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Loading	FX	FY	RSLT	Q							
Reaction	FX	FY	RSLT	Q							
Residual Force	FX	FY	RSLT								
Reaction Stress	PX	PY									
Velocity	vX	VY	RSLT								
Acceleration	AX	AY	RSLT								
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPabs	EPE	CWMax EFSMax
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Creep Strain	ECX	ECY	ECXY	ECZ	EC1	EP2	EC3	ECI	ECabs	ECE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Rubber Stretches											
TMB Stress											
TMB Strain											
TMB PlasticStrain											
TMB Creep Strain											

Notes

Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Model (Model 109) is used.

2D Continuum Plane Strain (Explicit Dynamics) TPN3E, QPN4E

Entity	Component									
Displacement	DX	DY	RSLT							
Stress	SX	SY	SXY	SZ	S1	S2	S3	SI	Sabs	SE
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
Strain	EX	EY	EXY	EZ	E1	E2	E3	El	Eabs	EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Loading	FX	FY	RSLT							
Reaction	FX	FY	RSLT							
Residual Force	FX	FY	RSLT							
Reaction Stress	PX	PY								
Velocity	VX	VY	RSLT							
Acceleration	AX	AY	RSLT							
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPabs	EPE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Creep Strain	ECX	ECY	ECXY	ECZ	EC1	EP2	EC3	ECI	ECabs	ECE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Rubber Stretches										
TMB Stress										
TMB Strain										
TMB Plastic Strain										
TMB Creep Strain										

2D Continuum Axisymmetric Solid (Explicit Dynamics) TAX3E, QAX4E

Entity	Component									
Displacement	DX	DY	RSLT	Pres						
Stress	SX	SY	SXY	SZ	S1	S2	S3	SI	Sabs	SE
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
Strain	EX	EY	EXY	EZ	E1	E2	E3	El	Eabs	EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Loading	FX	FY	RSLT							
Reaction	FX	FY	RSLT							
Residual Force	FX	FY	RSLT							
Reaction Stress	PX	PY								
Velocity	VX	VY	RSLT							
Acceleration	AX	AY	RSLT							
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPabs	EPE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Creep Strain	ECX	ECY	ECXY	ECZ	EC1	EP2	EC3	ECI	ECabs	ECE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Rubber Stretches										
TMB Stress										
TMB Strain										
TMB Plastic Strain										
TMB Creep Strain										

2D Axisymmetric Solid Two Phase Continuum TAX6P, QAX8P

Notes

Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Model (Model 109) is used.

2D Continuum Axisymmetric Solid Fourier TAX3/6F, QAX4/8F

Entity	Component									
Displacement	DX	DY	DZ	RSLT						
Stress	SX	SY	SXY	SZ	S1	S2	S3	SI	Sabs	SE
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	Eadp		
Strain	EX	EY	EXY	EZ	E1	E2	E3	El	Eabs	EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	Eadp				
Loading	FX	FY	FZ	RSLT						
Reaction	FX	FY	FZ	RSLT						
Residual Force										
Reaction Stress	PX	PY								
Velocity	VX	VY	VZ	RSLT						
Acceleration	AX	AY	AZ	RSLT						
Plastic Strain										
Creep Strain										
Rubber Stretches										
TMB Stress										
TMB Strain										
TMB Plastic Strain										
TMB Creep Strain										

Axisymmetric Solid TAX3/6, QAX4/8, QAX4M, TXK6, QXK8

Entity	Component										
Displacement	DX	DY	RSLT								
Stress	SX	SY	SXY	Sz	S1	S2	S3	SI	Sabs	SE	
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Strain	EX	EY	EXY	EZ	E1	E2	E3	EI	Eabs	EE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Loading	FX	FY	RSLT								
Reaction	FX	FY	RSLT								
Residual Force	FX	FY	RSLT								
Reaction Stress	PX	PY									
Velocity	vX	VY	RSLT								
Acceleration	AX	AY	RSLT								
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPabs	EPE	CWMax EFSMax
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Creep Strain	ECX	ECY	ECXY	ECZ	EC1	EP2	EC3	ECI	ECabs	ECE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Rubber Stretches	Stch X	StchY	StchXY	StchZ	Stch1	Stch2	Stch3	Stchl	StchAbs	StchE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
TMB Stress											
TMB Strain											
TMB Plastic Strain											
TMB Creep Strain											

Notes

Rubber stretches are only available for QAX4M elements with rubber material models. Strains are not available for this element when using rubber materials Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Models (105 and 109) are used.

Axisymmetric Solid Large Strain QAX4L

Entity	Component										
Displacement	DX	DY	RSLT	Pres							
Stress	SX	SY	SXY	SZ	S1	S2	S3	SI	Sabs	SE	
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Strain	StchX	StchY	Stch XY	StchZ	Stch1	Stch2	Stch3	Stchl	StchE		
(continued)	DDAMA	CURRD	damam	DFUNC	SED	PWD	Eadp				
Loading	FX	FY	RSLT								
Reaction	FX	FY	RSLT								
Residual Force	FX	FY	RSLT								
Reaction Stress	PX	PY									
Velocity	vx	VY	RSLT								
Acceleration	AX	AY	RSLT								
Plastic Strain	EPX	EPY	EPXY	EPZ	EP1	EP2	EP3	EPI	EPE		
Creep Strain											
Rubber Stretches	StchX	StchY	StchXY	StchZ	Stch1	Stch2	Stch3	Stchl	StchE		
TMB Stress											
TMB Strain											
TMB Plastic Strain											
TMB Creep Strain											

3D Solid Continuum TH4/10, TH10S, PN6/12/15, PN6L/12L, HX8/16/20, HX8M, HX8L/16L, TH10K, PN15K, HX20K

Entity	Component											
Displacement	DX	DY	DZ	RSLT								
Stress	SX	SY	Sz	SXY	SYZ	SZX	S1	S2	S3	SI	Sabs	SE
(continued)	Damage	LogLife	DDAMA	CURRD	damam	DFUNC	SED	PWD	Eadp			
Strain	EX	EY	EZ	EXY	EYZ	EZX	E1	E2	E3	El	Eabs	EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Loading	FX	FY	FZ	RSLT								
Reaction	FX	FY	FZ	RSLT								
Residual Force	FX	FY	FZ	RSLT								
Reaction Stress	PX	PY	PZ									
Velocity	vX	VY	VZ	RSLT								
Acceleration	AX	AY	AZ	RSLT								
Plastic Strain	EPX	EPY	EPZ	EPXY	EPYZ	EPZX	EP1	EP2	EP3	EPI	EPabs	EPE
(continued)	DDAMA CURRD DAMAM DFUNC				SED	PWD	Eadp CWMax EFSMax					
Creep Strain	ECX	ECY	ECZ	ECXY	ECYZ	ECZX	EC1	EC2	EC3	ECI	ECabs	ECE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Rubber Stretches	Stch X	StchY	StchZ	StchXY	StchYZ	StchZX	Stch1	Stch2	Stch3		StchAbs	StchE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
TMB Stress												
TMB Strain												
TMB Plastic Strain												
TMB Creep Strain												

Notes:

Rubber stretches are only available for HX8M elements with rubber material models. Strains are not available for this element when using rubber materials.
Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Models (105 and 109) are used.

3D Solid Continuum Two Phase TH10P, PN12P, PN15P, HX16P, HX20P

Entity	Component											
Displacement	DX	DY	DZ	RSLT	Pres							
Stress	SX	SY	SZ	SXY	SYZ	SZX	Pres	S1	S2	S3	SI	Sabs SE
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Strain	EX	EY	EZ	EXY	EYZ	EZX	EV	E1	E2	E3	EI	Eabs EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp					
Loading	FX	FY	FZ	RSLT	Q							
Reaction	FX	FY	FZ	RSLT	Q							
Residual Force	FX	FY	FZ	RSLT								
Reaction Stress	PX	PY	PZ									
Velocity	vx	VY	VZ	RSLT								
Acceleration	AX	AY	AZ	RSLT								
Plastic Strain	EPX	EPY	EPZ	EPXY	EPYZ	EPZX	EP1	EP2	EP3	EPI	EPabs	
(continued)	DDAMA CURRD DAMAM DFUNC SED PWD Eadp CWMax EFSMax											
Creep Strain	ECX	ECY	ECZ	ECXY	ECYZ	ECZX	EC1	EC2	EC3	ECI	Eabs	
(continued)	DDAMA CURRD DAMAM DFUNC SED PWD Eadp											
Rubber Stretches												
TMB Stress												
TMB Strain												
TMB Plastic												
TMB Creep Strain												

Notes

Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Model (Model 109) is used.

3D Solid Continuum Explicit Dynamics TH4E, PN6E, HX8E

Isoflex Thin Plates TF3, QF4

Isoflex Thick Plates QSC4

Entity	Component														
Displacement	DZ	RSLT	THX	THY											
Stress	MX	MY	MXY	Sx	Sy	MMax	MMin	MI	β	Nabs	ME	Mx(T)	My(T)	Mx(B)	My(B)
(continued)	Util($\mathrm{T}^{\text {(}}$	Util(B)	Damage	LogLife	SED	PWD	Eadp								
Strain	BX	BY	BXY	EZX	EYZ	BMax	BMin	BI	β	Eabs	BE	SED	PWD	Eadp	
Loading	FZ	RSLT	MX	MY											
Reaction	FZ	RSLT	MX	MY											
Residual Force	FZ	RSLT	MX	MY											
Reaction Stress	PZ														
Velocity	VZ	RSLT													
Acceleration	AZ	RSLT													
Plastic Strain															
Creep Strain															
Rubber Stretches															
TMB Stress	SX	SY	SXY	SMax	SMin	SI	β	Sabs	SE	Damage	LogLife	SED	PWD	Eadp	
TMB Strain	EX	EY	EXY	EMax	EMin	El	β	Eabs	EE	SED	PWD	Eadp			
TMB Plastic Strain															
TMB Creep Strain															

Mindlin Thick Plates TTF6, QTF8

Entity	Component														
Displacement	DZ	RSLT	THX	THY											
Stress	MX	MY	MXY	Sx	Sy	MMax	MMin	MI	β	Nabs	ME	$M x(T)$	My(T)	Mx(B)	My(B)
(continued)	Util(T $^{\text {a }}$	Util(B)	Damage	LogLife	SED	PWD	Eadp								
Strain	BX	BY	BXY	EZX	EYZ	BMax	BMin	BI	β	Eabs	BE	SED	PWD	Eadp	
Loading	FZ	RSLT	MX	MY											
Reaction	FZ	RSLT	MX	MY											
Residual Force	FZ	RSLT	MX	MY											
Reaction Stress	PZ														
Velocity	VZ	RSLT													
Acceleration	AZ	RSLT													
Plastic Strain															
Creep Strain															
Rubber Stretches															
TMB Stress	SX	SY	SXY	SMax	SMin	SI	β	Sabs	SE	Damage	LogLife	SED	PWD	Eadp	
TMB Strain	EX	EY	EXY	EMax	EMin	El	β	Eabs	EE	SED	PWD	Eadp			
TMB Plastic Strain															
TMB Creep Strain															

2D Axisymmetric Membranes BXM2, BXM3

Entity	Component							
Displacement	DX	DY	RSLT					
Stress	Sx	Sz	SMax	SMin	SI	β	Sabs	SE
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD Eadp
Strain	Ex	Ez	EMax	EMin	El	β	Eabs	EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
Loading	FX	FY	RSLT					
Reaction	FX	FY	RSLT					
Residual Force	FX	FY	RSLT					
Reaction Stress	PX	PY						
Velocity	VX	VY	RSLT					
Acceleration	AX	AY	RSLT					
Plastic Strain	EPx	EPz	EPMax	EPMin	EPI	β	EPabs	EPE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
Creep Strain	ECx	ECz	ECMax	ECMin	ECI	β	ECabs	ECE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
Rubber Stretches								
TMB Stress								
TMB Strain								
TMB Plastic Strain								
TMB Creep Strain								

Note: Rubber models are available for use with the BXM2 element, however strains are output and rubber stretches are not available.

3D Space Membranes TSM3, SMI4

Entity	Component										
Displacement	DX	DY	DZ	RSLT							
Stress	Nx	Ny	Nxy	NMax	NMin	Ns	β	Nabs	Ne		
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp		
Strain	Ex	Ey	Exy	EMax	EMin	EI	β	Eabs	EE		
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
Loading	FX	FY	FZ	RSLT							
Reaction	FX	FY	FZ	RSLT							
Residual Force	FX	FY	FZ	RSLT							
Reaction Stress	PX	PY	PZ								
Velocity	vx	VY	VZ	RSLT							
Acceleration	AX	AY	AZ	RSLT							
Plastic Strain											
Creep Strain											
Rubber Stretches											
TMB Stress	SX	SY	SZ	SXY	SYZ	SZX	S1	S2	S3	SI Sab	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
TMB Strain	EX	EY	EZ	EXY	EYZ	EZX	E1	E2	E3	El Eab	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp				
TMB Plastic Strain											
TMB Creep Strain											

2D Thin Axisymmetric Shells BXS3

Entity				Component						
Displacement	DX	DY	RSLT	THZ	DU					
Stress	Nx	Nz	Mx	Mz	Ny	NMax	NMin	Ns	β	Nabs

2D Thick Axisymmetric Shells BXSI2, BXSI3

Entity	Component									
Displacement	DX	DY	RSLT	THZ						
Stress	Nx	Nz	Mx	Mz	Nxy	NMax	NMin	Ns	β	Nabs Ne
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
Strain	Ex	Ez	Bx	Bz	Exy	EMax	EMin	EI	β	Eabs EE
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
Loading	FX	FY	RSLT	MZ						
Reaction	FX	FY	RSLT	MZ						
Residual Force	FX	FY	RSLT	MZ						
Reaction Stress	PX	PY								
Velocity	vx	VY	RSLT							
Acceleration	AX	AY								
Plastic Strain										
Creep Strain										
Rubber Stretches										
TMB Stress	Sx	Sz	Sxy	SMax	SMin	SI	β	Sabs	SE	
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp	
TMB Strain	Ex	Ez	Exy	EPMax	EMin	El	β	Eabs	EE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
TMB Plastic Strain	EPx	EPz	EPxy	EPMax	EPMin	EPI	β	EPabs	EPE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			
TMB Creep Strain	ECx	ECz	ECxy	ECMax	ECMin	ECI	β	ECabs	ECE	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp			

Element Reference Manual

3D Flat Thin Shells TS3, QSI4

Entity	Component														
Displacement	DX	DY	DZ	RSLT	THX	THY	THZ								
Stress	Nx	Ny	Nxy	Mx	My	Mxy	NMax	NMin	Ns	β	Nabs	Ne	$\begin{aligned} & \mathrm{Nx}(\mathrm{~T}) / \\ & \mathrm{Mx}(\mathrm{~T}) \end{aligned}$	$\begin{aligned} & \mathrm{Ny}(\mathrm{~T}) / \\ & \mathrm{Ny}(\mathrm{~T}) \end{aligned}$	$\begin{aligned} & \mathrm{Nx}(\mathrm{~B}) / \\ & \mathrm{Mx}(\mathrm{~B}) \end{aligned}$
(continued)	$\begin{aligned} & \mathrm{Ny}(\mathrm{~B}) / \\ & \mathrm{My}(\mathrm{~B}) \end{aligned}$	Util(T)	Util(B)	MUtil(T $^{\text {a }}$	MUtil(B)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	$\mathrm{Fc}(\mathrm{T})$	Fc (B)	Eadp
Strain	Ex	Ey	Exy	Bx	By	Bxy	EMax	EMin	El	β	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	Eadp									
Loading	FX	FY	FZ	RSLT	MX	MY	MZ								
Reaction	FX	FY	FZ	RSLT	MX	MY	MZ								
Residual Force	FX	FY	FZ	RSLT	MX	MY	MZ								
Reaction Stress	PX	PY	PZ												
Velocity	vx	VY	VZ	RSLT											
Acceleration	AX	AY	AZ	RSLT											
Plastic Strain															
Creep Strain															
Rubber Stretches															
TMB Stress	SX	SY	SZ	SXY	SYZ	SZX	S1	S2	S3	SI	Sabs	SE			
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	Eadp							
TMB Strain	EX	EY	EZ	EXY	EYZ	EZX	E1	E2	E3	El	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
TMB Plastic Strain															
TMB Creep Strain															

3D Flat Thin Nonlinear Shell TSR6

Entity	Component														
Displacement	DX	DY	DZ	RSLT	THL1										
Stress	Nx	Ny	Nxy	Mx	My	Mxy	NMax	NMin	Ns	β	Nabs	Ne	$\begin{aligned} & \mathrm{Nx}(\mathrm{~T}) / \\ & \mathrm{Mx}(\mathrm{~T}) \end{aligned}$	$\begin{aligned} & \mathrm{Ny}(\mathrm{~T}) / \\ & \mathrm{Ny}(\mathrm{~T}) \end{aligned}$	$\begin{aligned} & N \times(B) / \\ & M \times(B) \end{aligned}$
(continued)	$\begin{aligned} & \mathrm{Ny}(\mathrm{~B}) / \\ & \mathrm{My}(\mathrm{~B}) \end{aligned}$	Util($\mathrm{T}^{\text {(}}$	Util(B)	MUtil(${ }_{\text {(}}$)	MUtil (B)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Fc (T)	Fc (B)
Eadp															
Strain	Ex	Ey	Exy	Bx	By	Bxy	EMax	EMin	El	β	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
Loading	FX	FY	FZ	RSLT	ML1										
Reaction	FX	FY	FZ	RSLT	ML1										
Residual Force	FX	FY	FZ	RSLT	ML1										
Reaction Stress	PX	PY	PZ												
Velocity	vx	VY	VZ	RSLT											
Acceleration	AX	AY	AZ	RSLT											
Plastic Strain															
Creep Strain															
Rubber Stretches															
TMB Stress	SX	SY	SZ	SXY	SYZ	SZX	S1	S2	S3	SI	Sabs	SE			
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	Eadp							
TMB Strain	EX	EY	EZ	EXY	EYZ	EZX	E1	E2	E3	El	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
TMB Plastic Strain	EPX	EPY	EPZ	EPXY	EPYZ	EPZX	EP1	EP2	EP3	EPI	EPabs	EPE	CWMax	EFSMax	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
TMB Creep Strain	ECX	ECY	ECZ	ECXY	ECYZ	ECZX	EC1	EC2	EC3	ECI	ECabs	ECE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								

Notes

TMB Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Model (Model 109) is used.

Element Reference Manual

Semilloof Shells TSL6, QSL8

Entity	Component														
Displacement	DX	DY	DZ	RSLT	THL1	THL2									
Stress	Nx	Ny	Nxy	Mx	My	Mxy	NMax	NMin	Ns	β	Nabs	Ne	$\begin{aligned} & \mathrm{Nx}(\mathrm{~T}) / \\ & \mathrm{Mx}(\mathrm{~T}) \end{aligned}$	$\begin{aligned} & \mathrm{Ny}(\mathrm{~T}) / \\ & \mathrm{My}(\mathrm{~T}) \end{aligned}$	$\begin{aligned} & \mathrm{Nx}(\mathrm{~B}) / \\ & \mathrm{Mx}(\mathrm{~B}) \end{aligned}$
(continued)	$\begin{aligned} & \mathrm{Ny}(\mathrm{~B}) / \\ & \mathrm{My}(\mathrm{~B}) \end{aligned}$	Util($\mathrm{T}^{\text {(}}$	Util(B)	MUtil(T $^{\text {a }}$	MUtil(B)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	$\mathrm{Fc}(\mathrm{T})$	$\mathrm{Fc}(\mathrm{B})$
(continued)	Eadp														
Strain	Ex	Ey	Exy	Bx	By	Bxy	EMax	EMin	El	β	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
Loading	FX	FY	FZ	RSLT	ML1	ML2									
Reaction	FX	FY	FZ	RSLT	ML1	ML2									
Residual Force	FX	FY	FZ	RSLT	ML1	ML2									
Reaction Stress	PX	PY	PZ												
Velocity	VX	VY	VZ	RSLT											
Acceleration	AX	AY	AZ	RSLT											
Plastic Strain															
Creep Strain															
Rubber Stretches															
TMB Stress	SX	SY	SZ	SXY	SYZ	SZX	S1	S2	S3	SI	Sabs	SE			
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
TMB Strain	EX	EY	EZ	EXY	EYZ	EZX	E1	E2	E3	El	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
TMB Plastic Strain	EPX	EPY	EPZ	EPXY	EPYZ	EPZX	EP1	EP2	EP3	EPI	EPabs	EPE	CWMax	EFSMax	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
TMB Creep Strain	ECX	ECY	ECZ	ECXY	ECYZ	ECZX	EC1	EC2	EC3	ECI	ECabs	ECE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								

Notes

TMB Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Model (Model 109) is used.

3D Thick Shells TTS3, TTS6, QTS4, QTS8

Entity	Component														
Displacement	DX	DY	DZ	RSLT	THX	THY	THZ								
Stress	Nx	Ny	Nxy	Mx	My	Mxy	Sx	Sy	NMax	NMin	β	Nabs	NE	$\begin{aligned} & N x(T) / \\ & M x(T) \end{aligned}$	$\begin{aligned} & \mathrm{Ny}(\mathrm{~T}) / \\ & \mathrm{My}(\mathrm{~T}) \end{aligned}$
(continued)	$\underset{\times(B)}{N \times(B) / M}$	$\begin{aligned} & \mathrm{Ny}(\mathrm{~B}) / \\ & \mathrm{My}(\mathrm{~B}) \end{aligned}$	Util($\mathrm{T}^{\text {a }}$	Util(B)	MUtil(T)	MUtil(B)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	$\mathrm{Fc}(\mathrm{T})$
(continued)	Fc(B)	Eadp													
Strain															
Loading	FX	FY	FZ	RSLT	MX	MY	MZ								
Reaction	FX	FY	FZ	RSLT	MX	MY	MZ								
Residual Force	FX	FY	FZ	RSLT	MX	MY	MZ								
Reaction Stress	PX	PY	PZ												
Velocity	vx	VY	VZ	RSLT											
Acceleration	AX	AY	AZ	RSLT											
Plastic Strain															
Creep Strain															
Rubber Stretches															
TMB Stress	SX	SY	SZ	SXY	SYZ	SZX	S1	S2	S3	SI	Nabs	SE			
(continued)	Damage	LogLife	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp						
TMB Strain	EX	EY	EZ	EXY	EYZ	EZX	E1	E2	E3	El	Eabs	EE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
TMB Plastic Strain	EPX	EPY	EPZ	EPXY	EPYZ	EPZX	EP1	EP2	EP3	EPI	EPabs	EPE	CWMax	EFSMax	
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								
TMB Creep Strain	ECX	ECY	ECZ	ECXY	ECYZ	ECZX	EC1	EC2	EC3	ECI	ECabs	ECE			
(continued)	DDAMA	CURRD	DAMAM	DFUNC	SED	PWD	Eadp								

Notes
TMB Plastic strain components CWMax and EFSMax are only available when the Smoothed Multi-crack Concrete Model (Model 109) is used.

2D Joints (for Bars, Plane Stress and Plane Strain) JNT3

Entity	Component						
Displacement	DX	DY	RSLT				
Stress	Fx	Fy	Damage	LogLife	SED	PWD	Eadp
Strain	Ex	Ey	SED	PWD	Eadp		
Loading	FX	FY	RSLT				
Reaction	FX	FY	RSLT				
Residual Force	FX	FY	RSLT				
Reaction Stress							
Velocity	VX	VY	RSLT				
Acceleration	AX	AY	RSLT				
Plastic Strain	EPx	EPy	SED	PWD	Eadp		
Creep Strain							
Rubber Stretches							
TMB Stress							
TMB Strain							
TMB Plastic Strain							
TMB Creep Strain							

2D Joints (for Engineering and Kirchhoff Beams) JPH3

Entity	Component								
Displacement	DX	DY	RSLT	THZ					
Stress	Fx	Fy	Mz	Damage	LogLife	SED	PWD	Eadp	
Strain	Ex	Ey	Bz	SED	PWD	Eadp			
Loading	FX	FY	RSLT	MZ					
Reaction	FX	FY	RSLT	MZ					
Residual Force	FX	FY	RSLT	MZ					
Reaction Stress									
Velocity	VX	VY	RSLT						
Acceleration	AX	AY	RSLT						
Plastic Strain	EPx	EPy	BPz	SED	PWD	Eadp			
Creep Strain									
Rubber Stretches									
TMB Stress									
TMB Strain									
TMB Plastic Strain									
TMB Creep Strain									

2D Joints (for Grillage Beams and Plates) JF3

Entity	Component							
Displacement	DZ	RSLT	THXZ	THY				
Stress	Fz	Mx	My	Damage	LogLife	SED	PWD	Eadp
Strain	Ez	Bx	By	SED	PWD	Eadp		
Loading	FZ	RSLT	MX	MY				
Reaction	FZ	RSLT	MX	MY				
Residual Force	FZ	RSLT	MX	MY				
Reaction Stress								
Velocity	VZ	RSLT						
Acceleration	AZ	RSLT						
Plastic Strain	EPx	EPy	BPz	SED	PWD	Eadp		
Creep Strain								
Rubber Stretches								
TMB Stress								
TMB Strain								
TMB Plastic Strain								
TMB Creep Strai								

2D Joints (for Axisymmetric Solids) JAX3

Entity	Component							
Displacement	DX	DY	RSLT					
Stress	Fx	Fy	Damage	LogLife	SED	PWD	Eadp	
Strain	Ex	Ey	SED	PWD	Eadp			
Loading	FX	FY	RSLT	MZ				
Reaction	FX	FY	RSLT	MZ				
Residual Force	FX	FY	RSLT	MZ				
Reaction Stress								
Velocity	vx	VY	RSLT					
Acceleration	AX	AY	RSLT					
Plastic Strain	EPx	EPy	SED	PWD	Eadp			
Creep Strain								
Rubber Stretches								
TMB Stress								
TMB Strain								
TMB Plastic Strain								
TMB Creep Strain								

2D Joints (for Axisymmetric Shells) JXS3

Entity	Component							
Displacement	DX	DY	RSLT	THZ				
Stress	Fx	Fy	Mz	Damage	LogLife	SED	PWD	Eadp
Strain	Ex	Ey	Bz	SED	PWD	Eadp		
Loading	FX	FY	RSLT	MZ				
Reaction	FX	FY	RSLT	MZ				
Residual Force	FX	FY	RSLT	MZ				
Reaction Stress								
Velocity	vx	VY	RSLT					
Acceleration	AX	AY	RSLT					
Plastic Strain	EPx	EPy	BPz	SED	PWD	Eadp		
Creep Strain								
Rubber Stretches								
TMB Stress								
TMB Strain								
TMB Plastic Strain								
TMB Creep Strain								

3D Joints (for generall 3 dof connection) JNT4, JL43

(for Bars, Solids, Space Membranes and Semiloof Shell Corners)

3D Joints (for generall 6 dof connection) JSH4, JL46

(for Engineering, Kirchhoff and Semiloof Beam End Nodes)

Entity	Component										
Displacement	DX	DY	DZ	RSLT	THX	THY	THZ				
Stress	Fx	Fy	Fz	Mx	My	Mz	Damage	LogLife	SED	PWD	Eadp
Strain	Ex	Ey	Ez	Bx	By	Bz	SED	PWD	Eadp		
Loading	FX	FY	FZ	RSLT	MX	MY	MZ				
Reaction	FX	FY	FZ	RSLT	MX	MY	MZ				
Residual Force	FX	FY	FZ	RSLT	MX	MY	MZ				
Reaction Stress											
Velocity	vx	VY	VZ	RSLT							
Acceleration	AX	AY	AZ	RSLT							
Plastic Strain	EPx	EPy	EPz	BPx	BPy	BPz	SED	PWD	Eadp		
Creep Strain											
Rubber Stretches											
TMB Stress											
TMB Strain											
TMB Plastic Strain											
TMB Creep Strain											

3D Joints (for Semilloof Element Mid-side Nodes) JSL4

Entity	Component									
Displacement	DX	DY	DZ	RSLT	THL1	THL2				
Stress	Fx	Fy	Fz	M1	M2	Damage	LogLife	SED	PWD	Eadp
Strain	Ex	Ey	Ez	B1	B2	SED	PWD	Eadp		
Loading	FX	FY	FZ	RSLT	ML1	ML2				
Reaction	FX	FY	FZ	RSLT	ML1	ML2				
Residual Force	FX	FY	FZ	RSLT	ML1	ML2				
Reaction Stress										
Velocity	vx	VY	VZ	RSLT						
Acceleration	AX	AY	AZ	RSLT						
Plastic Strain	EPx	EPy	EPz	BP1	BP2	SED	PWD	Eadp		
Creep Strain										
Rubber Stretches										
TMB Stress										
TMB Strain										
TMB Plastic Strain										
TMB Creep Strain										

Thermall Bars BFD2/3, BFS2/3, BFX2/3

Entity		Component	
Potential	PHI		
Gradient	Gx	Eadp	
Flux	qx	Eadp	
Reaction	Q		

Thermal Links LFD2, LFS2, LFX2

Entity		Component
Potential	PHI	
Gradient	n.a.	Eadp
Flux	qx	Eadp
Reaction	Q	

Plane and Axisymmetric Field TFD3/6, QFD4/8, TXF3/6, QXF4/8

Entity			Component	
Potential	PHI			
Gradient	Gx	Gy	Eadp	
Flux	qx	qy	Eadp	
Reaction	Q			

Solid Field TF4/10, PF6/12/15, HF8/16/20, TF10S, PF6C/12C, HF8C/16C

Entity	Component				
Potential	PHI				
Gradient	Gx	Gy	Gz	Eadp	
Flux	qx	qy	qz	Eadp	
Reaction	Q				

Plane and Axisymmetric Hygro-Thermal THT3/6, QHT4/8, TXHT3/6, QXHT4/8

Entity				Component			
Nodal variable	T						
Temperature flux	qX	qY	qZ	RSLT			
Water vapour flux	JVX	JyY	JVZ	RSLT			
Liquid water flux	JWX	JWY	JWZ	RSLT			
Temperature gradient	GTX	GTY	GTZ	RSLT			
Water saturation gradient	GWX	GWY	GWZ	RSLT			
Other hygro-thermal results	SW	ROWC	PV	DH	TEFH	POR	TC

Hygro-thermal results components:

SW = Water saturation
ROWC = Liquid water content
$P V=$ Water vapour pressure
DH $=$ Degree of hydration
TEFH $=$ Effective time of hydration
$P O R=$ Porosity
$T C=$ Thermal conductivity
PMD = Water permeability
$\mathrm{Hr}=$ Relative humidity

Solid Hygro-Thermal THT4/10, PHT6/12/16, HHT8/16/20

Element Reference Manual

Nodal variable	T							
Temperature flux	qX	qY	qZ	RSLT				
Water vapour flux	JVX	JyY	JVZ	RSLT				
Liquid water flux	JWX	JWY	JWZ	RSLT				
Temperature gradient	GTX	GTY	GTZ	RSLT				
Water saturation gradient	GWX	GWY	GWZ	RSLT				
Other hygro-thermal results	SW	ROWC	PV	DH	TEFH	POR	TC	PMD

Hygro-thermal results components:

SW = Water saturation
ROWC = Liquid water content
$P V=$ Water vapour pressure
DH $=$ Degree of hydration
TEFH $=$ Effective time of hydration
$P O R=$ Porosity
$T C=$ Thermal conductivity
PMD $=$ Water permeability
$\mathrm{Hr}=$ Relative humidity

2D Interface Element IPN4, IPN6, IAX4, IAX6

Entity			Component		
Displacement	Dx	Dy	RSLT		
Stress	Sx	Sy	Damage	LogLife	Eadp
Strain	Ex	Ey	Eadp		
Loading	Fx	Fy	RSLT	MZ	
Reaction	Fx	Fy	RSLT	MZ	
Residual Force	Fx	Fy	RSLT		
Reaction Stress					
Velocity	Vx	Vy	RSLT		
Acceleration	Ax	Ay	RSLT		
Plastic Strain					
Creep Strain					
Rubber Stretches					
TMB Stress					
TMB Strain					
TMB Plastic Strain					
TMB Creep Strain					

2D Two Phase Interface Elements IPN6P, IPN8P

Entity	Component					
Displacement	Dx	Dy	RSLT	Press		
Stress	Sx	Sy	Q	Damage	LogLife	Eadp
Strain	Ex	Ey	dP	Eadp		
Loading	Fx	Fy	RSLT			
Reaction	Fx	Fy	RSLT	Q		
Residual Force	Fx	Fy	RSLT	Q		
Reaction Stress						
Velocity	Vx	Vy	RSLT			
Acceleration	Ax	Ay	RSLT			
Plastic Strain						
Creep Strain						
Rubber Stretches						
TMB Stress						
TMB Strain						
TMB Plastic Strain						
TMB Creep Strain						

3D Interface Element IS6 IS8 IS12 IS16

Entity			Component		
Displacement	Dx	Dy	RSLT		
Stress	Sx	Sy	Sz	Ez	Eadp
Strain	Ex	Ey	Eadp		
Loading	Fx	Fy	RSLT		
Reaction	Fx	Fy	RSLT		
Residual Force	Fx	Fy	RSLT		
Reaction Stress					
Velocity	Vx	Vy	RSLT		
Acceleration	Ax	Ay	RSLT		
Plastic Strain					
Creep Strain					
Rubber Stretches					
TMB Stress					
TMB Strain					
TMB Plastic Strain					
TMB Creep Strain					

3D Two Phase Interface Element IS12P, IS16P

Entity	Component						
Displacement	Dx	Dy	Dz	RSLT	Press		
Stress	Sx	Sy	Sz	Q	Damage	LogLife	Eadp
Strain	Ex	Ey	Ez	dP	Eadp		
Loading	Fx	Fy	Fz	RSLT			
Reaction	Fx	Fy	Fz	RSLT	Q		
Residual Force	Fx	Fy	Fz	RSLT	Q		
Reaction Stress							
Velocity	vx	Vy	Vz	RSLT			
Acceleration	Ax	Ay	Az	RSLT			
Plastic Strain							
Creep Strain							
Rubber Stretches							
TMB Stress							
TMB Strain							
TMB Plastic Strain							
TMB Creep Strain							

Appendix L: Joint Element

Compatibility

Joint Element Compatibility and Notes

Joint elements are compatible with the following elements:

Joint Element	Compatible Finite Elements	
JNT3	Bars	BAR2, BAR3
	2D Plane Stress	$\begin{aligned} & \text { TPM3, TPM6, QPM4, QPM8, TPK6, QPK8, QPM4M, } \\ & \text { TPM3E, QPM4E, } \end{aligned}$
	2D Plane Strain	TPN3, TPN6, QPN4, QPN8, TNK6, QNK8, TPN6P, QPN8P, QPN4M, QPN4L
JPH3	2D Beams	BMI2, BMI21, BMI2N, BMI3N, BMI3, BMI3N, BMI2X, BMI3X, BM3, BMX3
JF3	2D Grillage	GRIL
	2D Plates	TF3, QF4, TF6, QSC4, TTF6, QTF8
JNT4	3D Bars	BRS2, BRS3,
	3D Solids	TH4, TH10, PN6, PN12, PN15, HX8, HX16, HX20, TH10P, PN12P, PN15P, HX16P, HX20P, HX8M, PN6L, PN12L, HX8L, HX16L, TH10S
	Space	TSM3, SMI4

Joint Element	Compatible Finite Elements	
	Membranes	
	3D Shell	TSR6 (corner nodes)
JL43	Semiloof Shells	TSL6, QSL8 (corner nodes)
JSH4	3D Beams	
	3D Shells	TS3, QSI4, TTS3, TTS6, QTS4, QTS8
JL46	Semiloof Beams	BSL3, BSL4, BXL4 (corner nodes)
JSL4	Semiloof Beams	BSL3, BSL4, BXL4 (mid-side nodes)
	Semiloof Shells	QSL8, TSL6 (mid-side nodes)
JAX3	Axisymmetric Solids	$\begin{aligned} & \text { TAX3, TAX6, QAX4, QAX8, TAX6P, QAX8P, } \\ & \text { TAX3E, } \frac{\text { QAX4E, }}{\text { TAX6P, }} \text { TXK6, QXK8, } \underline{\text { QAX4M, }} \end{aligned}$
JXS3	Axisymmetric Shells	BXS3, BXSI2, BXSI3,

Notes on the use of Joints

1. The nodes of a joint element need not be coincident, but for correct response the distance between them should be as small as possible. This is particularly important with joint elements which contain rotational degrees of freedom, since the stiffness matrix is not formulated using engineering beam theory. This means that a joint moment is independent of both shear force and its length. For instance, the moment calculated with a joint length of zero will remain the same magnitude at any other joint length. These effects can be exacerbated significantly in dynamic analyses (e.g. eigenvalue extraction or Hilber dynamics). Non-coincident nodes will lead to additional forces in the solution which are not in equilibrium (usually small and swamped, but could be significant sometimes). It is not recommend to have joints "hanging off" the side of a modelled structure, having a large stiffness associated.
2. If eccentricity is defined for a joint element (JPH3/JSH4/JL46), the joint will behave in the same manner as an infinitesimally short eccentric beam.
3. Joints do not support any geometric nonlinearity. They may be used, however, in geometrically nonlinear analyses but will themselves remain geometrically linear (that is, infinitesimal strain is assumed and large deformation effects are ignored).
4. The strain for a joint element is measured as follows:

- Strain measure $=($ displacement for 2 nd node $)-($ displacement for 1 st node)
- This strain being measured in the local axis system. Therefore, if node 1 is restrained, node 2 would need to be displaced in the negative local ($\mathrm{x} / \mathrm{y} / \mathrm{z}$) direction to generate compressive contact forces.

4. The rotation output for a joint element is measured in radians.

Index

2

2D Continuum, 196, 203, 210, 216, 221, 228, 235, 240, 246, 251, 257, 264, 270, 275, 281, 287, 293
2D Interface, 530, 534
2D Joints, 424, 428, 433, 437, 442
2D Line, 557
2D Phreatic Surface, 572
2D Plane Strain Beam, 186
2D Point, 548
2D Rigid Surface, 564
2DThick Beams, 85

3

3D Continuum, 300, 307, 314, 321, 328, 335
3D Interface, 538, 543
3D Joints, 447, 452, 457, 462
3D Line, 554
3D Phreatic Surface, 574
3D Point, 551
3D Rigid Surface, 567
3D Surface, 560

A

arch, 101, 148, 155, 163
axial force, 71
Axisymmetric Shells, 364, 371
Axisymmetric Solid, 257, 264, 270, 275
Axisymmetric Solid Continuum, 281
Axisymmetric Solid Two-Phase, 287

B

bar elements 2D, 68 3D, 73
BAR2, 68, 631
BAR3, 68, 631
Bars, 68, 73
BEAM, 85, 186
Beam Elements, 80, 85, 94, 109, 119, 130, 142, 149, 157, 164, 171, 179, 186
Beams, 94, 142, 149
BFD2, 468, 674
BFD3, 468, 674
BFS2, 476, 674
BFS3, 476, 674
BFX2, 472, 674
BFX3, 472, 674
BM3, 142, 637

BMI2, 94, 634
BMI21, 102, 635, 636
BMI21W, 122
BMI22, 102, 635, 636
BMI22W, 122
BMI2N, 640
BMI2X, 634
BMI3, 94, 634
BMI31, 102, 635, 636
BMI31W, 122
BMI33, 102, 635, 636
BMI33W, 122
BMI3N, 640
BMI3X, 634
BMX21, 112
BMX21W, 132
BMX22, 112, 635, 636
BMX22W, 132
BMX3, 149, 637
BMX31, 112, 635, 636
BMX31W, 132
BMX33, 112
BMX33W, 132
BRS2, 73, 632
BRS3, 73, 632
BS3, 157, 638
BS4, 157, 638
BSL3, 171, 639
BSL4, 171, 639
BSX4, 164, 638
BXL4, 179, 639
BXM2, 412, 658
BXM3, 412, 658
BXS3, 364, 371, 660
BXSI2, 371, 661
BXSI3, 661

C

cable structures, 73
cables, 72, 76
circular plates, 416
composite, 504, 509

delamination, 530

E

Element Loads, 577
Engineering Beam Elements, 593, 595
Engineering Beams, 80
Environmental Temperature Loading, 580
Excessive Aspect Ratios, 587
Excessive Element Curvature, 587
Excessive Warping, 588
Explicit Dynamics, 642, 646, 647

Face loading, 581
Face Loads On 2D Continuum
Elements, 581
Face Loads On 3D Continuum
Elements, 582
For Thermal Bars, 581
Field, 468, 472, 476, 480, 483, 486, 489, 494, 499, 504, 509
Flat Thin Shells, 378, 384
Fourier Ring, 293
fracture mechanics, 245
frame, 101, 146, 154, 162, 169, 177, 185
friction contact, 534

GRIL, 80, 633
grillage, 80
Grillage Elements, 592
groundwater, 493

heat conduction, $471,482,488$
HF16, 499, 674
HF16C, 509, 674
HF20, 499, 674
HF8, 499, 674
HF8C, 509, 674
HHT16, 524, 675
HHT20, 524, 675
HHT8, 524, 675
HX16, 300, 652
HX16L, 328, 652
HX16P, 341, 653
HX20, 300, 652
HX20K, 314
HX20P, 341, 653
HX8, 300, 652
HX8E, 654
HX8L, 328, 652
HX8M, 307, 652
Hygro-thermal
axisymmetric elements, 520
plane elements, 516

Hygro-Thermal solid elements, 524

IAX4, 530, 677, 678
IAX6, 530
IAX6P, 534
Interface, 530, 534, 538, 543
IPM4, 530
IPM6, 530
IPN12P, 679, 680
IPN16P, 679, 680
IPN4, 530, 677, 678
IPN6, 530, 677, 678
IPN6P, 534
IS12, 538, 543, 679, 680
IS16, 538, 543, 679, 680
IS6, 538
IS8, 538
Isoflex Plates, 350, 354

JAX3, 437, 669
JF3, 433, 668
JL43, 452, 671
JL46, 457, 672
JNT3, 424, 666
JNT4, 447, 671
Joint Element Compatibility, 681
Joints, 428, 433, 437, 442, 457, 462, 682

JPH3, 428, 667
JSH4, 457, 672

JSL4, 462, 673
JXS3, 442, 670

K

Kirchhoff Beams, 142, 149, 157, 164

LFD2, 480, 674
LFS2, 483, 674
LFX2, 486, 674
LM2, 557
LM3, 557
LMS3, 554
LMS4, 554
Load types, 580
local axes
standard joint element, 589
standard line element, 589
standard surface element, 589
LUSAS Element Types, 12

Mass Lumping in LUSAS, 617
membrane elements, 412, 417
Membranes, 417
Mid-side Node Centrality, 587
Mindlin Plates, 358
modelling reinforcement, 77
Moments of Inertia Definitions, 619

Newton-Cotes Integration Points, 609
Non-Structural Mass, 548, 551, 554, 557, 560
Numerically Integrated Beam Elements, 591

Output Notation for Principal Stresses, 615
Overview, 7
perforated thick plates, 357
PF12, 499, 674
PF12C, 509, 674
PF15, 499, 524, 674
PF6, 499, 674
PF6C, 509, 674
Phreatic, 572
Phreatic Surface 3D Elements, 574
PHS2, 572
PHS3, 574
PHS4, 574
PHT12, 524, 675
PHT16, 675
PHT6, 524, 675
pipes, 370, 377, 416
Plane Field, 489, 494
plane frames, 146, 154
Plane Strain Continuum, 221, 228, 235, 240, 246, 251

Plane Stress Continuum, 196, 203, 210, 216

Plates, 350, 354, 358
PM2, 548
PM3, 551
PN12, 300, 652
PN12L, 328, 652
PN12P, 341, 653
PN15, 300, 652
PN15K, 314
PN15P, 341, 653
PN6, 300, 652
PN6E, 335, 654
PN6L, 328, 652
pressure vessels, 370, 377

QAX4, 257, 650
QAX4E, 281, 647
QAX4F, 293, 649
QAX4L, 270, 651
QAX4M, 264, 650
QAX8, 257, 287, 650
QAX8F, 293, 649
QF4, 350, 655
QFD4, 494, 674
QFD8, 494, 674
QHT4, 516, 675
QHT8, 516, 675
QHXT4, 520
QHXT8, 520
QM4, 560
QM8, 560
QNK8, 240, 643
QPK8, 210, 641

QPM4, 196, 641
QPM4E, 216, 642
QPM4M, 203, 641
QPM8, 196, 641
QPN4, 221, 643
QPN4E, 246, 646
QPN4L, 235, 644
QPN4M, 228, 643
QPN8, 221, 643
QPN8P, 251, 645, 648
QSC4, 354, 656
QSI4, 378, 662
QSL8, 391, 664
QTF8, 358, 657
QTS4, 400, 665
QTS8, 400, 665
QXF4, 489, 674
QXF8, 489, 674
QXHT4, 675
QXHT8, 675
QXK8, 275, 650

R2D2, 564
R3D3, 567
R3D4, 567
reinforced concrete, 77
Results Notation
Key to Results Tables, 621
Key to Slideline Results, 629
Rigid, 564, 567, 574
Rigid Surface 3D Elements, 567

S

SED, 629
Semiloof Beams, 171, 179
Semiloof Shells, 391
Shear Areas, 611
shell structures, 399
Shells, 364, 371, 378, 384, 391, 400
sign convention
2d continuum element, 597
2 d engineering beam elements, 593, 595
grillage elements, 592
standard bar element, 591
standard beam eccentricity, 596
standard beam element, 591
standard field element, 602
standard joint element, 602
standard membrane element, 601
standard plate element, 597
thick shell eccentricity, 601
thick shell element, 599
thin shell eccentricity, 599
SMI4, 417, 659
Solid Continuum, 300, 307, 314, 321, 328, 335
Solid Continuum Crack Tip, 314
Solid Field, 499, 504, 509
space frames, 163, 170
space frames., 185
Space Membranes, 417
Standard 2D Continuum Element, 597
Standard 3D Continuum Element, 597
Standard Bar Element, 591
Standard Beam Eccentricity, 596
Standard Beam Element, 591
Standard Field Element, 602
Standard Joint Element, 602
local axes, 589

Standard Line Element local axes, 589
Standard Membrane Element, 601
Standard Plate Element, 597
Standard Surface Element, 589
Strain energy density, 629
Structural Bars, 68, 73
Surface Mass Elements, 560

TAX3, 257, 650
TAX3E, 281, 647
TAX3F, 293, 649
TAX6, 257, 650
TAX6F, 293, 649
TAX6P, 287
temperature, 472
temperature distribution, 493
Tetrahedral, 321
TF10, 499, 674
TF10S, 504, 674
TF3, 350, 655
TF4, 499, 674
TFD3, 494, 516, 674
TFD6, 494, 674
TH10, 300, 652
TH10K, 314
TH10P, 341
TH10S, 321, 652
TH4, 300, 652
TH4E, 335, 654
thermal analysis, 498
Thermal Bars, 468, 472, 476
Thermal Links, 480, 483, 486
Thick Shell Eccentricity, 601

Thick Shell Element, 599
Thick Shell Nodal Rotation, 605
Thick Shells, 400, 665
Thin Shell Eccentricity, 599
Thin Shell Element, 598
THT10, 524, 675
THT3, 675
THT4, 524, 675
THT6, 516, 675
TM3, 560
TM6, 560
TNH10P, 653
TNK6, 240, 643
Torsional Constant, 612
TPK6, 210, 641
TPM3, 196, 641
TPM3E, 216, 642
TPM6, 196, 641
TPN3, 221, 643
TPN3E, 246, 646
TPN6, 221, 643
TPN6P, 251, 645, 648
Transforming Results Directions, 630
trusses, 76
TS3, 378, 662
TSL6, 391, 664
TSM3, 417, 659
TSR6, 384, 663
TTF6, 358, 657
TTS3, 400, 665
TTS6, 400, 665
two phase, 341
TXF3, 489, 674
TXF6, 489, 674
TXHT3, 520, 675
TXHT6, 520, 675

TXK6, 275, 650

UDL Loads on Shells, 585

[^0]: MATERIAL PROPERTIES NONLINEAR 86 CEB-FIP
 (Concrete creep model to CEB-FIP Model Code 1990)

