
LUSAS Programmable
Interface (LPI)

Customisation and Automation Guide

Version 15

LUSAS Programmable Interface (LPI)
Customisation and Automation Guide

LUSAS Version 21.0 : Issue 1

LUSAS
Forge House, 66 High Street, Kingston upon Thames,

Surrey, KT1 1HN, United Kingdom

Tel: +44 (0)20 8541 1999
Fax +44 (0)20 8549 9399
Email: info@lusas.com
http://www.lusas.com

Distributors Worldwide

Copyright ©1982-2023 LUSAS

All Rights Reserved.

Table of Contents

i

Table of Contents
Introduction 1

Introduction ...1
Examples of capabilities ..2
Scripts ..2
Topics covered in this guide ..3
LPI Developer Guide ...3

Getting started with the LUSAS Programmable Interface (LPI) 5
LPI Command Bar...5
Identifying LPI functions ..6

Writing LPI functions to a file ..6
Writing LPI functions to the Text Output window ...7

Details of LPI functions ..8
LUSAS Programmable Interface (LPI) online help ..8
Searching LPI help ..9
Some function basics ... 10

Customising the user interface 13
Capabilities ... 13

Modifying standard toolbars ... 13
Customized toolbar buttons ... 14
User toolbar buttons .. 15
Startup templates .. 16

Getting started with VBS 19
Programming syntax ... 20

Some simple rules ... 20
Visual Basic Script online tutorials .. 21

Example VB scripts 23
Simple user script example ... 23

Deleting a range of loadcases .. 23
Running a script ... 26

Supplied script examples... 26
Example script: Attributes.vbs .. 27
Example script: Results.vbs ... 30
Example script: Arbitrary_section.vbs ... 33
Running a script from a menu .. 35
Adding a user menu ... 36

More advanced scripts .. 36

Table Of Contents

ii

Introduction

1

Introduction
Introduction

LUSAS software is highly customisable. The built-in LUSAS Programmable Interface
(LPI) allows the customisation and automation of modelling and results processing
tasks and creation of user-defined menu items, dialogs and toolbars as a means to
access those user-defined resources. It can also be used for transferring data between
LUSAS and other software applications, and to control other programs from within
LUSAS Modeller, or control LUSAS Modeller from other programs.

With LPI, any user can automate the creation of complete structures, either in LUSAS
or from third-party software, carrying out design checks, optimising members and
outputting graphs, spreadsheets of results and custom reports. Because everything
carried out by a user is recorded in a LUSAS Modeller session file, anything that
LUSAS can do, can also be controlled by another application via the LUSAS
Programmable Interface. This means that you can view and edit a recorded session,

Introduction

2

parameterise those commands, turn them into sub-routines, add loops and other
functions to the scripts and create a totally different application or program - using the
proven core technology of LUSAS.

In addition to the accessing and customising LUSAS Modeller via the LUSAS
Programmable Interface, user-defined material models (written in Fortran) can be
compiled and built into a customised LUSAS Solver executable by using the LUSAS
Material Model Interface (LUSAS MMI).

Examples of capabilities
By using any ActiveX compliant scripting language, such as VB.Net, C#, VBScript,
C++, Python, Perl, JScript etc. to access LUSAS facilities and functionality, you can:

 Create user-defined menu items, dialogs and toolbars

 Interrogate all aspects of a LUSAS model

 Customise modelling operations

 Create parameterised models

 Automate repetitive tasks

 Import CAD geometry and properties

 Make direct links to Microsoft Word / Excel, or other programs for import or
export of data

 Perform simple / codified design checks and, when used with automated
iterative analysis, optimise structural member sizes and configurations, slab
reinforcement quantities, etc.

Scripts
In their simplest form script files can be used to store a sequence of LUSAS commands
for later playback. Some examples of use include the creation of start-up templates to
pre-load the Attributes Treeview of the LUSAS Modeller user interface with selected
attributes for a particular analysis; the setting of default mesh or material types, or
preferred colour schemes; or defining specific model orientations for use when saving
model views for use in reports.

When LUSAS is run, a session file is created recording each step of the model
generation in Visual Basic Script (.vbs) - or with an .lvb file extension from version 20
onwards) - one of the most commonly used and easily understood languages. Editing of
a session file can be used to define a similar model with new parameters. When the
script is re-run in LUSAS, a new user-defined model can be easily and rapidly
generated from the parameters defined. A Macro Recorder facility in LUSAS also
provides the means to record a sub-set of commands for a task, for saving and re-use.

Topics covered in this guide

3

User-generated scripts can be controlled by creating dialogs that may include
parametric variables, check boxes, drop-downs etc.

Varied uses of scripts include reading of geometric data, such as column dimensions,
section properties and span lengths / storey heights etc., from a spreadsheet to
automatically build multi-span bridge or building models; rapid generation of
parametrically-idealised wind farm base structures, or for automating the creation of
numerous load combinations and envelopes.

A set of example scripts are provided in LUSAS to assist in the understanding of
standard concepts including file handling, how to access LUSAS geometry / attribute
data, and how to import / export data from / to Microsoft Word or Excel, or other
programs.

Topics covered in this guide
The aim of this guide is to help you locate and use the supplied tools which will enable
you to write scripts and work more efficiently. No programming experience or
knowledge is needed to complete the examples shown. The guide covers:

 Getting started with the LUSAS Programmable Interface (LPI)

 Identifying LPI Functions

 Customising the interface

 Getting started with VBS

 A simple example script

 Creating your own menus

LPI Developer Guide
A separate LPI Developer Guide is also available covering more advanced topics:

 Creating dialogs using VB.NET

 LUSAS via COM

 LUSAS Material Model Interface

Introduction

4

LPI Command Bar

5

Getting started with
the LUSAS
Programmable
Interface (LPI)

LPI Command Bar
The LPI Command Bar can be added to the user interface by selecting the menu item
View> LPI Command Bar

Everything that can be selected within LUSAS Modeller can be initiated by typing
commands into the LPI Bar. For instance, when the Save button is selected in LUSAS
Modeller, it is actually calling the function database.save()

Getting started with the LUSAS Programmable Interface (LPI)

6

Therefore, to save a model, you can type in the LPI command bar:

call database.save()

and then press Enter:

Commands can also be concatenated using a colon (:) character.

For example:

Txt = "Hello World" : call msgbox(txt)

Identifying LPI functions
There are two ways of identifying which LPI function corresponds to an operation
carried out within LUSAS:

 By writing LPI functions to a file

 By writing LPI functions to the Text Output window.

Writing LPI functions to a file
1. Select the menu item File > Script > Start Recording...

2. Pick menu item(s), for example select Tools > Vertical Axis and click OK.

3. Select the menu item File > Script > Stop Recording

Identifying LPI functions

7

A .vbs file (.lvb file from version 20 onwards) will be saved to a chosen location. This
file can then be edited with a text editor to see the LPI commands. An example follows:

$ENGINE=VBScript

' LUSAS Modeller session file

' Created by LUSAS 21.0-0c1 - Modeller Version 21.0.1601.44691

' Created at 14:17 on Thursday, September 28 2023

' (C) Finite Element Analysis Ltd 2023

'

call setCreationVersion("21.0-0c1, 21.0.1601.44691")

'

'*** Settings/Options/Properties change

call database.setVerticalDir("Y")

Re-running commands with Modeller
 Commands can be re-run within Modeller by selecting File > Script > Run

Script... and choosing the previously saved .vbs file.

 The Run Script button can also be selected to run scripts.

Writing LPI functions to the Text Output window
1. Select the menu item File > Model Properties > Options > Advanced... >

New option...

2. Type echocommands and then click on “Boolean”. Tick the option “Value”.

3. Click OK on all dialog buttons presented.

Now, for every operation carried out within LUSAS Modeller, the corresponding
command will be written to the Text Output window.

For example: If you click on the Save button, you will see the following:

Getting started with the LUSAS Programmable Interface (LPI)

8

Details of LPI functions
Details of all LPI functions along with an explanation of what they do, the arguments
they take (if any), the returned values, etc, can be found by selecting the LUSAS menu
item Help > LPI Reference Manual

LUSAS Programmable Interface (LPI) online help
The left-hand pane of the LUSAS Programmable Interface help system contains a
filtered list of all classes and functions that can be accessed within Modeller.

Clicking one of these classes or functions gives a description of the function with its
input arguments and return values in the right-hand pane. Any argument shown in
square brackets is optional.

Details of LPI functions

9

The creation of a new model will require a call to the Modeller.newDatabase function
and from this other functions may be called to add to, manipulate or interrogate the
state of the objects in the Modeller database.

Searching LPI help
Searching of LPI help is possible. For example, a search for “save” will return results
that include the database.save() function:

Getting started with the LUSAS Programmable Interface (LPI)

10

Some function basics
Note that the above database.save() function it does not take any parameters and does
not return anything. It simply saves the model.

The database.saveAs(filename) function is an example of a function that does take a
parameter (in this case, just one) comprising a string with the path and file name of the
new model:

To specify that you are passing a string to the function and not any other type of data,
strings need to be placed between double quotes: (“ ”)

Details of LPI functions

11

An example of a function that takes one parameter and returns a named attribute:

database.createLoadingConcentrated("MyConcentratedLoad")

This function creates a concentrated load attribute. The parameter it takes is the name
of the load attribute (for example: MyConcentratedLoad), and it returns an object of the
class ‘Loading Concentrated’:

The corresponding entry in the Attributes Treeview is shown as follows:

At the moment this load has a value of 0 for all its components. If you want it to be a
load of, say, 10 units in the X direction, you also need to use one of the functions of the
Loading Concentrated class:

Getting started with the LUSAS Programmable Interface (LPI)

12

As stated previously, the parameters in square brackets [] are optional, so do not need
to be defined, hence just px and py are specified.

Capabilities

13

Customising the
user interface

Capabilities
With LPI you can create user-defined menu items, dialogs and toolbars. Dialogs are
covered in the LUSAS Programmable Interface (LPI) Developer Guide. This section
covers customisation of:

 Modifying standard toolbars

 Customised and User toolbar buttons

 Start-up templates

Modifying standard toolbars
Toolbars consist of buttons which can be used to drive the software.

Within Modeller these can be customised from the View> Toolbars menu item.

Customising the user interface

14

Customized toolbar buttons
Pre-programmed buttons can be added to the toolbars from the View> Toolbars >
Customize > Customize tab, by simply dragging and dropping buttons as required.

Capabilities

15

User toolbar buttons
User toolbar buttons can be added and programmed to carry out user defined actions by
navigating to selecting View > Toolbars > Customize > Customize tab and then
selecting User from the Categories list

The bitmaps on the toolbar buttons may be changed by modifying the file C:\<LUSAS
Installation Folder>Programs\Config\userToolbar.bmp

Calling functions from user buttons:
The actions carried out when a button on a user tool bar is chosen are defined on the
View > Toolbars > Customize > User dialog.

For example, if you often need to define a concentrated load of, say, 10 in X, 20 in Y,
and 30 in Z, you can type the LPI function in the user button 1 text box, so that every
time that button was selected, that load attribute would be created in the Attribute
Treeview:

Call database.createLoadingConcentrated(“TypicalLoad").set

Concentrated(10,20,30,0,0,0,0,0.0)

Or, if you often want to run a script called MyScript.vbs, then you would type: fileopen
“C:\LUSAS Scripts\MyScript.vbs” user button 2 text box as shown below:

Customising the user interface

16

Adding User buttons to toolbar menus
User buttons can be added to the toolbar menu by dragging and dropping into place.

Startup templates
Startup templates can be used to pre-load the Attributes Treeview with selected
attributes for a particular analysis, set default mesh or material types, or define
preferred colour schemes - to name just a few uses.

User-defined startup templates are created by recording the setting of a variety of
selections and then associating the recording with a template name.

You can use any VBS file as a template, and you can also add templates from the “New
Model” form:

Capabilities

17

Now every time that you create a new blank model, you will be able to choose this
template, which will run the script just after creating the model.

Advanced operations
For more advanced operations a macro facility is available to enable commonly used
commands to be grouped together or abbreviated.

Macro functions should be written in Visual Basic and saved in a file. For example:

sub dp(x,y,z)

call database.createPoint(x,y,z)

end sub

The macro file is registered from the Advanced button on the LPI command bar.

The functions in the macro file may then be activated from the LPI command bar by
typing the function name and arguments e.g. dp 1,2,3 or call dp(1,2,3)

Customising the user interface

18

Capabilities

19

Getting started with
VBS
LUSAS Modeller records every operation that it carries out in a session file. This file
contains standard calls to LUSAS LPI function in a Visual Basic Script syntax. The file
can be replayed to carry out exactly the same actions again. Alternatively the file can
be modified to carry out different actions.

The procedure is as follows:

1. To start by recording a script select File > Script > Start Recording...

2. Carry out a series of operations.

3. Stop recording by selecting File > Script > Stop Recording

4. Edit the .vbs file (.lvb file from version 20 onwards) to cover the cases
required.

With a little programming syntax knowledge loops can be used to make the script more
“tidy” and variables can be added to make the script more “flexible”

Editing can be carried out with the standard Windows Notepad (accessible from Start>
All Programs> Accessories> Notepad) or 3rd party products such as Notepad++

Getting started with VBS

20

Programming syntax
Some simple rules

• First line of the visual basic script file must be $ENGINE=VBSCRIPT

• Lines to be treated as comments only must start with an apostrophe (‘)

Basic Operators allowed include:

• Arithmetic: +, -, /, *

• Comparison: =, >, <, >=, <=, <>

• Concatenation: &

• Logical: Not, And, Or

Conditionals

• If ... Then ... Else

• Loops: For ... Next

Variables

• Can be strings, numbers etc

• Names must begin with a letter

• Names must not contain an embedded full-stop (period) “.”

• Names must not exceed 255 characters

• Names must be unique

• There is no need to “declare” variables

Programming syntax

21

Arrays

• Can contain strings or numbers etc

• Can be “called” individually

• Always use (0) as the first index of the array.

Example:

This is a one dimensional array with 3 items. The first element has been assigned a
value of 10, the second 20, and the third 30.

Note that the UBound function returns the largest available subscript of an array:

call msgbox(“Upper bound of array=” & UBound(MyArray))

So the UBound function returns 2 for the array in the example above.

Visual Basic Script online tutorials
More detailed online tutorials showing how to write visual basic script can be found on
the internet. Here are just a few examples (with links applicable at the time of writing):

• English: http://www.tizag.com/vbscriptTutorial/

• English: http://www.tutorialspoint.com/vbscript/index.htm

• Chinese: http://www.w3school.com.cn/vbscript/

http://www.tizag.com/vbscriptTutorial/
http://www.tutorialspoint.com/vbscript/index.htm
http://www.w3school.com.cn/vbscript/

Getting started with VBS

22

Simple user script example

23

Example VB scripts
Simple user script example

Deleting a range of loadcases
A simple user script is to be written to illustrate how a range of loadcases can be
deleted from the Analyses Treeview.

In Version 15.2 of LUSAS the only way to delete loadcases via the user interface was
to click on each of them in turn in the Analyses Treeview and press the delete key. In
later versions of LUSAS this is no longer the case, and loadcases can be deleted from
the Analyses Treeview singly or by multiple selection, so the script example does not
provide any more functionality for these versions. However, it does provide a good
introduction to generating user scripts.

First make a recording
1. Choose File > Start Recording...

2. Specify a file name

3. Delete loadcase 1 manually.

4. Choose File > Stop Recording

5. Open the script file created:

Example VB scripts

24

In this file note that:

• Line 1: This line is common in all scripts. Do not remove or modify this line.

• Line 7: Specifies the version of LUSAS used to generate the script. This line
is common in all scripts. Do not remove or modify this line.

• Line 12: This is the line that deletes Loadcase 1

• Lines other than those above: These lines are comments: they are ignored.
Comments always start with an apostrophe (‘)

If the Loadcase names are of the form Loadcase 1, Loadcase 2 etc and you wanted to
delete Loadcase 2 to Loadcase 50 you need to edit the previous script and insert a For
... Next loop as seen at the bottom of this next image:

Now you are actually calling the deleteLoadset function 49 times, taking the argument
Loadcase 2, Loadcase 3, Loadcase 4, etc.

Simple user script example

25

Note. The function deleteLoadset is used instead of deleteLoadcase because the
deleteLoadset function also deletes combinations and envelopes.

If you look for information about this function in the LPI online help, you will see that
the loadset can be specified by Loadset name (which is how it has been done in this
example) but it can also be specified by Loadset ID.

By ID it would be easier to write the script as follows:

And if in the original model you wanted to delete all the even loadcases you would add
‘Step 2’ to line 12:

Alternatively if you wanted to delete all the even-numbered loadcases you could
append ‘2T50I2’) to the main LPI command:

call database.deleteLoadsets(2T50I2)

This would delete from Loadcase 2 to Loadcase 50 in increments of 2.

Save the file as delete_loadcases.vbs

Example VB scripts

26

Running a script
A script can be run within LUSAS Modeller as follows:

1. Choose File > Script > Run Script

2. Browse for and select <script_name.vbs>

Supplied script examples
LUSAS supplies many script examples (that are installed as part of a software
installation) which demonstrate how to carry out various functions and tasks. These
may be found at this location:

C:\<LUSAS Installation Folder>\Programs (x86)\Scripts\LPIExamples

Note. In the printed versions of the two scripts that follow word wrapping has taken
place. Only lines that are preceded by an apostrophe (‘) are comment lines. Other lines
containing VB script should not be word-wrapped.

Supplied script examples

27

Example script: Attributes.vbs
This supplied script creates a single planar surface and then creates and assigns to that
surface: a regular mesh, material and geometry. A support is created and assigned to a
line; a concentrated load is created and assigned to a point as loadcase 1; and a face
load is created and assigned to a line as loadcase 2.

$ENGINE=VBScript

' Create and assign attributes

'---
-

' Create new database

call newdatabase()

' Create Surface

call geometryData.setAllDefaults()

call geometryData.setCreateMethod("planar")

call geometryData.addCoords(0.0, 0.0, 0.0)

call geometryData.addCoords(40.0, 0.0, 0.0)

call geometryData.addCoords(40.0, 20.0, 0.0)

call geometryData.addCoords(0.0, 20.0, 0.0)

call database.createSurface(geometryData)

' Create Attribute : Surface Mesh 1

call database.createMeshSurface("Plane
Stress").setRegular("QPM8", 0, 0, false)

' Modify selection

call selection.add("Surface", "1")

' Attribute : Plane Stress : Assign to Primary selection :

call assignment.setAllDefaults().setLoadset("Loadcase 1")

call database.getAttribute("Mesh", "Plane
Stress").assignTo(selection, assignment)

call database.updateMesh()

' Create Attribute : Isotropic Material 1

Example VB scripts

28

set attr = database.createIsotropicMaterial("Mild Steel",
200.0E3, 0.3, 7.8E3)

set attr = nothing

' Attribute : Mild Steel : Assign to Primary selection :

call assignment.setAllDefaults()

call database.getAttribute("Material", "Mild
Steel").assignTo(selection, assignment)

' Create Attribute : Surface Geometric 1

call
database.createGeometricSurface("Thickness=1").setSurface(1.0,
0.0)

' Attribute : Thickness=1 : Assign to Primary selection :

call assignment.setAllDefaults()

call database.getAttribute("Geometric",
"Thickness=1").assignTo(selection, assignment)

' Create Attribute : Fixed in XY

call database.createSupportStructural("Fixed in
XY").setStructural("R", "R")

' Modify selection

call selection.add("Line", "4")

' Attribute : Fixed in XY : Assign to Primary selection :

call
assignment.setAllDefaults().setSelectionNone().addToSelection(
"Line")

call database.getAttribute("Supports", "Fixed in
XY").assignTo(selection, assignment)

' Create Attribute : Concentrated Load 1

call database.createLoadingConcentrated("Concentrated Load
1").setConcentrated(0.0, -100.0)

Supplied script examples

29

' Modify selection

call selection.add("Point", "3")

' Attribute : Concentrated Load 1 : Assign to Primary
selection :

call
assignment.setAllDefaults().setSelectionNone().addToSelection(
"Point").setLoadset("Loadcase 1")

' assign load to selected point in loadcase 1

call database.getAttribute("Loading", "Concentrated Load
1").assignTo(selection, assignment)

' Define face load

call database.createLoadingFace("Distributed 1").setFace(0.0,
10.0, 0.0)

' Select top face

call selection.remove("All")

call selection.add("Line", "3")

' Create new loadcase and set active

call database.createLoadcase("Loadcase 2", "Structural")

set loadset = database.getLoadset("Loadcase 2", "model")

call view.setActiveLoadset(loadset)

set loadset = nothing

' set assignment object with selected face hof and loadcase 2

set hof0 = database.getObject("Surface", "1")

call assignment.setAllDefaults().setLoadset("Loadcase
2").addHof(hof0)

' assign face load to top face in loadcase 2

call database.getAttribute("Loading", "Distributed
1").assignTo(selection, assignment)

Example VB scripts

30

Example script: Results.vbs
This supplied script writes a set of results to the text window for a prior selection of
features made in the Modeller view window.

$ENGINE=VBScript

' Extracting Results

'--

 set textWindow = getTextWindow()

' set results type

 entity="Displacement"

' get array of results component names

 component=view.getResultsComponentNames(entity)

' extract array of selected nodes

 nodes=selection.getObjects("Node","All")

' check nodes in selection

 if ubound(nodes) >= 0 then

' loop selected nodes

 for i = 0 to ubound(nodes)

' get node object

 set node = nodes(i)

' get element Number

 num=node.getID()

' write line to text window

 text = "Node=" & num

 for j=0 to ubound(component)

' get averaged nodal result

 res=node.getResults(entity,component(j))

 text=text & " " & component(j) & " = " & res

Supplied script examples

31

 next

 textWindow.writeLine(text)

 next

' set results type

 entity ="Force/Moment - Thick Shell"

' get array of results component names

 component=view.getResultsComponentNames(entity)

' extract array of selected elements

 elements= selection.getObjects("Element","All")

' loop selected elements

 for i = 0 to ubound(elements)

' set element object

 set elt = elements(i)

' get element Number

 num=elt.getID()

' extract array of element nodes

 nodes = elt.getNodes()

' loop element nodes

 for k = 0 to ubound(nodes)

' get node object

 set node = nodes(k)

' extract node data

 nnum = node.getID()

 node.getXYZ x,y,z

' get vector of element nodal results

 vecRes=elt.getNodeVectorResults(k,entity)

 nc=ubound(vecRes)

Example VB scripts

32

' build output text string

 text = "Elt=" & num & " Node=" & nnum & " x=" & x & " y="
& y & " z=" & z

 for j = 0 to nc

 text=text & " " & component(j) & " = " & vecRes(j)

 next

 textWindow.writeLine(text)

 next

' extract number of Gauss points

 ngp = elt.countGaussPoints()

' loop gauss points

 for k = 0 to ngp-1

 vecRes = elt.getGaussVectorResults(k,entity)

 nc=ubound(vecRes)

' build output text string

 text = "Elt=" & num & " GP=" & k

 for j = 0 to nc

 text=text & " " & component(j) & " = " & vecRes(j)

 next

 textWindow.writeLine(text)

 next

 next

 else

 AfxMsgBox "Run an analysis and select some nodes as input to
this script"

 end if

Supplied script examples

33

Example script: Arbitrary_section.vbs
This supplied script allows creation of an Arbitary Section

$ENGINE=VBScript

'*** We need a separate variable to represent the main model.

'*** This is because "db" (whilst appearing to be a variable) is
truly a

'*** function that returns the "current" database, and the
"current"

'*** database is about to be the temporary ASPC database

set maindb = db

'*** Create a special temporary database to contain all the
geometry and attributes of the new section

set aspc = newASPCDatabase()

'*** "db" and "aspc" now both refer to the temporary ASPC
database

'*** It is good practice to avoid using "db" as it may confuse
other programmers

'*** Create a surface

call geometryData.setAllDefaults()

call geometryData.setCreateMethod("planar")

call geometryData.addCoords(6.0, 19.0, 0.0)

call geometryData.addCoords(22.0, 19.0, 0.0)

call geometryData.addCoords(22.0, 28.0, 0.0)

call geometryData.addCoords(6.0, 28.0, 0.0)

call geometryData.setLowerOrderGeometryType("coordinates")

Example VB scripts

34

call aspc.createSurface(geometryData)

'*** Optionally at this point we could assign materials, mesh,
line thickness, etc

'*** following the usual conventions of the LPI

'*** Provide the default mesh

call aspc.updateMesh()

'*** Convert the whole of the ASPC database into an ASPC utility
in the main model

call
maindb.createArbitrarySection("arbitrary_section").fromDatabase(a
spc)

'*** Save the aspc database in case we need to modify it in
future

call aspc.saveas("C:\temp\aspc.mdl")

'*** We no longer want the aspc database

call aspc.close()

'*** "db" and "maindb" now both refer to the main database

It is important to note that sections that have been created this
way cannot directly be modified in the LUSAS UI.

However they can be modified from the LPI, in exactly the same
way, just starting with the saved section:

'*** Retrieve the ASPC model we saved earlier

Supplied script examples

35

set aspc = openASPCDatabase("C:\temp\aspc.mdl")

'*** make some changes here

'*** Convert the whole of the ASPC database into an ASPC utility
in the main model

call
maindb.createArbitrarySection("arbitrary_section").fromDatabase(a
spc)

'*** Save the aspc database in case we need to modify it in
future

call aspc.saveas("C:\temp\aspc.mdl")

'*** We no longer want the aspc database

call aspc.close()

Running a script from a menu
When a number of related scripts have been created it is often more convenient to add a
Modeller menu item to access those scripts, rather than by opening the scripts using the
File > Script > Run Script menu item.

To allow this, one supplied script contains the code to create a menu containing all of
the other supplied scripts. To add the menu item to Modeller’s main menu:

1. Choose File > Script > Run Script

2. Browse to the C:\<LUSAS Installation Folder>\Programs
(x86)\scripts\LPIExamples folder

3. Select LPIExamplesMenu.vbs

Example VB scripts

36

This menu script example adds a Test menu name to the main menu, and has a number
of menu items with sub-menus that each trigger a script.

Keeping the LPI menu visible
To keep the LPI menu visible:

1. Open the file C:\<LUSAS Installation Folder>\Programs
(x86)\Config\afterNewModel.vbs

2. Add these lines to the bottom of the file:

Scripts= getSystemString("scripts")

call fileopen(scripts&"\LPIExamples\LPIExampleMenu.vbs")

Adding a user menu
A user menu can be added by editing this file in your user folder:

"%USERPROFILE%\Documents\LUSAS210\UserScripts\" -> C:\User\<Your
username>\Documents\LUSAS210\UserScripts\Usermenu.vbs

More advanced scripts
Many more advanced scripts can be downloaded from the protected User Area of the
LUSAS website at:

http://www.lusas.com/protected/download/scripts.html

http://www.lusas.com/protected/download/scripts.html

Version 15

LUSAS, Forge House, 66 High Street, Kingston upon Thames, Surrey, KT1 1HN, UK
Tel: +44 (0)20 8541 1999 | Fax: +44 (0)20 8549 9399 | info@lusas.com | www.lusas.com

	Introduction
	Introduction
	Examples of capabilities
	Scripts
	Topics covered in this guide
	LPI Developer Guide

	Getting started with the LUSAS Programmable Interface (LPI)
	LPI Command Bar
	Identifying LPI functions
	Writing LPI functions to a file
	Re-running commands with Modeller

	Writing LPI functions to the Text Output window

	Details of LPI functions
	LUSAS Programmable Interface (LPI) online help
	Searching LPI help
	Some function basics

	Customising the user interface
	Capabilities
	Modifying standard toolbars
	Customized toolbar buttons
	User toolbar buttons
	Calling functions from user buttons:
	Adding User buttons to toolbar menus

	Startup templates
	Advanced operations

	Getting started with VBS
	Programming syntax
	Some simple rules
	Basic Operators allowed include:
	Conditionals
	Variables
	Arrays

	Visual Basic Script online tutorials

	Example VB scripts
	Simple user script example
	Deleting a range of loadcases
	First make a recording

	Running a script

	Supplied script examples
	Example script: Attributes.vbs
	Example script: Results.vbs
	Example script: Arbitrary_section.vbs
	Running a script from a menu
	Keeping the LPI menu visible

	Adding a user menu

	More advanced scripts

