

Solver Reference Manual

LUSAS
Forge House, 66 High Street, Kingston upon Thames,
Surrey, KT1 1HN, United Kingdom
Tel: +44 (0)20 85411999
Fax +44 (0)20 85499399
Email: info@lusas.com
http://www.lusas.com
Distributors Worldwide
Copyright © 1982-2023 LUSAS
All Rights Reserved.

Table of Contents

Notation xi
Chapter 1 Introduction 1
Introduction. 1
LUSAS Data Chapters 1
Chapter 2 Syntax and Data Preparation 9
Reading and Writing LUSAS Data Syntax 9
How To Read Syntax Lines In This Manual 9
Data Delimitation 10
Command Words 11
Titles 11
Numerical Values 11
Simple Arithmetic Expressions 11
Comments 12
Line Continuation 12
Implied Sequence Generation. 12
Incremental Line Generation. 13
TABLE Input. 14
Chapter 3 LUSAS Data Input 15
System Parameters 15
Problem Definition. 18
Problem. 18
Units definition 18
Options 19
Nonlinear strain measure. 19
Data Groups 20
Element Topology 20
Element Topology Parasitic 23
Solution Order 24
Solver Type 26
Nodal Coordinates 31
Node Coordinates 32
Local Coordinate Systems 33
Spacing Nodal Coordinates on a Line 37
Spacing Nodal Coordinates on an Arc 40
Spacing Nodal Coordinates in a Quadrilateral 43
Copying Nodes 47
Renumbering Nodes 48
Deleting Nodes 48
Geometric Properties 49
Examples of Geometric Properties 50
Composite Geometry 52
Lamina Directions 53
Geometric Assignments 54
Profile Sets 55
Material Properties 59
Linear Material Properties 60
Linear Isotropic Model 60
Linear Orthotropic Plane Stress Model 61
Linear Orthotropic Plane Strain Model 61
Linear Orthotropic Thick Model 62
Linear Orthotropic Axisymmetric Model 63
Linear Orthotropic Solid Model 64
Linear Anisotropic Model. 65
Linear Rigidity Model 65
Matrix Properties 71
Joint Material Properties 72
Standard Linear Joint Model 72
General Linear Joint Model 73
Standard Nonlinear Elasto-Plastic Joint Model 74
General Nonlinear Elasto-Plastic Joint Model 75
Nonlinear Joint Model For Smooth Contact 76
Nonlinear Joint Model For Frictional Contact 77
Visco-Elastic Dampers 80
Lead-Rubber Bearing with Hysteretic damping 82
Sliding/Frictional Pendulum System with Hysteretic Damping 84
Piecewise Linear Elastic Joint Model 87
Piecewise Linear Hysteresis Joint Model 89
Piecewise Linear Compound Hysteresis Joint Model 92
Axial Force Dependent Piecewise Linear Elastic Joint Model 94
Axial force dependent multi-linear inelastic joint model 95
Axial force dependent multi-linear coupled joint model 97
Axial force dependent multi-linear coupled joint model with hysteresis 99
Axial force dependent multi-linear fibre joint model 102
Axial force dependent inelastic multi-linear fibre joint model 104
Laterally Coupled Piecewise Linear Elastic Joint Model 106
User-Supplied Nonlinear Joint Properties 108
Material Properties Mass 110
Nonlinear Material Properties 110
Plastic Definition. 112
Stress Potential 114
Yield Stress 115
Hardening Curve 115
Heat Fraction 116
Example of Plastic Definition 116
Optimised Von Mises Model 117
Drucker-Prager Model 118
Tresca Model 120
Non-Associated Mohr-Coulomb Model 122
Modified Mohr-Coulomb / Tresca model 124
Hoek-Brown Model 128
Modified Cam-clay Model. 131
Duncan-Chang Soil Model 133
Barcelona Basic Model 136
Elasto-Plastic Stress Resultant Model 138
User-Supplied Nonlinear Material Properties 139
Viscous Definition 143
Viscous Definition 143
Stress Potential 144
Creep Properties 145
Creep Properties General 145
Creep Properties AASHTO | CEB_FIP_90 | CHINESE_HYDRAULIC | EUROCODE_2 | IRC | JTG 3362 | MC10 147
User Supplied Creep Properties 150
Visco Elastic Properties 152
User Supplied Viscoelastic Properties 154
Damage Material 155
Damage Properties 155
User Supplied Damage Properties 157
Smoothed Multi-Crack Concrete Model 158
Transient Smoothed Multi-Crack Concrete Model 164
Masonry Material Model 171
Composite Matrix Failure Model 174
Two-Phase Material 174
K_{0} Initialisation 179
Rubber Material Properties 183
Rubber Material Models 183
Volumetric Crushing Model 186
Piecewise Linear Material Model 189
Design Code Concrete Models 191
Generic Polymer Model. 194
Generic Polymer Model with Damage 195
2D Elasto-Plastic Interface Model 201
3D Elasto-Plastic Interface Model 202
Delamination Interface Properties 204
Mohr-Coulomb Interface Model 205
Resin Cure Model 210
Shrinkage 214
Shrinkage Properties General 214
Shrinkage Properties AASHTO | CEB-FIP 90 | EUROCODE 2 |IRC TG
3362 | MC10 215
Shrinkage Properties User 217
Field Material Properties 217
Isotropic Field Model 218
Plane Orthotropic Field Model 218
Orthotropic Solid Field Model 219
Isotropic Concrete Heat of Hydration Model 219
Orthotropic Concrete Heat of Hydration Model 221
Orthotropic Solid Concrete Heat of Hydration Model 221
Linear Variation Convection/Radiation Model 222
Nonlinear Variation Convection/Radiation Model 223
Hygro-Thermal Material Properties 224
Hygro-Thermal Linear 225
Hygro-Thermal Concrete. 225
Material Assignments 228
Composite Material 229
Composite Assignments 231
Element Ages 232
Activate/Deactivate Elements 233
Data Input Examples for Tunnel Excavation 236
Drained/Undrained Properties 242
Damping Properties 243
Slidelines 243
Slideline Properties 247
User-Defined Slideline Properties 249
Slideline Surface Definition 251
Slideline Surface Automatic 253
Slideline Assignments 253
Slideline Assignments Materials. 259
Thermal Surfaces 260
Heat Transfer by Conduction and Convection 260
Heat Transfer by Diffuse Radiation 262
Thermal Gap Properties Linear 263
Thermal Gap Properties General 264
Thermal Contact Properties 265
Thermal Radiation Properties. 266
Thermal Environment Properties 266
Thermal Radiation Symmetry 267
Thermal Surface Symmetry Assignment 268
Thermal Surface Definition 268
Thermal Surface Property Assignments 269
Thermal Assignment 270
Radiation Shading 272
Radiation View Factor Read 273
View Factor Output 274
Environmental Node Definition 275
Environmental Node Assignments 276
Nodal Freedoms 278
Freedom Template 279
Cartesian Sets 280
Cylindrical Sets 283
Transformed Freedoms 286
Constraint Equations 286
Support Conditions 289
Coupled Analysis 299
Initialisation of the Coupled Datafile 300
Reading from the Coupled Analysis Datafile 300
Writing to the Coupled Analysis Datafile 301
Load Curves 302
Structural Loading 302
Load Case Definition 304
Load Variable Definition 304
Prescribed Variables 305
Incremental Prescribed Variables (PDSP) 305
Total Prescribed Variables (TPDSP) 305
Concentrated Loads (CL) 306
Element Loads 307
Element Loads (ELDS) 307
Distributed Loads 307
Uniformly Distributed Loads (UDL) 308
Face Loads (FLD) 308
Global Face Loads (FLDG) 308
Body Forces 309
Constant Body Forces (CBF) 309
Body Force Potentials (BFP) 310
Element Body Force Potentials (BFPE) 311
Velocity and Acceleration 311
Prescribed Velocities (VELOCITY) 312
Prescribed Accelerations (ACCELERATION) 313
Examples of Acceleration and Velocity Curves 314
Viscous Support Loads (VSL) 318
Initial Stresses and Strains 318
Initial Stresses and Strains at Nodes (SSI) 319
Initial Stresses/Strains for Elements (SSIE) 319
Initial Stresses and Strains at Gauss Points (SSIG) 320
Residual Stresses 321
Residual Stresses at Nodes (SSR) 321
Residual Stresses for Elements (SSRE) 322
Residual Stresses at Gauss Points (SSRG) 322
Target Stresses and Strains 323
Target Stresses and Strains at element nodes (TSSIE) 323
Target Stresses and Strains at Gauss Points (TSSIG) 324
Average Target Stresses and Strains for Element (TSSIA) 325
Temperature Loads 325
Temperature Loads at Nodes (TEMP) 325
Temperature Loads for Elements (TMPE) 326
General Point/Patch Loads 327
Search Area Definition 327
General Point Load Definition 328
General Patch Load Definition 329
General Point and Patch Loading Assignment. 329
Overburden 332
Phreatic Surface 335
Thermal Field Loading 338
Total Prescribed Variables (TPDSP) 338
Initial conditions (TMPE) 339
Rate of internal heat (\& mass) generation at nodes (RGN) 339
Face heat (\& mass) fluxes (FFL) 340
Rate of internal heat (\& mass) generation, constant for element (RBC) 340
Rate of internal heat (\& mass) generation per unit volume at nodes (RBV)341
Rate of internal heat (\& mass) generation for an element, variable at nodes (RBVE) 341
Environmental boundary conditions (ENVT) 342
Temperature load case 343
Temperature dependent environmental boundary conditions (TDET) 343
Temperature dependent rate of internal heat generation (RIHG) 344
User defined rate of internal heat generation (RIHG USER) 345
Temperature Load Assignments 345
TDET Load Assignments 346
RIHG Load Assignments 346
Target Values and Load Optimisation 346
Target Value Definition 347
Equality Definition 349
Inequality Definition 350
Object Function Definition 352
Residual Minimisation 353
Load Variable lock-in 354
Linearised Load Optimisation Solution 354
Curve Definition 354
Curve Definition 355
Curve Assignment 358
The use of Load Curves with Fourier Elements 362
Retained Freedoms 362
Output Control 363
Element Output Control. 364
Node Output Control 365
Load Combinations 369
Enveloping Results 370
Superelements 370
How to use Superelements 371
Creating Superelements 372
Using Superelements in an Analysis 372
Recovering Superelement Results 372
Utilising User Modal Data in an Analysis. 373
A Typical Superelement Analysis. 373
Component Mode Synthesis Using Superelements 375
Opening Superelement Files 376
Superelement Creation 377
Superelement Definition 377
Constants 377
Output 378
Generalised Coordinates 378
Modal Supports 378
Using Superelements 379
Utilising User Modal Data 380
User Modal Data Neutral File 380
User Modal Data Results Files 383
Recovery of Superelement Data and Results 384
Distribution of Mass and Stiffness in Modal Synthesis 385
Examples of Using Superelements 386
Groundwater flow controls 391
Phi-c Reduction 392
Reset Deformation 393
Steady State 394
Analysis Control 394
Nonlinear Control 395
Incrementation 395
Step Reduction 398
Iterations 399
Bracketing 400
Branching 401
Convergence 401
Output 403
Incremental Couple Read 403
Incremental Couple Write 403
Termination 404
Slideline 406
Application of Loads with Nonlinear Control 407
Application Of Force Loading 408
Dead Load and Live Load 410
Follower Forces 412
General Loading Rules 412
Displacement Reset 413
Dynamic Control 413
Incrementation 413
Constants 414
Incremental Couple Read 415
Incremental Couple Write 415
Output 415
Termination 416
Dynamic Integration Schemes 419
Selecting the Time Step 419
Transient Control 420
Incrementation 420
Constants 421
Incremental Couple Read 421
Incremental Couple Write 421
Groundwater flow commands. 421
Output 422
Termination 422
Viscous Control 424
Incrementation 424
Automatic Viscous Control 424
Rate Dependent 426
State 426
Incremental Couple Read 427
Incremental Couple Write 427
Output 427
Termination 428
Eigenvalue Control 431
Eigenvalue Control 432
Maximal/Minimal Eigenvalues 432
Eigenvalue/Frequency Range 433
Convergence 434
Eigenvalue Output. 434
Guyan Control 437
Constants 437
Modal Damping Control 439
Constants 439
Material Properties 439
Modes 439
Spectral Control 442
Constants 442
Modal damping. 442
Excitation 443
Spectral Curve 443
Harmonic Response Control 444
Constants 444
Frequencies 445
Viscous Damping 445
Structural Damping 445
Harmonic Loading 446
Fourier Control 447
Creating a Plot File 449
Restart Facilities 449
Writing to a Restart File 449
Reading from a Restart File 450
Re-Solution 451
End_stage 452
End 453
Appendix A LUSAS User Options 455
LUSAS User Options 455
LUSAS User Options by Category 461
Appendix B Nonlinear Hardening Material Convention 467
Nonlinear Hardening Material Convention 467
Appendix C Material Model Interface 471
Solver User Interface Routines 471
Software Required 473
Programming Rules 473
Modification of External Arguments 473
Verification 473
External Error Diagnosis 473
Argument Definition Codes 474
Declaration 474
User Defined Constitutive Models 475
Continuum models 475
User Material Properties Input 476
Evaluation of the Modulus Matrix 477
Nonlinear Stress Recovery 478
Stress/Strain Formulation 478
Nonlinear State Variable Output 478
Verification 479
User Defined Resultant Models 487
Resultant Models 487
Resultant User Material Properties Input 488
Evaluation of the Modulus Matrix 489
Nonlinear Stress Recovery 490
Nonlinear State Variable Output 490
Verification 490
User Defined Joint Models 496
User Joint Properties Input. 497
Evaluation of the Modulus Matrix 497
Nonlinear Stress Recovery 497
Verification 498
User Defined Creep Models 504
Introduction 504
Creep Laws 504
Creep Properties Input 504
Evaluation of Creep Strains 505
Verification 505
User Defined Damage Models 508
Introduction 508
Damage Variable 508
Damage Properties Input 508
Verification 509
User Defined Friction Models 510
Introduction 510
Nonlinear Friction Law 511
Nonlinear Friction Parameter Input 511
Verification 511
User-Defined Rate of Internal Heat Generation 513
Introduction 513
User RIHG Parameter Input 514
Evaluation of RIHG 514
Verification 515
Utility Routines 519
Introduction 519
A Cross sectional area
Ap Plastic area
As, Asy, Asz Effective shear area
A1 ... An Nodal cross sectional areas
$\mathbf{a r}_{\mathbf{r}}$ Mass Rayleigh damping constant
$\boldsymbol{\alpha}$ Coefficient of thermal expansion
$\boldsymbol{\alpha}_{\mathrm{s}}$ Softening parameter
$\alpha_{x}, \alpha_{y}, \alpha_{z}, \alpha_{x y}, \alpha_{x z}$, Orthotropic thermal expansion coefficients
$\alpha_{y z}$
$\alpha_{x}, \alpha_{y}, \alpha_{z}$ Angular accelerations (radians $/ \sec ^{2}$)
$\mathbf{b}_{\mathbf{r}}$ Stiffness Rayleigh damping parameter
β_{r} Shear retention factor/parameter
$\boldsymbol{\beta}$ Principal stresses direction (radians)
C Specific heat capacity
c_{v} Volumetric heat capacity
$\mathbf{C}_{\mathbf{i}}$ (i)th hardening stiffness
C0 Neo-Hookean rubber model constant
C1, C2 Mooney-Rivlin rubber model constants
c Cohesion
co Initial cohesion
$\mathbf{D}_{\mathbf{i j}}$ Rigidity coefficients
$\mathbf{D}_{\mathbf{v}}$ Diffusion coefficient of water vapour in air
du, dq Relative displacement, rotation
E Modulus of elasticity (Young's modulus)
Ep Elasto-plastic modulus
$\mathbf{E}_{\mathbf{x}}, \mathbf{E}_{\mathbf{y}}, \mathbf{E}_{\mathbf{z}}$ Orthotropic modulus of elasticity
$\mathbf{e}_{\mathbf{p}}$ Strain at peak compressive strength
$\mathbf{e}_{\mathbf{y}}, \mathbf{e}_{\mathbf{z}}$ Eccentricity
\mathbf{e}_{0} Initial void ratio
$\varepsilon_{\mathbf{x}}, \varepsilon_{\mathbf{y}}, \boldsymbol{\varepsilon}_{\mathbf{z}}$ Direct strains (local or global)
ε_{s} Maximum shear strain
ε_{e} Von Mises equivalent strain
ε_{c} Creep strains
-p Equivalent plastic strain
$\mathbf{F}_{\mathbf{x}}, \mathbf{F}_{\mathbf{y}}, \mathbf{F}_{\mathbf{z}}$ Forces (local or global)
$\mathbf{F}_{\text {yld }}$ Yield force
F Deformation gradient
$\mathbf{f}_{\mathbf{c}}$ ' Compressive strength of concrete
$\mathbf{f}_{\mathbf{t}}$ ' Tensile strength of concrete
$\mathbf{f}_{\mathbf{s}}$ Coefficient for tortuosity of pore's interconnections
ψ Dilation angle
$\psi_{\mathrm{x}}, \psi_{\mathrm{y}}, \psi_{\mathrm{z}}$ Flexural strain resultants
$\psi_{\mathrm{xy}}, \psi_{\mathrm{xz}}, \psi_{\mathrm{yz}}$ Torsional strain resultantsG Shear modulusGf Fracture energy
$\mathbf{G}_{\mathbf{x y}}, \mathbf{G}_{\mathbf{x z}}, \mathbf{G}_{\mathbf{y z}}$ Orthotropic shear modulus values
$g_{\mathrm{x}}, g_{\mathrm{y}}, \mathrm{g}_{\mathrm{z}}$ Accelaration (gravity) components
$\gamma_{\mathbf{x}}, \gamma_{\mathbf{y}}, \gamma_{\mathbf{z}}$ Membrane strain resultants
$\gamma_{\mathrm{x}}, \gamma_{\mathrm{y}}, \gamma_{\mathrm{z}}$ Field gradients (local or global)
Γ Degree of hydration
H Latent heat (of phase change)
$\mathbf{H}_{\text {II }}$ Isotropic hardening parameter
$\mathbf{H}_{\mathbf{K 1}}$ Kinematic hardening parameter
h_{c} Convective heat transfer coefficient
$\mathbf{h}_{\mathbf{r}}$ Radiative heat transfer coefficient
$\theta_{\mathrm{x}}, \theta_{\mathrm{y}}, \theta_{\mathrm{z}}$ Rotations (local or global)
θ_{1}, θ_{2} Loof node rotations (local)
$\theta_{\mathrm{a}}, \theta_{\mathrm{b}}$ Nodal rotations for thick shells
θ_{λ} Angle defining principal directions of 11, 12
$\mathbf{I}_{\mathbf{y}}, \mathbf{I}_{\mathbf{z}}$ 1st moments of inertia
$\mathbf{I}_{\mathbf{y}}, \mathbf{I}_{\mathbf{z}}$ 2nd moments of inertia
\mathbf{I}_{yz} Product moment of inertia
J Volume ratio (determinant of F)
K Spring stiffness
K Intrinsic permeability
$\mathbf{K}_{\mathbf{c}}$ Contact stiffness
$\mathbf{K}_{\mathbf{1}}$ Lift-off stiffness
$\mathbf{K}_{\mathbf{0}}$ Original gap conductance
$\mathbf{K}_{\mathbf{t}}$ Torsional constant
k Thermal conductivity
$\mathbf{k}_{\mathbf{x}}, \mathbf{k}_{\mathbf{y}}, \mathbf{k}_{\mathbf{z}}$ Orthotropic thermal conductivity values
$\mathbf{k}_{\mathbf{r}}$ Bulk modulus
к Hardening stiffness or swelling index
$\mathbf{L}_{\mathbf{i}}$ Limit of (i)th hardening stiffness
$\lambda_{1}, \lambda_{2}, \lambda_{3}$ Principal stretches
λ Compression index
$\lambda_{\text {cp }}$ Coupling parameter for the evolution of hysteretic variables intwo directions
M Mass or gradient of critical state line
$\mathbf{m}_{\mathbf{x}}, \mathbf{m}_{\mathbf{y}}, \mathbf{m}_{\mathbf{z}}$ Mass in element local directions
$\mathbf{M}_{\mathbf{x}}, \mathbf{M}_{\mathbf{y}}, \mathbf{M}_{\mathbf{z}}$ Concentrated moments (local or global)
$\mathbf{M}_{\mathbf{x}}, \mathbf{M}_{\mathbf{y}}, \mathbf{M}_{\mathbf{z}}, \mathbf{M}_{\mathbf{q}}$ Flexural moments (local or global)
$\mathbf{M}_{\mathbf{x y}}, \mathbf{M}_{\mathbf{x z}}, \mathbf{M}_{\mathbf{y z}}$ Torsional moments (local or global)
$\mathbf{M}_{1}, \mathbf{M}_{2}$ Concentrated loof moments (local or global)
μ Coulomb friction coefficient
$\mu_{\text {ri }}, \alpha_{\text {ri }}$ Ogden rubber model constants
n Porosity
$\mathbf{N}_{\mathbf{x}}, \mathbf{N}_{\mathbf{y}}, \mathbf{N}_{\mathbf{z}}, \mathbf{N}_{\mathbf{q}}$ Membrane resultants (local or global)
$\mathbf{N}_{\mathbf{x}}, \mathbf{N}_{\mathbf{y}}, \mathbf{N}_{\mathrm{xy}}$ Stress resultants
Nmax, Nmin Principal stress resultants\mathbf{N}_{s} Maximum shear stress resultant
\mathbf{N}_{e} Von Mises equivalent stress resultant
v Poisson's ratio
$v_{\mathrm{xy}}, \mathrm{v}_{\mathrm{x} z}, \mathrm{v}_{\mathrm{yz}}$ Orthotropic Poisson's ratio
$\mathbf{P}_{\mathbf{x}}, \mathbf{P}_{\mathbf{y}}, \mathbf{P}_{\mathbf{z}}$ Concentrated loads (global)
\mathbf{P}_{c} Initial pre-consolidation pressure
ρ Mass density
Q Field loading for nodes
\mathbf{q}_{a} Field face loading intensity
\mathbf{q}_{v} Field volume loading intensity
$\mathbf{q}_{x}, \mathbf{q}_{\mathbf{y}}, \mathbf{q}_{\mathbf{z}}$ Field fluxes (local or global)$\mathbf{Q H}_{\text {H }}$ Rate of internal heat generation per unit volumeQw Rate of internal mass (liquid+vapour) generation per unitvolume
\mathbf{q}_{H} Heat flux
\mathbf{q}_{s} Stress potential parameters
qw Mass (liquid+vapour) flux
RH Relative humidity
$\mathbf{R H}_{0}$ Initial relative humidity
Sp Plastic shear area
\mathbf{S}_{w} Water saturation in porous material
σ_{y} Yield stress
σ_{yo} Initial uniaxial yield stress
$\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \sigma_{\mathrm{z}}$ Direct stresses (local or global)
$\sigma \max , \sigma \min$ Principal stresses
$\sigma_{\mathrm{x}}, \sigma_{\mathrm{x} z}, \sigma_{\mathrm{yz}}$ Shear stresses (local or global)
σ_{σ} Maximum shear stress
σ_{e} Von Mises equivalent stress
T Temperature
T, To Final, initial temperatures
t1 ... tn Nodal thicknesses
$\mathbf{U}, \mathbf{V}, \mathbf{W}$ Displacements (global)
Φ Field variable
Фе External environmental temperature
ϕ Frictional angle
фo Initial frictional angle
ϕ Body force potential
$\mathbf{V} \mathbf{x}, \mathbf{V y}, \mathbf{V z}$ Nodal initial velocities (global)
$\mathbf{V} 1_{1}, \mathbf{V} 1_{2} \ldots \mathbf{V 3}_{3}$ Left stretch tensor components
$\mathbf{W}_{\mathbf{x}}, \mathbf{W}_{\mathbf{y}}, \mathbf{W}_{\mathbf{z}}$ Uniformly distributed load intensities
$\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ Nodal coordinates (global)
Xcbf, Ycbf, Zcbf Constant body forces (global)
Xo, Yo, Zo Offsets of finite element model coordinate system from point about which global angular acceleration and velocities are applied
$\mathbf{y}_{1}, \mathbf{z}_{\mathbf{1}} \ldots \mathbf{y}_{\mathbf{4}}, \mathbf{z}_{\mathbf{4}}$ Cross sectional coordinates (local)
Zyp, Zzp Torsional plastic modulus values
Zyyp, Zzzp Flexural plastic modulus values
ω Frequency of vibration
$\boldsymbol{\Omega}_{\mathrm{x}}, \boldsymbol{\Omega}_{\mathbf{y}}, \boldsymbol{\Omega}_{\mathrm{z}}$ Angular velocities (global) (radians/sec)

Chapter 1 Introduction

Introduction

This manual contains details of the data sections available for input in a LUSAS datafile. The data sections required at any one time will depend upon the type of analysis to be carried out. Some of the sections are of specialised application, others are general to all problems. For example, the ELEMENT TOPOLOGY and NODE COORDINATES sections are required to define the problem in all analyses, however, the thermal conductivity of a material is only applicable to a heat transfer analysis. The specialised sections are referenced in the Modeller User Manual where a brief description is available of the problem type to which the command applies.

LUSAS Data Chapters

A full list of LUSAS data chapters, in the order in which they must be specified, is shown below. Commands may be respecified in the datafile as the analysis progresses but the relative order of the commands must be maintained.

Data section	Description
SYSTEM	System parameters
PROBLEM	Problem definition
UNITS	Unit definition
NONLINEAR GEOMETRY	Strain measure
OPTION	User options
GROUP	Grouped data
ELEMENT TOPOLOGY	Element topology
SOLUTION ORDER	Equation solution order
SOLVER FRONTAL	Solve using Frontal method
SOLVER CONJUGATE GRADIENT	Solve using iterative Conjugate
	Gradient method
NODE COORDINATES	Node coordinates
LOCAL CARTESIAN COORDINATES	Local Cartesian coordinates
LOCAL CYLINDRICAL	Local cylindrical coordinates
COORDINATES	

Data sectionLOCAL SPHERICAL COORDINATES
GLOBAL CARTESIANCOORDINATES
SPACINGSPACING ARC RATIOSQUADRILATERAL SPACING
COPY NODES
RENUMBER NODES
DELETE NODES
GEOMETRIC PROPERTIES
COMPOSITE GEOMETRY
GEOMETRIC ASSIGNMENTS
MATERIAL PROPERTIES
MATERIAL PROPERTIESORTHOTROPICMATERIAL PROPERTIES
ORTHOTROPIC PLANE STRAIN
MATERIAL PROPERTIESORTHOTROPIC THICKMATERIAL PROPERTIESORTHOTROPIC AXISYMMETRICMATERIAL PROPERTIESORTHOTROPIC SOLIDMATERIAL PROPERTIESANISOTROPIC
MATERIAL PROPERTIES
ANISOTROPIC SOLID
RIGIDITIES
MATRIX PROPERTIES STIFFNESS
MATRIX PROPERTIES MASS
MATRIX PROPERTIES DAMPING
JOINT PROPERTIES
JOINT PROPERTIES GENERAL
JOINT PROPERTIES NONLINEAR 31
JOINT PROPERTIES NONLINEAR 32
JOINT PROPERTIES NONLINEAR 33
JOINT PROPERTIES NONLINEAR 34
JOINT PROPERTIES NONLINEAR 35
JOINT PROPERTIES NONLINEAR 36
JOINT PROPERTIES NONLINEAR 37

Description
Local spherical coordinates
Global Cartesian coordinates

Spacing of nodes on a line
Spacing of nodes on an arc
Spacing of nodes in a quadrilateral
Copying nodes
Renumbering nodes
Deleting nodes
Geometric properties
Laminated/composite shell/solid thicknesses
Geometric property assignments
Isotropic model
Orthotropic plane stress model
Orthotropic plane strain model
Orthotropic thick model
Orthotropic axisymmetric model
Orthotropic solid model
Anisotropic model
Anisotropic model for solid elements
Linear rigidity model
Stiffness matrix property definition Mass matrix property definition Damping matrix property definition Standard linear joint model General linear joint model
Standard elasto-plastic joint model General elasto-plastic joint model
Nonlinear smooth contact model
Nonlinear frictional contact model
Nonlinear viscous damper model
Lead rubber bearing with hysteretic damping
Sliding/frictional pendulum system with hysteretic damping
Piecewise linear elastic model

Data section
JOINT PROPERTIES NONLINEAR 43
JOINT PROPERTIES NONLINEAR USER
MATERIAL PROPERTIES MASS
PLASTIC DEFINITION
MATERIAL PROPERTIES
NONLINEAR 75
MATERIAL PROPERTIES
NONLINEAR 64
MATERIAL PROPERTIES
NONLINEAR 61
MATERIAL PROPERTIES
NONLINEAR 65
MATERIAL PROPERTIES MODIFIED MOHR COULOMB

MATERIAL PROPERTIES MODIFIED CAM-CLAY
MATERIAL PROPERTIES DUNCANCHANG
MATERIAL PROPERTIES
NONLINEAR 94
MATERIAL PROPERTIES
NONLINEAR 109
MATERIAL PROPERTIES
NONLINEAR 29
MATERIAL PROPERTIES
NONLINEAR USER
MATERIAL PROPERTIES
NONLINEAR RESULTANT USER
VISCOUS DEFINITION
CREEP PROPERTIES
CREEP PROPERTIES USER
VISCOELASTIC PROPERTIES
VISCOELASTIC PROPERTIES USER
DAMAGE PROPERTIES
DAMAGE PROPERTIES USER
DAMAGE PROPERTIES HASHIN
TWO PHASE MATERIAL
TWO PHASE MATERIAL
INTERFACE
KO INITIALISATION
MATERIAL PROPERTIES RUBBER

Description

Axial force dependent piecewise linear elastic model
User defined joint model
Mass for non-structural mass elements
Nonlinear plasticity material data
Optimised implicit Von Mises model
Drucker-Prager yield surface model
Tresca yield surface model
Non-Associated Mohr-Coulomb yield surface model
Non-associated Mohr-
Coulomb/Tresca yield surface model with tension/compression cut-off
Modified Cam-clay model
Duncan-Chang hyper-elastic soil model
Nonlinear multi-crack concrete model

Smoothed nonlinear multi-crack concrete model
Stress resultant elasto-plastic model
User defined nonlinear material model
User defined nonlinear resultant material model
Viscous material data
Creep material properties
User defined creep material properties
Viscoelastic properties
User defined viscoelastic properties
Damage properties
User defined damage model
Hashin damage model for composites
Two phase material parameters
Two phase material interface parameters
Ko initialisation of soils
Rubber material properties

Data section	Description
MATERIAL PROPERTIES	Volumetric crushing model
NONLINEAR 81	
MATERIAL PROPERTIES	Piecewise linear material model
NONLINEAR 104	
MATERIAL PROPERTIES	CEB-FIP creep model
NONLINEAR 86	
MATERIAL PROPERTIES	Generic polymer material model
NONLINEAR 89	
MATERIAL PROPERTIES	2D elasto-plastic interface model
NONLINEAR 27	
MATERIAL PROPERTIES	3D elasto-plastic interface model
NONLINEAR 26	
MATERIAL PROPERTIES	Delamination interface properties
NONLINEAR 25	
MATERIAL PROPERTIES	Mohr-Coulomb friction interface
INTERFACE	properties
SHRINKAGE PROPERTIES	Concrete shrinkage properties
CEB_FIP_90	
SHRINKAGE PROPERTIES	General shrinkage properties
GENERAL	
SHRINKAGE PROPERTIES USER	User defined shrinkage model
MATERIAL PROPERTIES FIELD	Isotropic field model
ISOTROPIC	
MATERIAL PROPERTIES FIELD	Orthotropic field model
ORTHOTROPIC	
MATERIAL PROPERTIES FIELD	Orthotropic solid field model
ORTHOTROPIC SOLID	
MATERIAL PROPERTIES FIELD	Isotropic field model for concrete
ISOTROPIC CONCRETE	
MATERIAL PROPERTIES FIELD	Orthotropic 2D field model for
ORTHOTROPIC CONCRETE	concrete
MATERIAL PROPERTIES FIELD	Orthotropic 3D field model for
ORTHOTROPIC SOLID CONCRETE	concrete
MATERIAL PROPERTIES FIELD	Linear convection/radiation model
LINK 18	
MATERIAL PROPERTIES FIELD	Nonlinear convection/radiation model
LINK 19	
MATERIAL PROPERTIES HYGRO-	Hygro-thermal model
THERMAL LINEAR	
MATERIAL PROPERTIES HYGRO-	Hygro-thermal model for concrete
THERMAL CONCRETE	
COMPOSITE MATERIAL	Laminated/composite shell/solid
PROPERTIES	materials
MATERIAL ASSIGNMENTS	Material property assignments

Data section
COMPOSITE ASSIGNMENTS
ELEMENT AGES

DEACTIVATE ELEMENTS
 ACTIVATE ELEMENTS
 DAMPING PROPERTIES

SLIDELINE PROPERTIES
SLIDELINE PROPERTIES USER
SLIDELINE_SURFACE DEFINITION
SLIDELINE ASSIGNMENTS
THERMAL GAP PROPERTIES

LINEAR

THERMAL GAP PROPERTIES

GENERAL

THERMAL CONTACT PROPERTIES
THERMAL RADIATION
PROPERTIES
THERMAL ENVIRONMENT

PROPERTIES

THERMAL RADIATION SYMMETRY
THERMAL_SURFACE SYMMETRY ASSIGNMENT
THERMAL_SURFACE DEFINITION
THERMAL_SURFACE PROPERTY ASSIGNMENT
THERMAL ASSIGNMENT
VIEW_FACTOR OUTPUT
ENVIR̄ONMENTAL NODE
DEFINITION
ENVIRONMENTAL NODE
ASSIGNMENTS
NODAL FREEDOMS
FREEDOM TEMPLATE
CARTESIAN SETS
CYLINDRICAL SETS
TRANSFORMED FREEDOMS
CONSTRAINT EQUATIONS
SUPPORT NODES
COUPLE
COUPLE READ

Description

Composite property assignments
Age of elements when using CEB-FIP concrete model
Deactivate elements
Activate elements
Frequency dependent Rayleigh parameters for viscous and/or structural damping
Slideline property definition
User defined slideline properties
Slideline surface definition
Slideline property assignments
Linear thermal gap properties
General thermal gap properties
Thermal contact properties
Thermal radiation properties
Thermal environment properties
Thermal radiation symmetry planes
Thermal radiation symmetry surface
Thermal surface definition
Thermal surface property assignment
Thermal gap and radiation surface assignment
View factor output control
Environmental node definition
Environmental node assignment
Number of freedoms at a node for thick shells
Optional definition of list of freedoms
Local Cartesian sets
Local cylindrical (Cartesian) sets
Transformed freedoms
Constraint equations
Support conditions
Coupled analyses initialisation
Coupled analysis data read

Data section

COUPLE WRITE
LOAD CURVE ON/OFF
LOAD CASE
LOAD VARIABLE
PDSP
CL
ELDS
DLDL, DLDG
DLEL, DLEG
PLDL, PLDG
UDL
FLD, FLDG
CBF
BFP
BFPE
VELOCITY
ACCELERATION
SSI
SSIE
SSIG
SSR
SSRE
SSRG
TSSIE

TSSIG

TSSIA
TEMP
TMPE
OVERBURDEN
PHREATIC SURFACE
ENVT
TEMPERATURE LOAD CASE
TDET

RIHG
TEMPERATURE LOAD
ASSIGNMENTS
TDET
RIHG
TARGET_VALUES

Description

Coupled analysis data write
Switch loadcurves on/off
Load case definition
Variable load definition
Prescribed variables
Concentrated loads
Element loads
Distributed loads
Distributed element loads
Element point loads
Uniformly distributed loads
Face loads
Constant body forces
Body force potentials
Element body force potentials
Velocities
Acceleration
Initial stresses and strains at nodes
Initial stresses and strains for elements
Initial stresses and strains at Gauss points
Residual stresses at nodes
Residual stresses for elements
Residual stresses at Gauss points
Target stresses and strains for elements
Target stresses and strains at Gauss points
Averaged target stresses and strains for elements
Temperature loads at nodes
Temperature loads for elements
Overburden load
Phreatic surface definition
Environmental temperatures
Temperature load case
Temperature dependent environmental temperatures
Rate of internal heat generation
Temperature load assignments
TDET assignments
RIHG assignments
Target values

Data section	Description
EQUALITY	Equality definition
INEQUALITY	Inequality definition
OBJECT_FUNCTION	Object function definition
RESIDUAL_MINIMISATION	Best fit solution
LOAD VARIABLE LOCK-IN	Lock in load variables
LINEAR SOLUTION	Linearised solution of load variables
CURVE DEFINITION	General curve definitions
CURVE ASSIGNMENT	General curve assignment
RETAINED FREEDOMS	Retained freedoms
ELEMENT OUTPUT	Element output control
NODE OUTPUT	Nodal output control
LOAD COMBINATION	Load combinations
ENVELOPE START	Enveloping results start
ENVELOPE FINISH	Enveloping results finish
SUPERELEMENT ASSIGN	Open a new superelement database
SUPERELEMENT DEFAULT	Change the default superelement database
SUPERELEMENT DEFINE	Defines a superelement
SUPERELEMENT USE	Uses the superelement in the residual structure
SUPERELEMENT RECOVER	Recovers superelement results
SUPERELEMENT DISTRIBUTE	Distributes mass and stiffness from the residual structure to the superelement
SUPERELEMENT MODAL_DATA	Utilises user modal data in the residual structure
RESET DISPLACEMENT	Reset displacements to original geometry
NONLINEAR CONTROL	Nonlinear analysis control
DYNAMIC CONTROL	Dynamic analysis control
TRANSIENT CONTROL	Transient field analysis control
VISCOUS CONTROL	Creep analysis control
EIGENVALUE CONTROL	Eigenvalue analysis control
GUYAN CONTROL	Guyan reduced eigenvalue analysis
SPECTRAL CONTROL	Spectral response analysis control
HARMONIC_RESPONSE CONTROL	Harmonic Response analysis control
FOURIER CONTROL	Fourier analysis control
MODAL_DAMPING CONTROL	Control for distributed viscous and/or structural damping
PLOT FILE	Plot file generation
RESTART WRITE	Write to a restart file
RESTART READ	Read from a restart file
END	Problem termination.

Chapter 1 Introduction

Chapter 2 Syntax and Data

Preparation

Reading and Writing LUSAS Data Syntax

Although the commands and numerical values required for each stage of the data input may vary for different analyses, there is a common form, or syntax, for every data line. This chapter defines the syntax rules to which every line of data input must conform.

LUSAS data syntax consists of command words and parameters. Command words instruct LUSAS of the data chapter or section being specified. Parameters provide details of the command section and are in the form of alphanumeric values. All data input for LUSAS is in a free format field, so reducing the time spent specifying data and reducing the possibility of errors. Certain command words or parameters are optional, and some data should be entered several times for different values. Occasionally, alternative command words or parameters can achieve the same objective.

How To Read Syntax Lines In This Manual

In this manual LUSAS data syntax lines are identified by a keyboard icon in the margin, and each separate line begins with a bullet as shown below. Enter the text as you read it on the page whilst following these rules:
\square Curved brackets \{ \} show alternative data input separated by a vertical line. You must choose one of the alternatives (mutually exclusive and compulsory). The brackets are not part of the syntax. Do not include them in your data input.
\{COMMAND 1 | COMMAND 2 \}

- Square brackets [] show optional data input. You may use one of the data input options, or none at all. The brackets are not part of the syntax. Do not include them in your data input.
[option]
or
[option 1 | option 2]
- Triangular brackets $<>\mathrm{i}=1, \mathrm{n}$ show data input that you should repeat along the same line according to the subscript. The chevrons and subscript are not part of the syntax. Do not include them in your data input.

An arrow is used to indicate that lines should be repeated for tabulated data entry. For example, the following syntax line means enter n values across and m down.
< Vi(1) >i=1,n
$<\mathrm{Vi}(\mathrm{m}) \quad>\mathrm{i}=1, \mathrm{n}$
Throughout this manual, the form of LUSAS input data is indicated by syntax lines as described above, and the parameters and command words used are defined beneath each group of syntax lines. The data input is divided into data chapters and data sections. Commonly a data chapter will contain several data sections. For example, the data chapter:

NONLINEAR CONTROL
can contain the data sections:
INCREMENTATION
STEP REDUCTION
ITERATION
BRACKETING
BRANCHING
CONVERGENCE
OUTPUT
INCREMENTAL COUPLE READ
INCREMENTAL COUPLE WRITE
TERMINATION
Data chapters must generally be specified in order. Within each data chapter, data sections may generally be specified freely. In either case, those chapters or sections which are not mandatory may be omitted. A full list of LUSAS data sections, and their usual order, is given in the Introduction.

Data Delimitation

The position of data items on a line is not important providing each word or parameter is sufficiently delimited. The delimiters used in LUSAS are blank spaces and commas.

Command Words

Command words instruct LUSAS of the data section currently being specified. Commonly a data section (or command line) will require the specification of more than one command word. The LUSAS command interpreter only decodes the first 4 letters of each word, hence long commands may be abbreviated.

Titles

For most data chapters in LUSAS it is possible to add a title which will be printed out as a heading in the output file. Whenever a syntax line indicates that a title may be written, it may consist of any characters required. For example:

NODE COORDINATES [TITLE title]
title descriptive text

Numerical Values

When a syntax line indicates that a numerical value is required, for convenience, it can be written in a number of ways as indicated in the syntax line below. There should be no spaces within a numerical value. Where an integer parameter is specifically indicated, integer input should be used. However, in general, integer and real numbers may be mixed freely. Small or large numerical values may be written in exponential (E) format.

```
[+ | -]< DIGIT >[.< DIGIT >][E[+ | -]< DIGIT >]
```


Simple Arithmetic Expressions

When a syntax line indicates that a numerical value is required it can be written as a simple arithmetic expression as indicated by the following:

VALUE < [*VALUE] [/VALUE] [**VALUE] >
The arithmetic expressions allowed in LUSAS are as follows, (note + and - are not allowed)

- Multiplication *
\square Division /
- Exponentiation **

Some examples of the use of arithmetic expressions are shown below:

Expression	Means	Expression	Means
$8 * 2$	16	$8 * * 2$	64
$8 / 2 / 2$	2	$25 \mathrm{E}-1 / 2$	1.25
$8 / 2$	4	$8 * 2 / 4$	4

$25 \mathrm{E}-1 * 2 \quad 5 \quad 8 / 4 * * 2 \quad 0.5$

One of the uses of arithmetic expression input is that you can record in the data lines the component values which make up a numerical value. For example, the moment of inertia of a rectangular section is $\mathrm{I}=\mathrm{b}^{*} \mathrm{~d}^{*} \mathrm{~d} * \mathrm{~d} / 12$ and you may wish to record the breadth $\mathrm{b}=4.3$ and depth $\mathrm{d}=8.51$, say, in the data as:

4.3*8.51**3/12

The arithmetic expression facility may also be employed for the conversion of units.

Comments

Comment lines may be placed anywhere in the data. A comment line must start with the letter C and must be followed by a space or comma. For example:

```
C This is a comment
```

Alternatively, individual lines of data may be annotated using a colon (:). All information specified to the right-hand side of the colon will be treated as a comment. For example:

1131 71E9 0.34 : This is a comment

Line Continuation

When the data input is too long for a line, it may be continued onto the next line by the use of the continuation indicator, which is a space followed by three full stops (...).

Data lines may be continued in this way onto as many lines as is required. However, a title may continue onto one extra line only.

Implied Sequence Generation

The implied sequence facility may be used as a simple method for the automatic generation of data, and is incorporated into many of the LUSAS data sections. The general form of the implied sequence generator is:

N $\mathrm{N}_{\text {last }} \mathrm{N}_{\text {diff }}$
where:
Nis the first number in the sequence
$\mathrm{N}_{\text {last }}$ is the last number in the sequence
$\mathrm{N}_{\text {diff }}$ is the difference between consecutive sequence numbers
Each specified number must be an integer. LUSAS will check that a valid sequence is formed and will write an error message if this is not the case. Sequences comprising of one number only, for example 5, may be specified as (550) or (500).

The implied sequence generator is commonly used for the specification of sequences of nodes or elements, and its use can substantially reduce the amount of data specified. For example, the instruction to assign material number 3 to elements 10,20 and 30 may be written simply as:

MATERIAL ASSIGNMENTS
1030103

Incremental Line Generation

Throughout all stages of LUSAS input there are commands which can be used to generate data lines.

FIRST $\left\langle\mathrm{V}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\right.$ [R]
INC $<\Delta_{1} \zeta_{i}>_{i=1, n} \quad\left[R_{1}\right]$

INC $<\Delta_{1} \zeta_{i}>_{i=1, n} \quad\left[R_{m}\right]$
where:
Vithe numerical values on the data line to be generated. In certain circumstances these may consist of words which are simply duplicated.
Nthe number of numerical values on the data line
Rthe total number of repetitions of the first data line (inclusive) with unit increments added to each successive line. If this item is excluded a value of $R=1$ is assumed.
$\Delta \mathbf{1} \zeta \mathbf{i}$ the increments added to all data generated in the lower (m-1) levels. These increments may take any numerical values.
Rmthe total number of repetitions of all data lines generated in the lower (m-1) levels.
The following simple examples illustrate the use of the general data generation. The data lines:

```
1 10 1 5.1
11 20 1 5.2
21 30 1 5.3
3140 1 5.4
```

may be automatically generated using the data commands:

```
FIRST 1 10 10 5.1
    INC 10 10
```

When constructing element meshes by hand (as opposed to automatic mesh generation) it is often useful to number the nodes and elements such that the incremental line generator may be used. For example, when using 8 noded quadrilateral elements, the
node numbering may be specified so as to include fictitious central nodes. In this way a general element topology sequence is maintained.

TABLE Input

In certain circumstances, for example the specification of temperature dependent material properties, LUSAS requires a tabular form of input data. In such cases the TABLE data command may be used.

TABLE N [TITLE title]

$\left\langle\mathrm{V}_{(1) \mathrm{i}}\right\rangle_{\mathrm{i}=1, \mathrm{n}}$
$<\mathrm{V}(\mathrm{m})_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}$
where:
Nis the table identification number.
$\mathrm{V}_{(\mathrm{k}) \mathrm{i}}$ are the values for the kth row of the table.
mis the number of rows in the table.

Notes

1. Data specified in tabulated form will be linearly interpolated at values between those values indicated.
2. If an analysis temperature is outside the bounds of the reference temperatures defined in a table of properties, the properties for the lower or upper bound temperatures are used, no extrapolation takes place.
3. Nonlinear variations may be input by increasing the number of tabulated data lines, and therefore approximating the nonlinear distribution by a number of straight lines.
4. The end of tabulated input is indicated by a new command word.

Chapter 3 LUSAS Data Input

System Parameters

The data section SYSTEM may be used to modify certain values which define particular machine and program parameters.

SYSTEM

vbname $=n$
END
vbname permitted system variable name (see below)
n the new value to be assigned to vbname

Notes

1. The SYSTEM header must be the first command in the input data.
2. SYSTEM input must always be terminated by the END command.

The following system variables may be modified (the default settings are shown in brackets):

BULKLF Linear viscosity coefficient for explicit dynamics elements (0.06)
BULKQF Quadratic viscosity coefficient for explicit dynamics elements (1.5)
CRKTOL Tolerance on ratio for cracking (0.01)
CTOL \quad Creep strain convergence tolerance (1.0E-8)
DECAY Maximum diagonal decay allowed before problem termination (1.0E20)
DECAYL Limit of diagonal decay before warning messages are output (1.0E4)
EIGSCL Scaling factor used to compute the stresses from eigenvectors (1.0E-20)
HGVISC Hourglass viscosity coefficient for explicit dynamics elements (0.1)

ICNTCT Support Lift-off control ICNTCT=0 allow joint to lift-off at the moment lift-off force is exceeded (default) ICNTCT $=1$ lift-off once the increment has converged and resolve increment ICNTCT=2 lift-off most overstressed joint once increment has converged and resolve increment. ICNTCT=3 allows the breaking and re-grounding of a support to occur in the same increment.
IDTIME Solution time. IDTIME may be set to $1,2,3$ or 4 to denote Seconds, Minutes, Hours or Days respectively.
IECHO Echoes system status to screen (1)
IPGFAC Page factor used to set maximum size of files which can be created. IPFAC may be set to $1,2,4,8$ (default), 16,32 or 64 . With IPGFAC=1 the max file size is 8 Gb . IPGFAC $=2$ max file szie is 16 Gb , IPGFAC=4 max file size is 32 Gb etc.
LSMAX Maximum number of iterations for arc-length to compute load level (150)
LPGNUM The number of records of the paging file allowed in the cache (2500)
MAXERR Maximum number of times a single error will be output (50)
MAXNB A large number which should not be exceeded by any element or node number (5000000)
MAXRSA Maximum number of attempts allowed to set the symmetry tolerance TOLSYM (0)
MAXSEG Maximum number of segments defining a radiation surface (100)
MEIGSH Maximum number of eigen-solutions computed at a shift point (6)
MNODRS Maximum number of nodes for a radiation surface sub-element (30)
MREFCE Maximum number of elements sharing a common face (3)
MXEEST Override estimate for total number of edges in structure (0)
MXELIM Maximum number of equations to be eliminated simultaneously in the parallel frontal algorithm (6)
MXELGP Maximum number of elements stored in an element group (Set automatically unless specified)
MXFEST Override estimate for total number of faces in a structure (0)
MXIT Maximum number of iterations in slideline slave search (500)
MXLFTO Maximum number of times a lift-off increment may be resolved. (cv ICNTCT)
MXMNDZ Maximum allowable frontwidth (5000)
MXRHS Maximum number of linear static right-hand sides to be solved in a single Solver pass (Default=all)
MXMSG Maximum number of out-of-bound warning messages to be printed out (5)
MXSLAE Maximum number of adjacent elements for contact nodes in slidelines or maximum number of adjacent thick shell elements at any node (64)
MXSLAN Maximum number of adjacent nodes for contact nodes in slidelines (64)
MXWAIT Maximum wait in seconds for DTF file before terminating analysis (900)
NHCDIV Number of steps for integrating equivalent time for heat of hydration (0 internally computed)
NCPU Number of processors used in the parallel frontal algorithm (1)

NCITER	Iteration number at which to switch to iterative updates for multi crack concrete with crushing model (6)
NDPGSZ	Record length for any new direct access files in bytes (16384)
NIDX	Size of master index table (50000)
NLPZ	Number of real locations in the database (see on page)
NONNAT	Switch to ensure binary compatibility between PC and UNIX platforms (0 , i.e., no binary compatibility)
NPGMAX	Maximum record length for direct access files in integer words (4096)
NPGS	Maximum number of records allowed in the cache (960)
PARERR	Error tolerance when checking if node of parasitic element lies outside host element (0.4)
PARWRN	Warning tolerance when checking if node of parasitic element lies outside host element (1.0E-3)
PENTLY	Penalty stiffness coefficient used in constraint equations (0.0)
QMHDLM	Lower limit multiplier on hardening moduli for Mohr Coulomb model (0.01)
QTOL	Yield function convergence tolerance (1.0E-6)
SHLANG	Maximum angle (in degrees) between nodal normals after which 6 degrees of freedom are assigned to a node (maximum value=90). Applicable to thick shell elements. (20)
SLFNCS	Slideline normal force scale factor for contact cushioning (1.0)
SLSTCC	Slideline stiffness factor for close contact (1.0E-3)
SLSTFM	Slideline surface stiffness ratio (100.0)
SLSTPC	Slideline stiffness factor for pre-contact (1.0)
SSCALE	Scaling parameter for creep algorithms (1.0)
STEFAN	Stefan-Boltzmann constant, temperature units of the value input must be Kelvin (5.6697E-8 W/m2 K4)
STFINP	In-plane stiffness parameter for flat shell elements (0.02)
STFSCL	Stiffness matrix scaling factor for element deactivation (1.0E-6)
TOLFIJ	Environment view factor tolerance, a radiation link may be formed if the environment view factor for a surface segment exceeds this value (-1.0)
TOLNOD	Tolerance distance for node on node contact in a slideline analysis (1.0E3)
TOLSYM	Symmetry plane tolerance, a node is considered to lie in a symmetry plane if its perpendicular distance from the plane is less than this value (-1.0)
IZPPRB	Compression level on PROBLEM database (default 0)
IZPSHP	Compression level on SHAPES database (default 0)
IZPFRN	Compression level on FRONTAL database (default 0)
IZPPLT	Compression level on PLOT database (default 1)
IZPRST	Compression level on RESTART database (default 1)
IZPDTF	Compression level on DTF database (default 0)
IZPADP	Compression level on ADAPT database (default 0)
IZPSUP	Compression level on SUPER database (default 0)

IZPDBM Compression level on all other database (default 0)
BBOXF Scaling factor applied to increase bounding box which proscribes a slideline contact segment (default 1.2)
TOLSTC Tolerance for stability condition or negative incremental energy for LRB and FPS joints (default 10^{-5})
ZERSHR Tolerance for zero shear force (default 10^{-6})

Problem Definition

The problem may be defined using the data sections for:

- Problem description (mandatory)
- Units definition (optional)
\square Options (optional)
The PROBLEM data section is mandatory (specification of UNITS and OPTIONS is optional).

Problem

The PROBLEM data section defines the start of the problem data and is mandatory for all analysis types.

PROBLEM [TITLE title]
title Descriptive text

Notes

1. Data input for each problem must commence with the PROBLEM data section.
2. Title text can only be continued onto one additional line.

Units definition

LUSAS is unit independent, hence all data quantities must be specified in a consistent set of units (irrespective of whether the UNITS data section is specified). The UNITS data section may be used to name the units used, in order that the output quantities may be annotated.

UNITS frc lth mas tim tem
frc A word for the units of force
lth A word for the units of length
mas A word for the units of mass
tim A word for the units of time
tem A word for the units of temperature

Notes

1. All input data must be consistent with the units chosen for each problem. For dynamic analyses, if units are chosen for mass(m), length(l) and time(t), consistent units of force are given by,

- $\mathrm{F}=\mathrm{ma}=\mathrm{ml} / \mathrm{t} / \mathrm{t}$

2. The UNITS command enables you to choose a symbol for force, length, mass, time and temperature, that will be printed out at the top of the column headings of the results output.
3. If a symbol for force, length or mass is specified which contains more than three characters, then only the first three characters will be output.

Options

The OPTIONS data section may be used to specify user definable analysis options.

```
OPTIONS \(<\mathrm{N}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)
```

$\mathbf{N}_{\mathbf{i}} \quad$ The OPTION number(s)

Notes

1. For a problem requiring more than one option, repeat the line or add option numbers (negative option numbers may be used to disable previously enabled options), as in the following example:

OPTION 404555

OPTION 87
OPTION 77-55
2. There is no limit to the number of OPTION lines in the data input.
3. Options may be specified and respecified at any point in the LUSAS datafile. Some options may be subsequently disabled by specifying a negative number; for example, the output of strains can be switched on and off at different points using Option 55, whilst it is not permissible to reset Option 87 which defines the problem type to be Total Lagrangian.
4. A full list of user options is included in the Appendices

Nonlinear strain measure

The nonlinear strain measure is set using this command. This command may also be used after the RESET DISPLACEMENT command to switch from a linear strain measure to a nonlinear strain measure.

NONLINEAR GEOMETRY [strain_measure [strain_measure]]
strain_measure nonlinear strain formulation to use.

Notes

1. Strain measure may take one or more of these values TOTAL_LAGRANGE, UPDATED_LAGRANGE, EULERIAN, COROTATED. The type of strain measure used depends on the individual element formulation.
2. UPDATED_LAGRANGE is equivalent to OPTION 54, TOTAL_LAGRANGE is equivalent to OPTION 87, EULERIAN is equivalent to OPTION 167 and CO-ROTATED to OPTION 229.

Data Groups

Data groups may be used to collectively assign quantities to defined sequences of elements. GROUP is a general purpose utility which can be used to replace a series of first, last, difference element sequences within certain LUSAS data chapters (see Notes).

```
GROUP igroup [TITLE title]
```

L $L_{\text {last }} L_{\text {diff }}$
igroup Group reference number
title Descriptive text
$\mathrm{L}_{\mathrm{L}_{\text {ast }}} \mathrm{L}_{\text {diff }}$ The first, last and difference between element numbers in a serie

Notes

1. The GROUP command must be specified before the ELEMENT TOPOLOGY data section.
2. The numbers defined in a group are checked to determine if a duplicate number has been specified.
3. The first and last number must be positive.
4. Groups may be utilised in GEOMETRIC ASSIGNMENTS, MATERIAL ASSIGNMENTS and COMPOSITE ASSIGNMENTS.

Element Topology

The data section ELEMENT TOPOLOGY is used to input the node numbers of the elements. The ELEMENT TOPOLOGY data section therefore describes the connectivity of the finite element discretisation.

type ELEMENT TOPOLOGY [TITLE title]

$\mathrm{L}<\mathrm{N}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}<\mathrm{E}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{~m}}$

Abstract

type

L The element number allocated to the particular element being defined. \mathbf{N}_{i} E_{i} n The total number of nodes for the particular element type. m The element type identifier as given in the description of each element; refer to the LUSAS Element Reference Manual.

Notes

1. For problems idealised with more than one element type, the header line ELEMENT TOPOLOGY is repeated for each element type and followed by the element number and node numbers for each element.
2. Each element must be given a unique identifying number. If an element number is repeated, the new element node numbers overwrite the previous element node numbers and an advisory message is printed out.
3. The elements should preferably be numbered in ascending order across the narrow direction of the structure (see Solution Order).
4. The element numbers may have omissions in the sequence and need not start at one. The order in which the element numbers are specified is arbitrary.
5. The element node numbers must be specified in the order shown in the element diagrams in the LUSAS Element Reference Manual.
6. The ELEMENT TOPOLOGY command can be repeated in the datafile or in a restart file to introduce new elements into the solution. OPTION 399 must not be set.

Example 1. Element Topology

1	1	5	4
2	1	2	5
3	2	6	5
4	2	3	6

Example 2. Element Topology

$$
\begin{aligned}
& \text { QPM8 ELEMENT TOPOLOGY } \\
& \begin{array}{llllllll}
\text { FIRST } & 1 & 1 & 6 & 11 & 12 \\
13 & 8 & 3 & 2 & & & & \\
\text { INC } & 1 & 2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & & & & \\
\text { INC } & 2 & 10 & 10 & 10 & 10
\end{array} \\
& 10 \\
& 10
\end{aligned} 10 \begin{array}{ll}
10 & 3
\end{array}
$$

Example 3. Element Topology

QPM4 ELEMENT TOPOLOGY
FIRST 31452
INC $\begin{array}{llllll}2 & 1 & 1 & 1 & 1 & 2\end{array}$
INC $\begin{array}{llllll}1 & 3 & 3 & 3 & 3 & 2\end{array}$
BAR2 ELEMENT TOPOLOGY
FIRST $\begin{array}{llll}1 & 1 & 4\end{array}$
INC $\begin{array}{llll}1 & 3 & 3 & 2\end{array}$
INC 6222

Example 4. Element Topology

Element Topology Parasitic

The data section ELEMENT TOPOLOGY PARASITIC is used to define the parasitic elements embedded within each host element. This data chapter(s) should follow on immediately after the standard ELEMENT TOPOLOGY chapters. There should be a single host element - parasitic element pair on each line of input.

```
type ELEMENT TOPOLOGY PARASITIC [TITLE title]
LH LP
type The host element type identifier as given in the description of each element; refer to the LUSAS Element Reference Manual.
LH The host element number (previously defined in ELEMENT TOPOLOGY).
LP The parasitic element number that defines an embedded bar element (previously defined in ELEMENT TOPOLOGY).
```


Notes

1. For problems idealised with more than one host element type, the header line ELEMENT TOPOLOGY PARASITIC is repeated for each host element type and followed by a list of host element and parasitic element numbers.
2. A parasitic element can only be embedded in one host element, therefore, the parasitic element numbers LP should be unique (no duplicates).
3. Any number of parasitic elements can be embedded in a single host element.
4. The host elements and embedded (parasitic) elements must have been previously defined in ELEMENT TOPOLOGY.
5. The nodes defining a parasitic element must be totally within the boundary of its host element. The system parameters PARWRN and PARERR can be used to set the warning and error tolerances respectively for checking when a node of a parasitic element is outside the boundary of its host.
6. Parasitic elements can only be connected to other parasitic elements.
7. The only structural parasitic elements available are bar elements, BAR2, BAR3, BRS2, BRS3 and 2D axisymmetric membrane elements BXM2, BXM3. Their thermal counterparts, BFD2, BFD3, BFS2, BFS3, BFX2, BFX3, are also available.
8. 2 D or 3 D structural or thermal continuum elements can be a host element; this includes composite elements, two-phase elements and hygro-thermal elements. No other element type can be a host element.
9. Host/parasitic elements are primarily intended for modelling reinforcing bars in concrete, assuming no slippage. They provide an approximation intended to make the geometric modelling faster and easier. The amount of approximation will be problem dependent; however any inaccuracy should be within an acceptable range for well discretised meshes.
10. A parasitic element is assumed to be rigidly fixed within its host element, its deformation is controlled by its host and no slippage between them is assumed to occur. It should be noted that the enhanced strain elements QPM4M, QPN4M, HX8M may not perform well as hosts under some circumstances (e.g. bending), as the bar and continuum element displacement fields may become incompatible.
11. Any support conditions applied to parasitic element nodes will be ignored; the support conditions applied to the host element nodes will control the behaviour of the parasitic element nodes.
12. Constraint equations should not be assigned to the nodes of a parasitic element. If constraint equations are required, they should be assigned to the nodes of the host elements and these will control the behaviour of the parasitic element nodes.
13. The element activation/deactivation status of a host element and its parasitic elements must be consistent.
14. Prescribed displacements/velocities/accelerations cannot be applied to parasitic nodes, however any other type of loading applied to the parasitic element or its nodes will be transferred to the host element.
15. The stiffness/mass/damping matrices for the parasitic elements are "smeared" into the host element matrices; the nodal displacements for the parasitic elements are not solved for directly but interpolated from the host element nodal displacements.
16. Parasitic elements cannot be used in Fourier and explicit dynamics analyses.

Solution Order

The SOLUTION ORDER data section controls the efficient solution of the finite element discretisation. This command is not essential and may be omitted. However, in certain instances, a significant improvement in computation, both in time and cost may be achieved by the judicious selection of the element solution order.

```
SOLUTION ORDER [ASCENDING | PRESENTED | AUTOMATIC [nopt
    nitopt]] [TITLE title]
{L L Llast L Ldiff | G igroup}
nopt Automatic optimiser selection (default=4)
    =1 standard LUSAS optimiser
        =2 Akhras-Dhatt optimiser
        =3 Cuthill-McKee optimiser
        =4 Sloan optimiser
nitopt (when nopt=2) Number of optimising iterations (default=30)
        (when nopt=3) Optimisation target (default=4)
            1 \text { RMS wavefront}
            2 \text { Bandwidth}
            3 \text { Profile}
            4 \text { Max wavefront}
L L Llast L L diff The first, last and difference between element numbers in a series
G
    Command word which must be typed to use element groups.
igroup Element group reference number.
Notes
```

1. If the header line is left out the default action is SOLUTION ORDER ASCENDING and the structure is solved according to ascending element number.
2. For SOLUTION ORDER PRESENTED the structure is solved according to the order in which the elements were presented in ELEMENT TOPOLOGY.
3. Element number data is not required for the SOLUTION ORDER PRESENTED.
4. With SOLUTION ORDER AUTOMATIC, Option 100 may be used to output the optimum element order for the frontal solution.
5. Each element number must only be specified once.
6. Fewer elements may be specified for SOLUTION ORDER than those specified in ELEMENT TOPOLOGY. If an element is not required in the solution it should be omitted from the data input.
7. Specification of element numbers not specified in ELEMENT TOPOLOGY is illegal.
8. The standard LUSAS optimiser should not be used for unconnected structures. If this occurs, an error message is output stating that the finite element mesh has an unconnected element. Option 100 will indicate all the elements within the structure as negative, those with a positive number are outside the structure.
9. Option 282 will switch the default optimiser to the standard LUSAS optimiser for compatibility with pre LUSAS version 12 data files.

Chapter 3 LUSAS Data Input

Example 1. Solution Order

QPM4 ELEMENT						
FIRST	13	21	1	2	22	
INC	1	1	1	1	1	3
FIRST	1	1	5	6	2	
INC	1	1	1	1	1	3
INC	3	4	4	4	4	3

Example 2. Solution Order

SOLUTION ORDER

$1 \quad 21$
30
$3 \quad 6 \quad 1$
31
$7 \quad 101$

32
11121
33361
FIRST 13161
INC $6 \quad 6 \quad 0 \quad 3$

Solver Type

The SOLVER data section allows the specification of the solver to be used for the solution of the set of linear equations. This command is not essential and may be omitted, which will cause LUSAS to choose either the standard or the fast frontal solver, depending on the type of problem to be solved. However, in certain instances, a significant reduction in both computation time and memory may be achieved by choosing an iterative solver (SOLVER CONJUGATE_GRADIENT or SOLVER PARALLEL PCG). It is also possible to assemble and write the global stiffness matrix and load vector(s) (or mass matrix, for eigenvalue problems) to binary files, without solving for the displacements.

The fast parallel direct solver is a thread-safe, high-performance, robust, memory efficient solver for solving large sparse symmetric and non-symmetric linear systems of equations on shared memory multiprocessors. The solver uses a combination of leftand right-looking supernode techniques. The parallel pivoting methods allow complete supernode pivoting in order not to compromise numerical stability and scalability during the factorisation process.

```
SOLVER {FRONTAL | FAST | ASSEMBLE}
or
SOLVER CONJUGATE_GRADIENT {INCOMPLETE_CHOLESKY |
    DECOUPLED | HIERARCHICAL} [droptol] [itmax]
or
SOLVER PARALLEL [mtype, mxirst, pvpthr, mpivot, inoutc,
    msglvl, mtrodr]
or
SOLVER PARALLEL PCG [mtype, skrylw, inoutc, msglvl,
    mtrodr]
```

droptol Drop tolerance parameter determining the size of the preconditioning matrix used during the conjugate gradient solution. The size of this matrix affects the nature of the iterative process, with larger preconditioning matrices giving rise to fewer, but more computationally expensive, iterations. The default value is 1.0 , which produces relatively small matrices (i.e. fewer non-zero entries), which is suitable for well conditioned problems that do not require many iterations to achieve convergence. For more ill-conditioned problems, values in the range [1e-3, 1e-6] are recommended.
itmax Maximum number of conjugate gradient iterations to be processed (default $=5000$).
mtype Matrix type:
0 - LUSAS decides (default)
2 - Real symmetric positive definite
-2 - Real symmetric indefinite
11 - Real and unsymmetric
mxirst Maximum number of iterative refinement steps (default=10)
pvpthr Pivoting perturbation threshold (default=1.0 ${ }^{-12}$)
mpivot Pivoting method:
$0-1 \mathrm{x} 1$ diagonal pivoting (default)
$1-1 \mathrm{x} 1$ and 2×2 Bunch and Kaufman pivoting

```
inoutc In-memory/out-of-memory solution control:
    0 - In-memory
    1 - In-memory if possible else solve out-of-memory (default)
    2 - Out-of-memory
msglvi Message level control:
    0 - No output (default)
    1 - Print statistics to screen
mtrodr Matrix reordering algorithm:
    0 - Minimum degree
    2 - METIS nested dissection (default)
```

skrylw Stopping criterion in Krylow-Subspace iteration (default=1.0-6)

Notes

1. The fast frontal solver will solve all problems except superelement analyses, Guyan reduction and non-linear problems using branching and bracketing.
2. For the fast frontal solver, the maximal and minimal pivots returned are based on magnitude, whereas the standard frontal solver returns pivots based on algebraic position. For example, if a problem gave rise to the three pivots $10.0,0.1$ and -1.0 , the fast solver would return 10.0 and 0.1 as the maximum and minimum, respectively, whereas the standard solver would return 10.0 as the maximum and 1.0 as the minimum.
3. For the standard frontal solver, the concept of negative pivots is synonymous with that of negative eigenvalues, which signify when a bifurcation point has been reached during a non-linear analysis, and also whether a structure is loading or unloading. Thus warnings are given for negative pivots that are encountered during the solution phase. For the fast frontal and fast parallel solvers, the concept of negative pivots is different from that of negative eigenvalues, and warnings of their existence are not given. For symmetric matrices, the number of negative eigenvalues is returned separately, and for non-symmetric matrices, the determinant of the stiffness matrix is returned, from which the parity of the eigenvalues (whether there are an even or odd number of negative eigenvalues) can be deduced. LUSAS uses this information during a non-linear analysis when using the fast solver, so the same results will be observed regardless of the solver used.
4. The standard frontal solver refers to "variable numbers" at a node when it issues warning/error messages related to zero and negative pivots. Interpreting these variable numbers can be achieved by first noting the general order in which nodal variable types are stored $\mathrm{U}=1, \mathrm{~V}=2, \mathrm{~W}=3, \mathrm{THX}=4, \mathrm{THY}=5, \mathrm{THZ}=6$. If all these variables exist at a node then these position numbers define the variable numbers used in the warning messages. If a node is only common to plate elements (say),
then the freedoms will be stored in the order picked out from above, i.e. W, THX, THY, and in this case variable 1 in a message refers to W , variable 2 refers to THX and variable 3 refers to THY.
5. The conjugate gradient solver may only be used for linear, static analyses that give rise to symmetric, positive-definite stiffness matrices.
6. The INCOMPLETE_CHOLESKY option chooses Incomplete Cholesky preconditioning, which is applicable to all analyses for which the conjugate gradient solver may be used. With a judicious choice of drop tolerance, convergence is guaranteed for most problems.
7. The DECOUPLED option chooses Decoupled Incomplete Cholesky preconditioning, and may be used for all analyses except those involving tied slidelines, thermal surfaces and Fourier elements. It generally leads to faster overall solution times than Incomplete Cholesky preconditioning, although more iterations are required for convergence. For less well conditioned problems, the conjugate gradient algorithm may not converge using this technique, so care should be taken.
8. The HIERARCHICAL option chooses Hierarchical Decoupled Incomplete Cholesky preconditioning, which is only available for models consisting entirely of two- and three-dimensional, solid continuum, quadratic elements, and offers excellent convergence properties. It is by far the most effective technique for models of this type, and when used in conjunction with fine integration (OPTION 18) allows solutions to be obtained for relatively ill-conditioned problems. For very ill-conditioned problems of this type (e.g. where the average element aspect ratio is high), an extra preconditioning option exists (OPTION 323) which will often yield a solution faster than using a direct solver.
9. When using the conjugate gradient solver with hierarchical basis preconditioning, if any midside degrees of freedom are supported or prescribed, their corresponding vertex neighbours must also be supported or prescribed. For example, if a midside node is fixed in the x-direction, all nodes on the same edge of that element must also be fixed (or prescribed) in the x-direction.
10. Problems involving constraint equations cannot currently be solved with the conjugate gradient solver, since the resulting stiffness matrix is non-positivedefinite.
11. For problems with multiple load cases, iterative solvers are less efficient since a separate iterative process is required for each load case, and the total time taken will increase in proportion to the number of load cases. By contrast, direct solvers incur very little extra cost when solving for multiple load cases.
12. Guyan reduction and superelement analyses cannot be solved iteratively, since matrix reduction does not take place.
13. The iterative solver will perform very poorly if there is not enough main memory for the solution to proceed in-core. To guard against this, a data check (OPTION 51) may be performed (as with the direct solvers), which will estimate the amount of memory the iterative solver would use with the specified drop tolerance and choice of preconditioning technique.
14. If a convergence history of the iterative process is desired, OPTION 247 can be activated to write the residual norm of the solution vector to the output file after each iteration.
15. The preconditioning matrix can be stored using single precision storage (OPTION 248), which can significantly reduce the total amount of memory required for solution. For ill-conditioned problems, however, the rate of convergence may be affected, and the incomplete Cholesky factorisation may fail, hence this option must be used with care.
16. The iterative solver has limited error diagnostics to warn against ill-defined or incompletely specified models. If this is suspected, the analysis should be run through the standard frontal solver for more comprehensive error diagnostics.
17. For the iterative solver, the convergence criterion is a tolerance value of $1 \mathrm{e}-6$ for the residual of the solution vector. If the solution returned by the iterative solver is deemed unsatisfactory, this tolerance can be lowered by altering the system parameter SOLTOL. It should not be raised under normal circumstances, unless an approximate solution only is required.
18. For the fast frontal, fast parallel and iterative solvers, the global matrix assembly involves the use of scratch files, since the size of the matrix data can be very large. For small problems which require many load increments or time steps, the global assembly process can be forced to remain in-core (OPTION 17) by placing it under the control of the data manager, assuming sufficient memory is available.
19. For the ASSEMBLE option, the data can be written to ASCII files by setting the system parameter MCHOUT to 0 . The matrices are written in standard compressed row (or Harwell-Boeing) format for the fast solvers, and compressed column storage for the fast parallel solvers. For binary files, the order of the data written is as follows:
\(\left.$$
\begin{array}{ll}\text { N } & \text { (integer - number of rows and columns) } \\
\text { NJA } & \begin{array}{l}\text { (integer - number of non-zero entries in the matrix) } \\
\text { IA }\end{array}
$$

(integer array, length N+1 - stores row (or column - fast parallel

solver) pointers for the columns (or rows - fast parallel solver)

array JA)

(integer array, length NJA - stores column (or row - fast parallel\end{array}\right\}\)| solver) indices for the non-zero entries) |
| :--- |
| (double precision array, length NJA - stores values for the non- |
| zero entries) |

Note that for symmetric matrices, only the upper triangular part of the matrix will be written to the file.
For vectors, the order of the data written to binary files is as follows:

\mathbf{N}	(integer - total number of rows)
NVEC	(integer - number of load cases)
VECTOR	(double precision array, dimensioned (N, NVEC) - vector of
	values)

20. When using the fast frontal solver jobs sometimes fail because the presence of a large number of constraint equations causes an excessive amount of pivotting
during the solution. To reduce the amount of pivotting a smaller value for the system parameter PVTTOL (default=0.01) can be specified in the data file.
21. When using the fast parallel solver, the coefficient matrix is perturbed whenever numerically acceptable 1 x 1 and 2×2 pivots cannot be found within the diagonal supernode block. The pivoting perturbation threshold is controlled via the input parameter pvpthr.
22. When using the fast parallel solver, unnacepatble "rounding error" is reduced by carrying out iterative refinement steps. The maximum number of iterative refinement steps to be carried out is controlled by the input parameter mxirst. Any pertubation of pivots usually results in one or two iterative refinements.
23. The fast parallel solver cannot currently be used for any form of eigenvalue analysis, or for superelement or Fourier analyses and for non-linear problems using branching and bracketing.
24. For large problems, the value of NLPZ should be reduced when using the fast parallel solver so that as much memory as possible is available for the solution of equations. Note that this only applies to the fast parallel solver, all other solvers use the memory space from within NLPZ.
25. The PARALLEL PCG (pre-conditioned conjugate gradient) iterative solver allows the automatic combination of iterative and direct solver. The strategy for this is as follows: A maximum number of 150 iterations is fixed by expecting that the iteration will converge before consuming half the factorisation time. Intermediate convergence rates and residuals are checked and can terminate the iteration process. If a numerical factorization, solve and iterative refinement are to be carried out, then the factorization for a given matrix is automatically recomputed where the Krylov-Subspace iteration failed and the corresponding direct solution is returned. Otherwise the solution from the preconditioned Krylov Subspace iteration is returned.

Nodal Coordinates

The data chapter NODE COORDINATES is used to specify the nodal coordinates, defined in the global Cartesian system. All coordinates can be input using the NODE COORDINATE command. Alternatively the following facilities may be used within the NODE COORDINATES data chapter in order to aid or automate nodal coordinate generation:

- Local Coordinate Systems
\square Spacing Nodal Coordinates on a Line
\square Spacing Nodal Coordinates on an Arc
\square Spacing Nodal Coordinates in a Quadrilateral
\square Copying Nodes
- Renumbering Nodes
- Deleting Nodes

Node Coordinates

The NODE COORDINATES data section inputs the nodal coordinates in the global Cartesian coordinates of the problem.

```
NODE COORDINATES [TITLE title]
```


N \mathbf{X}, \mathbf{Y} [Z]

$\mathbf{N} \quad$ The node number allocated to the particular node being defined.
$\mathbf{X}, \mathbf{Y}, \mathbf{Z} \quad$ The global coordinates of the node. For 2D structures only X and Y need be specified.

Notes

1. If a node is repeated the new coordinate values overwrite the previous values and an advisory message is printed out.
2. LUSAS checks for nodes with same coordinates and if encountered, prints out an advisory message (Option 2 suppresses this check).
3. If several nodes are overwritten or specified in an arbitrary order, you can request output of the final node coordinates in ascending order with Option 30.
4. Extra dummy nodes, not associated with particular elements, may be specified. These dummy nodes can, for example, be used to simplify data generation.
5. The NODE COORDINATE command can be repeated in the datafile or in a restart file to introduce new nodes into the solution. OPTION 399 must not be set.

2D and 3D Coordinate Definition

Local Coordinate Systems

Local Cartesian coordinates may be used to generate coordinate points in each of the local systems indicated that follow.

LOCAL \{CARTESIAN | CYLINDRICAL | SPHERICAL\} COORDINATES $\mathrm{N}_{\mathrm{o}} \mathrm{N}_{\mathrm{x}} \quad\left[\mathrm{N}_{\mathrm{xy}}\right]$
$N \quad\left\{X, Y|X, Y, Z| X, r, \theta_{x} \mid r, \theta_{x}, \theta_{c}\right\}$
A return to global coordinates may be obtained following the command GLOBAL CARTESIAN COORDINATES.

GLOBAL CARTESIAN COORDINATES

No The node defining position of local axis origin.
$\mathbf{N x} \quad$ The node together with No defining the positive direction of local x -axis.
Nxy The node defining the position of xy plane i.e. any point in the positive quadrant of the local xy plane. (Not required for 2D coordinates).
$\mathbf{N} \quad$ The node number allocated to the particular node being defined.
$\mathbf{X ,} \mathbf{Y}, \mathbf{Z}$ Local Cartesian coordinates (see Local Cartesian Coordinates).
$\mathbf{X}, \mathbf{r}, \mathbf{q}_{\mathbf{x}}$ Local cylindrical coordinates (see Local Cylindrical Coordinates).
$\mathbf{r}, \mathbf{q}_{\mathbf{x}}, \mathbf{q}_{\mathrm{c}}$ Local spherical coordinates (see Local Spherical Coordinates).

Notes

1. After insertion of a LOCAL COORDINATE header line, LUSAS assumes that all subsequent node coordinate data refers to that local coordinate system.
2. The coordinates of the nodes, with respect to the global coordinate axes, defining the position and orientation of the local axes must be defined prior to the insertion of LOCAL COORDINATE header line.
3. Other coordinate generation procedures such as FIRST, SPACING, QUADRILATERAL and COPY may be used in local coordinates (see subsequent commands in this section).
4. A set of LOCAL COORDINATE data must always be terminated by the GLOBAL CARTESIAN COORDINATE command. This command transforms the local node coordinates into the global coordinates in which LUSAS operates, and outputs the global coordinate values.
5. There is no limit to the number of sets of LOCAL COORDINATE data, but each set should be terminated by the GLOBAL CARTESIAN COORDINATE command before the subsequent set of LOCAL COORDINATE data is specified.
6. $\mathbf{q x}$ and $\mathbf{q c}$ are specified in degrees.

Local Cartesian Coordinates

For LOCAL CARTESIAN COORDINATES the following definitions apply:
x distance from the local origin in the local x direction.
$y \quad$ distance from the local origin in the local ydirection.
z distance from the local origin in the local z direction.

Local Cylindrical Coordinates

For LOCAL CYLINDRICAL

 COORDINATES the following definitions apply:distance from the local origin in the local x-direction.
r radius from the local x -axis in the local yz-plane.
qX angle in degrees from the side of the local xy-plane about the local x-axis (right-hand screw rule).

Local Spherical Coordinates

For LOCAL SPHERICAL COORDINATES the following definitions apply:
r radius from the local origin qx angle in degrees from the positive quadrant of the local xy-plane about the local x axis. The rotation is clockwise when looking along the x -axis in the positive direction (right hand screw rule).
qc angle in degrees from the local x -axis to the radius line.

Example 1. Local Cartesian Coordinates

NODE COORDINATES
$100 \quad 3.0 \quad 1.0$
$101 \quad 9.0 \quad 4.0$
LOCAL CARTESIAN COORDINATES 100101

Chapter 3 LUSAS Data Input

```
FIRST 1 2 1
        INC 1 1 1 0
        INC }
GLOBAL CARTESIAN COORDINATES
```

Example 2. Local Cylindrical Coordinates

NODE COORDINATES

50	4	4	0
51	4	4	6

```
        524 8 0
LOCAL CYLINDRICAL COORDINATES 50 51 52
    10 2 0
    2 0 2 45
    3 0 2 90
    0}2013
    5 0 2 180
    6 0 2 225
    7 0 2 270
    8 0 2 315
    9 3 2 0
    10 3 2 45
GLOBAL CARTESIAN COORDINATES
```


Spacing Nodal Coordinates on a Line

The SPACING command computes the coordinates of a line of nodes from the coordinates of the end nodes and the defined spacing ratios.

SPACING [\{X | Y | Z \} RATIOS]
$N N_{\text {last }} N_{\text {diff }}<S_{i}>_{i=1, n}$
$\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}$ The first node, last node and difference between nodes of the series of nodes to be spaced.
$\mathbf{S}_{\mathbf{i}} \quad$ The ratios of the spaces between consecutive nodes. For M spaces with the same value S use an asterisk to automatically repeat value as M^{*} S. Note that $i £ 120$ even when $\mathrm{M}^{*} \mathrm{~S}$ format is used.
$\mathrm{n} \quad$ The number of spaces between consecutive nodes.

Notes

1. The coordinates of the first and last nodes of a line must be specified before the spacing data line.
2. Projections of the line connecting the N and Nlast nodes on the X, Y and Z axes may be evaluated by using the SPACING X RATIOS, SPACING Y RATIOS and SPACING Z RATIOS commands respectively.
3. It is permissible to specify up to 120 spacing ratios. If the data will not fit on to one line use the LUSAS line continuation symbol (three dots ...) to continue onto a second line.
4. Additional spacing data may be specified without repeating the header line.

Example 1. Node Coordinates Spacing on a Line

This data file segment:
NODE COORDINATES

5	1	1
25	9	7

SPACING
$\begin{array}{ccccc}5 & 25 & 5 & 1.667 & 1.667\end{array}$

Has the same effect as this one:
NODE COORDINATES

```
        5 1 1
        25 9 7
SPACING
    5 25 5 3*1.667 5.0
```


Example 2. Node Coordinates Spacing on a Line

This data file segment:
NODE COORDINATES
111.0
2.0
$16 \quad 11.0 \quad 2.0$
$29 \quad 1.0 \quad 7.5$
$34 \quad 11.0 \quad 7.5$
SPACING
$\begin{array}{lllll}11 & 29 & 6 & 2 * 2.0 & 1.5\end{array}$
$163462 * 2.0 \quad 1.5$
11161 3*1.25
$3.75 \quad 2.5$
17221 3*1.25
$3.75 \quad 2.5$
2328 1 3*1.25
$3.75 \quad 2.5$
2934 1 3*1.25
$3.75 \quad 2.5$

Has the same effect as this one:
NODE COORDINATES
111.02 .0
1611.02 .0
291.07 .5
3411.07 .5

SPACING
FIRST 1129 6 2*2.0 1.5
INC 55 (2)
FIRST 11161 3*1. 25
3.752 .5

INC 66 (4)

Spacing Nodal Coordinates on an Arc

The SPACING ARC RATIOS data section computes the coordinates of a circular line of nodes from the coordinates of the end nodes and the defined arc ratios.

```
SPACING [X | Y] ARC RATIOS \(\mathrm{X}_{\mathrm{c}} \mathrm{Y}_{\mathrm{c}}\left[\mathrm{Z}_{\mathrm{c}}\right]\) [ \(\mathrm{N}_{\mathrm{d}}\) ]
N Nlast Ndiff < Si >i=1,n
```

$\mathrm{Xc}, \mathrm{Yc}, \mathrm{Zc}$ The coordinates of the centre of the circle.
$\mathrm{Nd} \quad$ The node defining the direction in which nodes are to be spaced around circle.
N Nlast Ndiff The first node, last node and difference between nodes of the series of nodes to be spaced.
Si The ratio of the arc spaces between consecutive nodes. For M spaces with the same value S use an asterisk to automatically repeat value as $\mathrm{M}^{*} \mathrm{~S}$. Note that $\mathrm{i} £ 120$ even when M^{*} S format is used.
$\mathrm{n} \quad$ The number of arc spaces between consecutive nodes.

Notes

1. The coordinates of the first, last and centre nodes of a circular line must be specified before the spacing data line. The radius between the centre node and the \mathbf{N} and Nlast nodes must be equal.
2. It is permissible to specify up to 120 arc spacing ratios. If the data will not fit onto one line, use the LUSAS line continuation symbol (three dots ...) to continue onto a second line.
3. Additional spacing data may be specified without repeating the header line.
4. The program will assume that the nodes will be spaced around the shortest arc length between the first and last nodes. For sweep angles greater than 180°, a node, lying in the plane and direction of the circular line to be generated, must be specified on the header line. The coordinates of this direction node must be specified prior to the header line.
5. Incremental generation may be used to generate several circular lines with the same centre. For M arc spaces with the same increment value S , use the asterisk repeat facility as $\mathrm{M}^{*} \mathrm{~S}$. Zero arc spacing ratio increments need not be specified if the total number of lines are put in brackets.
6. The projection of the X or Y coordinate of the arc onto the X or Y axis is calculated using the SPACING X ARC RATIOS and SPACING Y ARC RATIOS respectively. The projected nodes lie in the same Z-plane as the centre of the circle.
7. When using SPACING X (or Y) ARC RATIOS the first and last Y (or X) coordinates must not change sign over the segment of arc being generated.

Example 1. Node Coordinates Spacing on an Arc

This data file segment:
NODE COORDINATES
$1 \quad 11.0 \quad 1.0$
$13 \quad 0.437 \quad 9.863$
SPACING ARC RATIOS 2.0 1.0
$\begin{array}{llll}1 & 13 & 3 & 16.67\end{array}$
$16.67 \quad 16.67 \quad 50.0$

Has the same effect as this:
NODE COORDINATES
$1 \quad 11.0 \quad 1.0$
$13 \quad 0.437 \quad 9.863$
SPACING ARC RATIOS 2.0
1.0
$1 \quad 13 \quad 3 \quad 3 * 16.67$
50.0

Example 2. Node Coordinates Spacing on an Arc

This data file segment:
NODE COORDINATES
$11 \quad 5.33 \quad 0.5$
$26 \quad 9.66 \quad 3.0$

Has the same effect as this:
NODE COORDINATES
$11 \quad 5.33 \quad 0.5$
$26 \quad 9.66 \quad 3.0$
$\begin{array}{lll}15 & 1.0 & 3.0 \\ 30 & 1.0 & 8.0\end{array}$
SPACING

15	30	5	1.0	2.0
2.0				
11	26	5	1.0	2.0
2.0				

SPACING ARC RATIOS 1.0 2.0

```
11
2*10
    16}200\quad1\quad25 15 
2*10
    21
2*10
```


$$
(1.0,-2.0)
$$

Spacing Nodal Coordinates in a Quadrilateral

The data section QUADRILATERAL SPACING generates node coordinates for plane or parabolic quadrilateral zones.

QUADRILATERAL SPACING

N \{ X,Y | X,Y,Z \}
SIDE POINTS

$\mathbf{N} \quad$ A corner node number of the quadrilateral zone to be generated.
$\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ The global coordinates of a corner node. For 2D structures, only X, Y are specified. Four corner node data lines are required in any order.
N Nlast Ndiff The first node, last node and difference between nodes of the series of nodes along a side of the quadrilateral zone.
Xs, Ys, Zs The global coordinates of a point along a side of the quadrilateral zone which defines the parabolic shape and grading of the line of nodes. This point must lie inside the central half of the side and need not be coincident with any node. Four side point data lines are required in any order.

Notes

1. If the coordinates of the side points are omitted a straight sided regularly spaced quadrilateral will be generated.
2. The angle subtended at any corner of a quadrilateral zone must be less than 180° otherwise non-uniqueness of mapping may result.

Chapter 3 LUSAS Data Input

Example 1. Node Coordinates Quadrilateral Spacing

NODE COORDINATES
QUADRILATERAL SPACING

8	2	1
11	7	1
29	8	5
26	2.5	5
SIDE	POINTS	

8	11	1	4.5	1.6

11	29	6	7	3

$26 \quad 29 \quad 1 \quad 5.25 \quad 5.6$
$\begin{array}{lllll}8 & 26 & 6 & 1.8 & 3\end{array}$

Example 2. Node Coordinates Quadrilateral Spacing


```
NODE COORDINATES
QUADRILATERAL SPACING
    10 0 0
    20 9 0
    46 0}
    56 9 6
SIDE POINTS
    10}2002023 
```



```
    46}556\quad2\quad3 6 
    10}404612 0 3 
```

The number of nodes on either side of the mid-node are equal, but the spacing of the nodes will only be equal if the mid-node happens to bisect the side.

Chapter 3 LUSAS Data Input

Example 3. Node Coordinates Quadrilateral Spacing

NODE COORDINATES
QUADRILATERAL SPACING
111
$4 \quad 10 \quad 1$
1345
$16 \quad 7 \quad 7$
SIDE POINTS
141
$1 \quad 13 \quad 4$
13161
$4 \quad 16 \quad 4$

Copying Nodes

The data section COPY NODES copies the coordinates of a series of nodes to another series of nodes.

COPY NODES $\mathrm{N} 1 \mathrm{~N}_{\text {last }} \mathrm{N} 1_{\text {diff }}$ TO $\mathrm{N} 2 \mathrm{~N} 2_{\text {last }} \mathrm{N} 2_{\text {diff }}$
N1 N1last N1diff The first node, last node and difference between nodes of the series of node coordinates to be copied.
N2 N2last N2diff The first node, last node and difference between nodes of the recipient series of nodes.

Notes

The coordinates of the first series of nodes must be specified prior to the use of this command.

1. Any node coordinates in the second series of nodes which were previously specified will be overwritten.
2. The number of nodes in both series must be equal.
3. This command could, for example, be used in LOCAL COORDINATES to copy a repetitive pattern of nodes to a new position and orientation.

Example. Node Coordinates Copying Nodes

NODE COORDINATES

$\begin{array}{lll}1 & 1 & 1\end{array}$
$2 \quad 21$

```
    3 2 2
    4 1 2
    10 4 2
    11 6 3
LOCAL CARTESIAN COORDINATES 10 11
COPY NODES 1 4 1 TO 5 8 1
GLOBAL CARTESIAN COORDINATES
```


Renumbering Nodes

The data section RENUMBER NODES renumbers a series of node numbers with a new series of node numbers.

RENUMBER NODES $\mathrm{N} 1 \mathrm{~N}_{\text {last }} \mathrm{N} 1_{\text {diff }}$ TO N2 $\mathrm{N} 2_{\text {last }} \mathrm{N} 2_{\text {diff }}$
N1 N1last N1diff The first node, last node and difference between nodes of the series of node coordinates to be renumbered.
N2 N2last N2diff The first node, last node and difference between nodes of the recipient series of nodes.

Notes

4. The node coordinates of the series of nodes to be renumbered must be specified prior to the use of this command.
5. Any node coordinates of the series of new nodes which were previously specified will be overwritten.
6. The number of nodes in both series must be equal.

Deleting Nodes

The data section DELETE NODES deletes a series of node coordinates from the LUSAS database.

DELETE NODES $N N_{\text {last }} \mathrm{N}_{\text {diff }}$
N Nlast Ndiff The first node, last node and difference between nodes of the series of node coordinates to be deleted.

Note

7. If a node for deletion has not been previously specified, a warning message will be output.

Example. Node Coordinates Deleting Nodes
 DELETE NODES 792

DELETE NODES 17192

Geometric Properties

The data section GEOMETRIC PROPERTIES is used to define the geometric property values for the specified element type. Not all elements will require the input of geometric properties; for example, the geometric properties for a membrane element will be the element thickness at each node, whilst there is no equivalent property for the solid elements. The LUSAS Element Reference Manual should be consulted for geometric property details of each element type.

GEOMETRIC PROPERTIES are assigned to a series of elements using the GEOMETRIC ASSIGNMENTS data section.
type GEOMETRIC PROPERTIES [CONSTANT] [STIFFNESS_FACTORS]
[nxs] [TITLE title]
igmp $<\mathrm{G}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}$
type The element type identifier as given in the description of each element. Refer to the LUSAS Element Reference Manual.
CONSTANT Specifies that the GEOMETRIC PROPERTIES are the same for all nodes on the element (see Notes).
STIFFNESS_FACTORS Factors applied to full cross section properties (see Notes).
nxs The number of quadrilateral cross-sections defining the total cross-section (used for beam elements, see Notes).
igmp The geometric property reference number (see Geometric Assignments).

$$
\begin{aligned}
& \text { Gi } \begin{array}{l}
\text { The geometric property values for the element type specified, see element } \\
\text { descriptions in the LUSAS Element Reference Manual for definition of } \\
\text { values. } \\
\text { n }
\end{array} \text { Number of geometric properties to be input. }
\end{aligned}
$$

Notes

8. Some element types in LUSAS do not require geometric property input, in which case this section should be omitted.
9. If an element is repeated, the new geometric properties overwrite the previous values for that element and an informative message is printed in the output file.
10. When the CONSTANT parameter is used, the geometric properties for only 1 node need be defined and the others are assumed to be the same.
11. The parameter nxs can only be utilised with beam elements that require quadrilateral cross-sections to be defined via the local coordinates: BMX3 element in 2D; BXS4 and BXL4 elements in 3D. The maximum number allowed for parameter nxs is 2000 (approximately 200 cross section geometries).
12. For compatibility with previous versions of LUSAS, prior to LUSAS 12, geometric properties may still be associated with elements directly using the element first, last, inc facility. To use this approach Option -117 must now be set. The CONSTANT and nxs parameters cannot be utilised with this approach.
13. The GEOMETRIC PROPERTIES command can be repeated in the datafile or in a restart file to introduce new geometric properties into the solution.
14. The STIFFNESS_FACTORS command allows the application of a factor to each of the cross-section properties. These scaled properties are used in the calculation of the element stiffness matrix. The factors decouple the stiffness matrix from the mass matrix and body forces which are calculated from the unfactored properties. STIFFNESS_FACTORS are not applicable to elements which use a quadrilateral cross-section definition.

Examples of Geometric Properties

Input for 3D problem comprising thin beam elements with and without quadrilateral cross-sections (see LUSAS Element Reference Manual for definition of values):

Example 1. Geometric Properties Without Quadrilateral Cross-Sections

Properties defined for each node:
BS3 GEOMETRIC PROPERTIES

11	100.0	833.33	1666.66	0.0	0.0	0.0	\ldots
	100.0	833.33	1666.66	0.0	0.0	0.0	\ldots
	100.0	833.33	1666.66	0.0	0.0	0.0	

Properties defined constant for all nodes:

BS3 GEOMETRIC PROPERTIES CONSTANT

```
12 100.0 833.33 1666.66 0.0}00.0 0.0 
```


Example 2. Geometric Properties With Quadrilateral Cross-Sections

Cross section defined at each node. Input four y,z pairs at each node followed by the number of integration points in the local y and z directions respectively.

BXL4 GEOMETRIC PROPERTIES
21
$0.25-0.125$
$0.5-0.125$
0.50 .125
0.250 .125
$0.25-0.125$
$0.5-0.125$
0.50 .125
0.250 .125
$0.25-0.125 \quad 0.5-0.125 \quad 0.50 .125 \quad 0.250 .12538$

Cross section defined constant for all nodes. Input four y,z pairs followed by the number of integration points in the local y and z directions respectively.

BXL4 GEOMETRIC PROPERTIES CONSTANT

```
21 0.25 -0.125 0.5 -0.125 0.5 0.125 0.25 0.125 3 8
```

Cross section defined as two rectangles constant for all nodes. Input four y,z pairs followed by the number of integration points in the local y and z directions respectively for each quadrilateral in the section.

BXL4 GEOMETRIC PROPERTIES CONSTANT 2
$21 \quad 0.25-0.125 \quad 0.5-0.125$
$0.50 .0 \quad 0.250 .0$
34
$\begin{array}{llllllllll}0.25 & 0.0 & 0.5 & 0.0 & 0.5 & 0.125 & 0.25 & 0.125 & 3\end{array}$

Composite Geometry

The data section COMPOSITE GEOMETRY defines the thicknesses of layers used to laminate a composite material for the laminated brick or shell elements. The number of layers defined in this data section must be the same as the number of layers used in the accompanying COMPOSITE MATERIAL section. The data is input in tabular form where rows relate to layers and columns to element nodes. The lay-up sequence is always defined sequentially from the lower to upper surface of the element. COMPOSITE GEOMETRY and COMPOSITE MATERIALS are assigned to elements through the COMPOSITE ASSIGNMENT data section.

COMPOSITE GEOMETRY [TITLE title]

TABLE icgp
$t 1_{1} \quad\left[<t_{i}>_{i=2, \text { nnode }}\right]$

```
tnlayri [< tnlayri
```

icgp Composite geometry set number.
tji Thickness of layer \mathbf{j} at node \mathbf{i} (see Notes).
nlayr Total number of layers.
nnode Number of element nodes.

Notes

1. Node order is defined by element topology. If the layer thickness is the same at each node then only the thickness at node 1 need be defined.
2. The layer thickness may be specified as a ratio of the total thickness defined under GEOMETRIC PROPERTIES for semiloof shells or of the depth defined by the element topology for composite solids.
3. The COMPOSITE GEOMETRY command can be repeated in the datafile or in a restart file to introduce new composite geometries into the solution.

Lamina Directions

The data section LAMINA DIRECTIONS defines the position and direction of the bottom and top surfaces of each lamina in a composite laminate material, i.e. nlam+1 surfaces for nlam laminae, used with laminated tetrahedral elements. The number of lamina defined in this data section, nlam, must be the same as the number of lamina used in the accompanying COMPOSITE MATERIAL section. The lay-up sequence is always defined sequentially from the lower to upper lamina of the laminate. LAMINA DIRECTIONS and COMPOSITE MATERIALS are assigned to elements through the COMPOSITE ASSIGNMENT data section.

LAMINA DIRECTIONS [TITLE title]
TABLE icpl


```
    (x0, Y0, zo m nlam+1 ( 
```

icpl Lamina directions set number.
$\left(x_{0}, y_{0}, z_{0}\right)_{i}$ Coordinates defining the Cartesian set origin on the bottom (top)
surface of lamina i (i-1).
$\left(\boldsymbol{x}_{1}, y_{1}, z_{1}\right)_{i} \quad$ Coordinates used to define the local x -axis on the bottom (top)
surface of lamina \mathbf{i} (i-1).
$\left(x_{2}, y_{2}, z_{2}\right)_{i} \quad$ Coordinates lying in the positive quadrant of the local $x y$-plane on
the bottom (top) surface of lamina $\mathbf{i}(\mathbf{i}-1)$.
nlam Total number of lamina.

Notes

1. The local z-axis is defined using the right-hand screw rule.
2. The data section CARTESIAN SETS used to define the required local Cartesian coordinate axes in COMPOSITE ASSIGNMENTS will not be utilised when LAMINA DIRECTIONS are defined.
3. The angle defined via COMPOSITE MATERIAL should be with respect to the local x -axis of the lamina (in-plane rotation) if LAMINA DIRECTIONS are defined.
4. The lamina thicknesses are computed from the origins of the Cartesian sets defined on each lamina surface.
5. LAMINA DIRECTIONS are not applicable to shell elements.
6. The LAMINA DIRECTIONS command can be repeated in the datafile or in a restart file to introduce new lamina directions into the solution.

Geometric Assignments

The data section GEOMETRIC ASSIGNMENTS is used to assign defined geometric property sets to single, groups or sequences of elements. The GEOMETRIC ASSIGNMENTS command can be repeated in the datafile or in a restart file to introduce new geometric assignments into the solution.

GEOMETRIC ASSIGNMENTS [TITLE title]
$\left\{\mathrm{L} \mathrm{L}_{\text {last }} \mathrm{L}_{\text {diff }} \mid \mathrm{G}\right.$ igroup\} igmp [igmpv]
$L_{\text {last }} L_{\text {diff }}$ The first, last and difference between elements with the same geometric assignment.
igmp The geometric property reference number (see Geometric Properties)
igmpv The varying geometric property reference number if it is defined in the LUSAS Modeller pre-processing model. This number is saved in the LUSAS Modeller results file for use in post-processing.
G A command word which must be typed to use element groups.
igroup The element group reference number (see Defining Data Groups).

Example. Geometric Assignments

Nodal thicknesses for a single curved shell element (QSL8) with 8 nodes:
QSL8 GEOMETRIC PROPERTIES
$\begin{array}{lllllllll}2 & 2.5 & 2.5 & 2.5 & 3.0 & 3.5 & 3.5 & 3.5 & 3.0\end{array}$

GEOMETRIC ASSIGNMENTS

Profile Sets

PROFILE SETs are used to describe the variation of soil material properties, such as Young's modulus or porosity, with depth. The variation of a property at a depth, d, below the ground surface is specified as a piece-wise linear curve along a PROFILE. Step changes in a property at a point are allowed.

The origin and orientation of a PROFILE are defined by a Cartesian set with depth increasing along its local x-axis. A PROFILE SET may contain more than one PROFILE so that the spatial variation across a model can be described by linear interpolation between PROFILEs.

A PROFILE SET is assigned to a material by inserting factor*pRef in place of the material property in the material parameter input where factor scales the PROFILE SET whose id is pRef.

PROFILE SETs are input by listing one or more PROFILEs and then by defining how they are spatially related to each other. In 2D analyses PROFILEs are paired up to form segments and the properties are interpolated between them. For 3D analyses three PROFILEs are linked to form a triangular segment from which data can be interpolated. If only a single PROFILE is defined the data is constant in the inplane direction across the whole model. The number of data points defining a PROFILE do not need to match those of other PROFILEs.

2 profiiles form 2D segment

3 profiles form 3D segment

For a PROFILE SET containing a single PROFILE points are projected directly onto the PROFILE. If the projected point is above the PROFILE origin a value of zero is set for the property. The last section of the PROFILE is extended for points whose projection is beyond the last point defined in the PROFILE.

For PROFILE SETs containing more than one PROFILE linear interpolation is used to establish the property values. Points which lie outside the interpolation zone are
assigned a value of zero. The final PROFILE section is extended to the bottom of the model if required as in the case of a single PROFILE.

PROFILE SET pRef

PROFILE iPrf nSet ${ }_{i}$
$<d_{i} f\left(d_{i}\right) \quad>i=1 . n$
SEGMENT

pRef Profile set reference
iPrf individual profile reference
$\mathrm{nSet}_{\mathrm{i}}$ Cartesian set defining origin and orientation of profile iPrf
di depth measured along profile from origin along local x -axis of Cartesian set
$f(\mathrm{di})$ value of property at depth di
nPrf number of profiles defining a segment - 2 in 2D and 3 in 3D

Notes

1. SEGMENT is not required if only one PROFILE is defined in the PROFILE SET.
2. New PROFILE SETs can be defined and old ones overwritten during the analysis.
3. PROFILE SETs are applicable to material, Ko and two-phase properties assigned to two-phase and isoparametric solid and membrane elements only.
4. In 3D a cylindrical Cartesian set can be used to define the profile.

Example.

The Young's modulus of Mohr-Coulomb type soil varies with depth according to the PROFILE shown below. A scale factor of 2 multiplies the profile.

PROFILE SET 10
PROFILE 3100

0	6000
2	9000
2	13000
10	15000
10	18000
16	20000

MATERIAL PROPERTIES MODIFIED MOHR_COULOMB

C	imat	E	ν	ρ	α	a_{r}	b_{r}	T	c	ϕ
		ψ								
1	$2 * \mathrm{P} 10$	0.2	1.8	0	0	0	0	0	25.0	0.0
2	$2 * \mathrm{P} 10$	0.15	1.86	0	0	0	0	20	30.0	3.0
3	$2 * \mathrm{P} 10$	0.1	2.0	0	0	0	0	25	32.5	7.0

Material Properties

Every element declared in the model discretisation must be assigned a material property. Material property definitions may be classified into one of the following groups:
\square Linear Material Properties
\square Matrix Properties
\square Joint Material Properties
\square Mass Properties
\square Nonlinear Material Properties
\square Field Material Properties
\square Composite Material Properties
Each set of data specified under MATERIAL PROPERTIES must have a unique material identification number associated with it. This allows a group of elements to be assigned a set of material properties under MATERIAL ASSIGNMENTS.

Material properties specified under MATERIAL PROPERTIES can be combined with the PLASTIC DEFINITION, VISCOUS DEFINITION and/or DAMAGE PROPERTIES definitions via the MATERIAL ASSIGNMENTS data chapter.

Temperature dependent material properties may be input for both field and structural elements. In this case the TABLE command must directly follow the particular material properties command. Lines of data listing the material properties at particular reference temperatures are then input.

The following restrictions apply to the use of the temperature dependent material properties:
\square Limited to continuum models (von Mises, Tresca, Mohr-Coulomb, DruckerPrager), i.e., not available for stress resultant model
\square Limited to formulations based on total strains (geometric linearity and Total Lagrangian or Co-rotational geometric nonlinearity)
\square Hardening modulus values are not temperature dependent.

Notes

1. Superfluous properties or rigidities for elements not present in a structure may be specified.
2. For a more detailed description of each constitutive model refer to the $L U S A S$ Theory Manual.
3. The LUSAS Element Reference Manual defines the material properties that are applicable for each of the element types.
4. For compatibility with previous versions of LUSAS, material properties may still be associated with elements directly using the element first/last/inc facility. To use this approach Option -118 and/or -146 must be set.
5. The MATERIAL PROPERTIES command can be repeated in the datafile or in a restart file to introduce new material properties into the solution. New properties must be assigned using the MATERIAL ASSIGNMENT command to take effect.

Linear Material Properties

The following linear elastic material models are available:
\square Isotropic

- Orthotropic Plane Stress
\square Orthotropic Plane Strain
\square Orthotropic Thick
\square Orthotropic Axisymmetric
\square Orthotropic Solid
\square Anisotropic
\square Rigidity specification

Linear Isotropic Model

The data section MATERIAL PROPERTIES is used to define the material properties for linear elastic isotropic materials.

MATERIAL PROPERTIES [TITLE title] imat $E n\left[r a a_{r} b_{r} T\right]$
imat The material property identification number
E Young's modulus
n Poisson's ratio
r Mass density (see Notes if geotechnical analysis)
a Coefficient of thermal expansion
ar Mass Rayleigh damping constant
br Stiffness Rayleigh damping constant
\mathbf{T} Reference temperature
Notes

1. For geotechnical analyses that do not include a TWO PHASE MATERIAL definition, the density must relate to the total mass of the soil, including the mass of any water content in the voids. The soil may be saturated, partially saturated or dry.
2. For geotechnical analyses that include a TWO PHASE MATERIAL definition, the density must relate to the soil grains only. 3
3. PROFILE SETs can be used to define a spatial variation of a property in 2 D and 3D two phase and continuum elements.

Linear Orthotropic Plane Stress Model

The data section MATERIAL PROPERTIES ORTHOTROPIC is used to define the material properties for linear orthotropic plane stress materials.

MATERIAL PROPERTIES ORTHOTROPIC

Notes

1. Subscripts refer to the element reference axes, where reference axes may be local or global (see Local Axes in the LUSAS Element Reference Manual for the proposed element type). If \mathbf{q} (about z) is set to zero, the reference axes are used for defining material properties.
2. When using MATERIAL PROPERTIES ORTHOTROPIC care must be taken to ensure that all properties are input to sufficient numerical accuracy. Failure to do this may result in erroneous answers.

Linear Orthotropic Plane Strain Model

The data section MATERIAL PROPERTIES ORTHOTROPIC PLANE STRAIN is used to define the material properties for linear orthotropic plane strain materials.

```
MATERIAL PROPERTIES ORTHOTROPIC PLANE STRAIN
imat }\mp@subsup{E}{x}{}\mp@subsup{E}{y}{\prime
imat The material property identification number
Ex,Ey,Ez Young's modulus values
Gxy Shear modulus
nxy,nyz,nxz Poisson's ratios
q Angle of orthotropy in degrees relative to the reference axis (see Notes).
r Mass density (see Notes if geotechnical analysis)
```


$\mathbf{a x}, \mathbf{a y}, \mathbf{a x y}, \mathbf{a z} \quad$ Coefficients of thermal expansion

ar Mass Rayleigh damping constant
br Stiffness Rayleigh damping constant
T Reference temperature

Notes

1. Subscripts refer to the element reference axes, where reference axes may be local or global (see Local Axes in the LUSAS Element Reference Manual for the proposed element type). If \mathbf{q} (about z) is set to zero, the reference axes are used for defining material properties.
2. When using MATERIAL PROPERTIES ORTHOTROPIC care must be taken to ensure that all properties are input to sufficient numerical accuracy. Failure to do this may result in erroneous answers.
3. For geotechnical analyses that do not include a TWO PHASE MATERIAL definition, the density must relate to the total mass of the soil, including the mass of any water content in the voids. The soil may be saturated, partially saturated or dry.
4. For geotechnical analyses that include a TWO PHASE MATERIAL definition, the density must relate to the soil grains only.
5. PROFILE SETs can be used to define a spatial variation of a property in 2D and 3D two phase and continuum elements.

Linear Orthotropic Thick Model

The data section MATERIAL PROPERTIES ORTHOTROPIC THICK is used to define the material properties for linear orthotropic thick materials.

MATERIAL PROPERTIES ORTHOTROPIC THICK

imat The material property identification number
Ex,Ey Young's modulus values
Gxy,Gxz,Gyz Shear modulus values
nxy Poisson's ratio
q Angle of orthotropy in degrees relative to the reference axis (see Notes).
$r \quad$ Mass density
ax, ay,
axy,axz,ayz Coefficients of thermal expansion
ar Mass Rayleigh damping constant
br Stiffness Rayleigh damping constant
$\mathbf{T} \quad$ Reference temperature

Notes

1. Subscripts refer to the element reference axes, where reference axes may be local or global (see Local Axes in the LUSAS Element Reference Manual for the proposed element type). If \mathbf{q} (about z) is set to zero, the reference axes are used for defining material properties.
2. When using MATERIAL PROPERTIES ORTHOTROPIC care must be taken to ensure that all properties are input to sufficient numerical accuracy. Failure to do this may result in erroneous answers.
3. PROFILE SETs can be used to define a spatial variation of a property in 2 D and 3D two phase and continuum elements.

Linear Orthotropic Axisymmetric Model

The data section MATERIAL PROPERTIES ORTHOTROPIC AXISYMMETRIC is used to define the material properties for linear orthotropic axisymmetric materials.

MATERIAL PROPERTIES ORTHOTROPIC AXISYMMETRIC

imat The material property identification number
Ex, Ey,Ez Young's modulus values
Gxy Shear modulus
nxy,nyz,nxz Poisson's ratios
q Angle of orthotropy in degrees relative to the reference axis (see Notes).
$r \quad$ Mass density (see Notes if geotechnical analysis)
$\mathbf{a x}, \mathbf{a y}, \mathbf{a x y}, \mathbf{a z} \quad$ Coefficients of thermal expansion
ar Mass Rayleigh damping constant
br Stiffness Rayleigh damping constant
T Reference temperature

Notes

1. Subscripts refer to the element reference axes, where reference axes may be local or global (see Local Axes in the LUSAS Element Reference Manual for the proposed element type). If \mathbf{q} (about z) is set to zero, the reference axes are used for defining material properties.
2. When using MATERIAL PROPERTIES ORTHOTROPIC care must be taken to ensure that all properties are input to sufficient numerical accuracy. Failure to do this may result in erroneous answers.
3. For geotechnical analyses that do not include a TWO PHASE MATERIAL definition, the density must relate to the total mass of the soil, including the mass of any water content in the voids. The soil may be saturated, partially saturated or dry.
4. For geotechnical analyses that include a TWO PHASE MATERIAL definition, the density must relate to the soil grains only.
5. PROFILE SETs can be used to define a spatial variation of a property in 2 D and 3D two phase and continuum elements.

Linear Orthotropic Solid Model

The data section MATERIAL PROPERTIES ORTHOTROPIC SOLID is used to define the material properties for linear orthotropic solid materials.

MATERIAL PROPERTIES ORTHOTROPIC SOLID
imat nset $E_{x} E_{y} E_{z} G_{x y} G_{y z} G_{x z} n_{x y} \quad n_{y z} \quad n_{x z} \quad\left[\begin{array}{llllll}r & a_{x} & a_{y} & a_{z} & a_{x y} & a_{y z}\end{array}\right.$ $\left.a_{x z} \quad a_{r} b_{r}\right] \quad T$
imat The material property identification number
nset The CARTESIAN SET number used to define the local axis directions.
Ex, Ey, Ez Young's modulus values
Gxy, Gyz, Gxz Shear modulus values
nxy,nyz,nxz Poisson's ratios
$\mathbf{r} \quad$ Mass density (see Notes if geotechnical analysis)
ax,ay,az,
$a x y, a y z, a x z$ Coefficients of thermal expansion
ar Mass Rayleigh damping constant
br Stiffness Rayleigh damping constant
T Reference temperature

Notes

1. Subscripts refer to the element reference axes, where reference axes may be local or global (see Local Axes in the LUSAS Element Reference Manual for the proposed element type). For the solid model, the orthotropy is defined by the CARTESIAN SET command. If nset is set to zero, the orthotropy coincides with the reference axes.
2. When using MATERIAL PROPERTIES ORTHOTROPIC care must be taken to ensure that all properties are input to sufficient numerical accuracy. Failure to do this may result in erroneous answers.
3. For geotechnical analyses that do not include a TWO PHASE MATERIAL definition, the density must relate to the total mass of the soil, including the mass of any water content in the voids. The soil may be saturated, partially saturated or dry.
4. For geotechnical analyses that include a TWO PHASE MATERIAL definition, the density must relate to the soil grains only.
5. PROFILE SETs can be used to define a spatial variation of a property in 2D and 3D two phase and continuum elements.

Linear Anisotropic Model

The data section MATERIAL PROPERTIES ANISOTROPIC is used to define arbitrary constitutive equations relating stress to strain. The material modulus matrix is input on a component by component basis. Note that symmetry is assumed so that only the upper triangle of the matrix is required. The matrix is defined column by column.

MATERIAL PROPERTIES ANISOTROPIC $\{n \mid$ SOLID\}

```
imat \(\left\{r a_{r} b_{r} T q \mid n s e t r a_{r} b_{r} T\right\}<a_{i}>_{i=1, n}\)
    \(<D_{i}>_{i=1, n(n+1) / 2}\)
```

imat The material property identification number
$r \quad$ Mass density
ar Mass Rayleigh damping constant
br Stiffness Rayleigh damping constant
T Reference temperature
q Angle of anisotropy (degrees) relative to the element reference axes (see Notes)
nset The CARTESIAN SET number used to define the axes of anisotropy (required for ANISOTROPIC SOLID only).
ai Coefficients of thermal expansion
Di Values in upper triangular half of modulus matrix.
n
The number of stress/strain components for element ($=6$ for SOLID)

Notes

1. The element reference axes may be local or global (see Local Axes in the LUSAS Element Reference Manual for the proposed element type). If nset or \mathbf{q} is set to zero, the anisotropy coincides with the reference axes.
2. The upper triangle components of the modulus matrix only are entered (the components are entered column by column), and:
$\square \quad \mathrm{Di}$ The m components of the upper triangle of the modulus matrix.
$\square \quad \mathrm{m}$ The number of components of the modulus matrix, where m may be computed from $\mathbf{m}=\mathbf{n}(\mathbf{n}+1) / 2$
3. PROFILE SETs can be used to define a spatial variation of a property in 2 D and 3D two phase and continuum elements.

Linear Rigidity Model

The data section RIGIDITIES is used to define the in-plane and bending rigidities from prior explicit integration through the element thickness or cross-section.

RIGIDITIES n [MASS ndf [DAMPING]]

```
imat r ar br T q < ai >i=1,n < Di >i=1,n(n+1)/2 [<Mi
    >i=1,ndf(ndf+1)/2 [< Ci >i=1,ndf(ndf+1)/2]]
```

imat	The material property identification number
n	The number of stress/strain resultants for the element
ndf	Number of degrees of freedom
\mathbf{r}	Mass density
ar	Mass Rayleigh damping constant
br	Stiffness Rayleigh damping constant
T	Reference temperature
\mathbf{q}	Angle of orthotropy relative to the reference axis (degrees)
ai	Coefficients of thermal expansion
Di	The values in the upper triangular half of the rigidity matrix
Mi	The values in the upper triangular half of the beam mass density matrix Ci
	The values in the upper triangular half of the beam damping coefficient matrix

Note

1. For plates and shells, the element reference axes may be local or global (see Local Axes in the LUSAS Element Reference Manual for the proposed element type). If θ is set to zero, the anisotropy coincides with the reference axes.
2. For beams, the element reference axes must be local, and the angle $\boldsymbol{\theta}$ will not be used. For the coefficients of thermal expansion, only α_{1} is used; others are ignored.
3. Mass and Damping input are only applicable to beams.

Example 1. Membrane Behaviour

RIGIDITIES 3

```
imat, \(\mathbf{r}, \mathbf{a}_{\mathrm{r}}, \mathbf{b}_{\mathrm{r}}, \mathrm{T}, \mathrm{q}, \mathbf{a}_{1} 1 / 4 \mathbf{a}_{3}, \mathrm{D}_{1} 1 / 4 \mathrm{D}_{6}\)
```

$$
\left[\begin{array}{c}
N_{x} \\
N_{y} \\
N_{x y}
\end{array}\right]=\left[\begin{array}{lll}
D_{1} & D_{2} & D_{4} \\
D_{2} & D_{3} & D_{5} \\
D_{4} & D_{5} & D_{6}
\end{array}\right]\left(\left[\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\varepsilon_{x y}
\end{array}\right]-\left[\begin{array}{c}
\varepsilon_{x o} \\
\varepsilon_{y o} \\
\varepsilon_{x y o}
\end{array}\right]\right)+\left[\begin{array}{c}
N_{x o} \\
N_{y o} \\
N_{x y o}
\end{array}\right]
$$

where:
N are the membrane stress resultants (force per unit width).
D membrane rigidities.
$\varepsilon \quad$ membrane strains.
and for isotropic behaviour, where t is the thickness:

$$
\mathrm{D}_{1}=\mathrm{D}_{3}=\frac{\mathrm{Et}}{1-v^{2}} \quad \mathrm{D}_{2}=\frac{v E t}{1-v^{2}} \quad D_{6}=\frac{E t}{2(1+v)}
$$

$$
\mathrm{D}_{4}=\mathrm{D}_{5}=0
$$

The initial strains due to a temperature rise T are:

$$
\varepsilon_{o t}=\left[\begin{array}{c}
\varepsilon_{x o} \\
\varepsilon_{y o} \\
\varepsilon_{x y o}
\end{array}\right]+T\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]
$$

Example 2. Thin Plate Flexural Behaviour

RIGIDITIES 3

imat, $\mathbf{r}, \mathbf{a}_{\mathrm{r}}, \mathbf{b}_{\mathrm{r}}, \mathrm{T}, \mathrm{q}, \mathbf{a}_{1} 1 / 4 \mathbf{a}_{3}, \mathrm{D}_{1} 1 / 4 \mathrm{D}_{6}$

$$
\left[\begin{array}{l}
M_{x} \\
M_{y} \\
M_{x y}
\end{array}\right]=\left[\begin{array}{lll}
D_{1} & D_{2} & D_{4} \\
D_{2} & D_{3} & D_{5} \\
D_{4} & D_{5} & D_{6}
\end{array}\right]\left(\left[\begin{array}{c}
\psi_{x} \\
\psi_{y} \\
\psi_{x y}
\end{array}\right]-\left[\begin{array}{c}
\psi_{x o} \\
\psi_{y o} \\
\psi_{x y o}
\end{array}\right]\right)+\left[\begin{array}{c}
M_{x o} \\
M_{y o} \\
M_{x y o}
\end{array}\right]
$$

where:
M are the flexural stress resultants (moments per unit width).
D flexural rigidities.
$\Psi \quad$ flexural strains given by:

$$
\left[\begin{array}{c}
\psi_{x} \\
\psi_{y} \\
\psi_{x y}
\end{array}\right]=\left[\begin{array}{l}
-\frac{\partial^{2} w}{\partial x^{2}} \\
-\frac{\partial^{2} w}{\partial y^{2}} \\
\frac{2 \partial^{2} w}{\partial x \partial y}
\end{array}\right]
$$

and for an isotropic plate for example, where t is the thickness:

$$
\begin{aligned}
& D_{1}=D_{3}=\frac{\mathrm{Et}^{3}}{12\left(1-v^{2}\right)} \quad D_{2}=\frac{v E t^{3}}{12\left(1-v^{2}\right)} \quad D_{6}=\frac{E t^{3}}{24(1+v)} \\
& D_{4}=D_{5}=0
\end{aligned}
$$

The initial strains due to a temperature rise T are:

$$
\psi_{o t}=\left[\begin{array}{c}
\psi_{x o} \\
\psi_{y o} \\
\psi_{x y o}
\end{array}\right]=\frac{\partial T}{\partial z}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]
$$

Example 3. Thick Plate Flexural Behaviour
RIGIDITIES 5

```
imat, r, a
```

$$
\left[\begin{array}{c}
M_{x} \\
M_{y} \\
M_{x y} \\
S_{x z} \\
S_{y z}
\end{array}\right]=\left[\begin{array}{ccccc}
D_{1} & D_{2} & D_{4} & D_{7} & D_{11} \\
D_{2} & D_{3} & D_{5} & D_{8} & D_{12} \\
D_{4} & D_{5} & D_{6} & D_{9} & D_{13} \\
D_{7} & D_{8} & D_{9} & D_{10} & D_{14} \\
D_{11} & D_{12} & D_{13} & D_{14} & D_{15}
\end{array}\right]\left(\left[\begin{array}{c}
\psi_{x} \\
\psi_{y} \\
\psi_{x y} \\
\Gamma_{\mathrm{xz}} \\
\Gamma_{\mathrm{yz}}
\end{array}\right]-\left[\begin{array}{c}
\psi_{x o} \\
\psi_{y o} \\
\psi_{x y o} \\
\Gamma_{\mathrm{xzo}} \\
\Gamma_{\mathrm{yzo}}
\end{array}\right]\right)+\left[\begin{array}{c}
M_{x o} \\
M_{y o} \\
M_{x y o} \\
S_{x z o} \\
S_{y z o}
\end{array}\right]
$$

where:
$\mathbf{M} \quad$ are the flexural stress resultants (moments per unit width).
S
shear stress resultants (shear force per unit width).
D flexural and shear rigidities.
$\Psi \quad$ flexural strains given by:

$$
\left[\begin{array}{c}
\psi_{x} \\
\psi_{y} \\
\psi_{x y}
\end{array}\right]=\left[\begin{array}{r}
-\frac{\partial^{2} w}{\partial x^{2}} \\
-\frac{\partial^{2} w}{\partial y^{2}} \\
\frac{2 \partial^{2} w}{\partial x \partial y}
\end{array}\right]
$$

Γ through thickness shear strains given by:

$$
\left[\begin{array}{l}
\Gamma_{\mathrm{xz}} \\
\Gamma_{\mathrm{yz}}
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z} \\
\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}
\end{array}\right]
$$

and for an isotropic plate for example:

$$
\begin{aligned}
& D_{10}=D_{15}=\frac{E t}{2(1+v) k} \\
& D_{7}=D_{8}=D_{9}=D_{11}=D_{12}=D_{13}=D_{14}=0
\end{aligned}
$$

where t is the plate thickness and k is a factor taken as 1.2 which provides the correct shear strain energy when the shear strain is assumed constant through the plate
thickness. D1 to D6 are the same as defined for the thin plate flexural behaviour (see Example 2. Thin Plate Flexural Behaviour).

The initial strains due to a temperature rise T are:

$$
\left[\begin{array}{c}
\psi_{o t} \\
\varepsilon_{o t}
\end{array}\right]=\left[\begin{array}{c}
\psi_{x o} \\
\psi_{y o} \\
\psi_{x y o} \\
\Gamma_{\mathrm{xzo}} \\
\Gamma_{\mathrm{yzo}}
\end{array}\right]=\frac{\partial T}{\partial z}\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
0 \\
0
\end{array}\right]+T\left[\begin{array}{c}
0 \\
0 \\
0 \\
\alpha_{4} \\
\alpha_{5}
\end{array}\right]
$$

Example 4. Thin Shell Behaviour

RIGIDITIES 6

```
imat, \(\mathbf{r}, \mathbf{a}_{\mathrm{r}}, \mathbf{b}_{\mathrm{r}}, \mathbf{T}, \mathbf{q}, \mathbf{a}_{1} \mathbf{1} / \mathbf{4} \mathbf{a}_{6}, \mathrm{D}_{1} \mathbf{1} / 4 \mathrm{D}_{21}\)
```

$$
\left\{\begin{array}{l}
N_{x} \\
N_{y} \\
N_{x y} \\
M_{x} \\
M_{y} \\
M_{x y}
\end{array}\right\}=\left[\begin{array}{llllll}
D_{1} & D_{2} & D_{4} & D_{7} & D_{11} & D_{16} \\
D_{2} & D_{3} & D_{5} & D_{8} & D_{12} & D_{17} \\
D_{4} & D_{5} & D_{6} & D_{9} & D_{13} & D_{18} \\
D_{7} & D_{8} & D_{9} & D_{10} & D_{14} & D_{19} \\
D_{11} & D_{12} & D_{13} & D_{14} & D_{15} & D_{20} \\
D_{16} & D_{17} & D_{18} & D_{19} & D_{20} & D_{21}
\end{array}\right]\left\{\left\{\begin{array}{l}
\varepsilon_{x} \\
\varepsilon_{y} \\
\varepsilon_{x y} \\
\Psi_{x} \\
\Psi_{y} \\
\Psi_{x y}
\end{array}\right\}-\left\{\begin{array}{l}
\varepsilon_{x o} \\
\varepsilon_{y o} \\
\varepsilon_{x y o} \\
\Psi_{x o} \\
\Psi_{y o} \\
\Psi_{x y o}
\end{array}\right\}\right\}+\left\{\begin{array}{l}
N_{x o} \\
N_{y o} \\
N_{x y o} \\
M_{x o} \\
M_{y o} \\
M_{x y o}
\end{array}\right\}
$$

where:

\mathbf{N}	are the membrane stress resultants (forces per unit width).
\mathbf{M}	are the flexural stress resultants (moments per unit width).
D	flexural and shear rigidities.
$\boldsymbol{\varepsilon}$	membrane strains.
Ψ	flexural strains.

The initial strains due to a temperature rise T are:

$$
\left\{\begin{array}{c}
\Psi_{\mathrm{ot}} \\
\varepsilon_{\mathrm{ot}}
\end{array}\right\}=\left\{\begin{array}{c}
\varepsilon_{\mathrm{xo}} \\
\varepsilon_{\mathrm{yo}} \\
\varepsilon_{\mathrm{xyo}} \\
\Psi_{\mathrm{xo}} \\
\Psi_{\mathrm{yo}} \\
\Psi_{\mathrm{xyo}}
\end{array}\right\}-\mathrm{T}\left\{\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
0 \\
0 \\
0
\end{array}\right\}+\frac{\mathrm{dT}}{\mathrm{dz}}\left\{\begin{array}{c}
0 \\
0 \\
0 \\
\alpha_{4} \\
\alpha_{5} \\
\alpha_{6}
\end{array}\right\}
$$

Example 5. Thick Beam Behaviour
RIGIDITIES 6
imat, $r, a_{r}, b_{r}, T, \theta, a_{1} 1 / 4 a_{6}, D_{1} 1 / 4 D_{21}$

$$
\left\{\begin{array}{l}
F_{x} \\
F_{y} \\
F_{z} \\
M_{x} \\
M_{y} \\
M_{z}
\end{array}\right\}=\left[\begin{array}{llllll}
D_{1} & D_{2} & D_{4} & D_{7} & D_{11} & D_{16} \\
D_{2} & D_{3} & D_{5} & D_{8} & D_{12} & D_{17} \\
D_{4} & D_{5} & D_{6} & D_{9} & D_{13} & D_{18} \\
D_{7} & D_{8} & D_{9} & D_{10} & D_{14} & D_{19} \\
D_{11} & D_{12} & D_{13} & D_{14} & D_{15} & D_{20} \\
D_{16} & D_{17} & D_{18} & D_{19} & D_{20} & D_{21}
\end{array}\right]\left\{\left\{\begin{array}{l}
\varepsilon_{x} \\
2 \varepsilon_{x y} \\
2 \varepsilon_{x z} \\
\psi_{x} \\
\psi_{y} \\
\psi_{z}
\end{array}\right\}-\left\{\begin{array}{l}
\varepsilon_{x o} \\
2 \varepsilon_{x y o} \\
2 \varepsilon_{x o} \\
\psi_{x o} \\
\psi_{y o} \\
\psi_{z o}
\end{array}\right\}\right\}+\left\{\begin{array}{l}
F_{x o} \\
F_{y o} \\
F_{z o} \\
M_{x o} \\
M_{y o} \\
M_{z o}
\end{array}\right\}
$$

where:
F axial and shear forces.
M torque and moments.
D beam rigidities.
$\varepsilon \quad$ beam axial and shear strains on the reference line given by:

$$
\left\{\begin{array}{c}
\varepsilon_{x} \\
2 \varepsilon_{x y} \\
2 \varepsilon_{x z}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{\partial u}{\partial x} \\
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} \\
\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}
\end{array}\right\}
$$

$\boldsymbol{\psi} \quad$ torsional strain and flexural strains or curvatures given by:

$$
\left\{\begin{array}{l}
\psi_{x} \\
\psi_{y} \\
\psi_{z}
\end{array}\right\}=\left\{\begin{array}{cccc}
-\frac{\partial \theta_{x}}{\partial x} & \text { or } & \frac{\partial^{2} v}{\partial x \partial z} & \text { or }
\end{array}-\frac{\partial^{2} w}{\partial x \partial y}\right)
$$

The initial strains due to a temperature rise T are:

$$
\left\{\begin{array}{c}
\varepsilon_{0 t} \\
\psi_{0 t}
\end{array}\right\}=\left\{\begin{array}{c}
\varepsilon_{x 0} \\
2 \varepsilon_{x y 0} \\
2 \varepsilon_{x z 0} \\
\psi_{x 0} \\
\psi_{y 0} \\
\psi_{z 0}
\end{array}\right\}=\left\{\begin{array}{c}
\alpha_{1} T \\
0 \\
0 \\
0 \\
\frac{\partial\left(\alpha_{1} T\right)}{\partial z} \\
\frac{\partial\left(\alpha_{1} T\right)}{\partial y}
\end{array}\right\}
$$

Matrix Properties

The data section MATRIX PROPERTIES is used to explicitly define the linear properties of the stiffness, mass and damping matrices for joint elements in the local coordinate system.

MATRIX PROPERTIES \{STIFFNESS | MASS | DAMPING\} [N]
imat $\left\{<K_{i}>_{i=1, m}\left|<M_{i}>_{i=1, m}\right|<C_{i}>_{i=1, m}\right\}$
imat The material property identification number
Ki The values in upper triangular half of local element stiffness matrix.
Mi The values in upper triangular half of local element mass matrix.
$\mathrm{Ci} \quad$ The values in upper triangular half of local element damping matrix.
N Size of matrix (total number of freedoms for element in question). The default value is given by twice the maximum number of freedoms at a node for the structure in question.
$m \quad$ Number of components of the matrix where m is calculated from $\mathbf{m}=\mathbf{N}(\mathbf{N}+1) / 2$

Notes

1. Either the stiffness, mass or damping matrix can be specified for an element. If more than one matrix is specified the last matrix overwrites all previous matrices. To specify more than one matrix property overlay the number of elements required.
2. The force/displacement relationship is defined as:

- $\quad \mathrm{P}=\mathrm{T}^{\mathrm{T}} \mathrm{K} \mathrm{T} \mathrm{a}$
where:
P The global nodal forces
T A transformation matrix relating local freedoms to global
K The local element stiffness matrix stored in upper triangular form.
a The global element freedoms (displacements).

Joint Material Properties

Joint material models are used to define the material properties for linear and nonlinear joint models. The following are available:
\square Standard Linear Joint Model
\square General Linear Joint Model
\square Standard Nonlinear Elasto-Plastic Joint Model
\square General Nonlinear Elasto-Plastic Joint Model
\square Nonlinear Joint Model For Smooth Contact
\square Nonlinear Joint Model For Frictional Contact
\square Visco-elastic Dampers

- Kelvin
- Four parameter solid
- Hysteretic Damper For Lead-Rubber Bearing
\square Hysteretic Damper For Friction Pendulum System
\square Piecewise Linear Elastic Joint Model
\square Piecewise Linear Hysteresis Joint Model
\square Piecewise Linear Compound Hysteresis Joint Model
\square Axial Force Dependent Piecewise Linear Elastic Joint Model
\square Axial Force Dependent multi-linear inelastic joint model
\square Axial Force Dependent multi-linear coupled joint model with hystereris
\square Axial Force Dependent multi-linear fibre joint model
\square Axial Force Dependent multi-linear fibre joint model
\square Axial Force Dependent inelastic fibre joint model
\square User-Supplied Nonlinear Joint Properties

Standard Linear Joint Model

Joint type: Spring stiffness only

The JOINT PROPERTIES data section defines linear spring stiffnesses for joints.
JOINT PROPERTIES [N]
imat $<\mathrm{K}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{~N}}$
imat The material property identification number
$\mathbf{K}_{\mathbf{i}} \quad$ Elastic spring stiffness corresponding to each local freedom. These local directions are defined for each joint element in the LUSAS Element Reference Manual.
N Number of springs for joint element.

Example. Joint Properties

JPH3 ELEMENT TOPOLOGY

2234
JOINT PROPERTIES
151.248 .923 .1

MATERIAL ASSIGNMENT
2001

General Linear Joint Model

Joint type: General properties

The JOINT PROPERTIES GENERAL data section defines the full joint properties of spring stiffness, mass, coefficient of linear expansion and damping factor.

JOINT PROPERTIES GENERAL [N]

imat $<K_{i} M_{i} C_{i} a_{i} a_{r i} b_{r i}>_{i=1, N} \quad$ [mcode]
imat Material property identification number
$\mathbf{K}_{\mathbf{i}} \quad$ Elastic spring stiffness corresponding to (i)th local freedom.
$\mathbf{M}_{\mathbf{i}} \quad$ Mass corresponding to (i)th local freedom.
$\mathbf{C}_{\mathbf{i}} \quad$ Viscocity coefficient - damping corresponding to the (i)th local freedom
$a_{i} \quad$ Coefficient of thermal expansion corresponding to (i)th local freedom.
$a_{r i} \quad$ Mass Rayleigh damping constant corresponding to (i)th local freedom
$\mathrm{b}_{\mathrm{ri}} \quad$ Stiffness Rayleigh damping constant corresponding to (i)th local freedom
mcode An integer number which determines the position of a mass or masses.
$=0$ for mass between nodes (default)
$=1$ for mass at 1 st node.
$=2$ for mass at 2 nd node .
$\mathbf{N} \quad$ The number of springs for joint element.

Notes

1. In order to input the damping values Ci OPTION 324 must be specified.
2. Modeller will automatically set OPTION 324 .
3. If all the Ci input values are specified as zero the Rayleigh damping parameters will be used to form the element damping matrix.

Standard Nonlinear Elasto-Plastic Joint Model
 Joint type: Elasto-plastic (tension and compression equal)

The JOINT PROPERTIES NONLINEAR 31 data section defines the material properties for the standard elasto-plastic joint model. The model incorporates elastoplasticity with isotropic hardening. Equal tension and compression yield conditions are assumed.

```
JOINT PROPERTIES NONLINEAR 31 [N]
```



```
imat Material property identification number
K
M
\mp@subsup{a}{i}{}}\quad\mathrm{ Coefficient of thermal expansion corresponding to (i)th local freedom.
ari Mass Rayleigh damping constant corresponding to (i)th local freedom
bri Stiffness Rayleigh damping constant corresponding to (i)th local
    freedom
Fyldi
Ki
mcode An integer number which determines the position of a mass or masses.
    = 0 for mass between nodes (default)
    = 1 for mass at 1st node.
    = 2 for mass at 2nd node.
N The number of springs for joint element.
```


General Nonlinear Elasto-Plastic Joint Model

Joint type: Elasto-plastic (tension and compression unequal)

The JOINT PROPERTIES NONLINEAR 32 data section defines the material properties for the general elasto-plastic joint model. The model incorporates elastoplasticity with isotropic hardening. Unequal tension and compression yield conditions are assumed.

JOINT PROPERTIES NONLINEAR 32 [N]
imat $<K_{i} M_{i} a_{i} a_{r i} b_{r i}+F_{y l d_{i}}+K_{i}-F_{Y l d_{i}}-k_{i}>_{i=1, N} \quad$ [mcode]
imat Material property identification number
$\mathrm{K}_{\mathrm{i}} \quad$ Elastic spring stiffness corresponding to the (i)th local freedom.
$\mathbf{M}_{\mathbf{i}} \quad$ Mass corresponding to (i)th local freedom.
$\mathbf{a}_{i} \quad$ Coefficient of thermal expansion corresponding to the (i)th local freedom.
$a_{r i} \quad$ Mass Rayleigh damping constant corresponding to (i)th local freedom
$\mathbf{b}_{\mathrm{ri}} \quad$ Stiffness Rayleigh damping constant corresponding to (i)th local freedom

+ Fyld $_{i} \quad$ Tensile yield force
$+\mathrm{k}_{\mathrm{i}} \quad$ Tensile strain hardening stiffness
- $\mathrm{Fyld}_{\mathrm{i}} \quad$ Compressive yield force (value is always positive)
- $\mathbf{k}_{\mathbf{i}} \quad$ Compressive strain hardening stiffness (value is always positive)
mcode An integer number which determines the position of a mass or masses.
$=0$ for mass between nodes (default)
$=1$ for mass at 1 st node.
$=2$ for mass at 2 nd node
$\mathbf{N} \quad$ The number of springs for joint element.

General Nonlinear Elasto-Plastic Joint Model (Model 32)

Nonlinear Joint Model For Smooth Contact

The JOINT PROPERTIES NONLINEAR 33 data section defines the material properties for the nonlinear joint model for smooth contact with an initial gap.

JOINT PROPERTIES NONLINEAR 33 [N]
imat $<\mathrm{K}_{\mathrm{ci}} \mathrm{M}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{ri}} \mathrm{b}_{\mathrm{ri}} \mathrm{F}_{\mathrm{yld} \mathrm{i}} \mathrm{k}_{\mathrm{i}} \operatorname{gap}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{~N}} \quad$ [mcode]
imat The material property identification number
Kci The contact spring stiffness corresponding to (i)th local freedom.
Mi The mass corresponding to (i)th local freedom.
ai The coefficient of linear expansion corresponding to (i)th local freedom.
ari Mass Rayleigh damping constant corresponding to (i)th local freedom
bri Stiffness Rayleigh damping constant corresponding to (i)th local freedom
Fyldi Lift-off force
ki Lift-off stiffness
gapi The initial gap (see Notes)
mcode An integer number which determines the position of a mass or masses.
$=0$ for mass between nodes (default)
$=1$ for mass at 1 st node.
$=2$ for mass at 2 nd node

Nonlinear Joint Model for Smooth Contact (Model 33)

Notes

1. If an initial gap is used in a spring, then the positive local axis for this spring must go from node 1 to 2 . If nodes 1 and 2 are coincident the relative displacement of the nodes in a local direction (d2- d1) must be negative to close an initial gap in that direction.
2. If the RESET DISPLACEMENT command is used, the stresses and displacements from the displaced shape are saved and are used as offsets for any new displacements. When checking for separation the nodes will move by a distance equal to that of the initial normal penetration before lift-off can happen. If contact is to be measured from the initial geometry the joint may be introduced after the displacement reset using the birth and death facility.

Nonlinear Joint Model For Frictional Contact

Joint type: Friction contact

The JOINT PROPERTIES NONLINEAR 34 data section defines the material properties for the nonlinear joint model for frictional contact with an initial gap.

```
JOINT PROPERTIES NONLINEAR 34 [N]
```



```
imat Material property identification number
K
```

M_{i}	Mass corresponding to (i)th local freedom.
a_{i}	Coefficient of thermal expansion corresponding to (i)th local freedom.
$\mathrm{a}_{\text {ri }}$	Mass Rayleigh damping constant corresponding to (i)th local freedom
b_{ri}	Stiffness Rayleigh damping constant corresponding to (i)th local freedom
m	Coefficient of friction.
gap	Initial gap in \mathbf{x} The initial gap in the local x -direction.
nrm	Normal direction
	$=1$ for local x (default)
	$=2$ for local y
	$=3$ for local z
mcode	An integer number which determines the position of a mass or masses. $=0$ for mass between nodes (default)
	$=1$ for mass at 1st node.
	$=2$ for mass at 2 nd node
N	The number of springs for joint element.

Notes

1. If an initial gap is used in a spring, then the positive local normal axis for this spring must go from node 1 to 2 . If nodes 1 and 2 are coincident the relative displacement of the nodes in the local normal direction (dx2-dx1 if nrm=1, or dy2dyl if $\mathrm{nrm}=2$, or dz2-dz1 if $\mathrm{nrm}=3$) must be negative to close an initial gap.
2. If a RESET DISPLACEMENT command is used, the stresses and displacements from the displaced shape are saved and are used as offsets for any new displacements. When checking for separation the nodes will move by a distance equal to that of the initial normal penetration before lift-off can happen. If contact is to be measured from the initial geometry the joint may be introduced after the displacement reset using the birth and death facility.

Nonlinear Joint Model for Frictional Contact - 2D with initial gap in local y (Model 34)

Nonlinear Joint Model for Frictional Contact - 3D with initial gap in local z (Model 34)

Visco-Elastic Dampers

Joint type: Viscous damper - Kelvin
 Joint type: Viscous damper - Four parameter solid

The JOINT PROPERTIES NONLINEAR 35 data section defines the material properties for a general preloaded visco-elastic damper joint model. The model consists of three springs and a dashpot in the so-called four-parameter solid model arrangement. Selectively setting the appropriate stiffnesses to zero allows the model to degenerate to a Kelvin ($\mathbf{K 2}=0, \mathbf{K} 3=0$) or Maxwell ($\mathbf{K} \mathbf{1}=\mathbf{0}$, $\mathbf{K} 2$ or $\mathbf{K} 3=0$) unit.

JOINT PROPERTIES NONLINEAR 35 [N]

imat $<\mathrm{K1}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{v}_{\mathrm{i}}} \mathrm{Fp}_{\mathrm{i}} \mathrm{K} 2_{\mathrm{i}} \mathrm{K} 3_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{~N}}$ [mcode]
imat Material property identification number
$\mathrm{K}_{\mathrm{i}} \quad$ Spring stiffness corresponding to (i)th local freedom (see below).
$\mathbf{M}_{\mathbf{i}} \quad$ Mass corresponding to (i)th local freedom.
$\mathbf{C}_{i} \quad$ Viscosity coefficient Damping corresponding to the (i)th local freedom
$a_{i} \quad$ Coefficient of thermal expansion corresponding to (i)th local freedom.
$\mathbf{a}_{\mathrm{vi}} \quad$ Velocity exponent corresponding to (i)th local freedom
$\mathrm{Fp}_{\mathrm{i}} \quad$ Preload force corresponding to (i)th local freedom
K2 $\mathbf{i}_{\mathbf{i}} \quad$ Spring stiffness corresponding to (i)th local freedom in parallel with damper (see below).
$\mathrm{K}_{\mathbf{i}} \quad$ Spring stiffness corresponding to (i)th local freedom in series with damper (see below).
mcode An integer number which determines the position of a mass or masses. $=0$ for mass between nodes (default)
$=1$ for mass at 1 st node.
$=2$ for mass at 2 nd node.
$\mathbf{N} \quad$ The number of springs for joint element.

Four parameter solid model for visco-elasticity (Model 35)

Detailed formulation for different spring combinations

Existing springs	Relation	Notes
K_{1}	$F=k_{1} d+c_{d} \operatorname{sgn}\left(\dot{d}_{d}\right) \dot{d}^{\alpha}$	Kelvin-Voigt or Kelvin
K_{2}	$F=k_{2}\left(d-d_{d}\right)=c_{d} \operatorname{sgn}\left(\dot{d}_{d}\right) \dot{d}_{d}^{\alpha}$	Maxwell
K_{3}	$F=k_{3}\left(d-d_{d}\right)=c_{d} \operatorname{sgn}\left(\dot{d}_{d}\right) \dot{d}_{d}^{\alpha}$	Maxwell
K_{1} and K_{2}	$F=\frac{k_{1} k_{2}}{k_{1}+k_{2}} d+\frac{k_{2}}{k_{1}+k_{2}} c_{d} \operatorname{sgn}\left(\dot{d}_{d}\right) \dot{d}_{d}^{\alpha}$	Reduces to Kelvin model when $k_{2} \gg$ k_{1}
$\mathrm{~K}_{1}$ and K_{3}	$F=k_{1} d+k_{3}\left(d-d_{d}\right)$, $k_{3}\left(d-d_{d}\right)=c_{d} \operatorname{sgn}\left(\dot{d}_{d}\right) \dot{d}^{\alpha}$	Reduces to Kelvin model when $k_{3} \gg$ k_{1}
$\mathrm{~K}_{2}$ and K_{3}	$F=\frac{k_{2} k_{3}}{k_{2}+k_{3}} d-\frac{k_{2} k_{3}}{k_{2}+k_{3}} d_{d}=c_{d} \operatorname{sgn}\left(\dot{d}_{d}\right) \dot{d}_{d}^{\alpha}$	Reduces to Maxwell model when $k_{2} \gg k_{3}$ or $k_{3}>k_{2}$
$\mathrm{K}_{1}, \mathrm{~K}_{2}$ and K_{3}	$F=\frac{k_{1} k_{2}}{k_{1}+k_{2}} d+\frac{k_{2}}{k_{1}+k_{2}} c_{d} \operatorname{sgn}\left(\dot{d}_{d}\right) \dot{d}_{d}^{\alpha}$,	Reduces to the corresponding two- spring model when one spring is much more rigid than the other two; reduces to Kelvin model when $k_{2} \gg k_{1}$ and $k_{3}>k_{1}$

Where d_{d} and \dot{d}_{d} are displacement and velocity of the damper.

Notes

1. Stiffnesses, mass and preload force can be set to zero in order to create a viscous damper only.
2. The preload force represents the force that must be exceeded to cause movement of the damper piston (typically the initial pressure in hydraulic fluid).
3. If a Kelvin unit is defined the damping force is computed from $F=C \nu^{\alpha v}$.
4. The viscosity coefficient is typically evaluated from $C=F n / V n^{\alpha \nu}$ where $F n$ and $V n$ are the maximum force and velocity that are expected to occur in the damper.
5. If any spring ($\mathrm{K}_{1}, \mathrm{~K}_{2}$ or K_{3}) is not defined then it is assumed that the spring stiffness is of a sufficiently large number to make the spring rigid.

Lead-Rubber Bearing with Hysteretic damping

Joint type: Lead rubber bearing

Lead-rubber bearings (LRBs) are generally constructed of low-damping natural rubber with a preformed central hole, into which a lead core is press-fitted. The central lead core provides an additional means of energy dissipation and the energy absorbed by the core reduces the lateral displacement of the isolator. This system provides the combined features of vertical load support, horizontal flexibility, restoring force and damping in a single unit.

Under lateral deformation, the lead core deforms in almost pure shear, yields at low level of stress (approximately 8 to 10 MPa in shear at normal temperature), and produces hysteretic behavior that is stable over many cycles. Unlike mild steel, lead recrystallizes at normal temperature (about $20^{\circ} \mathrm{C}$), so that repeated yielding does not cause fatigue failure. LRBs generally exhibit characteristic strength that ensures rigidity under service loads.

```
JOINT PROPERTIES NONLINEAR 36 [N]
imat < K K M Clllllll
imat Material property identification number
K}\mp@subsup{\mathbf{i}}{\mathbf{i}}{}\quad\mathrm{ Elastic spring stiffness corresponding to the ith local freedom
M
C}\mp@subsup{\mathbf{i}}{\mathbf{i}}{}\quad\mathrm{ Viscosity coefficient Damping corresponding to the (i)th local freedom
\mp@subsup{\alpha}{i}{}}\quad\mathrm{ Coefficient of thermal expansion corresponding to the ith local freedom
ari Mass Rayleigh damping constant corresponding to the ith local freedom
b
    freedom
Fyldi
    2 nd local freedoms in 3D)
Ki Post-yield stiffness (only applicable to the 1 }\mp@subsup{1}{}{\mathrm{ st }}\mathrm{ local freedom in 2D and the
    1 st and 2 nd local freedoms in 3D)
A}\mp@subsup{\mathbf{i}}{\mathbf{i}}{\quadHysteretic parameter A (only applicable to the 1 }\mp@subsup{}{}{\mathrm{ st }}\mathrm{ local freedom in 2D
    and the 1 st and 2 nd local freedoms in 3D)
si
\mp@subsup{\lambda}{\mathbf{cp}}{}}\quad\mathrm{ Coupling parameter for the evolution of hysteretic variables in two
    tangential directions (only applicable for the 3D case - see Notes)
\beta Hysteretic parameter beta
\gamma Hysteretic parameter gamma
nrm Normal direction
    = 1 for local x
    = 2 for local y (default in 2D)
    = 3 for local z (default in 3D)
```

mcode An integer number which determines the position of a mass or masses. $=0$ for mass between nodes (default)
$=1$ for mass at $1^{\text {st }}$ node
$=2$ for mass at $2^{\text {nd }}$ node
N
Number of springs for joint element

Lead Rubber Bearing

Schematic LRB and hysteretic behaviour (Model 36)

Notes

1. The input parameters are utilised in the following manner; for the 3 D case with normal in local z , the forces in the damper are computed from:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{x}}=\kappa_{x} \mathrm{u}+\left(1-\kappa_{x} / \mathrm{K}_{\mathrm{x}}\right) \mathrm{F}_{\mathrm{yld}_{\mathrm{x}}} \mathrm{z}_{\mathrm{x}} \\
& \mathrm{~F}_{\mathrm{y}}=\kappa_{y} \mathrm{v}+\left(1-\kappa_{y} / \mathrm{K}_{\mathrm{y}}\right) \mathrm{F}_{\mathrm{yld}_{\mathrm{y}}} \mathrm{z}_{\mathrm{y}}
\end{aligned}
$$

where the evolution of the hysteretic terms is given by:

$$
\left[\begin{array}{c}
\mathrm{u}^{\mathrm{y}} \dot{\mathrm{z}}_{\mathrm{x}} \\
\mathrm{v}^{\mathrm{y}} \dot{\mathrm{z}}_{\mathrm{y}}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{A}_{\mathrm{x}}-\mathrm{z}_{\mathrm{x}}^{\mathrm{s}_{\mathrm{x}}}\left\{\gamma \operatorname{sgn}\left(\dot{\mathrm{u}} \mathrm{z}_{\mathrm{x}}\right)+\beta\right\} & -\lambda_{\mathrm{cp}} \mathrm{z}_{\mathrm{x}} \mathrm{z}_{\mathrm{y}}\left\{\gamma \operatorname{sgn}\left(\dot{\mathrm{v}} \mathrm{z}_{\mathrm{y}}\right)+\beta\right\} \\
-\lambda_{\mathrm{cp}} \mathrm{z}_{\mathrm{x}} \mathrm{z}_{\mathrm{y}}\left\{\gamma \operatorname{sgn}\left(\dot{\mathrm{u}} \mathrm{z}_{\mathrm{x}}\right)+\beta\right\} & \mathrm{A}_{\mathrm{y}}-\mathrm{z}_{\mathrm{y}}^{\mathrm{s}}\left\{\gamma \operatorname{sgn}\left(\dot{\mathrm{v}} \mathrm{z}_{\mathrm{y}}\right)+\beta\right\}
\end{array}\right]\left[\begin{array}{c}
\dot{\mathrm{u}} \\
\dot{\mathrm{v}}
\end{array}\right]
$$

where, u^{y} and v^{y} are displacements when yield occurs. For the 3D uncoupled case $\left(\lambda_{c p}=0\right)$, the values for $\mathbf{s}_{\mathbf{x}}$ and $\mathbf{s}_{\mathbf{y}}$ are taken as the specified input parameters. For the coupled case $\left(\lambda_{c p}>0\right)$ the values are fixed, $\mathbf{s}_{\mathbf{x}}=\mathbf{S}_{\mathbf{y}}=2 . \mathrm{Z}_{\mathrm{x}}$ and z_{y} are dimensionless hysteretic variables bounded by $\sqrt{z_{x}^{2}+z_{y}^{2}} \leq 1$.
When working in 2 D , the input parameter $\mathbf{s}_{\mathbf{x}}$ should take a value >1, where it is used to define the following hysteretic term:

$$
\mathrm{z}_{\mathrm{x}}=\sqrt[s_{\mathrm{x}}]{\frac{1}{\gamma+\beta}}
$$

Note that the value for the coupling parameter, $\boldsymbol{\lambda}_{\mathrm{cp}}$, must lie within the limits of 0 and 1 ; a value of 0 leads to fully uncoupled hysteretic equations and a value of 1 fully coupled equations. For more information please consult the LUSAS Theory Manual.
2. The input parameters $\mathbf{F}_{\mathbf{y l d}}, \mathbf{K}, \mathbf{A}, \mathbf{s}$ and the other hysteretic control parameters are only applicable to the joint local x translation in 2D (if the normal is in y) and the local x and y translation in 3D (if the normal is in z).
3. Lift-off does not occur in this model and the vertical stiffness is taken as the local normal direction.
4. If all the C_{i} input values are specified as zero the Rayleigh damping parameters will be used to form the element damping matrix.
5. Nonlinear hysteretic behaviour can only occur in the shearing directions, i.e. local x in 2D (if the normal is in the y direction), and local x and y in 3D (if the normal is in the z direction); the normal direction always deforms linearly.

Sliding/Frictional Pendulum System with Hysteretic Damping

Joint type: Friction pendulum system

A friction pendulum system (FPS) bearing consists of a spherical sliding surface and an articulated slider which is faced with a high pressure capacity bearing material. The bearing may be installed as shown below or upside down with the spherical surface facing downwards. Irrespective of the installation method, the behaviour is identical.

```
JOINT PROPERTIES NONLINEAR 37 [N]
```


$$
\lambda_{c p} \beta \gamma[\mathrm{nrm} \text { mcode }]
$$

imat	Material property identification number
K_{i}	Elastic spring stiffness corresponding to the i th local freedom
M_{i}	Mass corresponding to the i th local freedom
$\mathrm{C}_{\text {i }}$	Viscosity coefficient Damping corresponding to the (i)th local freedom
α_{i}	Coefficient of thermal expansion corresponding to the i th local freedom
a_{ri}	Mass Rayleigh damping constant corresponding to the i th local freedom
b_{ri}	Stiffness Rayleigh damping constant corresponding to the i th local freedom
$\mu_{\max 0_{i}}$	Friction coefficient at zero pressure (only applicable to the $1^{\text {st }}$ local freedom in 2D and the $1^{\text {st }}$ and $2^{\text {nd }}$ local freedoms in 3D).
$\mu_{\text {maxp }{ }_{\text {i }}}$	Friction coefficient at high pressure (only applicable to the $1^{\text {st }}$ local freedom in 2D and the $1^{\text {st }}$ and $2^{\text {nd }}$ local freedoms in 3D).
$\mu_{\text {min }_{\text {i }}}$	Friction coefficient at (near) zero velocity (only applicable to the $1^{\text {st }}$ local freedom in 2D and the $1^{\text {st }}$ and $2^{\text {nd }}$ local freedoms in 3D).

φ_{i}	Coefficient of velocity Parameter controlling the variation of the coefficient of friction with velocity (only applicable to the $1^{\text {st }}$ local freedom in 2D and the $1^{\text {st }}$ and $2^{\text {nd }}$ local freedoms in 3D).
ε_{i}	Pressure coefficient Parameter used to determine the variation of the friction coefficient with pressure (only applicable to the $1^{\text {st }}$ local freedom in 2D and the $1^{\text {st }}$ and $2^{\text {nd }}$ local freedoms in 3D)
$\mathbf{A}_{\text {i }}$	Hysteretic parameter A (only applicable to the $1^{\text {st }}$ local freedom in 2D and the $1^{\text {st }}$ and $2^{\text {nd }}$ local freedoms in 3D)
$\mathbf{S}_{\text {i }}$	Hysteretic parameter s (see Notes)
$\mathbf{A c}_{\text {c }}$	Contact area of FPS
R	Radius of sliding surface (spherical) Specify $\mathrm{R}=0$ for a flat surface.
$\lambda_{\text {cp }}$	Coupling parameter for the evolution of hysteretic variables in two tangential directions (only applicable for the 3D case - see Notes)
β	Hysteretic parameter beta
γ	Hysteretic parameter gamma
nrm	Normal direction
	$=1$ for local x
	$=2$ for local y (default in 2D)
	$=3$ for local z (default in 3D)
mcode	An integer number which determines the position of a mass or masses. $=0$ for mass between nodes (default)
	$=1$ for mass at $1^{\text {st }}$ node
	$=2$ for mass at $2^{\text {nd }}$ node
N	Number of springs for joint element

FPS layout and schematic representation (Model 37)

Notes

1. The input parameters are utilised in the following manner; for the 3 D case with normal in local z, the forces in the FPS element, including the restorative forces, are given by:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{x}}=\frac{\mathrm{N}}{\mathrm{R}} \mathrm{u}+\mu_{\mathrm{S}} \mathrm{Nz}_{\mathrm{x}} \\
& \mathrm{~F}_{\mathrm{y}}=\frac{\mathrm{N}}{\mathrm{R}} \mathrm{v}+\mu_{\mathrm{s}} \mathrm{Nz} z_{\mathrm{y}}
\end{aligned}
$$

where the normal force N is evaluated as follows

$$
\mathrm{N}=\mathrm{K}_{\mathrm{z}} \mathrm{w}
$$

where K_{z} and w are stiffness and compressive deformation in the contact direction. The friction coefficient μ_{s} is given by:

$$
\mu_{\mathrm{s}}=\mu_{\max }-\left(\mu_{\max }-\mu_{\min }\right) \exp (-\varphi|\dot{\mathrm{u}}|)
$$

where $\mu_{\max }$ is computed from:

$$
\mu_{\max }=\mu_{\max 0}-\left(\mu_{\max 0}-\mu_{\operatorname{maxp}}\right) \tanh (\varepsilon \mathrm{P})
$$

and the bearing pressure is given by:

$$
\mathrm{P}=\mathrm{N} / \mathrm{A}_{\mathrm{c}}
$$

For the 3D case the evolution of the hysteretic terms is given by:
where, u^{y} and v^{y} are displacements when yield occurs. For the 3D uncoupled case $\left(\lambda_{c p}=0\right)$, the values for $\mathbf{s}_{\mathbf{x}}$ and $\mathbf{s}_{\mathbf{y}}$ are taken as the specified input parameters. For the coupled case $\left(\lambda_{c p}>0\right)$ the values are fixed, $\mathbf{s}_{\mathrm{x}}=\mathbf{s}_{\mathbf{y}}=2 . \mathrm{Z}_{\mathrm{x}}$ and Z_{y} are dimensionless hysteretic variables bounded by $\sqrt{z_{x}^{2}+z_{y}^{2}} \leq 1$.
When working in 2 D , the input parameter $\mathbf{s}_{\mathbf{x}}$ should take a value >1, where it is used to define the following hysteretic term:

$$
\mathrm{z}_{\mathrm{x}}=\sqrt[s_{x}]{\frac{1}{\gamma+\beta}}
$$

Note that the value for the coupling parameter, $\boldsymbol{\lambda}_{\mathrm{cp}}$, must lie within the limits of 0 and 1 ; a value of 0 leads to fully uncoupled hysteretic equations and a value of 1 fully coupled equations. For more information please consult the LUSAS Theory Manual.
2. The input parameters $\mu_{\max 0}, \mu_{\operatorname{maxp}}, \mu_{\min }, \boldsymbol{\varphi}, \boldsymbol{\varepsilon}, \mathbf{A}, \mathbf{s}$ and the other hysteretic control parameters are only applicable to the joint local x translation in 2D (if the normal is in y) and the local x and y translation in 3D (if the normal is in z).
3. Lift-off occurs when the local normal strain is greater than zero. If lift-off occurs the normal stiffness is set to zero and the hysteretic terms are also initialised in readiness for re-contact. In a compressive state the vertical stiffness is taken as the input value for the local normal (nrm) direction.
4. If all the $\mathbf{C}_{\mathbf{i}}$ input values are specified as zero the Rayleigh damping parameters will be used to form the element damping matrix.
5. Nonlinear hysteretic behaviour can only occur in the shearing directions, i.e. local x in 2D (if the normal is in the y direction), and local x and y in 3D (if the normal is in the z direction); the normal direction always deforms linearly.

Piecewise Linear Elastic Joint Model

Joint type: Piecewise linear joint

The JOINT PROPERTIES NONLINEAR 40 data section defines the material properties for a general piecewise linear elastic joint model. The coupled version defines the force - deformation relationship for all degrees of freedom with respect to the deformation in the axial or normal direction; while the uncoupled version defines the relationship in each degree of freedom independently.

JOINT PROPERTIES NONLINEAR 40 N NL

imat Material property identification number
$\mathbf{K}_{\mathbf{i}} \quad$ Elastic spring stiffness corresponding to the i th local freedom
$\mathbf{M}_{\mathbf{i}} \quad$ Mass corresponding to the i th local freedom
$\mathbf{C}_{\mathbf{i}} \quad$ Damping (viscosity) coefficient corresponding to the i th local freedom
$\alpha_{i} \quad$ Coefficient of linear expansion corresponding to the i th local freedom
$a_{\text {ri }} \quad$ Mass Rayleigh damping constant corresponding to the i th local freedom
$\mathrm{b}_{\mathrm{ri}} \quad$ Stiffness Rayleigh damping constant corresponding to the i th local freedom
$\mathbf{f}_{j i} \quad$ Force at point j for the i th local freedom
$\boldsymbol{\delta}_{\mathrm{ji}} \quad$ Relative displacement at point j for the i th local freedom
$\mathbf{r}_{\mathbf{i}} \quad$ Stiffness factor outside the NL segments for the i th local freedom
iax Axis or direction that the deformation is used to define the force deformation relationship
$=0$ uncoupled
$=1$ for local x
$=2$ for local y (default in 2D)
$=3$ for local z (default in 3D)
mcode An integer number which determines the position of a mass or masses.

$$
=0 \text { for mass between nodes (default) }
$$

$=1$ for mass at $1^{\text {st }}$ node
$=2$ for mass at $2^{\text {nd }}$ node
N Number of springs for joint element
NL Number of linear segments defining the primary load-deformation curve

Notes

1. For the i th degree of freedom, if $\mathrm{K}_{\mathrm{i}}=0$, the piecewise linear relationship (using f_{ji} δ_{ji}) will be used; otherwise, if $\mathrm{K}_{\mathrm{i}} \neq 0$, a linear relationship with stiffness K_{i} will be followed.
2. In each degree of freedom, if the piecewise linear relationship is used, the slope of i th segment is defined as $k_{i}=\frac{f_{i+1}-f_{i}}{\delta_{i+1}-\delta_{i}}, i=1,2, \cdots, n$. If the deformation is smaller than δ_{1}, the slope is assumed to be $r k_{1}$; if the deformation is larger than δ_{n+1}, the slope is assumed to be $r k_{n}$.
3. For the coupled model ($\operatorname{iax}>0$), the deformation in the iax direction is used for all degrees of freedom to define the piecewise linear relationship and to determine which point on the curve corresponds to a deformation state; while for the uncoupled model ($\mathrm{iax}=0$), the deformation for each degree of freedom is used independently.
4. For the coupled model (iax >0), the sign of the normal joint force is consistent with the general convention, i.e. tensile in the positive axis direction, compressive in the negative axis direction; however, the tangential joint forces have the same sign as the normal joint force, i.e. they are independent of the direction of their own axes.
5. When defining a piecewise linear curve it is possible to define segments with negative stiffness/gradient on the force-displacement curve to the positive side of the displacement origin. However, the curve cannot extend below the force level at this origin as the force-displacement relationship would then become non-unique because of the curve data defined (or extrapolated) for negative displacements. This is also true for forces on the negative side of the displacement origin; in this case the curve cannot extend above the force at the displacement origin.

Piecewise linear curve with \mathbf{N} linear segments (Model 40)

Piecewise Linear Hysteresis Joint Model

Joint type: Piecewise linear joint

The JOINT PROPERTIES NONLINEAR 41 data section defines the material properties for a general multi-linear inelastic joint model with a basic hysteresis rule. The coupled version defines the force - deformation relationship for all degrees of freedom with respect to the deformation in the axial or normal direction; while the uncoupled version defines the relationship in each degree of freedom independently.

The 6 reserved parameters, parameters for the multi-linear force-deformation curve, and coupling and mass position code are the same as for material model 40. The additional parameters for each model are shown in the table below.

```
JOINT PROPERTIES NONLINEAR 41 N NL [PARA | KINE | SLAC |
    ORIG | PEAK | KIVE | PINC | TAKE | MUTO | FUKA |
    SINA | STEW]
```



```
    \alpha
    \mp@subsup{\beta}{i}{\prime}]]]>}\mp@subsup{>}{i=1,N}{}\mathrm{ iax [iunl] [mcode]
N Number of springs for joint element
NL Number of linear segments defining the primary load-deformation curve
imat Material property identification number
\(\mathbf{K}_{\mathbf{i}} \quad\) Elastic spring stiffness corresponding to the \(i\) th local freedom
```

$\mathbf{M}_{\text {i }}$	Mass corresponding to the i th local freedom
$\mathrm{C}_{\text {i }}$	Damping (viscosity) coefficient corresponding to the i th local freedom
α_{i}	Coefficient of linear expansion corresponding to the i th local freedom
a_{ri}	Mass Rayleigh damping constant corresponding to the i th local freedom
b_{ri}	Stiffness Rayleigh damping constant corresponding to the i th local freedom
$\mathbf{f}_{\text {ji }}$	Force at point j for the i th local freedom
$\delta_{j i}$	Displacement at point j for the i th local freedom
r_{i}	Stiffness factor outside the $N L$ segments for the i th local freedom
$\mathrm{f}_{0 \mathrm{i}}$	Force at origin of the primary loading curve for the i th local freedom
$\mathrm{f}_{\mathrm{Yi}}{ }^{+}$	Force at the initial positive yield point for the i th local freedom
$\mathrm{f}_{\mathrm{Yi}}{ }^{-}$	Force at the initial negative yield point for the i th local freedom
$\alpha_{\text {uni }}$	Unloading stiffness parameter for Parallel reversal loading, Kinematic hardening, Kinematic-hardening with slackness, Kivell, Modified Takeda, Muto, Fukada and Sina hysteresis for the i th local freedom
β_{i}	Stiffness degradation factor for Modified Takeda, Sina and Stewart hysteresis, or ratio of the stiffness of the bilinear hysteresis (before and) after yielding for Fukada hysteresis for the i th local freedom
$\xi_{\mathrm{pi}^{+}}{ }^{+}$	Scaling factor for positive pinch displacement for Sina hysteresis for the i th local freedom
$\eta_{p i}{ }^{+}$	Scaling factor for positive pinch force for Sina hysteresis for the i th local freedom
$\xi_{p i}{ }^{-}$	Scaling factor for negative pinch displacement for Sina hysteresis for the i th local freedom
$\eta_{p i}{ }^{-}$	Scaling factor for negative pinch force for Sina hysteresis for the i th local freedom
$r_{\text {uni }}$	Unloading stiffness scaling parameter for pinching and Stewart hysteresis for the i th local freedom
$\mathbf{f}_{\text {Ii }}{ }^{+}$	Positive pinch force at zero displacement for pinching and Stewart hysteresis for the i th local freedom
$\mathbf{f}_{\text {Ii }}{ }^{-}$	Negative pinch force at zero displacement for pinching and Stewart hysteresis for the i th local freedom
$\alpha_{\text {rli }}$	Loading stiffness factor for pinching slip for Stewart hysteresis for the i th local freedom
iax	Axis or direction that the deformation is used to define the force deformation relationship $\begin{aligned} & =0 \text { uncoupled } \\ & =1 \text { for local } \mathrm{x} \end{aligned}$

$=2$ for local y (default in 2D)
$=3$ for local z (default in 3D)
iunl Unloading rule: 1 - Initial stiffness; 2 - Secant stiffness; 3 - Scaled stiffness; 4 - Emori-Schnobrich formula; 5 - Drain-2D
mcode An integer number which determines the position of a mass or masses. $=0$ for mass between nodes (default)

Piecewise linear curve with hysteresis behaviour (model 41)
Material parameters for each basic hysteresis model in addition to the parameters in JOINT 40.

Basic hysteresis model	Title HYST	Parameters for each dof	Common parameters for all dofs
Parallel reversal loading	PARA	$f_{0}, f_{y}^{+}, f_{y}^{-}, \alpha$	iax, iunl, mcode*
Kinematic hardening	KINE	$f_{0}, f_{y}^{+}, f_{y}^{-}, \alpha$	iax, iunl, mcode
Kinematic- hardening with	SLAC	$f_{0}, f_{y}^{+}, f_{y}^{-}, \alpha$	iax, iunl, mcode

slackness			
Origin centred	ORIG	$f_{0}, f_{y}^{+}, f_{y}^{-}$	iax, mcode
Peak oriented	PEAK	$f_{0}, f_{y}^{+}, f_{y}^{-}$	iax, mcode
Kivell	KIVE	$f_{0}, f_{y}^{+}, f_{y}^{-}, \alpha$	iax, iunl, mcode
Pinching point	PINC	$f_{0}, f_{y}^{+}, f_{y}^{-}, r_{u n}, f_{I}^{+}, f_{I}^{-}$	iax, iunl, mcode
Modified Takeda	TAKE	$f_{0}, f_{y}^{+}, f_{y}^{-}, \alpha, \beta$	iax, iunl, mcode
Muto outer	MUTO	$f_{0}, f_{y}^{+}, f_{y}^{-}, \alpha$	iax, iunl, mcode
Fukada outer	FUKA	$f_{0}, f_{y}^{+}, f_{y}^{-}, \alpha, \beta$	iax, iunl, mcode
Sina outer	SINA	$f_{0}, f_{y}^{+}, f_{y}^{-}, \alpha, \xi_{p}^{+}, \eta_{p}^{+}, \xi_{p}^{-}, \eta_{p}^{-}, \beta$	iax, iunl, mcode
Stewart	STEW	$f_{0}, f_{y}^{+}, f_{y}^{-}, r_{u n}, f_{I}^{+}, f_{I}^{-}, \alpha, \beta$	iax, mcode

* Parameters iax and mcode are the same as for Model 40.

Notes

1. For the i th degree of freedom, if $\mathrm{K}_{\mathrm{i}}=0$, the multi-linear relationship (using $\mathrm{f}_{\mathrm{ji}}-\delta_{\mathrm{ji}}$) will be used; otherwise, if $K_{i} \neq 0$, a linear relationship with stiffness K_{i} will be followed.
2. In each degree of freedom, if the multi-linear relationship is used, the slope of the i th segment is defined as $k_{i}=\frac{f_{i+1}-f_{i}}{\delta_{i+1}-\delta_{i}}, i=1,2, \cdots, n$. If the deformation is smaller than δ_{1}, the slope is assumed to be $r k_{1}$; if the deformation is larger than δ_{n+1}, the slope is assumed to be $r k_{n}$.
3. For the coupled model ($\mathrm{iax}>0$), the deformation in the iax direction is used for all degrees of freedom to define the piecewise linear relationship and to determine which point on the curve corresponds to a deformation state; while for the uncoupled model ($\mathrm{iax}=0$), the deformation for each degree of freedom is used independently.
4. If no hysteresis model is defined, JOINT 41 will behave in the same manner as JOINT 40.

Piecewise Linear Compound Hysteresis Joint Model

Joint type: Piecewise linear joint

The JOINT PROPERTIES NONLINEAR 42 data section defines the material properties for a general multi-linear inelastic joint model with complex compound hysteresis behaviour. The coupled version defines the force - deformation relationship for all degrees of freedom with respect to the deformation in the axial or normal direction; while the uncoupled version defines the relationship in each degree of freedom independently.

```
JOINT PROPERTIES NONLINEAR 42 N NL [HYST_1 [HYST_2]]
```

 [$\left.\left.\left\{p_{2 j i}\right\}_{j=1, \text { nhys2 }}\right]\right]_{i=1, \mathrm{~N}}$ iax iunl [mcode]

N Number of springs for joint element
NL Number of linear segments defining the primary load-deformation curve
imat Material property identification numbe
$\mathbf{K}_{\mathbf{i}} \quad$ Elastic spring stiffness corresponding to the i th local freedom
$\mathbf{M}_{\mathbf{i}} \quad$ Mass corresponding to the i th local freedom
$\mathbf{C}_{\mathbf{i}} \quad$ Damping (viscosity) coefficient corresponding to the i th local freedom
$\alpha_{i} \quad$ Coefficient of linear expansion corresponding to the i th local freedom
$a_{r i} \quad$ Mass Rayleigh damping constant corresponding to the i th local freedom
$\mathbf{b}_{\mathrm{ri}} \quad$ Stiffness Rayleigh damping constant corresponding to the i th local freedom
$\mathbf{f}_{j i} \quad$ Force at point j for the i th local freedom
$\delta_{j i} \quad$ Displacement at point j for the i th local freedom
$\mathbf{r}_{\mathbf{i}} \quad$ Stiffness factor outside the $N L$ segments for the i th local freedom
$\mathbf{f}_{0 i} \quad$ Force at origin of the primary loading curve for the i th local freedom
$\mathrm{p}_{1 \mathrm{ji}} \quad$ Parameters for basic hysteresis 1 (highlighted terms in the Table for JOINT 41) for the i th local freedom
$\mathrm{p}_{2 \mathrm{ji}} \quad$ Parameters for basic hysteresis 2 (highlighted terms in the Table for JOINT 41) for the i th local freedom
nhys1 Number of parameters (highlighted terms in the Table for JOINT 41) for basic hysteresis HYST_1
nhys2 Number of parameters (highlighted terms in the Table for JOINT 41) for basic hysteresis HYST_2
iax Axis or direction that the deformation is used to define the force deformation relationship
$=0$ uncoupled
$=1$ for local x
$=2$ for local y (default in 2D)
$=3$ for local z (default in 3D)
iunl Unloading rule(s) in the packed form $i_{2} i_{1}$, where i_{1} and i_{2} are rules for the inner and outer hysteresis, respectively. For i_{1} and $i_{2}: 1$ - Initial stiffness; 2 - Secant stiffness; 3 - Scaled stiffness; 4 - Emori-Schnobrich formula; 5-Drain-2D. If only i_{1} is provided, it is assumed that $i_{2}=i_{1}$.
mcode An integer number which determines the position of a mass or masses.
$=0$ for mass between nodes (default)
$=1$ for mass at $1^{\text {st }}$ node
$=2$ for mass at $2^{\text {nd }}$ node
HYST_1 Title (in the Table for JOINT 41) of basic hysteresis 1
HYST_2 Title (in the Table for JOINT 41) of basic hysteresis 2

Notes

1. For the i th degree of freedom, if $\mathrm{K}_{\mathrm{i}}=0$, the multi-linear relationship (using $\mathrm{f}_{\mathrm{ji}}-\delta_{\mathrm{ji}}$) will be used; otherwise, if $K_{i} \neq 0$, a linear relationship with stiffness K_{i} will be followed.
2. In each degree of freedom, if the multi-linear relationship is used, the slope of i th segment is defined as $k_{i}=\frac{f_{i+1}-f_{i}}{\delta_{i+1}-\delta_{i}}, i=1,2, \cdots, n$. If the deformation is smaller than δ_{1}, the slope is assumed to be $r k_{1}$; if the deformation is larger than δ_{n+1}, the slope is assumed to be $r k_{n}$.
3. For the coupled model ($\mathrm{iax}>0$), the deformation in the iax direction is used for all degrees of freedom to define the piecewise linear relationship and to determine which point on the curve corresponds to a deformation state; while for the uncoupled model ($\mathrm{iax}=0$), the deformation for each degree of freedom is used independently.
4. If no hysteresis model is defined, JOINT 42 will behave in the same manner as JOINT 40. If only hysteresis 1 is defined, JOINT 42 will behave in the same manner as JOINT 41.

Axial Force Dependent Piecewise Linear Elastic Joint Model

Joint type: Piecewise linear joint

The JOINT PROPERTIES NONLINEAR 43 data section defines a family of piecewise linear elastic force - deformation curves for each degree of freedom based on axial force. This model can be used to model plastic hinges in pushover analyses.
JOINT PROPERTIES NONLINEAR 43 N NL NDCRVE
imat $<K_{i} M_{i} C_{i} \quad \alpha_{i} \quad a_{r i} b_{r i}\left\{\left\{\begin{array}{lllll}f_{j l i} & \delta_{j l i}\end{array}\right\}_{j=1, N L+1} \quad r_{l i} \quad f_{a l}\right\}_{l=1, \text { nderve }}>_{i=1, N}$ [iax mcode]
imat Material property identification number
$\mathbf{K}_{\mathbf{i}} \quad$ Elastic spring stiffness corresponding to the i th local freedom
$\mathbf{M}_{\mathbf{i}} \quad$ Mass corresponding to the i th local freedom
$\mathbf{C}_{\mathbf{i}} \quad$ Damping (viscosity) coefficient corresponding to the i th local freedom
$\alpha_{i} \quad$ Coefficient of linear expansion corresponding to the i th local freedom
$\mathbf{a}_{\mathrm{ri}} \quad$ Mass Rayleigh damping constant corresponding to the i th local freedom

b_{ri}	Stiffness Rayleigh damping constant corresponding to the i th local freedom
$\mathbf{f}_{j 1 i}$	Force of point j on the lth curve for the i th local freedom
$\delta_{j 1 \mathrm{i}}$	Relative displacement of point j on the l th curve for the i th local freedom
$\mathrm{r}_{1 \mathrm{i}}$	Stiffness factor outside the NL segments on the l th curve for the i th local freedom
$\mathrm{fal}_{\text {al }}$	Axial force for l th curve (could be +ve , -ve or zero)
iax	Axial axis or direction
	$\begin{aligned} & =1 \text { for local } \mathrm{x} \\ & =2 \text { for local } \mathrm{y} \text { (default in 2D) } \\ & =3 \text { for local } \mathrm{z} \text { (default in 3D) } \end{aligned}$
mcode	An integer number which determines the position of a mass or masses.
	$=0$ for mass between nodes (default)
	$=1$ for mass at ${ }^{\text {st }}$ node
	$=2$ for mass at $2^{\text {nd }}$ node
N	Number of springs for joint element
NL	Number of linear segments defining the primary load-deformation curve
NDCRVE	The number of material data curves defined

Notes

- All notes stated for the Piecewise Linear Elastic Joint Model are applicable for this model also.

Axial force dependent multi-linear inelastic joint model

 Joint type: Multi-linear jointThe JOINT PROPERTIES NONLINEAR 44 data section defines a family of multilinear inelastic force - deformation curves in each degree of freedom based on axial force. This model can be used to model plastic hinges in pushover analysis. An appropriate unloading rule can be chosen to model parallel reverse loading, anisotropic hardening or kinematic hardening hysteresis behaviour.

```
JOINT PROPERTIES NONLINEAR 44 N NL NDCRVE NAC [PARA | AISO
    | KINE] [SECANT]
```


imat Material property identification number

K_{i}	Elastic spring stiffness corresponding to the i th local freedom
$M_{\text {i }}$	Mass corresponding to the i th local freedom
$\mathrm{C}_{\text {i }}$	Damping (viscosity) coefficient corresponding to the i th local freedom
α_{i}	Coefficient of linear expansion corresponding to the i th local freedom
a_{ri}	Mass Rayleigh damping constant corresponding to the i th local freedom
b_{ri}	Stiffness Rayleigh damping constant corresponding to the i th local freedom
$\mathbf{f}_{j 1 i}$	Force of point j on the l th curve for the i th local freedom
$\delta_{\text {jli }}$	Displacement of point j on the l th curve for the i th local freedom
$\mathbf{r}_{1 \mathrm{i}}$	Stiffness factor outside the $N L$ segments on the l th curve for the i th local freedom
$\mathbf{f}_{01 \mathrm{i}}$	Force at origin of the primary loading curve on the l th curve for the i th local freedom
$\mathrm{f}_{\mathrm{yli}}{ }^{+}$	Force at the initial positive yield point on the l th curve for the i th local freedom
$\mathrm{f}_{\mathrm{y} 1 \mathrm{i}}{ }^{-}$	Force at the initial negative yield point on the l th curve for the i th local freedom
$\alpha_{\text {unli }}$	Unloading stiffness parameter for the l th curve for the i th local freedom
$\mathrm{ac}_{j 1 \mathrm{i}}$	j th acceptance criterion displacement for the l th curve for the i th local freedom
$\mathrm{f}_{\text {ali }}$	Axial force for the l th curve (could be +ve , -ve or zero) for the i th local freedom
iax	Axis or direction used to define the axial force $=1$ for local x
	$=2$ for local y (default in 2D)
	$=3$ for local z (default in 3D)
iunl	Unloading rule: 1 - Initial stiffness; 2-Secant stiffness; 3-Scaled stiffness; 4 - Emori-Schnobrich formula; 5 - Drain-2D
mcode	An integer number which determines the position of a mass or masses.
	$=0$ for mass between nodes (default)
	$=1$ for mass at ${ }^{\text {st }}$ node
	$=2$ for mass at $2^{\text {nd }}$ node
N	Number of springs for joint element (=NODV)
NL	Number of linear segments defining the primary load-deformation curve
NDCRVE	The number of material data curves defined
NAC	The number of acceptance criteria

PARA	Parallel reversal loading hysteresis
AISO	Anisotropic hardening hysteresis
KINE	Kinematic hardening hysteresis
SECANT	Option for switch to secant stiffness

Notes

1. For the i th degree of freedom, if $\mathrm{K}_{\mathrm{i}}=0$, the multi-linear relationship (using $\mathrm{f}_{\mathrm{ji}}-\delta_{\mathrm{ji}}$) will be used; otherwise, if $\mathrm{K}_{\mathrm{i}} \neq 0$, a linear relationship with stiffness K_{i} will be followed.
2. In each degree of freedom, if the multi-linear relationship is used, the slope of i th segment is defined as $k_{i}=\frac{f_{i+1}-f_{i}}{\delta_{i+1}-\delta_{i}}, i=1,2, \cdots, n$. If the deformation is smaller than δ_{1}, the slope is assumed to be $r k_{1}$; if the deformation is larger than δ_{n+1}, the slope is assumed to be $r k_{n}$.
3. For details of the hysteretic rules, see the chapter Piecewise Linear Hysteresis Joint Model.

Axial force dependent multi-linear coupled joint model

Joint type: Multi-linear joint

The JOINT PROPERTIES NONLINEAR 45 data section defines a family of uncoupled multi-linear force (torque) - deformation (twist angle) curves in each local translation and twisting degree of freedom based on axial force, and coupled multilinear moment-rotation curves for bending in two local directions based on axial force and moment angle. This model can be used to model coupled PMM plastic hinges in pushover analysis; it is completely elastic (or recoverable).

```
JOINT PROPERTIES NONLINEAR 45 N NL NDCRVE NAC NANG [SECANT]
```


 $\left\{\left\{\left\{m_{j 1 k} \quad \theta_{j l k}\right\}_{j=1, N L+1} \quad r_{1 k} \quad\left\{a_{j 1 k}\right\}_{j=1, \text { nac }} f_{a l k}\right\}_{1=1, \text { ndcrve }} \varphi_{k}\right\}_{k=1, \text { nang }}$ [iax mcode]
imat Material property identification number
$\mathbf{K}_{\mathbf{i}} \quad$ Elastic spring stiffness corresponding to the i th local freedom
$\mathbf{M}_{\mathbf{i}} \quad$ Mass corresponding to the i th local freedom
$\mathbf{C}_{\mathbf{i}} \quad$ Damping (viscosity) coefficient corresponding to the i th local freedom
$\alpha_{i} \quad$ Coefficient of linear expansion corresponding to the i th local freedom

$\mathrm{a}_{\text {ri }}$	Mass Rayleigh damping constant corresponding to the i th local freedom
b_{ri}	Stiffness Rayleigh damping constant corresponding to the i th local freedom
$\mathbf{f}_{\mathrm{jli}}$	Force of point j on the l th curve for the i th local freedom
$\delta_{j 1 i}$	Displacement of point j on the l th curve for the i th local freedom
$\mathrm{r}_{1 \mathrm{i}}$	Stiffness factor outside the $N L$ segments on the l th curve for the i th local freedom
$\mathrm{ac}_{j 1 \mathrm{i}}$	j th acceptance criterion displacement for the l th curve for the i th local freedom
$\mathrm{f}_{\text {ali }}$	Axial force for the l th curve (could be +ve , -ve or zero) for the i th local freedom
$\mathrm{m}_{\mathrm{j} 1 \mathrm{k}}$	Resultant moment of point j on the l th curve for the k th moment angle
$\theta_{j 1 k}$	Projected rotation of point j on the l th curve for the k th moment angle
$\mathrm{r}_{1 \mathrm{k}}$	Stiffness factor outside the $N L$ segments on the l th curve for the k th moment angle
$\mathrm{aC}_{j 1 \mathrm{k}}$	j th acceptance criterion rotation for the l th axial force for the k th moment angle
$\mathrm{f}_{\mathrm{alk}}$	Axial force for the $l t$ chrve (could be +ve , -ve or zero) for the k th moment angle
φ_{k}	k th moment angle
iax	Axis or direction used to define the axial force $=1$ for local x
	$=2$ for local y (default in 2D)
	$=3$ for local z (default in 3D)
mcode	An integer number which determines the position of a mass or masses.
	$=0$ for mass between nodes (default)
	$=1$ for mass at $1^{\text {st }}$ node
	$=2$ for mass at $2^{\text {nd }}$ node
N	Number of springs for joint element (=6)
NL	Number of linear segments defining the primary load-deformation curve
NDCRVE	The number of material data curves defined for different axial forces
NAC	The number of acceptance criteria
NANG	The number of moment angles
SECANT	Option for switch to secant stiffness

Notes

1. For the i th degree of freedom, if $\mathrm{K}_{\mathrm{i}}=0$, the multi-linear relationship (using $\mathrm{f}_{\mathrm{ji}}-\delta_{\mathrm{ji}}$) will be used; otherwise, if $\mathrm{K}_{\mathrm{i}}>0$, a linear relationship with stiffness K_{i} will be followed to define a rigid freedom (i.e. elastic without plastic deformation). A rigid freedom still needs to define the same number of data points for the multi-linear relationship, which will be ignored so can be input as zeros; the K_{i} needs to be close to the stiffness of the connecting element (e.g. EA/L for a beam element).
2. In each degree of freedom, if the multi-linear relationship is used, the slope of i th segment is defined as $k_{i}=\frac{f_{i+1}-f_{i}}{\delta_{i+1}-\delta_{i}}, i=1,2, \cdots, n$. If the deformation is smaller than δ_{1}, the slope is assumed to be $r k_{1}$; if the deformation is larger than δ_{n+1}, the slope is assumed to be $r k_{n}$.
3. For a single value of axial force P, if $M-\theta$ curves are defined for one moment angle φ (e.g. $\varphi=0$), the $\mathrm{M}-\theta$ surface is assumed to be circular; if $\mathrm{M}-\theta$ curves are defined for a half M_{y} (or M_{z}) plane (e.g. at angles $\varphi=0,90^{\circ}$ and 180° or $\varphi=-90^{\circ}$, $0,90^{\circ}$), the $\mathrm{M}-\theta$ surface is assumed to be symmetric to $\mathrm{M}_{\mathrm{y}}\left(\right.$ or M_{z}); if $\mathrm{M}-\theta$ curves are defined in a quadrant (e.g. at two angles $\varphi=0$ and 90°), the $\mathrm{M}-\theta$ surface is assumed to be doubly symmetric or symmetric to both M_{y} and M_{z}. The input data will automatically be mirrored into the other quadrants or half plane.
4. The number of points on each M- θ curve needs to be the same as other multi-linear force-deformation curves. The number of M- θ curves (with varying φ) for each value of P needs to be the same; likewise, the number of P dependent curves for each φ also needs to be the same. Interpolation between the different P curves will always be linear; interpolation of the $\mathrm{M}-\theta$ surface within a quadrant with respect to φ will be elliptical if only two angles are defined corresponding to the quadrant axes, if more angles are defined a piecewise linear interpolation between two adjacent angles is assumed.
5. If a constant P is used to define all the $\mathrm{M}-\theta$ curves, the coupled PMM model will reduce to the coupled $M_{y}-M_{z}$ model; if only $M_{y}-\theta_{y}\left(\varphi=0\right.$; or $\left.M_{z}-\theta_{z}, \varphi=90^{\circ}\right)$ curves are defined and bending is absent from the z (or y) direction, the coupled PMM model will reduce to the $P-\mathrm{M}_{\mathrm{y}}$ (or $\mathrm{P}-\mathrm{M}_{\mathrm{z}}$) model. If both $\mathrm{M}_{\mathrm{y}}\left(\theta_{\mathrm{y}}\right)$ and $\mathrm{M}_{\mathrm{z}}\left(\theta_{\mathrm{z}}\right)$ are present but not coupled, model 43 should be used.

Axial force dependent multi-linear coupled joint model with hysteresis

Joint type: Multi-linear joint

The JOINT PROPERTIES NONLINEAR 46 data section defines a family of uncoupled multi-linear force (torque) - deformation (twist angle) curves in each local translation and twisting degree of freedom based on axial force, and coupled multilinear moment-rotation curves for bending in two local directions based on axial force and moment angle. This model can be used to model coupled PMM plastic hinges in pushover analysis. An appropriate unloading rule can be chosen to model parallel reverse loading, anisotropic hardening or kinematic hardening hysteretic behaviour.

```
JOINT PROPERTIES NONLINEAR 46 N NL NDCRVE NAC NANG [PARA |
    AISO | KINE] [SECANT]
imat <Ki
```



```
    M
```


imat Material property identification number
$\mathbf{K}_{\mathbf{i}} \quad$ Elastic spring stiffness corresponding to the i th local freedom
$\mathbf{M}_{\mathbf{i}} \quad$ Mass corresponding to the i th local freedom
$\mathbf{C}_{\mathbf{i}} \quad$ Damping (viscosity) coefficient corresponding to the i th local freedom
$\alpha_{i} \quad$ Coefficient of linear expansion corresponding to the i th local freedom
$\mathbf{a}_{\mathrm{ri}} \quad$ Mass Rayleigh damping constant corresponding to the i th local freedom
$\mathbf{b}_{\text {ri }} \quad$ Stiffness Rayleigh damping constant corresponding to the i th local freedom
$\mathbf{f}_{j 1 \mathrm{i}} \quad$ Force of point j on the l th curve for the i th local freedom
$\delta_{j 1 i} \quad$ Displacement of point j on the l th curve for the i th local freedom
$\boldsymbol{r}_{1 \mathrm{i}} \quad$ Stiffness factor outside the $N L$ segments on the l th curve for the i th local freedom
$\mathbf{f}_{01 \mathrm{i}} \quad$ Force at origin of the primary loading curve on the l th curve for the i th local freedom
$\mathbf{f}_{\mathrm{y} 1 \mathrm{i}}{ }^{+} \quad$ Force at the initial positive yield point on the l th curve for the i th local freedom
$\mathbf{f}_{\mathrm{yli}^{-}} \quad$ Force at the initial negative yield point on the l th curve for the i th local freedom
$\boldsymbol{\alpha}_{\mathrm{un} 1 \mathrm{i}} \quad$ Unloading stiffness parameter for the l th curve for the i th local freedom
$\mathbf{a c}_{\mathbf{j l i}} \quad j$ th acceptance criterion displacement for the l th curve for the i th local freedom
$\mathbf{f}_{\mathrm{ali}} \quad$ Axial force for the l th curve (could be +ve , -ve or zero) for the i th local freedom
$\mathrm{m}_{\mathrm{j} 1 \mathrm{k}} \quad$ Resultant moment of point j on the l th curve for the k th moment angle
$\theta_{j 1 k} \quad$ Projected rotation of point j on the $l t$ curve for the k th moment angle
$\mathbf{r}_{1 \mathrm{k}} \quad$ Stiffness factor outside the $N L$ segments on the l th curve for the $k t h$ moment angle
$\mathrm{m}_{\mathrm{y} 1 \mathrm{k}} \quad$ Moment at the initial yield point on the $l \mathrm{th}$ curve for the k th moment angle
$\boldsymbol{\alpha}_{\mathrm{un} 1 \mathrm{k}} \quad$ Unloading stiffness parameter for the l th curve for the k th moment angle

$\mathrm{ac}_{\mathrm{jlk}}$	j th acceptance criterion rotation for the l th axial force for the k th moment angle
$\mathbf{f}_{\text {alk }}$	Axial force for the l th curve (could be +ve , -ve or zero) for the k th moment angle
φ_{k}	k th moment angle
iax	Axis or direction used to define the axial force $\begin{aligned} & =1 \text { for local } \mathrm{x} \\ & =2 \text { for local } \mathrm{y} \text { (default in 2D) } \\ & =3 \text { for local } \mathrm{z} \text { (default in 3D) } \end{aligned}$
iunl	Unloading rule: 1 - Initial stiffness; 2 - Secant stiffness; 3 - Scaled stiffness; 4 - Emori-Schnobrich formula; 5 - Drain-2D
mcode	An integer number which determines the position of a mass or masses. $\begin{aligned} & =0 \text { for mass between nodes }(\text { default }) \\ & =1 \text { for mass at } 1^{\text {st }} \text { node } \\ & =2 \text { for mass at } 2^{\text {nd }} \text { node } \end{aligned}$
N	Number of springs for joint element (=6)
NL	Number of linear segments defining the primary load-deformation curve
NDCRVE	The number of material data curves defined for different axial forces
NAC	The number of acceptance criteria
NANG	The number of moment angles
PARA	Parallel reversal loading hysteresis
AISO	Anisotropic hardening hysteresis
KINE	Kinematic hardening hysteresis
SECANT	Option for switch to secant stiffness

Notes

1. For the i th degree of freedom, if $\mathrm{K}_{\mathrm{i}}=0$, the multi-linear relationship (using $\mathrm{f}_{\mathrm{ji}}-\delta_{\mathrm{ji}}$) will be used; otherwise, if $K_{i}>0$, a linear relationship with stiffness K_{i} will be followed to define a rigid freedom (i.e. elastic without plastic deformation). A rigid freedom still needs to define the same number of data points for the multi-linear relationship, which will be ignored so can be input as zeros; the K_{i} needs to be close to the stiffness of the connecting element (e.g. EA/L for a beam element).
2. In each degree of freedom, if the multi-linear relationship is used, the slope of i th segment is defined as $k_{i}=\frac{f_{i+1}-f_{i}}{\delta_{i+1}-\delta_{i}}, i=1,2, \cdots, n$. If the deformation is smaller than δ_{1}, the slope is assumed to be $r k_{1}$; if the deformation is larger than δ_{n+1}, the slope is assumed to be $r k_{n}$.
3. For a single value of axial force P, if $M-\theta$ curves are defined for one moment angle φ (e.g. $\varphi=0$), the $\mathrm{M}-\theta$ surface is assumed to be circular; if $\mathrm{M}-\theta$ curves are defined for a half $\mathrm{M}_{\mathrm{y}}\left(\right.$ or M_{z}) plane (e.g. at angles $\varphi=0,90^{\circ}$ and 180° or $\varphi=-90^{\circ}$, $0,90^{\circ}$), the $M-\theta$ surface is assumed to be symmetric to $M_{y}\left(\right.$ or M_{z}); if $M-\theta$ curves are defined in a quadrant (e.g. at two angles $\varphi=0$ and 90°), the $\mathrm{M}-\theta$ surface is assumed to be doubly symmetric or symmetric to both M_{y} and M_{z}. The input data will automatically be mirrored into the other quadrants or half plane.
4. The number of points on each $\mathrm{M}-\theta$ curve needs to be the same as other multi-linear force-deformation curves. The number of $\mathrm{M}-\theta$ curves (with varying φ) for each value of P needs to be the same; likewise, the number of P dependent curves for each φ also needs to be the same. Interpolation between the different P curves will always be linear; interpolation of the $\mathrm{M}-\theta$ surface within a quadrant with respect to φ will be elliptical if only two angles are defined corresponding to the quadrant axes, if more angles are defined a piecewise linear interpolation between two adjacent angles is assumed.
5. If a constant P is used to define all the $\mathrm{M}-\theta$ curves, the coupled PMM model will reduce to the coupled $M_{y}-M_{z}$ model; if only $M_{y}-\theta_{y}\left(\varphi=0 ;\right.$ or $\left.M_{z}-\theta_{z}, \varphi=90^{\circ}\right)$ curves are defined and bending is absent from the z (or y) direction, the coupled PMM model will reduce to the $P-\mathrm{M}_{\mathrm{y}}$ (or P- M_{z}) model. If both $\mathrm{M}_{\mathrm{y}}\left(\theta_{\mathrm{y}}\right)$ and $\mathrm{M}_{\mathrm{z}}\left(\theta_{z}\right)$ are present but not coupled, model 43 should be used.
6. For details of the hysteretic rules, see the chapter Piecewise Linear Hysteresis Joint Model.

Axial force dependent multi-linear fibre joint model

Joint type: Multi-linear joint

The JOINT PROPERTIES NONLINEAR 47 data section defines a set of fibres to represent the axial force dependent completely elastic (or recoverable) multi-linear coupled joint. Each fibre has its own position, cross section area and material properties described by uncoupled elastic multi-linear normal and shear stress-strain relationships. This model can be used to model coupled PMM plastic hinges in pushover analysis.

```
JOINT PROPERTIES NONLINEAR 47 N NL NFIBR NDCRVE NAC NANG [SECANT]
```

imat $\left\langle\mathrm{K}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}} \alpha_{\mathrm{i}} \mathrm{a}_{\mathrm{ri}} \mathrm{b}_{\mathrm{ri}}>_{\mathrm{i}=1, \mathrm{~N}}\left\{\left\{\begin{array}{lllll}\sigma_{j k} & \left.\varepsilon_{j \mathrm{k}}\right\}_{\mathrm{j}=1, \mathrm{NL}+1} & \left\{\tau_{\mathrm{jk}}\right. & \left.\gamma_{\mathrm{jk}}\right\}_{\mathrm{j}=1, \mathrm{NL}+1} \quad \mathrm{r}_{\mathrm{k}}\end{array}\right.\right.\right.$
 $\left\{\left\{\left\{\operatorname{ac}_{j 1 \mathrm{k}}\right\}_{\mathrm{j}=1, \mathrm{nac}} \mathrm{f}_{\mathrm{alk}}\right\}_{1=1, \text { ndcrve }} \boldsymbol{\varphi}_{\mathrm{k}}\right\}_{\mathrm{k}=1 \text {, nang }}$ mcode]
imat Material property identification number
$\mathrm{K}_{\mathbf{i}} \quad$ Elastic spring stiffness corresponding to the i th local freedom
$\mathbf{M}_{\mathbf{i}} \quad$ Mass corresponding to the i th local freedom
$\mathbf{C}_{\mathbf{i}} \quad$ Damping (viscosity) coefficient corresponding to the i th local freedom

Notes

1. If nfibr >0, the multi-linear fibre stress-strain relationship (using $\sigma_{j}-\varepsilon_{j}$ and $\tau_{j}-\gamma_{j}$) will be used; otherwise, a linear relationship with stiffness K_{i} will be followed for the i th degree of freedom.
2. In each fibre, if the multi-linear fibre stress-strain relationship is used, the slope of i th segment is defined as $E_{i}=\frac{\sigma_{i+1}-\sigma_{i}}{\varepsilon_{i+1}-\varepsilon_{i}}, G_{i}=\frac{\tau_{i+1}-\tau_{i}}{\gamma_{i+1}-\gamma_{i}}, i=1,2, \cdots, n$. If the normal (shear) strain is smaller than $\varepsilon_{1}\left(\gamma_{1}\right)$, the slope is assumed to be $r E_{1}\left(r G_{1}\right)$; if the normal (shear) strain is larger than $\varepsilon_{n+1}\left(\gamma_{\mathrm{n}+1}\right)$, the slope is assumed to be $r E_{n}\left(r G_{n}\right)$. The resultant forces and moments of the joint are obtained by integration of the fibre stresses.

Axial force dependent inelastic multi-linear fibre joint model

Joint type: Multi-linear joint

The JOINT PROPERTIES NONLINEAR 48 data section defines a set of fibres to represent the axial force dependent inelastic multi-linear coupled joint with hysteresis. Each fibre has its own position, cross section area and material properties described by uncoupled inelastic multi-linear normal and shear stress-strain relationships with parallel reversal loading, anisotropic hardening or kinematic hardening hysteretic behaviours. Various rules can be chosen to model different unloading behaviours. This model can be used to model coupled PMM plastic hinges with hysteresis in pushover analysis.

| JOINT | PROPERTIES NONLINEAR 48 N NL NFIBR NDCRVE NAC NANG [PARA \| AISO | KINE] [SECANT] |
| :---: | :---: |
| imat | |
| imat | Material property identification number |
| K_{i} | Elastic spring stiffness corresponding to the i th local freedom |
| M_{i} | Mass corresponding to the i th local freedom |
| $\mathrm{C}_{\text {i }}$ | Damping (viscosity) coefficient corresponding to the i th local freedom |
| α_{i} | Coefficient of linear expansion corresponding to the i th local freedom |
| a_{ri} | Mass Rayleigh damping constant corresponding to the i th local freedom |

$\mathrm{b}_{\text {ri }}$	Stiffness Rayleigh damping constant corresponding to the i th local freedom
$\sigma_{j k}$	Normal stress of point j on the normal stress - normal strain curve for the k th fibre
$\varepsilon_{j k}$	Normal strain of point j on the normal stress - normal strain curve for the k th fibre
$\tau_{j \mathrm{k}}$	Shear stress of point j on the shear stress - shear strain curve for the $k t$ th fibre
$\gamma_{j k}$	Shear strain of point j on the shear stress - shear strain curve for the k th fibre
r_{k}	Stiffness factor outside the $N L$ segments on the stress-strain curve for the k th fibre
Yk	Local y-coordinate at the centroid of the k th fibre
z_{k}	Local z-coordinate at the centroid of the k th fibre
A_{k}	Cross section area of the k th fibre
$\sigma_{0 \mathrm{k}}$	Normal stress at origin of the primary normal stress-strain curve for the k th fibre
$\sigma_{\mathrm{yk}}{ }^{+}$	Normal stress at the initial positive yield point for the k th fibre
$\sigma_{\mathrm{yk}}{ }^{-}$	Normal stress at the initial negative yield point for the k th fibre
$\tau_{0 k}$	Shear stress at origin of the primary normal stress-strain curve for the $k t$ th fibre
$\tau_{\mathrm{yk}}{ }^{+}$	Shear stress at the initial positive yield point for the k th fibre
$\tau_{\mathrm{yk}}{ }^{-}$	Shear stress at the initial negative yield point for the k th fibre
$\alpha_{\text {unk }}$	Unloading stiffness parameter for the k th fibre
$\mathrm{ac}_{\mathrm{jli}}$	j th acceptance criterion displacement for the l th curve for the i th local freedom
$\mathrm{f}_{\text {ali }}$	Axial force for the l th curve (could be +ve , -ve or zero) for the i th local freedom
$\mathrm{ac}_{\mathrm{jlk}}$	j th acceptance criterion rotation for the l th axial force for the k th moment angle
$\mathrm{f}_{\text {alk }}$	Axial force for the l th curve (could be +ve , -ve or zero) for the $k t$ th moment angle
φ_{k}	k th moment angle
iunl	Unloading rule: 1 - Initial stiffness; 2 - Secant stiffness; 3 - Scaled stiffness; 4 - Emori-Schnobrich formula; 5 - Drain-2D
mcode	An integer number which determines the position of a mass or masses.
	$=0$ for mass between nodes (default)

 \(=1\) for mass at \(1^{\text {st }}\) node
 \(=2\) for mass at \(2^{\text {nd }}\) node
 N Number of springs for joint element
NL Number of linear segments defining the primary load-deformation curve
NFIBR Number of fibres
NDCRVE The number of material data curves defined for different axial forces
NAC The number of acceptance criteria
NANG The number of moment angles
PARA Parallel reversal loading hysteresis
AISO Anisotropic hardening hysteresis
KINE Kinematic hardening hysteresis
SECANT Option for switch to secant stiffness

Notes

1. If nfibr >0, the multi-linear fibre stress-strain relationship (using $\sigma_{j}-\varepsilon_{j}$ and τ_{j} - γ_{j}) will be used; otherwise, a linear relationship with stiffness K_{i} will be followed for the i th degree of freedom.
2. In each fibre, if the multi-linear fibre stress-strain relationship is used, the slope of i th segment is defined as $E_{i}=\frac{\sigma_{i+1}-\sigma_{i}}{\varepsilon_{i+1}-\varepsilon_{i}}, G_{i}=\frac{\tau_{i+1}-\tau_{i}}{\gamma_{i+1}-\gamma_{i}}, i=1,2, \cdots, n$. If the normal (shear) strain is smaller than $\varepsilon_{1}\left(\gamma_{1}\right)$, the slope is assumed to be $r E_{1}$ $\left(r G_{1}\right)$; if the normal (shear) strain is larger than $\varepsilon_{n+1}\left(\gamma_{\mathrm{n}+1}\right)$, the slope is assumed to be $r E_{n}\left(r G_{n}\right)$. The resultant forces and moments of the joint are obtained by integration of the fibre stresses.
3. For details of the hysteretic rules, see the chapter Piecewise Linear Hysteresis Joint Model.

Laterally Coupled Piecewise Linear Elastic Joint Model

Joint type: Piecewise linear joint

The JOINT PROPERTIES NONLINEAR 49 data section defines the material properties for a general piecewise linear elastic joint model whose deformations in the lateral (or horizontal or inplane) directions are coupled. This model can be used to model soil surrounding piles.

JOINT PROPERTIES NONLINEAR 49 N NL [SECANT]

imat	Material property identification number
K_{i}	Elastic spring stiffness corresponding to the i th local freedom ($\geq 0)$
M_{i}	Mass corresponding to the i th local freedom (≥ 0)
$\mathrm{C}_{\text {i }}$	Damping (viscosity) coefficient corresponding to the i th local freedom $(\geq$ $0)$
α_{i}	Coefficient of linear expansion corresponding to the i th local freedom (≥ 0)
a_{ri}	Mass Rayleigh damping constant corresponding to the i th local freedom $(\geq$ 0)
b_{ri}	Stiffness Rayleigh damping constant corresponding to the i th local freedom (≥ 0)
$\mathbf{f}_{\mathrm{j} 1}$	Force at point j for the l th (lateral or vertical) local freedom
$\delta_{j 1}$	Displacement at point j for the l th (lateral or vertical) local freedom (in ascending order)
r_{1}	Stiffness factor outside the $N L$ segments for the l th (lateral or vertical) local freedom
nrm	$\begin{aligned} & \text { Normal or vertical direction }(0-2 \text { for 2D; } 0-3 \text { for } 3 \mathrm{D}) \\ & =1 \text { for local } \mathrm{x} \\ & =2 \text { for local } y \text { (default in 2D) } \\ & =3 \text { for local } \mathrm{z} \text { (default in 3D) } \end{aligned}$
mcode	An integer number which determines the position of a mass or masses ($0-$ 2) ```=0 for mass between nodes (default) =1 for mass at 1 }\mp@subsup{}{}{\mathrm{ st }}\mathrm{ node =2 for mass at 2 nd node```
N	Number of springs for joint element
NL	Number of linear segments defining the primary load-deformation curve
SECANT	Option for switch to secant stiffness

Notes

1. The resultant elastic stiffness in lateral and normal directions are \widetilde{K}_{1}
$=\left(\sum_{i \neq n r m} K_{i}^{2}\right)^{1 / 2}$ and $\widetilde{K}_{2}=K_{n r m}$, respectively. For the lateral (or horizontal or inplane) and normal (or vertical) directions, if $\widetilde{K}_{l}=0$, the piecewise linear relationship (using $f_{j l}-\delta_{j l}$) will be used; otherwise, if $\widetilde{K}_{l} \neq 0$, a linear relationship with stiffness \widetilde{K}_{l} will be followed, and it is not necessary to tabulate the data defining the piecewise linear relationship.

2. In lateral and vertical directions, if the piecewise linear relationship is used, the slope of i th segment is defined as $k_{i}=\frac{f_{i+1}-f_{i}}{\delta_{i+1}-\delta_{i}}, i=1,2, \cdots, n$. If the deformation is smaller than δ_{1}, the slope is assumed to be $r k_{1}$; if the deformation is larger than δ_{n+1}, the slope is assumed to be $r k_{n}$.
3. When defining a piecewise linear curve it is possible to define segments with negative stiffness/gradient on the force-displacement curve to the positive side of the displacement origin. However, the curve cannot extend below the force level at this origin as the force-displacement relationship would then become non-unique because of the curve data defined (or extrapolated) for negative displacements. This is also true for forces on the negative side of the displacement origin; in this case the curve cannot extend above the force at the displacement origin.

User-Supplied Nonlinear Joint Properties

Joint type: Nonlinear user

The USER joint model facility allows user-supplied joint property subroutines to be used from within LUSAS. This facility provides controlled access to the pre- and postsolution constitutive processing and nonlinear state variable output via these usersupplied subroutines.

By default these routines are supplied as empty routines with defined interfaces that are unchangeable. The externally developed code should be placed into these routines which is then linked into the LUSAS system. Source code access is available to these interface routines and object library access is available to the remainder of the LUSAS
code to enable this facility to be utilised. See Appendix C: Solver User Interface Routines.

Since user specification of a constitutive model involves the external development of source FORTRAN code, as well as access to LUSAS code, this facility is aimed at the advanced LUSAS user.

The required joint properties input for the user-supplied joint model is completely general. However, the properties $\mathbf{M}_{\mathbf{i}}, \mathrm{C}_{\mathrm{i}}, \boldsymbol{\alpha}_{\mathrm{i}}, \mathrm{a}_{\mathrm{ri}}, \mathrm{b}_{\mathrm{ri}}$ along with mcode are reserved for LUSAS internal use: you only need to utilise them if other features of the program are required (e.g. dynamic and thermal analyses). The data section JOINT PROPERTIES NONLINEAR USER is used to define all the joint property parameters for user-supplied joint models.

```
JOINT PROPERTIES NONLINEAR USER LPTUSR N NPRZS NPRZJ NSTAT
```



```
LPTUSR User model number
N Number of springs for joint element
NPRZS Total number of joint properties per spring
NPRZJ Number of properties per joint (common to all springs)
NSTAT Number of state variables
imat Material property identification number
K}\mp@subsup{\mathbf{i}}{\mathbf{L}}{}\quad\mathrm{ Elastic spring stiffness corresponding to the ith local freedom
M
C
    freedom
\mp@subsup{\alpha}{i}{}}\quad\mathrm{ Coefficient of thermal expansion corresponding to the ith local freedom
ari Mass Rayleigh damping constant corresponding to the ith local freedom
\mp@subsup{b}{ri}{}}\quad\mathrm{ Stiffness Rayleigh damping constant corresponding to the ith local
    freedom
u}\mp@subsup{\mathbf{j}}{\mathbf{j}}{}\quad\mathrm{ User defined material properties for individual component directions
P
mcode An integer number which determines the position of a mass or masses.
    =0 for mass between nodes (default)
    =1 for mass at 1 }\mp@subsup{}{}{\mathrm{ st }}\mathrm{ node
    =2 for mass at 2 nd node
```


Notes

1. The total number of joint properties, NPRZ, will be computed from N^{*} NPRZS + NPRZJ + 1 .
2. The number of material properties input must be equal to that specified in the data.
3. When no state variables are required (i.e. when nstat is specified as zero) a warning message will be invoked.
4. The properties $\mathbf{M}_{\mathrm{i}}, \mathrm{C}_{\mathrm{i}}, \boldsymbol{\alpha}_{\mathrm{i}}, \mathrm{a}_{\mathrm{ri}}, \mathrm{b}_{\mathrm{ri}}$ along with mcode are required by LUSAS in order to perform other types of analyses: for example thermal problems require the coefficients of thermal expansion $\boldsymbol{\alpha}_{\mathrm{i}}$, and a dynamic analysis requires the mass $\mathbf{M}_{\mathbf{i}}$ and possibly damping via \mathbf{C}_{i} or \mathbf{a}_{ri} and b_{ri} along with mcode.
5. If all the C_{i} input values are specified as zero the Rayleigh damping parameters will be used to form the element damping matrix.
6. Option 179 can be set for argument verification within the user routines.

Material Properties Mass

The data section MATERIAL PROPERTIES MASS is used to specify the element nodal masses in the local coordinate system for non-structural mass elements.

MATERIAL PROPERTIES MASS naxes nnode

```
imat mxim myi {mzi
```

imat The material property identification number
naxes Number of axes in structure (2D or 3D)
nnode Number of nodes to element
$\mathbf{m} \mathbf{x}_{\mathbf{i}} \quad$ Mass at node i in local x direction
my $_{\mathbf{i}} \quad$ Mass at node i in local y direction
$\mathbf{m z}_{\mathbf{i}} \quad$ Mass at node i in local z direction (only if naxes=3)

Notes

1. MATERIAL PROPERTIES MASS must only be assigned to non-structural mass elements. Only translational masses in the x, y and z directions are available. Rotational masses are not available.
2. For point elements the nodal (point) mass is input. For line elements the mass per unit length is input. For surface elements the mass per unit area is input.
3. By default nodal masses are defined with respect to local element axes. However, it is also possible to define the mass orientation with respect to any CARTESIAN SET. This is specified under MATERIAL ASSIGNMENTS.

Nonlinear Material Properties

The nonlinear models may be used to model yielding of materials such as metals, concrete, rubber, soils and rocks etc.. The following types of nonlinear material models are available (described in detail in the LUSAS Theory Manual):

- Plasticity Models
- Plastic Definition (von Mises, Hill, Hoffman)
- Optimised Von Mises Model
- Drucker-Prager Model
- Tresca Model
- Non-Associative Mohr-Coulomb Model
- Modified Mohr-Coulomb/Tresca Model
- Hoek-Brown Model
- Modified Cam-clay Model
- Duncan-Chang Model
- Barcelona Basic Model
- Multi Crack Concrete Model
- Smoothed Multi Crack Concrete Model
- Masonry Material Model
- Elasto-Plastic Stress Resultant Model
- User-Supplied Nonlinear Material Properties
\square Viscous Definition (Creep, Viscoelasticity)
\square Damage Model
\square Composite Matrix Failure Model
- Two Phase Material Model
[Rubber Model
\square Volumetric Crushing Model
\square Piecewise Linear Material Model
\square Design Code Concrete Creep Models
- AASHTO 7th edition
- CEB-FIP Model Code 1990
- Chinese Creep Code for Hydraulic Structures
- EUROCODE 2
- IRC:112-2011
- JTG 3362-2018
- fib Model Code 2010
\square Generic Polymer Model
\square 2D Interface Model / 3D Interface Model
\square Delamination Model
\square Resin Cure Model
- Shrinkage

A full section (stress resultant) yield criterion is available for some of the shell and beam elements. Other elasto-plastic models for Gauss point stress evaluations are applicable to shell, membrane and solid elements. Various yield criteria with isotropic and kinematic hardening are available. Implicit integration of the elasto-plastic constitutive equations is also implemented for some of the models. The pressure dependent material models allow for different properties in tension and compression.

In addition to the standard element data output, the following details of the nonlinear material model behaviour are also output (at the Gauss points):

YFUNC The value of the yield function. zero: stress on the yield surface. negative: stress within the yield surface.
CURYS The value of the equivalent yield stress.
EPSTN The value of the equivalent plastic strain.
IYLD The value of the yield flag.
0 - elastic
1 - plastic
NSTEPS The number of sub increments used to integrate the elasto-plastic strain increment (explicit integration), or the number of Newton-Raphson iterations used to satisfy the elasto-plastic constitutive relations (implicit integration).

Plastic Definition

The PLASTIC DEFINITION data chapter allows more flexibility in the way that plastic properties for a nonlinear material can be defined. In particular, the following options may be used to define a hardening curve by specifying the following pairs of values:
\square the gradient of the curve together with the plastic strain limit for which the gradient applies
\square the yield stress together with a plastic strain value
\square the yield stress together with a total strain value
A PLASTIC DEFINITION should be used in conjunction with a linear material property; the linear and nonlinear sets of properties are then assigned to elements using the MATERIAL ASSIGNMENTS or COMPOSITE MATERIAL data chapters. The following linear material property types can be assigned to the same elements as a PLASTIC DEFINITION data set:

- MATERIAL PROPERTIES

- MATERIAL PROPERTIES ORTHOTROPIC
- MATERIAL PROPERTIES ORTHOTROPIC PLANE STRAIN
[MATERIAL PROPERTIES ORTHOTROPIC THICK
- MATERIAL PROPERTIES ORTHOTROPIC AXISYMMETRIC
- MATERIAL PROPERTIES ORTHOTROPIC SOLID

Note. If an orthotropic linear material is used to define the linear elastic properties, then any accompanying plastic data set must include an orthotropic stress potential.

STRESS POTENTIAL \{VON_MISES | HILI | HOFFMAN\}


```
        S yz S Szz T]
YIELD STRESS [ng
ipls smot [s }\mp@subsup{\textrm{yo}}{\textrm{yo}}{}\mp@subsup{}{}{\textrm{c}}] [T
HARDENING CURVE [HARDENING_GRADIENT | PLASTIC_STRAIN |
    TOTAL_STRAIN] Nt [N']
ipls < H Hit S Sit > >i=1,Nt [< Hic S Sic > > i=1,Nc] [T]
HEAT FRACTION
ipls hif [T]
ipls The plastic definition set identification number, see Notes.
sij Stresses defining the yield surface for Hill model.
sijt(c) Stresses defining the yield surface in tension (compression) for Hoffman
        model.
T Reference temperature.
Ns Number of yield stresses to be specified, see Notes. (Default=1).
Sy0t (c) Initial reference tensile (compressive) yield stress.
Nt (c) Number of points/sections defining the tensile (compressive) hardening
        curve.
Hit(c) First value defining the hardening curve for tension (compression), see
        Notes.
Sit(c) Second value defining the hardening curve for tension (compression), see
        Notes.
hf Heat fraction.
```


Notes

1. Data sections specified under the PLASTIC DEFINITION data chapter, which are used to build up the definition of a particular material, must be allocated the same plastic definition identification number, ipls.
2. The STRESS POTENTIAL data section must always be used. A stress potential must be specified for every set of plastic material properties defined.
3. The data sections under the PLASTIC DEFINITION chapter may be specified in any order.
4. When using the HARDENING CURVE, YIELD STRESS or HEAT FRACTION data sections a linear material model must be specified to define the linear material properties.
5. The PLASTIC DEFINITION data must be combined with other material data to define the required nonlinear material using the MATERIAL ASSIGNMENTS or COMPOSITE MATERIAL data chapters.
6. The PLASTIC DEFINITION data chapter is intended to be used in conjunction with linear material models (e.g. MATERIAL PROPERTIES ORTHOTROPIC).
7. If tables of properties in the separate data sections defining a particular material are inconsistent, an amalgamated table is assembled for interpolation. Tables are inconsistent if they are made up of a different number of lines of data or use different reference temperatures. If this is the case, a value may need to be interpolated which is outside the temperature bounds of the table defined in a particular data section. If this occurs the appropriate extreme value in the table is used. If Option 227 is invoked by the user, this occurrence will cause a data error and the analysis will be terminated.
8. For additional information see:

Stress Potential

Yield Stress
Hardening Curve
Heat Fraction

Stress Potential

The use of nonlinear material properties applicable to a general multi-axial stress state requires the specification of yield stresses in each direction of the stress space when defining the yield surface (see the LUSAS Theory Manual). These stresses are specified under the STRESS POTENTIAL command and are assigned to appropriate elements through the MATERIAL ASSIGNMENTS or COMPOSITE MATERIAL data chapters. Hill, von Mises and Hoffman nonlinear material models are available.

Notes

1. The STRESS POTENTIAL data section must always be used. A stress potential must be specified for every set of plastic material properties defined.
2. If a stress potential type is not specified then von Mises is set as default.
3. The yield surface must be defined in full, irrespective of the type of analysis undertaken. This means that none of the stresses defining the yield surface can be set to zero. For example, in a plane stress analysis, the out of plane direct stress $\mathbf{s z z}$, must be given a value which physically represents the model to be analysed.
4. For the Hill and Hoffman models, the stresses specified in each direction under STRESS POTENTIAL are related in defining the yield surface, randomly specified values can lead to convergence difficulties. As a guide, to avoid a concave yield surface, stresses should comply with the following relationship: $\sigma_{i i}>\frac{\sigma_{j j} \sigma_{k k}}{\sigma_{j j}+\sigma_{k k}} i \neq j \neq k, i, j, k=x, y, z$
5. The von Mises stress potential does not require the input of any parameters.
6. The stresses defining the yield surface in both tension, sijt, and compression, sijc, for the Hoffman potential must be positive.
7. An orthotropic material property must be assigned with the Hill or Hoffman stress potentials.
8. The LUSAS Theory Manual should be consulted if further information on these stress potential parameters is required.
9. The STRESS POTENTIAL data section can be specified under the PLASTIC DEFINITION or VISCOUS DEFINITION data chapters. If specified under the VISCOUS DEFINITION data chapter, the material properties must be linear and the STRESS POTENTIAL parameters are applied to the creep properties only. If creep is defined together with a nonlinear material property, the STRESS POTENTIAL parameters will be applied to both the creep and plasticity; in this instance, the parameters must only be specified under the PLASTIC DEFINITION data chapter.

Yield Stress

The stress or stresses specified under the YIELD STRESS data section define an initial uniaxial yield stress. For orthotropic material models, this value is only required for the definition of isotropic hardening; the current stress state for such models is computed using the yield surface defined under the STRESS POTENTIAL data section.

Notes

1. The number of yield stresses to be specified depends on the material model defined. If different yield stresses are required in tension and compression, then ns must be set to 2 . (Default $\mathbf{n s}=1$).
2. There are some occasions when there is no need to use the YIELD STRESS data section:
3. When using the PLASTIC_STRAIN or TOTAL_STRAIN options to define the hardening curve. (The first stress in the curve data is taken as the uniaxial yield stress).
4. When using an orthotropic material property without specifying a hardening curve. In this instance LUSAS sets an arbitrary value of 1 and writes it to the output file.
5. When using the YIELD STRESS data section a linear material model must be used to specify the linear material properties.
6. The YIELD STRESS data section must always be used if the HARDENING_GRADIENT option is used to define the hardening curve.

Hardening Curve

The isotropic hardening behaviour for a nonlinear material can be defined under the HARDENING CURVE data section. There are three options available for defining the curve by using the HARDENING_GRADIENT, PLASTIC_STRAIN or TOTAL_STRAIN data sections. The data input required for each option is described below.

Notes

1. The values used to define the hardening curve depend upon the option chosen for input.

- HARDENING_GRADIENT:

> Hit (c) the slope of the (i)th section of the reference tensile (compressive) yield stress against effective plastic strain curve.

Sit (c) the limit on the effective plastic strain up to which the (i)th section of the hardening curve for tension (compression) is valid.

- PLASTIC_STRAIN:

Hit (c) the (i)th tensile (compressive) uniaxial yield stress defining the hardening curve.
Sit (c) the effective plastic strain corresponding with the (i)th tensile (compressive) uniaxial yield stress.

- TOTAL_STRAIN:

Hit (c) the (i)th tensile (compressive) uniaxial yield stress defining the hardening curve.
Sit (c) the total strain corresponding with the (i)th tensile (compressive) uniaxial yield stress.
2. When using the PLASTIC_STRAIN or TOTAL_STRAIN options the first pair of values defining the curve must relate to the initial yield point. In this instance the YIELD STRESS data section can be omitted.
3. All values defined under PLASTIC_STRAIN or TOTAL_STRAIN data sections must be positive, even when defining values for compression.
4. When using the HARDENING CURVE data section a linear material model must be used to specify the linear material properties.
5. The YIELD STRESS data section must always be used if the HARDENING_GRADIENT option is used to define the hardening curve.

Heat Fraction

The heat fraction is only applicable in thermo-mechanical coupled analyses where the heat produced due to the rate of generation of plastic work is of interest. The HEAT FRACTION data section is used to define the fraction of plastic work that is converted to heat.

Notes

1. When using the HEAT FRACTION data section a linear material model must be used to specify the linear material properties.
2. The heat fraction should take a value between 0.0 and 1.0.

Example of Plastic Definition

Example. Plastic Definition

MATERIAL PROPERTIES

```
1 2E9 0.25 7E3 2E-5 5.0
PLASTIC DEFINITION
STRESS POTENTIAL VON_MISES
23
HARDENING CURVE HARD 4 4
23...
200.0 0.005 190.0 0.01 150.0 0.015 100.0 0.02...
250.0 0.005 230.0 0.01 200.0 0.015 160.0 0.02
YIELD STRESS 2
23...
2E8 1.9E8
HEAT FRACTION
23...
0.9
MATERIAL ASSIGNMENTS
```

```
1 101 1 0 23
```

```
1 101 1 0 23
```


Optimised Von Mises Model

The elasto-plastic von Mises yield surface models may be used to represent ductile behaviour of materials which exhibit little volumetric strain (for example, metals).

In the optimised implicit (backward Euler) model the direction of plastic flow is evaluated from the stress return path. The implicit method allows the proper definition of a tangent stiffness matrix which maintains the quadratic convergence of the NewtonRaphson iteration scheme otherwise lost with the explicit method. This allows larger load steps to be taken with faster convergence. For most applications, the implicit method should be preferred to the explicit method.

The data section MATERIAL PROPERTIES NONLINEAR 75 is used to define the material properties for the optimised implicit backward Euler von Mises material model. The model incorporates linear isotropic and kinematic hardening.

MATERIAL PROPERTIES NONLINEAR 75 N

imat $\mathrm{E} \boldsymbol{\mathrm { n }} \mathrm{r}$ a $\mathrm{a}_{\mathrm{r}} \mathrm{b}_{\mathrm{r}} \mathrm{h}_{\mathrm{f}} \mathrm{T} \mathrm{s}_{\mathrm{y} \circ} \mathrm{H}_{\mathrm{I} 1} \mathrm{H}_{\mathrm{K} 1} \mathrm{~L}_{1}$
imat The material property identification number
E Young's modulus
n Poisson's ratio
r Mass density

a	Coefficient of thermal expansion
ar	Mass Rayleigh damping constant
br	Stiffness Rayleigh damping constant
hf	Heat fraction coefficient (see Notes)
T	Reference temperature
Syo	Initial uniaxial yield stress
HI1	Isotropic hardening parameter (see Notes)
HK1	Kinematic hardening parameter (see Notes)
L1	The limit on the equivalent plastic strain up to which the hardening
	parameters are valid
N	The number of straight line approximations to the hardening curve (N \quad must equal 1 for this model)

Notes

1. See Nonlinear Material Hardening Convention for an example of how to convert from the elasto-plastic modulus, $\mathbf{E p}$, to the slope of the uniaxial yield stress against equivalent plastic strain curve when specifying a hardening curve.
2. The heat fraction coefficient represents the fraction of plastic work which is converted to heat and takes a value between 0 and 1 . For compatibility with pre LUSAS 12 data files specify Option -235.

Nonlinear Hardening Curve for the Backward Euler von Mises and Hill Models (Model 75)

Drucker-Prager Model

The Drucker-Prager elasto-plastic model (see figures below) may be used to represent the ductile behaviour of materials which exhibit volumetric plastic strain (for example, granular materials such as concrete, rock and soils). The model incorporates isotropic hardening.

The data section MATERIAL PROPERTIES NONLINEAR 64 is used to define the material properties.

MATERIAL PROPERTIES NONLINEAR 64 N

imat	The material property identification number
E	Young's modulus
n	Poisson's ratio
r	Mass density
a	Coefficient of thermal expansion
ar	Mass Rayleigh damping constant
br	Stiffness Rayleigh damping constant
hf	Heat fraction coefficient (see Notes)
T	Reference temperature
c0	Initial cohesion (see Notes)
f0	Initial friction angle (degrees)
C11	The slope of the cohesion against the equivalent plastic strain
C21	The slope of the friction angle against the equivalent plastic strain
L1	The limit to which the hardening curve is valid
N	The number of straight line approximations to the hardening curve (\mathbf{N} must equal 1)

Notes

1. The heat fraction coefficient represents the fraction of plastic work which is converted to heat and takes a value between 0 and 1 . For compatibility with pre LUSAS 12 data files specify Option -235.
2. PROFILE SETs can be used to define a spatial variation of a property in 2 D and 3D two phase and continuum elements..
3. Setting the initial cohesion ($\mathbf{c} 0$) to zero is not recommended as this could cause numerical instability under certain loading conditions.

Cohesion Definition for the Drucker-Prager Yield Model (Model 64)

Friction Angle Definition for the Drucker-Prager Yield Model (Model 64)

Tresca Model

The elasto-plastic Tresca yield surface model may be used to represent ductile behaviour of materials which exhibit little volumetric strain (for example, metals). The model incorporates elasto-plastic behaviour with isotropic hardening. The data section

MATERIAL PROPERTIES NONLINEAR 61 is used to define the material properties for the Tresca yield surface model.

MATERIAL PROPERTIES NONLINEAR 61 N

imat The material property identification number
E Young's modulus
n Poisson's ratio
$r \quad$ Mass density
a Coefficient of thermal expansion
ar Mass Rayleigh damping constant
br Stiffness Rayleigh damping constant
hf Heat fraction coefficient (see Notes)
T Reference temperature
syo Initial uniaxial yield stress
C1 The slope of the uniaxial yield stress against equivalent plastic strain (see Notes)
L1 The limit on the equivalent plastic strain up to which the hardening curve is valid
$\mathbf{N} \quad$ The number of straight line approximations to the hardening curve (N must equal 1 for this model)

Notes

1. See Nonlinear Material Hardening Convention for an example of how to convert from the elasto-plastic modulus, Ep, to the slope of the uniaxial yield stress against equivalent plastic strain curve when specifying a hardening curve.
2. The heat fraction coefficient represents the fraction of plastic work which is converted to heat and takes a value between 0 and 1 . For compatibility with pre LUSAS 12 data files specify Option -235.

Hardening Curve Definition for the Tresca and von Mises Yield Models (Models 61 \& 62)

3. The Modified Mohr-Coulomb model can also model the Tresca yield surface as a special case and provides an improved formulation with better convergence characteristics. It is applicable to solid, axisymmetric and plane strain applications.
4. PROFILE SETs can be used to define a spatial variation of a property in 2D and 3D two phase and continuum elements..

Non-Associated Mohr-Coulomb Model

The non-associated Mohr-Coulomb elasto-plastic model (see figures below) may be used to represent dilatant frictional materials which increasing shear strength with increasing confining stress (for example, materials such as granular soils and rock). The model incorporates isotropic hardening.

The data section MATERIAL PROPERTIES NONLINEAR 65 is used to define the material properties.

MATERIAL PROPERTIES NONLINEAR 65

imat The material property identification number
E Young's modulus
n Poisson's ratio
$r \quad$ Mass density
a Coefficient of thermal expansion
ar Mass Rayleigh damping constant

$\mathbf{b r}$	Stiffness Rayleigh damping constant
\mathbf{T}	Reference temperature
$\mathbf{c i}$	Initial cohesion
$\mathbf{f i}$	Initial friction angle (degrees)
$\mathbf{f f}$	Final friction angle (degrees)
\mathbf{y}	Dilation angle (degrees)
$\mathbf{h c}$	Cohesion hardening parameter
$\mathbf{e f}$	Limiting equivalent plastic strain

Notes

1. The non-associated Mohr-Coulomb model may be used with 2 D and 3D continuum elements, 2D and 3D explicit dynamics elements, solid composite elements and semiloof or thick shells.
2. The non-symmetric solver (Option 64) is automatically switched on when using the non-associated Mohr-Coulomb model.
3. PROFILE SETs can be used to define a spatial variation of a property in 2 D and 3D two phase and continuum elements..
4. A system parameter may also be modified when using the non-associated MohrCoulomb model.

QMHDLM (default=0.01)
To prevent solution instabilities a lower positive limit is applied on the hardening moduli used to form the D matrix. The default value is set at $\mathrm{E} / 100$ by may be altered using the system parameter QMHDLM. The value QMHDLM*E will then be used.

Cohesion Definition for the Non-Associated Mohr-Coulomb Model (Model 65)

Friction Angle Definition for the Non-Associated Mohr-Coulomb Model (Model 65)

Modified Mohr-Coulomb / Tresca model

The modified Mohr-Coulomb model applies a tensile and/or a compressive cut-off to the standard Mohr-Coulomb model. In tension this prevents unrealistic tensile stresses developing in materials such as soil or rock. In compression the cut-off results in irreversible deformations once the maximum compressive stress is exceeded. The cutoff can be applied to either a single principal stress component or to the mean pressure. The figure below shows the shape of the yield surfaces for cut-off in the principal stress space.

The Tresca yield surface is obtained as a special case of the Mohr-Coulomb yield criterion by setting both the angles of friction and dilation to zero.

Rankine tensile stress cut-off

Tensile pressure cutoff

Failure Surface forms for the stress cutoff options

Failure Surfaces in the Principal Stress Space

MATERIAL PROPERTIES MODIFIED MOHR_COULOMB [npnts]

 [RANKINE|PRESSURE] [CONSTANT] [ntpnts] [ncpnts]imat
E
v
α
$\begin{array}{lll}a_{r} & b_{r} & T\end{array}$
C $\boldsymbol{\phi}$
$\boldsymbol{\psi}$
[$Q_{\text {max }}$
] [$\left.Q_{\text {min }}\right]$

$$
\begin{aligned}
& {\left[<\varepsilon_{p i}, C_{i}>{ }_{i=1, \text { npnts }}\right]} \\
& {\left[<\varepsilon_{p j}, Q_{\max , j}>j=1, \text { ntpnts }\right]} \\
& {\left[<\varepsilon_{p k}, Q_{\min , k}>{ }_{k=1, \text { ncpnts }}\right]} \\
& \text { EFAILF] }
\end{aligned}
$$

npnts number of points defining strain hardening of cohesion C (may be zero). C is ignored if npnts >0
ntpnts number of points defining tensile strain hardening $Q_{\max }$ (may be zero). $\mathrm{Q}_{\max }$ is ignored if ntpnts >0.
ncpnts number of points defining compressive strain hardening $\mathrm{Q}_{\text {min }}$ (may be zero). $\mathrm{Q}_{\text {min }}$ is ignored if ncpnts >0.
imat material model identifier
E Young's modulus
$\nu \quad$ Poisson's ratio
ρ density
$\boldsymbol{\alpha} \quad$ coefficient of thermal expansion
$a_{r} \quad$ Rayleigh mass damping constant
$\mathbf{b}_{\mathbf{r}} \quad$ Rayleigh stiffness damping constant
T Reference temperature
C cohesion
$\boldsymbol{\phi} \quad$ angle of friction (degrees)
$\boldsymbol{\psi} \quad$ dilation angle (degrees)
$\mathbf{Q}_{\text {max }} \quad$ For Rankine model - maximum principal tensile stress
For Pressure model - maximum tensile pressure
Input ' D ' to ignore
$\mathbf{Q}_{\text {min }} \quad$ For Rankine model - minimum principal compressive stress
For Pressure model - minimum compressive pressure
Input ' D ' to ignore
$\varepsilon_{i} \quad$ effective plastic strain at point i for which the cohesion takes a value of C_{i}
$\varepsilon_{\mathrm{j}} \quad$ effective plastic strain at point j for which the maximum tensile stress /pressure takes a value of $\mathrm{Q}_{\mathrm{max}, \mathrm{j}}$.
$\varepsilon_{\mathrm{k}} \quad$ effective plastic strain at point k for which the minimum tensile stress /pressure takes a value of $\mathrm{Q}_{\text {min,k }}$

EFAILF Damping factor to apply to elastic stiffness when solution oscillates due to failure in tension - range 0.0 to 1.0 (default $=0.0$)

Notes

1. The model may be used with 3 D continuum, plane strain and axi-symmetric elements as well as the corresponding two-phase elements.
2. If neither of the Rankine or Pressure options is selected the model will behave as the standard Mohr-Coulomb model.
3. It is not necessary to specify both tensile and compressive failure values. The insertion of ' D ' for $\mathrm{Q}_{\text {max }}$ or $\mathrm{Q}_{\text {min }}$ registers that the value is to be ignored. Note that if both the RANKINE and PRESSURE options are not required, a ' D ' must be specified for $\mathbf{Q}_{\text {max }}$ and $\mathbf{Q}_{\text {min }}$.
4. The cohesion, tensile and compressive stresses may be specified to be functions of the effective plastic strain. Their variations with effective plastic strain are input as a series of piecewise linear segments. At least two points are required to define curve with the first point defined at an effective plastic strain of zero.
5. The dilation angle must be set to the angle of friction to model associative flow. However, care should be taken if associated flow is used in geotechnical analyses as it can lead to non-conservative results. For a purely deviatoric performance the dilation angle must be set to zero.
6. The Tresca model is recovered as a special case of the Mohr-Coulomb by setting both the angles of friction and dilation to 0 . The cohesion value C is equal to half the uniaxial yield stress.
7. The non-symmetric solver (OPTION 64) is recommended if the dilation angle is not equal to the angle of friction or strain hardening is defined.
8. The affects of strain hardening on the yield surfaces using a pressure cut-off are sketched below. The von Mises effective plastic strain is used to define the amount of accumulated plastic strain.
9. PROFILE SETs can be used to define a spatial variation of a property in 2D and 3D two phase and continuum elements.
10. When the CONSTANT flag is set, the elastic material modulus is always used in the solution rather than the tangential modulus matrix. This allows the material to replicate the initial stiffness method commonly used in geotechnical programs.
11. EFAILF is used when convergence problems occur due to stress returns to the apex. A value of about 0.2 is normally sufficient to damp oscillations, however, the rate of convergence is notably reduced when EFAILF is set. Normally, for a few Gauss points in tension the solution will convergence without too many problems and EFAILF is not needed

Affect of strain hardening on form of yield surface

Hoek-Brown Model

The Hoek-Brown model is an empirical failure criterion for rock materials. This model is elastic-perfectly plastic; meaning that it is capable of modelling the failure of rock, but not post-failure behaviour. The failure criterion is hexagonal in the π plane, and curved in the deviatoric plane. It is described by the following parameters:

- Empirical parameter m_{b}
- Uniaxial compressive strength $\sigma_{c i}$
- Empirical parameter s
- Exponent a

MATERIAL PROPERTIES HOEK-BROWN [GIVEN|CALCULATED] [CONSTANT|TRANSITION|ASSOCIATED]

imat Material property identifier
\boldsymbol{v} Poisson's ratio
$\boldsymbol{\rho} \quad$ Density

$\boldsymbol{\alpha}_{\boldsymbol{T}}$	Coefficient of thermal expansion
$\boldsymbol{a}_{\boldsymbol{r}}$	Rayleigh mass damping coefficient
$\boldsymbol{b}_{\boldsymbol{r}}$	Rayleigh stiffness damping coefficient
\boldsymbol{T}	Reference temperature
\boldsymbol{E}	Young's modulus
$\boldsymbol{\sigma}_{\boldsymbol{c i}}$	Uniaxial compressive strength
$\boldsymbol{m}_{\boldsymbol{b}}$	Empirical strength parameter
$\boldsymbol{m}_{\boldsymbol{i}}$	Empirical strength parameter
\boldsymbol{s}	Empirical strength parameter
$\boldsymbol{G S I}$	Geological strength index
\boldsymbol{a}	Empirical strength parameter
\boldsymbol{D}	Damage coefficient
$\boldsymbol{\psi}$	Dilatancy angle
$\boldsymbol{\sigma}_{\boldsymbol{\psi}}$	Stress at which dilatancy angle transition starts
$\boldsymbol{a}_{\boldsymbol{\psi}}$	Rate at which dilatancy angle changes
$\boldsymbol{M I T E R}$	Maximum number of local stress iterations
$\boldsymbol{T O L}$	Local stress return convergence tolerance
$\boldsymbol{E}_{\boldsymbol{f a i l}}$	Young's modulus during tensile failure

Notes

1. The failure parameters m_{b}, s, a can be given directly using the GIVEN option of the MATERIAL PROPERTIES command. Alternatively, the parameters can be calculated from the more convenient parameters $m_{i}, G S I, D$ which are converted to the model parameters using the following formulae:

$$
\begin{gathered}
m_{b}=m_{i} \exp \left(\frac{G S I-100}{28-14 D}\right) \\
s=\exp \left(\frac{G S I-100}{9-3 D}\right) \\
a=\frac{1}{2}+\frac{1}{6}\left[\exp \left(\frac{-G S I}{15}\right)-\exp \left(\frac{-20}{3}\right)\right]
\end{gathered}
$$

The parameters $m_{i}, G S I, D$ are normally obtained through expert observation of the rock, and reference to design tables.
2. The solution procedure uses an iterative Newton-Raphson method for which the parameters MITER and TOL control the maximum allowable number of iterations, and the convergence tolerance respectively. The default values for these parameters are normally sufficient for analyses; however, the convergence tolerance could be slackened slightly if needed.
3. When the trial stress is beyond the yield criterion and returns to the apex, the material is deemed to have no shear strength. Therefore, Poisson's ratio v is set to zero and Young's modulus E is set to a small value $E_{\text {fail }}$.
4. Three options are implementation in LUSAS to model dilatancy. These are:

- Constant dilatancy angle
- Associated flow
- Transitional dilatancy

Constant dilation angle $\psi=0^{\circ}$

Associated flow rule

Transition $\psi=0^{\circ} / \alpha_{\psi}=0.1$

Transition $\psi=0^{\circ} / a_{\psi}=0.9$

Modified Cam-clay Model

The modified Cam-clay model is a variant of the classic Cam-clay model used for the modelling of clays. Its attraction lies in its apparent simplicity and its capability to model the strength and deformation trends of clay realistically. The parameters required in its description can be evaluated in standard laboratory tests.

The data section MATERIAL PROPERTIES MODIFIED CAM-CLAY is used to define the material properties

```
MATERIAL PROPERTIES MODIFIED CAM-CLAY
imat }\mp@subsup{e}{0}{\prime
```

imat	The material property identification number
\mathbf{e}_{\circ}	Initial void ratio
$\mathbf{\kappa}$	Swelling index (see Notes)
$\boldsymbol{\lambda}$	Compression index (see Notes)
\mathbf{M}	Gradient of critical state line (see Notes)
$\mathbf{P}_{\mathbf{c}}$	Initial pre-consolidation pressure
\mathbf{v}	Poisson's ratio
$\boldsymbol{\alpha}$	Coefficient of thermal expansion
$\boldsymbol{\rho}$	Density
$\mathbf{a}_{\mathbf{r}}$	Mass Rayleigh damping constant
$\mathbf{b}_{\mathbf{r}}$	Stiffness Rayleigh damping constant
\mathbf{T}	Reference temperature

Notes

1. The model can be used with standard continuum elements as well as the two-phase elements which include the effects of pore water pressure. For consistency with the standard LUSAS sign convention all tensile stresses are positive as opposed to the soil mechanics convention in which the opposite is true.
2. The Modified Cam-clay model requires the input of the clay's compression index, λ, swelling index κ, as well as its initial void ratio, e_{o}. Additionally the gradient of the critical state line M and the initial pre-consolidation pressure P_{c} must also be defined, see below.

Definition of Compression and Swelling Indices

Definition of Slope of Critical State Line (CSL) M and the Initial Pre-consolidation Pressure P_{c}
3. The initial void ratio e_{o} is used to convert the 'compression' and 'swelling indices' to the 'modified compression'and 'modified swelling' indices'(respectively λ^{*} ,κ^{*}) used in the numerical model via the formulae.

$$
\lambda^{*}=\lambda /\left(1+e_{0}\right) \quad \kappa^{*}=\kappa /\left(1+e_{0}\right)
$$

4. The use of the standard LUSAS sign convention means that the slope of critical state line M is negative, the compression and swelling indices are both positive and the pre-consolidation pressure negative.
5. The material modulus matrix is non-symmetric. Convergence may be improved by using the non-symmetric solver by setting OPTION 64.
6. The initial stress state can be input using the residual stresses SSR, SSRE or SSRG load types, or initial stress SSI with gravity.
7. PROFILE SETs can be used to define a spatial variation of a property in 2D and 3D two phase and continuum elements..

Duncan-Chang Soil Model

Duncan-Chang is a simple model whose parameters are calculated by curve fitting triaxial test data over a range of cell pressures, σ_{3}. It takes an incremental elastic approach in which Young's modulus and Poisson's ratio are evaluated from current stresses. A predictor step is used to determine whether the soil is loading or unloading following which corresponding values of Young's modulus and Poisson's ratio are calculated for use in the incremental elastic modulus matrix. The figure below illustrates the model function where σ_{1} is the major principal stress and σ_{3} the minor principal stress (note the geotechnical convention of compression positive is used).

Hyperbolic triaxial stress-strain relationship with upper limit on the deviatoric stress

The model can be used with standard continuum elements as well as the two-phase elements. The modelling parameters required can be evaluated in standard laboratory tests.

Three variants are available to model Poisson's ratio. These are a constant Poisson's ratio, a direct variation of Poisson's ratio ($\mathrm{E}-\mathrm{v}$ model) and an indirect variation derived from the bulk modulus ($\mathrm{E}-\mathrm{b}$ model).

```
MATERIAL PROPERTIES DUNCAN-CHANG [CONSTANT_POISSON |
E-v | E-b ][ PRESSURE ]
```


imat	material model identifier
\mathbf{C}	cohesion
$\boldsymbol{\phi}$	angle of friction (in degrees)
$\boldsymbol{\Delta} \boldsymbol{\phi}$	change of angle of friction with hydrostatic pressure (in degrees)
$\mathbf{R}_{\text {fail }}$	failure ratio
$\boldsymbol{\rho}$	density
$\boldsymbol{\alpha}$	coefficient of thermal expansion
$\boldsymbol{P}_{\boldsymbol{a}}$	atmospheric pressure
\boldsymbol{k}	Initial Young's modulus number
$\boldsymbol{k}_{\boldsymbol{u r}}$	Young's modulus number for elastic unloading/reloading

\boldsymbol{n}	Initial Young's modulus exponent
\boldsymbol{v}_{i}	parameters for the calculation of Poisson's ratio depending on choice of model
$\mathbf{E}_{\text {fail }}$	Young's modulus used when soil fails in shear or tension
$\mathbf{v}_{\text {fail }}$	Poisson's ratio used when soil fails in shear or tension
$\mathbf{a}_{\mathbf{r}}$	Rayleigh mass damping constant
$\mathbf{b}_{\mathbf{r}}$	Rayleigh stiffness damping constant \mathbf{p} \mathbf{T}
$\mathbf{S i g M n}$	minimum stress used to calculate soil stiffness
Qtol	accuracy control
SigT	maximum stress in tension

NOTES:

1. The definition of the Duncan-Chang model parameters are found in the Theory Manual.
2. The parameters $\boldsymbol{P}_{\boldsymbol{a}}$, SigMn and SigT are converted to the sign convention of tension positive for use in the solution, so either positive or negative values may be entered.
3. The soil stiffness is calculated by default from the cell pressure σ_{3} or from the mean pressure by adding the command PRESSURE. In this case σ_{3} is replaced by the mean stress in the calculation of the soil stiffness, Poisson's ratio and variation of friction angle but not in any calculations involving the deviatoric stress $-\left(\sigma_{1}-\sigma_{3}\right)$. If the mean pressure is used the model parameters must be re-calibrated.
4. The values of \boldsymbol{v}_{i} for the different models are:

CONSTANT_POISSON $\mathrm{n}=1$
$\nu \quad$ Poisson's ratio
E-v $\mathrm{n}=3$

$$
\begin{aligned}
v_{i} & =G-F \log \left(\frac{\sigma_{3}}{P_{a}}\right) \\
v_{t} & =\frac{v_{i}}{\left(1-\frac{D\left(\sigma_{1}-\sigma_{3}\right)}{E_{i}\left(1-R_{f} S\right)}\right)^{2}}
\end{aligned}
$$

D Parameter used in calculation of Poisson's ratio tangent
$\boldsymbol{F} \quad$ Factor applied to cell pressure moderation component
G Poisson's ratio at atmospheric cell pressure
E-b
$\mathrm{n}=2$

$$
B=K_{b} P_{a}\left(\frac{\sigma_{3}}{P_{a}}\right)^{m}
$$

$$
v=\frac{3 B-E_{t}}{6 B}
$$

$\boldsymbol{k}_{\mathrm{b}} \quad$ Bulk modulus number
m Bulk modulus exponent
5. Default values for the failure values of Young's modulus, $\mathbf{E}_{\text {fail }}$, and $\mathbf{v}_{\text {fail }}$ are 0.1 and 0.495 respectively.
6. The initial stress state can be input by using residual stress load types, by using an initial stress with gravity or by defining Ko properties
7. If used with two-phase properties, the density property refers to the density of the dry soil particles rather than that of the soil mass including water content.
8. PROFILE SETs can be used to define a spatial variation of a property in 2D and 3D two phase and continuum elements.
9. For dynamic and eigenvalue problems the elastic modulus for loading / unloading is used and held constant for the problem.
10.SigMn is the minimum stress at which to evaluate the stiffness. When σ_{3} goes to zero the soil stiffness also goes to zero. SigMn is used to ensure the soil has a minimum stiffness. A value of $0.2 P_{a}$ gives the stiffness of soil at a depth of about 1 m .
11.Qtol is a measure of the solution accuracy and is used to determine a suitable value of automatic loading. It is evaluated from the difference in stress calculated using a backward Euler step to return to the starting stress divided by the stress change over the increment. A value of 0.1 is reasonable. Small stresses changes over the increment (less than $0.1 P_{a}$) are ignored.
12. The default value for SigT is $c / \tan \phi$. If SigMn is not specified the soil stiffness in the tensile zone is calculated from stress $0.1 P_{a}$.

Barcelona Basic Model

The Barcelona Basic Model (BBM) is a constitutive model for unsaturated soils which reduces to the Modified Cam Clay (MCC) model at zero suction. The key feature of the BBM is a Load Collapse (LC) curve which allows an increase in yield stress (apparent pre-consolidation stress) with suction and introduces the possibility of expansion or collapse upon wetting depending on the current pressure.

The figure below shows how the slope of the virgin compression line changes with suction on a bi-logarithmic plot of mean pressure and specific volume.

The presconsolidation pressure changes with suction according to a Load Collapse (LC) curve which is in the suction-mean pressure plane in the figure below. It also shows how this increase changes the size of the yield surface.

The data section MATERIAL PROPERTIES BARCELONA_BASIC is outlined below.

```
MATERIAL PROPERTIES BARCELONA_BASIC
imat }\mp@subsup{\lambda}{0}{\prime
```

imat	The material property identification number
λ_{0}	Compression index at fully saturated state
κ	Swelling index
ν	Poisson's ratio
M	Gradient of critical state line

R Parameter controlling maximum stiffness at infinite suction
$\beta \quad$ Parameter controlling rate of increase of stiffness with suction
$P_{\text {ref }} \quad$ Reference pressure
$\kappa_{\mathrm{s}} \quad$ Elastic compressibility coefficient for suction
$\mathrm{P}_{\mathrm{atm}} \quad$ Atmospheric pressure
$\mathrm{P}_{\mathrm{c}} \quad$ Pre-consolidation pressure
$\mathrm{e}_{\mathrm{o}} \quad$ Initial void ratio
$\alpha \quad$ Coefficient of thermal expansion
$\rho \quad$ Density
$\mathrm{a}_{\mathrm{r}} \quad$ Mass Rayleigh damping constant
$\mathrm{b}_{\mathrm{r}} \quad$ Stiffness Rayleigh damping constant
T Reference temperature

Notes

1) The BBM model uses geotechnical sign convention for the parameters (compression positive). This will mean for example, the pre-consolidation pressure will be a positive value even though in the LUSAS convention a compressive stress would be negative.
2) The material modulus matrix is non-symmetric. Convergence will be improved by using the non-symmetric solver by setting OPTION 64.
3) The model is suitable for use with 2D and 3D two phase geotechnical elements.
4) The preconsolidation pressure and initial void ratio provide initial values only if KO initialisation is not used. If KO is used, these initial values are overwritten with consistent ones from the KO routine.

Elasto-Plastic Stress Resultant Model

The elasto-plastic stress resultant model may be used for beams, plates and shells (see the LUSAS Element Reference Manual). It is based on a von Mises yield criterion. The data section MATERIAL PROPERTIES NONLINEAR 29 is used to define the material properties for the elasto-plastic stress resultant model.

MATERIAL PROPERTIES NONLINEAR 29
imat $E v \rho \alpha$ ar br $T \sigma_{y}$ ifcode
imat The material property identification number
E Young's modulus
n Poisson's ratio
$r \quad$ Mass density
a Coefficient of thermal expansion
ar Mass Rayleigh damping constant

$\mathbf{b r}$	Stiffness Rayleigh damping constant
\mathbf{T}	Reference temperature
$\mathbf{s}_{\mathbf{y}}$	Uniaxial yield stress
ifcode	Yield function code (refer to individual elements in the LUSAS Element
	Reference Manual)
Notes	

1. Temperature dependent material properties are not applicable for this model.
2. The yield criteria, when used with beam elements, includes the effects of nonlinear torsion. Note that the effect of torsion is to uniformly shrink the yield surface.
3. The stress-strain curve is elastic/perfectly plastic.
4. The fully plastic torsional moment is constant.
5. Transverse shear distortions are neglected.
6. Plastification is an abrupt process with the whole cross-section transformed from an elastic to fully plastic stress state.
7. Updated Lagrangian (Option 54) and Eulerian (Option 167) geometric nonlinearities are not applicable with this model. The model, however, does support the total strain approach given by Total Lagrangian and Co-rotational geometric nonlinearities, Option 87 and Option 229, respectively.

User-Supplied Nonlinear Material Properties

The USER constitutive model facility allows the user-supplied constitutive routines to be used from within LUSAS. This facility provides completely general access to the LUSAS property data input via the MATERIAL PROPERTIES NONLINEAR USER and MATERIAL PROPERTIES NONLINEAR RESULTANT USER data sections and provides controlled access to the pre- and post-solution constitutive processing and nonlinear state variable output via these user-supplied subroutines.

By default these routines are supplied as empty routines with defined interfaces that are unchangeable. The externally developed code should be placed into these routines which is then linked into the LUSAS system. Source code access is available to these interface routines and object library access is available to the remainder of the LUSAS code to enable this facility to be utilised. See Solver User Interface Routines.

Since user specification of a constitutive model involves the external development of source FORTRAN code, as well as access to LUSAS code, this facility is aimed at the advanced LUSAS user.

Material Properties Nonlinear User

The required material properties input for the user-supplied constitutive model is completely general. The first 15 properties are reserved for LUSAS internal use: you only need to utilise them if other features of the program are required (e.g. dynamic and
thermal analyses). The data section MATERIAL PROPERTIES NONLINEAR USER is used to define all the material parameters for the user-supplied constitutive models.

MATERIAL PROPERTIES NONLINEAR USER lptusr nprz nstat

```
imat E v 
```

lptusr A user defined material model number
nprz The total number of material input parameters provided
nstat The number of nonlinear state dependent constitutive variables
imat The material assignment reference number
E Young's modulus
n Poisson's ratio
$r \quad$ Mass density
$a_{x} a_{y} a_{z} a_{x y} a_{y z} a_{x z}$
Coefficients of thermal expansion (see Notes)
ar Mass Rayleigh damping constant
br Stiffness Rayleigh damping constant
hf Heat fraction coefficient (see Notes)
$\mathbf{T} \quad$ Reference temperature
q Angle of anisotropy relative to the reference axes (degrees) Option 207 must be set (see Notes)
nset The CARTESIAN SET number used to define the local reference axes
spare Unused parameter at present (set =0.0)
Ui The user-defined material parameters

Notes

1. LUSAS will check and diagnose erroneous or improbable data.
2. The number of material properties input must be equal to that specified on the data section header line (i.e. nprz). Failure to match the requested and supplied number of properties will invoke a LUSAS error message.
3. When no state variables are required (i.e. when nstat is specified as zero) a warning message will be invoked.
4. User-supplied constitutive models may be used as part of a composite element material assembly.
5. The first 15 material properties are required by LUSAS in order to perform other types of analyses: for example thermal problems require the coefficients of thermal expansion $\boldsymbol{\alpha}$ (4th to 9 th properties) and/or the temperature \mathbf{T} (13th property), and a dynamic analysis requires the density ρ (3rd property) and the Rayleigh damping parameters ar, $\mathbf{b r}$ (10th, 11th properties).
6. The user is required to input appropriate $\boldsymbol{\alpha}$ values for the element type to be used and zeroes for the remainder. For example:

- Plane stress elements: $\quad \mathbf{a}_{\mathbf{x}} \mathbf{a}_{\mathbf{y}} \mathbf{0} \mathbf{a}_{\mathbf{x y}} \mathbf{0} 0$
- Plane strain and axisymmetric elements: $\quad \mathbf{a}_{\mathrm{x}} \mathbf{a}_{\mathbf{y}} \mathbf{a}_{\mathbf{z}} \mathbf{a}_{\mathrm{xy}} \mathbf{0} 0$
- Thick shell elements: $\quad \mathbf{a}_{\mathrm{x}} \mathbf{a}_{\mathbf{y}} \mathbf{0} \mathbf{a}_{\mathrm{xy}} \mathbf{a}_{\mathrm{yz}} \mathbf{a}_{\mathrm{zx}}$
- Solid elements: $\mathbf{a}_{\mathrm{x}} \mathrm{a}_{\mathrm{y}} \mathbf{a}_{\mathrm{z}} \mathbf{a}_{\mathrm{xy}} \mathbf{a}_{\mathrm{yz}} \mathbf{a}_{\mathrm{zx}}$

If an isotropic model is required then the input must be specified accordingly, e.g. for plane strain elements this would require $\mathbf{a}_{\mathbf{x}}=\mathbf{a}_{\mathbf{y}}=\mathbf{a}_{\mathbf{z}}$ and $\mathbf{a}_{\mathbf{x y}}=0$.
7. If temperature dependent properties are input via the TABLE format T, the 13th property, must be specified so that the values can be interpolated for the actual temperatures at the Gauss points.
8. The 15 reserved properties can all be set to zero if you do not require other LUSAS facilities
9. Option 207 allows you to control how the local reference axes are to be determined; if the angle of anisotropy is determined by the angle q, Option 207 must be set, otherwise the reference axes must be determined by a CARTESIAN SET.
10. Option 179 can be set for argument verification within the user routines.
11. The heat fraction coefficient represents the fraction of plastic work which is converted to heat in a coupled analysis and takes a value between 0 and 1 .
12. A user defined nonlinear material model which results in a nonsymmetric modulus matrix can only be used with the following element types: 3D continuum (excluding explicit dynamics elements), 2D continuum (excluding Fourier and explicit dynamics elements), bar elements and axisymmetric membrane elements.

Material Properties Nonlinear Resultant User

The general form of the input for this chapter has been tailored to allow the specification of nonlinear moment-curvature curves. However, the parameters required for any other type of user defined nonlinear resultant model may be specified via this data chapter. The first 10 properties are reserved for LUSAS internal use: you only need to utilise some of them if other features of the program are required (e.g. dynamic and thermal analyses). The user subroutines supplied contain code that defines the moment-curvature relationship to be a function of the axial force in the member. The code in these routines can be overwritten with user defined code or alternatives added by utilising different lptusr parameters.

MATERIAL PROPERTIES NONLINEAR RESULTANT USER lptusr nprz ndcrve nstat
imat $E n r a a_{r} b_{r}$ spare T spare spare ... $\mathbf{F}_{1}<\mathrm{M}_{1, \mathrm{j}}, \mathrm{C}_{1, \mathrm{j}}>_{\mathrm{j}=1,(\mathrm{nprz}-1)} \quad .$.

lptusr	A user defined material model number
nprz	The number of material input parameters for each curve
ndcrve	The number of material data curves defined
nstat	The number of nonlinear state dependent constitutive variables
imat	The material assignment reference number
E	Young's modulus
n	Poisson's ratio
r	Mass density
a	Coefficient of thermal expansion
ar	Mass Rayleigh damping constant
$b r$	Stiffness Rayleigh damping constant
spare	Unused parameter at present (set $=0.0$)
T	Reference temperature
spare	Unused parameter at present ($\mathrm{set}=0.0$)
spare	Unused parameter at present (set $=0.0$)
F_{n}	Axial force for $\mathrm{n}^{\text {th }}$ curve (could be +ve , -ve or zero)
$\mathrm{M}_{\mathrm{n}, \mathrm{j}}, \mathrm{C}_{\mathrm{n}, \mathrm{j}}$	Moment and curvature for point j on the $\mathrm{n}^{\text {th }}$ curve

Notes

1. LUSAS will check and diagnose erroneous or improbable data.
2. The number of material data curves defined must equal the number specified, ndcrve.
3. All data curves must be defined by the same number of parameters which must equal the number specified, nprz-1.
4. Some of the first 10 material properties are required by LUSAS in order to perform other types of analyses: for example thermal problems require the coefficients of thermal expansion $\boldsymbol{\alpha}$ (4th property) and/or the temperature \mathbf{T} (8th property), and a dynamic analysis requires the density ρ (3rd property) and the Rayleigh damping parameters ar, br (5th and 6th properties).
5. When no state variables are required (i.e. when nstat is specified as zero) a warning message will be invoked.
6. Option 179 can be set for argument verification within the user routines.
7. If temperature dependent properties are input via the TABLE format T, the 8th property, must be specified so that the values can be interpolated for the actual temperatures at the Gauss points.

Further Notes

These notes apply if the MATERIAL PROPERTIES NONLINEAR RESULTANT USER subroutines are used with the nonlinear moment-curvature facility as supplied:

1. It is recommended that the curvature values used to define the points on each individual curve be defined reasonably consistently for all curves, i.e. the curvature range used to define point j in all n curves should be reasonably small. This will lead to better interpolation between curves.
2. For 3D beam elements, all curves relating to Iyy must be specified first followed by the curves for Izz. The same number of curves must be specified for both Iyy and Izz.
3. All moment and curvature values specified for a curve must be positive. The slope of the curve segments must always be greater than zero.
4. If the computed axial force is outside the bounds of the forces defined for the data curves, the curve relating to the maximum (or minimum) axial force will be used and a warning message printed to the output file.
5. If the computed curvature exceeds the maximum value specified in the data curves, the last section of the curve will be used to compute the bending moment and a warning message will be printed to the output file.

Viscous Definition

Nonlinear viscous behaviour occurs when the relationship between stress and strain is time dependent. The viscous response is usually a function of the material together with the stress, strain and temperature history. Unlike time independent plasticity where a limited set of yield criteria may be applied to many materials, the creep response differs greatly for many materials.

To provide for the analysis of particular materials, user defined creep laws and viscoelastic models may be specified by replacing the CREEP PROPERTIES and VISCO ELASTIC PROPERTIES data sections with CREEP PROPERTIES USER and VISCO ELASTIC PROPERTIES USER respectively.

Viscous Definition

This data chapter contains the input for creep and viscoelastic material models.

```
VISCOUS DEFINITION
STRESS POTENTIAL {VON_MISES | HILL}
ipls [llllllllll
CREEP PROPERTIES lctp
icrp <fi
CREEP PROPERTIES USER lctp nprzc nstat
icrp T spare spare < fit >i=1,nprzc-3
VISCO ELASTIC PROPERTIES
[1]
```

```
ivse (G) b T
```

```
ivse (G) b T
```

For further information see:

- Stress Potential
- Creep Properties
- Creep Properties User
- Visco Elastic Properties
- Visco Elastic Properties User

Stress Potential

The definition of creep properties requires that the shape of the yield surface is defined (see the LUSAS Theory Manual). The stresses defining the yield surface are specified under the STRESS POTENTIAL command and are assigned to appropriate elements through the MATERIAL ASSIGNMENTS or COMPOSITE MATERIAL data chapters. The STRESS POTENTIAL should only be defined under VISCOUS DEFINITION if linear material properties are to be used, otherwise, it should be defined under the PLASTIC DEFINITION data chapter. Note that the Hoffman potential is not applicable if the STRESS POTENTIAL is specified under VISCOUS DEFINITION.

ipls The stress potential set identification number
sij Stresses defining the yield surface (Hill)
T Reference temperature

Notes

1. If a stress potential type is not specified then von Mises is set as default.
2. The stress potential must be defined in full irrespective of the analysis type, except for the von Mises stress potential which, being isotropic, does not require the input of any parameter.
3. None of the stresses defining the stress potential may be set to zero. For example, in a plane stress analysis, the out of plane direct stress must be given a value which physically represents the model to be analysed.
4. STRESS POTENTIAL HOFFMAN is not applicable within the VISCOUS DEFINITION data chapter.
5. The LUSAS Theory Manual should be consulted if further information on these stress potential parameters is required.
6. The STRESS POTENTIAL data section can be specified under the PLASTIC DEFINITION or VISCOUS DEFINITION data chapters. If specified under the VISCOUS DEFINITION data chapter, the material properties must be linear and the STRESS POTENTIAL parameters are applied to the creep properties only. If
creep is defined together with a nonlinear material property, the STRESS POTENTIAL parameters will be applied to both the creep and nonlinear material property; in this instance, the parameters must only be specified under the PLASTIC DEFINITION data chapter.
7. The STRESS POTENTIAL data is combined with other material data to define an elasto-plastic and/or a creep material model within the MATERIAL ASSIGNMENTS or COMPOSITE MATERIAL data chapters.

Creep Properties

There are three generic unaxial creep laws available in LUSAS along with a selection of concrete creep models that comply with the AASHTO $7^{\text {th }}$ edition, CEB-FIP Model Code 1990, the Chinese Creep Code for Dams, EUROCODE 2 and IRC:112-2011 design codes. There is also a facility to allow Users to specify their own creep law, but this involves the external development of source FORTRAN code, as well as access to LUSAS code.

Creep Properties General

There are three generic uniaxial creep laws available in LUSAS and a time hardening form is available for all laws. The power creep law is also available in a strain hardening form. Fully 3D creep strains are computed using the differential of the von Mises or Hill stress potential.

CREEP	PROPERTIES	lctp
icrp	$\left\langle\mathrm{f}_{\mathrm{i}}\right\rangle_{\mathrm{i}=1, \mathrm{ncprp}}$	T
lctp	The creep model type:	
	1 - Power law (time dependent form)	
	2 - Power law (strain hardening form)	
	3 - Exponential law	
	4 - Eight parameter law	
icrp	The creep property identification number	
fi	Creep properties	
ncprp	Number of parameters defining the creep law: 3 - Power law	
6 - Exponential law		
8 - Eight parameter law		
T	Temperature	

Example. Creep Properties

MATERIAL PROPERTIES
1 2E5 0.3
VISCOUS DEFINITION
STRESS POTENTIAL VON_MISES
23
CREEP PROPERTIES 1
100 1E-7 $5 \quad 0.5$
MATERIAL ASSIGNMENTS
$\begin{array}{llllll}80 & 1 & 1 & 0 & 23 & 100\end{array}$

Notes

1. The required creep properties for each law are:

- Power law

$$
\varepsilon_{\mathrm{c}}=\mathrm{f}_{1} \mathrm{q}^{\mathrm{f} 2} \mathrm{t}^{\mathrm{f} 3}
$$

- Exponential law

$$
\varepsilon_{c}=f_{1} e^{f_{2} q}\left[1-e^{-f_{3} \mathrm{tq}^{f_{4}}}\right]+\mathrm{f}_{5} \mathrm{te}^{\mathrm{f}_{6} \mathrm{q}}
$$

\square Eight parameter law
$\varepsilon_{c}=f_{1} q^{f_{2}}\left[t^{f_{3}}+f_{4} t^{f_{5}}+f_{6} t^{f_{7}}\right] e^{-f_{8} / T}$
where:
$\varepsilon_{\mathrm{c}} \quad=$ uniaxial creep strain
q $\quad=$ von Mises or Hill equivalent deviatoric stress
$\mathrm{t}=$ current time
$\mathrm{T} \quad=$ temperature (Kelvin)
Further information on these creep laws may be found in the LUSAS Theory Manual.
2. Creep properties must be defined under the VISCOUS DEFINITION data chapter
3. The definition of creep properties requires that the shape of the yield surface is defined (see the LUSAS Theory Manual). The stresses defining the yield surface are specified under the STRESS POTENTIAL command and are assigned to appropriate elements through the MATERIAL ASSIGNMENTS or COMPOSITE MATERIAL data chapters.
4. If combined plasticity and creep is utilised then the creep and plasticity must adopt the same form of stress potential i.e. either isotropic or anisotropic.
5. Creep properties may be combined with other material properties and damage properties under the MATERIAL ASSIGNMENT or COMPOSITE MATERIAL data chapters.
6. Creep data is sometimes provided for the creep law in rate form. The time component of the law must be integrated so that the law takes a total form before data input. For example the rate form of the Power law
$\square \dot{\varepsilon}_{\mathrm{c}}=A q^{\mathrm{n}^{m}}$
integrates to

$$
\square \varepsilon_{\mathrm{c}}=\frac{\mathrm{A}}{\mathrm{~m}+1} q^{\mathrm{n}^{\mathrm{m}} \mathrm{t}^{\mathrm{m}+1}}
$$

The properties specified as input data then become

$$
\begin{aligned}
& \mathrm{f} \\
& \mathrm{f}=\frac{\mathrm{A}}{\mathrm{~m}+1} \\
& \mathrm{f} \\
& \mathrm{f}=\mathrm{n} \\
& \mathrm{f}_{3}=\mathrm{m}+1
\end{aligned}
$$

where A, n and m are temperature dependent constants.
7. NONLINEAR CONTROL must be specified with creep materials unless explicit integration and linear materials are specified (see Viscous Control).
8. DYNAMIC CONTROL may be utilised with creep properties if required.

Creep Properties AASHTO | CEB_FIP_90 | CHINESE_HYDRAULIC | EUROCODE_2 | IRC | JTG 3362 | MC10

LUSAS accommodates seven concrete creep codes, AASHTO $7^{\text {th }}-9^{\text {th }}$ edition, CEB-FIP Model Code 1990, the Chinese Creep Code for Hydraulic Structures, EUROCODE 2, IRC:112-2011, JTG 3362-2018 and FIB Model Code 2010. The AASHTO model is applicable for specified concrete strengths up to 15.0 ksi . The CEB-FIP model is valid for ordinary structural concrete ($12-80 \mathrm{Mpa}$) that has been loaded in compression to less than 60% of its compressive strength at the time of loading. Relative humidities in the range $40-100 \%$ and temperatures in the range 5-30 degrees C are assumed.

The EUROCODE 2 model is appropriate for cases where the compressive stress in concrete is less or higher than 45% of its compressive strength at the time of loading.

The IRC:112-2011 model is applicable for cases when the compressive stress in concrete does not exceed 0.36 of its characteristic compressive cube strength at 28 days at the age of loading.

Although AASHTO $7^{\text {th }}-9^{\text {th }}$ edition, CEB-FIP Model Code 1990, EUROCODE 2, IRC:112-2011, JTG 3362-2018 and FIB Model Code 2010 are only applicable to beams, they have been extended in LUSAS to cover multi-axial stress states. The assumptions made in the derivation of this extension can be found in the LUSAS Theory Manual.

```
CREEP PROPERTIES AASHTO [7th | 8th_9th] [COMMENT] | CEB-
    FIP | CHINESE_HYDRAULIC | EUROCODE_2 | IRC | JTG
    3362 | MC10
```



```
    hr | frr, Ct, RH, hr, a sh | frr, Ct, RH, hr, [Clc mc],
    T
```

icrp The creep property identification number
T Reference temperature
AASHTO, CEB-FIP, EUROCODE 2, IRC, JTG 3362 and MC10:
$\mathrm{f}_{\mathrm{r}} \quad \mathrm{f}_{\mathrm{c}}^{\prime} / \mathrm{f}_{\mathrm{cmo}}$ for AASHTO and $\mathrm{fcm} /$ fcmo for CEB-FIP, EUROCODE, IRC, JTG 3362 and MC10, where f_{c}^{\prime} is the specified compressive strength in ksi , fcm is the mean concrete compressive strength at 28 days and fcmo is a reference strength which is 10 ksi for AASHTO, the equivalent of 10 MPa in the chosen units for CEB-FIP, EUROCODE, JTG 3362 and MC 10 , and the equivalent of 12.5 MPa in the chosen units for IRC.
$\mathrm{C}_{\mathrm{t}} \quad$ Cement type (default=2, see Notes)
RH Relative humidity (\%) of the ambient environment (default $=70 \%$ for all models except IRC; default $=50 \%$ for IRC)
$h_{r} \quad h / h o$ where h is the nominal member size (see Notes) and ho is a reference length which is 4 in for AASHTO or the equivalent of 100 mm in the chosen units for CEB-FIP, EUROCODE, IRC, JTG 3362 and MC10.
ISF Code for silica fume (0) or non silica fume (1) concrete (applicable only to high strength concrete of Eurocode).
$\mathbf{a}_{\text {sh }} \quad$ Mass ratio (percentage) of added fly ash (although not stated, this is probably a percentage of the cementitious material).
$\mathrm{c}_{1 \mathrm{c}} \quad$ Factor for lightweight aggregate concrete: $=(\rho / 2200)^{2}$, with oven-dry density ρ in $\mathrm{kg} / \mathrm{m}^{3}$.
$\mathrm{m}_{\mathrm{c}} \quad$ Moisture content in \% by mass.
7-9th Version of AASHTO code.

COMMENT If specified the factor for the effect of volume-to-surface ratio for AASHTO is computed following the cornmentary clause C5.4.2.3.2; otherwise the main clause 5.4.2.3.2 is followed.

Chinese Code for Hydraulic Structures:

$\mathbf{f}_{i}, \boldsymbol{g}_{i} \quad$ Parameters for controlling variation of creep coefficient with time (see Notes)
$\mathbf{p}_{\mathbf{i}}, \mathbf{r}_{\mathbf{i}} \quad$ Parameters for controlling variation of creep coefficient with time (see Notes)

Notes

1. In the AASHTO (if ageing effect of specified compressive strength follows CEBFIP 1990), CEB-FIP, EUROCODE 2, IRC, JTG 3362 (if ageing effect of specified compressive strength follows CEB-FIP 1990) and MC10 code, the cement type C_{t} is defined as:

$\mathbf{C}_{\mathbf{t}}$	AASHTO/CEB-FIP/JTG 3362	EUROCODE 2	IRC	MC10
1	Slowly hardening cements SL	Class S	Slow setting	Strength class 32.5 N
2	Normal or rapid hardening cements N and R	Class N	Normal	Class 32.5 R, 42.5 N
3	Rapid hardening high strength cements RS	Class R	Rapid hardening	Class 42.5 R, 53.5 N, 52.5 R

2. In the AASHTO, CEB-FIP, EUROCODE 2, IRC, JTG 3362 and MC10 code, the nominal size of member, \mathbf{h}, is computed from $\mathbf{2} \mathbf{A}_{c} / \mathbf{u}$ where $\mathbf{A}_{\boldsymbol{c}}$ is the area of cross section and \mathbf{u} the length of the perimeter of the cross section that is in contact with the atmosphere. It should be noted that the AASHTO, CEB-FIP, EUROCODE 2, IRC, JTG 3362 and MC10 code has only been written to cover a uni-axial stress state (beams). The equations for these codes have been extended in LUSAS to cover multi-axial stress states, however, an appropriate value for hr must still be defined.
3. The variation of creep coefficient with time is defined by:
${ }^{t, \tau} C=\left(f_{1}+g_{1} \tau^{-p_{1}}\right)\left[1-e^{-r_{1}(t-\tau)}\right]+\left(f_{2}+g_{2} \tau^{-p_{2}}\right)\left[1-e^{-r_{2}(t-\tau)}\right]+f_{3} e^{-r_{3} \tau}\left[1-e^{-r_{3}(t-\tau)}\right]$
where f_{i}, g_{i}, and p_{i}, r_{i} are parameters fitted from experimental data.
Parameters p_{i} are assumed to be dimensionless while parameters r_{i} are inverted retardation times and are therefore specified in days ${ }^{-1}$. Parameters f_{i} and g_{i} take the units of $\left({ }^{(\infty} E\right)^{-1}$.
4. The parameters and corresponding formulae for AASHTO [A1] are unitdependent, i.e. age must be in days, V/S must be in inches, concrete strength must be in ksi.
5. The effect of high stresses on creep computation has been considered for CEB-FIP 1990 (loaded in compression higher than 40% of its mean compressive strength at the time of loading) following clause 2.1.6.4.3(d) and EUROCODE 2 (compressive stress higher than 45% of its specific characteristic compressive strength at the time of loading) following EN1992-1-1 clause 3.1.4(4). In LUSAS, the stress-strength ratio is capped at 0.6 for CEB-FIP 1990, and at 0.65 for EUROCODE 2 during the creep computations. The consideration of the effect of high stresses in MC10 is similar to CEB-FIP 1990.
6. The creep models must be run with NONLINEAR CONTROL and VISCOUS CONTROL. The time steps and total response time must be specified in days. An option exists under the INCREMENTATION chapter of VISCOUS CONTROL to use an exponent to increase the time step as the analysis progresses.
7. The CEB-FIP creep model can be combined with SHRINKAGE PROPERTIES CEB-FIP_90 to combine the effects of creep and shrinkage. Similarly, the AASHTO, EUROCODE 2, IRC, JTG 3362 and MC10 creep model can be combined respectively with SHRINKAGE PROPERTIES AASHTO, EUROCODE 2, IRC, JTG 3362 and MC10. Since no shrinkage model is provided in the Chinese code for hydraulic structures, any of the shrinkage models may be used with the Chinese creep model.
8. The concrete creep properties defined via the creep data chapter can be combined with MATERIAL PROPERTIES NONLINEAR 86 and 109 under the MATERIAL ASSIGNMENTS or COMPOSITE MATERIAL data chapters, as for the shrinkage properties.

User Supplied Creep Properties

The USER creep property facility allows user supplied creep law routines to be used from within LUSAS. This facility provides completely general access to the LUSAS property data input via the CREEP PROPERTIES USER data section and provides controlled access to the pre- and post-solution constitutive processing and nonlinear state variable output via these user-supplied subroutines.

CREEP PROPERTIES USER must replace CREEP PROPERTIES within the VISCOUS DEFINITION data chapter. The appropriate STRESS POTENTIAL must also be specified under VISCOUS DEFINITION, if a linear material is to be used, or the PLASTIC DEFINITION data chapter if an allowable nonlinear material property is defined.

Source code access is available to interface routines and object library access is available to the remainder of the LUSAS code to enable this facility to be utilised. Since user specification of a creep law involves the external development of source

FORTRAN code, as well as access to LUSAS code, this facility is aimed at the advanced LUSAS user.

Implementation of user creep properties involves the same steps as used for the MMI (Material Model Interface). A basic description of the process involved is described in the file C: \backslash Program Files (x86) \LUSAS $<$ version $>\backslash L U S A S M M I \backslash l u s a s m m i . t x t ~$

Contact FEA for full details or assistance with the use of this facility.

```
CREEP PROPERTIES USER lctp nprzc nstat
icrp T spare spare < fin
```

lctp A user defined creep model type
nprzc The number of properties for the creep model
nstat The number of creep state variables (see Notes)
icrp The creep property identification number
T Reference temperature
spare Unused parameter at present (set=0.0)
$\mathbf{f}_{\mathbf{i}} \quad$ Creep properties

Notes

1. nstat must be an integer value greater than zero.
2. The number of creep properties input must be equal to that specified on the data section header line (i.e. nprzc). Failure to match the requested and supplied number of properties will invoke a LUSAS error message.
3. If temperature dependent properties are input using the TABLE format, \mathbf{T}, the 1 st property must be specified so that the values can be interpolated for the actual temperatures at the Gauss points. If the creep properties are not temperature dependent, the 1 st property may be set to zero.
4. The user-supplied subroutine permits creep laws defined as:

- $\quad \dot{\varepsilon}_{\mathrm{c}}=\mathrm{f}(\mathrm{q}, \mathrm{t}, \mathrm{T})$
where
èc $\quad=$ rate of uniaxial. equivalent creep strain
q $\quad=$ equivalent deviatoric stress
t $=$ time
T = temperature

5. The user-supplied routine must return the increment in creep strain. Further, if implicit integration is to be used then the variation of the creep strain increment with respect to the equivalent stress and also with respect to the creep strain increment, must also be defined.
6. If the function involves time dependent state variables they must be integrated in the user-supplied routine.
7. If both plasticity and creep are defined for a material, the creep strains will be processed during the plastic strain update. Stresses in the user routine may therefore exceed the yield stress.
8. User-supplied creep laws may be used as part of a composite element material assembly.
9. Option 179 can be set for argument verification within the user routines
10. Viscoelastic properties must be defined under the VISCOUS DEFINITION data chapter.
11. The definition of creep properties requires that the shape of the yield surface is defined (see the LUSAS Theory Manual). The stresses defining the yield surface are specified under the STRESS POTENTIAL command and are assigned to appropriate elements through the MATERIAL ASSIGNMENTS or COMPOSITE MATERIAL data chapters.
12. If combined plasticity and creep is utilised then the creep and plasticity must adopt the same form of stress potential i.e. either isotropic or anisotropic.
13. Creep properties may be combined with other material properties and damage properties under the MATERIAL ASSIGNMENT or COMPOSITE MATERIAL data chapters.

Visco Elastic Properties

The viscoelastic facility can be coupled with the linear elastic and non-linear plasticity, creep and damage models currently available in LUSAS. The model restricts the viscoelastic effects to the deviatoric component of the material response. This enables the viscoelastic material behaviour to be represented by a viscoelastic shear modulus G_{v} and a decay constant $\boldsymbol{\beta}$. Viscoelasticity imposed in this way acts like a springdamper in parallel with the elastic-plastic, damage and creep response. Coupling of the viscoelastic and the existing nonlinear material behaviour enables hysteresis effects to be modelled.

There is currently one viscoelastic model implemented in LUSAS. The VISCO ELASTIC PROPERTIES data section is used to describe the viscoelastic data for this model.

VISCO ELASTIC PROPERTIES
ivse $\mathrm{Gv} \quad \boldsymbol{\beta} \quad \mathrm{T}$
ivse The viscoelastic property identification number
Gv Viscoelastic shear modulus (see Notes)
b Viscoelastic decay constant (see Notes)
T Reference temperature

Notes

1. It is assumed that the viscoelastic effects are restricted to the deviatoric component of the material response. The deviatoric viscoelastic components of stress are obtained using a stress relaxation function $\mathrm{G}(\mathrm{t})$, which is assumed to be dependent on the viscoelastic shear modulus and the decay constant.

$$
\sigma_{\mathrm{v}}^{\prime}(\mathrm{t})=\int_{0}^{\mathrm{t}} 2 \mathrm{G}(\mathrm{t}-\mathrm{s}) \frac{\mathrm{d} \varepsilon^{\prime}}{\mathrm{ds}} \mathrm{ds} \quad \mathrm{G}(\mathrm{t})=\mathrm{G}_{\mathrm{v}} \mathrm{e}^{-\beta \mathrm{t}}
$$

2. The viscoelastic shear modulus G_{v} can be related to the instantaneous shear modulus, $G 0$, and long term shear modulus, G_{0}, using. $\mathrm{G}_{\mathrm{V}}=\mathrm{G}_{0}-\mathrm{G}_{\infty}$
3. When viscoelastic properties are combined with isotropic elastic properties, the elastic modulus and Poisson's ratio relate to the long term behaviour of the material, that is, E_{∞} and v_{∞}. At each iteration, the current deviatoric viscoelastic stresses are added to the current elastic stresses. The deviatoric viscoelastic stresses are updated using;

$$
\square \sigma_{\mathrm{v}}^{\prime}(\mathrm{t}+\Delta \mathrm{t})=\sigma_{\mathrm{v}}^{\prime}(\mathrm{t}) \mathrm{e}^{-\beta \Delta \mathrm{t}}+2 \mathrm{G}_{\mathrm{v}} \frac{\left(1-\mathrm{e}^{-\beta \Delta \mathrm{t}}\right)}{\beta} \frac{\Delta \varepsilon^{\prime}}{\Delta \mathrm{t}}
$$

where

$\sigma_{\mathrm{V}}{ }^{\prime}$	$=$ deviatoric viscoelastic stresses
G_{V}	$=$ viscoelastic shear modulus
β	$=$ viscoelastic decay constant
$\Delta \mathrm{t}$	$=$ current time step increment
$\Delta \varepsilon^{\prime}$	$=$ incremental deviatoric strains

4. When viscoelastic properties are coupled with a nonlinear material model it is assumed that the resulting viscoelastic stresses play no part in causing the material to yield and no part in any damage or creep calculations. Consequently the viscoelastic stresses are stored separately and deducted from the total stress vector at each iteration prior to any plasticity, creep or damage computations. Note that this applies to both implicit and explicit integration of the creep equations.
5. Viscoelastic properties must be defined under the VISCOUS DEFINITION data chapter.
6. Viscoelastic properties may be combined with other material properties, creep and damage properties under the MATERIAL ASSIGNMENT and COMPOSITE MATERIAL data chapters.
7. NONLINEAR CONTROL must always be specified when viscoelastic properties are assigned. In addition either DYNAMIC CONTROL or VISCOUS CONTROL must also be specified to provide a time step increment for use in the viscoelastic constitutive equations. If no time control is used the viscoelastic properties will be ignored.

User Supplied Viscoelastic Properties

The VISCO ELASTIC PROPERTIES USER facility enables a user supplied viscoelastic model to be invoked from within LUSAS. This facility provides completely general access to the LUSAS property data input via this data section and provides controlled access to the pre- and post-solution constitutive processing and nonlinear state variable output via these user supplied routines. VISCO ELASTIC PROPERTIES USER must replace VISCO ELASTIC PROPERTIES in the VISCOUS DEFINITION data chapter.

Source code access is available to interface routines and object library access is available to the remainder of the LUSAS code to enable this facility to be utilised. Contact LUSAS for full details of this facility. Since user specification of a viscoelastic model involves the external development of a FORTRAN source code, as well as access to the LUSAS code, this facility is aimed at the advanced LUSAS user.

VISCO ELASTIC PROPERTIES USER lvse nprzv nstat

```
ivse < < 
```

lvse A user defined viscoelastic model type
nprzv The number of properties for the viscoelastic model
nstat The number of user defined viscoelastic state variables
$\mathbf{f}_{\mathbf{i}} \quad$ Viscoelastic properties
$\mathbf{T} \quad$ Reference temperature

Notes

1. nstat must be an integer greater than or equal to zero.
2. The number of viscoelastic properties input must be equal to that specified on the data section header line (i.e. nprzv). Failure to match the requested and supplied number of properties will invoke a LUSAS error message.
3. If temperature dependent properties are input using the TABLE format, \mathbf{T}, the last property must be specified so that the values can be interpolated for the actual temperatures at the Gauss points.
4. A viscoelastic model can be combined with any of the elastic material models and the following nonlinear models:

Tresca (model 61)
Mohr Coulomb (model 65)
Drucker-Prager (model 64)
Von-Mises (model 75)
Hill
Hoffman

User Defined Nonlinear Material Model

5. VISCO ELASTIC PROPERTIES USER must be defined under the VISCOUS DEFINITION data chapter and assigned using MATERIAL ASSIGNMENTS or COMPOSITE MATERIAL.
6. Option 179 can be set for argument verification within the user routines.
7. Viscoelastic properties may be combined with other material properties, creep and damage properties under the MATERIAL ASSIGNMENT or COMPOSITE MATERIAL data chapters.
8. The current viscoelastic stresses must be evaluated at each iteration and added to the current Gauss point stresses. These viscoelastic stresses are subsequently subtracted at the next iteration, internally within LUSAS, before any plasticity, creep or damage calculations are performed.

Damage Material

Damage is assumed to occur in a material by the initiation and growth of cavities and micro-cracks. The DAMAGE PROPERTIES data chapter allows parameters to be defined which control the initiation of damage and post damage behaviour. In LUSAS a scalar damage variable is used in the degradation of the elastic modulus matrix. This means that the effect of damage is considered to be non-directional or isotropic. Two LUSAS damage models are available (Simo and Oliver) together with a facility for a user-supplied model. For further details of these damage models the LUSAS Theory Manual should be consulted.

Damage Properties

Notes

1. The initial damage threshold, $r 0$, can be considered to carry out a similar function to the initial yield stress in an analysis involving an elasto-plastic material. However, in a damage analysis, the value of the damage threshold influences the degradation of the elastic modulus matrix. A value for $\mathbf{r 0}$ may be obtained from:

$$
\boldsymbol{r}_{\mathbf{0}}=\frac{\sigma^{t_{d}}}{\left(E_{0}\right)^{1 / 2}}
$$

where $\sigma^{t}{ }_{d}$ is the uniaxial tensile stress at which damage commences and \mathbf{E}_{0} is the undamaged Young's modulus. The damage criterion is enforced by computing the elastic complementary energy function as damage progresses:

$$
\beta\left(\boldsymbol{\sigma}^{T} \boldsymbol{D}_{e} \boldsymbol{\sigma}\right)-r_{t} \leq 0
$$

where σ is the vector of stress components, D_{e} the elastic modulus matrix and \mathbf{r}_{t} the current damage norm. The factor β is taken as 1 for the Simo damage model, while for the Oliver model takes the value:

$$
\beta=\left(\theta+\frac{1-\theta}{n}\right)
$$

Where

$$
\theta=\frac{<\sigma_{1}>+<\sigma_{2}>+<\sigma_{3}>}{\left|\sigma_{1}\right|+\left|\sigma_{2}\right|+\left|\sigma_{3}\right|} \quad n=\frac{\sigma_{d}^{c}}{\sigma_{d}^{t}}
$$

Only positive values are considered for $\langle\boldsymbol{\sigma} i\rangle$, any negative components are set to zero. The values $\sigma^{c}{ }_{d}$ and σ_{d}^{t} represent the stresses that cause initial damage in compression and tension respectively (note that if $\sigma_{d}=\sigma_{d}^{t}, \beta=1$). The damage accumulation functions for each model are given by:

Simo: $\quad G\left(r_{t}\right)=1-\frac{r_{0}(1-A)}{r_{t}}-A \exp \left(B\left(r_{0}-r_{t}\right)\right)$
Oliver: $\quad G\left(r_{t}\right)=1-\frac{r_{0}}{r_{t}} \exp \left(A\left(1-\frac{r_{0}}{r_{t}}\right)\right)$

For no damage, $\mathbf{G}\left(\boldsymbol{r}_{\mathrm{t}}\right)=0$. The characteristic t material parameters, A and B , would generally be obtained from experimental data. However, a means of computing A has been postulated for the Oliver model:

$$
A=\left[\frac{G_{f} E_{0}}{l_{c h}\left(\sigma_{d}^{t}\right)^{2}-\frac{1}{2}}\right]^{-1}
$$

where G_{f} is the fracture energy per unit area, $l_{c h}$ is a characteristic length of the finite element which can be approximated by the square root of the element area.

These damage models are explained in greater detail in the LUSAS Theory Manual.
2. The damage criterion for the Oliver model introduces a factor which is invoked if different stress levels cause initial damage in tension and compression.
3. A damage analysis can be carried out using any of the elastic material models and the following nonlinear models:

- von Mises
- Hill
- Hoffman

4. CREEP PROPERTIES and/or VISCO ELASTIC PROPERTIES may be included in a damage analysis. See Viscous Definition
5. DAMAGE PROPERTIES must be assigned using MATERIAL ASSIGNMENTS or COMPOSITE MATERIAL.

User Supplied Damage Properties

The DAMAGE PROPERTIES USER facility allows routines for implementing a user supplied damage model to be invoked from within LUSAS. This facility provides completely general access to the LUSAS property data input via this data section and provides controlled access to the pre- and post-solution constitutive processing and nonlinear state variable output via these user-supplied subroutines.

Source code access is available to interface routines and object library access is available to the remainder of the LUSAS code to enable this facility to be utilised. Contact LUSAS for full details of this facility. Since user specification of a damage model involves the external development of source FORTRAN code, as well as access to LUSAS code, this facility is aimed at the advanced LUSAS user.

DAMAGE PROPERTIES USER ldtp nprzd nstat

```
idam < P }\mp@subsup{P}{i}{}\mp@subsup{>}{i=1,nprzd }{T
```

ldtp User defined damage model identification number
nprzd Number of parameters used in defining the damage model
nstat Number of damage state variables (see Notes)
idam Damage properties set identification number
Pi User supplied parameters for damage model
T Reference temperature

Notes

1. nstat must be an integer value greater than zero.
2. The number of damage properties input must be equal to that specified on the data section header line (i.e. nprzd). Failure to match the requested and supplied number of properties will invoke a LUSAS error message.
3. If temperature dependent properties are input using the TABLE format, \mathbf{T}, the last property must be specified so that the values can be interpolated for the actual temperatures at the Gauss points.
4. A damage analysis can be carried out using any of the elastic material models and the following nonlinear models:

- von Mises
- Hill
- Hoffman

5. CREEP PROPERTIES and/or VISCOELASTIC PROPERTIES may be included in a damage analysis. See Viscous Definition
6. DAMAGE PROPERTIES USER must be assigned using MATERIAL ASSIGNMENTS or COMPOSITE MATERIAL.
7. Option 179 can be set for argument verification within the user routines
8. Damage properties may be combined with other material properties and creep properties under the MATERIAL ASSIGNMENT or COMPOSITE MATERIAL data chapters.

Smoothed Multi-Crack Concrete Model

This concrete model is a plastic-damage-contact model in which damage planes form according to a principal stress criterion and then develop as embedded rough contact planes. This model is more robust than the previous model MATERIAL PROPERTIES NONLINEAR 94 and better follows post peak behaviour, this is largely due to:
a) A tangent stiffness is not used; instead predictive and target damage evolution functions are utilised to govern the behaviour of crack-planes and thus a positive definite stiffness is maintained.
b) A new smoothed rough contact formulation for crack-planes which simulates closing under both normal and shear loading.
c) Some non-linearities are only allowed to take place during the first $\mathrm{it}_{\mathrm{cf}}$ number of iterations. This qualitively reflects the discrete nature (i.e. jumps) of crack propagation. However it requires more load increments to be used.

The basic softening curve used in the model may be controlled via a fixed softening curve or a fracture-energy controlled softening curve that depends on the element size. The fracture-energy approach is applicable to both plain concrete and most reinforced concrete applications; it is therefore the default option.

It is possible to couple the codified concrete creep models with the nonlinear concrete model 109 where the compressive and tensile strengths are also allowed to vary with time. To this end optional additional input data are appended to the existing material model 109. The User has the choice of using the equations defined in the design codes to vary E, f_{c} and f_{t}, or to explicitly define property-time curves.

A_{p}	Material constant a_{p}	(default 0.60)
A_{n}	Material constant a_{n}	(default 0.75)
$\mathrm{C}_{\mathrm{z} 1}$	Contact sharpness Z1	(default 8.00)
$\mathrm{C}_{\mathrm{z} 2}$	Contact sharpness Z2	(default 8.00)
$\mathrm{C}_{1 \mathrm{~m}}$	Limit of the contact transition	(default 3.00)
Varying E, f_{c} and f_{t} with time following AASHTO 7th-9th edition, CEB-FIP Model Code 1990, the Chinese Creep Code for Hydraulic Structures, EUROCODE 2, IRC:112-2011, JTG 3362-2018 or FIB Model Code 2010		
C_{t}	Cement type (default=2, see Models)	Concrete Creep
a, b	Parameters for controlling evo Chinese concrete creep model Models)	dulus with time in the n Code Concrete Creep
m_{c}	Moisture content in \% by mas Models);	n Code Concrete Creep
ats	Parameter for tensile strength strength concrete and 0.75 for Code Concrete Creep Models)	ding ($=0.60$ for normal ete, see Notes in Design
$\mathbf{a g f ~}^{\text {f }}$	Parameter for temperature effe Code Concrete Creep Models)	gy (see Notes in Design
Varying E, f_{c} and f_{t} with time by explicitly defined property-time curves		
USER	User defined time dependent p	
NE	Number of points defining tim	
NC	Number of points defining tim	
NT	Number of points defining tim	
t_{i}	Time abscissa for point i defin	nt property curve
E_{i}	Young's modulus ordinate for	time dependent curve
f_{ci}	Compressive strength ordinate curve	the time dependent
f_{ti}	Tensile strength ordinate for p	ime dependent curve

Notes

1. The model can be used with 2 D and 3 D continuum elements, 2 D and 3 D explicit dynamics elements, solid composite elements and semiloof or thick shell elements.
2. All stresses and strains should be entered as positive values.
3. If no data for the strain at peak compressive stress, ε_{c}, is available it can be estimated from $\varepsilon_{c}=0.002+0.001 \frac{\left(f_{c u}-15\right)}{45}$ where $f_{c u}=1.25 f_{c}$. Any value for ε_{c} should lie in the range $0.002 \leq \varepsilon_{c} \leq 0.003$. As a guide, a reasonable value for most concretes is 0.0022 .
4. It is important that the initial Young's modulus, E , is consistent with the strain at peak compressive stress, ε_{c}. A reasonable check is to ensure that $E>1.2\left(f_{c} / \varepsilon_{c}\right)$
5. In contrast to the previous nonlinear concrete model 94 , it is recommended that ε_{0} is set to zero and that G_{f} is specified for both reinforced and unreinforced concrete. G_{f} varies with aggregate size but not so much with concrete strength. Typical values for various maximum coarse aggregate sizes are:

16 mm aggregate: $\mathrm{G}_{\mathrm{f}}=0.1 \mathrm{~N} / \mathrm{mm}$
20 mm aggregate: $\mathrm{G}_{\mathrm{f}}=0.13 \mathrm{~N} / \mathrm{mm}$
32 mm aggregate: $\mathrm{G}_{\mathrm{f}}=0.16 \mathrm{~N} / \mathrm{mm}$

Stress / strain curve for multi crack concrete model (Model 109)

If the effective end of the softening curve parameter, ε_{0}, is set to zero, it will be calculated from $\varepsilon_{0} \approx 5 G_{f} / W_{c} f_{t}$ where W_{c} is a characteristic length for the element; if a finite value is given for $\varepsilon_{0}, \mathrm{G}_{\mathrm{f}}$ will be ignored.
6. The initial position of the yield surface is governed by the value of Z_{0}. For most situations in which the degree of triaxial confinement is relatively low, a value of between 0.5 and 0.6 is considered appropriate for Z_{0} however, for higher confinements a lower value of 0.25 is better.
7. The parameter ψ is used to control the degree of dilatancy. Associated plastic flow is achieved if $\psi=1$, but it was found that ψ values in the range -0.1 to -0.3 were required to match experimental results. Generally ψ is set to -0.1 , but for high degrees of triaxial confinement -0.3 provides a better match to experimental data.
8. The constant m_{g} can be obtained from experimental data from tests in which shear is applied to an open crack. The default value for m_{g} is taken as 0.3 but it is considered that a reasonable range for m_{g} for normal strength concrete is between 0.3 and 0.6 .
9. m_{hi} is used to govern the amount of contact from micro-cracks. Experimental evidence suggests that the shear contact potential drops off more quickly for some concretes than for others, $m_{h i}$ governs the early (micro-crack) loss of shear contact potential and $m_{\text {ful }}$ controls the final amount (associated with coarse aggregate interlock). To truly calibrate these parameters, tests, which open cracks to different degrees and then apply shear, are required; however for a wide range of standard concrete $\mathrm{m}_{\mathrm{hi}}=0.5$ and $\mathrm{m}_{\text {ful }}=5.0$ give reasonable results.
10. If ψ and mg are set to 1.0 a symmetric solution of equations can be carried out.
11. It is assumed that there is a crack opening strain beyond which no further contact can take place in shear, $\mathrm{e}_{\text {ful }}$, where $\mathrm{e}_{\text {ful }}$ is a multiple of ε_{0}, i.e. $\mathrm{e}_{\text {ful }}=\mathrm{m}_{\text {ful }} \varepsilon_{0}$. Trials suggest that when concrete contains relatively large coarse aggregate i.e. 20 to 30 mm , a value of $\mathrm{m}_{\text {ful }}$ in the range $10-20$ is appropriate, whereas for concrete with relatively small coarse aggregate, i.e. 5 to 8 mm , a lower value is appropriate, in the range 3 to 5 . This variation is necessary because the relative displacement at the end of a tension-softening curve (related via the characteristic dimension to ε_{0}) is not in direct proportion to the coarse aggregate size, whereas the clearance displacement is roughly in proportion to the coarse aggregate size. Thus $\mathrm{e}_{\text {ful }}$ is not in a fixed ratio to ε_{0}.
12. A Plane of Degradation (POD) is formed when the principal stress reaches the tensile strength $\left(\mathrm{f}_{\mathrm{t}}\right)$; the POD is formed normal to the major principal stress axis. Thereafter, further damage can develop due to the combined action of shear and direct (normal) strains:
i) Further normal tensile stress would increase the damage, while both the stiffness of the material along the POD normal (i.e. the normal stiffness) and the shear stiffness, would decrease
ii) Further shear stress does not increase the damage; it causes aggregate interlock (i.e. contact) and an increase in both shear and normal stiffness iii) Further normal compressive stress does not increase the damage; normal and shear stiffness would increase due to contact.

POD Local and Global co-ordinate systems

Local damage surface

The constants r_{ς} and μ_{ε} are the strain equivalents of the material input parameters r_{σ} and μ. The relative shear stress intercept to tensile strength ratio $r_{\sigma}=c / f_{t}$ where c is the shear stress intercept. Typical plots of the damage surface in stress space (the damage surface represents debonding or failure of the cement aggregate interface) have shown the ratio between the shear strength and tensile strength of the interface bond to be approximately 1.25 .
13. It is recommended that fine integration be used when this material model is assigned as this helps prevent the occurrence of mechanisms when cracking occurs. However, the use of fine integration is more expensive computationally and can degrade the performance of higher order element types.
14. This concrete model computes crack widths which can be displayed in LUSAS Modeller. A better estimation of crack widths is likely to be achieved when linear elements are used, the use of quadratic elements is likely to result in less accurate crack widths. A fine mesh may be required to capture the stress localisation band that results in the formation of a crack. Note that crack widths cannot be computed for beam and shell elements.
15. The non-symmetric equation solver must always be used with this model.
16. Line searches should not be invoked when using this material model, in NONLINEAR CONTROL, ITERATIONS, nalps should be set to zero.
17. A converged solution can be achieved with a few load increments but results might not be accurate because cracks wouldn't have had 'time' to localize. It is better to keep load increments small and ideally to carry out a load increment convergence study.
18. It is recommended that the following LUSAS options are used with this model:

252 Suppress pivot warnings
62 Allow negative pivots
19. When a codified concrete creep model is used, the Young's modulus, compressive and tensile strength need to be consistent with the codified model, and the creep
properties are defined via the creep data chapter. For details, see the chapter Design Code Concrete Creep Models.

Transient Smoothed Multi-Crack Concrete Model

From a mechanical point of view, this concrete model is fundamentally the same as concrete model 109, however, it is intended for use in a hygro-thermal-structural coupled analysis, and takes into account the effects of heat of hydration, creep and shrinkage, along with the hydration dependent evolution of properties E, f_{c} and f_{t}.

The hygro-thermal component considers the mass balance equation of moisture as well as the enthalpy balance equation, and uses two primary variables, namely the capillary pressure and temperature. The basic mechanical model simulates directional cracking, rough crack closure and crushing using a plastic-damage-contact approach which is hydration dependent.

MATERIAL PROPERTIES NONLINEAR 105

imat $E, v, \rho, \alpha_{t}, a_{r}, b_{r}, T, f_{c}, f_{t}, \varepsilon_{c}, \varepsilon_{0}, G_{f}, \beta_{r}, Z_{0}, \psi$, $m_{g}, m_{h i}, m_{f u l}, r_{\sigma}, \mu, m_{c f}, f_{p z}, i t_{c f}, i t_{m x}, R_{s}, A_{p}, A_{n}$, $\mathrm{C}_{\mathrm{z} 1}, \mathrm{C}_{\mathrm{z} 2}, \mathrm{C}_{1 \mathrm{~m}}, \Gamma_{28}, \beta_{\mathrm{ds}}, \beta_{\mathrm{cs}}, \mathrm{N}_{\mathrm{code}}, \varphi_{28}, \mathrm{fm}_{\mathrm{r}}, \mathrm{fm}_{\mathrm{c}}, \mathrm{fm}_{\mathrm{p}}$, $\Gamma_{\mathrm{r}, \min }, \Gamma_{\mathrm{r}, 1}, \mathrm{~m}_{\mathrm{p}}, \mathrm{S}_{\mathrm{wd}}, \mathrm{t}_{\mathrm{v}}, \tau_{\mathrm{sh}}, \tau_{\mathrm{L} 1}, \tau_{\mathrm{L} 2}, \beta_{3}, \beta_{\mathrm{L}}, \mathrm{M}_{\mathrm{code}}$, $\mathrm{w} / \mathrm{c}, C_{E}, C_{f t}, C_{f C}, T 40, T 80, C_{r E}, C_{r T}, C_{r C}$
imat The material property identification
E Young's modulus. (range 20GPa to 100GPa)
v Poisson's ratio. (e.g. 0.2)
$\rho \quad$ Mass density
(e.g. $2400 \mathrm{~kg} / \mathrm{m}^{3}$)
$\alpha_{t} \quad$ Coefficient of thermal expansion
(e.g. $10 \times 10^{-6} \Delta \mathrm{~K}^{-1}$)
$\mathbf{a}_{\mathbf{r}} \quad$ Mass Rayleigh damping coefficient
$\mathrm{b}_{\mathrm{r}} \quad$ Stiffness Rayleigh damping coefficient
$\mathbf{T} \quad$ Reference temperature (currently not used)
$\mathbf{f}_{\mathbf{c}} \quad$ Uniaxial compressive strength (e.g. 40 MPa$)$
$\mathbf{f}_{\mathrm{t}} \quad$ Uniaxial tensile strength
(e.g. 3.0 MPa)
$\boldsymbol{\varepsilon}_{\boldsymbol{c}} \quad$ Strain at peak uniaxial compression (default 0.0022)
$\boldsymbol{\varepsilon}_{0} \quad$ Strain at effective end of softening curve (default 0.0 if $\mathrm{G}_{\mathrm{f}} \neq 0$, else 0.0035)
$\mathbf{G}_{\mathrm{f}} \quad$ Fracture energy per unit area (default $0.13 \mathrm{~N} / \mathrm{mm}$ or 0.0 if $\varepsilon 0 \neq 0$)
$\beta r \quad$ Biaxial to uniaxial stress ratio (default 1.15, range 1.0 to 1.25)
$Z_{\circ} \quad$ Initial relative position of yield surface (default 0.6 , range 0.1 to 1.0)

ψ	Dilatancy factor (default -0.1 range -0.25 to 1.0)
m_{g}	Constant in interlock state function (default 0.3, range 0.3 to 0.6)
mhi	Contact multiplier on $\varepsilon_{0} \quad$ (default 0.5 , range 0.25 to 2.0)
$\mathrm{m}_{\text {ful }}$	Final contact multiplier on $\varepsilon_{0} \quad$ (default 5.0, range 1.0 to 20.0)
$r_{\text {\% }}$	Shear intercept to tensile strength (default 1.25, range 0.5 to 2.5)
μ	Slope of friction asymptote, $\mu<\mathrm{r}_{\sigma} \quad$ (default 0.8 , range 0.5 to 1.5)
m_{cf}	Crack fixity strain (default 0.05)
f_{pz}	Fracture process zone width (e.g. about 3 times aggregate size)
$i t_{c f}$	No. of iterations after which Cracks are fixed (default 2)
$i t_{m x}$	Max. iterations for fracture strain update (default 2)
$\mathrm{R}_{\text {s }}$	Residual softening factor, (default 0.001)
A_{p}	Material constant $\mathrm{a}_{\mathrm{p}} \quad$ (default 0.60)
A_{n}	Material constant a_{n} (default 0.75)
$\mathrm{C}_{\mathrm{z} 1}$	Contact sharpness Z1 (default 8.00)
$\mathrm{C}_{\mathrm{z} 2}$	Contact sharpness Z2 (default 8.00)
$\mathrm{C}_{1 \mathrm{~m}}$	Limit of the contact transition (default 3.00)
Γ_{28}	$28^{\text {th }}$ day degree of hydration (default set by $\boldsymbol{w} / \boldsymbol{c}$)
$\beta_{\text {ds }}$	Coefficient for drying shrinkage (default 900E-6)
β_{cs}	Coefficient for chemical shrinkage (default 100E-6)
$\mathrm{N}_{\text {code }}$	Code for computation of 28 day basic creep factor $(0=$ User defined, $1=$ EC2 (default), $2=$ CEB-FIP Model Code 1990)
φ_{28}	28 day basic creep factor (default set by $\mathbf{N}_{\text {code }}$)
fm_{r}	Multiplier on relaxation times (default 1)
fm_{c}	Multiplier on basic creep factor (default 1)
$f \mathrm{~m}_{\mathrm{p}}$	Multiplier on Pickett factor (default 1)
$\Gamma_{\mathrm{r}, \text { min }}$	Relative degree of hydration percolation (default 0.05)
$\Gamma_{\mathrm{r}, 1}$	Relative degree of hydration at 1st cure (default 0.5)
m_{p}	Lower limit on moisture rate for Pickett effect (default 1E-11/sec)
$S_{\text {wd }}$	Saturation value for start of drying and Pickett effect (default 0.85)
$\mathbf{t}_{\mathbf{v}}$	Time for which a purely visco-elastic analysis before nonlinearity permitted (default $=4$ hours in secs, or 0 if there was no heat of hydration in the HT analysis).
$\tau_{\text {sh }}$	Short term relaxation time (default $=10$ days in secs)

$\tau_{\text {L1 }}$	1st Long term relaxation time (default $=150$ days in secs)
$\tau_{\text {L2 }}$	2nd Long term relaxation time (default $=1100$ days in secs)
β s	Proportion of short term arm which is viscous (default set by φ_{28})
β_{L}	Proportion of long term arm which is elastic (default set by φ_{28})
Mcode	Code for computing properties $E, f_{t}, f_{c} \quad$ (default 0)
w / c	Water cement ratio (default set by the Hygro-Thermal material)
C_{E}	Logistic model coefficient for Young's modulus (default set by w / c or Γ_{28})
$C_{f t}$	Power model coefficient for the tensile strength f_{t}, (default 1.0)
$C_{f c}$	Power model coefficient for the compresive strength f_{c} (default set by Γ_{28})
T40	Hydration temperature when material property degradation starts (default $40^{\circ} \mathrm{C}$)
T80	Hydration temperature when material property degradation stops (default $80^{\circ} \mathrm{C}$)
$C_{r E}$	Young's modulus relative degradation coefficent at T80 (default 0.9)
$\boldsymbol{C r}_{\boldsymbol{r} \boldsymbol{T}}$	Tensile strength relative degradation coefficent at T80 (default 0.9)
$C_{r C}$	Compressive strength relative degradation coefficent at $T 80$ (default 0.8)

Notes

1. The model can be used with 2 D and 3 D continuum elements, 2 D and 3 D explicit dynamics elements, solid composite elements.
2. All stresses and strains should be entered as positive values.
3. If no data for the strain at peak compressive stress, ε_{c}, is available it can be estimated from $\varepsilon_{c}=0.002+0.001 \frac{\left(f_{c u}-15\right)}{45}$ where $f_{c u}=1.25 f_{c}$. Any value for ε_{c} should lie in the range $0.002 \leq \varepsilon_{c} \leq 0.003$. As a guide, a reasonable value for most concretes is 0.0022 .
4. It is important that the initial Young's modulus, E, is consistent with the strain at peak compressive stress, ε_{c}. A reasonable check is to ensure that $E>1.2\left(f_{c} / \varepsilon_{c}\right)$.
5. In contrast to the previous nonlinear concrete model 94 , it is recommended that ε_{0} is set to zero and that G_{f} is specified for both reinforced and unreinforced concrete. G_{f} varies with aggregate size but not so much with concrete strength. Typical values for various maximum coarse aggregate sizes are:

16 mm aggregate: $\mathrm{G}_{\mathrm{f}}=0.1 \mathrm{~N} / \mathrm{mm}$

20 mm aggregate: $\mathrm{G}_{\mathrm{f}}=0.13 \mathrm{~N} / \mathrm{mm}$
32 mm aggregate: $\mathrm{G}_{\mathrm{f}}=0.16 \mathrm{~N} / \mathrm{mm}$

Stress / strain curve for multi crack concrete model (Model 105)

If the effective end of the softening curve parameter, ε_{0}, is set to zero, it will be calculated from $\varepsilon_{0} \approx 5 G_{f} / W_{c} f_{t}$ where W_{c} is a characteristic length for the element; if a finite value is given for $\varepsilon_{0}, \mathrm{G}_{\mathrm{f}}$ will be ignored.
6. The initial position of the yield surface is governed by the value of Z_{0}. For most situations in which the degree of triaxial confinement is relatively low, a value of between 0.5 and 0.6 is considered appropriate for Z_{0} however, for higher confinements a lower value of 0.25 is better.
7. The parameter ψ is used to control the degree of dilatancy. Associated plastic flow is achieved if $\psi=1$, but it was found that ψ values in the range -0.1 to -0.3 were required to match experimental results. Generally ψ is set to -0.1 , but for high degrees of triaxial confinement -0.3 provides a better match to experimental data.
8. The constant m_{g} can be obtained from experimental data from tests in which shear is applied to an open crack. The default value for m_{g} is taken as 0.425 but it is considered that a reasonable range for m_{g} for normal strength concrete is between 0.3 and 0.6 .
9. m_{hi} is used to govern the amount of contact from micro-cracks. Experimental evidence suggests that the shear contact potential drops off more quickly for some concretes than for others, $m_{h i}$ governs the early (micro-crack) loss of shear contact potential and $\mathrm{m}_{\text {ful }}$ controls the final amount (associated with coarse aggregate interlock). To truly calibrate these parameters, tests, which open cracks to different degrees and then apply shear, are required; however for a wide range of standard concrete $\mathrm{m}_{\mathrm{hi}}=0.5$ and $\mathrm{m}_{\text {ful }}=5.0$ give reasonable results.
10. If ψ and mg are set to 1.0 a symmetric solution of equations can be carried out.
11. It is assumed that there is a crack opening strain beyond which no further contact can take place in shear, $\mathrm{e}_{\text {ful }}$, where $\mathrm{e}_{\text {ful }}$ is a multiple of ε_{0}, i.e. $\mathrm{e}_{\text {ful }}=\mathrm{m}_{\text {ful }} \varepsilon_{0}$. Trials suggest that when concrete contains relatively large coarse aggregate i.e. 20 to 30 mm , a value of $\mathrm{m}_{\text {ful }}$ in the range $10-20$ is appropriate, whereas for concrete with relatively small coarse aggregate, i.e. 5 to 8 mm , a lower value is appropriate, in the range 3 to 5 . This variation is necessary because the relative displacement at the end of a tension-softening curve (related via the characteristic dimension to ε_{0}) is not in direct proportion to the coarse aggregate size, whereas the clearance displacement is roughly in proportion to the coarse aggregate size. Thus $\mathrm{e}_{\text {ful }}$ is not in a fixed ratio to ε_{0}.
12. A Plane of Degradation (POD) is formed when the principal stress reaches the tensile strength $\left(\mathrm{f}_{\mathrm{t}}\right)$; the POD is formed normal to the major principal stress axis. Thereafter, further damage can develop due to the combined action of shear and direct (normal) strains:
i) Further normal tensile stress would increase the damage, while both the stiffness of the material along the POD normal (i.e. the normal stiffness) and the shear stiffness, would decrease
ii) Further shear stress does not increase the damage; it causes aggregate interlock (i.e. contact) and an increase in both shear and normal stiffness iii) Further normal compressive stress does not increase the damage; normal and shear stiffness would increase due to contact.

POD Local and Global co-ordinate systems

Local damage surface

The constants r_{ς} and μ_{ε} are the strain equivalents of the material input parameters r_{σ} and μ. The relative shear stress intercept to tensile strength ratio $\mathrm{r}_{\sigma}=\mathrm{c} / \mathrm{f}_{\mathrm{t}}$ where c is the shear stress intercept. Typical plots of the damage surface in stress space (the damage surface represents debonding or failure of the cement aggregate interface) have shown the ratio between the shear strength and tensile strength of the interface bond to be approximately 1.25 .
13. Fine integration should be used for the hygro-thermal analysis. For the structural analysis fine integration may degrade the performance of higher order element types. When cracking is expected the use of a denser mesh of (bi-, tri-) linear elements is recommended rather than a coarse mesh of quadratic elements.
14. This concrete model computes crack widths which can be displayed in LUSAS Modeller. A fine mesh may be required to capture the stress localisation band that results in the formation of a crack. When linear elements are used the localization takes place in the whole of the element and crack widths can be more accurately computed. In quadratic elements the localization takes place in about half of the element and unrealistic results may be present in the other half.
15. Line searches should not be invoked when using this material model, in NONLINEAR CONTROL, ITERATIONS, nalps should be set to zero.
16. A converged solution can be achieved with a few load increments but results might not be accurate because cracks wouldn't have had 'time' to localize. It is better to keep load increments small and ideally to carry out a load increment convergence study.
17. It is recommended that the following LUSAS options are used with this model:

252 Suppress pivot warnings
62 Allow negative pivots
18. Autogenous and drying shrinkage are computed from changes in the degree of saturation and degree of hydration. It has been found experimentally that, once hydration is complete, there is a remarkably linear relationship between weight loss and drying shrinkage for a normal environmental range of humidity.

Therefore, within this range, the drying shrinkage rate ($\dot{\varepsilon}_{\mathrm{ds}}$)is based on the rate of change of moisture content $\left(\dot{\mathrm{S}}_{\mathrm{W}}\right)$. When the concrete is not fully cured, the aggregate restrains the shrinkage of the hardened cement paste relatively more than in the fully cured case. To allow for this a 'degree of hydration' term has been added to the shrinkage rate equation. Also adding a term for chemical shrinkage gives the following expression for the total rate of shrinkage:

$$
\dot{\varepsilon}_{\mathrm{sh}}=\left(\beta_{\mathrm{ds}} \dot{\mathrm{~S}}_{\mathrm{w}}-\beta_{\mathrm{cs}} \dot{\Gamma}_{\mathrm{r}}\right) \Gamma_{\mathrm{r}}
$$

In which the input parameters $\beta_{d s}$ and $\beta_{c s}$ control the amount of drying and chemical shrinkage respectively.
19. A "solidification volume" is used in the computation of the mechanical properties to cater for concrete at a very early age:

$$
V_{s}\left(\Gamma_{r}\right)=\frac{1+3600 \times \exp \left(-c_{E}\right)}{1+3600 \times \exp \left(-c_{E} \Gamma_{r}\right)}
$$

Where Γ_{r} is the current degree of hydration and c_{E} is a coefficient depending on the water cement ratio w / c.

Hydration and the evolution of the mechanical properties are assumed to take place at optimal conditions, i.e. at a suitably low temperature.An optimal elastic modulus can then be computed from:

$$
E^{o p t}\left(\Gamma_{r}\right)=V_{s}\left(\Gamma_{r}\right) \times E_{28}
$$

Where E_{28} is the elastic modulus at 28 days.
The evolution of the optimal tensile and compressive strengths with respect to the degree of hydration is based on these formulas:

$$
\begin{aligned}
& f_{t}^{o p t}\left(\Gamma_{r}\right)=f_{t, 28} \Gamma_{r}^{c_{f_{t}}} \\
& f_{c}^{o p t}\left(\Gamma_{r}\right)=f_{c, 28} \Gamma_{r}^{c_{f_{c}}}
\end{aligned}
$$

Where $f_{t, 28}$ and $f_{c, 28}$ are the uniaxial tensile and compressive strengths at 28 days respectively and $C_{f f}, C_{f c}$ are chosen based on the best fit to experimental data.

To prevent early cracking and damage, which is usually is followed by healing that is not modelled, the degree of hydration is limited from below by $\Gamma_{\mathrm{r}, 1}$.
20. When curing occurs at high temperatures (interior of mass concrete, well isolated boundaries, casting in hot climates) experimental evidence shows that long term material properties deteriorate. However, in the numerical simulation high temperature causes faster hydration and hence higher values for the material properties, which is in direct contradiction to the experimental evidence. To
remedy this situation the following modification of the optimal material properties is used:

$$
\begin{aligned}
& E\left(\Gamma_{r}, T_{\max }\right)=E^{o p t}\left(\Gamma_{r}\right)\left(1+\frac{T_{\max }-T 40}{T 80-T 40}\left(C_{r E}-1\right)\right) \\
& f_{t}\left(\Gamma_{r}, T_{\max }\right)=f_{t}^{o p t}\left(\Gamma_{r}\right)\left(1+\frac{T_{\max }-T 40}{T 80-T 40}\left(C_{r T}-1\right)\right) \\
& f_{c}\left(\Gamma_{r}, T_{\max }\right)=f_{c}^{o p t}\left(\Gamma_{r}\right)\left(1+\frac{T_{\max }-T 40}{T 80-T 40}\left(C_{r C}-1\right)\right)
\end{aligned}
$$

Where T40, T80, $C_{r E}, C_{r T}$ and $C_{r C}$ are defined above, and $T_{\max }$ is the maximum achieved temperature during the curing, obeying the following conditions:

$$
T_{\max }=\left\{\begin{array}{lll}
T 40 & \text { if } & T_{\max }<T 40 \\
T 80 & \text { if } & T_{\max }>T 80
\end{array}\right.
$$

21. M $\mathrm{M}_{\text {code }}$: 0 - use defaults; 1 - use input coefficients $C_{E}, C_{f t}, C_{f c}$

Masonry Material Model

This data section is used to define the material properties for orthotropic masonry. The masonry model can be applied with plane stress, plane strain, thick shell and 3D solid elements. As orthotropic properties are allowed, the tabulated material properties are different for different elements.

MATERIAL PROPERTIES MASONRY Plane Stress nc
 imat Ex Ey Gxy vxy $\theta \rho \alpha x \alpha y$ ar br T ftxx fcxx ftyy fcyy ftxy fcxy $h_{t}\left(\right.$ крс $\left.h_{c}\right) \mid\left(\kappa c i\right.$ fci) ${ }_{i=1, n c} \alpha f \alpha p \gamma d$ Gftx Gfcx Gfty Gfcy IDP
 MATERIAL PROPERTIES MASONRY Plane Strain nc
 imat Ex Ey Ez Gxy vxy vyz vxz $\theta \rho \alpha x \alpha y \alpha z$ ar br T ftxx fcxx ftyy fcyy ftzz fczz ftxy fcxy h_{t} (kpc $\left.h_{c}\right) \mid($ (Kci fci) $i=1, n c \alpha f \alpha p \gamma d$ Gftx Gfcx Gfty Gfcy IDP
 MATERIAL PROPERTIES MASONRY Thick Shell nc
 imat Ex Ey Gxy vxy Gxz Gyz $\theta \rho \alpha x \alpha y$ ar br T ftxx fcxx ftyy fcyy ftxy fcxy ftxz fcxz ftyz fcyz h_{t} (kpc h_{c}) (кci fci) ${ }_{i=1, n c} \alpha f \alpha p \gamma d$ Gftx Gfcx Gfty Gfcy IDP

```
MATERIAL PROPERTIES MASONRY Solid nc
imat nset Ex Ey Ez Gxy Gyz Gxz vxy vyz vxz \rho \alphax \alphay \alphaz ar
                br T ftxx fcxx ftyy fcyy ftzz fczz ftxy fcxy ftyz
                fcyz ftxz fcxz ht (крс hc)|(кci fci) i=1,nc \alphaf \alphap \gammad
                Gftx Gfcx Gfty Gfcy IDP
imat The material property identification number
nset The CARTESIAN SET number used to define the local axis directions.
Ex,Ey, Young's modulus values
Ez
Gxy, Shear modulus values
Gyz,Gxz
vxy, Poisson's ratios
vyz,vxz
0 Angle of orthotropy in degrees relative to the reference axis (see Notes).
\rho Mass density
\alphax,\alphay,}\mathrm{ Coefficients of thermal expansion
\alphaz
ar Mass Rayleigh damping constant
br Stiffness Rayleigh damping constant
T Reference temperature
ftxx Tensile strength in x-direction
fcxx Compressive strength in x-direction
ftyy Tensile strength in y-direction
fcyy Compressive strength in y-direction
ftzz Tensile strength in z-direction
fczz Compressive strength in z-direction
ftxy, Tensile shear strength
ftyz,ftxz
fcxy, Compressive shear strength
fcyz,fcxz
ht Tensile hardening/softening parameter
кpc Plastic hardening variable corresponding to compressive strength (input
    for nc=0)
hc Compressive hardening/softening parameter
kci,fci The ith plastic hardening variable/compressive uniaxial yield stress
    defining the hardening/softening curve (input for nc>0)
|f Parameter related to friction angle or bi-/uniaxial compressive strength
    ratios
\alphap}\quad\mathrm{ Parameter related to dilatancy angle
\gammad Parameter controls initial compressive damage threshold
Gftx Tensile fracture energy per unit area in x-direction
Gfcx Compressive facture energy per unit area in x-direction
```

Gfty	Tensile fracture energy per unit area in y-direction
Gfcy	Compressive facture energy per unit area in y-direction
IDP	Flag for damage-plasticity coupling
	0 - elasto-plastic (hardening and softening)
	1 - elastic-damage (damage energy release rate driven)
	2 - elasto-plastic-damage (elastic damage energy release rate driven)
	3 - elasto-plastic-damage (elastic and plastic damage energy release rate
driven)	
nc	Number of data points defining compressive hardening/softening curve

Notes

1. Subscripts refer to the element reference axes, where reference axes may be local or global (see Local Axes in the LUSAS Element Reference Manual for the proposed element type). For plane stress, plane strain and thick shell elements, if θ (about z) is set to zero, the reference axes are used for defining material properties. For the solid model, the orthotropy is defined by the CARTESIAN SET command. If nset is set to zero, the orthotropy coincides with the reference axes.
2. When using orthotropic material properties care must be taken to ensure that all properties are input to sufficient numerical accuracy. Failure to do this may result in erroneous answers.
3. The tensile and compressive shear strengths, ftxy, ftyz, ftxz and fcxy, fcyz, fcxz, may be estimated from normal strengths according to known orthotropic plastic yield criteria, e.g. the Rankine-type criterion for tension and Hill-type criterion for compression introduced by Lourenço.
4. Strength parameter αf can be obtained by fitting the experimental strength data, or related to the ratio between the biaxial compressive strength and the uniaxial compressive strength $k^{-}=\frac{f_{11}^{b-}}{f_{11}^{-}}=\frac{f_{22}^{b-}}{f_{22}^{-}}$as $\alpha^{f}=\frac{k^{-}-1}{2 k^{-}-1}$.
5. Dilatancy parameter α p can be computed from the dilatancy angle ψ as $\alpha^{p}=$ $\frac{2 \sin \psi}{3-\sin \psi}$; however, a reduced value may result in better prediction of the peak load and failure patterns.
6. The compressive hardening curve is assumed to be obtained by loading normal to the bed joints. The hardening variable κc can be transformed from the plastic strain epc following $\kappa_{c}=-\varepsilon_{p c}$. If the hardening curve is obtained by loading parallel to bed joints, the plastic strain is transformed using $\kappa_{c}=-\varepsilon_{p c}$; the compressive yield stress (positive) needs also to be multiplied by factor $\frac{f_{22}^{-}}{f_{11}^{-1}}$.
7. The initial damage threshold for uniaxial tension is the tensile strength; the initial damage threshold for uniaxial compression is the compressive strength multiplied by $\gamma \mathrm{d}$.
8. The out-of-plane behaviour is assumed to remain elastic.

Composite Matrix Failure Model

The Hashin composite damage model has been implemented within LUSAS to model matrix/fibre failure in composite materials. The model can be used with HX16C \& PN12C elements and linear material models MATERIAL PROPERTIES or MATERIAL PROPERTIES ORTHOTROPIC SOLID. A set of failure criteria have been used to represent fibre and matrix failure. These failure criteria result in a degradation of the Young's modulus, shear modulus and Poisson's ratio where the damage has occurred.

DAMAGE PROPERTIES HASHIN
imat Sxt Sxc Sxy Syt Syc T
where
imat Assignment reference number
Sxt Ply tensile strength in fibre direction
Sxc Ply compressive strength in fibre direction
Sxy Ply shear strength measured from a cross ply laminate
Syt Ply transverse (normal to fibre direction) tensile strength
Syc Ply transverse compressive strength
T Reference Temperature

Notes

1. This damage model can only be used with the solid composite elements HX16C and PN12C
2. This model may only be used with linear material types MATERIAL PROPERTIES and MATERIAL PROPERTIES ORTHOTROPIC SOLID.
3. Nonlinear material properties and creep cannot be used with this damage model.
4. All strength values specified are positive.

Two-Phase Material

The data chapter TWO PHASE MATERIAL allows the input of two-phase material properties, either fully or partially saturated. For fully satuated materials, the optional parameters (everything following ρf) for defining draining/filling curves for partially saturated materials, are not necessary.

```
TWO PHASE MATERIAL [K_ALPHA | K_POISSON ] [ND [NF]]
    [ SUCTION_PRESSURE suctps ] [ CAVITATION_PRESSURE
        cavprs]
iptm Ks Kf n gf kx ky kz T pf [Swc Sws [kred | [ns w hc gl
```



```
        Seit i=1,NF+1 rs][tol]]]]
```

kred	Single reduction factor of saturated hydraulic conductivity for flow in partially saturated soils (in place of full SWCC data)
ND	Number of linear segments defining the piece-wise linear $S_{e}-p^{w}$ and $\kappa^{\text {rw }}-$ S_{e} relationships for draining
NF	Number of linear segments defining the piece-wise linear $\mathrm{S}_{\mathrm{e}}-\mathrm{p}^{\mathrm{w}}$ and $\kappa^{\text {rw }}$ S_{e} relationships for filling (if fill curve is different to draining curve)
suctps	Maximum suction pressure to be applied to the soil above the phreatic surface.
cavprs	Maximum cavitation pressure to be applied to soil during undrained unloading
iptm	The two-phase material identification number
Ks	Bulk modulus of solid phase (particle)
Kf	Bulk modulus of fluid phase
n	Porosity of medium
gf	Unit weight of fluid phase
k_{x}	Saturated hydraulic conductivity in global x direction
k_{y}	Saturated hydraulic conductivity in global y direction
kz	Saturated hydraulic conductivity in global z direction
T	Reference temperature
$\rho \mathrm{f}$	Intrinsic density of fluid phase
Swc	Irreducible saturation at which the relative permeability goes to zero (≥ 0)
Sws	Saturation when the soil is saturated (≤ 1)
ns	Fitting parameter related to the rate of water extraction from the soil once the air-entry value has been exceeded (>1)
w	Weight factor ($0 \leq w \leq 1$)
hc	Fitting parameter
gl	Parameter for permeability
ns_{f}	Parameter ns for filling curve
w_{f}	Parameter w for filling curve
hc_{f}	Parameter he for filling curve
$\mathrm{gl} \mathrm{f}_{\mathrm{f}}$	Parameter gl for filling curve
p_{w}	Pore water pressure at point i
$\mathrm{Krw}_{\mathrm{i}}$	Relative permeability at point i
Se_{i}	Effective saturation at point i
rs	Scanning curve factor allowing for a small change in pressure
tol	Curve tolerance

Notes

1. Usually, the value of Ks is quite large compared to Kf and not readily available to the user. If Ks is input as 0 , LUSAS assumes an incompressible solid phase. Kf_{f} is more obtainable, eg. for water $\mathrm{Kf}_{\mathrm{f}}=2200 \mathrm{Mpa}$ [N1]
2. Two-phase material properties can only be assigned to geotechnical elements, that is, TPN6P, QPN8P, TAX6P, QAX8P, TH10P, PN12P, PN15P, HX16P and HX20P.
3. When performing a linear consolidation analysis TRANSIENT CONTROL must be specified. DYNAMIC, VISCOUS or NONLINEAR CONTROL cannot be used.
4. Two-phase material properties may be combined with any other material properties, and creep, damage and viscoelastic properties under the MATERIAL ASSIGNMENT data chapter. Note that the density defined under the elastic properties must relate to the soil grains only if a TWO PHASE MATERIAL is assigned.
5. The two-phase material properties are assigned to the two-phase continuum elements using MATERIAL ASSIGNMENTS.
6. S_{wc} and S_{ws} are used to relate the effective saturation S_{e} to saturation S_{w} as $S_{e}=$ $\frac{s_{w}-S_{w c}}{s_{w s}-S_{w c}}$. The volumetric water content Θ is related to the degree of saturation S_{w} via porosity n as $\Theta=n S_{w}$.
7. The saturated hydraulic conductivity $\boldsymbol{k}^{w}(\mathrm{~L} / \mathrm{T})$ is related to the effective permeability $\boldsymbol{\kappa}^{w}\left(\mathrm{~L}^{2}\right)$ as $\boldsymbol{k}^{w}=\boldsymbol{k}^{w}\left(S^{w}\right)=\frac{\boldsymbol{\kappa}^{w} \rho^{w} g}{\mu^{w}}$, where $\mu^{w}(\mathrm{M} / \mathrm{TL})$ is the dynamic viscosity of water. When this relation has been applied to transform the intrinsic hydraulic conductivity and the intrinsic permeability, the relative hydraulic conductivity can be understood as the relative permeability, or vice versa.
8. Pore pressure p^{w} and pressure head h are related as $h=\frac{p^{w}}{\rho^{w} g}$.
9. The draining curve, which specifies the saturation - pressure and permeability saturation relationships for the draining process of the material, can be defined in an analytical form or piece-wise linear tabular data.
10. If $\mathrm{ND}=0$, the default analytical model of Valiantzas will be used. ns, w and hc are the parameters used in Valiantzas's generalised analytical model, which is a linear combination of the Brooks-Corey-Burdine model and van Genuchten-Mualem model. In this instance, the weight factor w, is used for the linear combination, ns is a fitting parameter for rate of water extraction from the soil once air entry value has been exceeded; and $h_{c}(<0)$ is the air-entry pressure head value above which the soil is assumed to be saturated. When $\mathrm{w} \rightarrow 1$, the generalised model tends to the classical van Genuchten-Mualem model; when $w \rightarrow 0$, it tends to Brooks-CoreyBurdine model. An additional parameter gl may be introduced in the Mualem permeability model (and hence Valiantzas's generalised model) such that $\kappa_{r w}=$ $S_{e}{ }^{g l}\left[1-\left(1-S_{e}^{1 / m}\right)^{m}\right]^{2}$. The User is referred to the LUSAS Theory Manual.
11. The filling curve, which specifies the saturation - pressure and permeability saturation relationships for the filling process of the material, can be different from the draining curve.
12. If $\mathrm{ns}_{\mathrm{f}}, \mathrm{w}_{\mathrm{f}}, \mathrm{hc}_{\mathrm{f}}$ and gl_{f} are not provided, the same draining and filling curves defined by ns, w, hc and gl are assumed; otherwise, the draining curve is defined by ns , w , hc and gl , while the filling curve is defined by $\mathrm{ns}_{\mathrm{f}}, \mathrm{w}_{\mathrm{f}}, \mathrm{hc}_{\mathrm{f}}$ and gl_{f}.
13. If ND >0, the piece-wise linear $S_{e}-p^{w}$ and $\kappa^{r w}-S_{e}$ relationships defined by the tabular data will be adopted. If $\mathrm{NF}=0$, the same draining and filling curves are assumed; otherwise, an ND-segment draining curve and an NF-segment filling curve are adopted.
14. If both draining and filling curves are provided, the scanning curve for jumping between them is a straight line defined by factor rs (default value 0.01) allowing for a small change in pressure.
15. If the draining/filling curve is provided in a tabular form, the tabular input data is interpolated using quadratic functions. A curve tolerance (default value 0.01) is used to judge whether the point to be interpolated is on a segment.
16. If the modified cam-clay model is to be used as part of a two-phase material, the void ratio should be consistent with the porosity specified here.
17. Instead of using an absolute value of the bulk modulus of water it may be calculated relative to the bulk modulus of the surrounding soil. The parameter K_{f} takes on different values depending on the calculation mode selected. For the K_ALPHA mode the bulk modulus is calculated by multiplying bulk modulus of the soil by $\mathbf{K}_{\mathbf{f}}$. A value in the range 10 to 100 is usually used. If the K_POISSON mode is selected K_{f} is the value of Poisson's ratio for the undrained soil. A value of 0.495 is usually used. The default value of $\mathrm{K}_{\mathbf{f}}$ if neither mode is selected is the absolute value.
18. Water content in the soil above the phreatic surface is prevented from draining back down to the phreatic surface by suction pressure. The suction pressure has the effect of increasing the shear strength of the soil so a limiting value suctps can be set which is the maximum suction pressure which can be passed on to the soil.
19. During undrained unloading a soil will expand as load is removed leading to a drop in porewater pressure measured from the steady state which is known as the cavitation pressure. The drop in porewater pressure increases the shear strength of the soil. A limiting value cavprs can be set which is the maximum cavitation pressure which can be transmitted to the soil.
20. Negative porewater pressure is used to determine the degree of saturation but it is also possible for a negative porewater to occur in a fully saturated soil following unloading. In this case to avoid any change in saturation only the full saturated soil properties should be input.
21. PROFILE SETs can be used to define a spatial variation of a property in 2D and 3D two phase and continuum elements..

(a) Jump from draining/exsorption to filling/insorption
(b) Jump from filling/insorption to Jump between draining/exsorption and filling/insorption.

TWO PHASE MATERIAL INTERFACE

A two-phase interface element separates two two-phase elements. It connects the porewater pressures on opposite nodes with the hydraulic conductivity κ controling the flow of fluid through the element. A high value of κ will result in a minimal drop in hydrostatic pressure as the fluid flows through the interface whilst a value of 0.0 closes it.

> TWO PHASE MATERIAL INTERFACE [SUCTION_PRESSURE suctps] [CAVITATION_PRESSURE cavprs]
> iptm κ

suctps Maximum suction pressure to be applied to the soil above the phreatic surface.
cavprs Maximum cavitation pressure to be applied to soil during undrained unloading.
iptm two phase material model identifier
$\kappa \quad$ hydraulic conductivity across interface

NOTES

1. This model is applicable to the two-phase interface elements.
2. The hydraulic conductivity may be changed at any point in the analysis by assigning new properties to the interface element.

$\mathbf{K}_{\mathbf{0}}$ Initialisation

For some soil models such as the Modified Cam-Clay and Duncan-Chang, the soil stiffness depends on the stress state which needs to be defined prior to solving the analysis. The stresses may be input directly by defining initial or residual stresses or alternatively Solver may calculate stresses using K_{0} properties which relate the horizontal stress σ_{H} to the vertical stress σ_{V}

$$
\sigma_{H}=K_{0} \sigma_{v}
$$

K_{0} properties can be assigned so that on the first iteration of the increment in which the soil becomes active, the soil is modelled by a linear elastic material with the Poisson's ratio v calculated from the 1D consolidation relationship

$$
v=K_{0} /\left(1+K_{0}\right)
$$

The resulting stresses are used to initialise the soil, calculating state variables appropriate to the particular soil model. The stresss are then converted to initial stresses and the first iteration resolved. Further iterations may be required to bring the soil into complete equilibrium.

For over consolidated soils K_{0} may exceed 1.0 leading to the calculation of an invalid Poisson's ratio of 0.5 amd above. A limit is therefore placed on Poisson's ratio of 0.45 which corresponds to a K_{0} value of about 0.8 . For these higher K_{0} values, after the first iteration the horizontal stresses are overwritten by the values calculated using the K_{0} relationship between the vertical stress and K_{0}. The modified stresses are then used to initialise the soil, calculating state variables appropriate to the particular soil model as before.

For some problems, such as initialising the soil stresses in an embankment, it may not be possible to calculate stresses in this way without causing significant material yielding. In this case the gravity load may be built up in a series of increments. The Poisson's ratio corresponding to K_{0} is maintained during this process so that the elastic stresses at least approximate to the K_{0} condition.

When a soil layer is initialised at a later stage in the analysis, it is isolated from any lower layers until the gravity load is fully applied. The forces from the new layer are applied to underlying soil but any change in soil stiffness is not transferred back to the new soil layer.

If the problem requires the modelling of the steady state groundwater conditions, these are solved first before the soil is initialised to ensure that the correct saturated / unsaturated soil weights are used.

It is recommended that K_{0} properties are used to initialise all soils, even those such as Mohr-Coulomb and Hoek-Brown whose stiffness do not depend on stress so that correct soil weights are calculated and an initial stress is introduced into the soil.

Ko_INTIALISATION
iKo E Ko
iKo material identifier
E Young's modulus
Ko coefficient of lateral earth pressure

Notes

1. Jaky's empirical formula $K_{0}=1-\sin \phi$ may be used to calculate K_{0} where ϕ is the angle of internal friction.
2. PROFILE SETs can be used to define a spatial variation of a property in 2 D and 3D two phase and continuum elements.
```
KO_INTIALISATION CAM_CLAY
    iKo E K Knc [ N ]
```

iKo material identifier
E Young's modulus
$\mathrm{K}_{\mathrm{nc}} \quad$ Coefficient of earth pressure at rest for a normally consolidated clay
N Specific volume of soil on normal consolidation line (NCL) at unit pressure

Notes

1. This K_{0} initialisation is designed to initialise parameters of the Modified Cam-Clay model.
2. The maximum pressure applied is used to initialise the consolidation pressure as well as the bulk and shear moduli.
3. If \mathbf{N} is entered an initial void ratio is calculated for the soil assuming that it has undergone 1D consolidation. This value overrides any value input with the Modified Cam-Clay material properties. If \mathbf{N} is left blank the initial void ratio is taken from the material parameters.
4. Jaky's empirical formula $K_{n c}=1-\sin \phi$ may be used to calculate K_{nc} where ϕ is the angle of internal friction noting that $\sin \phi=\frac{3 M}{6+M}$ where M is the gradient of the critical state line.
```
Ko_INITIALISATION CAM_CLAY OCR
```

iKo OCR E $\mu_{u l} \mathrm{~K}_{\mathrm{nc}}$ [N]

iKo material identifier
OCR value of over-consolidation ratio
E Young's modulus
$\mu_{\mathrm{ul}} \quad$ Poisson's ratio for unloading
$\mathbf{K}_{\mathbf{n c}} \quad$ Coefficient of earth pressure at rest for normally consolidated clay
N Specific volume of soil on the normal consolidation line at a pressure of 1

Notes

1. This K_{0} initialisation is designed to initialise parameters of the Modified Cam-Clay model although it may be used for other soil models as well but parameter \mathbf{N} will be ignored. State variables will be calculated from the normally and over consolidated stresses.
2. A value of K_{0} is calculated using the formula which includes loading by normal consolidation and an elastic unloading.

$$
K_{0}=O C R K_{n c}-\frac{v_{u l}}{1-v_{u l}}(O C R-1)
$$

3. The maximum pressure applied is used to initialise the consolidation pressure as well as the bulk and shear moduli.
4. If \mathbf{N} is entered an initial void ratio is calculated for the soil assuming that it has undergone 1 D consolidation. This value overrides any value input with the Modified Cam-Clay material properties. If \mathbf{N} is left blank the initial void ratio is taken from the material parameters.
5. Jaky's empirical formula $K_{n c}=1-\sin \phi$ may be used to calculate \mathbf{K}_{nc} where ϕ is the angle of internal friction noting that $\sin \phi=\frac{3 M}{6+M}$ where M is the gradient of the critical state line.
6. PROFILE SETs can be used to define a spatial variation of a property in 2D and 3D two phase and continuum elements.

Ko_INTIALISATION CAM_CLAY OCR SIN_PHI

```
iKo E K nc OCR sin_phi [N]
```

iKo	material identifier
\mathbf{E}	Young's modulus
K_{nc}	Coefficient of earth pressure at rest for a normally consolidated clay
OCR	Overconsolidation ratio
SIN_PHI	sine of angle of friction $(\sin \phi)$ \mathbf{N}
Specific volume of soil on normal consolidation line (NCL) at unit pressure	

Notes

1. The K_{0} initialisation uses the formula $K_{0}=K_{n c} O C R^{\sin \phi}$
2. This K_{0} initialisation is designed to initialise parameters of the Modified Cam-Clay model although it may be used for other soil models as well but the parameter \mathbf{N} will be ignored. State variables will be calculated from the normally and over consolidated stresses.
3. If \mathbf{N} is entered an initial void ratio is calculated for the soil assuming that it has undergone 1D consolidation. This value overrides any value input with the Modified Cam-Clay material properties. If \mathbf{N} is left blank the initial void ratio is taken from the material parameters.
4. Jaky's empirical formula $K_{n c}=1-\sin \phi$ may be used to calculate K_{nc} where ϕ is the angle of internal friction noting that $\sin \phi=\frac{3 M}{6+M}$ where M is the gradient of the critical state line.
Ko_INTIALISATION CAM_CLAY GENERAL
iKo E K K_{nc} OCR K_{oc} [N]
iKo material identifier
E Young's modulus
$\mathrm{K}_{\mathrm{nc}} \quad$ Coefficient of earth pressure at rest for the normally consolidated clay
OCR Overconsolidation ratio
$\mathbf{K}_{\mathrm{oc}} \quad$ Coefficient of earth pressure at rest for the over consolidated clay
N Specific volume of soil on normal consolidation line (NCL) at unit pressure

Notes

1. This K_{0} initialisation is designed for the Modified Cam-Clay model although it may be used for other soil models as well but parameter \mathbf{N} will be ignored. State variables will be calculated from the normally and over consolidated stresses.
2. The horizontal stresses of the normally consolidate clay are calculated from $\sigma_{H}=$ $K_{n c} O C R \sigma_{V}$ whilst the horizontal stresses in the over consolidated clay from $\sigma_{H}=$ $K_{o c} \sigma_{V}$.
3. If \mathbf{N} is entered an initial void ratio is calculated for the soil assuming that it has undergone 1D consolidation. This value overrides any value input with the Modified Cam-Clay material properties. If \mathbf{N} is left blank the initial void ratio is taken from the material parameters.
4. Jaky's empirical formula $K_{n c}=1-\sin \phi$ may be used to calculate K_{nc} where ϕ is the angle of internal friction noting that $\sin \phi=\frac{3 M}{6+M}$ where M is the gradient of the critical state line.
5. PROFILE SETs can be used to define a spatial variation of a property in 2D and 3D two phase and continuum elements.

Rubber Material Properties

Rubber materials maintain a linear relationship between stress and strain up to very large strains (typically $0.1-0.2$). The behaviour after the proportional limit is exceeded depends on the type of rubber (see diagram below). Some kinds of soft rubber continue to stretch enormously without failure. The material eventually offers increasing resistance to the load, however, and the stress-strain curve turns markedly upward prior to failure. Rubber is, therefore, an exceptional material in that it remains elastic far beyond the proportional limit.

Rubber materials are also practically incompressible, that is, they retain their original volume under deformation. This is equivalent to specifying a Poisson's ratio approaching 0.5.

Rubber Material Models

The strain measure used in LUSAS to model rubber deformation is termed a stretch and is measured in general terms as:

$$
1=\text { dnew/dold }
$$

where:

1. dnew is the current length of a fibre
2. dold is the original length of a fibre

Several representations of the mechanical behaviour for hyper-elastic or rubber-like materials can be used for practical applications. Within LUSAS, the usual way of defining hyper-elasticity, i.e. to associate the hyper-elastic material to the existence of a strain energy function that represents this material, is employed. There are currently four rubber material models available:
\square Ogden

- Mooney-Rivlin
\square Neo-Hookean
\square Hencky
MATERIAL PROPERTIES RUBBER OGDEN N
imat $<m_{r i} a_{r i}>_{i=1, N} \quad k_{r} \quad\left[\begin{array}{lllll}r & a & a_{r} & b_{r} & T\end{array}\right]$

MATERIAL PROPERTIES RUBBER MOONEY_RIVLIN
imat $\quad C_{1} \quad C_{2} \quad k_{r} \quad\left[\begin{array}{lllll}r & a & a_{r} & b_{r} & T\end{array}\right]$

MATERIAL PROPERTIES RUBBER NEO_HOOKEAN
imat $C_{0} \quad k_{r} \quad\left[\begin{array}{lllll}r & a & a_{r} & b_{r} & T\end{array}\right]$

MATERIAL PROPERTIES RUBBER HENCKY

imat The material property identification number
mri, ari Ogden rubber model constants
$\mathbf{N} \quad$ The number of pairs of constants for the Ogden rubber model
C1, C2 Mooney-Rivlin rubber model constants
C0 Neo-Hookean rubber model constant
G \quad Shear modulus
$\mathbf{k r} \quad$ Bulk modulus (see Notes)
$r \quad$ Mass density
a Coefficient of thermal expansion
ar \quad Mass Rayleigh damping constant
br Stiffness Rayleigh damping constant
$\mathbf{T} \quad$ Reference temperature
The constants $\mathbf{m x}, \mathbf{a r}, \mathbf{C 1}, \mathbf{C} 2$ and $\mathbf{C 0}$ are obtained from experimental testing or may be estimated from a stress-strain curve for the material together with a subsequent curve fitting exercise.

The Neo-Hookean and Mooney-Rivlin material models can be regarded as special cases of the more general Ogden material model. In LUSAS these models can be reformulated in terms of the Ogden model.

The strain energy functions used in these models includes both the deviatoric and volumetric parts and are, therefore, suitable to analyse rubber materials where some degree of compressibility is allowed. To enforce strict incompressibility (where the volumetric ratio equals unity), the bulk modulus tends to infinity and the resulting strain energy function only represents the deviatoric portion. This is particular useful when the material is applied in plane stress problems where full incompressibility is assumed. However, such an assumption cannot be used in plane strain or 3D analyses because numerical difficulties can occur if a very high bulk modulus is used. In these cases, a small compressibility is mandatory but this should not cause concern since only near-incompressibility needs to be ensured for most of the rubber-like materials.

Rubber is applicable for use with the following element types at present:

```
\square 2D Continuum QPM4M, QPN4M
\square 3D Continuum
HX8M
\square 2D Membrane BXM2, BXM3
```


Notes

1. For membrane and plane stress analyses, the bulk modulus kr is ignored because the formulation assumes full incompressibility. The bulk modulus has to be specified if any other 2D or 3D continuum element is used.
2. Ogden, Mooney-Rivlin and Neo-Hookean material models must be run with geometric nonlinearity using either the total Lagrangian formulation (for membrane elements) or the co-rotational formulation (for continuum elements). The Hencky material model is only available for continuum elements and must be run using the co-rotational formulation. The large strain formulation is required in order to include the incompressibility constraints into the material definition.
3. Option 39 can be specified for smoothing of stresses. This is particularly useful when the rubber model is used to analyse highly compressed plane strain or 3D continuum problems where oscillatory stresses may result in a "patchwork quilt" stress pattern. This option averages the Gauss point stresses to obtain a mean value for the element.
4. When rubber materials are utilised, the value of $\operatorname{det} \mathrm{F}$ or J (the volume ratio) is output at each Gauss point. The closeness of this value to 1.0 indicates the degree of incompressibility of the rubber model used. For totally incompressible materials $\mathrm{J}=1.0$. However, this is difficult to obtain due to numerical problems when a very high bulk modulus is introduced for plane strain and 3D analyses.
5. Subsequent selection of variables for displaying will include the variable PL1 which corresponds to the volume ratio.
6. Rubber material models are not applicable for use with the axisymmetric solid element QAX4M since this element does not support the co-rotational geometric
nonlinear formulation. The use of total Lagrangian would not be advised as an alternative.
7. There are no associated triangular, tetrahedral or pentahedral elements for use with the rubber material models at present.
8. The rubber material models are inherently nonlinear and, hence, must be used in conjunction with the NONLINEAR CONTROL command.
9. The rubber material models may be used in conjunction with any of the other LUSAS material models.

Volumetric Crushing Model

Material behaviour can generally be described in terms of deviatoric and volumetric behaviour which combine to give the overall material response. The crushable foam material model accounts for both of these responses. The model allows you to define the volumetric behaviour of the material by means of a piece-wise linear curve of pressure versus the logarithm of relative volume. An example of such a curve is shown in the diagram below, where pressure is denoted by p and relative volume by $\mathrm{V} / \mathrm{V}_{0}$.

From this figure, it can also be seen that the material model permits two different unloading characteristics volumetrically.

- Unloading may be in a nonlinear elastic manner in which loading and unloading take place along the same nonlinear curve
- Volumetric crushing may be included in which unloading takes place along a straight line defined by the unloading/tensile bulk modulus K which is, in general, different from the initial compressive bulk modulus defined by the initial slope of the curve.
\square Volumetric crushing is indicated by the ivcrush parameter.
In both cases, however, there is a maximum (or cut-off) tensile stress pcut that is employed to limit the amount of stress the material may sustain in tension.

The deviatoric behaviour of the material is assumed to be elastic-perfectly plastic. The plasticity is governed by a yield criterion that is dependent upon the volumetric pressure (compared with the classical von Mises yield stress dependency on equivalent plastic strain) and is defined as:

$$
\tau^{2}=a_{0}+a_{1} p+a_{2} p^{2}
$$

where p is the volumetric pressure, t is the deviatoric stress and $a_{0} a_{1} a_{2}$ are user defined constants. Note that, if $\mathbf{a}_{1}=\mathbf{a}_{2}=0$ and $\mathbf{a}_{0}=\sigma_{y l d}^{2} / 3$, then classical von Mises yield criterion is obtained.

```
imat \(K\) G \(r a a_{r} b_{r} h_{f} T\) pcut \(a_{0} a_{1} a_{2}\) ivcrush \(<\ln \left(V / V_{0}\right)_{i}\)
    \(p_{i}>_{i=1, \mathrm{~N}}\)
imat The material property identification number
\(\mathbf{K} \quad\) Bulk modulus used in tension and unloading (see figure below)
G Shear modulus
\(r \quad\) Mass density
a Coefficient of thermal expansion
ar Mass Rayleigh damping constant
br Stiffness Rayleigh damping constant
hf Heat fraction coefficient (see Notes)
\(\mathbf{T} \quad\) Reference temperature
pcut Cut-off pressure (see Notes and figure below)
a0..etc Parameters defining pressure dependent yield stress (see Notes)
ivcrush Volumetric crushing indicator (see Notes):
0 - no volumetric crushing
    1 - volumetric crushing.
\(\mathbf{N} \quad\) The number of points defining the pressure-logarithm of relative volume
    curve in compression
\(\ln (\mathrm{V} / \mathrm{Vo}){ }_{\mathrm{i}}\) Natural \(\operatorname{logarithm}\left(\log _{\mathrm{e}}\right.\), not \(\left.\log _{10}\right)\) of relative volume coordinate for ith
point on the pressure-logarithm of relative volume curve (see Notes and
figure below)
pi Pressure coordinate for ith point on the pressure-logarithm of relative
    volume curve (see Notes and figure below)
```


Notes

1. The heat fraction coefficient represents the fraction of plastic work which is converted to heat and takes a value between 0 and 1 .
2. The pressure-logarithm of relative volume curve is defined in the compression regime hence logarithms of relative volume must all be zero or negative and the pressure coordinates must all be zero or positive.
3. The cut-off pressure should be negative (i.e. a tensile value).
4. Parameters \mathbf{a}_{0} and \mathbf{a}_{1} should be positive.
5. The volumetric crushing indicator effectively defines the unloading behaviour of the material. If there is no volumetric crushing, the same pressure-logarithm of relative volume curve is used in loading and unloading and if volumetric crushing takes place the alternative unloading/reloading curve is used (see figure below).

Pressure - Logarithm of Relative Volume Curve

6. The yield surface defined is quadratic with respect to the pressure variable. Therefore it can take on different conical forms (see figure below), either elliptic $(\mathrm{a} 2<0)$, parabolic $(\mathrm{a} 2=0)$ or hyperbolic $(\mathrm{a} 2>0)$. The parabolic form is comparable to the modified von Mises material model while the elliptic form can be considered to be a simplification of the critical state soil and clay material behaviour. For all values of a 2 the yield criterion is taken as $\tau^{2}=\mathrm{a}_{0}$ when p is -ve (tension). For an elliptic surface $(a 2<0)$ the square of the yield stress is maintained at a constant maximum value ($\mathrm{a} 0-\mathrm{a} 12 / 4 \mathrm{a} 2$) when the compressive pressure exceeds $-\mathrm{a} 1 / 2 \mathrm{a} 2$.

Yield Surface Representation For Different a2 Values
7. The relationship between the elastic modulus values in shear, G , and tension, E , assuming small strain conditions, is given by:

$$
G=\frac{E}{2(1+v)}
$$

8. The relationship between the elastic bulk (or volumetric) modulus, K, and tensile modulus, E , is given by:

$$
K=\frac{E}{3(1-2 v)}
$$

Piecewise Linear Material Model

This model provides a piecewise linear material for bar elements. The nonlinear elastic behaviour is recoverable, and during the analysis the stiffness (and stress) will be computed from the strain value using the relationship shown below. By defining curve data that runs along the negative (or positive) strain axis, no compression (or tension) behaviour can be simulated. Simple tension/compression only variants are also available.

Recoverable piecewise linear material model for bars

The data input is defined as follows:
MATERIAL PROPERTIES NONLINEAR 104 n ncid

imat	$\mathbf{r}, \mathbf{a}, \mathbf{a}_{\mathbf{r}}, \mathbf{b}_{\mathbf{r}}, \mathbf{T}, \mathbf{E}_{\text {min }}, \mathbf{s}_{\text {tol }},\left\langle\mathbf{e}_{\mathbf{i}}, \mathbf{s}_{\mathbf{i}}>_{\mathbf{i}=1, \mathrm{n}}\right.$
imat	The material property identification number
\mathbf{n}	Number of data points defining stress/strain curve
ncid	Curve type identifier, see Notes (default=0)
\mathbf{r}	Mass density
\mathbf{a}	Coefficient of thermal expansion
$\mathbf{a}_{\mathbf{r}}$	Mass Rayleigh damping constant
$\mathbf{b}_{\mathbf{r}}$	Stiffness Rayleigh damping constant
\mathbf{T}	Reference temperature
$\mathbf{E}_{\text {min }}$	Minimum value for Young's modulus, see Notes (default $=10^{-11}$)
$\mathbf{s}_{\text {tol }}$	Data point tolerance factor, see Notes (default=0.05)
$\mathbf{e}_{\mathbf{i}}$	Strain at data point i
$\mathbf{s}_{\mathbf{i}}$	Stress at data point i

Notes

1. Loading and unloading is assumed to occur along the same stress/strain path.
2. One strain value must uniquely define one stress value.
3. If strains exceed the bounds of the curve data the first or last curve segment will be used to extrapolate the stress.
4. A data point tolerance factor, $\mathrm{S}_{\text {tol }}$, is used to help prevent chatter (oscillations between adjacent segments when a computed stress/strain is very close to an apex on the curve). If a point is close to an apex, a close proximity tolerance of $S_{t o l} X$ (the shortest adjacent segment length) is used as a close proximity check. If the point is within this tolerance a transition curve is used between the segments to compute an E value to form the stiffness matrix. Note that this does not affect the computation of stresses which are interpolated directly from the stress-strain curve defined.
5. The default values for $\mathbf{E}_{\text {min }}$ and $\mathbf{s}_{\text {tol }}$ can be entered by specifying ' D ' in the appropriate locations.
6. This note applies to the general piecewise linear curve only (ncid=0). The stress-strain curve defined does not have to pass through the origin. Defining a non-zero stress for zero strain has the same affect as applying an initial stress. Under these conditions, if an initial stress is also applied, the compound effect of both stresses will be applied. In other words, an applied initial stress loading will act as an offset on the stress data entered for this material model.
7. The input data must not contain a curve segment with a negative or vertical slope.
8. The curve type identifier ncid takes the following values: $0=$ piecewise linear (default), $1=$ tension only behaviour, $2=$ compression only behaviour. For ncid $=1$ or 2 , n must equal 3 , the three points defining the appropriate stress/strain curve which must run through the origin. If a tension only bar goes into compression it's Young's modulus will be taken as $\mathbf{E}_{\text {min }}$ and stresses will be set to zero and vice-versa for a compression only bar.

Design Code Concrete Models

LUSAS accommodates seven concrete design code models for modelling creep and shrinkage, AASHTO $7^{\text {th }}-9^{\text {th }}$ edition, CEB-FIP Model Code 1990, the Chinese Creep Code for Hydraulic Structures, EUROCODE 2, IRC:112-2011, JTG 3362-2018 and FIB Model Code 2010. The AASHTO model is applicable for specified concrete strengths up to 15.0 ksi . The CEB-FIP model is valid for ordinary structural concrete $(12-80 \mathrm{Mpa})$ that has been loaded in compression to less than 60% of its compressive strength at the time of loading. Relative humidities in the range $40-100 \%$ and temperatures in the range 5-30 degrees C are assumed.

The EUROCODE 2 model is appropriate for cases where the compressive stress in concrete is less or higher than 45% of its compressive strength at the time of loading.

The IRC:112-2011 model is applicable for cases when the compressive stress in concrete does not exceed 0.36 of its characteristic compressive cube strength at 28 days at the age of loading.

Although AASHTO $7^{\text {th }}-9^{\text {th }}$ edition, CEB-FIP Model Code 1990, EUROCODE 2, IRC:112-2011, JTG 3362-2018 and FIB Model Code 2010 are only applicable to beams, they have been extended in LUSAS to cover multi-axial stress states. The assumptions made in the derivation of this extension can be found in the LUSAS Theory Manual.

Note that the data defined under MATERIAL PROPERTIES excludes the creep and shrinkage input data which is defined separately under CREEP PROPERTIES and SHRINKAGE PROPERTIES.

MATERIAL PROPERTIES NONLINEAR 86 [AASHTO [7th | 8th_9th] | CEB-FIP | CHINESE_HYDRAULIC | EUROCODE_2 | IRC | JTG 3362 | MC10 | USER NE]
imat E*, $v, \rho, \alpha, a_{r}, b_{r}, H_{f}, T,\left[C_{t}\left|C_{t}\right| a, b\left|C_{t}\right| C_{t} \mid\right.$ $\left.C_{t}\left|C_{t}\left[m_{c}\right]\right|<E_{i}, t_{i}>_{i=1, N E}\right]$
imat The material property identification number
E* Modulus of elasticity:
AASHTO = Ec
CEB-FIP and MC10 $=\mathrm{E}_{\mathrm{ci}}=$ modulus at 28 days (see Notes)

	Chinese hydraulic $={ }^{\infty} \mathrm{E}=$ long term modulus
	EUROCODE $2=\mathrm{E}_{\mathrm{c}}=$ tangent modulus at 28 days (see Notes)
	IRC $=\mathrm{E}_{\mathrm{cm}}=$ secant modulus of elasticity of concrete (see Notes)
	JTG 3362 = Ec (see Notes)
v	Poisson's ratio
ρ	Mass density
α	Coefficient of thermal expansion
a_{r}	Mass Rayleigh damping coefficient (not used)
b_{r}	Stiffness Rayleigh damping coefficient (not used)
H_{f}	Heat fraction (not used)
T	Reference temperature
USER	User defined time dependent properties
NE	Number of points defining piecewise linear time dependent E curve
t_{i}	Time abscissa for point i defining a time dependent property curve
E_{i}	Young's modulus ordinate for point i defining the time dependent curve
AASHTO,	CEB-FIP, EUROCODE 2, IRC, JTG 3362 and MC10:
C_{t}	Cement type (default=2, see Notes)
m_{c}	Moisture content in \% by mass.
7-9th	Version of AASHTO code.
COMMENT	If specified the factor for the effect of volume-to-surface ratio for AASHTO is computed following the cornmentary clause C5.4.2.3.2; otherwise the main clause 5.4.2.3.2 is followed.
Chinese	Code for Hydraulic Structures:
a, b	Parameters for controlling evolution of elastic modulus with time (see Notes)
Notes	

1. The AASHTO code states that the modulus of elasticity may be estimated from $E_{c}=33000 K_{1} w_{c}^{1.5} \sqrt{f_{c}^{\prime}}$
where:
$\mathrm{K}_{1}=$ correction factor for source of aggregate to be taken as 1.0 unless determined by physical test, and as approved by the authority of jurisdiction
$\mathrm{w}_{\mathrm{c}}=$ unit weight of concrete (kcf)
$\mathrm{f}_{\mathrm{c}}^{\prime}=$ specified compressive strength of concrete (ksi)
2. The CEB-FIP Code states that the modulus of elasticity at 28 days may be estimated from

$$
E_{c i}=2.15 \times 10^{4} x\left[\frac{f_{c m}}{10}\right]^{1 / 3}
$$

The EUROCODE 2 states that the modulus of elasticity at 28 days may be estimated from

$$
E_{c}=1.05 \times 2.2 \times 10^{4}\left(\frac{f_{c m}}{10}\right)^{0.3}
$$

The IRC:112-2011 code states that the secant modulus of elasticity is slope of line connecting the origin to stress/strain diagram to $0.33 \mathrm{f}_{\mathrm{cm}}$ and can be computed from

$$
E_{c m}=22\left(\frac{f_{c m}}{12.5}\right)^{0.3}
$$

JTG 3362-2018 suggests using the following table or determing Ec from reliable measured data

Grade	C25	C30	C35	C40	C45	C50
$\mathrm{E}_{\mathrm{c}}\left(\times 10^{4} \mathrm{MPa}\right)$	2.80	3.00	3.15	3.25	3.35	3.45
Grade	C55	C60	C65	C70	C75	C80
$\mathrm{E}_{\mathrm{c}}\left(\times 10^{4} \mathrm{MPa}\right)$	3.55	3.60	3.65	3.70	3.75	3.80

When air entraining admixtures and relatively high sand ratio pump concrete are used without measured data, E_{c} values for $\mathrm{C} 50 \sim \mathrm{C} 80$ in the table need to be reduced by multiplying a factor 0.95 .
3. In the AASHTO (if ageing effect of elastic modulus follows CEB-FIP 1990), CEB-FIP, EUROCODE 2, IRC, JTG 3362-2018 (if ageing effect of elastic modulus follows CEB-FIP 1990) and MC10 code, the cement type C_{t} is defined as:

$\mathbf{C}_{\mathbf{t}}$	AASHTO/CEB-FIP/ JTG 3362	EUROCODE 2	IRC	MC10
1	Slowly hardening cements SL	Class S	Slow setting	fcm $\leq 60 \mathrm{MPa}$, strength class 32.5 N
2	Normal or rapid hardening cements N and R	Class N	Normal	fcm $\leq 60 \mathrm{MPa}$, class 32.5 R, 42.5 N
3	Rapid hardening high strength cements RS	Class R	Rapid hardening	fcm $\leq 60 \mathrm{MPa}$ class 42.5 R, $53.5 \mathrm{~N}, 52.5 \mathrm{R}$ or fcm >60 MPa

For lightweight aggregate concrete in MC10:
$=10+C_{t}$, lightweight aggregates of high strength;
$=20+C_{t}$, lightweight aggregates of low strength.
4. AASHTO will use constant elastic modulus E_{c} and specified compressive strength $f_{c i}^{\prime}=0.8 f_{c}^{\prime}$ when $\mathrm{C}_{\mathrm{t}}=0$.
5. JTG 3362-2018 will use constant elastic modulus E_{c} and mean cylinder compressive strength $f_{c m}=0.8 f_{c u, k}+8 \mathrm{MPa}$ when $\mathrm{C}_{\mathrm{t}}=0$.

In the Chinese code for hydraulic structures, the evolution of elastic modulus with time is defined by: ${ }^{\tau} E={ }^{\infty} E\left(1-e^{-a \tau^{b}}\right)$ where ${ }^{\infty} E, a$ and b are parameters fitted from experimental data. Parameters a and b are assumed to be dimensionless.
6. The parameters and corresponding formulae for AASHTO [A1] are unitdependent, i.e. age must be in days, V/S must be in inches, concrete strength must be in ksi.

Generic Polymer Model

The polymer material model is defined using an linear spring an Eyring damper and a number of parallel Maxwell elements. Model 88 is used when behaviour differs in tension and compression.

MATERIAL PROPERTIES NONLINEAR 87 n
imat $<G_{i} \quad \eta_{i}>_{i=1, n} A_{t} v_{t} T G_{s p r} K \rho$

MATERIAL PROPERTIES NONLINEAR 88 n
imat $\ll G_{i} \eta_{i}>_{i=1, n} A_{t} V_{t}, G_{s p r}>$ ten $\ll G_{i} \quad \eta_{i}>_{i=1, n} \quad A_{t} \quad v_{t} \quad G_{s p r} \gg$ comp K $\alpha a_{r} b_{r} T$

n	Number of Maxwell elements
imat	Material property identification number
$\mathbf{G}_{\boldsymbol{i}}$	Shear modulus of spring in i^{\prime} th Maxwell element
η_{i}	Maxwell element Newtonian dashpot viscous parameter
$\mathbf{A}_{\mathbf{t}}$	Constant related to the activation energy of the Eyring dashpot
\mathbf{v}_{t}	Activation volume of the Eyring dashpot
\mathbf{T}	Reference temperature
$\mathbf{G}_{\mathbf{s p r}}$	Shear modulus of external spring
ten	Properties in tension
$\mathbf{c o m p}$	Properties in compression
\mathbf{K}	Bulk Modulus
$\boldsymbol{\rho}$	Density
$\boldsymbol{\alpha}$	Coefficient of thermal expansion
$\mathbf{a}_{\mathbf{r}}$	Mass Rayleigh damping constant
$\mathbf{b}_{\mathbf{r}}$	Stiffness Rayleigh damping constant

If some of the units are not required for a particular analysis, the material parameters for these should be defined as zero.

Notes

1. NONLINEAR CONTROL with VISCOUS or DYNAMIC CONTROL should always be specified with this material model.
2. The number of Maxwell elements, n, has no restriction although the model requires at least one Maxwell element to be specified.
3. The bulk modulus, \mathbf{K}, can be evaluated from values of Young's Modulus and Poisson ratio.
4. The Eyring parameters, $\mathbf{A}_{\mathrm{t}}, \boldsymbol{v}_{\mathrm{t}}$, can be set to zero for a reduction to a linear viscoelastic material.
5. The reference temperature is for future use and has no bearing on the model.
6. The density should be specified if DYNAMIC CONTROL is used.
7. The external spring can be removed by setting $\mathrm{G}_{\text {spr }}$ to zero.

Generic Polymer Model with Damage

The polymer material model with damage consists of a linear spring, a spring that includes damage, an Eyring dashpot and a number of parallel Maxwell elements. Different sets of material properties can be defined to model tensile and compressive behaviour, except for the Visco-Scram damage model whose properties apply in both tension and compression.

Model 90 (see below) includes two additional features. The first feature is a set of failure criteria that are used to remove individual Maxwell elements when the criteria are met. The second is a switch between tensile and compressive material properties based on the stress state in an individual Maxwell element.

MATERIAL PROPERTIES NONLINEAR 89 n
imat

$$
\begin{aligned}
& \ll G_{i} \quad \eta_{i}>_{i=1, n} \quad A_{t} \quad V_{t} G_{s p r}>^{\text {ten }} \ll G_{i} \quad \eta_{i}>_{i=1, n} \quad A_{t} \quad V_{t} \quad G_{s p r}>^{c o m p} \\
& \text { idam }\left\{a \mathrm{c} \mathrm{~K}_{\mathrm{o}} \mathrm{~m} \mathrm{~V}_{\text {max }} \mathrm{C}_{\text {max }} \mu_{\mathrm{s}} \mid\right. \text { itdam ntpfc icdam } \\
& \text { ncpfc } \left.\left\langle e_{i}{ }^{t} q_{i}{ }^{t}\right\rangle_{i=1, n t p f c}\left\langle e_{i}{ }^{c} q_{i}{ }^{c}\right\rangle_{i=1, n c p f c}\right\} \text { icrit } s_{u}{ }^{\text {ten }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { T }
\end{aligned}
$$

MATERIAL PROPERTIES NONLINEAR 90 n
imat
$\ll G_{i} \quad \tau_{i}>_{i=1, n} \quad A_{t} \quad v_{t} G_{\text {spr }}>_{\text {ten }} \ll G_{i} \quad \tau_{i}>_{i=1, n} \quad A_{t} \quad v_{t} \quad G_{\text {spr }}>^{\text {comp }}$
idam $\left\{a \mathrm{c} \mathrm{K}_{\circ} \mathrm{m} \mathrm{V}_{\max } \mathrm{C}_{\text {max }} \mu_{\mathrm{s}}\right.$ | itdam ntpfc icdam

n	Number of Maxwell elements
imat	Material property identification number
G_{i}	Shear modulus of spring in i 'th Maxwell element
η_{i}	Viscous constant of Newtonian dashpot in i 'th Maxwell element
τ_{i}	Retardation time of Newtonian dashpot for i 'th Maxwell element
A_{t}	Constant related to the activation energy of the Eyring dashpot
V_{t}	Activation volume of the Eyring dashpot
$\mathrm{G}_{\text {spr }}$	Shear modulus of external spring
ten	Properties in tension
comp	Properties in compression
idam	Damage model
	$=1$ ViscoScram model with constant $\mathrm{V}_{\text {max }}$
	$=2$ Strain-based damage model
	$=3$ ViscoScram model with strain rate dependant $\mathrm{V}_{\text {max }}$

Visco Scram damage model with constant $\mathrm{V}_{\text {max }}$ (idam=1)

a	Initial flaw size
c	Average crack growth
K_{\circ}	Threshold value of stress intensity
m	Cracking parameter
$\mathrm{V}_{\max }$	Maximum value of rate of growth of average crack radius
$\mathrm{C}_{\max }$	Maximum crack length
μ_{s}	Static coefficient of friction

Strain-based damage model (idam=2)
itdam Tension function identifier
$=1$ User defined
$=2$ No damage
ntpfe Number of points on damage curve for tensile damage function
icdam Compression function identifier
$=1$ User defined
$=2$ No damage
ncpfc Number of points on damage curve for compressive damage function
$\mathbf{e}_{i} \quad \mathrm{x}$-coordinate of damage function
$q_{i} \quad y$-coordinate of damage function ("Q")
Visco Scram damage model with strain rate dependant $\mathrm{V}_{\max }$ (idam=3)

a	Initial flaw size
\mathbf{c}	Average crack growth
K_{\circ}	Threshold value of stress intensity
m	Cracking parameter

$\mathbf{Y}_{\text {min }} \quad$ The value $\ln \left(\mathrm{V}_{\max }\left(\dot{\varepsilon}_{\text {min }}\right)\right)$ (see notes)

$\mathrm{er}_{\text {min }}$	The value $\dot{\varepsilon}_{\text {min }}$ (see notes)
$Y_{\text {max }}$	The value $\ln \left(\mathrm{V}_{\text {max }}\left(\dot{\varepsilon}_{\text {max }}\right)\right)$ (see notes)
$\mathrm{er}_{\text {max }}$	The value $\dot{\varepsilon}_{\text {max }}$ (see notes)
$\mathrm{C}_{\text {max }}$	Maximum crack length
$\mu_{\text {s }}$	Static coefficient of friction
Failure properties	
icrit	Failure criteria
	$=1$ Maximum shear stress criterion
	$=2$ Von Mises criterion
	$=3$ Maximum normal stress criterion
	= 4 Mohr's theory
	$=5$ Maximum strain theory
	$=6$ Critical strain theory
$S_{u}{ }^{\text {ten }}$	Ultimate stress in tension
$\mathbf{e}_{u}{ }^{\text {ten }}$	Ultimate strain in tension
$\mathbf{S u}^{\text {comp }}$	Ultimate stress in compression
$\mathbf{e u}^{\text {comp }}$	Ultimate strain in compression
C_{1}	Gradient of ultimate stress vs. $\log _{e}$ (effective strain rate) graph (tension)
C_{2}	Intercept of ultimate stress vs. $\log _{e}$ (effective strain rate) graph with ultimate stress axis (tension)
C_{3}	Gradient of ultimate strain vs. $\log _{e}$ (effective strain rate) graph (tension)
C_{4}	Intercept of ultimate strain vs. $\log _{\mathrm{e}}$ (effective strain rate) graph with ultimate strain axis (tension)
C_{5}	Gradient of ultimate stress vs. $\log _{\mathrm{e}}$ (effective strain rate) graph (compression)
C_{6}	Intercept of ultimate stress vs. $\log _{e}$ (effective strain rate) graph with ultimate stress axis (compression)
C_{7}	Gradient of ultimate strain vs. $\log _{\mathrm{e}}$ (effective strain rate) graph (compression)
C_{8}	Intercept of ultimate strain vs. $\log _{e}$ (effective strain rate) graph with ultimate strain axis (compression)
Generic properties	
K	Bulk Modulus
ρ	Density
α	Coefficient of thermal expansion
a_{r}	Mass Rayleigh damping constant
b_{r}	Stiffness Rayleigh damping constant
T	Reference temperature
Iswtch	Tensile/compressive material property switch $=0$ switch on mean stress

$$
=1 \text { switch on individual Maxwell element }
$$

Notes

1. NONLINEAR CONTROL with either VISCOUS or DYNAMIC CONTROL should always be specified when using this material model.
2. At least one Maxwell element must be specified. However, there is no upper limit to n, the number of Maxwell elements.
3. The Newtonian damper in any Maxwell element can be turned off. For Model 89 this is achieved by setting the Maxwell element's viscous constant, η_{i}, to zero, while for Model 90 the retardation time, τ_{i}, must be set to zero. The Maxwell element will then behave as a spring in parallel with the other Maxwell elements.
4. The strain rate across the Eyring dashpot is related to the Eyring parameters via the equation

$$
\dot{\varepsilon}^{\mathrm{eyr}}=\mathrm{A}_{\mathrm{t}} \sinh \left(v_{\mathrm{t}} \sigma_{\mathrm{e}}\right)
$$

where σ_{e} is the effective deviatoric stress.
5. The Eyring parameters, A_{t} and v_{t}, can be set to zero to remove the effect of the Eyring dashpot.
6. Properties for the Maxwell elements and the Eyring dashpot must be specified for both tension and compression.
7. There are two ViscoScram damage models, idam=1, 3. With idam=1 a constant value for $V_{\max }$ is used, whilst with idam=3 a log-log relationship between $V_{\max }$ and the strain rate is used (see below).
8. For the Viscoscram damage model that uses a strain rate dependent $V_{\max }$ (idam=3), the following relationship between $\mathrm{V}_{\max }$ and the effective strain rate, $\dot{\varepsilon}$, applies.

$$
\ln \left(\mathrm{V}_{\max }\right)=\ln \left(\mathrm{V}_{\max }\left(\dot{\varepsilon}_{\text {min }}\right)\right)+\left[\frac{\ln \left(\mathrm{V}_{\max }\left(\dot{\varepsilon}_{\max }\right)\right)-\ln \left(\mathrm{V}_{\max }\left(\dot{\varepsilon}_{\text {min }}\right)\right)}{\ln \left(\dot{\varepsilon}_{\max }\right)-\ln \left(\dot{\varepsilon}_{\min }\right)}\right]\left[\ln (\dot{\varepsilon})-\ln \left(\dot{\varepsilon}_{\text {min }}\right)\right]
$$

where

$$
\begin{array}{ll}
\mathrm{V}_{\max }\left(\dot{\varepsilon}_{\min }\right) & \begin{array}{l}
\text { Maximum rate of growth of the average crack radius, } \mathrm{V}_{\max }, \\
\text { at the minimum valid strain rate, } \dot{\varepsilon}_{\min }
\end{array} \\
\mathrm{V}_{\max }\left(\dot{\varepsilon}_{\max }\right) & \begin{array}{l}
\text { Maximum rate of growth of the average crack radius, } \mathrm{V}_{\max }, \\
\text { at the maximum valid strain rate } \dot{\varepsilon}_{\max }
\end{array} \\
\dot{\varepsilon}_{\min } & \begin{array}{l}
\text { Minimum effective strain rate at which the log-log } \\
\text { relationship with } \mathrm{V}_{\max } \text { is valid }
\end{array} \\
\dot{\varepsilon}_{\max } & \begin{array}{l}
\text { Maximum effective strain rate at which the log-log } \\
\text { relationship with } \mathrm{V}_{\max } \text { is valid }
\end{array}
\end{array}
$$

The relationship between $\mathrm{V}_{\text {max }}$ and $\dot{\varepsilon}$ applies in the range $\dot{\varepsilon}_{\min }<\dot{\varepsilon}<\dot{\varepsilon}_{\text {max }}$. The value of $\ln \left(\mathrm{V}_{\max }\right)$ is bounded as follows.

$$
\begin{array}{ll}
\ln \left(\mathrm{V}_{\max }\right)=\ln \left(\mathrm{V}_{\max }\left(\dot{\varepsilon}_{\min }\right)\right) \text { for } & \dot{\varepsilon}<\dot{\varepsilon}_{\min } \\
\ln \left(\mathrm{V}_{\max }\right)=\ln \left(\mathrm{V}_{\max }\left(\dot{\varepsilon}_{\max }\right)\right) \text { for } & \dot{\varepsilon}>\dot{\varepsilon}_{\max }
\end{array}
$$

The relationship between $\mathrm{V}_{\max }$ and $\dot{\varepsilon}$ is shown as a graph in the figure below.

9. The damage deviatoric strain in both ViscoScram damage models (idam=1,3) is defined as

$$
\mathrm{e}_{\mathrm{ij}}^{\mathrm{dam}}=\beta \mathrm{c}^{3} \mathrm{~s}_{\mathrm{ij}}
$$

and the damage deviatoric strain rate is defined as

$$
\dot{\mathrm{e}}_{\mathrm{ij}}^{\mathrm{dam}}=\frac{3}{2 \overline{\mathrm{G}}}\left(\frac{\mathrm{c}}{\mathrm{a}}\right)^{2} \frac{\dot{\mathrm{c}}}{\mathrm{a}} \mathrm{~s}_{\mathrm{ij}}+\frac{1}{\overline{\mathrm{G}}}\left(\frac{\mathrm{c}}{\mathrm{a}}\right)^{3} \dot{\mathrm{~s}}_{\mathrm{ij}}
$$

where $\overline{\mathrm{G}}$ is the sum of the Maxwell shear modulii.
10. If no damage is required with the ViscoScram damage models (idam=1,3), the value for a, the initial flaw size, should be set to zero.
11. For the ViscoScram damage models (idam=1,3) only one set of damage properties is specified to cover both tensile and compressive cases.
12. With failure, if any of the terms $\mathrm{C}_{1}-\mathrm{C}_{8}$ are non-zero then the ultimate stresses and strains, s_{u} and e_{u}, in tension and compression are computed from the following equations.

$$
\mathrm{s}_{\mathrm{u}}^{\mathrm{ten}}=\mathrm{c}_{1} \ln (\dot{\varepsilon})+\mathrm{c}_{2} \quad \mathrm{e}_{\mathrm{u}}^{\mathrm{ten}}=\mathrm{c}_{3} \ln (\dot{\varepsilon})+\mathrm{c}_{4}
$$

$$
\mathrm{s}_{\mathrm{u}}^{\text {comp }}=\mathrm{c}_{5} \ln (\dot{\varepsilon})+\mathrm{c}_{6} \quad \mathrm{e}_{\mathrm{u}}^{\text {comp }}=\mathrm{c}_{7} \ln (\dot{\varepsilon})+\mathrm{c}_{8}
$$

$\dot{\varepsilon}$ is the effective strain rate, ten indicate tensions and comp indicates compression. The values computed above override any specification for s_{u} and e_{u} in the data input. The sign convention for the data input is that the ultimate stresses/strains in tension are positive and in compression are negative.
The terms $\mathrm{C}_{1}-\mathrm{C}_{8}$ are determined from graphs of ultimate stress/strain vs. the natural logarithm of the strain rate in tension and compression. The figure below shows an example for the ultimate stress in tension. The graph shows the quantities C_{1} and C_{2} that define the relationship between $\mathrm{s}_{\mathrm{u}}^{\text {ten }}$ and $\ln (\dot{\varepsilon})$.

13. The bulk modulus, K, can be computed from standard isotropic relations using the Young's Modulus, E, and the Poisson ratio, v, of the material.

$$
K=\frac{E}{3(1-2 v)}
$$

14. The density, ρ, must be specified if DYNAMIC CONTROL is used.
15. The parameter iswtch determines when a switch between tensile and compressive material properties occurs. With iswtch $=0$, the criteria is based on the mean stress. With iswtch=1, each Maxwell element has its tensile/compressive material properties selected based on the stress state within that Maxwell element.
16. The units of some GPM variables can be expressed in base dimensions M (mass), L (length), T (time) and Θ (temperature).

GPM unit	Parameter	Units	Parameter	Units
Maxwell	G_{i}	$\mathrm{M} \cdot \mathrm{L}^{-1} \cdot \mathrm{~T}^{-2}$	τ_{i}	T

GPM unit	Parameter	Units	Parameter	Units
Eyring	A_{t}	T^{-1}	V_{t}	M^{-1}.L.T ${ }^{2}$
ViscoScram	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{C} \\ & \mathrm{~K}_{0} \\ & \mathrm{M} \\ & \hline \end{aligned}$	L L M.L. $\mathrm{L}^{-1 / 2} \cdot \mathrm{~T}^{-2}$ Dimensionless	$\begin{aligned} & \mathrm{V}_{\max } \\ & \mathrm{c}_{\max } \\ & \mu_{\mathrm{s}} \end{aligned}$	L. T^{-1} L Dimensionless
Generic	$\begin{aligned} & \mathrm{K} \\ & \rho \\ & \alpha \end{aligned}$	$\begin{aligned} & \mathrm{M}^{-1} \cdot \mathrm{~L}^{2} \cdot \mathrm{~T}^{2} \\ & \mathrm{M} \cdot \mathrm{~L}^{-3} \\ & 1 / \Theta \end{aligned}$	$\begin{aligned} & \mathrm{a}_{\mathrm{r}} \\ & \mathrm{~b}_{\mathrm{r}} \\ & \mathrm{~T} \end{aligned}$	Dimensionless Dimensionless Θ
Miscellaneous	Stress Strain	$\begin{aligned} & \mathrm{M} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~T}^{-2} \\ & \text { Dimensionless } \end{aligned}$	Strain rate	T^{-1}

2D Elasto-Plastic Interface Model

The elasto-plastic interface models may be used to represent the friction-contact relationship within planes of weakness between two discrete 2D bodies. The model is available in plane stress and plane strain elements (see the LUSAS Element Reference Manual), a line of which must lie between the two bodies in the finite element discretisation.

The elastic material properties are defined in the local basis, permitting differing values to be specified normal and tangential to the plane of the interface. The nonlinear behaviour is governed by an elasto-plastic constitutive law, which is formulated with a limited tension criterion normal to the interface plane, and a Mohr-Coulomb criterion tangential to the interface plane.

The data section MATERIAL PROPERTIES NONLINEAR 27 is used to define the material properties for the 2D elasto-plastic interface model.

MATERIAL PROPERTIES NONLINEAR 27

imat	$\mathbf{E}_{\text {in }} \mathbf{E}_{\text {out }} \mathbf{G} \mathbf{n} \mathbf{r} \mathbf{a} \mathbf{a}_{\mathbf{r}} \mathbf{b}_{\mathbf{r}} \mathbf{h}_{\mathbf{f}} \mathbf{T} \mathbf{c} \mathbf{f} \mathbf{s}_{\mathbf{y}}$
imat	The material property identification number
$\mathbf{E}_{\text {in }}$	Young's modulus in-plane
$\mathbf{E}_{\text {out }}$	Young's modulus out-of-plane
\mathbf{G}	Shear modulus
\mathbf{n}	Poisson's ratio
\mathbf{r}	Mass density
\mathbf{a}	Coefficient of thermal expansion
$\mathbf{a r}$	Mass Rayleigh damping constant
$\mathbf{b r}$	Stiffness Rayleigh damping constant
$\mathbf{h f}$	Heat fraction coefficient (see Notes)
\mathbf{T}	Reference temperature
\mathbf{c}	Cohesion
\mathbf{f}	Friction angle

Notes

1. The model cannot be used within a geometrically nonlinear analysis.
2. The tangential (in-plane) direction is in the element x direction and the normal (out of plane) is in the element h direction. The x direction is defined from the vector between nodes 1 and 3 in the following diagram:

3. The heat fraction coefficient represents the fraction of plastic work which is converted to heat and takes a value between 0 and 1 . For compatibility with pre LUSAS 12 data files specify Option - 235 .
4. PROFILE SETs can be used to define a spatial variation of a property in 2D and 3D two phase and continuum elements..

3D Elasto-Plastic Interface Model

The elasto-plastic interface models may be used to represent the friction-contact relationship within planes of weakness between two discrete 3D bodies. The model is available in solid continuum elements (see the LUSAS Element Reference Manual), a line of which must lie between the two bodies in the finite element discretisation.

The elastic material properties are defined in the local basis, permitting differing values to be specified normal and tangential to the plane of the interface. The nonlinear behaviour is governed by an elasto-plastic constitutive law, which is formulated with a limited tension criterion normal to the interface plane, and a Mohr-Coulomb criterion tangential to the interface plane.

The data section MATERIAL PROPERTIES NONLINEAR 26 is used to define the material properties for the 3D elasto-plastic interface model.

MATERIAL PROPERTIES NONLINEAR 26

Notes

1. The model cannot be used within a geometrically nonlinear analysis
2. The tangential (in-plane) direction lies in the element x-h plane and the normal (out of plane) in the element z direction.

3. The heat fraction coefficient represents the fraction of plastic work which is converted to heat and takes a value between 0 and 1 . For compatibility with pre LUSAS 12 data files specify Option -235.
4. PROFILE SETs can be used to define a spatial variation of a property in 2D and 3D two phase and continuum elements..

Delamination Interface Properties

The nonlinear material model 25 is used to define the delamination interface properties
MATERIAL PROPERTIES NONLINEAR 25 idim
imat (Gi $\quad \sigma_{t} \quad \varepsilon_{i} \quad$ mode) ${ }_{i=1, \text { idim }}$
where
idim number of dimensions of model (IPN6 =2, IS16 = 3)
imat material number
$\mathbf{G}_{\mathbf{i}} \quad$ critical fracture energy
$\sigma_{\mathbf{t}} \quad$ tension threshold/interface strength
$\varepsilon_{\mathbf{i}} \quad$ maximum relative displacement
mode unloading model
1 - reversible unloading
2 - unloading on secant towards origin
3 - coupling model

Notes

1. It is recommended that the arc length procedure is adopted with the option to select the root with the lowest residual norm OPTION 261
2. It is recommended that fine integration is selected for the parent elements using OPTION 18
3. The nonlinear convergence criteria should be selected to converge on the residual norm.
4. OPTION 62 should be selected to continue if more than one negative pivot is encountered and OPTION 252 should be used to suppress pivot warning messages from the solution process.
5. The non-symmetric solver is selected automatically when mixed mode delamination is specified.
6. The critical fracture energies should be the measured GIc, and GIIc
7. The tension threshold /interface strength is the stress at which delamination is initiated. This should be a good estimate of the actual delamination tensile strength but, for many problems the precise value has little effect on the computed response. If convergence difficulties arise it may be necessary to reduce the threshold values to obtain a solution.
8. The maximum relative displacement is used to define the stiffness of the interface before failure. Provided it is sufficiently small to simulate an initially very stiff interface it will have little effect. Typically its value should be defined as $10-7$.
9. The onset of delamination failure and the relationship between critical fracture energy, interface strength and maximum relative displacement, is shown in the figure below.
10. Although the solution is largely independent of the mesh discretisation, to avoid convergence difficulties it is recommended that a least two elements are placed in the process zone.
11. If a geostatic-step is used the stresses and displacements from the displaced shape are saved and are used as offsets for any new displacements. When checking for separation the nodes will move by a distance equal to that of the initial normal penetration before lift-off can happen.

Onset of failure and relationship between critical fracture energy, interface strength and maximum relative displacement.

Mohr-Coulomb Interface Model

This model is used in conjunction with the interface elements. It permits the modelling of a standard elastic-plastic sliding interface which includes strain hardening, softening and dilation. The classic Mohr-Coulomb relationship is used to define failure conditions

$$
\tau=c-P \tan \phi
$$

where τ is the shear stress, P the normal stress (tension positive), c the cohesion and ϕ the angle of internal friction.

The slip at the interface is defined as the non-recoverable component of the tangential displacement along the interface and is used to control changes in the angle of friction, dilation and cohesion.

The tangential displacement may also be expressed as a strain by the introduction of the virtual thickness parameter t which is used to scale the interface displacements. The normal strain is defined $\varepsilon_{N}=v / t$ and the tangential strain $\varepsilon_{t}=u / t$ where v and u are normal and tangential displacements perpendicular and along the interface respectively. If t is set to 1.0 displacements are used rather than strain.

The model can be used in both 2D and 3D problems. It is assumed that the resistance of the interface to movement in any direction is a function of the amount of slippage which has occurred but that it is not dependent on the particular path which may have been taken to get to the current point.

Variation of the angle of friction with slip under constant normal pressure P
The variation of the angle of friction with tangential displacement can be converted to a variation of the angle of friction with slip and input into the model as a peicewise linear relationship.

Normal and shear interface stiffnesses may be input directly or calculated from factors which are applied to the stiffnesses of the materials which are connected at the interface. The normal stiffness factor multiplies the higher of the two elastic moduli and the shear stiffness factor the lower of the two shear moduli. For some soil models whose stiffness varies with pressure, the interface stiffnesses may be updated either at the beginning of the increment or iteratively.

```
MATERIAL PROPERTIES INTERFACE [FACTOR|INC_UPDATE|
IT_UPDATE][npnts][ndpnts][ncpnts]
```

```
imat }\mp@subsup{K}{N}{}\mp@subsup{K}{S}{\prime
    [ }\mp@subsup{\Lambda}{j}{}\mp@subsup{\Psi}{j}{
    [ }\mp@subsup{\Lambda}{\textrm{k}}{}\mp@subsup{\textrm{c}}{\textrm{k}}{
npnts number of points defining piecewise linear variation of angle of friction }
        with slip displacement }
ndpnts number of points defining piecewise linear variation of
dilation angle }\psi\mathrm{ with slip displacement }
ncpnts number of points defining piecewise linear variation of cohesion c with
    slip displacement }
imat material model identifier
\mp@subsup{K}{N}{}}\quad\mathrm{ normal stiffness or normal stiffness factor (see Notes)
K
c cohesion
\phi angle of friction (in degrees)
\psi dilatancy angle (in degrees)
t virtual thickness
TLimit cut-off tension limit (enter 'D' to use cutoff from Mohr-Coulomb)
T reference temperature for material properties
\Lambdai}\quad\mathrm{ tangential slip displacement at point i
\mp@subsup{\boldsymbol{\phi}}{\boldsymbol{i}}{}}\quad\mathrm{ angle of friction at point i (in degrees)
\mp@subsup{\boldsymbol{\psi}}{\boldsymbol{j}}{}}\quad\mathrm{ dilatancy angle at point j (in degrees)
C
```


Notes

1. If the FACTOR, INC_UPDATE or IT_UPDATE option is selected then K_{N} and $\mathbf{K}_{\mathbf{S}}$ are stiffness factors whilst if none of these options is selected then K_{N} and $\mathrm{K}_{\mathbf{S}}$ are input as absolute stiffness values.
2. Suitable interface factors for the normal direction K_{N} are in the range 10-100 whilst a range of $0-1$ is appropriate for the tangential direction $\mathbf{K}_{\mathbf{s}}$.
3. For material such as soils, values of $\mathbf{K}_{\mathbf{s}}, \boldsymbol{\phi}$ and \mathbf{c} should be smaller than the weaker of the materials meeting at the interface so that failure occurs at the interface rather than in the weaker material.
4. The values of c, ϕ and ψ are constant values which are replaced by their variation with respect to the slip displacement if piecewise linear curves are specified.
5. At least two points are required to define a variation with respect to the slip Λ of which the first must be defined at $\Lambda=0$. The curve is defined by a piecewise linear approximation.
6. The tangential displacement data can be input as either displacements or strain. If strain is used the virtual thickness t should be set to the corresponding value. If t is set to one curve data should be defined using slip.
7. Option 64 is recommended to invoke the non-symmetric solver as the element stiffness matrix is non-symmetric.
8. If the interface separates then the gap (perpendicular to the interface) is monitored. If the gap then closes, contact is re-established. In this case both the cohesion and dilatancy are set to zero. The angle of friction is maintained or set to its residual value if an angle of friction/slip curve has been input.
9. The nodes of the interface may be separated at the start of the analysis. The gap is monitored and if closed contact conditions are adopted. The values for c, ψ and ϕ are as detailed in note 8 .
10. If a displacement reset is used the stresses and displacements from the displaced shape are saved and are used as offsets for any new displacements. When checking for separation the nodes will move by a distance equal to that of the initial normal penetration before lift-off can happen.
11. If TLimit is set to ' D ' the limit that the interface can sustain in tension is $c / \tan \theta$

As an alternative to the input of curves defined by slip, results from a shear test may be entered using displacement as the independent variable.

MATERIAL PROPERTIES INTERFACE \{DISPLACEMENT|D_STIFF\} [npnts][ndpnts][ncpnts]
imat $K_{N} P_{N} \subset \psi$ t TLimit $T \begin{aligned} & {\left[u_{i} P s_{i}\right] } i=1, \text { npnts } \\ & {\left[u_{j} D_{j}\right] j=1, \text { ndpnts } } \\ & {\left[u_{k} c_{k}\right] } \\ & k=1, \text { nepnts }\end{aligned}$
imat material model identifier

npnts	number of points defining piecewise linear variation of interface shear stress with tangential displacement
ndpnts	number of points defining piecewise linear variation of dilation with tangential displacement
ncpnts	number of points defining piecewise linear variation of cohesion c with tangential displacement
K_{N}	normal stiffness or normal stiffness factor (see Notes)
$\mathbf{P}_{\mathbf{N}}$	normal compressive pressure at which displacement curves are evaluated.
\mathbf{c}	cohesion
$\boldsymbol{\psi}$	dilatancy angle (in degrees)
\mathbf{t}	virtual thickness
$\mathbf{T L i m i t}$	cut-off tension limit (enter 'D' to use cutoff from Mohr-Coulomb)
\mathbf{T}	reference temperature for material properties
$\boldsymbol{u}_{\boldsymbol{i}}$	tangential displacement at point i $\mathbf{P s}_{\mathbf{i}}$
$\boldsymbol{D}_{\boldsymbol{j}}$	shear stress at point i
$\mathbf{c}_{\mathbf{k}}$	dilation at point j

Notes

1. If DISPLACEMENT is selected then K_{N} is a stiffness factor whilst if D_{-}STIFF is selected then K_{N} is input as an absolute stiffness.
2. Suitable interface factors for the normal direction K_{N} are in the range 10-100.
3. At least two points defining the shear stress/ tangential displacement curve must be input of which the first must be the value $(0,0)$. The value of the shear stiffness, K_{s}, is calculated from the gradient of the first segment of the line.
4. The pressure P_{N} is the constant compressive normal pressure at which the input curves are evaluated.
5. The tangential displacement data can be input as either displacements or strain. If strain is used the virtual thickness t should be set to the corresponding value. If t is set to one the curve data should be defined using displacements.
6. The values of c and ψ are constant values which are replaced by their variation with respect to the displacement if specified.
7. Option 64 is recommended to invoke the non-symmetric solver as the element stiffness is non-symmetric.
8. If the interface separates then the gap (perpendicular to the interface) is monitored. If the gap then closes, contact is re-established. In this case both the cohesion and dilatancy are set to zero. The angle of friction is maintained or set to its residual value if a angle of friction/displacement curve has been input.
9. The nodes of the interface may be separated at the start of the analysis. The gap is monitored and if closed contact conditions are adopted. The values for c, ψ and ϕ are as detailed in note 8 .
10. If a displacement reset is used the stresses and displacements from the displaced shape are saved and are used as offsets for any new displacements. When checking for separation the nodes will move by a distance equal to that of the initial normal penetration before lift-off can happen.
11. If TLimit is not set the limit that the interface can sustain in tension is $c / \tan \theta$

Resin Cure Model

This model is used for predicting the deformations of thermoset composites that occur during a hot cure manufacturing process. The effects of chemical shrinkage (via SHRINKAGE PROPERTIES) and thermal expansion are accounted for along with the evolution of material properties during the cure cycle. This facility is intended for use within the framework of a semi-coupled thermo-mechanical analysis. However, a simplified solution without thermo-mechanical coupling can be computed for the situation in which the cure proceeds uniformly within a part by prescribing the resin state plus accompanying shrinkage, at discrete points within the cure process. To fully utilise this model the High Precision Moulding product is required.

Either layer or basic fibre/resin properties can be entered. Properties are required in both the glassy and rubbery states. Additionally, properties in the liquid state are required for layer properties. The basic fibre/resin properties are fed into a micromechanics analysis to produce the corresponding layer values. Full laminate values may also be entered.

```
MATERIAL PROPERTIES NONLINEAR CURE LAYER [DIBENEDETTO |
    GENERAL | USER ] [npnts] [nstate]
Imat \(\quad E_{11}{ }^{G} E_{22}{ }^{G} \quad E_{33}{ }^{G} \quad G_{12}{ }^{G} \quad G_{23}{ }^{G} \quad G_{13}{ }^{G} \quad v_{12}{ }^{G} \quad \nu_{23}{ }^{G} \quad v_{13}{ }^{G} \alpha_{11}{ }^{G} \quad \alpha_{22}{ }^{G} \quad \alpha_{33}{ }^{G}\)
    \(\beta_{11}{ }^{G} \quad \beta_{22}{ }^{G} \quad \beta_{33}{ }^{G}\)
    \(\mathrm{E}_{11^{\mathrm{R}}} \mathrm{E}_{22^{\mathrm{R}}} \mathrm{E}_{33^{\mathrm{R}}} \mathrm{G}_{12^{\mathrm{R}}} \mathrm{G}_{23^{\mathrm{R}}} \mathrm{G}_{13^{\mathrm{R}}} \boldsymbol{v}_{12^{\mathrm{R}}} \boldsymbol{v}_{23^{\mathrm{R}}} \boldsymbol{v}_{13^{\mathrm{R}}} \boldsymbol{\alpha}_{11^{\mathrm{R}}} \alpha_{22^{\mathrm{R}}} \quad \boldsymbol{\alpha}_{33^{\mathrm{R}}}\)
    \(\beta_{11^{\mathrm{R}}} \beta_{22^{\mathrm{R}}} \beta_{33^{\mathrm{R}}}\)
    \(\mathrm{E}_{11^{\mathrm{L}}} \quad \mathrm{E}_{22^{\mathrm{L}}} \mathrm{E}_{33^{\mathrm{L}}} \mathrm{G}_{12^{\mathrm{L}}} \quad \mathrm{G}_{23^{\mathrm{L}}} \mathrm{G}_{13}{ }^{\mathrm{L}} \quad v_{12}{ }^{\mathrm{L}} v_{23^{\mathrm{L}}} \quad v_{13}{ }^{\mathrm{L}} \alpha_{11^{\mathrm{L}}} \quad \alpha_{22^{\mathrm{L}}} \quad \alpha_{33^{\mathrm{L}}}\)
    \(\beta_{11^{\mathrm{L}}} \beta_{22^{\mathrm{L}}} \beta_{33^{\mathrm{L}}} \quad\) cGel \(\rho \mathrm{a}_{\mathrm{r}} \mathrm{b}_{\mathrm{r}}<\mathrm{f}_{\mathrm{i}}>{ }_{\mathrm{i}=1 \text {, npnts }}\)
```

MATERIAL PROPERTIES NONLINEAR CURE FIBRE RESIN [DIBENEDETTO | GENERAL | USER] [npnts] [nstate]
 $E_{\text {mat }}{ }^{\mathrm{R}} \nu_{\text {mat }}{ }^{\mathrm{R}} \alpha_{\text {mat }}{ }^{\mathrm{R}}$ cGel $\rho_{\text {mat }} \mathrm{a}_{\mathrm{r}} \mathrm{b}_{\mathrm{r}}$ ftype WarpU FillU FibH FibW Wc Fc Acl nGP Atype $\left\langle\mathrm{f}_{\mathrm{i}}>{ }_{\mathrm{i}=1 \text {, npnts }}\right.$
$\begin{array}{ll}\text { DIBENEDETTO } & \text { DiBenedetto glass transition model, see Notes } \\ \text { GENERAL } & \text { Piecewise linear description of glass transition temperature, see } \\ & \text { Notes }\end{array}$

USER ${ }_{*}^{\text {G }}$	User defined glass transition function, see Notes glassy property
$*^{\text {R }}$	rubbery property
* ${ }^{\text {I }}$	liquid property
npnts	number of data parameters which define glass transition equation (not required if a glass transition function is not declared)
nstate	number of user state variables (minimum of 1 if user model specified)
imat	The material property identification number
E_{ij}	Young's modulus of the laminar in the longitudinal, transverse and thickness directions.
$\mathrm{E}_{\text {fibl }}$	Young's modulus of the fibre in the longitudinal direction
$\mathrm{E}_{\text {fib2 }}$	Young's modulus of the fibre in the transverse direction
$\mathrm{E}_{\text {mat }}$	Young's modulus of the matrix
G_{ij}	Shear moduli for the laminar
$\mathrm{G}_{\text {fib12 }}$	Shear modulus along fibre
$\mathrm{G}_{\text {fib23 }}$	Shear modulus across fibre
$\mathrm{G}_{\text {mat }}$	Shear modulus of the matrix
$v_{i j}$	Poisson's ratios of the laminar
$v_{\text {fib }}$	Poisson's ratio of the fibre
$\nu_{\text {mat }}$	Poisson's ratio of the matrix
$\alpha_{i i}$	Coefficients of thermal expansion in the longitudinal, transverse and thickness directions of the laminar
$\alpha_{\text {fib1 }}$	Coefficients of thermal expansion along the fibre
$\alpha_{\text {fib2 }}$	Coefficients of thermal expansion across the fibre
$\alpha_{\text {mat }}$	Coefficient of thermal expansion of the matrix
$\beta_{\text {ii }}$	Coefficients of shrinkage, with respect to degree of cure, in the longitudinal, transverse and thickness directions
cGel	degree of cure at which matrix gels
ρ	Mass density of the laminar
$\rho_{\text {mat }}$	Mass density of the resin
a_{r}	Rayleigh mass damping constant
b_{r}	Rayleigh stiffness damping constant
ftype	Fabric type, see Notes
Warpu	Warp undulation fraction (recommended 1.0)
FillU	Fill undulation fraction (recommended 1.0)
FibH	Fibre height fraction of layer height (recommended 1.0)
FibW	Fibre width fraction (recommended 1.0)
Wc	Warp count, fibre bundles per unit length in the warp direction
Fc	Fill count, fibre bundles per unit length in the weft direction
Acl	Aerial density of the fabric

nGP	Number of Gauss points (1-11) (recommended 8) Atype
$\left\langle\mathbf{f}_{i}\right\rangle$	Woven fabric analysis type (1= isostrain (recommended), $2=$ isostress)
	Functional values which depend on the form of the Glass transition equation selected, see Notes

Notes

1. The resin cure models are intended for use with the High Precision Moulding product.
2. These models are utilised in a thermo-mechanical coupled analysis where the degree of cure is computed in the thermal analysis.
3. The shrinkage of the resin is introduced via the SHRINKAGE PROPERTIES GENERAL or USER chapters.
4. No glass transition function need be entered if the material states are defined using the STATE command in VISCOUS CONTROL.
5. The following options are available for ftype, the fabric type.

ftype	Description		ftype	Description
1	Plain		8	Satin 5H
2	Leno		9	Satin 8H
3	Mock Leno		10	Satin 12H
4	Twill 2x1		11	Basket 2x2
5	Twill 3x1		12	Basket 4x4
6	Twill 2×2		13	Basket 8x8
7	Twill 4x4		14	0/90 UD (non-crimp)
ab	UD Tape where ' a ' is the mechanical model and ' b ' the thermal model. For example to use the CCA model to define the mechanical properties and Chamis the thermal ' ab ' $=$ ' 215 ',			
		Mech.Model	b	Therm.Model
	1	Rule of mixtures	11	Rule of mixtures
	2	CCA	12	CCA
	3	Puck	13	Schneider
	4	Chamis	14	Shapery
	5	Halpin Tsai (circ)	15	Chamis
	6	Halpin Tsai (rect)	16	Chamberlain (hexag)
			17	Chamberlain (square)

6. The functional values which depend on the form of the Glass transition equation selected are defined as follows
DiBenedetto equation, npnts $=3$
$\mathrm{f}_{1}=\mathrm{TgI}$ glass transition temperature of fully cured polymer
$\mathrm{f}_{2}=\mathrm{Tg} 0$ glass transition temperature before cure
lambda $=$ material parameter
General piece-wise linear, npnts = number of points defining linear sections
$<\mathrm{DOC}_{\mathrm{i}} \mathrm{Tg}_{\mathrm{i}}>_{\mathrm{i}=1, \text { npnts }} \quad \mathrm{DOC}$ degree of cure, Tg glass transition temperature
User equation defined via user interface, npnts=number of user input parameters
$\left.<\mathrm{f}_{\mathrm{i}}\right\rangle_{\mathrm{i}=1, \text { npnts }}$ where
$\mathrm{f}_{1}=$ LTGUSR - identifier passed into user routine
fi ($\mathrm{i}=2$,npnts) $=$ parameters passed to user routine
7. The User defined glass transition function is introduced via externally developed FORTRAN source code. Source code access is available to interface routines and
object library access is available to the remainder of the LUSAS code to enable this facility to be utilised. Contact LUSAS for full details of this facility.
8. A minimum data solution is available which is applicable to thin composites in which the state of cure is constant or nearly constant at every point. This approach requires use of the STATE command in VISCOUS CONTROL and does not involve a coupled analysis.
9. The coupled analysis solution requires the use of NONLINEAR CONTROL in both the thermal and structural analysis. The thermal analysis also requires the TRANSIENT CONTROL chapter and the structural analysis VISCOUS CONTROL. A semi-coupled analysis with data transfer at every time step should be used.

Shrinkage

The cure of concrete and thermoset resins is accompanied by an isotropic shrinkage which in concrete's case depends on time, temperature and other environmental factors whilst for thermoset resins the shrinkage is normally described with respect to its degree of cure. LUSAS provides for the shrinkage of concrete using equations defined in the design codes AASHTO, CEB FIP 90, Eurocode 2 and IRC and also a more general routine in which shrinkage is defined using a piecewise linear curve. Using the latter, shrinkage can be a function of either time or degree of cure. Additionally a user facility is available which provides a means of interfacing LUSAS with externally developed code.

Shrinkage Properties General

SHRINKAGE PROPERTIES GENERAL [TIME | DEGREE_OF_CURE] npnts
ishr $<\mathrm{f}_{\mathrm{i}} \quad \mathrm{V}_{\mathrm{i}}>{ }_{\mathrm{i}=1 \text {.npnts }}$
TIME Interpolate linear shrinkage using time measured from the element's activation
Degree_of_cure Interpolate linear shrinkage from degree of cure
npnts Number of points defining piecewise-linear linear shrinkage curve
fi time or degree of cure at point i
Vsi Linear shrinkage at time/degree of cure at point i.

Notes

1. The linear shrinkage value $\mathrm{V}^{\mathbf{s}}{ }_{\mathrm{i}}$ is the shrinkage in the coordinate direction. It is applied equally in the x, y and z coordinate directions according to the particular element stress type.
2. The degree of cure is calculated from a coupled thermal analysis which takes account of the variation of temperature throughout the model.
3. Shrinkage is calculated from the time of activation of the element. That is the interpolation time is taken to be zero on activation.

Shrinkage Properties AASHTO\| CEB-FIP 90	EUROCODE					
2 \| IRC	JTG 3362	MC10				
SHRINKAGE PROPERTIES AASHTO [7th \| 8th_9th] [COMMENT]	CEB_FIP_90	EUROCODE_2	IRC	JTG 3362	MC10	
ishr [RH	```Cllllll```					
ishr	Shrinkage property identification number					
Ct	Cement type (see notes)					
RH	Relative humidity (\%) of the ambient environment					
hr	h / h_{o} where h is the nominal member size (see notes) and h_{0} is 4in for AASHTO or the equivalent of 100 mm in the chosen units for CEB-FIP, EUROCODE, IRC, JTG 3362 and MC10.					
fr	$\mathrm{f}_{\mathrm{c}}^{\prime} / \mathrm{f}_{\mathrm{cmo}}$ for AASHTO and $\mathrm{f}_{\mathrm{cm}} / \mathrm{f}_{\mathrm{cmo}}$ for CEB-FIP, EUROCODE, IRC, JTG 3362 and MC10, where $\mathrm{f}_{\mathrm{c}}^{\prime}$ is the specified compressive strength in ksi, f_{cm} is the mean concrete compressive strength at 28 days and $\mathrm{f}_{\mathrm{cmo}}$ is a reference strength which is 10 ksi for AASHTO, the equivalent of 10 MPa in the chosen units for CEB-FIP, EUROCODE, JTG 3362 and MC10, and the equivalent of 12.5 MPa in the chosen units for IRC.					
ias	Code for autogenous shrinkage computation: 0 (default) - include; 1 exclude, i.e. compute only drying shrinkage for EUROCODE 2 and IRC (see notes).					
ISF	Code for silica fume (0) or non silica fume (1) concrete (applicable only to high strength concrete of Eurocode).					
Slc	Factor for lightweight aggregate concrete: $=1.5$ for LC8, LC12, LC16; $=1.2$ for LC20 and higher.					
m_{c}	Moisture content in \% by mass;					
T	Constant temperature differing from 20 degrees.					
COMMENT	If specified the factor for the effect of volume-to-surface ratio is computed following the commentary clause C5.4.2.3.2; otherwise the main clause 5.4.2.3.3 is followed.					

Notes

1. The cement type, Ct, required by CEB-FIP, EUROCODE 2, IRC, JTG 3362 and MC10, is defined as:

$\mathbf{C}_{\mathbf{t}}$	CEB-FIP/JTG 3362	EUROCODE 2	IRC	MC10
1	Slowly hardening cements SL	Class S	Slow setting	Strength class32.5 N
2	Normal or rapid hardening cements N	Class N	Normal	Class 32.5 R, 42.5 N

	and R			
3	Rapid hardening high	Class R	Rapid	Class 42.5
	strength cements RS		hardening	R,53.5 N,
				52.5 R

2. The nominal size of member, h, is computed from $2 A c / u$ where $A c$ is the area of cross section and \mathbf{u} the length of the perimeter of the cross section that is in contact with the atmosphere. The CEB-FIP Model Code 1990 is only strictly applicable to a uni-axial stress state but the law has been extended in LUSAS to accommodate multi-axial stress states. Care should be taken when estimating a value to use for h when applying CEB-FIP shrinkage to concrete members that are not beam-like in nature. In general, the larger the value for h, the longer the time taken for shrinkage strains to reach a final value; for large values of h, it must be decided whether this behaviour is reasonable. An illustration of the effect on shrinkage of varying the input parameter hr is shown below. As CEB-FIP creep and shrinkage input parameters can be defined separately, it is possible, if necessary, to use different hr values for creep and shrinkage on the same assignment. The above comments on the CEB-FIP Model Code apply also to AASHTO, EUROCODE 2, IRC, JTG 3362 and MC10.

3. As both shrinkage and creep models are specified in AASHTO, CEB-FIP, EUROCODE 2, IRC, JTG 3362 and MC10, usually, the shrinkage model is used with the creep model specified in the same design code. However, mixing shrinkage and creep models from different design codes, or using any shrinkage model above with the Chinese creep model for hydraulic structures since the Chinese code does not provide one, is allowed. A warning message will be issued.
4. Parameter ias is only required by EUROCODE 2 and IRC.

Shrinkage Properties User

The SHRINKAGE PROPERTIES USER facility provides routines for implementing a user supplied shrinkage model to be invoked from within LUSAS. This facility provides completely general access to the LUSAS property data input via this data section and controlled access to the pre-solution processing and nonlinear state variable output.

Source code access is available to interface routines and object library access is available to the remainder of the LUSAS code to enable this facility to be utilised. Contact LUSAS for full details of this facility. Since user specification of a shrinkage model involves the external development of source FORTRAN code, as well as access to LUSAS code, this facility is aimed at the advanced LUSAS user.

SHRINKAGE PROPERTIES USER lstp nprzs nstat
ishr < $f_{i}>{ }_{i=1, \text { nprzs }}$
lstp User defined shrinkage model identification number
nprzs Number of parameters used in definition of shrinkage model
nstat Number of shrinkage state variables (see Notes)
fi User supplied parameters for shrinkage model

Notes

1. nstat must be an integer greater than zero
2. The number of damage properties input must be equal to that specified on the data section header line (i.e. nprzs).
3. Option 179 can be set for argument verification within the user routines

Field Material Properties

The following section contains field element material properties, one of which must be defined for each field element; these material properties are not applicable to any other element type. The following types of field material properties are available:

\square Isotropic Field Model

\square Orthotropic Plane Field Model
\square Orthotropic Solid Field Model
If temperature dependent material properties are specified, the linear problem becomes nonlinear and NONLINEAR CONTROL will need to be specified to obtain a correct solution. TEMP and TMPE loading may be used to provide an initial thermal field for the evaluation of temperature dependent properties. Further iterations will use the evaluated thermal field.

Note that for temperature dependent thermal boundary conditions, such as radiation, it is computationally more efficient to use thermal links to model the boundary heat transfer than to apply it directly to the elements as a load type.

Isotropic Field Model

The isotropic field model may be used to represent field properties which are identical in each direction. The data section MATERIAL PROPERTIES FIELD ISOTROPIC is used to specify the material properties for the isotropic field model.

```
MATERIAL PROPERTIES FIELD ISOTROPIC n
imat k T [C CV H]
imat The material property identification number
n Phase change type:
    =0 Phase change not required (default)
    =1 Del Giudice
    =2 Lemmon
k Thermal conductivity
T Reference temperature
c
        density). Only required for transient analysis.
H Latent heat (of phase change)
```


Notes

1. Isotropic field properties are applicable to all field elements except thermal links (see the LUSAS Element Reference Manual).
2. It is recommended that Option 105 (lumped specific heat) is used with phase change analyses.
3. Specific heat coefficient is only required for transient analyses.

Plane Orthotropic Field Model

The data section MATERIAL PROPERTIES FIELD ORTHOTROPIC is used to define the material properties for the plane orthotropic field model. The model is valid for 2D plane field problems.

```
MATERIAL PROPERTIES FIELD ORTHOTROPIC n
```

```
imat }\mp@subsup{\mathbf{k}}{\mathbf{x}}{}\mp@subsup{\mathbf{k}}{\mathbf{y}}{\prime}\mathbf{q}\mathbf{T}[\mp@subsup{C}{v}{
```

imat The material property identification number
n Phase change type:
$=0$ Phase change not required (default)
$=1$ Del Giudice
$=2$ Lemmon
$\mathbf{k x}$, ky Thermal conductivity in x and y directions
q angle of orthotropy (degrees) relative to global X-axis (positive in an anti-
clockwise direction)
T Reference temperature.
$\mathbf{c}_{\mathbf{v}} \quad$ Volumetric heat capacity (the Specific Heat Capacity multiplied by the density). Only required for transient analysis.
H Latent heat (of phase change)

Notes

1. It is recommended that Option 105 (lumped specific heat) is used with phase change analyses.

Orthotropic Solid Field Model

The data section MATERIAL PROPERTIES FIELD ORTHOTROPIC SOLID is used to define the material properties for orthotropic solid field problems. The model is valid for 3D solid field problems.

MATERIAL PROPERTIES FIELD ORTHOTROPIC SOLID n

imat nset $\mathbf{k}_{\mathbf{x}} \mathbf{k}_{\mathbf{y}} \mathbf{k}_{\mathbf{z}} \mathbf{T}\left[\begin{array}{cc}\mathrm{C}_{\mathrm{V}} & \mathrm{H}\end{array}\right]$
imat The material property identification number
n Phase change type:
$=0$ Phase change not required (default)
$=1$ Del Giudice
=2 Lemmon
nset CARTESIAN SET number used to define local axes direction. If nset $=0$, the local axes coincide with global axes.
$\mathbf{k x}, \mathbf{k y}, \mathbf{k z}$ Thermal conductivity in x, y and z directions
$\mathbf{T} \quad$ Reference temperature.
$\mathbf{c}_{\mathrm{v}} \quad$ Volumetric heat capacity (the Specific Heat Capacity multiplied by the density). Only required for transient analysis.
H Latent heat (of phase change)

Notes

1. It is recommended that Option 105 (lumped specific heat) is used with phase change analyses.

Isotropic Concrete Heat of Hydration Model

The data section MATERIAL PROPERTIES FIELD ISOTROPIC CONCRETE is used to define the heat of hydration for different concrete types. This depends on the chemical composition of the cement. Cement types I, II, III and V are catered for. Note that cement type IV is no longer widely used as admixtures tend to be used instead, therefore no data is available for this type. Provision has been made for a user defined chemical composition which is defined as cement type VI.

imat icem	$\begin{array}{llll} \mathbf{k} & \mathbf{T} & \mathrm{C}_{\mathrm{v}} & \mathrm{H} \end{array}$ wcem wcra wslg wpfa pfacao admix conv itime
[C3S	C2S C3A C4AF FreeCaO SO3 MgO Blaine]
RDH	RHH RHT RAE RHS
imat	The material property identification number
n	Phase change type:
	$=0$ Phase change not required (default)
	$=1$ Del Giudice
	$=2$ Lemmon
nset	CARTESIAN SET number used to define local axes direction. If nset $=0$, the local axes coincide with global axes.
k	Thermal conductivity ($\mathbf{k x}, \mathbf{k y}, \mathbf{k z}$ in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ for orthotropic material)
T	Reference temperature.
C_{v}	Volumetric heat capacity (the Specific Heat Capacity multiplied by the density). Only required for transient analysis.
H	Latent heat (of phase change)
icem	Cement type (1= Type I, $2=$ Type 2 II, $3=$ Type III, $5=$ Type V, $6=$ user defined)
wcem	Mass of cement per unit volume (should not include mass of slag (wslg) and fly ash (wpfa) - must be defined in $\mathrm{kg} / \mathrm{m}^{3}$)
wcra	Mass/cementitious ratio (weight of water per unit volume/(wcem+wslg+wpfa))
wslg	Mass of GGBF slag per unit volume (must be defined in $\mathrm{kg} / \mathrm{m}^{3}$)
wpfa	Mass of fly ash per unit volume (must be defined in $\mathrm{kg} / \mathrm{m}^{3}$)
pfacao	CaO content of fly ash (defined as \%) Values usually lie in the range 2$30 \%$, class C fly ash $=24 \%$ and class $\mathrm{F}=11 \%$
admix	Hydration delay due to admixtures. See Notes.
conv	Factor to convert heat (computed in $\mathrm{J} / \mathrm{m}^{3}$) to model unit system
itime	Time unit identifier ($1=\mathrm{hrs}, 2=$ days)
C3S	User defined $\mathrm{C}_{3} \mathrm{~S}$ content (defined as \%)
C2S	User defined $\mathrm{C}_{2} \mathrm{~S}$ content (defined as \%)
C3A	User defined $\mathrm{C}_{3} \mathrm{~A}$ content (defined as \%)
C4AF	User defined $\mathrm{C}_{4} \mathrm{AF}$ content (defined as \%)
FreeCaO	User defined Free CaO content (defined as \%)
SO3	User defined SO_{3} content (defined as \%)
MgO	User defined MgO content (defined as \%)
Blaine	User defined Blaine index (must be defined in $\mathrm{m}^{2} / \mathrm{kg}$)
RDH	Correction factor for ultimate degree of hydration
RHH	Correction factor for heat of hydration
RHT	Correction factor for hydration time parameter
RAE	Correction factor for activatione energy

RHS Correction factor for hydration slope parameter

Notes

1. Cement type icem defines the following cement composition:

icem	C3S\%	C2S\%	C3A\%	C4AF\%	FreeCaO\%	SO3\%	MgO	Blaine
1	56.5	14.0	10.0	8.0	2.9	3.5	1.3	350.0
2	51.0	24.0	5.3	16.6	0.4	2.5	0.9	310.0
3	60.0	11.0	12.0	8.1	1.3	4.5	1.0	480.0
5	43.0	36.0	4.0	12.0	0.4	1.5	1.6	348.0

2. The parameters C3S, C2S, C3A, C4AF, FreeCaO, SO3, MgO and Blaine are only required for the user defined cement type, that is, icem=6.
3. The CaO content for fly ash must be specified if fly ash is to be included. Some typical values are Class C fly ash (24%) and Class F fly ash (11%).
4. admix is an equivalent hydration age, to be used when admixtures delay the start of hydration. Negative values should be given (typical values -0.3 to -0.8), zero or positive values are neglected.

Orthotropic Concrete Heat of Hydration Model

The data section MATERIAL PROPERTIES FIELD ORTHOTROPIC CONCRETE is used to define the material properties for the plane orthotropic concrete/resin field model. The model is valid for 2D plane field problems.

MATERIAL PROPERTIES FIELD ORTHOTROPIC CONCRETE n

imat	k_{x}	k_{y}	θ	T	C_{V}	H			
icem	wcem	wcra	wslg wpfa	pfacao admix conv itime					
[C3S	C2S	C3A	C4AF	FreeCaO	SO3 MgO Blaine $]$				
RDH	RHH	RHT	RAE	RHS					

All terms are as defined for the Isotropic Concrete Heat of Hydration Model.

Orthotropic Solid Concrete Heat of Hydration Model

The data section MATERIAL PROPERTIES FIELD ORTHOTROPIC SOLID CONCRETE is used to define the material properties for orthotropic solid concrete field problems. The model is valid for 3D solid field problems.

MATERIAL PROPERTIES FIELD ORTHOTROPIC SOLID CONCRETE n

imat	nset	k_{x}	k_{y}	k_{z}	T	C_{V}	H		
icem	wcem	wcra wslg wpfa pfacao admix conv itime							
[C3S	C2S	C3A	C4AF FreeCaO	SO3 MgO Blaine]					
RDH	RHH RHT RAE	RHS							

All terms are as defined for the Isotropic Concrete Heat of Hydration Model.

Linear Variation Convection/Radiation Model

Field link elements permit the variation of conductive, convective and radiative heat transfer to be related to an initial value at full closure, and a linear change in value with increasing gap opening.

The data section MATERIAL PROPERTIES FIELD LINK 18 is used to define the material properties for the linear variation convection/radiation model.

MATERIAL PROPERTIES FIELD LINK 18

imat ko [hco hro dk/dl dhc/dl dhr/dl T]
imat The material property identification number
Ko Gap conductance at origin
hco Convective heat transfer coefficient at origin
hro Radiative heat transfer coefficient at origin
$\mathrm{dk} / \mathrm{dL} \quad$ Variation of gap conductance with opening distance
$\mathrm{dhc} / \mathrm{dL}$ Variation of gap convective heat transfer coefficient with opening distance
$\mathrm{dhr} / \mathrm{dL} \quad$ Variation of radiative heat transfer coefficient with opening distance
$\mathbf{T} \quad$ Reference temperature.

Notes

1. If a negative value of a material property is calculated, then the material property is set to zero.
2. The figure below shows heat transfer coefficients/gap distance relationship for the linear variation convection/radiation model.
3. When a radiative heat transfer coefficient is specified the temperature units for the problem will be Kelvin by default. Option 242 allows temperatures to be input and output in Celsius (Centigrade) for problems involving radiative heat transfer.

Heat Transfer Coefficients/Gap Distance Relationship for the Linear Variation Convection/Radiation Model

Nonlinear Variation Convection/Radiation Model

The nonlinear convection/radiation field model permits the variation of conductive, convective and radiative heat transfer to be related to the gap opening distance in an arbitrary manner, by defining the variation of property with distance as a sequential series of straight line segments.

The data section MATERIAL PROPERTIES FIELD LINK 19 is used to define the material properties for the nonlinear variation convection/radiation model.

MATERIAL PROPERTIES LINK 19 N
imat $<\mathrm{K}_{\mathrm{i}} \mathrm{h} \mathrm{c}_{\mathrm{i}} \mathrm{h} \mathrm{r}_{\mathrm{i}} \mathrm{L}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{~N}} \mathrm{~T}$
imat The material property identification number
$\mathbf{N} \quad$ The number of points used to define the material properties
ki Gap conductance for point i
hci Convective heat transfer coefficient for point i
hri Radiative heat transfer coefficient for point i
$\mathrm{Li} \quad$ Total distance for point \mathbf{i} from origin
T Reference temperature.

Notes

1. The figure below shows the heat transfer coefficients/gap distance relationship for the nonlinear variation convection/radiation model.
2. When a radiative heat transfer coefficient is specified the temperature units for the problem will be Kelvin by default. Option 242 allows temperatures to be input and output in Celsius (Centigrade) for problems involving radiative heat transfer.

Heat Transfer Coefficients/Gap Distance Relationship for the Nonlinear Variation Convection/Radiation Model

Hygro-Thermal Material Properties

The following section describes the hygro-thermal material properties, one of which must be defined for hygro-thermal elements that model porous medium (e.g. concrete) ; these material properties are not applicable to any other element type. The following types of hygro-thermal material properties are available:

- Hygro-thermal Linear

\square Hygro-thermal Concrete
If a hygro-thermal element is to represent a non-porous material (e.g. steel) it should be assigned thermal properties via

\square Isotropic Field Model (MATERIAL PROPERTIES FIELD ISOTROPIC)

A hygro-thermal problem is always transient and non-linear. Initial values must be specified explicitly (they cannot be computed by a steady state analysis as is the case for a transient field problem). Both hygro-thermal material models are isotropic. In the hygro-thermal linear model material properties are assumed to be constant with the
exception of the relative water permeability, which is a function of the water saturation - thus the problem remains non-linear.

If a node belongs only to elements with Isotropic Field properties then arbitrary, unrealistic values will be computed for the capillary pressure and saturation at this node.

All data must be in SI units $-\mathrm{m}, \mathrm{N}, \mathrm{s},(\mathrm{kg}, \mathrm{J})$.

Hygro-Thermal Linear

The hygro-thermal linear model may be used to represent constant isotropcic hygrothermal properties, which are specified via the data section MATERIAL PROPERTIES HYGRO-THERMAL LINEAR.

MATERIAL PROPERTIES HYGRO-THERMAL LINEAR [TITLE title]

imat The material property identification number
$\mathbf{k} \quad$ Thermal conductivity
C Specific heat coefficient
$\rho \quad$ Density
n Porosity
K Intrinsic permeability
$\mathrm{f}_{\mathrm{s}} \quad$ Coefficient for tortuosity
H Enthalpy of evaporation
$g_{x} g_{y} g_{z}$ Cartesian components of body acceleration (e.g. gravity)

Notes

1. $\mathrm{H}, \mathrm{f}_{\mathrm{s}}$ and g usually have small influence on the results and may be set to zero.
2. Near zero values for n and K should not be used to model a non-porous material; MATERIAL PROPERTIES FIELD ISOTROPIC should be used instead.

Hygro-Thermal Concrete

The data section MATERIAL PROPERTIES HYGRO-THERMAL CONCRETE is used to define material properties of concrete with optional heat of hydration. Some of the properties may be defined as a linear function of temperatures. Some have built-in temperature and/or saturation dependence, which can be switched off, if desired - see Notes.

MATERIAL PROPERTIES HYGRO-THERMAL CONCRETE [TITLE title]

```
imat llllllllllllll
    k
```


icem wcem wcra wslg wpfa pfacao admix conv itime
 [C3S C2S C3A C4AF FreeCaO SO3 MgO Blaine]
 RDH RHH RHT RAE RHS

imat The material property identification number
$\mathbf{k}_{0}, \mathbf{k}_{1}$ Coefficients defining thermal conductivity
$k=\left\{\begin{array}{lll}\left|k_{0}\right| & \text { if } & k_{0}<0 \\ {\left[k_{0}+k_{1}\left(T-T_{\text {ref }}\right)\right]\left[1+f_{k} \Phi\left(S_{w}\right)\right]} & \text { if } & k_{0}>0\end{array}\right.$
$\mathbf{C}_{0}, \mathbf{C}_{1}$ Coefficients defining concrete skeleton specific heat
$C=C_{0}+C_{1}\left(T-T_{\text {Ref }}\right)$
$\rho_{0}, \rho_{1} \quad$ Coefficients defining density
$\rho(T)=\rho_{0}+\rho_{1}\left(T-T_{\text {Ref }}\right)$. See Notes
$\mathbf{n}_{0}, \mathbf{n}_{1} \quad$ Initial and final porosity
When icem >0, i.e. hydrating concrete, the final porosity \mathbf{n}_{1} is internally computed.
$n(\Gamma)=n_{0}+\left(n_{0}-n_{1}\right)\left(1-\Gamma / \Gamma_{\infty}\right)$
$n_{\text {avr }}=\frac{1}{2}\left(n_{0}+n_{1}\right)$. See Notes
$\mathrm{K}_{0} \quad$ Coefficient defining intrinsic permeability
$K= \begin{cases}\left|K_{0}\right| & \text { if } K_{0}<0 \text { or } A=B=1 \\ K_{0} \times 10^{0.005\left(T-T_{\text {ref }}\right)+2.25\left(1-\Gamma / \Gamma_{\infty}\right)} & \text { otherwise }\end{cases}$
$\mathrm{f}_{\mathrm{S}} \quad$ Coefficient for tortuosity, used in the definition of the diffusion coefficient
$D_{v}=\left\{\begin{array}{lll}\left|f_{s}\right| \times 2.58 \times 10^{-5} & \text { if } & f_{s} \leq 0 \\ f_{s} \times 2.58 \times 10^{-5} \times\left(\frac{T}{293.15}\right)^{1.667} & \text { if } \quad f_{s}>0\end{array}\right.$
H Enthalpy of evaporation
$g_{x} g_{y} g_{z}$ Cartesian components of body acceleration (e.g. gravity)
$f_{k} \quad$ Coefficient for dependence of thermal conductivity on the water saturation function $\Phi\left(\mathrm{S}_{\mathrm{w}}\right)$
$\Gamma_{\text {ult }} \quad$ Ultimate degree of hydration (not used at present, computed internally)
Code \quad A tree digit number in the form 1 AB where \mathbf{A} and B are ether 0 or 1 . Least approximations when $\mathrm{A}=\mathrm{B}=0$.
icem Cement type (1, 2, 3, 5 = Type I, II, III, V, resp.; 6=user defined)
wcem Mass of cement per unit volume of concrete (should not include mass of slag (wslg) and fly ash (wpfa)) $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
wcra Water/cementitious ratio - (water content) / (wcem+wslg+wpfa)
wslg Content of GGBF slag, $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
wpfa Content of fly ash, $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$

pfacao	CaO content of fly ash (defined as \%) Values usually lie in the range $2-30 \%$; class C fly ash $=24 \%$; and class $\mathrm{F}=11 \%$
admix	Hydration delay due to admixtures. See Notes.
conv	$=1$ Unit conversion factor - should be equal to 1
itime	$=3$ Time unit identifier - should be equal to 3 (i.e. time is in [s])
C3S	User defined $\mathrm{C}_{3} \mathrm{~S}$ content (defined as \%)
C2S	User defined $\mathrm{C}_{2} \mathrm{~S}$ content (defined as \%)
C3A	User defined $\mathrm{C}_{3} \mathrm{~A}$ content (defined as \%)
C4AF	User defined $\mathrm{C}_{4} \mathrm{AF}$ content (defined as \%)
FreeCaO	User defined Free CaO content (defined as \%)
SO3	User defined SO_{3} content (defined as \%)
MgO	User defined MgO content (defined as \%)
Blaine	User defined Blaine index (must be defined in $\mathrm{m}^{2} / \mathrm{kg}$)
RDH	Correction factor for ultimate degree of hydration
RHH	Correction factor for heat of hydration
RHT	Correction factor for hydration time parameter
RAE	Correction factor for activatione energy
RHS	Correction factor for hydration slope parameter

Notes

1. All data must be in SI units.
2. Cement type icem defines the following cement composition:

icem	C3S\%	C2S\%	C3A\%	C4AF\%	FreeCaO\%	SO3\%	MgO	Blaine
1	56.5	14.0	10.0	8.0	2.9	3.5	1.3	350.0
2	51.0	24.0	5.3	16.6	0.4	2.5	0.9	310.0
3	60.0	11.0	12.0	8.1	1.3	4.5	1.0	480.0
5	43.0	36.0	4.0	12.0	0.4	1.5	1.6	348.0

3. The parameters $\mathrm{C} 3 \mathrm{~S}, \mathrm{C} 2 \mathrm{~S}, \mathrm{C} 3 \mathrm{~A}, \mathrm{C} 4 \mathrm{AF}, \mathrm{FreeCaO}, \mathrm{SO} 3, \mathrm{MgO}$ and Blaine are only required for the user defined cement type, that is, icem $=6$.
4. The CaO content for fly ash must be specified if fly ash is to be included. Some typical values are Class C fly ash (24\%) and Class F fly ash (11\%).
5. admix is an equivalent hydration age, to be used when admixtures delay the start of hydration. Negative values should be given (typical values -0.3 to -0.8), zero or positive values are neglected.
6. $T_{\text {ref }}$ used in the formulas is $20^{\circ} \mathrm{C}$
7. The content of the concrete dry skeleton changes with the change of porosity during hydration. However, this will make the FE model nonconservative for mass and energy, since it is assumed that the initial volume is preserved. Thus, three
options are given to approximate the dependence of density on porosity, based on Code:

$$
\bar{\rho}=\rho(T, n)= \begin{cases}\rho(T) & \text { if } \quad A=1 \\ \left(1-n_{\text {avr }}\right) \rho(T) & \text { if } \quad A=0 ; B=1 \\ {[1-n(t)] \rho(T)} & \text { if } \quad A=0 ; B=0\end{cases}
$$

8. The total heat capacity (dry concrete+moist_air+liquid_water) is defined as

$$
\overline{\rho C}= \begin{cases}\bar{\rho} C & \text { if } A>0 \\ \bar{\rho} C+\bar{\rho}_{w} \times 4050+\bar{\rho}_{g} \times 1400 & \text { if } \quad A=0\end{cases}
$$

where $\bar{\rho}_{\mathrm{w}}, \bar{\rho}_{\mathrm{g}}$ are the content of liquid water and gas, respectively.
9. The rate of the energy content is defined as

$$
\frac{\partial(\overline{\rho C} T)}{\partial t}=\left\{\begin{array}{ll}
\bar{\rho} \frac{\partial(C T)}{\partial t} & \text { if }
\end{array} \quad A+B=0\right.
$$

Material Assignments

Material specified using MATERIAL PROPERTIES, PLASTIC DEFINITION, VISCOUS DEFINITION, DAMAGE PROPERTIES, SHRINKAGE and KO is assigned to elements using the MATERIAL ASSIGNMENTS data chapter.

MATERIAL ASSIGNMENTS [TITLE title]
$\left\{\mathrm{L} \mathrm{L}_{\text {last }} \mathrm{L}_{\text {diff }} \mid \mathrm{G}\right.$ igroup\} imat [nset ipls icrp idam imatv ivse iptm ishr iKo]
L Llast Ldiff First, last and difference between elements with the same element group number
G Command word which must be typed to use element groups (see Group).
igroup The element group reference number.
imat The material identification number.
nset The Cartesian set number defining orthotropy of material properties (see Cartesian Sets and Notes).
ipls The stress potential set identification number. See Plastic Definition
icrp The creep property identification number. See Viscous Definition
idam The damage property identification number.
imatv The varying material identification number if it is defined in the preprocessing LUSAS Modeller model. This number is saved in the LUSAS Modeller results file for post-processing.
ivse The viscoelastic property identification number. See Viscous Definition
iptm The two-phase material identification number.
ishr The shrinkage property identification number.
iKo The Ko property identification number

Notes

1. nset is only applicable to material models using nset in their material input parameters. When nset is included in the MATERIAL ASSIGNMENT command the value input using MATERIAL PROPERTIES is overridden.
2. If an element is repeated the new properties/rigidities overwrite the previous values for that element.
3. Material properties may only be modified for a transient, dynamic or nonlinear problems subject to the following conditions:

- Only the material assignment respecified will be modified
- Further assignments may only use material properties datasets defined at the beginning of the problem.

4. The MATERIAL ASSIGNMENTS command can be repeated in the datafile or in a restart file to introduce new material assignments into the solution.
5. The Ko material property remains active until it is deassigned from the element. To remove it and switch to the main soil model the material assignment for the element must be respecified but with $\mathbf{i K o}=0$. Subsequent solution increments will use the material model selected using the imat material identifier.

Composite Material

Composite material input may be used to laminate a variety of materials together within a single element. In this lamination procedure, the composite lay-up sequence is always defined sequentially from the lower to upper surfaces of the laminate. Any appropriate LUSAS material model (see Notes) may be assigned to any defined layer within the element; hence combinations of material assignments may be used within a single element to achieve a numerical model of the laminated or composite material.

The composite material data is input in three stages.

1. The constitutive materials are defined using MATERIAL PROPERTIES, PLASTIC DEFINITION, VISCOUS DEFINITION and/or DAMAGE PROPERTIES.
2. The composite lay-up is defined using the COMPOSITE MATERIAL command.
3. The defined composite material property sets are assigned to elements using COMPOSITE ASSIGNMENTS.

The data section COMPOSITE MATERIAL is used to define the lay-up sequence for each composite property set. Data is specified in tabular form with each row relating to a particular layer in the sequence. The columns contain property set numbers relating to previously defined MATERIAL PROPERTIES, STRESS POTENTIAL, CREEP PROPERTIES, DAMAGE PROPERTIES, VISCO ELASTIC PROPERTIES and SHRINKAGE. The STRESS POTENTIAL property set must have been previously
defined under either the PLASTIC DEFINITION or VISCOUS DEFINITION data chapters.

COMPOSITE MATERIAL [TITLE title]
TABLE icpm

imat $_{\text {i }}$	[angle ${ }_{i}$ ivse $_{i}$	$\underset{i \operatorname{iph} r_{i}}{\text { ipl }_{i}}$	$\begin{gathered} \mathbf{i c r p}_{i} \\ \mathrm{vf}_{\mathrm{i}} \end{gathered}$	idam $_{i}$ skewA $_{i}$]	lname $_{\text {i }}$

icpm Composite material set number
nlam Number of layers in the composite property set (i=1 to nlam)
imati Material property set number for layer i
anglei Material direction angle for layer i (see Notes)
iplsi \quad Stress potential set number for layer i
icrpi Creep property set number for layer \mathbf{i}
idami Damage property set number for layer i
Inamei Layer name for layer i
ivsei Viscoelastic property set number for layer i
ishri \quad Shrinkage property set number for layer i
vfi Volume fraction of fibers for layer i
skewAi Skew angle of fibers for layer i

Notes

1. angle is applicable to orthotropic material models. The value for angle defined using the COMPOSITE MATERIAL command overrides the value input with MATERIAL PROPERTIES.
2. The number of layers, nlam, defined in a COMPOSITE MATERIAL table (nlam rows) must equal the number of layers defined in the corresponding COMPOSITE GEOMETRY (nlam rows) or LAMINA DIRECTIONS (nlam+1 rows) table when assigning values to elements.
3. Layer stresses in the .out file are output by requesting output at Gauss points. All layers will then be output.
4. Composite material data, geometry and lamina directions are allocated to elements using the COMPOSITE ASSIGNMENTS command.
5. If COMPOSITE GEOMETRY is to be assigned, the composite lay-up defined within this data chapter is orientated with respect to either the local element axes or with respect to a CARTESIAN SET defined within the COMPOSITE ASSIGNMENTS data chapter. Note that an angle of 0° aligns with the appropriate x axis and an angle of 90° with the y axis. If LAMINA DIRECTIONS are assigned the angle is used to apply an in-plane rotation of the local x and y axes defining the lamina about the local z axis.
6. For shell elements an appropriate plane stress material model must be used while for solid elements a 3D continuum model should be used (see the LUSAS Element Reference Manual).
7. A maximum number of 210 layers can be assigned to a single element when using a 32 bit version of LUSAS.
8. The COMPOSITE MATERIAL command can be repeated in the datafile or in a restart file to introduce new composite materials into the solution.

Composite Assignments

Composite material and geometry sets are assigned to elements using the COMPOSITE ASSIGNMENTS data chapter.

COMPOSITE ASSIGNMENTS [TITLE title]

L Llast Ldiff First, last and difference between elements with the same element group number.
G Command word which must be typed to use element groups (see Group).
igroup The element group reference number.
icpm The composite material identification number (see Composite Material).
icpg The composite geometry identification number (see Composite Geometry).
icpl The lamina directions identification number (see Lamina Directions).
nsj The orientation of the composite lay-up at node \mathbf{j} (see Notes).
$=0$ for composite orientation with respect to local element axes (see LUSAS Element Reference Manual for element axes definitions)
$=\mathrm{h}$ for composite orientation with respect to a defined CARTESIAN SET (see Cartesian Sets).
nnode Number of nodes

Notes

1. The number of layers, nlam, defined by the COMPOSITE MATERIAL set (nlam rows) and the COMPOSITE GEOMETRY (nlam rows) or LAMINA DIRECTIONS (nlam+1 rows) set must be identical when used in the same assignment.
2. When using COMPOSITE GEOMETRY, the composite lay-up orientation can be defined at each node where the node ordering is defined by the element topology. If the composite orientation is the same for all nodes then only the composite orientation for node 1 need be specified.
3. If the orientations of the composite lay-up are omitted then orientation with respect to the element local axes is assumed ($\mathbf{n s} \mathbf{j}=0$ for $\mathbf{j}=1$, nnode).
4. Orientations with respect to local element axes cannot be mixed with orientations with respect to CARTESIAN SETS for a particular element: either all nodes must
have orientations with respect to the local element axes or with respect to CARTESIAN SETS (although the CARTESIAN SET numbers may be different for each of the nodes).
5. Notes 2 to 4 are not applicable if LAMINA DIRECTIONS have been specified.
6. The COMPOSITE ASSIGNMENTS command can be repeated in the datafile or in a restart file to introduce new composite assignments into the solution.

Element Ages

The element ages data chapter is used to define the age of an element at the response time at which it first becomes active in an analysis. When using the concrete creep and shrinkage models (CEB-FIP, CHINESE, EUROCODE_2) the age from casting to activation can be defined, and the age after casting that shrinkage commences can also be defined. Note that it is assumed that the age that the element first becomes loaded coincides with the element age at activation.

ELEMENT AGES
$\mathrm{L} \mathrm{L}_{\text {last }} \mathrm{L}_{\text {diff }} \quad \mathrm{t}_{0} \quad\left[\mathrm{t}_{\mathrm{s}}\left[\mathrm{t}_{0, T}\right]\right]$
L $\mathrm{L}_{\text {last }} \mathrm{L}_{\text {diff }}$ First, last and difference between element numbers
$t_{0} \quad$ This is the age of an element at the time of activation in an analysis. For the concrete creep and shrinkage material models it is the time between casting and when the element is first loaded (referred to in most design codes as t_{0}).
$\mathrm{t}_{\mathrm{s}} \quad$ This is the age from casting at which shrinkage (see Notes) is deemed to commence (referred to in most design codes as t_{s}). If omitted, $\mathrm{t}_{\mathrm{s}}=0$.
$\mathrm{t}_{0, \mathrm{~T}} \quad$ The temperature-adjusted concrete age computed according to (2.187) of CEB-FIB Model Code 1990 or (5.1-85) of FIP Model Code 2010.

Notes

1. The element age should be defined as the time between casting and the time at which an element is activated. For example, an element could be 40 days old but activated in the analysis on day 28.
2. The ELEMENT AGES command can be repeated in the data file or in a restart file to assign elements ages to new elements introduced into the solution.
3. ELEMENT AGES must be specified if concrete creep and shrinkage models are assigned.
4. Age at which shrinkage begins: For Codes of Practice where autogenous shrinkage and drying shrinkage are handled separately, such as EN1992-1-1, this input refers to the age at which drying shrinkage begins; autogenous shrinkage is always taken
as occurring from when the component is cast. For Codes of Practice where there is no such distinction, this value is used to define the commencement age for all shrinkage.
5. In Modeller, the time units to be used for specifying the ages t_{0} and t_{s} must be consistent with the "Timescale units" selected on the "New Model" dialog (also available on the General tab of the "Model Properties" dialog). Note that Modeller will always convert these ages to seconds when tabulating the Solver data file.

Activate/Deactivate Elements

The activation and deactivation facility accounts for the addition or removal of parts of a model as required by the simulation process. Also known as birth and death, rather than add or remove elements, the facility activates and deactivates elements to model their presence and absence. Staged construction processes, such as tunnelling, are an example of its use with structural analyses.

All elements to be used in the model are specified at the start of the analysis. To model the absence of a part of the model, elements defining it are deactivated. In structural analyses, these elements have their stiffness matrix reduced in magnitude, while for field analysis the conductivity matrix (or other analogous quantity) is reduced. This ensures the deactivated elements have a negligible effect on the behaviour of the remaining model. The element stresses and strains, fluxes and gradients and other analogous quantities are all set to zero.

To model the addition of a part to the model, the elements defining it are activated. In structural analyses, an unmodified stiffness matrix is computed for these elements and the activated elements are introduced in a stress/strain free state, except for any initial stresses or strains that have been defined. Strains are incremented from the point of activation and the current geometry is used to define the activated element's initial geometry. In field analyses activation works in the same manner, except that the quantities affected are the conductivity matrix (or other analogous quantity), the fluxes and the gradients.

By default, all loads applied to deactivated elements are initialised to zero and concentrated loads at nodes common to both active and inactive elements are shuffled to the active element. By setting option 385, however, loads applied to deactivated elements are preserved to enable reapplication if and when the elements are reactivated.

DEACTIVATE ELEMENTS

```
L L Llast L L diff [ninc rdfact stfscl] [fix_free_nodes |
    free_fixed_nodes ][redu_stage]
```

L Llast Ldiff The first element, last element and difference between elements of the series of elements to be deactivated.
ninc The number of increments over which the fraction of residual force is to be redistributed, see Notes (default=1).

$$
\begin{array}{ll}
\text { rdfact } & \text { The fraction of residual force to be redistributed, see Notes }(\text { default }=0.0) . \\
\text { stfscl } & \text { Stiffness scaling reduction factor, see Notes }\left(\text { default }=10^{-7}\right) .
\end{array}
$$

ACTIVATE ELEMENTS

L $L_{\text {last }} L_{\text {diff }}$ [ninc]
L Llast Ldiff The first element, last element and difference between elements of the series of elements to be activated.
ninc The number of increments over which any remaining residual force is to be redistributed, see Notes (default=1).

Notes

1. Restrictions on use. Elements cannot be activated or deactivated in the following circumstances:
2. In explicit dynamics analyses.
3. In Fourier analyses.
4. When using updated Lagrangian or Eulerian geometric nonlinearity.
5. Elements adjacent to slideline surfaces cannot be activated or deactivated.
6. Option 272 and NONLINEAR CONTROL must be specified when elements are to be activated or deactivated.
7. For rdfact $=0.0$, all internal forces associated with deactivated elements will remain in the system (i.e. the stresses, displacements, etc., for the remaining elements in a static structural analysis will remain unchanged if the external load remains constant. The same applies to temperature, fluxes, etc., in a static field analysis)'
For $\mathbf{r d f a c t}=1.0$, all internal forces associated with deactivated elements are removed from the system (i.e. the stresses, displacements, etc., for the remaining elements in a structural analysis will change. The same applies to temperature, fluxes, etc., in a field analysis)
For $1.0>$ rdfact >0.0, a fraction of the internal forces in deactivated elements is removed with the remainder retained in the system for subsequent redistribution (e.g. in a structural analysis with r dfact $=0.1,10 \%$ of internal force is removed so that some stress redistribution takes place on the deactivation stage, 90% is retained for redistribution when the element is subsequently re-activated).
8. When deactivated elements are re-activated, any remaining internal forces associated with the re-activated elements (forces retained from deactivation stage) will be removed from the system so that a stress/flux redistribution takes place.
9. Deactivation and activation can take place over several increments if convergence difficulties are encountered by specifying the parameter ninc. For example, if ninc $=3$ and rdfact $=0.3$, then 10% of the internal force will be removed on the first increment, 20% on the second and 30% on the third. The TERMINATION section in NONLINEAR CONTROL (or alternative CONTROL chapter if applicable) would then have to be defined to cover at least 3 increments (time
steps). See the example on Data Input Examples for Tunnel Excavation. Alternatively, adding the command redu_stage will reduce the internal forces proportionally over the loading stage. ninc is not used.
10. Deactivated elements remain in the solution but with a scaled down stiffness/conductivity/etc., so that they have little effect on the residual structure. The scaling is performed using the input parameter rdfact (default=10-7). In dynamic analyses, the mass and damping matrices are initialised to zero.
11. When an element is deactivated, by default all loads associated with that element are removed from the system and will not be reapplied if an element is subsequently activated. This includes concentrated loads, unless the load is applied to a boundary between active and inactive elements when the load is shuffled to the active element. The only exceptions are prescribed loads (displacement, temperature or other analogous quantity) which can be applied to inactive elements. Accelerations may also be applied in a dynamic analysis but this is not recommended.
Setting option 385 overrides the default load initialisation, preserving loads applied to deactivated elements to enable their reapplication if and when the elements are re-activated.
12. When an element is activated in a subsequent stage of a structural analysis, it is introduced in an unstressed/unstrained state and the initial element geometry is taken as the current geometry. Strains are incremented from the time at which the element is activated. Initial stresses/strains and residual stresses may be defined for an element at the re-activation stage. The same applies to field analyses with analogous quantities of flux and gradient, although a geometry update does not take place.
13. The activation of an element that is currently active results in the initialisation of stresses, strains, fluxes and gradients along with an update of the initial geometry to the current geometry. The element is considered to have just become active. The internal equilibrating forces that currently exist in the element will be immediately redistributed throughout the mesh. This provides a simplified approach to redistribute all the element forces of this newly activated element in one increment, for cases in which no relaxation of the remaining structure was required. See example on Data Input Examples for Tunnel Excavation.
14. The direction of local element axes can change during an analysis when elements are deactivated and reactivated. In particular, 3-noded beam elements that use the central node to define the local axes should be avoided as this can lead to confusion. For such elements the sign convention for bending moments for a particular element may change after re-activation (e.g. it is recommended that BSL4 should be preferred to BSL3 so that the 4th node is used to define the local axes and not the initial element curvature).
15. Care should be taken when deactivating elements in a geometrically nonlinear analysis, especially if large displacements are present. It may be necessary to apply prescribed displacements to deactivated elements in order to attain a required configuration for reactivation.
16. It should be noted that the internal forces in the elements will not balance the applied loading until all residual forces in activated/deactivated elements have been redistributed.
17. The nodes of inactive elements can be held in their initial positions by using the command fix_free_nodes which fixes all nodes which are attached to the inactive elements but not those which are shared with active elements. If they subsequently need to be released the free_fixed_nodes command is used.

Data Input Examples for Tunnel Excavation

Element Numbers Defining the Tunnel Lining and Void

Example 1. Residual Force Redistribution in Increments During Deactivation

```
MATERIAL PROPERTIES
C concrete properties
1 14E9 0.3 2400
C soil properties
2 15E7 0.3 2000
MATERIAL ASSIGNMENTS
C assign all elements with soil material properties
12001 2
SUPP NODE
1 59 1 R R
C Apply load to set up initial stress state in soil and
maintain constant (however load
```

```
C does not have to remain constant)
LOAD CASE
C surface surcharge
CL
60 95 1 0 -5000
C soil self weight
CBF
1 200 1 0 -2000
NONLINEAR CONTROL
ITERATION 10
CONVERGENCE 0.1 0 0.1 0 0 0
OUTPUT O 1 1
C Deactivate the elements representing the excavated
material.
```


DEACTIVATE ELEMENTS

```
C f l i number of increments redistribution factor
C (default=1) (default=0.0)
```

$23 \quad 55 \quad 1$
3
0.5

```
C This will have the effect of deactivating elements 23 to 55 and redistributing 0.5 of
C the equilibrating forces to the remaining mesh prior to the activation of elements. This
C can be interpreted as a relaxation of the stresses around the tunnel excavation, i.e
C displacements and stresses will change so that the boundary of the excavation changes
C shape. If factor=0.0 then all the residual force will be stored for subsequent
C redistribution. This redistribution stage will take place over the next 3 increments.
C i.e. Residual force \(=(1-0.5 * 1 / 3) \mathrm{Fr}\) inc 2
C \(\quad(1-0.5 * 2 / 3) \mathrm{Fr} 3\)
C
(1 - 0.5) Fr 4
C More than one increment will only be required if convergence difficulties occur. For
```

```
C linear elastic materials the same final result will be
obtained irrespective of the
C number of increments used to redistribute the
residual. For nonlinear materials it may
C not be possible to redistribute the force in one
increment. Allowing a staged
C redistribution gives the opportunity to change the
applied loading during this process.
C Redistribution increments (initial loading is
preserved except for load on deactivated
C elements):
NONLINEAR CONTROL
TERMINATION 0 3
MATERIAL ASSIGNMENTS
C Redefine material properties for tunnel lining
38 55 1 1
C Reactivate elements modelling the tunnel lining
ACTIVATE ELEMENTS
C f l i number of increments (default=1)
    38 55 1
    4
C This command will re-activate elements 38 to 55 in an
unstressed/unstrained state and
C any remaining residual equilibrating force associated
with these elements will be
C redistributed throughout the mesh over the next 4
increments.
C i.e. Residual force = 0.75*Fr' inc 5
C 0.5*Fr' 6
C 0.25*Fr' 7
C 0.0*Fr' 8
C where Fr'= (1-0.5)Fr (from above)
C Redistribute the remaining residual forces
NONLINEAR CONTROL
TERMINATION O 4
END
```


Example 2. Simplified Version with No Redistribution at the Deactivation Stage

```
MATERIAL PROPERTIES
C concrete properties
14E9 0.3 2400
C soil properties
2 15E7 0.3 2000
MATERIAL ASSIGNMENTS
C assign all elements with soil material properties
1200 1 2
SUPP NODE
1 59 1 R R
C Apply load to set up initial stress state in soil
LOAD CASE
C surface surcharge
CL
60 95 1 0 -5000
C soil self weight
CBF
1 200 1 0 -2000
NONLINEAR CONTROL
ITERATION 10
CONVERGENCE 0.1 0 0.1 0 0 0
OUTPUT O 1 1
MATERIAL ASSIGNMENTS
C Redefine material properties for tunnel lining
38 55 1 1
C Activate elements modelling the tunnel lining
ACTIVATE ELEMENTS
```

```
        \(38 \quad 55 \quad 1\)
```

 \(38 \quad 55 \quad 1\)
 1
 1
 C This command will activate elements 38 to 55 and
restore them to an unstressed/

```
```

C unstrained state while the internal equilibrating
force associated with these elements
C will be redistributed throughout the mesh. If it is
not required to allow some
C relaxation of the boundary of the excavation prior to
installing the tunnel lining, then
C the activation of the tunnel lining can be done in one
step. The activation of an
C element which is currently active results in a
resetting of the stresses/strains to zero
C and the element is considered to have just become
active.
C Deactivate the elements that represent the tunnel void
(i.e. the area inside the lining)

```

\section*{DEACTIVATE ELEMENTS}
```

C f l i number of increments redistribution factor
C (default=1) (default=0.0)

```
\(\begin{array}{lll}23 & 37 & 1\end{array}\)
1
1.0
```

C This will have the effect of deactivating elements 23 to 37 which form the tunnel void
C and redistributing all residual force associated with these elements
END

```

\section*{Example 3. Alternative Method of Defining the Tunnel Lining}

\section*{MATERIAL PROPERTIES}

C concrete properties
\(1 \quad 14 \mathrm{E} 9 \quad 0.32400\)

\section*{C soil properties}
\(2 \quad 15 \mathrm{E} 7 \quad 0.3 \quad 2000\)
C At the outset, deactivate the elements that will represent the tunnel lining on re-
C activation.

\section*{DEACTIVATE ELEMENTS}

C f l i number of increments redistribution factor

C (default=1) (default=0.0)
238255111.0

C For simplicity, these elements may be thought of as being superimposed on elements 38 to
C 55 which formed the tunnel lining in the previous analyses. However, only the external
C boundary nodes of the tunnel lining must be common with nodes in theunderlying mesh.
C In other words, these elements are connected to the elements which represent the soil at
C the external boundary but the internal element boundaries are discretised with different
C node numbers to form a free surface i.e. the tunnel void.

\section*{MATERIAL ASSIGNMENTS}

C assign soil material properties
120012
C assign lining elements with concrete material
properties
23825511
SUPP NODE
1591 R R
C fix the additional nodes defining the internal boundary of the tunnel lining (i.e.
C located on the elements that are deactivated from the outset). This permits the internal
C dimensions of the tunnel opening to be preserved if critical. Note that prescribed
C displacements could also be applied to these nodes to dictate the shape of the internal
C surface prior to activating the tunnel lining.
2012891 R R
C Apply load to set up initial stress state in soil.
LOAD CASE
C surface surcharge
```

CL
60 95 1 0 -5000
C soil self weight
CBF
1 200 1 0 -2000
NONLINEAR CONTROL
ITERATION 10
CONVERGENCE 0.1 0 0.1 0 0 0
OUTPUT O 1 1
C Activate elements modelling the tunnel lining
ACTIVATE ELEMENTS
C f l i number of increments (default=1)
238 255 1
1
C Deactivate the elements that represent the overall
tunnel excavation
DEACTIVATE ELEMENTS
C f l i number of increments
redistribution factor
C (default=1) (default=0.0)
23 55 1 1 1.0
SUPP NODE
C Release the nodes modelling the interior walls of the
lining
201 289 1 F F
END

```

\section*{Drained/Undrained Properties}

Elements with two phase properties can be assigned a drained or undrained status in a steady state analysis. If new load is applied to an undrained element it will result in an increase in the pore water pressure. A consolidation analysis can be used to drain any excess pore water pressures generated in the undrained element. Alternatively, the undrained status can be reset to drained and the excess pore water pressure dissipated instanteously

\section*{DRAINED ELEMENTS}

\section*{L \(\mathrm{L}_{\text {last }} \mathrm{L}_{\text {diff }}\)}

\section*{UNDRAINED ELEMENTS}

L \(\mathrm{L}_{\text {last }} \mathrm{L}_{\text {diff }}\)
L Llast Ldiff First, last and difference between elements with DRAINED / UNDRAINED properties.

\section*{Notes}
1. DRAINED / UNDRAINED properties may be re-assigned during the solution.
2. By default all two-phase elements are DRAINED at the start of the analysis.

\section*{Damping Properties}

The data section DAMPING PROPERTIES is used to define the frequency dependent Rayleigh damping parameters for elements which contribute to the damping of the whole structure. This section is valid for viscous (modal) and structural (hysteretic) damping and may be utilised when distributed viscous and/or structural damping factors are required using MODAL_DAMPING CONTROL (see Modal Damping Control).

DAMPING PROPERTIES [VISCOUS | STRUCTURAL]
\(\mathrm{L} \mathrm{L}_{\text {last }} \mathrm{L}_{\text {diff }}<\left(\mathrm{a}_{\mathrm{r}} \mathrm{b}_{\mathrm{r}} \mathrm{W}\right)_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)
L Llast Ldiff First, last and difference between elements with identical damping properties.
ar Mass Rayleigh damping parameter.
br Stiffness Rayleigh damping parameter.
w Circular frequency at which the damping parameters apply.
n Number of frequencies for which Rayleigh parameters are specified. If more than one set of parameters are specified linearly interpolated parameters will be computed at the required frequency.

\section*{Notes}
1. If only \(\mathbf{a}\) and \(\mathbf{b}\) are input it is assumed the Rayleigh parameters are the same for all frequencies.
2. The Rayleigh parameters are interpolated at the required frequency.
3. If this data chapter is omitted and distributed damping factors are required, then Rayleigh parameters from material properties are used.

\section*{Slidelines}

Slidelines may be used to model contact and impact problems, or to tie dissimilar meshes together. Several slideline options are available:
\(\square\) Tied sliding

\section*{\(\square\) General sliding without friction}

\section*{G General sliding with friction}
- Sliding only (without friction or lift off)
\(\square\) Null
The tied slideline option allows meshes of differing degrees of refinement to be connected without the need of a transition zone between the meshes. It can be very useful in creating a highly localised mesh in the region of high stress gradients.

The friction/no-friction slideline types model the finite relative deformation of contacting bodies in two or three dimensions where the contact is stationary or sliding, constant or intermittent. The sliding only option is similar but does not permit intermittent contact, i.e. the surfaces are kept in contact, allowing frictionless sliding contact without lift-off to be modelled. A null slideline is ignored during the analysis, useful when performing a preliminary check on a model.

Each slideline comprises two surfaces - the master surface and the slave surface. These surfaces are specified using nodes in the region where contact is expected to occur. The nodes are ordered to form contact segments where each segment is a boundary face of an underlying element.

Note that, except for tied slidelines, the slideline contact facility is inherently nonlinear and must be used in a nonlinear analysis. This requires the use of the NONLINEAR CONTROL data chapter.

The slideline facility requires the following data input:
- Slideline property definition
- Slideline surface definition
- Slideline assignments

The SLIDELINE PROPERTIES command specifies the properties of each slideline, such as the stiffness scale factor and the coefficient of friction. The topology of each slideline surface is specified using the SLIDELINE_SURFACE DEFINITION data section. The segment ordering defined in this section should be checked before a full analysis is undertaken. Alternatively, or in conjunction with SLIDELINE_SURFACE DEFINITION, the AUTOMATIC SURFACE command can be used to define all valid external surfaces as possible contact surfaces. The slideline surfaces are associated with the required slideline properties using the SLIDELINE ASSIGNMENT data section. With automatically generated contact surfaces, The SLIDELINE ASSIGNMENT MATERIAL data section must be used.

The slideline type, (e.g. tied, general sliding with friction), can be redefined during an analysis. This involves re-specifying the SLIDELINE ASSIGNMENT data chapter. SLIDELINE PROPERTIES can also be redefined and assigned.

Temperature dependent SLIDELINE PROPERTIES can also be specified. In this case the TABLE command must follow the SLIDELINE PROPERTIES command. Lines of
data listing the slideline properties at particular reference temperatures are then input. The stiffness scale factors and the coefficient of friction are linearly interpolated across the reference temperatures. All other properties remain unchanged.

A nonlinear friction law can be introduced by using the SLIDELINE PROPERTIES USER command. This command allows a set of friction parameters to be defined that can vary with the temperature, velocity and acceleration of the contacting surfaces. These properties may also be specified as temperature dependent.

The following features are available with slidelines
\(\square\) Contact constraint enforcement By default the penalty method is used. The augmented Lagrangian method is also available.
- Geometric definition Slideline surfaces can be modelled using linear/bilinear segments, or as curved contact surfaces using quadratic patches. With quadratic patches the curved contact geometry is constructed from a patch of slideline segments, while the contact forces are distributed to the closest segment. The quadratic patches and the curved geometry are set-up automatically within LUSAS Solver. The standard patch consists of two linear segments in 2D and four bi-linear segments (quadrilateral or triangular) in 3D. Where a patch definition is not possible the standard linear/bi-linear definition is used instead.
- Rigid surfaces Rigid slideline surfaces are available for modelling contact with rigid bodies. Rigid surfaces can be assigned to valid structural elements as well as to special rigid surface elements R2D2, R3D3 and R3D4. The latter are recommended for modelling rigid bodies since they remove the need for defining structural elements, hence speeding up the solution. All nodes on a rigid surface should be completely restrained. Rigid surfaces cannot contact each other so only one slideline surface can be defined as rigid - master or slave.
- Close contact This defines a region above a slideline surface within which a soft spring is applied, but with no force. The stiffness of this spring is applied to all nodes that lie within the close-contact region, thus softening the transition between in-contact and out-of-contact states. This can help the nonlinear convergence when in-contact/out-of-contact chatter is experienced.
\(\square\) Contact cushioning This facility applies a contact force and stiffness above a surface that increases exponentially as a node moves closer to the surface. This cushions the impact of a node with the surface and softens the transition between in-contact and out-of-contact states. This can help stabilise in-contact/out-of-contact chatter and any consequent nonlinear convergence difficulties.
- Slideline extensions The boundary of a slideline segment can be expanded by specifying a slideline extension. Points outside the segment but within the extended boundary are considered valid for contact. This is particularly useful near the edges of a slideline surface, where a node could be on a segment in
one nonlinear iteration and off the segment in the next iteration - a form of chatter that can cause nonlinear convergence difficulties.
- Pre-contact This facility brings two bodies into initial contact using interface forces that act between the slideline surfaces. One of the surfaces must be free to move as a rigid body and the direction of movement is dictated by the interface forces (which act normal to the surface), applied loading and support conditions.
Pre-contact can be used to overcome problems encountered when applying an initial load (other than prescribed displacement) to a discrete body that, without the slideline, would undergo unrestrained rigid body motion. This is particularly the case when an initial gap exists between the contacting surfaces and a load is applied to bring them into contact. Pre-contact is only applicable to static analyses.
Warning. Incorrect use of this procedure could lead to initial straining in the bodies or to an undesired starting configuration.
D RESET DISPLACEMENT Care should be taken if the RESET DISPLACEMENT command is used. On restoration of the displacements all contact forces developed prior to the reset will be lost.
The slideline commands can be repeated in the datafile or restart file to introduce new slidelines.

The following table gives a list of elements valid for use with slidelines.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Element type & LUSAS e & lements & & & & \\
\hline Engineering beams & BMS 3 , & BTS 3 & & & & \\
\hline Thick shells & TTS3, & QTS 4 & & & & \\
\hline Plane stress continuum & TPM3, QPM4M, & TPM3E, QPK8, & TPK 6, QPM8 & TPM6, & QPM4, & QPM4E, \\
\hline Plane strain continuum & TNK6, QPN4E, & TPN3, QPN4L, & TPN3E, QPN4M, & TPN6, QPN8 & QNK8, & QPN4, \\
\hline Axisymmetric solid continuum & \[
\begin{aligned}
& \text { TAX3, } \\
& \text { QAX4L, }
\end{aligned}
\] & \[
\begin{aligned}
& \text { TAX3E, } \\
& \text { QAX4M, }
\end{aligned}
\] & TAX6, QAX8, & TXK6, QXK8, & QAX4, & QAX4E, \\
\hline Solid continuum & \begin{tabular}{l}
TH4, \\
PN6L, HX8, \\
HX20,
\end{tabular} & \begin{tabular}{l}
TH4E, \\
PN12, \\
HX8E, \\
HX20K,
\end{tabular} & \begin{tabular}{l}
TH10, \\
PN12L, \\
HX8L, \\
HX20L
\end{tabular} & \begin{tabular}{l}
TH10K, \\
PN15, \\
HX8M,
\end{tabular} & \begin{tabular}{l}
PN6, \\
PN15K, \\
HX16,
\end{tabular} & \begin{tabular}{l}
PN6E, \\
PN15L, \\
HX16L,
\end{tabular} \\
\hline Continuum two-phase & TH10P, QPN8P & TPN6P, & PN12P, & PN15P, & HX16P, & HX20P, \\
\hline 2D interface & IAX4, & IAX6, & IPN4, & IPN6 & & \\
\hline 3 D interface & IS 6 , & IS8, & IS16, & IS12 & & \\
\hline 2 D rigid surface & R2D2 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Element type & LUSAS elements \\
\hline 3D rigid surface & R3D3, R3D4
\end{tabular}

\section*{Slideline Properties}

The data section SLIDELINE PROPERTIES is used to define the overall features of each slideline, such as the interface stiffness scale factor and friction coefficient. If a table of temperature dependent properties is specified under this data chapter, linear interpolation will be applied to all material data. It is possible to redefine and assign the SLIDELINE PROPERTIES as an analysis progresses.

SLIDELINE PROPERTIES [TITLE title]
isprop \(M_{\text {scale }} S_{\text {scale }} m \quad \mathbf{a}_{\mathbf{r}}\) extn \(T \quad C_{\text {cont }}\) Pentol Pupfac \(\mathbf{T}_{\mathbf{z}}\)
isprop Slideline property assignment number
\(\mathbf{M}_{\text {scale }} \quad\) Interface stiffness scale factor for master surface (see Notes)
For automatic surfaces factor is applied to IMAT1, where IMAT1 is a material property identifier
Explicit solution schemes \((\) default \(=0.1)\)
Implicit/static solution schemes \((\) default \(=1.0)\)
Tied slidelines (default=100.0)
\(\mathbf{S}_{\text {scale }} \quad\) Interface stiffness scale factor for slave surface
For automatic surfaces factor is applied to IMAT2, where IMAT2 is a material property identifier
Explicit solution schemes (default \(=0.1\) )
Implicit/static solution schemes \((\) default \(=1.0)\)
Tied slidelines (default=100.0)
m Coulomb friction coefficient \((\) default \(=0.0)(\) see Notes \()\)
\(\mathbf{a}_{\mathbf{r}} \quad\) Zonal contact detection parameter (default=0.01) (see Notes)
extn \(\quad\) Slideline extension distance \((\) default \(=0.0)\)
The extension eliminates interpenetration for slideline surfaces which are significantly irregular. More details may be found in the LUSAS Theory Manual.
\(\mathbf{T} \quad\) Reference temperature (default \(=0.0\) )
C \(_{\text {cont }} \quad\) Close contact detection parameter, see Notes (default=0.001)
Pentol Penetration tolerance with augmented Lagrangian method (see Notes)
Pupfac Penalty update factor with augmented Lagrangian method (default=10.0) (see Notes)
\(\mathbf{T}_{\mathbf{z}} \quad\) Tied slideline detection zone (default a large number) (see Notes)

\section*{Notes}
1. The stiffness scale factors control the amount of interpenetration between the two slideline surfaces. Increasing these factors will decrease the relative penetration.
2. The zonal contact detection parameter in conjunction with the system parameter BBOXF controls the extent of the contact detection test. In the first phase a bounding box is defined around each body or contact surface in turn permitting an efficient check for their overlap. BBOXF is a scaling factor applied to this box, the default value of 1.2 is sufficient for most analyses. For the first iteration of precontact analyses BBOXF is replaced by the system parameter BBOXFP whose default value is 10.0 . Then overlap is checked between bounding boxes containing individual surface segments and a nodal volume around the contacting node. The zonal detection distance sets the size of the nodal volume for a node and is calculated by multiplying the zonal detection parameter and the largest dimension of the model in the coordinate directions. A value of 1 will force a search of every single possible contact segment. The default value of 0.01 searches a zone which is \(1 \%\) of the model size centred on the contacting node.
3. The close contact detection parameter, Ccont, is used to check if a node is threatening to contact a slideline surface. The surface tolerance used is the product of the detection parameter and the length of the surface segment where the node is threatening to penetrate. If the distance between the surfaces is less than the surface tolerance a spring is included at that point just prior to contact. By default, the stiffness of the spring is taken as \(1 / 1000\) of the surface stiffness. The factor of \(1 / 1000\) can be changed by redefining the SYSTEM parameter SLSTCC. The inclusion of springs in this manner helps to stabilise the solution algorithm when surface nodes come in and out of contact during the iteration process. The close contact detection facility is not available for explicit dynamics.
4. Slideline properties can be redefined at selected stages in an analysis by respecifying SLIDELINE PROPERTIES.
5. The explicit tied slideline option is more robust when the mesh with the greatest node density is designated the slave surface.
6. Scaling of the slideline surface stiffnesses is automatically invoked at the beginning of each analysis if the ratio of the average stiffness values for each constituent slideline surface differ by a factor greater than 100 (a default value, modifiable using the SLSTFM SYSTEM parameter). In this manner account is made for bodies having significantly different material properties. Option 185 will suppress this facility.
7. The Coulomb friction can only be specified for slideline type 2 .
8. The augmented Lagrangian scheme aims to reduce penetrations to below the penetration tolerance Pentol. If 0.0 is specified for the penetration tolerance, a machine dependant near-zero value is used. On 32-bit Windows PCs, the default is \(1 \times 10^{-9}\).
9. If the penetrations are not reducing quickly enough in the augmented Lagrangian scheme, the penalty update procedure can be used to increase the penalty parameters (contact stiffnesses) in order to accelerate the reduction. The procedure identifies nodes where the reduction in penetration is slow and updates the penalty parameter in the following manner.
\[
\begin{array}{llll}
\varepsilon_{\mathrm{N}}^{\mathrm{k}+1}=\beta \varepsilon_{\mathrm{N}}^{\mathrm{k}} & \text { if } & {\left[\frac{g_{N}^{k}}{g_{N}^{k-1}}\right] \geq \gamma} \\
\varepsilon_{\mathrm{N}}^{\mathrm{k}+1}=\varepsilon_{\mathrm{N}}^{\mathrm{k}} & \text { if } & {\left[\frac{g_{N}^{k}}{g_{N}^{k-1}}\right]<\gamma}
\end{array}
\]
where \(\varepsilon_{\mathrm{N}}\) is the penalty parameter (contact stiffness), \(\mathrm{g}_{\mathrm{N}}\) is the penetration, k is the augmented Lagrangian update number, \(\beta\) is Pupfac and \(\gamma=0.25\).
10. The penetration tolerance Pentol and penalty update factor Pupfac are only valid with the augmented Lagrangian method
11. The tied slideline detection zone \(\mathbf{T}_{\mathbf{z}}\) is a dimensional value that sets the maximum distance from a node to the adjacent surface beyond which no contact element will be formed. For instance if a body is 1 m long a value of 1 mm will probably be acceptable. Contact elements will only be formed for nodes which are within 1 mm of the surface.

\section*{User-Defined Slideline Properties}

The data section SLIDELINE PROPERTIES USER allows user supplied subroutines defining a nonlinear friction law to be called from within LUSAS. This allows you to introduce a friction law which may depend on the velocity, acceleration or temperature of the contacting surfaces. The user subroutines can only be used to compute the friction parameters and the allowable tangential frictional force on a surface. The remaining input data is treated in the same way as data specified under SLIDELINE PROPERTIES. As temperatures are passed into the user routines, together with a table of friction parameters, you can override interpolation of the friction parameters if necessary. It is possible to redefine SLIDELINE PROPERTIES USER as an analysis progresses.

Source code access is available to these interface routines and object library access is available to the remainder of the LUSAS code to enable this facility to be utilised. Contact FEA for full details of this facility. Since user specification of a nonlinear friction law involves the external development of source FORTRAN code, as well as access to LUSAS code, this facility is aimed at the advanced LUSAS user.

SLIDELINE PROPERTIES USER nfric [TITLE title]
isprop \(M_{\text {scale }} S_{\text {scale }}<\mu_{i}>_{i=1, \text { nfric }} \alpha_{r}\) extn \(T \quad C_{\text {cont }}\) Pentol Pupfac \(T_{z}\)
nfric Number of friction parameters
isprop Slideline property assignment number
\(\mathbf{M}_{\text {scale }} \quad\) Interface stiffness scale factor for master surface
For automatic surfaces factor is applied to material IMAT1, where IMAT1 is a material property identifier Explicit solution schemes (default \(=0.1\) ) Implicit/static solution schemes \((\) default \(=1.0)\)
\begin{tabular}{|c|c|}
\hline & Tied slidelines (default=100.0) \\
\hline \multirow[t]{5}{*}{\(S_{\text {scale }}\)} & Interface stiffness scale factor for slave surface \\
\hline & For automatic surfaces factor is applied to material IMAT2, where IMAT2 is a material property identifier \\
\hline & Explicit solution schemes ( default \(=0.1\) ) \\
\hline & Implicit/static solution schemes ( default \(=1.0\) ) \\
\hline & Tied slidelines (default=100.0) \\
\hline m & Friction parameters for user defined friction law \\
\hline \multirow[t]{3}{*}{\(a_{r}\)
extn} & Zonal contact detection parameter ( default \(=0.01\) ) \\
\hline & Slideline extension distance ( default \(=0.0\) ) \\
\hline & The extension eliminates interpenetration for slideline surfaces which are significantly irregular. See Notes (more details may be found in the LUSAS Theory Manual). \\
\hline T & Reference temperature ( default \(=0.0\) ) \\
\hline C \({ }_{\text {cont }}\) & Close contact detection parameter, see Notes (default=0.001) \\
\hline Pentol & Penetration tolerance with augmented Lagrangian method (see Notes) \\
\hline Pupfac & Penalty update factor with augmented Lagrangian method (default=10.0) (see Notes) \\
\hline \(\mathrm{T}_{\mathrm{z}}\) & Tied slideline detection zone (default a large number) (see Notes) \\
\hline
\end{tabular}

\section*{Notes}
1. The stiffness scale factors control the amount of interpenetration between the two slideline surfaces. Increasing these factors will decrease the relative penetration.
2. The zonal contact detection parameter in conjunction with the system parameter BBOXF control the extent of the contact detection test. In the first phase a bounding box is defined around each body or contact surface in turn permitting an efficient check for their overlap. BBOXF is a scaling factor applied to this box, the default value of 1.2 is sufficient for most analyses. For the first iteration of precontact analyses BBOXF is replaced by the system parameter BBOXFP whose default value is 10.0 . Then overlap is checked between bounding boxes containing individual surface segments and a nodal volume around the contacting node. The zonal detection distance sets the size of the nodal volume for a node and is calculated by multiplying the zonal detection parameter and the largest dimension of the model in the coordinate directions. A value of 1 will force a search of every single possible contact segment. The default value of 0.01 searches a zone which is \(1 \%\) of the model size centred on the contacting node.
3. The number of friction parameters defined must agree with the number expected nfric. All data values must be specified when using this data chapter, default values for data items other than the friction parameters will be set if \(\mathbf{D}\) is specified in the required locations.
4. Slideline properties can be redefined at selected stages in an analysis by respecifying SLIDELINE PROPERTIES USER.
5. The close contact detection parameter, Ccont, is used to check if a node is threatening to contact a slideline surface. The surface tolerance used is the product of the detection parameter and the length of the surface segment where the node is threatening to penetrate. If the distance between the surfaces is less than the surface tolerance a spring is included at that point just prior to contact. By default, the stiffness of the spring is taken as \(1 / 1000\) of the surface stiffness. The factor of \(1 / 1000\) can be changed by redefining the SYSTEM parameter SLSTCC. The inclusion of springs in this manner helps to stabilise the solution algorithm when surface nodes come in and out of contact during the iteration process. The close contact detection facility is not available for explicit dynamics.
6. The augmented Lagrangian scheme aims to reduce penetrations to below the penetration tolerance Pentol. If 0.0 is specified for the penetration tolerance, a machine dependant near-zero value is used. On 32-bit Windows PCs, the default is \(1 \times 10^{-9}\).
7. If the penetrations are not reducing quickly enough in the augmented Lagrangian scheme, the penalty update procedure can be used to increase the penalty parameters (contact stiffnesses) in order to accelerate the reduction. The procedure identifies nodes where the reduction in penetration is slow and updates the penalty parameter in the following manner.
\[
\begin{array}{lll}
\varepsilon_{\mathrm{N}}^{\mathrm{k}+1}=\beta \varepsilon_{\mathrm{N}}^{\mathrm{k}} & \text { if } & {\left[\frac{g_{N}^{k}}{g_{N}^{k-1}}\right] \geq \gamma} \\
\varepsilon_{\mathrm{N}}^{\mathrm{k}+1}=\varepsilon_{\mathrm{N}}^{\mathrm{k}} & \text { if } & {\left[\frac{g_{N}^{k}}{g_{N}^{k-1}}\right]<\gamma}
\end{array}
\]
where \(\varepsilon_{\mathrm{N}}\) is the penalty parameter (contact stiffness), \(\mathrm{g}_{\mathrm{N}}\) is the penetration, k is the augmented Lagrangian update number, \(\beta\) is Pupfac and \(\gamma=0.25\).
8. The tied slideline detection zone \(\mathbf{T}_{\mathbf{z}}\) is a dimensional value that sets the maximum distance from a node to the adjacent surface beyond which no contact element will be formed. For instance if a body is 1 m long a value of 1 mm will probably be acceptable. Contact elements will only be formed for nodes which are within 1 mm of the surface.
9. The penetration tolerance Pentol and penalty update factor Pupfac are only valid with the augmented Lagrangian method

\section*{Slideline Surface Definition}

The data sections SLIDELINE_SURFACE DEFINITION is used to define the topology of each slideline surface.
```

SLIDELINE_SURFACE DEFINITION nsurf [TITLE title]
< N N > > i=1,nseg
nsurf The surface number to be defined
Ni
nseg The number of nodes defining each segment

```
SLIDELINE_SURFACE DEFINITION RIGID nsurf
\(<\mathbf{N}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{nseg}}\)
[TITLE
nsurf \(\quad\) title]
\(\mathbf{N}_{\mathrm{i}} \quad\) The surface number to be defined
nseg \(\quad\) The node numbers defining each segment

\section*{Notes}
1. A segment is defined as an element face which forms part of the possible contact surface. Two nodes are required to define the slideline for 2D analyses. Three or four nodes, are required to define a segment for a 3D problem, depending on the particular element face. The segments must be located along the object boundary with segment node ordering defined in a consistent direction, however, segments may be specified in an arbitrary order.
2. For 2 D surfaces, the master surface segment node ordering must be defined such that outward normals are defined. The slave surface node ordering must then be in the same direction. If Option 61 is used, both the master and slave surface segment node ordering must be defined such that outward normals are defined. The examples below show these cases.
3. For 2 D slidelines the positive local x axis for the master surface coincides with the direction of segment node ordering. A right hand screw rule is then applied with a positive local z axis pointing out of the page. The positive local y axis defines the direction of the surface normal, see Example 1. 2D Slideline Surface Definition.
4. For 3D surfaces, the node definition for each surface segment must be labelled in an anti-clockwise direction (when looking towards the structure along the outward normal to the slideline surface). The numbering convention obeys the right hand screw rule. See the examples below.
5. Sharp corners (of approximately \(90^{\circ}\) ) are generally best described by the use of two surfaces.
6. Coarse mesh discretisation in the region of contact should be avoided.
7. A slideline extension of the order of the anticipated allowable penetration is recommended for 3D slide surfaces.
8. The coordinates of all contact nodes which are determined to have penetrated prior to the commencement of the analysis are reset normally to the contacted surface. Option 186 will suppress this facility as required. This resetting of coordinates is not available for tied slidelines.
9. SLIDELINE_SURFACE DEFINITION RIGID is used to define a rigid surface. Such a surface is non-deformable and all nodes on it must be fully restrained. These restraints should be defined in the SUPPORT NODES data section.
10. Standard node-on-segment contact assumes an equal weighting of force and stiffness at each contact node. Specifying isldst=1 uses a weighting based on contacted areas, which should improve the accuracy of the results.
11. Standard node-on-segment contact assumes an equal weighting of force and stiffness at each contact node. Specifying isldst=1 uses a weighting based on contacted areas, which should improve the accuracy of the results.

\section*{Slideline Surface Automatic}

The slideline contact surfaces can be defined automatically by including the command

\section*{SLIDELINE_SURFACE AUTOMATIC}

\section*{Notes}
1. All the external faces corresponding to valid underlying element types are extracted and united to form the contact surfaces. A valid element type is one that has edges or faces that can be used in a SLIDELINE SURFACE DEFINITION, however, elements with quadratic edges or faces are not currently supported.
2. The material identifiers, IMAT1 and IMAT2, belonging to the elements which have come into contact are used to identify the correct contact conditions set by the SLIDELINE ASSIGNMENTS MATERIAL command.
3. Care must be taken to avoid unintended contact when shells are present. A node is above the surface when it lies in the direction of the positive normal of the shell.
4. Manual slideline surfaces (defined by SLIDELINE_SURFACE DEFINITION) can be used in conjunction with the automatic surfaces. Nodes lying on a manually defined surface can only come in contact with the corresponding master or slave surface. However, a node on an automatically generated surface can come in contact with a manually defined surface.
5. The external surface data is saved in a .ASL file. In the event of resolving the problem the nodal topology data is checked against the data stored in this file and if there are no changes the surface data is reused.
6. If the angle between two adjacent segments is less than or equal to the system parameter ANGLEC then it is deemed to be an edge. Slideline extensions can be applied at this point if they have been defined. ANGLEC has a default value of \(120^{\circ}\).
7. The contact surfaces must be defined using linear geometry, i.e. curved quadratic patches (islgem \(=2\) ) are not currently supported.

\section*{Slideline Assignments}

The data section SLIDELINE ASSIGNMENTS assembles manually defined slideline surfaces into the required slidelines.

SLIDELINE ASSIGNMENTS [TITLE title]
numsl \(M_{\text {nsurf }} S_{\text {nsurf }}\) isprop isltyp [P \({ }_{\text {cont }}\) islcsh islpss islgem isldst islaug islpup alstat alsymf]
numsl The slideline number
\(\mathbf{M}_{\text {nsurf }} \quad\) The master slideline surface number
\begin{tabular}{|c|c|}
\hline \(\mathrm{S}_{\text {nsurf }}\) & The slave slideline surface number \\
\hline isprop & Slideline property number specified in SLIDELINE PROPERTIES data chapter \\
\hline isltyp & ```
Type of slideline treatment required for this surface (see Notes) :-
    \(=0\) for a null slideline
    \(=1\) for general sliding without friction (default)
    \(=2\) for general sliding with friction
    \(=3\) for tied slidelines
    \(=4\) for sliding only (without friction or lift off)
``` \\
\hline \(\mathrm{P}_{\text {cont }}\) & Pre-contact detection flag :no pre-contact process \(\quad=0\) (default) pre-contact required \(=1\) (see Notes) \\
\hline islcsh & \begin{tabular}{ll}
Contact cushioning parameter & \\
No contact cushioning & \(=0\) (default) \\
Contact cushioning required & \(=1\) (see Notes)
\end{tabular} \\
\hline islpss & \begin{tabular}{cc}
Number of contact check passes (see Notes) :- \\
Two pass & \(=2\) (default) \\
One pass & \(=1\)
\end{tabular} \\
\hline islgem & \[
\begin{array}{ll}
\text { Contact surface geometric definition :- } & \\
\begin{array}{ll}
\text { Linear (2D), bi-linear (3D) } & =1 \text { (default) } \\
\text { Curved quadratic patches } & =2 \text { (see Notes) }
\end{array} \text { l } \quad \text {. }
\end{array}
\] \\
\hline isldst & Use of distributed force/stiffness using contact areas (see Notes) 0 (off, default), 1 (on) \\
\hline islaug & Use of the augmented Lagrangian method (see Notes) 0 (off, default), 1 (on) \\
\hline islpup & \begin{tabular}{l}
Use of the penalty update procedure with the augmented Lagrangian method (see Notes) \\
0 (off, default), 1 (on)
\end{tabular} \\
\hline alstat & \begin{tabular}{l}
Contact status with the augmented Lagrangian method (see Notes) \\
Uzawa's method \\
Powell's method
\[
\begin{aligned}
& =1 \text { (default) } \\
& =2
\end{aligned}
\]
\end{tabular} \\
\hline alsymf & \begin{tabular}{l}
Symmetrised Coulomb friction with the augmented Lagrangian method (see Notes) \\
0 (off, default), 1 (on)
\end{tabular} \\
\hline
\end{tabular}

\section*{Notes}
1. The slideline surface numbers specified must be previously defined in the SLIDELINE_SURFACE DEFINITION command.
2. A slideline surface may only be used once.
3. Specifying a friction coefficient with isltyp \(=1\) or 3 is invalid.
4. For 3D slideline surfaces the assignment of the master and slave surfaces is immaterial.
5. A null slideline may be specified if a slideline is defined in the data file but not required for a particular analysis.
6. Assignments can be changed at selected stages in an analysis by re-specifying SLIDELINE ASSIGNMENTS. However, assignments must remain unchanged for master and slave surface numbers, pre-contact detection, geometric definition and symmetrised Coulomb friction with the augmented method. When changing between frictional and other types of slideline the SLIDELINE PROPERTIES command will also be required to modify the friction coefficient.

7. The pre-contact detection flag, Pcont, is used to overcome problems encountered when applying an initial load to a discrete body which would be subjected to unrestrained rigid body motion. This procedure is only applicable to static analyses and it is required when an initial gap exists between the slideline surfaces and a loading type other than PDSP or TPDSP is to be applied. When this facility is invoked the surfaces of the slidelines are brought together using interface forces (which act at right angles to the surfaces) and the applied loading. One of the surfaces must be defined on a discrete part of the structure which is free to move as a rigid body and the direction of movement is dictated by the interface forces, applied loading and support conditions. Incorrect use of this procedure could lead to initial straining in the bodies or to an undesired starting configuration. By selecting specific slidelines for the pre-contact process (i.e. slidelines where initial contact is expected) minimum initial straining will occur and more control over the direction of rigid body movement can be exercised. In the example above precontact is defined for slideline 1 but not for slideline 2 . The force used to bring the bodies together (in addition to the applied loading) is computed from the product of the slideline stiffness and gap distance between the surfaces. This force can be factored using the SYSTEM parameter SLSTPC, (default=1.0). It is possible to define all slidelines for pre-contact and to specify a small value for SLSTPC (typically 1E-6), however, the initial applied loading must be small so that unrestrained rigid body motion does not occur and in general this approach tends to be less stable and is not recommended. It should be noted that if this procedure is used correctly any initial straining caused by the pre-contact process will disappear after the iterations for the first increment have lead to convergence.
8. Contact cushioning is designed to remove discontinuities in force and stiffness between in and out of contact states via an exponential function, thus aiming to
reduce associated problems such as chatter. It can only be specified for general sliding with and without friction slideline types.
Compared to the basic penalty method, however, contact cushioning regards every node on every slideline as being active and may therefore increase processing time depending upon the number of slidelines and slideline nodes. If it is possible to make an assessment of potential areas where chatter may occur in a problem, contact cushioning should be used selectively on slidelines in those areas, although there is no harm in specifying it for all valid slidelines.
Contact cushioning uses an estimate of the normal contact force scalar in the exponential function. Where it is felt that the estimate of the normal contact force scalar is going to be consistently computed as either being too high or too low, the SYSTEM parameter SLFNCS (default \(=1.0\)) can be used to factor those estimates.
9. Number of contact check passes is controlled by islpss. Currently this value only functions for rigid surfaces. For non-rigid surfaces, the default value of 2 will be used.
10. If islpss is set to one for a rigid surface, only the penetration of deformable surface into the rigid surface is prevented (and not visa versa).
11. Because rigid surfaces can not contact each other, only one of the slideline surfaces in a slideline assignment can be a rigid surface.
12. Curved slidelines (islgem=2) are defined using quadratic patches. These use information from a patch of slideline segments to define the curved geometry, while the contact forces are distributed to the closest segment. The quadratic patches and the curved geometry are set-up automatically within LUSAS Solver with no additional user specification. The standard patch configuration consists of two linear segments in 2D and four bi-linear segments (quadrilateral or triangular) in 3D. Where a patch definition is not possible the standard linear/bi-linear definition is used instead.
13. The quadratic patch formulation has a non-symmetric tangent stiffness matrix. The non-symmetric solver is therefore set automatically by LUSAS Solver.
14. Large mesh 'bias' with quadratic patches should be avoided to ensure a reasonable curve fit of the curved contact surface.
15. The standard slideline formulation applies an equal weighting to the force and stiffness at all contact nodes. With isldst \(=1\), the weighting is based on the contacted area, accounting for effects at the edge of the contact area and for a nonuniform mesh.
16. The augmented Lagrangian method uses both penalty parameters and Lagrangian multipliers to reduce contact penetrations to below the tolerance specified under SLIDELINE PROPERTIES. The Lagrangian multipliers are introduced without increasing the number of variables in the solution. If at convergence the penetrations are not acceptable, the Lagrangian multipliers are updated using the penalty parameters, and the solution is rerun. This process is repeated until either
the penetrations are acceptable or the maximum updates is reached (See Nonlinear Control).
An augmented Lagrangian solution may therefore take longer than the standard penalty solution, but will be less sensitive to the penalty parameter and does not generate additional variables from the Lagrangian multipliers.
17. If the augmented Lagrangian solution is not reducing penetrations quickly enough, the penalty update procedure can be used to increase the penalty parameters (contact stiffnesses) in order to accelerate the reduction. Details of the procedure can be found under SLIDELINE PROPERTIES. The procedure only works with the augmented Lagrangian method.
18. The augmented Lagrangian criterion for determining whether a node is in contact is based on the sign of the Lagrangian multiplier rather than whether a node has penetrated. A positive value means a node is under tension and must therefore be out of contact, while a negative values means the node is under compression and therefore in contact. There are two techniques for employing this criterion. With Powell's method, the status of a node is only updated at the end of a Lagrangian loop, while with Uzawa's method the status is updated during each iteration.
19. The standard penalty and augmented Lagrangian formulations for Coulomb friction involve a non-symmetric stiffness matrix. Specifying alsymf=1 invokes a formulation that generates a symmetric stiffness matrix. This uses the Lagrangian multiplier from the previous update, rather than the current normal force, when computing the frictional force. Although the solution is quicker, it can lag behind the non-symmetric version by one Lagrangian update.

\section*{Example 1. 2D Slideline Surface Definition}

\section*{Without Option 61:}

SLIDELINE PROPERTIES 1
1 D D D D O
SLIDELINE DEFINITION 1
FIRST 12
INC \(1 \begin{array}{lll}5 & 1\end{array}\)
SLIDELINE DEFINITION 2
FIRST 1112
\(\begin{array}{llll}\text { INC } & 1 & 1 & 4\end{array}\)
SLIDELINE ASSIGNMENT
1121 D

With Option 61:
SLIDELINE PROPERTIES 1 1 D D D D O
SLIDELINE DEFINITION 1
FIRST 12
INC \(1 \begin{array}{lll}1 & 1\end{array}\)
SLIDELINE DEFINITION 2
FIRST 1211
\(\begin{array}{llll}\text { INC } & 1 & 1 & 4\end{array}\)
SLIDELINE ASSIGNMENT
1121 D

\section*{Chapter 3 LUSAS Data Input}

\section*{Example 2. 3D Slideline Surface Definition}

SIDELINE PROPERTIES 1
1 DD DD O
SIDELINE DEFINITION 2
FIRST \(1 \begin{array}{lllll} & 2 & 4\end{array}\)
INC \(\begin{array}{llllll}1 & 1 & 1 & 1 & 2\end{array}\)
\(\begin{array}{llllll}\text { INC } & 3 & 3 & 3 & 3 & 2\end{array}\)
SIDELINE DEFINITION 1
\(10 \quad 131211\)
SLIDELINE ASSIGNMENT
1211 D

\section*{Slideline Assignments Materials}

The data section SLIDELINE ASSIGNMENTS MATERIALS complements the SLIDELINE ASSIGNMENT command but is used specifically with automatically generated surfaces for which a slideline surface number is not available.

SLIDELINE ASSIGNMENTS MATERIALS [TITLE title]
numsl IMAT1 IMAT2 isprop isltyp [P \({ }_{\text {cont }}\) islcsh islpss islgem]
numsl The slideline number
IMAT1 The master slideline surface material identifier IMAT
IMAT2 The slave slideline surface material identifier IMAT
isprop Slideline property number specified in SLIDELINE PROPERTIES data chapter
isltyp Type of slideline treatment required for this surface :-
\(=0\) for a null slideline
\(=1\) for general sliding without friction (default)
\(=2\) for general sliding with friction
\(=3\) for tied slidelines
\(=4\) for sliding only (without friction or lift off)
\(\mathrm{P}_{\text {cont }} \quad\) Pre-contact detection flag :no pre-contact process \(\quad=0\) (default) pre-contact required \(\quad=1\)
islcsh Contact cushioning parameter No contact cushioning \(\quad=0\) (default) Contact cushioning required \(\quad=1\)
islpss Number of contact check passes (see Notes) :-
Two pass \(\quad=2\) (default)

One pass \(\quad=1\)
Islgem Contact surface geometric definition: = 1

\section*{Notes}
1. Automatically generated contact surfaces are not formally identified prior to solving the problem. In the absence of a specific surface identifier contact conditions are specified using the material identifiers IMAT corresponding to the elements on the contacted and contacting surface.
2. A node may come in contact with more than one surface but a contact element is only formed with the surface for which the contact node has penetrated least.
3. The contact surface geometry must be linear (islgem \(=1\)), i.e. curved quadratic patches (islgem \(=2\)) are not currently supported.
4. All parameters are as defined in SLIDELINE ASSIGNMENTS. Further details should are given in this data chapter.

\section*{Thermal Surfaces}

Heat flow across the gap between two surfaces is modelled in LUSAS by the specification of links which define both the path of the heat flow as well as the gap's conductivity. The thermal surface data chapter describes a framework in which these links can be automatically generated and updated. In addition to direct heat flow between two points, defined by a link, indirect heat flows are possible by the formation of a link to an environmental node. Heat may also be lost directly to the general environment.

\section*{Heat Transfer by Conduction and Convection}

The surfaces are discretised as a series of segments defined by the external nodes of the structure. In generating the links, heat flowing through an area of each segment is "lumped" to each of the segment nodes. The contributing portion of the segment surface assigned to a node is defined, for the following discussion, as a nodal area. It is then assumed that this heat flows in a direction normal to the nodal area. The origin of the normal flow vector is taken to be at a point one quarter the distance from the node to the segment centroid as this more fairly represents the source of the flow as being from an area rather than a node. To determine the heat flow from a nodal area to an opposing segment, the intercept of its nodal normal with that segment is sought. The size of the gap is defined as the magnitude of the intercept vector.

Environmental nodes may be used to represent the medium which separates the thermal surfaces between which heat is flowing. As the length of a link directly connecting two surfaces increases, the validity of the assumed flow becomes more tenuous. Alternatively, instead of forming a link, heat could flow directly to the surroundings, but in this case, the heat is lost from the solution. This, in some cases, is a poor approximation to reality, particularly when the thermal surfaces form an enclosure. In this instance an environmental node can be used to model the intervening medium, with all nodal areas which are not directly linked to other areas linked to the environmental node. The environmental node then re-distributes heat from the hotter surfaces of the enclosure to the cooler ones without defining the exact process of the transfer.

More than one environmental node may be defined and they may be connected together using links so that a better approximation to the behaviour of medium may be obtained.

The precise form of the link depends on the specified data, with the possibility of links forming between two surfaces, or a segment forming a link to either an environmental node or to the general environment, or finally, the surface may be considered to be insulated without any associated links. However, the order of priority of formulation of link type is well defined, and is set out below (the commands, which are written in capitals, are detailed in subsequent sections):
\(\square\) For nodal area normals which have intercepted another surface segment:
a. If a nodal area has penetrated another surface and THERMAL CONTACT PROPERTIES have been specified a link is formed using these properties.
b. If a nodal area has penetrated another surface and no THERMAL CONTACT PROPERTIES have been specified and if THERMAL GAP PROPERTIES LINEAR or THERMAL GAP PROPERTIES GENERAL have been specified then these properties are used.
c. If no penetration has occurred and if THERMAL GAP PROPERTIES LINEAR or THERMAL GAP PROPERTIES GENERAL have been specified then these properties are used.
d. If the length of the normal vector is less than or equal to the maximum permissible gap size defined by the properties in \(\mathbf{b}\). or \(\mathbf{c}\). then a link is formed otherwise it is considered that the surfaces are out of the range of influence and no link is formed.
- For nodal areas not linked to a surface segment by not having met conditions a. to d. above or not having intercepted another segment, and with THERMAL ENVIRONMENTAL PROPERTIES assigned:
e. If the nodal area is associated to an environmental node then a link is formed to the node.
f. If the nodal area is not associated to an environmental node, a link is formed to the general environment.
\(\square\) If none of the conditions a. to \(\mathbf{f}\). apply then no link is formed.
Updated geometry is calculated in a structural analysis and is transferred to the thermal analysis using the thermo-mechanical coupling commands. If contact pressures are required, a slideline analysis must be run.
\(\square\) For conduction and convection the thermal surface input requires the following data:
a. Specification of gap properties using the commands THERMAL GAP PROPERTIES LINEAR THERMAL GAP PROPERTIES GENERAL THERMAL CONTACT PROPERTIES
b. Specification of thermal surface segments using the command THERMAL_SURFACE DEFINITION
c. Assignment of both surfaces and gap properties to a gap using the commands

\section*{THERMAL ASSIGNMENT}

GAP SURFACE DEFINITION
Additionally, the following data may also be prescribed:
d. Environmental surface properties (these define the conductivity between a surface and the environment) using the commands

\section*{THERMAL ENVIRONMENT PROPERTIES \\ THERMAL_SURFACE PROPERTY ASSIGNMENT}
e. Environmental nodes may be defined and assigned to thermal surfaces using the commands:

\section*{ENVIRONMENTAL NODE DEFINITION \\ ENVIRONMENTAL NODE ASSIGNMENT}
and are effective if THERMAL ENVIRONMENT PROPERTIES and THERMAL_SURFACE PROPERTY ASSIGNMENTS have been specified.

\section*{Heat Transfer by Diffuse Radiation}

Heat transfer by diffuse radiation is modelled by defining the thermal surfaces that are engaged in radiative exchange. The thermal surfaces are then assigned to a radiation surface. The radiation surface defines those thermal surfaces that will exchange heat by radiation, since radiative heat transfer will only take place between thermal surfaces that define the same radiation surface. The geometry of the thermal surfaces is used to calculate the view factors between the segments that define the thermal surfaces.

A view factor between two segments expresses the fraction of radiative energy leaving one segment that is directly incident on the other segment. If two segments do not have a direct view of each other, for example they may face in opposite directions or there may be other segments blocking the direct view, then the view factor is zero. However two segments with a zero view factor may still exchange heat by reflection off other segments in the thermal surfaces defining the complete radiation surface. If the thermal surfaces defining a radiation surface form an enclosure then the sum of the view factors for any surface segment must be 1.0 . The view factors for each radiation surface are calculated in a data check run as well as a full solution run. All the thermal surfaces are assumed to be opaque so that the reflectivity is given by (1.0- emissivity) and the emissivity may be input by the user and assigned to each thermal surface.

The emissivity is a fraction between 0.0 and 1.0 and describes the emissive power of a surface as a fraction of the blackbody emissive power. The blackbody emissive power is given by sT 4 , where
- \(\boldsymbol{\sigma}=\) Stefan Boltzmann constant \(=5.6697 \mathrm{e}-8 \mathrm{~W} / \mathrm{m} 2 / \mathrm{K} 4\)
- \(\quad \mathbf{T}=\) temperature of the body in Kelvin

If you are working in units other than Watts and metres then the Stefan-Boltzmann constant will need to be set using the SYSTEM parameter STEFAN. By default all temperature data input and output by LUSAS will be in Kelvin, however you can choose to work in Celsius (Centigrade) by using Option 242. The temperature units of the Stefan Boltzmann constant must always be input in Kelvin.

Using the view factors and emissivity data LUSAS can assemble a matrix that describes all the possible paths for heat to be radiated around the radiation surface. If
the radiation surface does not form an enclosure then the segments may optionally radiate to the environment as well as each to other.

If you have a symmetric problem in which the plane(s) of symmetry cut through a radiation surface then it is necessary to define the plane(s) of symmetry. This enables LUSAS to impose the zero flux condition necessary along a plane of symmetry in a thermal model.

For diffuse radiation the thermal surface input requires the following data:
1. Specification of surface radiation properties using the command:

THERMAL RADIATION PROPERTIES
2. Specification of thermal surface segments using the command:

THERMAL_SURFACE DEFINITION
3. Assignment of radiation properties to thermal surfaces using the command:

THERMAL_SURFACE PROPERTY ASSIGNMENT
4. Assignment of thermal surfaces to form a radiation surface using the commands:

THERMAL ASSIGNMENT
RADIATION SURFACE

Additionally the following data may be specified if the model contains planes of symmetry that cut through thermal surfaces defining a radiation surface:
1. Specification of planes of symmetry using the command:

THERMAL RADIATION SYMMETRY
2. Assignment of symmetry planes to a symmetry surface using the command: THERMAL_SURFACE SYMMETRY ASSIGNMENT
3. Assignment of a symmetry surface to a radiation surface using the commands:

\section*{THERMAL ASSIGNMENT RADIATION SURFACE}

\section*{Thermal Gap Properties Linear}

The data section THERMAL GAP PROPERTIES LINEAR is used to define thermal properties which may take a linear variation across a gap opening. It is possible to redefine the properties as an analysis progresses, however, the properties must also be reassigned using the THERMAL ASSIGNMENT data chapter.

THERMAL GAP PROPERTIES LINEAR [TITLE title]
gmat \(k_{0} \quad\left[h_{\mathrm{co}} \mathrm{dk} / \mathrm{dl} \mathrm{dh} / \mathrm{dl} \mathrm{L}_{\max } \mathrm{T}\right]\)
gmat Gap properties identifier
ko Gap conductance for a closed gap
hco Convective heat transfer coefficient for a closed gap
\(d k / d L \quad\) Variation of gap conductance with gap opening
\(\mathrm{dh} / \mathrm{dL} \quad\) Variation of convective heat transfer coefficient with gap opening
Lmax Maximum link length beyond which a link will not be created
\(\mathbf{T} \quad\) Reference temperature

\section*{Notes}
1. If the gap opening is such that a negative gap conductance or convective coefficient is calculated, then that gap property is set to zero.
2. The maximum length, Lmax, limits the range of validity of the link element to which these gap properties will be applied. If the length of the link is calculated to be greater than Lmax, then heat will flow either to an environmental node, to the general environment or the surface will be considered to be insulated, depending on the ENVIRONMENTAL SURFACE PROPERTIES input.
3. Gap openings are calculated by evaluating the intersection of the surface normal, originating from a point \(1 / 4\) the distance from a segment node to the segment centroid, with an opposing surface.
4. Gap properties are assigned to a gap using the THERMAL ASSIGNMENT data chapter.

\section*{Thermal Gap Properties General}

The data section THERMAL GAP PROPERTIES GENERAL is used to define thermal properties which can vary according to the size of the gap opening. It is possible to redefine the properties as an analysis progresses, however, the properties must also be reassigned using the THERMAL ASSIGNMENT data chapter.

THERMAL GAP PROPERTIES GENERAL [TITLE title]
gmat \(<\mathbf{k}_{\mathbf{i}} \quad \mathbf{h}_{\mathrm{ci}} \quad \mathrm{L}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}} \quad \mathbf{T}\)
\(\mathrm{n} \quad\) Number of gap openings for which properties will be defined
gmat Gap properties identifier
ki Gap conductance for gap opening Li
hci Convective heat transfer coefficient for gap opening Li
\(\mathrm{Li} \quad\) Size of the ith gap opening
\(\mathbf{T} \quad\) Reference temperature
Notes
1. Lmax and Lmin are defined as the maximum and minimum of \(\operatorname{Li}(\mathbf{i}=1, \mathbf{n})\).
2. If the actual gap opening is less than the minimum value of gap opening, Lmin, the gap properties are assumed to be those corresponding to Lmin. If the gap opening is such that a negative gap conductance or convective coefficient is calculated, then that gap property is set to zero.
3. If the actual gap opening is greater than the maximum value of gap opening, Lmax, then heat will flow either to an environmental node, or to the general
environment or the surface will be considered to be insulated, depending on the ENVIRONMENTAL SURFACE PROPERTIES input.
4. If only 1 point is input, \(\mathbf{n}=1\), Lmax is taken to be L 1 and the gap properties are constant over a gap opening of 0 to L1.
5. Gap openings are calculated by evaluating the intersection of the surface normal, originating from a point \(1 / 4\) the distance from a segment node to the segment centroid, with an opposing surface.
6. Gap properties are assigned to a gap using the THERMAL ASSIGNMENT data chapter.

\section*{Thermal Contact Properties}

The data section THERMAL CONTACT PROPERTIES is used to define thermal properties which can vary according to the surface pressure between two contacting surfaces. The surface pressures must be evaluated using the slideline facility and introduced to the thermal analysis via thermo-mechanical coupling. It is possible to redefine the properties as an analysis progresses, however, the properties must also be reassigned using the THERMAL ASSIGNMENT data chapter.
```

THERMAL CONTACT PROPERTIES n [TITLE title]
cmat < ki h hci Pri
n Number of contact pressures for which properties will be defined
cmat Contact properties identifier
ki Gap conductance for contact pressure Pi
hci Convective heat transfer coefficient for contact pressure Pi
Pi The ith contact pressure defined
T Reference temperature
Notes

```
1. Pmax and Pmin are defined as the maximum and minimum of \(\operatorname{Pi}(\mathbf{i}=1, \mathbf{n})\).
2. If the surface pressure lies outside the range bounded by Pmax and Pmin, then the value taken is Pmin if the surface pressure is less than Pmin and correspondingly the value of Pmax is taken if the surface pressure exceeds Pmax. If the gap opening is such that a negative gap conductance or convective coefficient is calculated, then that gap property is set to zero.
3. Contact pressures can only be calculated using contact forces evaluated from a slideline analysis. The thermo-mechanical coupling option must be used to transfer this data to the thermal analysis.
4. Contact forces in a slideline analysis are computed if a node penetrates the opposing surface, whilst in a thermal analysis a contact area is calculated if a point \(1 / 4\) the distance from the node to the segment centroid has penetrated the opposing surface. This can occasionally lead to different contact predictions between the
analyses, particularly at the ends of surfaces or if a sharp surface impacts on a smooth surface.
5. Contact pressure is calculated by dividing the nodal force by the area of all adjacent surfaces which are in contact with opposing surfaces.
6. If a surface is not in contact, a thermal link will be established either to an opposing surface, an environmental node, the general environment or the surface may be considered to be insulated, depending on the ENVIRONMENTAL SURFACE PROPERTIES input.
7. Contact properties are assigned to a gap using the THERMAL ASSIGNMENT data chapter.

\section*{Thermal Radiation Properties}

The data section THERMAL RADIATION PROPERTIES is used to define the emissivity of thermal surfaces engaged in heat transfer by radiation.

THERMAL RADIATION PROPERTIES [TITLE title]
rmat \(\mathbf{e} T\)
rmat Radiation property identifier
e Emissivity
\(\mathbf{T}\) Reference temperature

\section*{Notes}
1. All surfaces are diffuse and opaque so the reflectivity is given by (1-emissivity).
2. The radiation properties are assigned to a thermal surface using the THERMAL_SURFACE PROPERTY ASSIGNMENT data chapter.
3. By default all temperatures input and output in heat transfer problems involving radiation will be in Kelvin. Option 242 may be set to allow temperatures to be input and output in Celsius (Centigrade).
4. Option 131 cannot be used with radiation properties. This is because Option 131 relies on a symmetric matrix and radiation is non-symmetric.

\section*{Thermal Environment Properties}

The data section THERMAL ENVIRONMENT PROPERTIES is used to define the heat transfer coefficients for the interface of a surface and a bounding medium. The thermal environmental properties are properties of a surface, not a gap, and are assigned directly to a surface using the THERMAL_SURFACE PROPERTY ASSIGNMENT data chapter. Properties may be redefined as an analysis progresses, however, to invoke the redefinition the properties must also be reassigned.
```

THERMAL ENVIRONMENT PROPERTIES [TITLE title]
emat k [hc [eenv] envtmp T]

```
```

emat Environment properties identifier
k Surface conductance to environment
hc Surface convective heat transfer coefficient
eenv Environment emissivity (see Notes)
envtmp Environmental temperature
T Reference temperature
Notes

```
1. A surface segment will try to establish a link with another surface segment. If it fails to do so, heat can flow to an environmental node or to the general environment. The conduction properties for this flow are defined using THERMAL ENVIRONMENT PROPERTIES. If these properties are not assigned to a surface and a link is not formed, and the surface does not define a RADIATION SURFACE, then surface is treated as though it is insulated.
2. If the surface has an associated environmental node, a link is established to this node with a conductivity defined using the THERMAL ENVIRONMENT PROPERTIES; the environmental temperature, envtmp, is ignored. If there is not an associated environmental node, heat is lost directly to the environment using a conductivity defined using the THERMAL ENVIRONMENT PROPERTIES; the environment takes a temperature of envtmp.
3. To specify the environment emissivity Option 253 must be set. The environment emissivity is only used if a segment within a RADIATION SURFACE has a view factor to the environment that exceeds a defined tolerance. The view factor to the environment for a surface segment is defined by 1.0 - (sum of the view factors from the segment to all the other segments defining the RADIATION SURFACE). The tolerance may be set by the system variable TOLFIJ.
4. Thermal environment properties are assigned to a surface using the THERMAL_SURFACE PROPERTY ASSIGNMENT data chapter.

\section*{Thermal Radiation Symmetry}

The data section THERMAL RADIATION SYMMETRY is used to define lines or planes of symmetry that cut through radiation surfaces.

THERMAL RADIATION SYMMETRY [TITLE title]
LINE nsym \{NODES N1 N2 | EQUATION LX LY L\}
PLANE nsym \{NODES N1 N1 N3 | EQUATION CX CY CZ C\}
nsym Symmetry line or plane identifier
N1, N2, N3 Node numbers defining a line or plane of symmetry
LX, LY, L Coefficients in the line equation LX.X \(+\mathbf{L Y} . \mathrm{y}=\mathrm{L}\)
\(\mathbf{C X}, \mathbf{C Y}, \mathbf{C Z}, \mathbf{C} \quad\) Coefficients in the plane equation \(\mathbf{C X} . \mathrm{x}+\mathbf{C Y} . \mathrm{y}+\mathbf{C Z} . \mathrm{z}=\mathbf{C}\)

\section*{Notes}
1. A line of symmetry must always lie in the global \(X Y\) plane of the model.
2. A line of symmetry may be used in either a 2 D , axisymmetric or 3 D analysis. In an axisymmetric analysis a line of symmetry must be perpendicular to the axis about which the model is spun. In a 3D analysis a line of symmetry is converted to a plane of symmetry passing through the defined line and parallel to the global Z axis of the model.
3. A plane of symmetry may be used in either a 2 D , axisymmetric or 3 D analysis. In a 2 D analysis the plane of symmetry must be parallel to the global Z axis of the model. In an axisymmetric analysis a plane of symmetry must be perpendicular to the axis about which the model is spun and parallel to the global Z axis of the model.
4. Radiation symmetry lines and planes only need to be defined when the plane(s) of symmetry in a model cuts through a radiation surface. Symmetry planes are not required if no radiation surfaces are defined.
5. The symmetry planes are assigned to a symmetry surface using the THERMAL_SURFACE SYMMETRY ASSIGNMENT data chapter.

\section*{Thermal Surface Symmetry Assignment}

The data section THERMAL_SURFACE SYMMETRY ASSIGNMENT is used to assign THERMAL RADIATION SYMMETRY lines and planes to a symmetry surface.
\begin{tabular}{lll}
THERMAL_SURFACE & SYMMETRY ASSIGNMENT isym [TITLE title] \\
< nsym \(_{\mathrm{i}}\) & \(>_{\mathrm{i}=1, \mathrm{npln}}\) \\
isym & Symmetry surface identifier & \\
npln & Number of lines and/or planes of symmetry defining symmetry surface \\
nsym & npln symmetry line and/or plane identifiers defining symmetry surface
\end{tabular}

\section*{Notes}
1. The number of symmetry planes assigned to a symmetry surface must be sufficient to enable LUSAS to generate the full radiation surface by mirroring the defining thermal surfaces successively in each symmetry plane in the order in which the symmetry identifiers are specified in the assignment command.
2. The symmetry surface is assigned to a radiation surface using the RADIATION SURFACE data chapter.

\section*{Thermal Surface Definition}

The data section THERMAL_SURFACE DEFINITION is used to define the topology of each thermal surface. It is possible to redefine the surfaces as an analysis progresses, however, the surfaces must also be reassigned using the THERMAL GAP

ASSIGNMENT or the THERMAL_SURFACE PROPERTY ASSIGNMENT data chapters.

THERMAL_SURFACE DEFINITION ntsurf [TITLE title]
< Ni >i=1,nseg
ntsurf Thermal surface identifier
nseg Number of nodes defining each segment
\(\mathrm{Ni} \quad\) nseg node numbers defining segment

\section*{Notes}
1. A segment is defined as an element face which forms part of the thermal surface. Two nodes are required to define the surface for 2D analyses. Three or four nodes are required to define a segment for a 3 D problem, depending on the particular element face. The segments must be located along the object boundary with segment node ordering defined in a consistent direction, however, segments may be specified in an arbitrary order.
2. The heat flow from a surface is along a vector which is normal to the surface of the segment. For segments in two dimensions, the normal is defined using a right-hand screw rule with the local x -axis running from the first node to the second, the y axis defines the surface normal with the \(z\)-axis coming out of the problem plane. For 3D surfaces, the node definition for surface segments must be labelled in an anti-clockwise direction (when looking towards the structure along the outward normal to the thermal surface).
3. If two 2 D elements of different thickness are connected to a segment node, the thickness of the thermal segment is taken as the average of the two element thicknesses.
4. Thermal surface definitions are assigned using the THERMAL ASSIGNMENT data chapter.

\section*{Thermal Surface Property Assignments}

The data section THERMAL_SURFACE PROPERTY ASSIGNMENTS assigns the THERMAL ENVIRONMENT PROPERTIES and THERMAL RADIATION PROPERTITES to a thermal surface previously defined using the THERMAL_SURFACE DEFINITION command.

THERMAL_SURFACE PROPERTY ASSIGNMENT [TITLE title]
ntsurf emat rmat [npnts]
ntsurf Thermal surface identifier
emat Thermal environment properties identifier
rmat Thermal radiation properties identifier
npnts Number of sub-segments to use in the calculation of radiation view factors. A default value of 2 will be used if not input by the user and if the thermal surface defines a radiation surface, otherwise default \(=0\)

\section*{Notes}
1. THERMAL ENVIRONMENT PROPERTIES are not mandatory. If specified then they are used by surface segments that do not form a conduction or convection link to another surface segment, or they may be used by a thermal surface that defines a radiation surface to establish a radiation link to the environment depending on the surface segment environment view factor.
2. THERMAL RADIATION PROPERTIES are mandatory for any thermal surface that defines a radiation surface.
3. If Option 131 is specified when radiation surfaces are defined, the option is switched off and a warning message is issued. (Option 131 is switched on by default).
4. The number of sub-segments will default to a value of 2 if not specified for any thermal surfaces that define radiation surfaces. The number of sub-segments is used in the view factor calculations to sub-divide each surface segment into a series of smaller segments. The accuracy of the view factors will increase as more sub-segments are used but the calculation time will also increase. Try to run with the minimum number of sub-segments that give the required accuracy. The maximum number of sub-segments allowed in 2D and axisymmetric models is 50 and in 3D models the maximum allowed is 30 .
5. THERMAL ENVIRONMENT PROPERTIES and the THERMAL_SURFACE DEFINITION may be redefined and reassigned at any point in the solution.

\section*{Thermal Assignment}

The data section THERMAL ASSIGNMENT is used to define the thermal gaps, their surfaces, properties and processing, and thermal radiation surfaces.

THERMAL ASSIGNMENT [TITLE title]
GAP DEFINITION [UPDATE | NO_UPDATE] [NO_SHADING | SHADING] [ACTIVE | INACTIVE]
GAP PROPERTIES igap gmat [cmat]
GAP SURFACE DEFINITION igap ntsurf \({ }_{1}\) [ntsurf \({ }_{2}\)]
RADIATION SURFACES irad isym [TITLE title]
\(<\) itsurf \(_{i}>_{i=1 \text {,nsurf }}\)
igap Thermal gap identifier
UPDATE Update geometry from coupled structural analysis (default)
NO_UPDATE Prevent processing of updated geometry from coupled structural analysis (default UPDATE geometry)
NO_SHADING No checks for shading of elements defining a thermal gap (default SHADING)
SHADING Check for shading of surface segments defining a thermal gap (default)

ACTIVE Process gap (default)
INACTIVE Suppress further processing of thermal surface (default ACTIVE)
gmat Gap property identifier (default=0, see Notes)
cmat Contact property identifier (default=0, see Notes)
ntsurf1 Thermal surface identifier (see Notes)
ntsurf2 Thermal surface identifier (see Notes)
irad Radiation surface identifier
isym Symmetry surface identifier
nsurf Number of thermal surfaces defining radiation surface
itsurf nsurf Thermal surfaces defining the radiation surface (see Notes)
Notes
1. Gaps may be defined and redefined at any point in the solution.
2. GAP PROPERTIES and GAP SURFACE DEFINITIONS may be re-assigned at any point in the solution.
3. The NO_UPDATE flag can be set to prevent the update and subsequent recalculation of thermal links when geometry is read from a coupled structural analysis. The default is to UPDATE geometry.
4. The SHADING parameter forces a complete search of all possible segments. The nearest segment with which it is possible to form a link is then taken as the linkage segment. By default the parameter is enabled.
5. The INACTIVE command suspends further processing of the thermal gap, which has the effect of insulating flow across it. A gap may be re-activated at a later stage in the solution by re-issuing the GAP DEFINITION command with the ACTIVE parameter.
6. The use of the GAP DEFINITION command resets the UPDATE, SHADING and ACTIVE parameters to their default or defined values.
7. Either a gap property identifier, gmat, or a contact property identifier, cmat, must be specified if a gap, igap, is defined. Specification of a 0 or \(\mathbf{D}\) for an identifier will indicate that no property identifier is to be used.
8. ntsurf1, ntsurf2 and itsurf are the identifiers defined with the THERMAL_SURFACES DEFINITION data chapter.
9. At least one surface, ntsurf1, must be specified if a gap, igap, is defined. Links will then be set up between segments of this surface alone.
10. Only one thermal surface need be defined in a thermal gap. The specification of a second surface, ntsurf2, is for numerical efficiency. The search for linkage between the two defined segments commences with segments on the second surface; if no possible link is found, the first surface is then checked.
11. 0 or \(\mathbf{D}\) should be input for the symmetry surface, isym, if the radiation surface, irad, has no symmetry assignment.
12. Any number of thermal surfaces may be used to define a radiation surface and the thermal surfaces do not have to form a continuous line/surface or enclosure.
13. Radiative heat transfer will only take place between thermal surfaces used in the definition of the same radiation surface.
14. The radiation view factors are only dependent on the geometry of the segments defining the radiation surface. So the view factors are only calculated on the very first iteration of a thermal analysis and are recalculated each time the nodal coordinates are updated in a thermal coupled analysis. Option 256 may be used to suppress the recalculation of the view factors in a coupled analysis.
15. By default all temperatures input and output in heat transfer problems involving radiation will be in Kelvin. Option 242 may be set to allow temperatures to be input and output in Celsius(Centigrade).
16. If radiation surfaces have been defined and the problem units are not Watts and metres then the Stefan Boltzmann constant must be set in the appropriate problem units using the system variable STEFAN.

\section*{Radiation Shading}

The RADIATION SHADING data chapter allows the user to specify which of the thermal surfaces defining a radiation surface are shading surfaces, partially or fully blocking the view between other thermal surfaces in the radiation surface

RADIATION SHADING irad [TITLE title]
< itshad \(>_{i=1, \text { nshad }}\)
irad Radiation surface identifier
nshad Number of shading thermal surfaces
itshad Thermal surfaces that obstruct the view between the thermal surfaces that define the radiation surface.
itshad \(=-1\) : all thermal surfaces defining the radiation surface are assumed to obstruct the view between segments in the radiation surface. itshad \(=0\) : no thermal surfaces obstruct any view between any of the thermal surfaces defining the radiation surface, for example the inside of a cube.

Note. If the radiation shading chapter is omitted then all thermal surfaces defining the radiation surface are assumed to obstruct the view between segments in the radiation surface.

If you are in any doubt about shading within a radiation surface then the fully obstructed option, itshad \(=-1\), should be used. This is because the correct view factors are obtained even if a thermal surface is declared as a shading surface when it is not, but a shading surface not declared will lead to incorrect view factors. However you should always try to correctly identify the shading surfaces as this does speed up the view factor calculation.

\section*{Radiation View Factor Read}

The RADIATION VIEW FACTOR READ chapter allows you to specify which radiation surface view factors are to be read from a file.

RADIATION VIEW FACTOR READ [TITLE title]
irad
irad Radiation surface identifier
The filenames for the radiation surfaces must follow the convention:
jnnmm.rvf
where:
\(\mathbf{j}=\quad\) job name
\(\mathrm{nn}=\quad\) radiation surface counter, \(=01\) for the first radiation surface defined, 02 for the second etc.
\(\mathrm{mm}=\quad\) file counter only required if the radiation surface view factors do not all fit in the default file size of 1Mbyte, =blank for the first file, 01 for the second file, etc.
For example, imagine job radt contains two radiation surfaces with identifiers 3 and 4, then the view factors would be read from files:
\(\square\) radt01.rvf, radt0101.rvf, radt0102.rvf ... for radiation surface 3 , andradt02.rvf, radt0201.rvf, radt0202.rvf ... for radiation surface 4

\section*{Radiation view factor file format}

\section*{Number of integer words}
\begin{tabular}{lccc}
Description & \begin{tabular}{c}
Single \\
Precision
\end{tabular} & \begin{tabular}{c}
Double \\
Precision
\end{tabular} & Convex \\
\hline \begin{tabular}{l}
Geometry type \\
\(1=\) axisymmetric \\
\(2=2 \mathrm{D}\) planar \\
\(3=3 \mathrm{D}\)
\end{tabular} & 1 & 2 & 1 \\
Number of segments & 1 & 2 & 1 \\
Calculation type =1 & 1 & 2 & 1 \\
\begin{tabular}{l}
(100*number of records/file) \\
+ number of bytes/integer
\end{tabular} & 1 & 2 & 1 \\
\begin{tabular}{l}
Number of bytes/real \\
Segment areas \\
Direct interchange area \\
matrix \((A i *\) Fij)
\end{tabular} & N & 2 & N \\
\end{tabular}

Note. Option 255 creates the view factor transfer files for each radiation surface if they do not already exist. These files are very useful if the job is re-run, because the addition of the RADIATION VIEW FACTOR READ chapter makes LUSAS read in the view factors from these files instead of repeating the view factor calculations.

\section*{View Factor Output}

The data section VIEW_FACTOR OUTPUT is used to control the detail of view factor output in the LUSAS output file.

VIEW_FACTOR OUTPUT [TITLE title]
irad irad last irad \({ }_{\text {diff }}\) [iout]
irad iradlast
iraddiff The first, last and difference defining a series of radiation surfaces with identical output control
iout Radiation surface view factor output number
\(=0\) no view factor output
\(=1\) print the sum of the view factors for each surface segment in the radiation surface and, print the largest deviation in any segment sum from 1.0
\(=2\) print all the individual view factors from each surface segment to all the other segments defining the radiation surface and, print the sum of the view factors for each surface segment in the radiation surface and, print the largest deviation in any segment sum from 1.0
\(=3\) print just the largest deviation in any surface segment view factor sum from 1.0

\section*{Notes}
1. The default control value for all radiation surfaces is 1 .

\section*{Environmental Node Definition}

The data section ENVIRONMENTAL NODE DEFINITION defines environmental nodes to be used with the thermal surfaces. They are used to distribute heat transferred to the medium separating the thermal surfaces. Heat will flow, via the medium, from hotter surfaces to cooler surfaces without the direct formation of thermal links between these surfaces. The medium is assumed to be of constant temperature as defined by the temperature of the environmental node.

\section*{ENVIRONMENTAL NODE DEFINITION [TITLE title]}
encode [k C \(a_{r}\) envtmp]
enode Environmental node number (see Notes).
\(\mathbf{k} \quad\) Conductance from the environmental node to an external environment of constant temperature.
C Specific heat capacity multiplied by the mass of the medium associated to the environmental node (used in transient thermal analysis).
ar Association radius. Segment nodes lying outside this radius are not associated to the environmental node (default = infinity, see Notes).
envtmp External environmental temperature.

\section*{Notes}
1. Environmental nodes are assigned to gaps using ENVIRONMENTAL NODE ASSIGNMENTS command.
2. All environmental nodes must be defined in the initial data section prior to the first solution. Their node number and position are defined in NODE COORDINATES. Unassigned and disassociated environmental nodes will take the temperature of the external environment envtmp.
3. Environmental nodes may be connected together using other elements such as thermal links and bars. Care must be taken in ensuring that environmental nodes connected to links have the proper boundary conditions.
4. Environmental nodes may be assigned to more than one gap. More than one environmental node may be assigned to one gap.
5. Environmental nodes may be supported and temperatures prescribed using either the SUPPORT or PDSP commands.
6. Concentrated loads (i.e. thermal fluxes) may not be applied directly to environmental nodes. However, thermal bars may be connected to the environmental node and concentrated loads applied to the end of the thermal bar.
7. The associated radius will be ignored if this value is set to \(\mathbf{D}\). This effectively means that all nodes may be associated with this environmental node.
8. An example on the definition and usage of environmental nodes is given below.

\section*{Environmental Node Assignments}

The data section ENVIRONMENTAL NODE ASSIGNMENTS assigns environmental nodes to thermal gaps.

ENVIRONMENTAL NODE ASSIGNMENTS [TITLE title]
\(\mathrm{N} \mathrm{N}_{\text {last }} \mathrm{N}_{\text {diff }}\) igap
N Nlast Ndiff The first node, last node and difference between nodes of the series of environmental nodes.
igap Identifier defining the gap to which the environmental nodes are to be assigned (see Notes).

\section*{Notes}
1. All previous assignments are overwritten if the command ENVIRONMENTAL NODE ASSIGNMENTS is re-issued in the solution.
2. igap is defined in the THERMAL GAP DEFINITION data chapter.
3. An example of the assignment and usage of environmental nodes is given below.

\section*{Example. Use of Environmental Nodes}

Shown below is an enclosure with a possible distribution of heat flow:

Heat flows directly across the enclosure at its narrowest point B and via an environmental node at its widest point A . At C heat flow is to the environmental node, as the length of its link is beyond the maximum permitted.

Meshing the enclosure surround as shown below:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 46 & 47 & 48 & 49 & 50 & 51 & 52 & 53 & 54 \\
\hline 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 \\
\hline 28 & 29 & 30 & 31 & 32 & & & 35 & 36 \\
\hline 19 & 20 & 21 & 22 & 23 & 24. & & 26 & 27 \\
\hline 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
\end{tabular}
where node 24 is the environmental node. The thermal surface data would take the form:

THERMAL GAP PROPERTIES LINEAR: define gap properties
4410000020
THERMAL ENVIRONMENT PROPERTIES: define surface/gas interface properties
6650
THERMAL_SURFACE DEFINITION 88: define surface as inside of enclosure
```

    FIRST 11 12
        INC 1 1 1 6
    FIRST 17 26
        INC 9 9 3
    FIRST 4443
        INC -1 -1 3
    ```
```

FIRST 41 32
INC -9 -9 2
FIRST 23 22
INC -1 -1 3
2011
THERMAL_SURFACE PROPERTY ASSIGNMENTS: assign surface
properties to surface
88 66
THERMAL GAP ASSIGNMENT: assign properties and surfaces
to gap 1
GAP DEFINITION 1
GAP PROPERTY 1 44
GAP SURFACES DEFINITION 1 88
ENVIRONMENTAL NODE DEFINITION: define node 24 as
environmental node
24
ENVIRONMENTAL NODE ASSIGNMENTS: assign environmental
node 24 to gap 1
24 0}00\quad
:

```

\section*{Nodal Freedoms}

The NODAL FREEDOMS data chapter optionally defines the freedoms at a node when using thick shell elements (TTS3, QTS4, TTS6, QTS8). This command allows five or six degrees of freedom to be specified for a node where either two 'local' or three global rotations will apply. This facility may be used in conjunction with TRANSFORMED FREEDOMS to specify loading or boundary conditions in more convenient directions.

\section*{NODAL FREEDOMS}

N \(\mathrm{N}_{\text {last }} \mathrm{N}_{\text {diff }} \mathrm{n}_{\text {free }}\)
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with identical nodal freedoms.
\(\mathbf{n}_{\text {free }} \quad\) The number of freedoms (must be 5 or 6)

\section*{Notes}
1. Five degrees of freedom will automatically be assigned to a node unless:
2. Another type of element with six global degrees of freedom is connected to the same node.
3. The maximum angle between adjacent shell element normals at the node is greater than the SYSTEM parameter SHLANG (default \(=20^{\circ}\)).
4. If six degrees of freedom are specified for a node, care should be taken that the rotation about the element normal is restrained IF NECESSARY to prevent singularities. Circumstances in which singularities may occur if this rotation is not restrained are:
5. When only one element is connected to the node.
6. When the surface modelled by the elements is quite flat.
7. It is recommended that five degrees of freedom are used whenever possible.
8. A description of the two 'local' rotations is given in the LUSAS Element Reference Manual.

\section*{Freedom Template}

The FREEDOM TEMPLATE command optionally defines the list of freedoms for which values are defined in SUPPORT CONDITIONS, CONSTRAINT EQUATIONS, RETAINED FREEDOMS, MODAL SUPPORTS and LOADCASE data chapters.

\section*{FREEDOM TEMPLATE}
\(<\operatorname{fretyp}_{(\mathrm{i})}>_{\mathrm{i}=1, \mathrm{nfrtmp}}\)
fretyp \(_{(i)}\) Freedom type for each freedom in template.
nfrtmp Number of freedoms in template.
Valid freedom types are:
\begin{tabular}{ll}
U & - displacement in global X-direction. \\
V & - displacement in global Y-direction. \\
W & - displacement in global Z-direction. \\
THX & - rotation about the global X-axis. \\
THY & - rotation about the global Y-axis. \\
THZ & - rotation about the global Z-axis. \\
THL1 & - local rotation about the first loof point. \\
THL2 & - local rotation about the second loof point. \\
DU & - hierarchical displacement \\
DTHX & - hierarchical local rotation \\
PHI & - field variable \\
THA & - rotation about first local axis for thick shells \\
THB & - rotation about second local axis for thick shells \\
PRES & -pore pressure \\
CP & -capillary pressure
\end{tabular}

Notes
1. If FREEDOM TEMPLATE is not specified then the values input on the SUPPORT CONDITIONS, CONSTRAINT EQUATIONS, RETAINED FREEDOMS and LOADCASE will be applied to the freedoms at the node in the order that they occur.
2. The FREEDOM TEMPLATE command must be input when MODAL SUPPORTS are specified.
3. The following LOADCASE options utilise the FREEDOM TEMPLATE information:
4. TPDSP, PDSP, CL, VELOCITY, ACCELERATION, VSL
5. If superelements are used without any standard elements the FREEDOM TEMPLATE command must be specified.
6. If superelements are used that have more freedoms than the standard elements, and values are to be prescribed for these freedoms, then the FREEDOM TEMPLATE must be specified.

\section*{Example. Freedom Templates}

If an analysis uses 3D beam elements with freedoms U, V, W, THX, THY, THZ and the template freedoms are defined as:

\section*{FREEDOM TEMPLATE}

U V THZ
Then the support data would be of the form:

\section*{SUPPORT CONDITIONS}
\(\begin{array}{llllll}1 & 1 & 0 & R & F & R\end{array}\)
which defines U and THZ as fixed and V as free; the other freedoms (i.e. W, THX, THY) will be considered as free.

\section*{Cartesian Sets}

Cartesian coordinate sets may be used to define a set of local xyz-axes relative to the global axes. The data section CARTESIAN SETS is used to define the required local Cartesian coordinate axes.
```

CARTESIAN SETS [CYLINDRICAL [ X | Y | Z ] ] [TITLE
title]
nset No [ [$$
\begin{array}{ll}{1}&{\mp@subsup{N}{2}{\prime}}\end{array}
$$]
CARTESIAN SETS MATRIX [TITLE title]
nset < R R > > i=1,nmatrix

```
```

X,Y,Z The local normal or cylindrical axis direction, default = Z
nset The Cartesian set identification number.
N
N
N}\mp@subsup{\mathbf{N}}{2}{}\quad\mathrm{ Additional node required to uniquely define set.
\mp@subsup{R}{\mathbf{i}}{}}\quad\mathrm{ The matrix terms (row by row) defining the Cartesian set transformation
(see Notes).
nmatrix The number of terms in the Cartesian set transformation matrix (4 for 2D problems and 9 for 3D problems).

```

\section*{Notes}
1. The nodes required to define a Cartesian set are as follows (see figures below):
- 2D problem:
- The N1 node defines the local x -axis.
- The local y-axis is determined using the right-hand screw rule, with the zaxis coming out of the plane of the mesh
- 3D problem:
- The N1 node defines the local x -axis.
- The N 2 node is any point lying in the positive quadrant of the local \(x y-\) plane.
- The local z-axis is defined using the right-hand screw rule.
2. Cylindrical Cartesian sets define the radial, tangent and normal axes transformations. The tangent vector is positive in the direction of a clockwise rotation when looking along the local normal axis from the origin N0. The local axes are evaluated at an arbitrary point within the domain. The nodes used to define a Cylindrical Cartesian set are as follows (see figures below):
- 2D problem:
- No additional data is required.
- The local normal axis is directed out of the plane of the mesh.
- If a node is coincident with N 0 the radial axis will coincide with the x axis and the tangential axis will coincide with the \(y\)-axis.
- 3D problem:
- The N1 node defines the axis from which the cylindrical vectors are evaluated.
- The local normal or cylindrical axis is defined as being positive in the direction from N0 to N1.
- If a node lies on the local normal axis, by default one of the following will be used to define the radial and tangential axes:
a) If the normal axis is colinear with a global axis, the other two global axes will be used to define the radial and tangential axes. b) If the normal axis is not colinear with a global axis, the radial axis
will lie in the \(y z\) (CYLINDRICAL X), \(x z\) (CYLINDRICAL Y) or \(x y\) (CYLINDRICAL Z) plane. The tangential axis will complete the corresponding right-hand coordinate system.
- The order of the axes is as follows:

CYLINDRICAL \(\mathrm{X}-\mathrm{n}^{\prime}, \mathrm{r}^{\prime}, \mathrm{t}^{\prime}\)
CYLINDRICAL Y- \(\mathrm{t}^{\prime}, \mathrm{n}^{\prime}\), \(\mathrm{r}^{\prime}\)
CYLINDRICAL Z - \(r^{\prime}, \mathrm{t}^{\prime}\), \(\mathrm{n}^{\prime}\)
3. The Cylindrical Cartesian set is evaluated at the centre point of an element when determining material properties. The centre point is defined as the average of the nodal \(\mathrm{x}, \mathrm{y}\) and z coordinates.
4. The Cartesian set transformation matrix defines the 2D or 3D transformation from local to global coordinate systems as:
\[
\{U\}=\mid R]^{\top}\left\{u^{t}\right\}
\]
where \(\left\{u^{\prime}\right\}\) is a vector in the local coordinate system and \(\{U\}\) is the vector in the global coordinate system. [R] is the transformation matrix. The dimensions of \([R]\) are \(2 \times 2\) for 2 D problems and \(3 \times 3\) for 3 D problems. [R] may be constructed by defining the orthogonal vector directions which define the local coordinate directions. For example:
\[
[R]^{\top}=\left[\left\{x^{\prime}\right\},\left\{y^{\prime}\right\},\left\{z^{\prime}\right\}\right]
\]
where \(\left\{\mathrm{x}^{\prime}\right\},\left\{\mathrm{y}^{\prime}\right\}\) and \(\left\{\mathrm{z}^{\prime}\right\}\) are vectors defining the local coordinate directions (see figure below for a 2D example).
5. The Cartesian set transformation matrix will be checked for orthogonality and each vector will be automatically normalised.
6. Any number of CARTESIAN SET data chapters may be defined, but if duplicate nset values are specified the last definition will be used.
7. The CARTESIAN SET command can be repeated in the datafile or a restart file to add new Cartesian sets to the solution.
(a) 2D Cartesian Set

(b) Cylindrical Cartesian Set

\section*{Definition of Cartesian Sets}

- \([\mathrm{R}]=\left[\begin{array}{cc}10.0 & 6.0 \\ -3.0 & 5.0\end{array}\right]\) or \(\quad[\mathrm{R}]=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]\)

\section*{Cartesian Set Matrix Definition for 2D Example}

\section*{Cylindrical Sets}

Cylindrical coordinate sets may be used to define sets of local xyz-axes relative to the global axes. The data section CYLINDRICAL SETS provides an alternative form of data input to CARTESIAN SETS CYLINDRICAL but performs the same function.
```

CYLINDRICAL SETS [ X | Y | Z ] [TITLE title]
nset }\mp@subsup{\textrm{X}}{0}{

```
\(\mathbf{X}, \mathbf{Y}, \mathbf{Z} \quad\) The local normal or cylindrical axis direction, default \(=\mathbf{Z}\)
nset The cylindrical set identification number.
\(\mathbf{X}_{0}, \mathbf{Y}_{0}, \mathbf{Z}_{0}\) The coordinates of the origin of the cylindrical axis
\(\mathbf{X}_{1}, \mathbf{Y}_{1}, \mathbf{Z}_{1}\) The coordinates of the end point of the cylindrical axis (only required for 3D)

\section*{Notes}
1. Cylindrical sets define the radial, tangent and normal axes transformations. The tangent vector is positive in the direction of a clockwise rotation when looking along the local normal axis from the origin. The local axes are evaluated at an arbitrary point within the domain. The coordinates used to define a cylindrical set are as follows (see figures below):
- 2D problem:
- The local cylindrical (or normal) axis is directed out of the plane of the mesh.
- If a node is coincident with \(\mathbf{X}_{0}, \mathbf{Y}_{0}, \mathbf{Z}_{0}\) the radial axis will coincide with the x -axis and the tangential axis will coincide with the y -axis.
- 3D problem:
- \(\mathbf{X}_{0}, \mathbf{Y}_{0}, \mathbf{Z}_{0}\) to \(\mathbf{X}_{1}, \mathbf{Y}_{1}, \mathbf{Z}_{1}\) defines the axis from which the cylindrical vectors are evaluated.
- The local normal or cylindrical axis is defined as being positive in the direction from \(\mathbf{X}_{0}, \mathbf{Y}_{0}, \mathbf{Z}_{0}\) to \(\mathbf{X}_{1}, \mathbf{Y}_{1}, \mathbf{Z}_{1}\).
- If a node lies on the local normal axis, by default one of the following will be used to define the radial and tangential axes:
a) If the normal axis is colinear with a global axis, the other two global axes will be used to define the radial and tangential axes. b) If the normal axis is not colinear with a global axis, the radial axis will lie in the yz (CYLINDRICAL SETS X), xz (CYLINDRICAL SETS Y) or xy (CYLINDRICAL SETS Z) plane. The tangential axis will complete the corresponding right-hand coordinate system.
- The order of the axes is as follows:

CYLINDRICAL SETS X - \(\mathrm{n}^{\prime}, \mathrm{r}^{\prime}, \mathrm{t}^{\prime}\)
CYLINDRICAL SETS Y - \(\mathrm{t}^{\prime}\), \(\mathrm{n}^{\prime}\), \(\mathrm{r}^{\prime}\)
CYLINDRICAL SETS Z - \(\mathrm{r}^{\prime}, \mathrm{t}^{\prime}\), \(\mathrm{n}^{\prime}\)
2. The cylindrical (Cartesian) set is evaluated at the centre point of an element when determining material properties. The centre point is defined as the average of the nodal \(\mathrm{x}, \mathrm{y}\) and z coordinates.
3. The Cartesian set transformation matrix defines the 2D or 3D transformation from local to global coordinate systems as:
\[
\{U\}=\mid R\rfloor^{\top}\left\{U^{t}\right\}
\]
where \(\left\{u^{\prime}\right\}\) is a vector in the local coordinate system and \(\{U\}\) is the vector in the global coordinate system. [R] is the transformation matrix. The dimensions of \([R]\) are \(2 \times 2\) for 2 D problems and \(3 \times 3\) for 3 D problems. \([R]\) may be constructed by defining the orthogonal vector directions which define the local coordinate directions. For example:
\[
[R]^{\top}=\left[\left\{x^{\prime}\right\},\left\{y^{\prime}\right\},\left\{z^{\prime}\right\}\right]
\]
where \(\left\{x^{\prime}\right\},\left\{y^{\prime}\right\}\) and \(\left\{z^{\prime}\right\}\) are vectors defining the local coordinate directions (see figure below for a 2 D example).
4. The Cartesian set transformation matrix will be checked for orthogonality and each vector will be automatically normalised.
5. Any number of CYLINDRICAL SET data chapters may be defined, but if duplicate nset values are specified the last definition will be used.
6. The CYLINDRICAL SET command command can be repeated in the datafile or restart file to introduce new cylindrical sets into the solution.
(a) 2D Cylindrical Set

(b) 3D Cylindrical Set

Definition of cylindrical (Cartesian) Sets

\section*{Transformed Freedoms}

Transformed freedoms may be used to rotate the global degrees of freedom at a node to a new orientation defined by the CARTESIAN SET command. The procedure is useful for applying loading values or boundary conditions in local coordinates directions.

The data section TRANSFORMED FREEDOMS is used to define the nodes to which a predefined local Cartesian coordinate set applies.

TRANSFORMED FREEDOMS [TITLE title]
\(N N_{\text {last }} N_{\text {diff }}\) nset
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with identical transformed freedoms.
nset The number of the Cartesian Set defining the directions or transformation of the transformed freedoms (see Cartesian Sets).

\section*{Notes}
1. All concentrated loads, prescribed displacements, support conditions and constraint equations applied to a nodal freedom which has been transformed, act in the transformed directions.
2. Default output is in the global direction. Option 115 outputs values in the transformed directions.
3. The order of the transformed directions for cylindrical sets is defined as \(r^{\prime}, \mathrm{t}^{\prime}, \mathrm{n}^{\prime}\).
4. Transformed freedoms may be updated as the analysis progresses with the new nset values overwriting the old. To completely remove a transformation from one or more nodes assign a value of nset \(=0\) to them.

\section*{Constraint Equations}

Nodal freedoms can be linked by a linear equation. Such constraint equations are useful in defining boundary conditions. For example, if an edge of a structure is to move as an integral unit, the appropriate translational degree of freedom at each node can be forced to act in a relative manner via constraint equations.

The data section CONSTRAINT EQUATIONS is used to define the equation coefficients and the nodes to which the specified constraint equation applies.

CONSTRAINT EQUATIONS [TITLE title]
EQUATION C [icref]
\(N N_{\text {last }} N_{\text {diff }} \quad \mathrm{N}_{\mathrm{v}} \quad \mathrm{C}_{\mathrm{f}}\)
EQUATION DELETE
icref icref \(_{\text {last }}\) icref \(_{\text {diff }}\)
where:
C \(\quad\) The constraint equation constant
icref constraint equation reference number
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with identical variables and coefficients.
\(\mathbf{N}_{\mathbf{v}} \quad\) The degree of freedom variable number at the node. For example, \(\mathrm{u}=1\), \(\mathrm{v}=2\) for plane stress elements (refer to LUSAS Element Reference Manual). See Notes on FREEDOM TEMPLATE.
\(\mathbf{C}_{\mathrm{f}} \quad\) The coefficient corresponding to the node and variable number.
icef icref \(_{\text {last }}\) icref \(_{\text {diff }}\) The first constraint equation reference, last constraint equation reference and difference of a series of constraint equation references for deletion.

\section*{Notes}
1. The general form of the equation is:
\(\square \mathrm{C} 1 \mathrm{~V} 1+\mathrm{C} 2 \mathrm{~V} 2+\ldots+\mathrm{CiVi}=\mathrm{C}\)
where Vi represents the variables and i the total number of coefficients
2. Each new equation starts with an EQUATION line followed by the corresponding constraint equation data lines.
3. If a node and variable number are repeated, the new coefficient overwrites the previous coefficient for that equation.
4. The constraint equation reference icref is used to identify particular constraint equations allowing their selective deletion. It can be applied to more than one equation. All equations which share the reference can be deleted at the same time using the EQUATION DELETE command.
5. Constraint equations are valid from the point at which they are introduced into the analysis. Thus if two nodes are constrained to displace equally in the \(u\) direction, this applies to further displacements from their current locations not to the total displacement from their starting positions.
6. Constraint equations must not be over-sufficient for a unique solution. For example:
- \(\mathrm{U} 21=\mathrm{U} 25, \quad \mathrm{U} 25=\mathrm{U} 30, \quad \mathrm{U} 30=\mathrm{U} 21 \quad\) is over sufficient
- \(\mathrm{U} 21=\mathrm{U} 25, \mathrm{U} 25=\mathrm{U} 30\) is sufficient
7. When using CONSTRAINT EQUATIONS with eigenvalue extraction, the constant C must be specified as zero.
8. If non-structural nodes or unconnected parts of a structure are to be constrained, the SYSTEM variable PENTLY should be specified to invoke the penalty
constraint technique within the constraint equation. PENTLY should be specified as a small number to avoid numerical problems, but to ensure the reduction process within the solution does not break down.
9. Constrained variables which have been transformed will be constrained in their transformed directions.
10. If the FREEDOM TEMPLATE data chapter has been specified the values specified for Nv relate to the modified freedom list.
11. Freedoms featuring in constraint equations will not be candidates for use as automatic masters.
12. Care should be taken when specifying constraint equations so that ill conditioning of the equations does not result. For example, for some analyses it may be better to define:
- \(\mathrm{U} 21=\mathrm{U} 25, \quad \mathrm{U} 21=\mathrm{U} 26, \quad \mathrm{U} 21=\mathrm{U} 27, \quad \mathrm{U} 21=\mathrm{U} 28\)
rather than:
- \(\mathrm{U} 21=\mathrm{U} 25, \mathrm{U} 25=\mathrm{U} 26, \mathrm{U} 26=\mathrm{U} 27, \mathrm{U} 27=\mathrm{U} 28\)
13. If constraint equations are defined in a Guyan analysis or eigenvalue analysis, a Sturm sequence check cannot be carried out.
14. If constraint equations have been defined the Eigenvalue/Frequency Range facility cannot be used in an Eigenvalue analysis.
15. Constraint equations are not permissible for use with explicit dynamics elements.

\section*{Example. Constraint Equations}

Plane stress problem with \(U\) displacements at nodes 9,11 and 15 constrained to be equal.
\[
\mathrm{U} 9=\mathrm{U} 11 \quad \mathrm{U} 9=\mathrm{U} 15
\]

CONSTRAINT EQUATIONS
EQUATION 0.0
\begin{tabular}{rrrrr}
9 & 0 & 0 & 1 & 1.0 \\
11 & 0 & 0 & 1 & -1.0 \\
EQUATION & 0.0 & \\
9 & 0 & 0 & 1 & 1.0 \\
15 & 0 & 0 & 1 & -1.0
\end{tabular}

Plane stress problem with a general constraint relationship.
- \(\mathrm{U} 9+\mathrm{U} 11+0.5 \mathrm{U} 6-3.0 \mathrm{~V} 14=12.5\)

\section*{CONSTRAINT EQUATIONS}

EQUATION 12.5
\(\begin{array}{lllll}9 & 11 & 2 & 1.0\end{array}\)
\(\begin{array}{lllll}6 & 0 & 0 & 1 & 0.5\end{array}\)
1400020

\section*{Support Conditions}

The data section SUPPORT NODES is used to define the boundary conditions of finite element discretisation. Note that prescribed nodal displacements may also be defined using this data section.

\section*{SUPPORT NODES [TITLE title]}
\(N N_{\text {last }} \mathbf{N}_{\text {diff }}<\) type \(_{i}>_{\mathrm{i}=1, \mathrm{n}} \quad\left[<\mathrm{V}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\right.\)] [CC CFRE \(\mathrm{W}_{\mathrm{L}} \mathrm{W}_{\mathrm{U}}\)]
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with identical supports.
type \(_{i} \quad\) The support type for each global freedom at a node.
\(=\mathrm{R}\) for a restrained support freedom or a restrained support freedom with prescribed displacement.
\(=\mathrm{F}\) for a free support freedom.
\(=\) S for spring freedom. (see Note on use of FREEDOM TEMPLATE)
\(=\mathrm{P} 1\) for viscous transmitting freedom in pressure (normal) wave direction
(normal to surface of elements on boundary). Explicit definition of the viscous damping coefficient (see Notes) (also see Note on use of FREEDOM TEMPLATE)
=Z1 for viscous transmitting freedom in shear wave direction (tangential to surface of elements on boundary). Explicit definition of the viscous damping coefficient (see Notes) (also see Note on use of FREEDOM TEMPLATE)
\(=\mathrm{P} 2\) for viscous transmitting freedom in pressure (normal) wave direction (normal to surface of elements on boundary). Automatic calculation of the viscous damping coefficient (see Notes) (also see Note on use of FREEDOM TEMPLATE)
\(=\) Z2 for viscous transmitting freedom in shear wave direction (tangential to surface of elements on boundary). Automatic calculation of the viscous damping coefficient (see Notes) (also see Note on use of FREEDOM TEMPLATE)
\(\mathrm{V}_{\mathbf{i}} \quad\) The corresponding values of prescribed displacement, spring stiffness or viscous damping coefficient/viscous damping scaling factor for each global freedom at a node. Rotational displacements and rotational spring stiffnesses should be prescribed in radians and stiffness/radian, respectively. For consolidation analyses a 'C' may be specified on a water pressure freedom (see Notes) (also see Note on use of FREEDOM TEMPLATE)
n The MAXIMUM number of freedoms at a node for the structure being solved.
CC Contact condition at node freedom CFRE
\(=\mathbf{S}\) break contact only for Single freedom CFRE
\(=\mathbf{A}\) break in contact for freedom CFRE releases All other restraint at node
\(=\mathbf{I}\) contact displacement limits measured from Initial position of node
\(=\mathbf{D}\) contact displacement limits measured from Displaced position of node
CFRE Reference to freedom i for which contact break or contact displacement limits are to be applied
\(\mathrm{W}_{\mathrm{L}} \quad\) For CC types \(\mathbf{S}\) and \(\mathbf{A}-\mathrm{W}_{\mathrm{L}}\) is the limiting force in the negative direction of the nodal freedom. If this force is exceeded the freedom is released. The letter \(\mathbf{C}\) can replace the limit force and is used to indicate an unbreakable contact and permits a support that has broken contact in the positive direction to regain contact. If \(\mathbf{C}\) is set no contact break can occur in the negative direction.

For CC types \(\mathbf{I}\) and \(\mathbf{D}-\mathrm{W}_{\mathrm{L}}\) is the gap displacement in the negative direction. If the displacement is exceeded the freedom will be restrained either rigidly or against a spring depending on the restraint value set in typei corresponding to the CC freedom. The letter \(\mathbf{F}\) can replace the limit displacement and is used to indicate that there is no contact in the negative direction, i.e. the freedom is unrestrained in the negative direction.
\(\mathrm{W}_{\mathrm{U}} \quad\) For CC types \(\mathbf{S}\) and \(\mathbf{A}-\mathrm{W}_{\mathrm{U}}\) is the limiting force in the positive direction of the nodal freedom. If this force is exceeded the freedom is released. The letter \(\mathbf{C}\) can replace the limit force and is used to indicate an unbreakable contact and permits a support that has broken contact in the negative direction to regain contact. If \(\mathbf{C}\) is set no contact break can occur in the positive direction.

For CC types \(\mathbf{I}\) and \(\mathbf{D}-\mathrm{W}_{\mathrm{U}}\) is the gap displacement in the positive direction. If the displacement is exceeded the variable will be restrained either rigidly or against a spring depending on the value set in typei corresponding to the CC freedom. The letter \(\mathbf{F}\) can replace the limit displacement and is used to indicate that there is no contact in positive direction, i.e. the freedom is unrestrained in the positive direction.

\section*{Notes}
1. If a node number is repeated the new support (types and values) overwrites the previous support and an advisory message is printed out.
2. The freedom associated with a prescribed displacement must be restrained using this data section.
3. If support values Vi are specified, the number of values has to be equal to the number of freedoms at the node to which the support is applied. Support values corresponding to free freedoms must be given values, say \(\mathrm{Vi}=0\).
4. Ensure that the structure is restrained against translation and rotation in all global directions for all static analyses.
5. For a skew support use TRANSFORMED FREEDOMS, or a joint element with the appropriate orientation, spring stiffness (\(\mathrm{K}=0\) for free freedom) and initial strain (prescribed displacement).
6. Support nodes can be modified between increments of a transient/dynamic nonlinear problem. Only the support conditions for the nodes respecified will be modified.
7. Contact forces are defined in the global direction or, if defined, in the direction of the transformed freedom. A positive force acts in the positive displacement direction of the nodal freedom.
8. Although, the terms positive and negative are used to describe the contact break forces and the contact displacement limits, it is only strictly required that \(\mathrm{W}_{\mathrm{U}}\) is greater than \(\mathrm{W}_{\mathrm{L}}\) so that both values may be either positive or negative.
9. Supports and springs are applied at the position in which the node is currently displaced. The contact displacement limits type \(\mathrm{CC}=\mathrm{D}\) are also measured from the current displaced nodal position as opposed to type \(\mathrm{CC}=\mathrm{I}\) which is always measured from the initial position.
10. The system parameter ICNTCT is used to control how Solver handles the breaking of supports. The values of 0 and 3 allow a joint to break and to be released in the next iteration. A value of 1 results in any overstressed joints being marked as pending to be released; they are subsequently released once the increment converges. The solution of the increment is then repeated with the supports released. If ICNTCT is set to 2 the supports which are overstressed are marked as pending but on convergence only the most overstressed is released, other supports must then wait for convergence before being released.
11. A support that breaks is not allowed to re-ground in the increment in which it broke for ICNTCT values of 0,1 or 2 . Convergence of the increment is required after which the state of the broken support is evaluated. If it has re-grounded then the support is fully restored and the increment resolved. Setting ICNTCT=3 allows the breaking of the support and its re-grounding to occur during the same increment and is the default option. If lift-off occurs at a support which has been moved by a PDSP/TPDSP the ground is considered to be located at the support position at the beginning of the increment when the support was still in contact.
12. A second system parameter MXLFTO is used to limit the number of times an increment can be resolved. Its purpose is to prevent an infinite loop developing as a node breaks contact and then regains contact repeatedly.
13. A broken support is allowed to regain contact and break contact without restriction and is acted on immediately in the following iteration.
14. A support regains contact at the point at which contact was lost. The point of loss of contact is taken as the point to which the support had displaced in the increment prior to contact breaking.
15. Care should used when lift-off conditions are used with a geostatic-step. If contact displacement conditions are specified and contact has been made prior to the geometric step, the contact force will be lost on restoring the initial geometry.
16. Ensure that nodes are not free to rotate when attached to beam elements with free ends. For example, node 1 in the diagram below must be restrained against rotation as well as displacement otherwise the element will be free to rotate as a rigid body.

17. Support nodes may be omitted for eigenvalue analyses provided a shift is used in the EIGENVALUE CONTROL data chapter.
If the FREEDOM TEMPLATE data chapter has been used care should be taken that the required support conditions relate to the modified freedom list.
For nonlinear problems it is recommended that prescribed displacements are specified using the PDSP or TPDSP loading data chapters.
The PDSP values supersede the values specified on the SUPPORT NODES data line. If a spring support is defined at a variable then any subsequent PDSP applied to that variable is read as the spring stiffness.
18. In a axisymmetric analysis the nodes on the axis of symmetry must be restrained to prevent translation across the syemmtry axis. i.e. For symmetry about Y displacement in x must be restrained.
19. For consolidation analyses, the steady state pressure can be reset following an undrained analysis to open a drainage path for the excess pore water pressures. The pressure freedom should be restrained with ' \(R\) ' and a ' \(C\) ' written in the corresponding Vi component.
20. The viscous transmitting freedom options (\(\mathbf{t y p}_{\mathbf{i}}=\mathrm{P} 1, \mathrm{P} 2, \mathrm{Z} 1\) or Z 2), can be used in a transient dynamic analysis. There are two methods available for the application of the viscous transmitting support conditions in LUSAS Solver as follows;

\section*{Method 1: Dynamic Analysis Only}

Viscous transmitting support conditions can be used in a structural analysis when performing a dynamic analysis only, that is, when no load steps have taken place prior to the dynamic analysis. In this case an implicit or explicit transient dynamic analysis can be undertaken.
For this type of analysis viscous support conditions can only be specified at the start of the analysis (time step 0) and the viscous damping coefficients can only be defined using the explicit definition Option 1 (type \({ }_{i}=\mathrm{P} 1\) or Z1)

\section*{Method 2: Dynamic Analysis Following a Static Load Step}

Viscous transmitting support conditions can also be used in an implicit structural analysis when performing a dynamic analysis following a static load step, where the static load step is utilised to obtain the static equilibrium position of the model. This is a requirement for analyses with geotechnical materials, as an initial stress state is needed to determine the stiffness for materials such as the modified CamClay and Hardening Soil models.
During the static load step viscous transmitting support conditions cannot be used. It is recommended that any degree of freedom that will be defined as a viscous transmitting support during the dynamic analysis should be fully fixed for the static load step. This enables the equilibrium position and static reaction for these degrees of freedom to be obtained.

When an implicit dynamic analysis follows a static load step, viscous transmitting support conditions can be defined at the start of the dynamic analysis (time step 0). Viscous damping coefficients can be defined using either the explicit definition Option 1 (type \({ }_{i}=\mathrm{P} 1\) or Z 1) or the automatic calculation Option 2 (type \(\mathrm{i}_{\mathrm{i}}=\mathrm{P} 2\) or Z 2). For any viscous transmitting degree of freedom that is a fully fixed during the static load step, the reactions from the end of the static load step are utilised during the dynamic analysis to maintain equilibrium of the static loads.
21. For the viscous transmitting freedom options (\(\mathbf{t y p e}_{\mathrm{i}}=\mathrm{P} 1, \mathrm{P} 2, \mathrm{Z} 1\) or Z 2), the normal and shear components of viscous damping force applied at a node are;
\[
\begin{aligned}
& \mathrm{F}_{\mathrm{N}}=\mathrm{c}_{\mathrm{N}} \cdot \mathrm{v}_{\mathrm{N}} \\
& \mathrm{~F}_{\mathrm{T}}=\mathrm{c}_{\mathrm{T}} \cdot \mathrm{v}_{\mathrm{T}}
\end{aligned}
\]
\(\mathrm{v}_{\mathrm{N}}\) and \(\mathrm{v}_{\mathrm{T}}\) are the nodal velocities in the normal and shear directions. The viscous damping coefficients, \(\mathrm{c}_{\mathrm{N}}\) and \(\mathrm{c}_{\mathrm{T}}\), in the normal and shear directions are;
\[
\begin{aligned}
& c_{N}=\alpha_{N} \cdot \text { A. } \rho \cdot V_{N} \\
& c_{T}=\alpha_{T} \cdot \text { A. } \rho \cdot V_{T}
\end{aligned}
\]
where;
\(\alpha_{N}, \alpha_{T}\) are relaxation coefficients for normal and shear directions (default=1.0)
\(A\) is the area over which a viscous support acts
\(\rho\) is the material density
\(\mathrm{V}_{\mathrm{N}}, \mathrm{V}_{\mathrm{T}}\) are the wave speeds for normal and shear directions
Two options are available for defining the viscous damping coefficients (\(\mathrm{c}_{\mathrm{N}}, \mathrm{c}_{\mathrm{T}}\)). For each of these options the support values of Vi should be defined as;
Option 1 (type \(=\mathbf{P} 1\) or \(\mathbf{Z 1}\)): Explicit definition of the viscous damping coefficients. The values Vi are the damping coefficients (\(\mathrm{c}_{\mathrm{N}}\) or \(\mathrm{c}_{\mathrm{T}}\)) to be used at a viscous support degree of freedom.
Option 1 is only applicable if the analysis type is one of the following (all other analysis types are invalid):

Linear implicit dynamic
Nonlinear implicit dynamic
Explicit dynamic
Option 2: (\(\mathbf{t y p}_{\mathbf{i}}=\mathbf{= P 2}\) or Z2): Automatic calculation of the viscous damping coefficients. The values Vi are scaling factors (\(\alpha_{N} A\) or \(\alpha_{T} A\)) to be used in the automatic calculation of the viscous damping coefficients. The scaling factors are the product of a relaxation coefficient (default \(=1.0\)) and the area over which the viscous support acts. The remaining terms (\(\rho . \mathrm{V}_{\mathrm{N}}\) or \(\rho . \mathrm{V}_{\mathrm{T}}\)) used to determine the viscous damping coefficients (\(\mathrm{c}_{\mathrm{N}}\) or \(\mathrm{c}_{\mathrm{T}}\)) are calculated automatically by LUSAS Solver at time step 0 of a transient dynamic analysis, using material properties from valid active elements connected to the supported nodes.
The automatic calculation of the viscous damping coefficients is only performed at time step 0 of the dynamic analysis. Viscous damping coefficients therefore remain constant for each degree of freedom throughout a dynamic analysis.
Option 2 is only applicable if the following conditions are satisfied:
a) The analysis type is one of the following (all other analysis types are invalid).
Linear implicit dynamic
Nonlinear implicit dynamic
b) A static load step has been performed prior to the transient dynamic analysis.
c) At least one active element of a valid type is connected to the node at which the viscous transmitting support condition is applied. A list of valid element types is shown below.
2D Plane Stress Continuum Elements (TPM3, TPM6, QPM4, QPM8)
2D Plane Stress Continuum Element with Enhanced Strains (QPM4M)
2D Plane Stress Continuum Crack Tip Elements (TPK6, QPK8)
2D Plane Strain Continuum Elements (TPN3, TPN6, QPN4, QPN8)
2D Plane Strain Continuum Element with Enhanced Strains (QPN4M)
2D Plane Strain Continuum Crack Tip Elements (TNK6, QNK8)
2D Plane Strain Two Phase Continuum Elements (TPN6P, QPN8P)

2D Plane Strain Continuum Element for Large Strains (QPN4L)
2D Axisymmetric Solid Continuum Elements (TAX3, TAX6, QAX4, QAX8)
2D Axisymmetric Solid Continuum Element with Enhanced Strains (QAX4M)
2D Axisymmetric Solid Continuum Crack Tip Elements (TXK6, QXK8)
2D Axisymmetric Solid Two Phase Continuum Elements (TAX6P, QAX8P)
2D Axisymmetric Solid Continuum Element for Large Strains (QAX4L)
3D Solid Continuum Elements (TH4, TH10, PN6, PN12, PN15, HX8, HX16, HX20)
3D Solid Continuum Element with Enhanced Strains (HX8M)
3D Solid Continuum Crack Tip Elements (TH10K, PN15K, HX20K)
3D Solid Two Phase Continuum Elements (TH10P, PN12P, PN15P, HX16P, HX20P)
d) At least one of the valid elements from point c) above has a valid material type assigned to it. A list of valid material types is shown in below.
Linear Isotropic model
Linear Orthotropic Plane Stress model
Linear Orthotropic Plane Strain model
Linear Orthotropic Axisymmetric model
Linear Orthotropic Solid model
Rubber Materials (Ogden/Mooney-Rivlin/Neo-Hookean/Hencky)
Tresca model
Drucker-Prager model
Non-Associated Mohr-Coulomb model
Backward Euler Von-Mises model
Optimised Backward Euler Von-Mises model
Backward Euler Pressure Dependent Von-Mises model
Backward Euler Hill model
Backward Euler Hoffmann model
Modified Cam-Clay model
Modified Mohr-Coulomb model
Duncan-Chang Soil model
Hardening Soil model
Hoek-Brown model
Transient Smoothed Multi-Crack Concrete model
Smoothed Nonlinear Multi-Crack Concrete model
2D Elasto-Plastic Interface model
3D Elasto-Plastic Interface model

If Option 2 is used and there are no valid elements with valid materials attached to a node with a viscous transmitting support an error message will be displayed and the program will terminate.
Only the elements and materials listed above contribute to the automatic calculation of the viscous damping coefficients at a supported node. For other elements and materials Option 1 can be used to explicitly define the viscous damping coefficients.
22. Limitations that apply to the use of the viscous transmitting freedom options type \(_{\mathrm{i}}=\mathrm{P} 1, \mathrm{P} 2, \mathrm{Z} 1\) or Z 2 are as follows;

They are only applicable to the translational \(\mathrm{U}, \mathrm{V}\) and W freedom directions
They cannot be used together with the optional lift-off input variables [CC CFRE \(\mathbf{W}_{\mathrm{L}} \mathbf{W}_{\mathrm{U}}\)]
They cannot be used at a node that has any freedom that also uses the optional lift-off input variables [CC CFRE \(\mathbf{W}_{\mathbf{L}} \mathbf{W}_{\mathbf{U}}\)]
They must be defined at time step 0 of a dynamic analysis. They cannot be defined at any other time, e.g., part way through a dynamic analysis.
They assume that materials immediately adjacent to the supported nodes remain elastic for the entire duration of an analysis.
23. For axisymmetric Fourier problems the restrictions shown below are applied to the freedoms of nodes lying on the axis of symmetry. These conditions are automatically imposed on the centre-line nodes.
\begin{tabular}{cccc}
\multicolumn{2}{c}{\begin{tabular}{c}
axisymmetric \\
about X
\end{tabular}} & \multicolumn{2}{c}{\begin{tabular}{c}
axis \\
aboummetric \\
abouis
\end{tabular}} \\
\hline harmonic & restraint & harmonic & Restraint \\
\(\mathrm{n}=0\) & \(\mathrm{v}, \mathrm{w}=0\) & \(\mathrm{n}=0\) & \(\mathrm{u}, \mathrm{w}=0\) \\
\(\mathrm{n}=1\) & \(\mathrm{u}=0\) & \(\mathrm{n}=1\) & \(\mathrm{v}=0\) \\
\(\mathrm{n}>1\) & \(\mathrm{u}, \mathrm{v}, \mathrm{w}=0\) & \(\mathrm{n}>1\) & \(\mathrm{u}, \mathrm{v}, \mathrm{w}=0\)
\end{tabular}

\section*{Example 1. Support Conditions}

SUPPORT NODES
\begin{tabular}{rrrrrrr}
1 & 10 & 3 & R R R & & \\
2 & 0 & 0 & F S S & 0.0 & 23.1 \\
3 & 12 & 3 & R & F & -0.35 & 0.0
\end{tabular}

\section*{Example 2. Support Conditions}

SUPPORT NODES
1133 R R R F F
3153 F R R F F

\section*{Example 3. Contact breaking support conditions}

\section*{SUPPORT NODES}
\(100 \quad \mathrm{R} R \mathrm{R}\)
200 FR F 0.00 .00 .0 S 2 C 0.1

24. The contact breaking boundary support condition is applied to the partially restrained node 2 in the \(Y\)-direction with a contact limit force of 0.1 The ' \(S\) ' means there is no change in the support in the X direction which remains free following the break of contact (note that the use of ' \(A\) ' instead of ' \(S\) ' would have the same effect here, as only one variable at the node is restrained). The 2 references the second nodal freedom (v) to which the contact limit force applies whilst ' C ' indicates that contact can be regained in the negative v freedom direction.

\section*{Example 4. Contact with initial gap support conditions}

\section*{SUPPORT NODES}
\(100 \quad R \quad R \quad R\)
200 FSR 0.0 5000.0 0.0 I \(2-0.2\) F

25. An initial gap is defined at node 2 such that when it is deflected downwards a distance of 0.2 , contact is made with a spring support of magnitude 5000 . The ' I ' in the support node data indicates that the gap distance (-0.2) is to be measured from the initial starting position of the node. The ' \(F\) ' indicates that node 2 is free to move in the positive Y direction.

\section*{Coupled Analysis}

In a thermo-mechanically coupled analysis the control of data to and from an external datafile generally requires three operations
\(\square\) Generation and initialisation of the Coupled Datafile
\(\square\) Reading from the Coupled Analysis Datafile
\(\square\) Writing to the Coupled Analysis Datafile
For further information, refer to Coupled Analyses.

\section*{Initialisation of the Coupled Datafile}

The data section COUPLE controls both the generation of the external coupled analysis datafile in the primary analysis and the file name specification in the secondary analysis

\section*{COUPLE [OPEN] [PARALLEL] fname}

OPEN Specifies that the analysis is to open the data transfer file. If omitted, the analysis will expect to find the data transfer file in its work area.
PARALLEL Specifies that a second analysis is running. If information is requested from the data transfer file and it is not located, an error is signalled if no other analysis is running, otherwise the current analysis will wait for new data to become available. Note that the specification of PARALLEL without the second analysis running may cause the system to wait indefinitely for information that will not be available. The SYSTEM parameter MXWAIT determines the waiting time in seconds before an error is printed and the analysis terminated.
fname The name of data transfer file. The name must be less than 65 characters with a 3 letter extension, or 61 without an extension (an extension .DTF will automatically be added).

\section*{Reading from the Coupled Analysis Datafile}

The data section COUPLE READ controls the reading from the coupled analysis datafile. The command is used to initialise the read condition at the start of an analysis (mandatory) and may, if required, be specified at later stages of the analysis.

COUPLE READ [nstepr timerd ndatr nitemr]
nstepr The step number in the current analysis at which the first data read will occur. This parameter is to be used for static analyses (default = previous step [0], set to -1 to disable).
timerd The time in the current analysis at which data should be read. This parameter is to be used for dynamic/transient analyses (default = time end of previous step, set to -1 to disable).
ndatr \(\quad\) The index number for the next dataset to be read (see Notes) \((\) default \(=1)\).
nitemr The type of data to be transferred
\(=1\) for nodal coordinates
\(=2\) for nodal temperatures
\(=3\) to initialise nodal reference temperatures to those of the previous step (automatically switches to type 2 on subsequent steps).
\(=4\) for heat flux due to plastic work and nodal coordinates (default value: Structural analysis \(=2\), Thermal analysis \(=1\)).

\section*{Notes}
1. If the reference temperature of the structure is to be initialised with zero temperature nitemr type 3 should be used at the commencement of the analysis (the first specification of the COUPLE READ command).
2. Option 70 switches on the data echo. All data read into the analysis is echoed to the output file.
3. Each dataset that is written to the coupled datafile is given an integer index number which is automatically incremented by 1 on each write to the coupled analysis datafile. This number corresponds to ndatr specified in the COUPLE READ data line.
4. Further reading from the coupled datafile is controlled by the INCREMENTAL COUPLE READ data line within the respective analysis control data chapters.

\section*{Writing to the Coupled Analysis Datafile}

The data section COUPLE WRITE controls writing to the coupled analysis datafile. The command is used to initialise the write conditions at the start of an analysis (mandatory) and may, if required, be specified at later stages of the analysis.

COUPLE WRITE [nstepw timewt ndatw nitemw]
nstepw The step number in the current analysis at which the first data write will occur. This parameter is to be used for static analyses (default = current step [1], set to -1 to disable).
timewt The time in the current analysis at which data should be written. This parameter is to be used for dynamic/transient analyses (default = time at end of current step, set to -1 to disable).
ndatw \(\quad\) The index number for the next dataset to be written (default \(=1\)).
nitemw The type of data to be transferred
\(=1\) for nodal coordinates
\(=2\) for nodal temperatures
\(=4\) for heat flux due to plastic work and nodal coordinates (default value: Structural analysis \(=1\), Thermal analysis \(=2\)).

\section*{Notes}
1. Each dataset that is written to the coupled datafile is given an integer index number which is automatically incremented by 1 on each write to the coupled analysis datafile. This number corresponds to ndatw specified in the COUPLE WRITE data line.
2. Further writing to the coupled datafile is controlled by the INCREMENTAL COUPLE WRITE data line within the respective analysis control data chapters.

\section*{Load Curves}

Load curves are used to define the variation of a loading or LOAD CASE through the analysis. The commands defining and assigning load curves are given in the CURVE DEFINITION section after the input of the loads. This command allows the switching on and off of load curves during a multistage analysis.

LOAD CURVES ON | OFF

\section*{Notes}
1. When load curves are switched on or off new loading (LOAD CASE) must be input immediately afterwards.
2. If LOAD CURVEs are switched off the next LOAD CASE will be treated as either a constant load or an automatic load depending on the INCR setting in NONLINEAR CONTROL. Existing LOAD CURVE data is retained but not LOAD CASE or LOAD ASSIGNMENT data.
3. If LOAD CURVES are switched on all of the following LOAD CASES are read and each can be factored using a LOAD CURVE. New LOAD CURVEs may be entered or existing ones re-used.
4. Loading prior to the LOAD CURVES ON/OFF switch is lost with the exception of PDSPs, initial stress and target stress loading.

\section*{Structural Loading}

LUSAS incorporates a variety of loading types. The loading types available are classified into the following groups (the abbreviations for each loading type are shown in brackets):
\(\square\) Prescribed variables (PDSP, TPDSP)
\(\square\) Concentrated loads (CL)
\(\square\) Element loads (ELDS)
\(\square\) Distributed loads (UDL, FLD)
\(\square\) Body forces (CBF, BFP, BFPE)
V Velocities and accelerations (VELOCITY, ACCELERATION)
\(\square\) Viscous support loads (VSL)
\(\square\) Initial stresses and strains (SSI, SSIE, SSIG)
\(\square\) Residual stresses (SSR, SSRE, SSRG)
\(\square\) Target stresses and strains (TSSIE, TSSIG, TSSIA)
\(\square\) Temperature loads (TEMP, TMPE)
- Field loads (ENVT, TDET, RIHG)

It is important for you to consult the individual element description in the LUSAS Element Reference Manual in order to check that the required loading is available for that particular element.

Two forms of nodal loading are possible. Firstly, a load may be applied at a node. This load will act on all elements which are connected to the node. Secondly, a load may be applied on an element node, where the load is applied at the node of the prescribed element only. If the required direction of a global load does not lie in the global axes then transformed freedoms can be used to transform the loads to the required local directions (this applies to CL, PDSP, TPDSP, VELOCITY, ACCELERATION and VSL loads only).

For some of the loading types it is possible to abbreviate a long line of data input. Such loading definitions make use of two parameters. The first, the loading data list pointer ' 1 ', indicates the position in the loading list of the first required component. The second, ' n ', indicates the total number of loading components which are required. For example, the full loading data list of temperature loading (TEMP) for an isoflex plate element contains the 8 components:
\[
\square \frac{\partial T}{\partial x} \quad \frac{\partial T}{\partial y} \quad \frac{\partial T}{\partial z} T_{0} \frac{\partial T_{0}}{\partial x} \frac{\partial T_{0}}{\partial y} \frac{\partial T_{0}}{\partial z}
\]
where only \(\frac{\partial \mathrm{T}}{\partial \mathrm{z}}\) and \(\frac{\partial \mathrm{T}_{0}}{\partial \mathrm{z}}\) are applicable.
Hence, final and initial temperature gradients of 10.5 and 5.6 may be applied by specifying the full loading list (that is 8 required components) as:

LOAD CASE
TEMP 8
00010.50005 .6
or, using the abbreviated loading input (using 5 components, and a position pointer of 4), as:

LOAD CASE
TEMP 54
10.50005 .6

Note. The default pointer position is 1 (that is, the start of the loading list). Note also that the values not required within the abbreviated loading list must be specified (as zeros).

\section*{Load Case Definition}

The data section LOAD CASE is used to define the loading types which belong to a particular load case group. For linear analyses each specified LOAD CASE data section defines a new set of loading which are to be applied individually to the structure. For nonlinear analyses the LOAD CASE data section may also be used to define the incrementation of a set of applied loads.

LOAD CASE [TITLE title]

\section*{Notes}
1. Each new load case must start with this header line.
2. Each LOAD CASE line must be followed by a load type line and corresponding load data lines; see subsequent sections.
3. Each LOAD CASE may consist of a number of load types.
4. Multiple linear LOAD CASES are processed simultaneously. The system variable MXRHS can be set to limit the number of LOAD CASES processed in a single pass of Solver.

\section*{Load Variable Definition}

It may be required to vary the magnitude of one or more loads to achieve certain conditions in a structure, The LOAD VARIABLE command allows the specification of loads which LUSAS can automatically vary to achieve the desired results. LOAD VARIABLEs are essentially an automatically scalable LOAD CASE.

LOAD VARIABLEs are used in conjuction with the commands detailed in the TARGET VALUES / LOAD OPTIMISATION section.

\section*{LOAD VARIABLE ilvar [ilvsign] [Title title]}
ilvar unique label to identify the load variable in commands specified in the TARGET VALUES / LOAD OPTIMISATION section.
ilvsign 0 load variable coefficient is positive only in optimisation (default value)
1 load variable coefficient can be either positive or negative in optimisation

\section*{Notes}
1. Standard LUSAS loads (such as CL, BFP, CBF etc) follow LOAD VARIABLE and form a load pattern which is scalable by the parameter identified as ilvar. More than one load type can be defined under the LOAD VARIABLE header.
2. LOAD CASE and LOAD VARIABLE commands can be specified in any order.

\section*{Prescribed Variables}

Nodal variables can be prescribed in an incremental manner (PDSP) or in total form (TPDSP). In each case the variable to be prescribed must be restrained under the SUPPORT NODES data chapter.

\section*{Incremental Prescribed Variables (PDSP)}

The data section PDSP is used to define incremental prescribed nodal variables.
```

PDSP n [l] [TITLE title]

```
\(\mathrm{N} \mathrm{N}_{\text {last }} \mathrm{N}_{\text {diff }}<\mathrm{V}_{\mathrm{i}}>=1, \mathrm{n}\)
\(\mathrm{n} \quad\) The required number of prescribed values.
1 The starting location of the first input value in the prescribed displacement data list (default \(\mathbf{l}=1\))
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with identical prescribed values.
\(\mathrm{V}_{\mathrm{i}} \quad\) The prescribed values (see Note on FREEDOM TEMPLATE).

\section*{Notes}
1. The number of prescribed values must not exceed the number of freedoms for any node.
2. Prescribed values will function only if the corresponding freedoms are specified as restrained (R) in SUPPORT NODES.
3. If the FREEDOM TEMPLATE data chapter has been specified prescribed values will relate to the modified freedom list.
4. Prescribed nodal variables may also be defined via the SUPPORT NODES data chapter (this is not recommended for nonlinear analyses). In this case the prescribed velocities will apply to all loadcases.
5. Incremental and total prescribed displacements (see Total prescribed variables (TPDSP) below) should not be applied in the same analysis if load curves have been defined. It is recommended that total prescribed displacements are used with load curves.
6. Incremental and total prescribed displacements must not be combined to prescribe values for variables at the same node.
7. Rotational displacements should be specified in radians.
8. In a linear analysis, multiple PDSP load cases may be defined but there must be no change in the degrees of freedom that are loaded.

\section*{Total Prescribed Variables (TPDSP)}

The data section TPDSP is used to define total prescribed nodal variables.
```

TPDSP n [l] [TITLE title]

```

N \(\mathrm{N}_{\text {last }} \mathrm{N}_{\text {diff }}<\mathrm{V}_{\mathrm{i}}>=\mathbf{1}, \mathrm{n}\)
\(\mathrm{n} \quad\) The required number of prescribed values.
1 The starting location of the first input value in the prescribed displacement data list (default \(\mathbf{l}=1\)).
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with identical prescribed values.
\(\mathbf{V}_{\mathbf{i}} \quad\) The prescribed values. (see Note on FREEDOM TEMPLATE). A 'F' should be input rather than zero to prevent a restrained variable being inadvertently reset to zero.

\section*{Notes}
1. The number of prescribed values must not exceed the number of freedoms for any node.
2. Prescribed values will function only if the corresponding freedoms are specified as restrained (R) in SUPPORT NODES.
3. If the FREEDOM TEMPLATE data chapter has been specified prescribed values will relate to the modified freedom list.
4. Total and incremental prescribed displacements (see Incremental prescribed variables (PDSP) above) should not be applied in the same analysis if load curves have been defined. It is recommended that total prescribed displacements are used with load curves.
5. Total and incremental prescribed displacements must not be combined to prescribe values for variables at the same node.
6. Rotational displacements should be specified in radians.
7. In a linear analysis, multiple PDSP load cases may be defined but there must be no change in the degrees of freedom that are loaded.

\section*{Concentrated Loads (CL)}

The data section CL is used to define concentrated forces and/or moments which are applied directly to structural nodes.
```

CL [TITLE title]

```
\(\mathrm{N} \mathrm{N}_{\text {last }} \mathrm{N}_{\text {diff }}<\mathrm{P}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with identical values.
\(\mathbf{P}_{\mathbf{i}} \quad\) The nodal forces/moments in global X, Y or Z directions (see Notes).
n The number of nodal forces/moments

\section*{Notes}
8. If the FREEDOM TEMPLATE data chapter has been specified concentrated loading must relate to the modified freedom list.

\section*{Element Loads}

Four types of internal element loads may be applied:
\(\square\) Element loads (ELDS)
Consult the relevant element section in the LUSAS Element Reference Manual for details of the required loading components.

\section*{Element Loads (ELDS)}

The data section ELDS is used to define the element load type and components.
ELDS \(m\) [l] [TITLE title]
\(L L_{\text {last }} L_{\text {diff }}\) ltype \(\left\langle\mathrm{V}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\right.\)
m Maximum number of element loads applied to any one element per load case.
1 The starting location of the first input value in the element load data list (default \(\mathbf{l}=1\)).
\(\mathrm{L}_{\mathrm{L}_{\text {last }}} \mathrm{L}_{\text {diff }}\) The first element, last element and difference between elements of the series of elements with identical element loading values.
ltype The element load type number. The element loading types available on nodal line are:

11 Point loads and moments in local directions
12 Point loads and moments in global directions
21 Uniformly distributed loads in local directions
22 Uniformly distributed loads in global directions
23 Uniformly ditributed projected loads in global directions
31 Distributed element loads in local directions
32 Distributed element loads in global directions
33 Distributed element projected loads in global directions
41 Trapezoidal loads in local directions
42 Trapezoidal loads in global directions
43 Trapozoidal projected loads in global directions
Multiplying a load type number by 10 (ltype *10) defines the corresponding element load type on the beam axis.
\(\mathrm{V}_{\mathrm{i}} \quad\) The element internal distances and load values.
n The number of element internal distances and load values for the loaded element type (see Loading section in the LUSAS Element Reference Manual).

\section*{Distributed Loads}

Two types of distributed loads are available:
\(\square\) Uniformly Distributed Loads (UDL)
\(\square\) Face Loads (FLD)

\section*{Uniformly Distributed Loads (UDL)}

The data section UDL is used to define the loading intensity components for uniformly distributed loads.

UDL [TITLE title]
L \(\mathrm{L}_{\text {last }} \mathrm{L}_{\text {diff }}<\mathrm{W}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)
L \(\mathrm{L}_{\text {last }} \mathrm{L}_{\text {diff }}\) The first element, last element and difference between elements of the series of elements with UDL loads.
\(\mathbf{W}_{\mathbf{i}} \quad\) The uniformly distributed load (applied in the element local directions, see the LUSAS Element Reference Manual).
n The number of uniformly distributed load components.

\section*{Note}
1. All values applied to elements are accumulative within each LOAD CASE.

\section*{Face Loads (FLD)}

The data section FLD is used to define the loading components and associated element faces for face loading. The element face numbering conventions are shown in the LUSAS Element Reference Manual.

\section*{Notes}
1. If zero element face node \(\mathbf{N}\), is specified, then the face load will be applied to all nodes on the face.
2. When using Option 123 for clockwise node numbering, care should be taken to ensure that loading is applied in the correct direction.

\section*{Global Face Loads (FLDG)}

The data section FLDG is used to define the global loading components and associated element faces for face loading. The element face numbering conventions are shown in the LUSAS Element Reference Manual.

FLDG n [l] [TITLE title]

L LF \(N \quad\) NSET \(<\mathrm{FL}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)
\(\mathrm{n} \quad\) The required number of values in the element face load data list.
1 The starting location of the first input value in the element face load data list (default \(\mathbf{l}=1\)).
\(\mathbf{L} \quad\) The element number.
LF The element face number (see the LUSAS Element Reference Manual).
\(\mathbf{N} \quad\) The element face node number as input in element topology.
NSET The Cartesian set used to orientate the global stresses. Enter 0 if the global axes are to be used.
\(\mathrm{FL}_{\mathbf{i}} \quad\) The global face load stresses. For 2D use \(\sigma_{x}, \sigma_{y}\) and \(\tau_{x y}\) and for 3D use \(\sigma_{x}, \sigma_{y}, \sigma_{z}, \tau_{x y}, \tau_{y z}\) and \(\tau_{z x}\).

\section*{Notes}
1. If zero element face node N , is specified, then the face load will be applied to all nodes on the face.
2. When using Option 123 for clockwise node numbering, care should be taken to ensure that loading is applied in the correct direction.

\section*{Body Forces}

Three types of body force loading are available:
- Constant Body Forces (CBF)
\(\square\) Body Force Potentials (BFP)
\(\square\) Element Body Force Potentials (BFPE)

\section*{Constant Body Forces (CBF)}

The data section CBF is used to define the loading components for constant body force loading (specified as forces per unit volume).

CBF [n] [l] [TITLE title]
L \(L_{\text {last }} L_{\text {diff }}<q_{i}>_{i=1, n}\)
n The number of constant body forces/angular velocities/angular accelerations.
1 The starting location of the first input value in the element load data list (default \(\mathbf{l}=1\)).
\(\mathrm{L} \mathrm{L}_{\text {last }} \mathrm{L}_{\text {diff }}\) The first element, last element and difference between elements of the series of elements with identical constant body forces.
\(q_{i} \quad\) The constant body forces/angular velocities (see Notes)/angular accelerations in/about the global X, Y and Z directions/axes (see the LUSAS Element Reference Manual).

\section*{Notes}
1. Option 48 switches the constant body force input to linear acceleration input. The angular velocities and accelerations remain unchanged.
2. All values applied to elements are accumulative within each LOAD CASE.
3. Option 102 switches off the load correction stiffness matrix due to centripetal acceleration.
4. Centripetal stiffening effects are limited to 2 D -continuum, axisymmetric solid, 3Dcontinuum, semiloof shells, thick shells and 3D numerically integrated beam elements. They are only included in nonlinear analyses via the Total Lagrangian geometrically nonlinear facility.
5. Element loading will be a function of the square of any angular velocity specified. If auto incrementation is used in a nonlinear analysis the load factor, TLAMDA, will be applied to the equivalent element loading and not the angular velocity. If LUSAS Solver detects this combination an error message will be written to the output file and the analysis terminated. To override this error check OPTION 340 can be specified in the data file and the analysis will continue giving a warning message only. To directly control the magnitude of the angular velocity applied to the structure in a nonlinear analysis manual incrementation or load curves should be utilised.

\section*{Body Force Potentials (BFP)}

The data section BFP is used to define the loading components for body force potential loading (specified as forces at nodes).
```

BFP [TITLE title]

```

N \(\mathrm{N}_{\text {last }} \mathrm{N}_{\text {diff }}<\mathrm{q}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)
\(\mathbf{N} \mathrm{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with force potentials.
\(q_{i} \quad\) The body force potential/constant body forces/ components of the acceleration due to gravity acting on the fluid phase at nodes in global and/or local directions (see Notes).
n The number of body force potentials/pore water pressure/constant body forces.

\section*{Notes}
1. BFP values at a node apply to all elements connected to that node.
2. The LUSAS Element Reference Manual must be consulted to find out which values can be specified under BFP loading for a particular element. Unless otherwise stated, the values are defined as force/unit area or volume and consist of qi where:
3. \(\mathbf{i}=1\) to 3 not used
4. \(\mathbf{i}=4\) body force potential
5. \(\mathbf{i}=5\) to 7 constant body forces, applied in global directions
6. \(i=8\) to 9 components of the acceleration due to gravity acting on the fluid phase, applied in global directions.
7. All values applied to elements are accumulative within each LOAD CASE.

\section*{Element Body Force Potentials (BFPE)}

The data section BFPE is used to define the loading components for elemental body force potential loading (specified as forces at element nodes).
```

BFPE n [l] [TITLE title]

```

L \(N<\Phi_{i}>_{i=1, n}\)
\(\mathrm{n} \quad\) The required number of values in the body force potential data list.
\(1 \quad\) The starting location of the first input value in the body force potential data list (default \(\mathbf{l}=1\)).
L The element number.
\(\mathbf{N} \quad\) The element node number as defined in ELEMENT TOPOLOGY.
\(F_{i} \quad\) The body force potential values at the element node in global and/or local directions (see Notes).

\section*{Notes}
1. The LUSAS Element Reference Manual must be consulted to find out which values can be specified under BFPE loading for a particular element. Unless otherwise stated, the values are defined as force/unit area or volume and consist of:
\(\Phi \mathrm{i}\) :
- \(\mathbf{i}=1\) to 3 not used
- \(\mathbf{i}=4\) body force potential
- \(\mathbf{i}=5\) to 7 constant body forces, applied in global directions
- \(\mathbf{i}=8\) to 9 components of the acceleration due to gravity acting on the fluid phase, applied in global directions.
2. All values applied to elements are accumulative within each LOAD CASE.

\section*{Velocity and Acceleration}

In dynamic analyses, velocities or accelerations at a nodal variable can be defined. These values can be used to specify an initial starting condition or they may be prescribed for the whole analysis. If values are to be prescribed throughout the analysis load curves must be used (see Curve Definition) and the appropriate freedom must be restrained in the SUPPORT NODES data chapter.
\(\square\) Prescribed Velocities (VELOCITY)
\(\square\) Prescribed Accelerations (ACCELERATION)

\section*{- Examples of Acceleration and Velocity Curves}

\section*{Prescribed Velocities (VELOCITY)}

The data section VELOCITY may be used to define the components of an initial velocity or to prescribe velocities throughout a dynamic analysis.

VELOCITY \(n\) [l] [TITLE title]
N \(\mathrm{N}_{\text {last }} \mathrm{N}_{\text {diff }}<\mathrm{V}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)
\(\mathrm{n} \quad\) The required number of velocity values in the data list.
\(1 \quad\) The starting location of the first input value in the velocity data list (default \(\mathbf{l}=1\)).
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with identical velocities.
\(\mathbf{V}_{\mathbf{i}} \quad\) The velocity components (see Notes).

\section*{Notes}
1. If a component of velocity is to be prescribed throughout an analysis the appropriate freedom must be specified as restrained (R) in support nodes. If an initial velocity is defined without using load curves the support condition for the variable must be free.
2. The number of velocities must not exceed the number of freedoms for any node.
3. Prescribed or initial velocities are only applicable to dynamic analyses.
4. Initial velocities should only be applied to the first load case (i.e. at time=0).
5. If the FREEDOM TEMPLATE data chapter has been specified velocities will relate to the modified freedom list.
6. In general, load curves (see Curve Definition) must be used to prescribe velocities in an analysis. However, initial velocities may be defined without using load curves if no other load type is controlled by a load curve.
7. In general, it is not reasonable to prescribe velocities and accelerations (see ACCELERATION below) for the same variable at the same point in time; if this does occur in an analysis the acceleration will overwrite the velocity and a warning message will be output. An exception to this rule occurs for implicit dynamics analyses where an initial velocity and acceleration may be used to define an initial condition for the same variable.
8. If initial conditions are to be applied, refer to Transient Dynamic Analysis for details on how to compute the data input required for the appropriate dynamics integration scheme.
9. In explicit dynamics, if an initial velocity is to be followed by subsequent prescribed values (velocities, accelerations or displacements) at the same variable, the appropriate freedom must be restrained from the outset.
10. Velocities defined in load curves for explicit dynamics will be written to the output file one time step later than the time at which they were defined. This time lag is a consequence of the central difference integration scheme.
11. It is possible to switch from a prescribed velocity to a prescribed acceleration (or vice-versa) for the same variable by manipulating load curve data. Care should be taken when doing this to avoid any discontinuity which could excite a high frequency response in the model. An example of manipulating load curve data in this way is given on Examples of Acceleration and Velocity Curves.

\section*{Prescribed Accelerations (ACCELERATION)}

The data section ACCELERATION may be used to define the components of an initial acceleration or to prescribe accelerations throughout a dynamic analysis. It should be noted however that an initial acceleration cannot be used to define the starting conditions for an explicit dynamic analysis.

ACCELERATION \(n\) [l] [TITLE title]
\(\mathrm{N} \mathrm{N}_{\text {last }} \mathrm{N}_{\text {diff }}<\mathrm{V}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)
\(\mathrm{n} \quad\) The required number of acceleration values in the data list.
1 The starting location of the first input value in the acceleration data list (default \(\mathbf{l}=1\)).
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with identical accelerations.
\(\mathrm{V}_{\mathrm{i}} \quad\) The acceleration components (see Notes).

\section*{Notes}
1. If a component of acceleration is to be prescribed throughout an analysis the appropriate freedom must be specified as restrained (R) in support nodes. If an initial acceleration is defined in an implicit dynamic analysis without using load curves the support condition for the variable can be free or restrained.
2. The number of accelerations must not exceed the number of freedoms for any node.
3. Prescribed or initial accelerations are only applicable to dynamic analyses.
4. Initial accelerations should only be applied to the first load case (i.e. at time=0) and are only valid for implicit dynamic analyses.
5. If the FREEDOM TEMPLATE data chapter has been specified accelerations will relate to the modified freedom list.
6. In general, load curves (see Curve Definition) must be used to prescribe accelerations in an analysis. However, initial accelerations may be defined without using load curves in an implicit dynamic analysis if no other load type is controlled by a load curve.
7. In general, it is not reasonable to prescribe accelerations and velocities (see VELOCITY above) for the same variable at the same point in time; if this does occur in an analysis the acceleration will overwrite the velocity and a warning
message will be output. An exception to this rule occurs for implicit dynamics analyses where an initial velocity and acceleration may be used to define an initial condition for the same variable.
8. If initial conditions are to be applied, refer to Transient Dynamic Analysis for details on how to compute the data input required for the appropriate dynamics integration scheme.
9. In explicit dynamics, accelerations defined in load curves will be written to the output file one time step later than the time at which they were defined. This time lag is a consequence of using the central difference integration scheme.
10. It is possible to switch from a prescribed acceleration to a prescribed velocity (or vice-versa) for the same variable by manipulating load curve data. Care should be taken when doing this to avoid any discontinuity which could excite a high frequency response in the model. An example of manipulating load curve data in this way is given below.

\section*{Examples of Acceleration and Velocity Curves}

This example shows two methods for defining curves which alternate the prescribing of velocities and accelerations at the same freedom. In the first method, all load curves are assigned from time step 0 and zero sections in a curve allow control to be passed from one curve to another. In the second method, curves are reassigned at appropriate points in the analysis. Either method can be used in implicit dynamics analyses but only the first method should be used for explicit dynamics.

Example. Load Curves Method 1

Load Curve 1
Prescribe velocity between times 0.0 and 1.0 and from time 2.0 onwards

\section*{Load Curve 2}

Prescribe acceleration between times 1.0 and 2.0

Loading section from data file:
```

LOAD CASE
VELOCITY 2
1 2 1 0.0 200.0
LOAD CASE
ACCELERATION 2
1 2 1 0.0 300.0
CURVE DEFINITION 1 USER
0.0 1.0
1.0 1.5
1.00001 0.0
1.99999 0.0
2.0 3.0
10.0 5.0
CURVE DEFINITION 2 USER
0.0 0.0
0.99999 0.0
1.0 1.0
2.0 1.0
2.00001 0.0
10.0 0.0
CURVE ASSIGNMENT
1.0 1
2 1.0 2

```
```

DYNAMIC CONTROL
INCREMENTATION 0.01
CONSTANTS D
OUTPUT 1
TERMINATION 30
END

```

Combining curves with zero sections in this manner is only required if it is necessary to alternate the specification of velocities and accelerations at the same freedom. In explicit dynamics (with a varying time step size) the results near discontinuity points in the load curves should be checked to ensure that the tolerance used for defining zero sections is adequate enough to prevent erroneous values being prescribed. For implicit analyses the time step size is fixed and this potential problem will not arise if the load curves are defined correctly.

\section*{Example. Load Curves Method 2}

\section*{Load Curve 1}

Prescribe velocity profile completely

Load Curve 2
Prescribe acceleration profile completely

Note. Method 2 should only be used for implicit dynamic analyses.
Loading section from data file:
```

LOAD CASE
VELOCITY 2

```
1210.0100 .0
LOAD CASE
ACCELERATION 2
1210.0 100.0
CURVE DEFINITION 1 USER
0.0 2.0
1.0 3.0
2.0 6.0
10.0 10.0
CURVE DEFINITION 2 USER
0.0 1.0
0.99999 1.0
1.0 3.0
2.0 3.0
2.00001 0.5
10.0 0.5
CURVE ASSIGNMENT
11.0 1
DYNAMIC CONTROL
INCREMENTATION 0.01
CONSTANTS D
OUTPUT 1
TERMINATION 10
CURVE ASSIGNMENT
21.0 2
DYNAMIC CONTROL
TERMINATION 10
CURVE ASSIGNMENT
11.0 1
DYNAMIC CONTROL
TERMINATION 10
END

\section*{Viscous Support Loads (VSL)}

In a dynamic analysis, the data section VSL is used to define viscous support loads which are applied directly to structural nodes, to degrees of freedom that also have viscous transmitting supports assigned to them.
```

VSL [TITLE title]

```
\(\mathrm{N} \mathrm{N}_{\text {last }} \mathrm{N}_{\text {diff }}<\mathrm{VL}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with identical values.
\(\mathrm{VL}_{\mathrm{i}} \quad\) The nodal viscous support load factors in the global \(\mathrm{X}, \mathrm{Y}\) or Z translational directions (see Notes). These load factors have units of velocity.
n The number of nodal viscous support load factors

\section*{Notes}
1. If the FREEDOM TEMPLATE data chapter has been specified viscous support loading must relate to the modified freedom list.
2. Viscous support loads are only applied at nodal degrees of freedom where viscous transmitting supports are also assigned. If they are applied to any other degrees of freedom in the model, they are automatically set to zero by LUSAS Solver and a warning is output to the .out file. LUSAS Solver continues with the analysis.
3. Viscous support loads can only be applied to the translational \(\mathrm{U}, \mathrm{V}\) and W freedom directions.
4. For each degree of freedom, the viscous support load factor \(\mathrm{VL}_{\mathrm{i}}\) is multiplied by the viscous damping coefficient (\(\mathbf{c}_{i}=\boldsymbol{\alpha}_{\mathbf{i}} . \mathrm{A} \cdot \boldsymbol{\rho} . \mathrm{V}_{\mathrm{i}}\)) of the corresponding viscous transmitting support, to obtain the actual force (\(\mathbf{F}_{\mathbf{i}}=\mathbf{C}_{\mathbf{i}} . \mathrm{VL}_{\mathbf{i}}\)) applied at the structural node. The load factors \(\mathrm{VL}_{\mathrm{i}}\) therefore have units of velocity.

\section*{Initial Stresses and Strains}

Three types of initial stress and strain loading are available:
\(\square\) Initial stresses and strains at nodes (SSI)
\(\square\) Initial stresses/strains for elements (SSIE)
\(\square\) Initial stresses and strains at gauss points (SSIG)
Initial stresses and strains are applied as the first load case and subsequently included into the incremental solution scheme for nonlinear problems.

Initial stresses and strains are only applicable to numerically integrated elements. Refer to the individual element descriptions in the LUSAS Element Reference Manual for details of the initial stress and strain components.

\section*{Initial Stresses and Strains at Nodes (SSI)}

The data section SSI is used to define the initial stress and strain components at nodes.
SSI n [l] [TITLE title]
\(\mathrm{N} \mathrm{N}_{\text {last }} \mathrm{N}_{\text {diff }}<\mathrm{V}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)
n The required number of initial stresses or strains at a node.
1 The starting location of the first input value in the element stress/strain data list (default, \(\mathbf{l}=1\) for stress input). The value \(\mathbf{l}=\) ndse +1 gives the starting location for strain input, where ndse is the number of stress components for the loaded element type.
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with identical initial stresses/strains.
\(\mathrm{V}_{\mathbf{i}} \quad\) The initial stress, stress resultant or initial strain values at a node, relative to the reference axis.

\section*{Note}
1. The initial stress/strain values at a node, apply to all elements connected to that node.

\section*{Example. Initial Stress}

To apply an initial stress resultant (Mxy) of magnitude 2 to node number 10 of a QSI4 element would require the following command:

SSI 6
\(\begin{array}{lllllllll}10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\end{array}\)
and for a strain (yxy) at the same node of magnitude 0.001
SSI 6

or
SSI 67
\(\begin{array}{lllllllll}10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.0001\end{array}\)

\section*{Initial Stresses/Strains for Elements (SSIE)}

The data section SSIE is used to define the initial element stress and strain components.
```

SSIE n [l] [TITLE title]

```
\(\mathrm{L} \quad \mathbf{N}<\mathrm{V}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)
n The required number of initial stresses or strains at an element node.

1 The starting location of the first input value in the element stress/strain data list (default, \(\mathbf{l}=1\) for stress input). The value \(\mathbf{l}=\) ndse +1 gives the starting location for strain input, where ndse is the number of stress components for the loaded element type.
L The element number.
\(\mathbf{N} \quad\) The element node number as defined in ELEMENT TOPOLOGY.
\(\mathbf{V}_{\mathbf{i}} \quad\) The initial stress, stress resultant or strain values at the element node.

\section*{Example. Initial Stress}

To apply an initial stress (sy) of magnitude 2 to node number 7 of QPM8 element number 3 would require the following command:

SSIE 3
\(\begin{array}{lllll}3 & 7 & 0 & 2 & 0\end{array}\)
and for a strain (ey) at the same node of magnitude 0.001
SSIE 3
\(\begin{array}{llllllll}3 & 7 & 0 & 0 & 0 & 0 & 0.0001 & 0\end{array}\)
or
SSIE 34
\(\begin{array}{lllll}3 & 7 & 0 & 0.0001 & 0\end{array}\)

\section*{Initial Stresses and Strains at Gauss Points (SSIG)}

The data section SSIG is used to define the initial stress and strain components at Gauss points.

SSIG \(n\) [l] [TITLE title]
L \(\mathrm{L}_{\text {last }} \mathrm{L}_{\text {diff }} \mathrm{NGP}<\mathrm{V}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)
\(\mathrm{n} \quad\) The required number of initial stresses or strains at an element Gauss point.
\(1 \quad\) The starting location of the first input value in the element stress/strain data list (default, \(\mathbf{l}=1\) for stress input). The value \(\mathbf{l}=\) ndse +1 gives the starting location for strain input, where ndse is the number of stress components for the loaded element type.
\(\mathrm{L} \mathrm{L}_{\text {last }} \mathrm{L}_{\text {diff }}\) The first element, last element and difference between elements of a series of elements with identical initial stress/strains.
NGP The Gauss point number.
\(\mathbf{V}_{\mathbf{i}} \quad\) The initial stress, stress resultant or strain value at the element Gauss point relative to the reference axis.

\section*{Example. Initial Stress}

To apply an initial stress (sxy) of magnitude 2 to Gauss point number 2 of QAX4 element number 10 would require the following command:

SSIG 4
\(\begin{array}{llllllll}10 & 0 & 0 & 2 & 0 & 0 & 2 & 0\end{array}\)
and for a strain (exy) at the same node of magnitude 0.001
```

    SSIG 4
    ```
 \(\begin{array}{llllllllllll}10 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0.0001 & 0\end{array}\)
or
SSIG 45
 \(\begin{array}{llllllll}10 & 0 & 0 & 2 & 0 & 0 & 0.0001 & 0\end{array}\)

\section*{Residual Stresses}

Three types of residual stress loading are available:
- Residual stresses at nodes (SSR)
\(\square\) Residual stresses for elements (SSRE)
\(\square\) Residual stresses at gauss points (SSRG)
Residual stresses (unlike initial stresses) are assumed to be in equilibrium with the undeformed geometry and are not treated as a load case as such. They are considered as a starting position for stress for a nonlinear analysis. Failure to ensure that the residual stresses are in equilibrium will result in an incorrect solution.

Refer to the individual element descriptions in the LUSAS Element Reference Manual for details of the residual stress components.

\section*{Residual Stresses at Nodes (SSR)}

The data section SSR is used to define the components of residual stress at nodes.
SSR n [l] [TITLE title]
\(N N_{\text {last }} N_{\text {diff }}<\sigma_{\text {ri }}>_{i=1, n}\)
\(\mathrm{n} \quad\) The required number of residual stresses at a node.
1 The starting location of the first input value in the element residual stress data list (default \(\mathbf{l}=1\)).
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with identical residual stresses.

\section*{\(\mathbf{S}_{\mathrm{ri}} \quad\) The residual stress or stress resultant values at a node, relative to the reference axis.}

\section*{Note}
1. The residual stress value at a node applies to all elements connected to that node.

\section*{Example. Residual Stress}

To apply a residual stress resultant (Mxy) of magnitude 2 to node number 10 of a QSI4 element would require the following command:

SSR 6
\(\begin{array}{lllllllll}10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\end{array}\)

\section*{Residual Stresses for Elements (SSRE)}

The data section SSRE is used to define the element residual stress components.
SSRE n [l] [TITLE title]
L \(N \quad<\sigma_{r i}>_{i=1, n}\)
\(\mathrm{n} \quad\) The required number of residual stresses at an element node.
\(1 \quad\) The starting location of the first value in the element residual stress data list (default \(\mathbf{l}=1\)).
L The element number.
\(\mathbf{N} \quad\) The element node number as defined in ELEMENT TOPOLOGY.
\(\mathbf{S}_{\mathbf{r i}} \quad\) The residual stress or stress resultant values at the element node, relative to the element reference axis.

\section*{Example. Residual Stress}

To apply a residual stress (sy) of magnitude 2 to node number 7 of QPM8 element number 3 would require the following command:

SSRE 3
```

3 7 0 2 0

```

\section*{Residual Stresses at Gauss Points (SSRG)}

The data section SSRG is used to define the components of residual stress at Gauss points.
```

SSRG n [l] [TITLE title]

```

L \(L_{\text {last }} L_{\text {diff }} N G P<\sigma_{r i}>_{i=1, n}\)
\(\mathrm{n} \quad\) The required number of residual stresses at an element Gauss point.

1 The starting location of the first input value in the element residual stress data list (default \(\mathbf{l}=1\)).
\(\mathrm{L} \mathrm{L}_{\text {last }} \mathrm{L}_{\text {diff }}\) The first element, last element and difference between elements of the series of elements with identical residual stresses.
NGP The Gauss point number.
\(\mathbf{S}_{r i} \quad\) The residual stress or stress resultant values for the element, relative to the element reference axis.

\section*{Example. Residual Stress}

To apply a residual stress (sxy) of magnitude 2 to Gauss point number 2 of QAX4 element number 10 would require the following command:

SSIG 4
\begin{tabular}{llllllll}
10 & 0 & 0 & 2 & 0 & 0 & 2 & 0
\end{tabular}

\section*{Target Stresses and Strains}

Three types of target stress and strain loading are available:
\(\square\) Target stresses and strains for element nodes (TSSIE)
\(\square\) Target stresses/strains for Gauss points (TSSIG)
\(\square\) Averaged target stresses and strains for elements (TSSIA)
As opposed to initial stresses, target stresses are attained at the end of the load increment allowing, for istance, the specification of a pre-stress load in a cable.

Target stresses and strains are only applicable to numerically integrated elements. Refer to the individual element descriptions in the LUSAS Element Reference Manual for details of the stress and strain components.

\section*{Target Stresses and Strains at element nodes (TSSIE)}

The data section TSSIE is used to define the target stress and strain components at element nodes.

TSSIE \(n\) [l] [TITLE title]
\(\mathrm{L} \mathbf{N}<\mathrm{V}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)
\(\mathrm{n} \quad\) The required number of target stresses or strains in element.
1 The starting location of the first input value in the element stress/strain data list (default, \(\mathbf{l}=1\) for stress input). The value \(\mathbf{l}=\) ndse +1 gives the starting location for strain input, where ndse is the number of stress components for the loaded element type.
L The element number.
N The element node number as defined in ELEMENT TOPOLOGY.
\(\mathbf{V}_{\mathbf{i}} \quad\) The target stress, stress resultant or strain value at the element Gauss point relative to the reference axis.

\section*{Notes}
1. A ' \(F\) ' is used to input a free component. The input of 0.0 will result in a component value of 0.0 at the end of the increment.
2. Target stress is only applicable to elements using an elastic material model in a linear or nonlinear static analysis.
3. In a nonlinear or multi-step analysis the target stress remains fixed whilst the loadcase is active. Unlike other loads this load is remembered when a new loadcase is defined. The stress is locked in but the element stress will change if the element undergoes further deformation in the following steps. The target stress can be set at each increment by using a new LOAD CASE or by factoring it using automatic load incrementation or load curves.

\section*{Target Stresses and Strains at Gauss Points (TSSIG)}

The data section TSSIG is used to define the initial stress and strain components at Gauss points.

\section*{TSSIG \(n\) [l] [TITLE title]}
\(\mathrm{L} \mathrm{L}_{\text {last }} \mathrm{L}_{\text {diff }} \quad \mathrm{NGP}<\mathrm{V}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)
\(\mathrm{n} \quad\) The required number of target stresses or strains at an element Gauss point.
1 The starting location of the first input value in the element stress/strain data list (default, \(\mathbf{l}=1\) for stress input). The value \(\mathbf{l}=\) ndse +1 gives the starting location for strain input, where ndse is the number of stress components for the loaded element type.
\(L L_{\text {last }} L_{\text {diff }}\) The first element, last element and difference between elements of a series of elements with identical initial stress/strains.
NGP The Gauss point number.
\(\mathbf{V}_{\mathbf{i}} \quad\) The target stress, stress resultant or strain value at the element Gauss point relative to the reference axis.

\section*{Notes}
1. A ' \(F\) ' is used to input a free component. The input of 0.0 will result in a component value of 0.0 at the end of the increment.
2. Target stress is only applicable to elements using an elastic material model in a linear or nonlinear static analysis.
3. In a nonlinear or multi-step analysis the target stress remains fixed whilst the loadcase is active. Unlike other loads this load is remembered when a new loadcase is defined. The stress is locked in but the element stress will change if the element undergoes further deformation in the following steps. The target stress can
be set at each increment by using a new LOAD CASE or by factoring it using automatic load incrementation or load curves.

\section*{Average Target Stresses and Strains for Element (TSSIA)}

The data section TSSIA is used to define the average target stress and strain components across an element.

TSSIA \(n\) [l] [TITLE title]
\(\mathrm{L} \mathrm{L}_{\text {last }} \mathrm{L}_{\text {diff }}<\mathrm{V}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)
\(\mathrm{n} \quad\) The required number of averaged target stresses or strains across element.
\(1 \quad\) The starting location of the first input value in the element stress/strain data list (default, \(\mathbf{l}=1\) for stress input). The value \(\mathbf{l}=\) ndse +1 gives the starting location for strain input, where ndse is the number of stress components for the loaded element type.
\(L L_{\text {last }} L_{\text {diff }}\) The first element, last element and difference between elements of a series of elements with identical averaged target stress/strains.
\(\mathbf{V}_{\mathbf{i}} \quad\) The averaged target stress, stress resultant or strain value of the element to the reference axis.

\section*{Notes}
1. The target component is calculated as the mean average of all the Gauss point target stress components in the element. Therefore, none of the Gauss points need necessarily have a stress exactly equal to the target stress value at the end of the increment.
2. A ' \(F\) ' is used to input a free component. The input of 0.0 will result in a component value of 0.0 at the end of the increment.
3. Target stress is only applicable to elements using an elastic material model in a linear or nonlinear static analysis.

\section*{Temperature Loads}

Two types of temperature loading are available:
- Temperature loads at nodes (TEMP)
\(\square\) Temperature loads for elements (TMPE)
Consult the individual element descriptions in the LUSAS Element Reference Manual for details of the temperature components.

\section*{Temperature Loads at Nodes (TEMP)}

The data section TEMP is used to define the loading components for nodal temperature loads.
```

TEMP n [l] [TITLE title]

```
\(\mathrm{N} \mathrm{N}_{\text {last }} \mathrm{N}_{\text {diff }}<\mathrm{T}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)
\(\mathrm{n} \quad\) The required number of values in the temperature data list.
1 The starting location of the first input value in the temperature data list (default \(\mathbf{l}=1\)).
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with identical temperature values.
\(\mathbf{T}_{\mathbf{i}} \quad\) The temperature values at a node.

\section*{Notes}
1. The temperature values at a node apply to all elements connected to that node, except joints, in which temperature loading is invoked using Option 119.
2. For step by step problems, the initial temperature values need only be specified on the first load step.
3. The TEMP data section may be used to provide a temperature field for computing initial material properties in a nonlinear analysis.
4. In a stress analysis, temperature loading will only induce stresses if the coefficient of thermal expansion is specified in the material properties.
5. To initialise the temperature field in a nonlinear field analysis, the temperature loading must be applied using a manual load increment.

\section*{Temperature Loads for Elements (TMPE)}

The data section TMPE is used to define the loading components for element temperature loads in a structural analysis.

TMPE \(n\) [l] [TITLE title]
L \(N \quad<T_{i}>_{i=1, n}\)
\(\mathrm{n} \quad\) The required number of values in the temperature data list.
1 The starting location of the first input value in the temperature data list (default \(\mathbf{l}=1\)).
L The element number.
\(\mathbf{N} \quad\) The element node number as defined in ELEMENT TOPOLOGY.
Ti The temperature values at the element node.

\section*{Notes}
1. Temperature is only applied to the node of the element specified.
2. For step by step problems, the temperature values need only be specified on the first load step.
3. The TMPE data section may be used to provide a temperature field for computing initial material properties in a nonlinear analysis.
4. In a stress analysis, temperature loading will only induce stresses if the coefficient of thermal expansion is specified in the material properties
5. To initialise the temperature field in a nonlinear or transient thermal analysis, the temperature loading must be applied using a manual load increment.

\section*{General Point/Patch Loads}

Since loading may not always conveniently be applied directly to the finite element mesh, the general point and patch load facilities provide a means of calculating the equivalent loads which are applied at the nodes to model loading which may lie within a single element or straddle several elements. By rotation of the vertical loading vector, in-plane loading may also be modelled.

General loading can be applied across the finite element mesh by the definition of a search area. The search area overlies the finite element mesh and is composed of equivalent 3 and 4 noded, or 6 and 8 noded triangular and quadrilateral elements, connected into an area which conveniently covers all or part of the structure to be loaded. The loading is applied to this overlying mesh and converted into equivalent nodal loads using the shape functions of the search elements. These nodal loads are then applied directly to the underlying structural mesh. Note that the nodal loads correctly represent the vertical and in-plane components but do not account for any equivalent bending moments.

To ensure a correct transfer of loading, the search area node numbers must coincide with the structural mesh. It is important to note that the loads are only applied to the nodes which are common to both the mesh and the search area.

The definition of general point and patch loads therefore generally involves four data sections:

\section*{\(\square \quad\) Search area definition}
\(\square\) General point load definition
\(\square\) General patch load definition
\(\square\) Assigning point or patch loads to the structure
An example showing the usage of these data sections is given on General Point and Patch Loading Assignment.

\section*{Search Area Definition}

The data section SEARCH AREA is used to define the general point and patch loading search area.

SEARCH AREA isarea
nelt \(<\) node \(_{i}>_{i=1, n}\)
isarea The search area reference number.
nelt The element number allocated to the particular search element being defined.
nodei Node numbers for each node of the particular search element being defined.
n The number of nodes required to define the search element.

\section*{Notes}
1. Each search element must be given a unique identifying number. The element numbers may, but not necessarily, be the same as those used in the ELEMENT TOPOLOGY.
2. Node numbers must be the same as those used for the structural mesh (defined in NODE COORDINATES).
3. The search element numbers may have omissions in the sequence and need not start at one. The order in which the elements are specified is arbitrary.
4. Nodes must be numbered in an anti-clockwise manner.
5. Linear three and four noded elements may be combined or similarly six and eight noded elements may be combined to mesh the search area.
6. A search area must form a continuous surface irrespective of the element types used to mesh the structure.
7. A search area may be defined on any face of an element.

\section*{General Point Load Definition}

The data section POINT DEFINITION is used to define a series of point loads of arbitrary magnitude in a local z-coordinate system. The loading is applied to the structure by using the ASSIGN command. A CARTESIAN SET is used to define the local xy coordinate system in which the position of the load is defined; the local axes for the load are also assigned using the ASSIGN command.

\section*{POINT DEFINITION ldefn}
\(\mathbf{x} \quad \mathrm{y} \quad \mathrm{P}\)
ldefn The load reference number.
\(\mathbf{x} \quad\) The local \(x\)-coordinate of point load.
\(\mathbf{y} \quad\) The local y-coordinate of point load.
P The magnitude of the point load acting in the local z-direction.

\section*{Notes}
1. The x and y coordinates are defined in local coordinates with a user defined origin and orientation (see ASSIGN data chapter)
2. A load may include any number of point loads which are allowed to be defined in an arbitrary order.
3. A positive \(\mathbf{P}\) is applied in the positive local z direction.

\section*{General Patch Load Definition}

The data section PATCH DEFINITION is used to define general patch loads. These are converted to a series of point loads which are then treated in the same fashion as the point loading. The loading is applied to the structure by the specification of the node of the origin of the local xy coordinate system and its orientation with respect to the global axes using the ASSIGN command. Each different load can be applied at a different point and orientation, where the orientation of the local axes is defined using the CARTESIAN SET command.

\section*{PATCH DEFINITION ldefn ndivx ndivy}
```

x y P

```
ldefn The patch reference number
ndivx The number of patch divisions in local \(x\)-direction
ndivy The number of patch divisions in local y-direction
\(\mathbf{x} \quad\) The local \(x\)-coordinate of point
\(\mathbf{y} \quad\) The local \(y\)-coordinate of point
P The magnitude of the patch load acting in the local z-direction (see Notes).

\section*{Notes}
1. The type of patch is defined by the number of points:
- points \(=\) Straight line knife edge load
- points \(=\) quadrilateral straight boundary patch
- 8 points = curved boundary patch
2. For knife edge patch loads, the direction of \(\mathbf{P}\) corresponds with the local z direction (i.e. a positive \(\mathbf{P}\) is applied in the positive local \(\mathbf{z}\) direction). For 4 and 8 point patch loads the direction of point ordering for the patch is important. If the patch points are defined in an anticlockwise direction (when looking from positive to negative local z) the direction of loading corresponds with the positive local z direction. If the patch points are defined in a clockwise direction, a positive \(P\) will be applied in the negative local \(z\) direction.
3. The angle subtended at any corner of a quadrilateral zone must be less than \(180^{\circ}\) otherwise non-uniqueness of mapping may result.
4. For the eight noded patch the mid-nodes must lie inside the central half of the sides.
5. The PATCH load is transformed to an equivalent summation of ndivx*ndivy point loads; the more divisions used the more realistic the patch load.
6. For line loads the ndivx parameter defines the number of load divisions used.

\section*{General Point and Patch Loading Assignment}

Defined general point and patch loading is applied to the structure via the ASSIGN data section. This incorporates a transformation which allows the loads, defined in
local coordinates, to be orientated at any angle to the global axes. Firstly, the local point or patch loading is orientated with respect to the main structure. The vertical loading can then be rotated to give an in-plane loading component (for example, to represent a vehicle braking or cornering load).

\section*{ASSIGN}
```

norg ldfen nset isarea lset factor

```
norg The node number of the origin of the point or patch loading local coordinate system.
ldfen \(\quad\) The load definition number (see Point Definition and Patch Definition above).
nset The Cartesian set defining the orientation of the local point or patch loading coordinates to the global system (see Cartesian Sets). By default the load will be applied in global directions.
isarea The search area definition number (see Search Area Definition).
lset \(\quad\) The Cartesian set defining the orientation of the applied vertical loading with respect to the global axes (see Cartesian Sets).
factor \(\quad\) The factor to be applied to the vertical load (default \(=1.0\)).

\section*{Notes}
1. Any number of point or patch loads may be applied in an arbitrary order.
2. The origin of the local axes for point or patch loads may be placed on any node defined in the NODE COORDINATE data chapter. This node may be defined outside the boundary of the structure.
3. The orientation of point or patch loads may be varied using different Cartesian sets - (nset varies the patch orientation, lset varies the vertical load orientation). If zero is specified for the Cartesian set number, the orientation of point or patch loads is assumed to be with respect to the global axes.
4. Loading applied outside of the search area are ignored.
5. The translation degrees of freedom of the structural elements must agree with the resolved loading applied to the nodes; if the structure has, for instance, only a lateral freedom w , it is not possible to apply in-plane loading in the \(u\) and \(v\) direction which arise if the lateral load applied to the loading mesh is reoriented about either the x or y axes.

Example. Lorry Loading on Bridge Deck
The bridge deck is discretised using a regular mesh of square planar elements:

1. Definition of orientation of local coordinate.

CARTESIAN SET
\(1 \quad 2 \quad 103102\)
2. Definition of a search area 2 using 4 noded elements.

SEARCH AREA 2
\begin{tabular}{rrrrrrr}
FIRST & 1 & 1 & 2 & 102 & 101 & \\
INC & 1 & 1 & 1 & 1 & 1 & \((5)\) \\
INC & 4 & 100 & 100 & 100 & 100 & \((5)\)
\end{tabular}
3. Definition of point loads to represent a 6 wheeled lorry load (local origin at node 102) with lorry at \(45^{\circ}\) to the global axes.

\section*{POINT DEFINITION 4}

003
103
302
023
123
322
4. Assign point loads to structure.

LOAD CASE
ASSIGN

\section*{\(\begin{array}{llllll}102 & 4 & 1 & 2 & 0 & 1\end{array}\)}

\section*{Overburden}

The overburden load type is used to represent soil loads which have been applied to the element face but which are now no longer present and it can also be used to set up the corresponding initial stresses in the soil. It allows the modelling of the development of stresses arising from the soil's geological history. It is applicable to situations initially dominated by 1D consolidation conditions.

The overburden is described by a vertical section profile defining the coefficient of lateral earth pressure, \(K_{o}\), as well as the dry and submerged unit weights for each layer of soil. Horizontal pressures are calculated by multiplying the vertical stress at a point by the corresponding value of \(K_{o}\). As the ground level rises and falls both the vertical and horizontal stresses change. Although the stresses are exact for horizontal layers, this causes a problem on the face of a cutting as the reduction in the Ko horizontal stresses from the erosion of the soil are not necessary equal to those in the soil as the soil may unload on a different stress path. This leads to an imbalance in the horizontal stresses producing movement which would otherwise be prevented if the soil mass were actually present. To stop this movement automatic boundary restraint is applied to the horizontal degrees of freedom via the introduction of the 1D consolidation line. Nodes above the line are free to move in the inplane direction whilst those below are restrained so that only vertical movement is allowed.

The stresses in the soil can be initialised from the profile at the point at which the elements activate in the analysis. If the stresses are in equilibrium with both gravity and external face loads no movement will occur. Conversely, if the stresses are not in equilibrium the soil will move in an effort to reduce any out-of-balance forces. This facility is useful for introducing initial stresses in heavily overconsolidated soils for which the \(K_{o}\) method is not applicable.

Each of the individual components of the overburden load can be adjusted independently of the others using the ldcomp parameter of the CURVE ASSIGNMENT command permitting a fine control of the both horizontal and vertical loading pressures.
```

OVERBURDEN Hg Hps H1d nSet nLayer
< Hi K Koi, Wdryi
FACE STRESS
L F
ELEMENT STRESS
L L Llast L Lidff

```


\section*{Notes}
1. The overburden is described as a series of horizontal layers which start at height Hi and have a dry unit weight of Wdryi. The height of the phreatic surface Hps is used to determine if the soil layer is saturated. If so the submerged weight of the soil is used.
2. The layers are input with highest layer first.
3. The Cartesian set is used to define the origin and direction of the height H .
4. The x -axis of the Cartesian set points in the direction of increasing H. Node NO of Cartesian set nSet marks the point of zero H which increases along the local x axis. The weight of the overburden acts in the negative direction to the local \(x\) axis.
5. The pressure at an element face is calculated at each node from the weight of the soil directly above along the direction defined by the x-axis of the Cartesian set. The corresponding Ko value is then used to evaluate the horizontal stresses at that point.
6. The 1 D consolidation line is used to provide in-plane restraint permitting only vertical movement. It is used to enforce 1D consolidation conditions when the overburden is being reduced. Any node loaded by the OVERBURDEN load below the line is horizontal restrained, nodes above it are free to move in the horizontal plane.
7. If a ' \(D\) ' is entered in place of a value for \(\mathrm{Hg}, \mathrm{Hps}\) or H 1 d , then that parameter is ignored in subsequent calculations.
8. The OVERBURDEN stresses can be used to initialise the element stresses. The stresses are calculated once at the start of the increment when the soil element activates.
9. The command is primarily designed for use with loadcurve components which allows the variation of any component independently to the rest. If automatic
loading or a loadcurve which does not refer to a specific component are used the scale parameter is applied equally to Hg , Hps and H 1 d .
10. When using loadcurve components, the component reference parameter lcomp refers directly to the parameter in the input data. Thus lcomp=1 refers to Hg , lcomp \(=6\) refers to \(H_{1}\) and so on. The parameters nSet and nLayer cannot be varied.
11. The Cartesian set is to allow modelling of soil layers which are now inclined following geological upheaval but which started life as standard horizontal deposits. It is important that all boundary conditions are correctly orientated to maintain 1D consolidation conditions. Overburden loads can be used to apply suitable surface stresses to complement any supports which are not perpendicular to the soil.
12. If nSet is set to ' \(D\) ' the default values for the overburden orientation are the global Y-axis for a 2D plane strain analysis, the axis of symmetry for an axisymmetric analysis and the global Z axis for a 3D analysis.
13. If the direction of gravity is changed the CBF gravity loading as well any boundary conditions must also be aligned accordingly.

\section*{Phreatic Surface}

The phreatic surface command is used to set the pore water pressure within a two-phase element or along its boundary as well as any conrresponding face load. The phreatic surface is defined by PHS2 elements in 2D and PHS3 and/or PHS4 elements in 3D. Alternatively, rather than use phreatic surface elements, an arbitrary pore water pressure distribution can be input by using a PROFILE_SET .

\section*{PHREATIC_SURFACE Wa [nSet]}

SEGMENTS
Li <i=1,NSEG>
PROFILE_SET pRef
ELEMENT_PRESSURE
\(L \quad L_{\text {last }} \quad L_{\text {diff }}\)

NODE_PRESSURE
N \(\quad \mathrm{N}_{\text {last }} \quad \mathrm{N}_{\text {diff }}\)

FACE_PRESSURE
L \(\quad \mathrm{F}\)
\(\mathrm{W}_{\mathrm{a}} \quad\) weight of fluid
nSet Cartesian set which defines the orientation of the H coordinate system with respect to the phreatic surface. The depth \(H\) of a node is measured from the node to phreatic surface positive in direction of the local x-axis.
\(\mathbf{L}_{i} \quad\) Phreatic element number of elements which form phreatic surface
NSEG The number of elements forming phreatic surface.
pRef Profile set reference for the input of a non-hydrostatic pressure distribution.
\(\mathrm{L} \mathrm{L}_{\text {last }} \mathrm{L}_{\text {diff }}\) The first, last and difference of two-phase elements to apply phreatic surface to
\(\mathbf{N} \quad \mathbf{N}_{\text {last }} \quad \mathbf{N}_{\text {diff }} \quad\) The first, last and difference of two-phase elements nodes to apply phreatic surface to
L element to apply face load to
\(\mathbf{F} \quad\) face of element \(\mathbf{L}\) to apply face load to

\section*{Notes}
1. Either SEGMENTS or PROFILE_SET may be used to define the water pressure distribution but only one type can be used in the same PHREATIC _SURFACE load. SEGMENTS are useful for setting up hydrostatic boundary conditions along the edges of a domain with the flow equations used to model the flow between them. The PROFILE_SET is appropriate for setting up the pore water pressure
distribution across a domain when the exact boundary conditions of pressure and flow are not known.
2. The phreatic surface is defined by one or more phreatic surface elements. If a single element is defined this is applicable to all nodes and element faces that are defined in ELEMENT_PRESSURE, NODE_PRESSURE and FACE_PRESSURE sub-commands. If two or more elements are defined a node or face node must lie directly below a phreatic surface element for a pressure to be applied.
3. A variable pressure distribution may be described by a PROFILE_SET. If the PROFILE_SET is defined by a single PROFILE this is applicable to all elements, nodes and element faces that are included in the loading. If two or more PROFILEs are defined in the PROFILE_SET, the node must lie within the domain demarked by the PROFILEs for the pressure to be applied. The PROFILE is multiplied by the density Wa to calculate the pressure.
4. Segments do not have to be joined into a single surface allowing the creation of several surfaces at the same time.
5. More than one phreatic surface load can be defined at a time.
6. The phreatic surface command sets pore water pressures in two-phase elements using the ELEMENT_PRESSURE and NODE_PRESSURE sub-commands.
7. The FACE_PRESSURE sub-command applies a face load to node located below the phreatic surface. Applying a FACE_PRESSURE to a two-phase element will also apply the corresponding boundary condition for the pore water pressure.
8. If a node is above the phreatic surface a pressure of 0 is prescribed when PROFILE_SET is used to define the pore water pressure distribution. On the other the hand, if SEGMENTS are used a node above the phreatic surface is left free. However, if a node is found to have a positive pressure due to say the phreatic surface intersecting a boundary above the water level the node is set to zero pressure.
9. The PROFILE_SET is a steady state porewater pressure distribution for which the exact boundary conditions and water flows required to produce it are not known. If the UNDRAINED problem is solved, excess pore water pressure will dissipate and return the porewaters to those defined by the PROFILE_SET.
10. The phreatic surface elements can be raised or lowered using either PDSPs or TPDSPs applied to their nodes.
11. nset is used to define an arbitrary direction for the measurement of the depth below the phreatic surface. The local \(x\)-axis points in the direction from a point below the phreatic surface towards the surface.
12. If nSet is not input the default location of the Cartesian set is the origin. For a 2 D problem the global Y direction corresponds to the local x direction of the Cartesian set. Similarly for an axisymmetric problem the local \(x\)-axis corresponds to the axis of symmetry and in a 3D problem it corresponds to the global Z direction.
13. The fluid weight \(W_{a}\) can be scaled by assigning a loadcurve or using automatic incrementation.
14. The pressure load applied to the element depends on the depth below the phreatic surface. If nonlinear geometry is selected the force will vary as the structure displaces.

Use PDSPs or TPDSPs to raise or lower phreatic surface element

FACE_PRESSURE applies pressure load to element face

Phreatic surface element

\section*{Thermal Field Loading}

Several types of loading are available for thermal field and hygro-thermal analyses:
- Prescribed variables (TPDSP)
\(\square\) Initial conditions (TMPE)
\(\square\) Rate of internal heat (\&mass) generation at a node (RGN)
\(\square\) Face heat (\&mass) fluxes (FFL)
\(\square\) Rate of internal heat (\& mass) generation per unit volume, constant for element (RBC)
\(\square\) Rate of internal heat (\&mass) generation per unit volume at nodes (RBV)
\(\square\) Rate of internal heat (\&mass) generation per unit volume, variable for element (RBVE)
\(\square\) Environmental boundary conditions (ENVT)
\(\square\) Temperature dependent environmental boundary conditions (TDET)
\(\square\) Temperature dependent rate of internal heat (\&mass) generation per unit volume (RIHG)

The prescription of temperature dependent or radiation loading turns a linear thermal field problem into a nonlinear problem.

Related commands to TDET and RIHG are:
\(\square\) Temperature load case
- Temperature Load Assignments

\section*{Total Prescribed Variables (TPDSP)}

The data section TPDSP is used to define total prescribed nodal variables.
```

TPDSP n [l] [TITLE title]

```
\(\mathrm{N} \mathrm{N}_{\text {last }} \mathrm{N}_{\text {diff }} \mathrm{T}_{0}\), [RH]
\(\mathrm{n} \quad\) The required number of prescribed values.
\(1 \quad\) The starting location of the first input value in the prescribed displacement data list (default \(\mathbf{l}=1\)).
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with identical prescribed values.
\(\mathbf{T}_{\mathbf{0}} \quad\) The prescribed element temperature at node \(\mathbf{N}\).
RH The prescribed relative humidity at node \(\mathbf{N}\). Only for hygro-thermal.
\(\mathbf{R H}\) is internally converted to capillary pressure.

\section*{Notes}
1. Prescribed values will function only if the corresponding freedoms are specified as restrained (R) in SUPPORT NODES.

\section*{Initial conditions (TMPE)}

This is only applicable for hygro-thermal analysis.
TMPE is used to initialise the temperature and capillary pressure field at the start of the analysis.
\begin{tabular}{ll}
TMPE & [TITLE title] \\
\(\mathbf{L} \quad \mathbf{N}\) & \(\mathbf{T}_{0}, \mathbf{R H}_{0}\)
\end{tabular}

\section*{Notes}
1. TMPE values at an element node apply to the specified element only, and are not applied to all elements connected to that node.

\section*{Rate of internal heat (\& mass) generation at nodes (RGN)}

The data section RGN is used to define the rate of internal heat (and mass) generation at nodes.

RGN [TITLE title]
\(N N_{\text {last }} N_{\text {diff }} \quad Q_{H}, \quad\left[Q_{W}\right]\)
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with identical values.
\(\mathbf{Q}_{\mathbf{H}} \quad\) The rate of internal heat generation at a node.
Qw The rate of internal mass generation (liquid+vapour) at a node (only applicable for hygro-thermal analyses).

\section*{Notes}
1. If the FREEDOM TEMPLATE data chapter has been specified the data input must relate to the modified freedom list.
2. This data was previously entered via the concentrated load (CL) data chapter; the previous form of input is still operational.

\section*{Face heat (\& mass) fluxes (FFL)}

The data section FFL is used to define the heat and mass fluxes assigned to element faces. The element face numbering conventions are shown in the LUSAS Element Reference Manual.
```

FFL [TITLE title]

```
\(\mathrm{L} \quad \mathrm{LF} \quad \mathrm{N} \quad \mathrm{q}_{\mathrm{H}}, \quad\left[\mathrm{q}_{\mathrm{w}}\right]\)
\(\mathrm{L} \quad\) The element number.
LF The element face number (see the LUSAS Element Reference Manual).
\(\mathbf{N} \quad\) The element face node number as input in element topology.
\(\mathbf{q H}_{\mathbf{H}} \quad\) Heat flux on face
\(\mathbf{q w}_{\mathbf{w}} \quad\) Mass (liquid+vapour) flux on face (applicable to hygro-thermal analyses only)

\section*{Notes}
1. If zero element face node \(\mathbf{N}\), is specified, then the heat (\& mass) flux will be applied to all nodes on the face.
2. This data was previously entered via the face load (FLD) data chapter; the previous form of input is still operational.

\section*{Rate of internal heat (\& mass) generation, constant for element (RBC)}

The data section RBC is used to define the rate of internal heat (and mass) generation per unit volume which is constant over an element.
```

RBC [TITLE title]
L Llast L Ldiff ( QH, [Qw]

```
\(\mathbf{L} \mathbf{L}_{\text {last }} \mathbf{L}_{\text {diff }}\) The first element, last element and difference between elements of the series of elements with identical rate of internal heat (\& mass) generation.
\(\mathbf{Q H}_{\mathbf{H}} \quad\) Rate of internal heat generation per unit volume
Qw Rate of internal mass (liquid+vapour) generation per unit volume (applicable to hygro-thermal analyses only)

\section*{Notes}
1. This data was previously entered via the constant body force (CBF) data chapter; the previous form of input is still operational.

\section*{Rate of internal heat (\& mass) generation per unit volume at nodes (RBV)}

The data section RBV is used to define the rate of internal heat (and mass) generation per unit volume at nodes.
```

RBV [TITLE title]
N N Nast N

```
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with identical rate of internal heat (\& water) generation.
\(\mathbf{Q}_{\mathbf{H}} \quad\) Rate of internal heat generation per unit volume
Qw Rate of internal mass (liquid+vapour) generation per unit volume (applicable to hygro-thermal analyses only)

\section*{Notes}
1. RBV values at a node apply to all elements connected to that node.
2. This data was previously entered via the body force potential (BFP) data chapter; the previous form of input is still operational.

\section*{Rate of internal heat (\& mass) generation for an element, variable at nodes (RBVE)}

The data section RBVE is used to define the rate of internal heat (and mass) generation per unit volume at element nodes.
```

RBVE [TITLE title]

```
L \(N \quad Q_{H}, \quad\left[Q_{W}\right]\)
\(\mathrm{L} \quad\) The element number.
\(\mathbf{N} \quad\) The element node number as defined in ELEMENT TOPOLOGY.
\(\mathbf{Q}_{\mathbf{H}} \quad\) Rate of internal heat generation per unit volume
Qw Rate of internal mass (liquid+vapour) generation per unit volume (applicable to hygro-thermal analyses only)

\section*{Notes}
1. RBVE values at an element node apply to the specified element only, and are not applied to all elements connected to that node.
2. This data was previously entered via the body force potential (BFPE) data chapter; the previous form of input is still operational.

\section*{Environmental boundary conditions (ENVT)}

The data section ENVT is used to define the components of the environmental boundary conditions for a thermal field problem and for a hygro-thermal problem.
\begin{tabular}{lll}
ENVT & n & {\([1] \quad\) [TITLE title] } \\
\(\mathbf{L}\) & \(\mathbf{L F}\) & \(\mathbf{N} \quad<\mathrm{V}_{\mathbf{i}}>_{\mathrm{i}=1, \mathrm{n}}\)
\end{tabular}

\section*{Notes}
1. If heat transfer coefficients vary on a specified face the values will be interpolated using the shape functions to the Gauss points.
2. If a zero element face node number is specified, then the environmental boundary conditions will be applied to all nodes on the face.
3. If a nonzero radiation heat transfer coefficient is specified, the problem is nonlinear and NONLINEAR CONTROL must be used.
4. When a radiation heat transfer coefficient is specified the temperature units for the problem will be Kelvin by default. Option 242 allows temperatures to be input and output in Celsius (Centigrade) for problems involving radiative heat transfer.
5. Load curves can be used to maintain or increment any component \(V_{i}\) of the load as a nonlinear analysis progresses.
6. Automatic load incrementation within the NONLINEAR CONTROL data chapter can be used to increment the environmental temperature (nonlinear steady state thermal analyses only).
7. If the environmental boundary conditions are to be introduced or removed during an analysis, then the first (or last) point defining the load curve must coincide with the time at which the ENVT is to be introduced (or removed). Note that if the ENVT is inactive, the environmental boundary conditions are not applied.
8. If the boundary heat transfer conditions can be adequately represented by nontemperature dependent convection and radiation heat transfer coefficients, the

ENVT command may be used to input the data. ENVT loading modifies the stiffness matrix and, consequently, for linear field problems, only one load case may be solved in any one analysis when this loading is applied.

\section*{Temperature load case}

The TEMPERATURE LOAD CASE data section is used to define a new temperature dependent (that is, nonlinear) temperature load case.

TEMPERATURE LOAD CASE [TITLE title]

\section*{Notes}
1. The TEMPERATURE LOAD CASE data section must be issued if TDET or RIHG loading are required.
2. Each TEMPERATURE LOAD CASE definition must be directly followed by either TDET, RIHG and/or TEMPERATURE LOAD ASSIGNMENTS data sections.
3. Each load case may consist of any number of load types.
4. NONLINEAR CONTROL must be specified if temperature dependent loading is used.
5. The order of data input is first to list the temperature dependent data in the form of a table using the TEMPERATURE LOAD CASE followed by subcommands TDET and/or RIHG. These tables are then assigned to the elements using the TEMPERATURE LOAD ASSIGNMENTS followed by the subcommands TDET and/or RIHG.
6. If TDET or RIHG loading is to be combined with other load types such as RGN or PDSP, the TEMPERATURE LOAD CASE must precede the LOAD CASE data chapter.

\section*{Temperature dependent environmental boundary conditions (TDET)}

The data section TDET is used to define the components of temperature dependent environmental boundary conditions for thermal field problems and hygro-thermal problems.
```

TDET n [l] [TITLE title]

```

TABLE ilod
\(<\mathrm{V}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}} \mathrm{T}\)
n The required number of values in the environmental boundary conditions data list (\(\mathrm{n}=3\) for thermal filed and \(\mathrm{n}=5\) for hygro-thermal problems).
1 The starting location of the first input value in the environmental boundary conditions data list (default \(\mathbf{l}=1\)).
ilod The table reference number.
\begin{tabular}{ll}
\(\mathbf{V}_{1}\) & Environmental temperature \\
\(\mathbf{V}_{\mathbf{2}}\) & Convective heat transfer coefficient \\
\(\mathbf{V}_{\mathbf{3}}\) & Radiative heat transfer coefficient \\
\(\mathbf{V}_{4}\) & The relative humidity (hygro-thermal analyses only). \\
\(\mathbf{V}_{5}\) & The water vapour mass transfer coefficient (hygro-thermal analyses only). \\
\(\mathbf{T}\) & Reference temperature. \\
Notes &
\end{tabular}
1. When a radiation heat transfer coefficient is specified the temperature units for the problem will be Kelvin by default. Option 242 allows temperatures to be input and output in Celsius (Centigrade) for problems involving radiative heat transfer.
2. When using load curves incrementation with TDET loading, the environmental temperature may be incremented but the heat coefficients remain constant. This means that the heat coefficients will be applied even if the load curve defines a zero environmental temperature. If the heat coefficients and TDET load are to be introduced during an analysis, then the first (or last) point defining the load curve must coincide with the time at which the ENVT is to be introduced (or removed). Note that if the ENVT is inactive, the heat coefficients are not applied.
3. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with TDET loading.

\section*{Temperature dependent rate of internal heat generation (RIHG)}

The data section RIHG is used to define temperature dependent rate of
(i) internal generation of heat for thermal field problems
(ii) internal generation of heat and moisture for hygro-thermal problems.
```

RIHG n [l] [TITLE title]
TABLE ilod
< Vi

```
\(\mathrm{n} \quad\) The number of values of data in the table (\(\mathrm{n}=1\) for thermal filed and \(\mathrm{n}=2\) for hygro-thermal problems)
\(1 \quad\) The starting location of the first input value in the table (default \(\mathbf{l}=1\)).
ilod The table reference number.
\(\mathrm{V}_{1} \quad\) Rate of internal heat generation.
\(\mathbf{V}_{\mathbf{2}} \quad\) Rate of internal mass (liquid+vapour) generation (hygro-thermal analyses only).
\(\mathbf{T} \quad\) Reference temperature.

\section*{Notes}
1. Automatic load incrementation under the NONLINEAR CONTROL data chapter cannot be used with RIHG loading.

\section*{User defined rate of internal heat generation (RIHG USER)}

The USER defined rate of internal heat generation facility allows a user-supplied subroutine to be used from within LUSAS. This facility provides access to the LUSAS property data input via the RIHG USER data section and provides controlled access to the pre- and post-solution element processing via the user-supplied subroutine.

By default the routine is supplied as an empty routine with a defined interface that is unchangeable. The externally developed code should be placed into this routine which is then linked into the LUSAS system. Source code access is available to the interface routine and object library access is available to the remainder of the LUSAS code to enable this facility to be utilised. See Solver User Interface Routines.

Since user specification of rate of internal heat generation involves the external development of source FORTRAN code, as well as access to LUSAS code, this facility is aimed at the advanced LUSAS user.

The data section RIHG USER provides the interface to User supplied subroutines for computing the rate of internal heat generation.

RIHG USER \(n\) [TITLE title]
TABLE ilod
\(\left\langle\mathrm{U}_{\mathrm{i}}>_{\mathrm{i}=1,(\mathrm{n}-1)} \mathrm{T}\right.\)
\(\mathrm{n} \quad\) The number of values of data in the table
ilod The table reference number.
\(\mathrm{U}_{\mathbf{i}} \quad\) The user-defined input parameters
\(\mathbf{T} \quad\) Reference temperature.

\section*{Notes}
1. NONLINEAR and TRANSIENT CONTROL chapters must be defined when using RIHG USER loading.
2. The number of input parameters must be equal to that specified on the data section header line (i.e. n). Failure to match the requested and supplied number of parameters will invoke a LUSAS error message.
3. Option 179 can be set for argument verification within the user routines.

\section*{Temperature Load Assignments}

The TEMPERATURE LOAD ASSIGNMENTS data section is used to assign temperature dependent field loading (that is TDET and RIHG) to the associated elements.

TEMPERATURE LOAD ASSIGNMENTS [TITLE title]

\section*{Notes}
1. Each load assignment list must start with this header.
2. The TEMPERATURE LOAD ASSIGNMENTS data section must be immediately followed by a TDET or RIHG assignment data section.
3. Load assignments must be used if temperature dependent field loads are specified.

\section*{TDET Load Assignments}

The TDET assignment data section is used to assign the defined temperature dependent environmental temperature field loading to the associated elements.
```

TDET

```

L LF N ilod
L The element number.
LF The element face number.
\(\mathbf{N} \quad\) The element (face) node number as defined in ELEMENT TOPOLOGY.
ilod The load table reference number (see Temperature dependent environmental temperature loading (TDET).

\section*{RIHG Load Assignments}

The RIHG assignments data section is used to assign the defined temperature dependent and User defined rate of internal heat generation to the associated elements.

RIHG [USER]
L N ilod
L The element number.
\(\mathbf{N} \quad\) The element node number as defined in ELEMENT TOPOLOGY.
ilod The load table reference number (see Temperature dependent rate of internal heat generation (RIHG)).

\section*{Target Values and Load Optimisation}

The commands in this section all relate to finding a set of loads which fulfil a set of design requirements. To use these commands it is necessary to separate the fixed or dead loads from the live or variable loads. The dead loads are input using the LOAD CASE command whilst the live loads are distinguished from them by the LOAD VARIABLE command. An important use for this facility is calculating the stressing of cables in a cable stayed bridge in which the dead load is that of deck, towers, cables etc whilst the live loads are the tensioning applied to each individual cable.

Each LOAD VARIABLE is multiplied by a scaling factor which is calculated from information derived from the design requirements. There are options to input precise values via the TARGET_VALUES and the EQUALITY commands which are to be
exactly satisfied or when a value can lie within a given tolerance or range there is the INEQUALITY command.

It is necessary to distinguish between three types of solution which are characterised by the number of TARGET_VALUES and EQUALITYs input compared to the number of LOAD VARIABLEs. For simplicity TARGET_VALUES and EQUALITYs will be referred to jointly as EQUALITYs in the following. When there are less EQUALITYs than LOAD VARIABLEs an OPTIMISATION solution must be used. This is because there are an infinite number of combinations of LOAD VARIABLEs which will satisfy the EQUALITYs. When the number of EQUALTYs equals the number of LOAD VARIABLEs the problem can be solve directly - there is no need to input any further data. Finally, when there are more EQUALITYs than LOAD VARIABLEs it is impossible to exactly satisfy all of the EQUALITYs so a best fit solution must be used (RESIDUAL_MINIMISE) in which the residuals or errors in each of the EQUALTYs is minimised. If an INEQUALITY is introduced then an optimised type of solution is required.

The solution provides a set of load factors or scaling values which are applied to each LOAD VARIABLE to generate the set of loading which best fulfils the design requirements.

The values which are allowed to participate in the equalities and inequalities are the nodal displacements, nodal reactions as well as the internal element stresses which are referenced using the standard element load SSIG for stresses defined at the Gauss point and SSIE for stresses defined at an element node.

\section*{Target Value Definition}

Target values refer to specific stresses, displacements or reactions which the structure is required to satisfy on completion of the analysis. If we wish to solve exactly for the target values we require one LOAD VARIABLE for each target value. For other cases LUSAS can calculate an optimal solution.

This command should be used in conjunction with the LOAD VARIABLE command. It may also be used with the EQUALITY, INEQUALITY, OBJECT_FUNCTION and MINIMISE_RESIDUAL commands.

TARGET_VALUES can be any combination of element stresses, strains (defined using the load types SSIE,SSIG format), displacements or reactions.

\section*{TARGET VALUES}
```

SSIE n [l]

```
\(\mathrm{L} \quad \mathrm{N}<\mathrm{V}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)

SSIG n [1]
\(\mathrm{L} \mathrm{L}_{\text {last }} \mathrm{L}_{\text {diff }} \quad \mathrm{NGP}<\mathrm{V}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)

SSIE, SSIG - standard LUSAS loads format - see loads for definition of variables.
DISPLACEMENT nodal displacement
n \(\quad\) The number of input displacement values
\(1 \quad\) The starting value of the first input value in the list
\(D_{i} \quad\) Target displacement (see note on FREEDOM TEMPLATE)
\(\mathrm{N} \quad \mathrm{N}_{\text {last }} \quad \mathrm{N}_{\text {diff }} \quad\) First node, last node and difference between nodes of series at which the DISPLACEMENT or REACTION is set as a TARGET_VALUE.

REACTION nodal reaction
\(\mathrm{R}_{\mathrm{i}} \quad\) Target reaction (see note on FREEDOM TEMPLATE)

\section*{Notes}
1. If a FREEDOM TEMPLATE has been defined, displacement and reaction values will relate to the template.
2. To obtain an exact solution the sum of the number of TARGET_VALUES and EQUALITYs must equal the number of LOAD VARIABLES. For other cases either the OBJECT_FUNCTION or MINIMISE_RESIDUAL commands must be used.
3. A ' \(F\) ' is used to identify variables which are free. All numerical input is used as a target.

\section*{Example}

The command to set a target stress of 0.1 for the third stress component at node 2 of element 100 is

TARGET_VALUE
SSIE 3
\[
\begin{array}{llll}
100 & 2 & F & F
\end{array}
\]
where ' F ' is used to identify free variables and to distinguish them from a target value of ' 0.0 '.

\section*{Equality Definition}

As well as being able to set a specific value as a target, two or more variables can also be related by an equality or linear equation. All variables appear on the left-hand side of the equality sign, the constant eqval on the right.

This command must be used in conjunction with the LOAD VARIABLE command. It may also be used with the TARGET_VALUES, INEQUALITY, OBJECT_FUNCTION and MINIMISE_RESIDUAL commands.

\section*{EQUALITY eqval}

VLOAD ilvar const
SSIE \(n\) [l]
L \(N \quad<\quad\) Vi \(>i=1, n\)

SSIG n [1]
L Llast Ldiff NGP < Vi >i=1,n

\section*{DISPLACEMENT n [l]}
\(N \quad N_{\text {last }} \quad N_{\text {diff }}<D_{i}>{ }_{i=1, n}\)
REACTION
\(N \quad N_{\text {last }} \quad N_{\text {diff }}<R_{i}>{ }_{i=1, n}\)

VLOAD Load variable to be included in equality
ilvar LOAD VARIABLE identifier
const Constant value to multiply ilvar in equality constraint
SSIE, SSIG - standard LUSAS loads format - see loads for definition of variables.
DISPLACEMENT Displacements to be included in equality
\(\mathrm{n} \quad\) The required number of input values
\(1 \quad\) The starting value of the first input value in the list
\(D_{i}\) displacement coefficient (see note on FREEDOM TEMPLATE)
\(\mathrm{N} \quad \mathrm{N}_{\text {last }} \quad \mathrm{N}_{\text {diff }} \quad\) First node, last node and difference between nodes of series at which the DISPLACEMENT or REACTION components are to be included in the equality

REACTION reactions to be included in equality
\(\mathrm{R}_{\mathrm{i}}\) reaction coefficient (see note on FREEDOM TEMPLATE)

\section*{Notes}
1. To obtain an exact solution the number of EQUALITYs and TARGET_VALUES must equal the number of LOAD VARIABLEs. For other cases either the OBJECT_FUNCTION or MINIMISE_RESIDUAL commands must be used.
2. If a FREEDOM TEMPLATE has been defined DISPLACEMENT and REACTION values will relate to the template.

\section*{Example}

The input values defined in SSIG, SSIE, Di and Ri are coefficients to the defined quantity. For example, if we require the vertical displacement at node 10 to be twice the vertical displacement at node 11 the equation is
\[
\mathrm{w}_{10}=2 \mathrm{w}_{11} \quad \Rightarrow \quad \mathrm{w}_{10}-2 \mathrm{w}_{11}=0
\]
which would be input, assuming nodal freedoms of \(u, v, w\)
EQUALITY 0.0

\section*{DISPLACEMENT 3}
\begin{tabular}{rrrrrr}
10 & 0 & 0 & 0.0 & 0.0 & 1.0 \\
11 & 0 & 0 & 0.0 & 0.0 & -2.0
\end{tabular}

\section*{Inequality Definition}

A permissible range of values at a point can be specified by the INEQUALITY command. We could for example set the acceptable displacement to be within a range of \(+/-10 \mathrm{~cm}\).

This command must be used in conjunction with the LOAD VARIABLE and OBJECT_FUNCTION or MINIMISE_RESIDUAL commands. It may also be used with the TARGET_VALUES and EQUALITY, commands.

All variables appear on the left-hand side of the inequality sign, the constant eqval on the right.
```

INEQUALITY { < | > } eqval
VLOAD ilvar const
SSIE n [l]
L N < V i
SSIG n [l]

```


REACTION reaction to be included in inequality
\(\mathrm{R}_{\mathrm{i}}\) reaction coefficient (see note on FREEDOM TEMPLATE)

\section*{Notes}
1. If a FREEDOM TEMPLATE has been prescribed, DISPLACEMENT and REACTION values will relate to the template.

\section*{Example}

If we want to limit the total horizontal reactions at nodes 12 and13 to be less than or equal to 500 the equation is written
\[
\mathrm{R}_{12}+\mathrm{R}_{13} \leq 500
\]
which is input as
INEQUALITY < 500
REACTION 1
\[
12131 \quad 1.0
\]

\section*{Object Function Definition}

In the case where we have more LOAD VARIABLEs than TARGET_VALUES and linear EQUALITYs there is no exact solution. In fact there are infinite possibilities. In these circumstances the question becomes what is the best combination of load variables which say maximises the load the structure can carry or minimises the forces in some prestressed tendons. As there is a range of solutions it is also possible to bound certain variables using the INEQUALITY command.

An object function is required when we have less TARGET_VALUES and EQUALITY constraints than LOAD VARIABLEs. There is a choice of two predefined object functions or a general linear object function.
```

OBJECT_FUNCTION {SUM | MAX | GENERAL} {MINIMISE |
WEIGHT < W W > i=1,N
VLOAD ilvar const
SSIE n [l]
L N < V Vi
SSIG n [l]
L L Llast L Lliff NGP < V (

```

\section*{DISPLACEMENT}
\(N \quad N_{\text {last }} \quad N_{\text {diff }}<D_{i}>{ }_{i=1, n}\)
REACTION
\(N \quad N_{\text {last }} \quad N_{\text {diff }}<R_{i}>{ }_{i=1, n}\)

ABS SUM sum of absolute weighted values \(\sum_{i=1}^{N}\left|W_{i} x_{i}\right|\)
ABS MAX the maximum absolute weighted value
\[
\operatorname{Max}\left(\left|W_{1} x_{1}\right|,\left|W_{2} x_{2}\right|, \ldots,\left|W_{N} x_{N}\right|\right)
\]

GENERAL general linear object function
MINIMISE minimise object function
MAXIMISE maximise object function
WEIGHT weights \(W_{i}\) applied to load variable factors \(x_{i}\) - if not declared default values of \(W i=1.0\) are applied to all load variable factors

VLOADLoad variable to use in general object function
ilvar LOAD VARIABLE identifier
const constant value to multiply ilvar in object function
\(\mathrm{N} \quad \mathrm{N}_{\text {last }} \quad \mathrm{N}_{\text {diff }} \quad\) First node, last node and difference between nodes of series for which the DISPLACEMENT or REACTION is to be used in the general object function.

SSIE, SSIG - standard LUSAS loads format - see loads for definition of variables.
DISPLACEMENT displacement to use in the general object function
REACTION reaction to use in the general object function

\section*{Notes}
1. Either a predefined or a general object function must be chosen.
2. The weights are only applied if a predefined object function is chosen. If the command WEIGHT is omitted a default value of 1.0 is used for all the load variables.
3. A general object function can be formed from any combination of loading variables or values such as stresses, strains, reactions or displacements.
4. MAXIMISE the ABS MAX is not available.

\section*{Residual Minimisation}

If the sum of the TARGET_VALUES and EQUALITYs is greater than the number of LOAD VARIABLEs it is impossible to exactly satisfy all the equalities. In this case a best fit solution can be obtained that minimises the error or residual for each of the individual EQUALITYs and TARGET_VALUES without actually exactly satisfiying any. Two methods are available.

The first method is that of discrete least squares which produces a set of equations which can be solved exactly. The second method is that of Chebyshev which uses an optimisation approach to reduce the errors in the equalities. Additionally, it is possible
to apply inequality constraints to the Chebyshev solution. If the least squares method is chosen and inequality constraints are present, the equalities are first reduced using discrete least squares and a final solution then found using Chebyshev's method.

RESIDUAL_MINIMISE \{LEAST_SQUARES | CHEBYSHEV \}
LEAST_SQUARES - The discrete least squares method reduces the number of equations to be solved so that it equals the number of load variables. The resulting equations can then be solved exactly.

CHEBYSHEV - The Chebyshev method minimises the residuals using an optimisation approach.

\section*{Load Variable lock-in}

In normal use the factors applied to the load variables are lost as the solution progresses. In order to maintain, or lock-in, these values the command
```

LOAD VARIABLE LOCK-IN

```
is used. For instance, if the initial stress applied to a cable of a cable stay bridge has been tuned its value is retained by using this command. On further loading the cable stress is modified from the tuned value.

\section*{Linearised Load Optimisation Solution}

By default, during a nonlinear analysis, the load optimisation is acarried out at each iteration until the structure reaches equilibrium and all the constraints have been satisfied. If a simple linear solution is required in which no account is taken of nonlinear affects caused by the load variables the command

LINEAR SOLUTION
is used. The results from this operation cannot be locked-in as there is no guarantee that global equilibrium has been satisfied.

\section*{Curve Definition}

General curves may be defined in order to describe loads that vary with time in a dynamic analysis or to describe loads that vary with the angle around the circumference for a Fourier analysis. Curves may also be used to define the variation of load in a static analysis. Either the automatic loading parameter \(\lambda\) or the increment number can be used to interpret the loadcurve. \(\lambda\) allows greater flexibility as the solution may stephalve if required. It may conveniently be set to 0 at the start of the stage and finish at 1 at the end. It is, as usual, set using the INCREMENTATION command in NONLINEAR CONTROL. The STAGE command causes the time and increment interpolation values to be measured from the start of each solution stage.

A selection of pre-defined LUSAS system curves is available, or more generally, curves may be described completely by the user. The description of the curve (or curves) is done by using the CURVE DEFINITION command. The CURVE ASSIGNMENT command then associates load cases to a particular curve.

\section*{Curve Definition}

The definition of a curve is controlled by the CURVE DEFINITION command.

\section*{CURVE DEFINITION [STAGE] [lcurve] [USER | SINE | COSINE | SQUARE I CONSTANT] \\ STAGE Interpolation variables of time and increment are measured from the start of each loading stage.}
for USER curve definition:
\(<t_{i} \quad F\left(t_{i}\right) \quad>_{i=1, n}\)
for SINE, COSINE, SQUARE curve definition:
amplitude frequency [phase_angle \(t_{0} t_{n}\) mean_amplitude]
for CONSTANT curve definition:
constant [\(t_{0} t_{n}\)]
\begin{tabular}{|c|c|}
\hline lcurve & Load curve number (default is the order of CURVE DEFINITION input). \\
\hline \(\mathrm{t}_{\mathrm{i}}\) & Interpolation variable (e.g. time, angle, increment number). \\
\hline \(F\left(t_{i}\right)\) & The value of the function at ti (positive or negative as required). \\
\hline amplitude & The peak value of the wave (positive or negative as required). \\
\hline frequency & The frequency of the wave (i.e. the inverse of the time period). \\
\hline phase_angle & The offset in degrees applied to \(t\). \\
\hline \(\mathrm{t}_{0}\) & The value of the interpolation parameter at which the curve is activated (default \(=0.0\)). \\
\hline \(t_{n}\) & The value of the interpolation parameter at which the curve terminates (default \(=\) a very large number). \\
\hline mean_amplitude & The mean amplitude of the wave (default \(=0.0\)) \\
\hline constant & Constant value. \\
\hline
\end{tabular}

\section*{Notes}
1. The USER curve is assumed to be linear between defined points \(F(t i)\). It should be noted that each data point is input on a separate line. The USER curve is the default input.
2. Data should be input in order of increasing value of the interpolation parameter. The curve should, in general, only assume 1 value at each interpolation point. However, for Fourier static analysis a vertical segment may be used to define a step-function in the load distribution (see figure below).
3. If a point lies outside the USER defined curve no load is applied.
4. The LUSAS system curves are defined by:

A curve amplitude
F curve frequency
\(\phi \quad\) phase offset (degrees)
\(\mathrm{t}_{0} \quad\) starting value.
\(\square\) SINE curve
\[
\begin{array}{ll}
\mathrm{t}<0 & \mathrm{~F}(\mathrm{t})=0 \\
\mathrm{t}>0 & \mathrm{~F}(\mathrm{t})=\mathrm{A} \sin \left(\mathrm{f}\left(\mathrm{t}-\mathrm{t}_{0}\right)+\phi\right)
\end{array}
\]

For Fourier analysis: \(\quad \mathrm{F}(\mathrm{t})=\mathrm{A} \sin \mathrm{ft}\)
- COSINE curve
\[
\begin{array}{ll}
\mathrm{t}<0 & \mathrm{~F}(\mathrm{t})=0 \\
\mathrm{t}>0 & \mathrm{~F}(\mathrm{t})=\mathrm{A} \cos \left(\mathrm{f}\left(\mathrm{t}-\mathrm{t}_{0}\right)+\phi\right)
\end{array}
\]

For Fourier analysis: \(\quad F(t)=A \cos f t\)
Note. If \(\mathrm{f}=0\) then \(\mathrm{F}(\mathrm{t})=\mathrm{A} \cos (\phi)\) for all t
- SQUARE curve
\[
\begin{array}{llll}
\mathrm{t}<0 & \mathrm{~F}(\mathrm{t})=0 & & \\
\mathrm{t}>0 & \mathrm{~F}(\mathrm{t})=\mathrm{A} & \text { if } & \sin \left(\mathrm{f}\left(\mathrm{t}-\mathrm{t}_{0}\right)\right)>0 \\
& \mathrm{~F}(\mathrm{t})=-\mathrm{A} & \text { if } & \sin \left(\mathrm{f}\left(\mathrm{t}-\mathrm{t}_{0}\right)\right)<0 \\
& \mathrm{~F}(\mathrm{t})=0 & \text { if } & \sin \left(\mathrm{f}\left(\mathrm{t}-\mathrm{t}_{0}\right)\right)=0
\end{array}
\]

Note. If \(\mathrm{f}=0\) then \(\mathrm{F}(\mathrm{t})=\mathrm{A}\) for all t .
- CONSTANT curve
\[
\begin{array}{lc}
\mathrm{t}<0 & \mathrm{~F}(\mathrm{t})=0 \\
\mathrm{t}>0 & \mathrm{Ft})=\mathrm{constant}
\end{array}
\]
5. Any number of curves may be specified. In the special case of an ENVT load in a thermal analysis, the temperature and heat coefficients are not applied.
6. For a nonlinear static analysis either the automatic loading parameter \(\lambda\) or the step increment number can be used to interpret the data. If \(\lambda\) is to be used the INCREMENTATION data section must be specified. If it is omitted the increment number will be used instead.
7. For Fourier analysis the load must only be applied over the angular range of \(0^{\circ}\) to \(360^{\circ}\). Sine and cosine harmonics (without phase angle and constant specification) can be used to apply sinusoidal loading.
8. If load curves are used with NONLINEAR CONTROL the TERMINATION line must be specified to define the number of load steps to be applied. (See example below.)

Definition of Step Functions for a Fourier Static Analysis (Black circles indicate points that must be defined)

\section*{Curve Assignment}

The CURVE ASSIGNMENT command assigns loads defined by the LOAD CASE commands to a particular curve which has been described using the CURVE DEFINITION command.

\section*{CURVE ASSIGNMENT}
```

L fac lcurve [ldcomp]

```

L Load case number (see Notes)
fac The load factor to be applied to the load case
lcurve The load curve number
ldcomp Load component number (see notes)

\section*{Notes}
1. If the CURVE ASSIGNMENT command is not utilised the load cases are applied as for a standard analysis.
2. If the CURVE ASSIGNMENT command is used, unassigned load cases will not be applied.
3. Curve data, both user and system, once input, cannot be overwritten, extended or amended. However, new load curves may be added. Once the CURVE ASSIGNMENT command has been used, load curves are activated and loading is applied via factored load cases. If the CURVE ASSIGNMENT command is respecified, all existing assignments are overwritten.
4. Each curve assignment must start on a new line.
5. The load case number is defined by the order in which the LOAD CASES are input. The first load case is defined as 1 , the second 2 and so on. If, during the analysis, further load cases are defined then the internal load case counter is reset to 1 . In this instance, existing load cases will be overwritten.
6. The standard function of prescribed displacements and spring stiffnesses input using the SUPPORT facility is preserved. If PDSP loading is used, this data overwrites previously input data. Note that PDSP input determines the incremental displacements and not the total displacements even if LOAD CURVES are utilised. To define total displacements using load curves TPDSP should be used.
7. The load component number ldcomp is used to factor individual components of the ENVT, RIHG and TDET thermal loads. By default, without setting Ldcomp, only the environmental temperature is scaled by a loadcurve for the ENVT and TDET loads, whilst for RIHG loads the rate of heat generation is scaled. Other components of the load can be scaled individually by setting the appropriate value of Ldcomp. Components of the load which are not specified a loadcurve are kept constant. Only one loadcurve can be specified for each component:
8. ldcomp is only valid for the load types ENVT, TDET, RIHG and OVERBURDEN.
9. General curves can be used in the following applications:
\begin{tabular}{lll}
& \multicolumn{1}{c}{ Analysis Type } & Interpolation Variable \\
\hline dynamic & linear/nonlinear/explicit/implicit & current response time \\
transient & linear/nonlinear/explicit/implicit & \begin{tabular}{l}
current response time \\
nonlinear
\end{tabular} \\
static (not arc length) & \begin{tabular}{l}
increment number or \\
automatic load factor \(\lambda\)
\end{tabular} \\
Fourier & Static & \begin{tabular}{l}
circumferential angle (degrees)
\end{tabular}
\end{tabular}

\section*{Example 1. Load Curves}

The commands used to double the intensity of a face load over a period of 10 units are

\section*{LOAD CASE}

FLD
1108.

CURVE DEFINITION 3 USER
\(0 \quad 1\) :assign a value of 1 at time/increment zero
102 :assign a value of 2 at time/increment ten CURVE ASSIGNMENT

123 :assign load curve 3 with a factor of 2 to load case 1.

\section*{Example 2. Load Curves}

The following example shows how to superimpose three load curves to give a combined loading of one 'dead' load and two 'live' loads in a static nonlinear analysis.

Unfactored loading:

Load curves to be superimposed:

Load Curve 2
Live load 1

Loading section from data file:
```

LOAD CASE
CL
$\begin{array}{lllll}7 & 9 & 2 & 0.0 & 1.0\end{array}$
$8 \quad 8 \quad 0 \quad 0.0 \quad 4.0$
CURVE DEFINITION 1 USER
11.0
251.0
CURVE DEFINITION 2 USER
10.0
$9 \quad 1.5$
251.5
CURVE DEFINITION 3 USER
90.0
130.4
$21 \quad 1.4$
$25 \quad 1.4$
CURVE ASSIGNMENT
$1 \quad 1.01$
11.02
11.03
NONLINEAR CONTROL
ITERATIONS 12
$\begin{array}{lllll}\text { CONVERGENCE } & 0.0 & 0.0 & 0.8 & 0.8\end{array}$
OUTPUT $0 \quad 1 \quad 4$

```
TERMINATION 025
END

\section*{The use of Load Curves with Fourier Elements}

Fourier loading should be input using the load curve commands to define its circumferential variation. The curve data must use q values lying between \(0^{\circ}\) and \(360^{\circ}\). Both system and USER curve data may be utilised. For dynamic and harmonic response analyses the Fourier load component must be input explicitly.

\section*{Retained Freedoms}

The RETAINED FREEDOMS data section is used to manually define master and slave freedoms. The definition of master and slave freedoms is required for Guyan reduced eigenvalue extraction. RETAINED FREEDOMS are also required to define the master freedoms for a superelement during the generation phase of an analysis involving superelements.

Within the Guyan reduction phase the number of master freedoms may automatically be generated to compute the correct number of iteration vectors required, nivc. This depends upon the number of master freedoms already specified in the RETAINED FREEDOMS data section, nmastr. The number of automatically generated master freedoms would therefore be namast \(=\) nivc - nmastr.

\section*{RETAINED FREEDOMS [TITLE title]}
\[
\mathrm{N} \mathrm{~N}_{\text {last }} \mathrm{N}_{\text {diff }}<\text { type }_{i}>_{i=1, \mathrm{n}}
\]
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first, last and difference between nodes of the series of nodes with identical retained freedoms.
typei The freedom type for each global freedom at a node.
\(=\mathrm{M}\) for a master degree of freedom (default)
\(=S\) for a slave degree of freedom.
\(\mathrm{n} \quad\) The number of freedoms at a node for the structure being solved.

\section*{Notes}
1. If a node number is repeated the new set of freedom types overwrites the previous set and an advisory message is printed out.
2. The master and slave codes must be separated by a space (for example M S M not MSM).
3. Master freedoms may also be selected automatically for Guyan reduction using the GUYAN CONTROL data chapter.
4. If the FREEDOM TEMPLATE data chapter has been utilised the freedom types specified in this section will relate to the modified freedom list.
4. If Option 131 is specified in your data file when retained freedoms are present, (Guyan reduction and superelement generation phases), the option is switched off and a warning message is issued. (Option 131 is switched on by default).

\section*{Output Control}

The location of LUSAS output may be controlled in two ways:

\section*{\(\square\) Element output}
- Node output

Stresses and strains at Gauss points and nodes are output using the ELEMENT OUTPUT command. Nodal displacements and reactions are output using the NODE OUTPUT command.

The frequency of output is controlled using the OUTPUT data sections in the NONLINEAR, DYNAMIC, TRANSIENT and VISCOUS CONTROL data chapters. Further control is provided using the OPTION facility. The relevant output control options are:

\section*{No. Output options}

26 Reduce number of lines output in coordinates
32 Suppress stress output but not stress resultant output
33 Output direction cosines of local Cartesian systems for interface
34 Output element stress resultants
39 Stress smoothing for rubber material models
40 Output nodal displacement increments for nonlinear analyses
42 Output nodal residual forces for nonlinear
44 Suppress expanded input data printout except load cases
46 Suppress page skip between output stages
55 Output strains as well as stresses
59 Output local direction cosines for shells
77 Output principal stresses for solids
115 Output displacements and reactions in transformed axes
116 Suppress the output of internal constraint forces
143 Output shear forces in plate bending elements.
This option will produce results on an element-by-element basis, but will not include the shear stresses in the averaged nodal results.
144 Output element results for each load case separately
147 Omit output phase
169 Suppress extrapolation of stress to nodes for semiloof shell

\section*{No. Output options}

181 Output required results in Polar system for harmonic response analysis
208 Write plot file for pre version 10.0 LUSAS Modeller
259 Save nodal stresses in plot file to avoid stress extrapolation in LUSAS Modeller

\section*{Element Output Control}

The ELEMENT OUTPUT data section is used to define the order and contents of the element output.

ELEMENT OUTPUT [ASCENDING | SPECIFIED | SOLUTION] [TITLE title]
L \(L_{\text {last }} L_{\text {diff }}\) iout [iavgp ifrmgp inthis iplot]
L Llast Ldiff The first element, last element and difference between elements of the series of elements with identical output control.
iout The element output number
\(=0\) for no output
\(=1\) for nodal output
\(=2\) for Gauss point output
\(=3\) for nodal and Gauss point output
iavgp The averaged nodal value group number (see Notes).
ifrmgp Parameter to control the grouping of the summation of element forces and moments for the model summary.
inthis Parameter to control element output to the history file. Options are:
\(=0\) for no output.
\(=1\) for output.
iplot Parameter to control element output to the plot file. Options are:
\(=0\) for no output.
\(=1\) for output.

\section*{Notes}
1. If this data chapter is excluded nodal results will be output for all elements in ascending order.
2. Element numbers not specified are not output.
3. For linear problems ELEMENT OUTPUT control must be placed immediately after all loading data. The output control cannot be varied from load case to load case.
4. For nonlinear/step-by-step problems ELEMENT OUTPUT control may be placed after each LOAD CASE to change output between load increments. Once specified the ELEMENT OUTPUT control will remain active throughout the problem until
respecified. However, iplot can only be specified once at the start of the analysis.
5. For load combinations ELEMENT OUTPUT control may be respecified after any LOAD COMBINATIONS data chapter. ELEMENT OUTPUT then controls the output of the preceding load combinations and remains in force unless respecified further on. However, iplot can only be specified once at the start of the analysis.
6. If ELEMENT OUPUT is not specified after LOAD COMBINATIONS, the ELEMENT OUTPUT control currently in force for LOAD CASES is used.
7. For enveloping ELEMENT OUTPUT control may be specified after the ENVELOPE FINISH data line to control the output of results from an envelope. However, iplot can only be specified once at the start of the analysis.
8. Elements may be output in ascending, specified or solution order. The specified order is the order in which elements appear or are generated in the ELEMENT OUTPUT PECIFIED data chapter. It should be noted that when assembling the output order LUSAS, firstly, groups together all elements with the same averaged nodal value grouping, secondly, groups all similar elements (that is, all solids shells, etc.) and thirdly, sorts out the specified order.
9. If averaged nodal values are required then a positive integer must be specified for iavgp. This allows complete control to be exercised over which element nodal values are averaged together; a particularly useful facility where stresses are in local directions, i.e. shells. Any number of different groups may be specified and only elements with the same group number are averaged together.
10. The parameter ifrmgp should be specified as a positive integer that defines the group number for the summation of element forces and moments in the model summary.
11. The averaged nodal values produced with ELEMENT OUTPUT do not include the thin isoflex plate shear stresses that appear in the element-by-element output with Option 143.
12. All element data is always written to the LUSAS Modeller post processing file unless iplot=1 has been specified for any element.

\section*{Node Output Control}

The data section NODE OUTPUT is used to control the location and content of the nodal output.

NODE OUTPUT [TITLE title]
\(\mathrm{N} \mathrm{N}_{\text {last }} \mathrm{N}_{\text {diff }}\) int [inthis]
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with identical output control.
int The node output number
\(=0\) for no output
\(=1\) for displacements at nodes
\(=2\) for reactions at nodes
\(=3\) for displacements and reactions at nodes.
inthis Parameter to control element output to the history file. Options are:
\(=0\) for no output.
\(=1\) for output.

\section*{Notes}
1. If this data chapter is excluded nodal results will be output for all nodes in ascending order.
2. Node numbers not specified are not output
3. For linear problems NODE OUTPUT must be placed immediately after all loading data. The output control cannot be varied from load case to load case.
4. For nonlinear/step-by-step problems, NODE OUTPUT control may be placed after each LOAD CASE to change output between load increments. Once specified, the NODE OUTPUT control will remain active throughout the problem until respecified.
5. For load combinations, NODE OUTPUT control may be respecified after any LOAD COMBINATION data chapter. NODE OUTPUT then controls the output of the preceding load combinations and remains in force unless respecified further on.
6. If NODE OUTPUT is not specified after LOAD COMBINATIONS, the NODE OUTPUT control currently in force for LOAD CASES is used.
7. For enveloping, NODE OUTPUT control may be specified after the ENVELOPE FINISH data line to control the output of results from an envelope.
8. Note that for field analyses, the displacement output (int=1 or 3) will be replaced by field values, thermal gaps or radiation surface flows.
13. All nodal data is always written to the LUSAS Modeller post processing file.

Example 1. Element and Node Output with Load Combination

Plane stress problem:
LOAD CASE
CL
\(\begin{array}{llll}7 & 15 & 4 & 12.5\end{array}\)
LOAD CASE
CL
\[
700012.5
\]
\(1500-12.5\)
ELEMENT OUTPUT ASCENDING
4511
8001
NODE OUTPUT
\(\begin{array}{lll}571 & 3\end{array}\)
\(\begin{array}{llll}13 & 15 & 1 & 3\end{array}\)
LOAD COMBINATION
5.01
2.52

\section*{Chapter 3 LUSAS Data Input}
```

LOAD COMBINATION
3.0 1
4.5 2
ELEMENT OUTPUT SPECIFIED
4 3 3
5 8 3 2
LOAD COMBINATION
1.5 2
-1.5 1
ELEMENT OUTPUT ASCENDING
500 1

```

Example 2. Element and Node Output for a Single Load Case (Linear)

```

LOAD CASE
CL
715412.5
ELEMENT OUTPUT
C Gauss point stresses for element 4
4 0 0 2

```

NODE OUTPUT
C Displacement and reaction output
```

C for nodes 5, 6 and 7

```
```

5 1
3

```

\section*{Example 3. Element and Node Output for Single Load Case (Nonlinear)}

LOAD CASE
CL
715412.5

\section*{ELEMENT OUTPUT}

4003 : gives Gauss point and nodal stresses for element number 4
: the omition of the NODE OUTPUT command gives displacements and
: reactions for all nodes
NONLINEAR CONTROL

\section*{Load Combinations}

The data section LOAD COMBINATIONS may be used to combine the results obtained from individually defined load cases.

LOAD COMBINATIONS [N] [TITLE title]
fac L
N The load combination number (default sequential, starting with load combinations 1).
fac The multiplication factor for load case.
\(\mathrm{L} \quad\) The load case to be factored.

\section*{Notes}
1. Only results from LOAD CASES initially specified in the data input may be factored.
2. There is no limit on the number of LOAD COMBINATIONS which may be processed.
3. There is no limit on the number of LOAD CASES which may be factored to create a LOAD COMBINATION.
4. If a load case is specified more than once in the LOAD COMBINATION data the factors are accumulated.
5. The load case number is implicitly assigned in the order of declaration of the LOAD CASES in the datafile. It must not be specified with the LOAD CASE data section.
6. A PLOT FILE cannot be specified after LOAD COMBINATION.
7. The results of a LOAD COMBINATION and the combination data itself is not transferred to the LUSAS Modeller post-processing file.
8. LOAD COMBINATION can also be carried out in LUSAS Modeller.

\section*{Enveloping Results}

The ENVELOPE data section may be used to extract the maximum and minimum values from a series of enveloped linear analyses.

A particular load envelope is specified between the commands ENVELOPE START and ENVELOPE FINISH. The LOAD COMBINATION commands appear between the envelope commands. Output control for the envelope is specified immediately after the ENVELOPE FINISH command. Specification of nodal and element output within the envelope will be applied to the preceding LOAD COMBINATIONS.

ENVELOPE \{START | FINISH\}

\section*{Notes}
1. Enveloping is available for all elements in the LUSAS Element Reference Manual.
2. The enveloping facility may be used in conjunction with the RESTART facility if required.
3. Enveloping must be used in conjunction with the LOAD COMBINATION facility.
4. Enveloping can also be carried out in LUSAS Modeller.

\section*{Superelements}

Large finite element models may be divided into smaller, more manageable components which are added together to form the complete structure in a subsequent analysis. These components are referred to as 'superelements'. A superelement may be defined as an assembly of individual elements together with a list of master freedoms that will represent the superelement once it has been reduced. The SUPERELEMENT family of commands provides this facility in LUSAS for linear static, eigenvalue, nonlinear and transient dynamic analyses. An option also exists to evaluate the natural frequencies of a large structure from the eigen solutions of the individual superelements using modal synthesis.

In addition a component for which the user modal data (frequencies and eigenvectors) is available can be utilised to obtain the natural frequencies of a large structure. This component will be referred to as a user modal superelement. A detailed explanation of these facilities can be found in the LUSAS Theory Manual.

Analyses involving superelements may be divided into three basic stages:
\(\square\) Opening databases and creating superelement data.
\(\square\) Using superelements and/or user modal data in an analysis (i.e. solving the complete structure). This stage could involve user modal data only if superelements are not used.
- Recovering displacements and stresses within the superelements.

The superelement data may be created in one or several analyses and stored in several databases. Once generated, the superelements may be used in either static, natural frequency, nonlinear or transient dynamic analysis. The recovery procedure permits the displacements, stresses and strains of a superelement to be recovered. Additional concentrated loads and prescribed displacements are permitted during the combination pass of an analysis. In the create phase, both static and natural frequency analyses of an individual superelement may be performed to validate the data.

The following restrictions apply to the use of superelements:
1. If nonlinear analysis are undertaken the super elements will behave linearly.
2. Superelements cannot be generated from Fourier elements.
3. User modal data may only be used for natural frequency analyses
4. Material properties must be constant. If temperature dependent properties are input then the values corresponding to the initial temperature will be used.
5. Superelement generation/recovery is limited to one superelement per analysis run.
6. When a superelement connects to other non-superelements, the connecting node locations associated with the non-superelements must have the same relative locations as originally used in generating the superelement. In addition, the Cartesian sets for the nodes must coincide.
7. If superelements are used without any standard elements the FREEDOM TEMPLATE data chapter must be included.
8. If superelements are used that have more freedoms than the standard elements, and any values are to be prescribed for these freedoms, then the FREEDOM TEMPLATE data chapter must be included. These values may be defined in SUPPORT CONDITIONS, CONSTRAINT EQUATIONS, RETAINED FREEDOMS or LOADCASE data chapters.
9. User modal data eigenvectors must be in the structure global axes.

\section*{How to use Superelements}

The general approach for using the SUPERELEMENT facility in LUSAS is explained through a description of input data files required at each stage of a typical analysis using superelements. The output files provided at each stage are also listed and their use in subsequent stages of the analysis is defined. The figure on Recovery Phase gives a schematic diagram of a complete superelement analysis together with the input and output files at each stage. An example of data files required for each phase of the analysis is provided on Examples of Using Superelements.

\section*{Creating Superelements}

A typical data file for creating superelements would contain SUPERELEMENT ASSIGN and SUPERELEMENT DEFINE commands. The master freedoms for the superelement would be specified using the RETAINED FREEDOMS data chapter. This analysis would then create:
- A superelement database
- An output file
- A restart file (optional)

The contents of the files created would depend upon the control parameters specified under the sub-commands of SUPERELEMENT DEFINE. Only one superelement can be generated in a single analysis.

\section*{Using Superelements in an Analysis}

A typical data file for using superelements in an analysis to solve the complete structure would contain the SUPERELEMENT USE command and may also contain SUPERELEMENT DEFAULT or DISTRIBUTE commands. These commands would reference databases created in the superelement creation phase. Additional elements, boundary conditions or loading may be specified at this stage. This analysis would then create:
- Superelement result database(s)
- An output file
- A restart file (optional)
- A LUSAS Modeller plot file (optional)

Several superelement databases may be used in this stage of the analysis. In addition user modal superelements may be included to form the complete structure using the SUPERELEMENT MODAL_DATA command. User modal superelements can also be used in isolation (see Utilising User Modal Data in an Analysis below). If a LUSAS Modeller plot file is created it will NOT contain the superelement results.

\section*{Recovering Superelement Results}

A data file for recovering superelement results using output from the previous analysis stage would contain the SUPERELEMENT RECOVER command and may also contain a SUPERELEMENT DEFAULT command. These commands would reference output databases created during solution of the complete structure. This analysis would then create:
- An output file
\(\square\) A restart file (optional)
A A LUSAS Modeller plot file (optional)

If the superelement generation restart file is not available recovery may be performed using the original data file. Only one superelement may be recovered in each analysis.

\section*{Utilising User Modal Data in an Analysis}

A typical data file for utilising user modal data in an analysis to solve the complete structure would contain the SUPERELEMENT MODAL_DATA command. This command would reference a neutral file containing the component connectivity nodes and freedoms, frequencies and references to result files containing the eigenmodes. Additional user modal data components, elements, superelements or boundary conditions may be specified at this stage. The analysis would then create:
- An output file
- A restart file (optional)
- A LUSAS Modeller plot file (optional)

If a LUSAS Modeller plot file is created it will NOT contain the user modal data results.

\section*{A Typical Superelement Analysis}

A typical analysis sequence to generate two superelements and use them with a user modal superelement and a group of LUSAS elements in the complete structure would be as follows (see figure on Recovery Phase):

\section*{Generation Phase}

\section*{Analysis 1}

Input

Output
define1.out
define1.mys (optional)
define1.rst (optional)
define1.sfr (rename to recov1.sfr or delete)
dbname1.sda

\section*{Analysis 2 \\ Input}
define2.dat

Output
define2.out
define2.mys (optional)
define2.rst (optional)
define2.sfr (rename to recov2.sfr or delete)
dbname2.sda

\section*{Solution Phase}

\section*{Analysis 3}
\begin{tabular}{ll}
Input & Output \\
use1.dat & use1.out \\
dbname1.sda & use1.rst (optional) \\
dbname2.sda & use1.mys (optional) \\
use1.def & dbname1.srs \\
use1.adp & dbname2.srs
\end{tabular}

\section*{Recovery Phase}

\section*{Analysis 4}
\begin{tabular}{ll}
Input & Output \\
recov1.dat & recov1.out \\
\begin{tabular}{l}
define1.rst \\
(optional)
\end{tabular} & recov1.mys (optional) \\
\begin{tabular}{l}
recovl.sfr \\
(optional)
\end{tabular} & recov1.rst (optional) \\
dbname1.sda & dbnamel.srs
\end{tabular}

\section*{Analysis 5}

Input
recov2.dat
recov2.out
define2.rst recov2.mys (optional) (optional)
recov2.sfr recov2.rst (optional) (optional)
dbname2.sda
dbname2.srs

The file extensions .sda and .srs relate to superelement data and results databases respectively. The extension .sfr indicates a file containing the reduced frontal matrices. If the appropriate .sfr file is accessible during the recovery phase, the solution is recovered from the back substitution of the equations leading to a more efficient solution. To take advantage of this facility the .sfr file must have the same prefix as the data file used in the recovery, i.e. copy define1.sfr to recov1.sfr in above example. If a superelement restart file (.rst) is not available, recovery may be performed by redefining the superelement in the datafile (i.e. as in the superelement creation phase).

Note. The .mys, .rst, .sfr, .sda and .srs files are all binary files. The .dat and the .out files are ASCII files which can be read and edited directly by the user. The user modal data files (.def and .adp) are ASCII files.

Main Stages of an Analysis Involving Superelements

\section*{Component Mode Synthesis Using Superelements}

Component mode synthesis provides a method of evaluating the natural frequencies of a large structural system by utilising the eigen solutions of the component parts. Additional generalised freedoms (or modal coordinates) are introduced which enable an enhanced representation of the reduced mass and stiffness to be computed for each superelement. The superelement matrices are then combined and the eigen-solution for the complete structure is evaluated. More details can be found in the LUSAS Theory Manual.

The eigenvalues evaluated using this method of analysis will always be an upper bound on the corresponding exact values of the system. The accuracy of each eigenvalue and corresponding eigenvector is dependent upon how accurately the boundary conditions are represented in the eigen-analysis of each of the components.

The component mode reduction can be carried out whilst defining a superelement, or as an updating procedure if the superelement has already been defined. During this phase LUSAS calculates the natural frequencies of the superelement. Using this eigensolution the reduced stiffness and mass are computed for the superelement, in terms of the master freedoms and generalised coordinates. For these computations the required number of generalised coordinates must be defined in the data input.
\(\square\) Generalised coordinates are extra (fictitious) degrees-of-freedom that are utilised to enhance the stiffness and mass of the superelement and allow a more accurate dynamic (eigen or transient) solution of the complete structure to be computed without the specification of extra retained (or master) freedoms.

In addition, the modal supports for the master freedoms must also be specified as 'fixed', 'free' or 'spring stiffness and mass'.

For many structures the alternatives 'fixed' or 'free' are not sufficient for accurate modelling. In order to improve modelling it is possible to:
- Introduce spring stiffnesses and masses on the exterior freedoms to represent the effects of the remaining structure. This requires you to estimate the stiffness and mass of the remaining structure.
- Automatically reduce the stiffness and mass of the remaining structure to the master freedoms. This can be achieved in two ways:
- once the component mode reduction has been carried out for each superelement the complete structure can be assembled and the natural frequencies computed. At this stage it is also possible to automatically distribute the mass and stiffness of the complete structure to each superelement.
- alternatively the stiffness and mass can be distributed before any natural frequencies are calculated at the superelement level. Once this redistribution has been carried out the natural frequencies of the individual superelements can be computed more accurately.

\section*{Opening Superelement Files}

Superelement databases are opened using the SUPERELEMENT ASSIGN command.
SUPERELEMENT \{ASSIGN dbname filename \| DEFAULT dbname\}
ASSIGN Opens a new superelement database.
DEFAULT Changes the default superelement database.
dbname Internal name of database.
filename External name of file containing database.

\section*{Notes}
1. If a filename is not provided, the filename will default to dbname.
2. Several superelement databases may be used at any one time. Use of the DEFAULT option changes the default database for subsequent operations.
14. ASSIGN sets the database defined as the default database.

\section*{Superelement Creation}

The superelement to be created will contain information on element topology and usually requires specification of boundary freedoms, loading and reduction options. The SUPERELEMENT DEFINE command defines the name and title associated with the superelement.

\section*{Superelement Definition}

SUPERELEMENT DEFINE defines the superelement name and internal database that is used to store the superelement information.
```

SUPERELEMENT DEFINE sname [dbname] [TITLE title]
sname Superelement name.
dbname Internal name of database.

```

\section*{Notes}
1. Each superelement in an analysis must have a unique identification name.
2. If dbname is not specified then either:
3. The current default database will be used if available, or
4. The database will default to sname if a default database is not available.

\section*{Constants}

The CONSTANTS data section defines the control parameters for the superelement creation phase. A list of valid names defines the output required.

CONSTANTS [LOAD] [STIF] [MASS] [STAT] [EIGN]
LOAD Save the reduced load vector.
STIF Save the reduced stiffness matrix.
MASS \(\quad\) Save the reduced mass matrix.
STAT Perform a static analysis using superelement.
EIGN Perform an eigen-analysis using superelement.

\section*{Notes}
1. If the CONSTANTS command is not specified LOAD and STIF will be invoked by default. However, if Option 90 is set then LOAD, STIF and MASS will be the default control parameters.
2. If the command GENERALISED COORDINATES is specified the following default operations will be carried out:
- The reduced mass matrix will be saved.
- An eigen-analysis will be performed to compute the eigenvectors required.
- The enhanced reduced stiffness and mass will be computed and saved.

\section*{Output}

The OUTPUT command defines the information to be presented in the results output file.

OUTPUT [MAST] [LOAD] [STIF] [MASS] [DRCO] [CORD]
MAST Master freedom description.
LOAD Reduced load vector.
STIF Reduced stiffness matrix.
MASS Reduced mass matrix.
DRCO Nodal direction cosine matrices.
CORD Nodal coordinates.

\section*{Notes}
1. By default, only a summary of the superelement data will be provided.

\section*{Generalised Coordinates}

The GENERALISED COORDINATES command defines the number of generalised coordinates to be utilised in the exterior freedom set for the superelement. These additional freedoms allow an enhanced representation of the superelement mass and stiffness to be computed thereby providing a more accurate solution when the complete structure is analysed.

GENERALISED COORDINATES m
m Number of generalised coordinates

\section*{Notes}
1. If the GENERALISED COORDINATES command is specified an eigenvalue analysis will be performed to compute max (m,nroot) eigenvalues and corresponding eigenvectors using either Subspace iteration or Guyan reduction.
2. If the eigenvalue solution method is not specified subspace iteration will be used by default.

\section*{Modal Supports}

The MODAL SUPPORT command defines the support conditions for the master freedoms for local superelement eigen-analysis. This information is also used for computation of the eigen-modes associated with generalised coordinates. Further
additional master freedoms may be specified for a local eigenvalue analysis using Guyan reduction.

MODAL SUPPORT [STIF] [MASS]
\(\mathrm{N} \mathrm{N}_{\text {last }} \mathrm{N}_{\text {diff }}<\) type \(_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}<\operatorname{stif}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}<\operatorname{mass}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}\)
STIF Stiffness flag.
MASS Mass flag.
\(\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}\) The first node, last node and difference between nodes of the series of nodes with identical modal supports.
typei Modal support code for each freedom at the nodes. Valid types are:
R - Master freedom restrained.
F - Master freedom free.
S - Spring support for master freedom.
G - Denotes interior freedoms as masters for local eigenvalue analysis (see Notes).
stifi Stiffness for spring support.
massi Mass for spring support.
n Total number of degrees-of-freedom at the node.

\section*{Notes}
1. By default, master freedoms are restrained ('R') in a local eigenvalue analysis.
2. MODAL SUPPORT has no influence in static analyses.
3. Retained freedoms of type ' \(G\) ' should only be specified if Guyan reduction is being used to compute the eigen-solution of the superelement. The freedoms are not used in subsequent superelement operations.
4. The FREEDOM TEMPLATE data chapter must be used when MODAL SUPPORTS are specified.

\section*{Using Superelements}

Superelements are utilised for two reasons:
- to solve the complete structure
\(\square\) to redistribute the masses and stiffnesses for eigen-analyses.
The SUPERELEMENT USE command is used in both of these cases.
When solving the complete structure additional elements, loading, boundary conditions and user modal data may also be added directly with the complete structure. The complete structure is defined as the combination of the lowest level superelements. When the complete structure is solved, the displacements relating to all master freedoms are written to the appropriate superelement database(s).

The masses and stiffnesses of the complete structure can be redistributed to the boundaries of each of the superelements using the SUPERELEMENT DISTRIBUTE

COMMAND (see Distribution of Mass and Stiffness in Modal Synthesis). In order to do this the complete structure must be formed by utilising the SUPERELEMENT USE command.

SUPERELEMENT USE sname dbname
sname Name of superelement to be solved.
dbname Database where superelement is stored.

\section*{Notes}
1. Several superelements may be included in the complete structure.
2. If dbname is not specified then either:
3. the current default database will be used if available, or
4. the database will default to sname if a default database is not available.
5. If SUPERELEMENT ASSIGN has not been defined the filename which contains the superelement database, dbname, will be assumed to be the filename.
6. Additional loads and boundary conditions may only be added to the nodes specified as masters in the creation phase.
7. Additional load conditions permitted are concentrated loads (CL) only. Elements loads are not permitted at this stage.

\section*{Utilising User Modal Data}

The SUPERELEMENT MODAL_DATA command is used to define modal data for a component of the complete structure. This command is only valid for natural frequency analyses.
```

SUPERELEMENT MODAL_DATA uname

```
OUTPUT \{STIFF | MASS\}
uname Name of neutral file containing user modal data.
STIF Reduced stiffness matrix to be output.
MASS Reduced mass matrix to be output.

\section*{Note}
1. Several user modal superelements may be included in the complete structure.

\section*{User Modal Data Neutral File}

The user modal data neutral file (with a file extension .def) has two lines for a title (packet type 25) followed by two lines for a subtitle (packet type 26 usually date, time and version). This is followed by the user modal data (packet type 27). This file can be in free format or in fixed format and the format type is specified on the first line of the neutral file. The results files (with a file extension of adp) utilised in this neutral file must also be in this format.

The file format type for the neutral file and associated result files is specified on the first line of the neutral file as free or fixed. In free format you can input data in any column with a spacing between descriptors or numbers. fixed format requires the numbers to be input in certain columns. If this line is omitted or an unrecognised format type is encountered free format is assumed.

\section*{FORMAT Format (A)}

FORMAT
FORMAT \(\quad=\) File format type (FREE or FIXED)

The header line for each data packet contains the following information:

\section*{HEADER Fixed Format \((12,818)\) or FREE format}

IT ID IV KC N1 N2 N3 N4 N5
IT = packet (or Entity) type
ID = identification number. A " 0 " value means not applicable
IV = additional ID. A " 0 " value means not applicable
KC = line count (number of lines of data after the header)
N1 to N5 Supplemental integer values used and defined as needed.

\section*{PACKET TYPE 25: TITLE}

HEADER Fixed Format \((12,818)\) or FREE format
```

25 0 0 1
ID = 0 (n/a)
IV = 0 (n/a)
KC = 1

```

USER TITLE Format (A)
TITLE
TITLE = identifying title, may be up to 80 characters

\section*{PACKET TYPE 26: SUMMARY DATA}
```

HEADER Fixed Format (I2,8I8) or FREE format
26 0 0 1
ID =0(n/a)
IV = 0(n/a)
KC =1

```

SUMMARY DATA Format (A)
DATA
DATA = character string containing Date:Time:Version

\section*{PACKET TYPE 27: USER MODAL DATA}

HEADER Fixed Format \((12,818)\) or FREE format
27 0 0 KC N1 N2 N3
ID \(\quad=0(\mathrm{n} / \mathrm{a})\)
IV \(\quad=0(\mathrm{n} / \mathrm{a})\)
N1 = maximum number of freedoms to a node
N2 = total number of boundary nodes i.e. connectivity to complete structure
N3 = number of eigenmodes
KC \(\quad=1+\mathrm{N} 2+(\mathrm{N} 3+4) / 5+\mathrm{N} 3\)

TEMPLATE Fixed Format (20A4) or FREE format
FRETYP
FRETYP \(\quad=\) freedom types at a node (N1 values specified)
For valid freedom types (see Freedom Template)

NODAL FREEDOM Fixed Format (10I8) or free format
```

NNODE NF1 NF2 NF3 NF4 NF5 NF6 NF7 NF8
NF9

```

NNODE = boundary node number - this node must exist in the structure and the results files

NF1 to NF9 nodal freedoms (results column number in results file) - do not specify more than N1 freedoms
```

FREQUENCIES Fixed Format (5E16.9) or FREE format
FREQ
FREQ = natural frequencies for each mode

```

\section*{RESULTS FILE Format (A)}

EIGFLE
EIGFLE \(\quad=\) name of results file for this mode number
- this file contains the mass normalised eigenvectors and can be in free or fixed format as specified on the first line in the neutral file, this line is repeated for each mode

See Examples of Using Superelements for an example of a user modal data neutral file.

\section*{User Modal Data Results Files}

The user modal data results file (with a file extension .adp) has one line for a title followed by a line for nodal information. This is followed by two lines for subtitles, followed by nodal displacements (a line for each node). This file must be in free or fixed format as specified in the user modal data neutral file.

\section*{RESULTS FILE DATA Format (A)}

\section*{TITLE}

TITLE
TITLE = identifying title, may be up to 80 characters

NODAL INFORMATION
NNODES MAXNOD DEFMAX NDMAX NWIDTH
\begin{tabular}{ll}
NNODES & \(=\) number of nodes \\
MAXNOD & \(=\) highest node number \\
DEFMAX & \(=\) maximum absolute displacement \\
NDMAX & \(=\) node number where maximum displacement occurs \\
NWIDTH & \(=\) number of result columns after NODID for nodal freedom \\
displacements &
\end{tabular}

\section*{SUBTITLE1 Format (A)}

SUBTITLE
SUBTITLE = identifying subtitle, may be up to 80 characters

\section*{SUBTITLE2 Format (A)}

SUBTITLE
SUBTITLE = identifying subtitle, may be up to 80 characters

DISPLACEMENTS Fixed Format (I8,5E13.7) or free format (for each node)
NODID (DATA (J), J=1,NWIDTH)
NODID = node number
DATA = nodal freedom displacements

See Examples of Using Superelements for an example of a user modal data results file.

\section*{Recovery of Superelement Data and Results}

The SUPERELEMENT RECOVER command permits superelement results to be recovered from the database. This process involves reflation of the reduced solution for a superelement to obtain the solution of the constituent elements. The superelement database will contain the displacements relating to the exterior freedoms computed in the solution of the complete structure. In the recovery stage of the analysis these displacements will be used to compute internal displacements, stresses and strains for the superelement.
```

SUPERELEMENT RECOVER sname dbname
CONSTANTS {STAT | EIGN | NONL inc | DYNA nt }
sname Name of superelement to be solved.

```
```

dbname Database where superelement is stored.
STAT Recover information from static analysis (see Notes).
EIGN Recover information from eigen-analysis (see Notes).
NONL inc Recover information from nonlinear analysis on specified increment.
DYNA nt Recover information from dynamic analysis on specified time step.

```

\section*{Notes}
1. If dbname is not specified then either:

The current default database will be used if available, or
database will default to sname if a default database is not available.
2. If SUPERELEMENT ASSIGN has not been defined the filename which contains the superelement database, dbname, will be assumed to be the filename.
3. If the CONSTANTS command is not specified the results from the most recent analysis will be recovered.
4. A more efficient solution can be obtained if the appropriate file containing the reduced frontal matrices is utilised in the recovery stage. These files can be recognised by the extension .sfr and are produced during the superelement creation phase. To take advantage of this facility, the previously created .sfr file must be renamed to fname.sfr, where fname is the name of the data file used in the recovery. Using this approach the re-assembly of the reduced frontal matrices is avoided and the solution is achieved directly from the back substitution. However, it should be noted that the .sfr files are generally quite large and may require a considerable amount of storage.
5. When recovering problems in which generalised coordinates have been used the sfr file should be used in the recover process to maintain consistancy.

\section*{Distribution of Mass and Stiffness in Modal Synthesis}

Generally, the master freedoms of a superelement are assumed to be either fixed or free. A better approximation is usually obtained by utilising point masses and stiffnesses to represent the effects of the remaining structure. This is accomplished by reducing the mass and stiffness of the complete structure to the boundary nodes of each chosen superelement. To achieve this, the master freedom codes for each superelement are modified and a Guyan reduction analysis is performed. This provides the reduced stiffness and mass from which the superelement stiffness and mass are subtracted to give the boundary mass and stiffness.

The SUPERELEMENT DISTRIBUTE command specifies that an analysis is to be performed to distribute mass and stiffness from the complete structure to each superelement in modal synthesis analysis. The complete structure must be formed by utilising the SUPERELEMENT USE command for each superelement that is to be included.
sname Name of superelement to be solved.
dbname Database where superelement is stored.

\section*{Notes}
1. Several superelements may be included in the complete structure (see Using Superelements).
2. If dbname is not specified the data will be recovered from the default database set using the SUPERELEMENT ASSIGN/DEFAULT command.
3. If SUPERELEMENT ASSIGN has not been defined the filename which contains the superelement database, dbname, will be assumed to be the filename.

\section*{Examples of Using Superelements}

This section provides an example of the data files required to execute the basic phases of an analysis using superelements.

\section*{Example 1. Superelement Generation Phase}
```

PROBLEM TITLE Superelement generation phase
BEAM ELEMENT TOPOLOGY
FIRST 1 1 2
INC 1 1 3 3 3
NODE COORDINATES
FIRST 100
INC 1 5 5 0
INC 3 0 5 5
BEAM GEOMETRIC PROPERTIES
1 0.01 0.0001 1.0
GEOMETRIC ASSIGNMENTS
1 3 1 1 1
MATERIAL PROPERTIES
2 210E9 0.3
MATERIAL ASSIGNMENTS
1 3 1 1 2
FREEDOM TEMPLATE
U V THZ
SUPPORT NODES

```
```

1 7 3 R R R R
RETAINED FREEDOMS
2
C
C Open a superelement database SEDBSE in an external
file SEEXTF
SUPERELEMENT ASSIGN SEDBSE SEEXTF
C
C Define the name of this superelement as SENAME and
store in the default database SEDBSE
SUPERELEMENT DEFINE SENAME TITLE First
superelement
C
C Save the reduced stiffness and mass for SENAME in
SEDBSE
CONSTANTS STIF MASS
C
C Present the master freedom description and reduced
stiffness in the results output file
OUTPUT MAST STIF
C This restart file will be referred to as SEREST
RESTART WRITE
END

```

\section*{Example 2. Superelement Mass and Stiffness Distribution Phase}
```

PROBLEM TITLE Superelement mass and stiffness
distribution phase

```
C
C Open the superelement database SEDBSE in the external
file SEEXTF
SUPERELEMENT ASSIGN SEDBSE SEEXTF
C
C Include the superelement SENAME (which is stored in
database SEDBSE) into the analysis.
SUPERELEMENT USE SENAME SEDBSE
```

C
C Include other superelements into the complete
structure
C
C Distribute mass and stiffness to superlement
SUPERELEMENT DISTRIBUTE SENAME SEDBSE
END

```

\section*{Example 3. Superelement Solution Phase}

PROBLEM TITLE Superelement solution phase
QPM4 ELEMENT TOPOLOGY
\(\begin{array}{llllll}\text { FIRST } & 1 & 2 & 3 & 6 & 5\end{array}\)
\(\begin{array}{lllllll}\text { INC } & 1 & 3 & 3 & 3 & 3 & 4\end{array}\)
NODE COORDINATES
FIRST 250
INC \(\begin{array}{llll}1 & 5 & 0 & 2\end{array}\)
INC \(\begin{array}{llll}3 & 0 & 5 & 5\end{array}\)
QPM4 GEOMETRIC PROPERTIES
\(\begin{array}{lllll}1 & 0.01 & 0.01 & 0.01 & 0.01\end{array}\)
GEOMETRIC ASSIGNMENTS
\(\begin{array}{llll}1 & 4 & 1 & 1\end{array}\)
MATERIAL PROPERTIES
2 210E9 0.3
MATERIAL ASSIGNMENTS
\(\begin{array}{llll}1 & 4 & 1 & 2\end{array}\)
FREEDOM TEMPLATE
U V THZ
SUPPORT NODES
\(\begin{array}{llllll}2 & 3 & 1 & F & R & R\end{array}\)
14151 F R R
LOAD CASE
CL
\begin{tabular}{rrrrrr}
3 & 15 & 12 & 10 & 0 & 10 \\
6 & 12 & 3 & 20 & &
\end{tabular}

C
C Open the superelement database SEDBSE in the external file SEEXTF

SUPERELEMENT ASSIGN SEDBSE SEEXTF
C
C Include the superelement SENAME (which is stored in database SEDBSE) into the analysis.
SUPERELEMENT USE SENAME SEDBSE
C
C Include other superelements into the complete structure

C Include user modal data USE1 into the analysis. SUPERELEMENT MODAL_DATA USE1

C
C Include other user modal superelements into the complete structure
EIGENVALUE CONTROL
CONSTANTS 5 D D 1
PLOT FILE
END

\section*{Example 4. Superelement Recovery Phase}

\section*{RESTART READ 1 SEREST}

C Recover the superelement SENAME results for the most recent analysis

C
C Open the superelement database SEDBSE in the external file SEEXTF

SUPERELEMENT ASSIGN SEDBSE SEEXTF
C
C Recover the superelement results
SUPERELEMENT RECOVER SENAME SEDBSE
```

RESTART WRITE
PLOT FILE
END

```

\section*{Example 5. User Modal Neutral File}
```

FREE FORMAT
25 0 0 1
User modal data for two beams with total of six freedoms
26 0 0 1
22-09-93:12:00:V11.0
27 0
U V THZ
11 1 2
14 1 2 3
0.145609E+02 0.162796E+02 0.141941E+03
0.158695E+03 357.302
399.476
use1.adp
use2.adp
use3.adp
use4.adp
use5.adp
use6.adp
99

```

Example 6. User Modal Results File
USE1 - Two beams with total of six freedoms (One of six result files)
\(10 \quad 14 \quad 0.127609 \quad 14 \quad 3\)
use1 GLOBAL DISPLACEMENTS
MODE \(=1\)
\begin{tabular}{llll}
1 & \(0.0000000 \mathrm{E}+00\) & \(0.0000000 \mathrm{E}+0\) & \(0.0000000 \mathrm{E}+00\) \\
2 & \(0.0000000 \mathrm{E}+00\) & \(0.8983746 \mathrm{E}-17\) & \(0.2475554 \mathrm{E}-17\)
\end{tabular}
\begin{tabular}{llll}
4 & \(0.0000000 \mathrm{E}+00\) & \(0.0000000 \mathrm{E}+00\) & \(0.0000000 \mathrm{E}+00\) \\
5 & \(0.0000000 \mathrm{E}+00\) & \(0.5336911 \mathrm{E}-16\) & \(0.1470636 \mathrm{E}-16\) \\
7 & \(0.0000000 \mathrm{E}+00\) & \(0.0000000 \mathrm{E}+00\) & \(0.0000000 \mathrm{E}+00\) \\
8 & \(0.0000000 \mathrm{E}+00\) & \(-.1740663 \mathrm{E}-15\) & \(-.4773746 \mathrm{E}-16\) \\
10 & \(0.0000000 \mathrm{E}+00\) & \(0.0000000 \mathrm{E}+00\) & \(0.0000000 \mathrm{E}+00\) \\
11 & \(0.0000000 \mathrm{E}+00\) & \(-.1007247 \mathrm{E}-14\) & \(-.2966510 \mathrm{E}-15\) \\
13 & \(0.0000000 \mathrm{E}+00\) & \(0.0000000 \mathrm{E}+00\) & \(0.0000000 \mathrm{E}+00\) \\
14 & \(0.0000000 \mathrm{E}+00\) & \(0.1276092 \mathrm{E}+00\) & \(0.3516390 \mathrm{E}-01\)
\end{tabular}

\section*{Groundwater flow controls}

For groundwater problem that use nonlinear two-phase properties these commands provide fine control over the solution of the coupled flow/deformation equations. These options are automatically selected for different problem types.
```

SOLVE GROUNDWATER \{ FIRST | FIX | TOGETHER | AUTO \} PERMEABILITY \{ UPDATE | CONSTANT | AUTO \}

```

\section*{Notes}
1. The FIRST option solves the groundwater problem first while fixing the structural displacements. Once the groundwater problem reaches equilibrium the fully coupled equations are solved.
2. The FIX option solves the groundwater problem first and then the structural problem without any coupling between the deformations and pore water pressure. For uncoupled and steady state flows this is the default option.
3. The TOGETHER option solves both the flow and deformation equations simultaneously. This is the default option for fully coupled problems.
4. The permeability used in the tangent stiffness matrix may be updated according to the saturation using UPDATE whilst CONSTANT uses the value for the fully saturated soil. In general, the CONSTANT option provides slow but steady convergence for flow problem. A faster convergence can usually be achieved using the UPDATE option.
5. The AUTO option is the default and Solver will set parameters according to the solution in progress.

\section*{Phi-c Reduction}

Phi-c reduction analysis is used to calculate a factor of safety for slopes and sheet piling. To do this the loads are held constant but the angle of friction \(\phi\), the cohesion \(c\) and tensile yield stress \(\sigma_{\text {tensile }}\) are proportionally reduced until the soil fails. Failure is indicated by either the analysis failing to converge or when the maximum solvable increment of the safety factor is below a certain value.

The safety factor SF is defined as
\[
S F=\frac{\text { availble shear strength }}{\text { shear strength at failure }}
\]
or in terms of the Mohr-Coulomb material parameters
\[
S F=\frac{\tan \emptyset_{\text {applied }}}{\tan \emptyset_{\text {failure }}}=\frac{c_{\text {applied }}}{c_{\text {failure }}}=\frac{\sigma_{\text {tensile,applied }}}{\sigma_{\text {tensile,failure }}}
\]

The analysis proceeds by the gradual reduction in \(\tan \phi, c\) and \(\sigma_{\text {tensile }}\). The dilatancy angle \(\psi\) is reduced at the same rate as the friction angle \(\phi\) from the point at which the friction angle is equal to the dilatancy angle. The soil status may be set to either drained or undrained using the DRAINED/UNDRAINED command.
```

PHI_C REDUCTION [ sfstart dsfmin mxinc esupp ]
L L Llast }\mp@subsup{L}{\mathrm{ diff}}{

```
sfstart starting value for safety factor (default 1.1)
dsfmin minimum change in safety factor to terminate solution (default 0.01)
mxinc maximum number of steps to use (default 25)
esupp fraction of elements to suppress from prior phi-c reduction of slope (default 0.0)
\(\mathrm{L} \mathrm{L}_{\text {last }} \mathrm{L}_{\text {diff }}\) The first element, last element and difference between elements of the series for which phi-c reduction will be applied.

\section*{Notes}
1. Phi-c reduction can be used with the Mohr-Coulomb, Modified Mohr-Coulomb and Hoek-Brown material models.
2. The selection of a set of elements allows the safety of a particular slope in a large analysis to be evaluated in isolation to the rest of the model. If the element list is omitted all elements will be selected.
3. In a slope with a complicated profile, local failures may occur before the failure of the whole slope. Using esupp in conjunction with a sequence of repeated phi-c reductions it is possible to suppress the most strained elements from the current reduction and hence the corresponding local slope failures. Setting a value of esupp \(=0.01\) will remove \(1 \%\) of most strained elements from the current phi-c
reduction. By doing repeated phi-c reductions it is possible to suppress the local failures until the global failure surface is found.
4. For clarity, the DRAINED and UNDRAINED status should be explicitly assigned to all the two-phase elements included in the phi-c reduction. For the UNDRAINED elements the bulk modulus of the fluid factored by the saturation is added to the material stiffness. If the element is dry the fluid bulk modulus' contribution to the stiffness is zero even if it is assigned UNDRAINED status.
5. Automatic DRAINED/UNDRAINED status is assumed if none is explicitly assigned. For uncoupled groundwater flows and steady state groundwater solutions two-phase elements are assumed to be DRAINED. For coupled groundwater flows and consolidation analyses two-phase elements are assumed to be UNDRAINED. If any elements are set to UNDRAINED in a steady state or uncoupled groundwater flow analysis all the two-phase elements are assumed to be UNDRAINED if not explicitly defined as DRAINED.

\section*{Reset Deformation}

For some structures such as embankments or existing buildings it is helpful to restore the original geometry after applying gravity and other known loads so that we start from the actual geometry. The reset deformation command changes the stresses to initial stresses and then restores the original geometry.

For linear geometry, the loads are in equilibrium with the stresses and the structure does not move on resetting the deformations. However, if the geometry is nonlinear further iterations will probably be required to bring it fully into equilibrium with a deformation reset being performed at the end of each iteration. Setting the parameter idrset=1 will perform a single deformation reset followed by further iterations which will move the structure away from the starting geometry. In this case the RESET DEFORMATION command can be repeated to further reduce any deformations resulting from the geometric nonlinearity.

Individual elements and nodes can also be selectively reset. When resetting elements, nodes common to the active selected and active unselected elements do not change, whilst nodes belonging solely to the selected elements are returned to their starting positions. Additionally, a node can be reset to its starting position without resetting any element using the NODE option.
```

RESET DEFORMATION [idrset][LAST]

```

ELEMENT
\[
\mathrm{L} \mathrm{~L}_{\text {last }} \mathrm{L}_{\text {diff }}
\]

NODE
\[
\mathbf{N} \mathbf{N}_{\text {last }} \mathbf{N}_{\text {diff }}
\]
\[
\begin{array}{ll}
\text { idrset } & \text { Deformation reset flag } \\
\text { LAST } & \text { Restore to deformation at start of current load stage. } \\
\mathrm{L} & \mathrm{~L}_{\text {last }}
\end{array} \mathrm{L}_{\text {diff }} \text { The first element, last element and difference between elements of the } ~ \text { series for which their deformations will be reset. }
\]

\section*{Notes}
1. The procedure works best for linear geometry assuming infinitesimal deformations.
2. Nonlinear geometry can be switched on after reseting deformations using the NONLINEAR GEOMETRY command.
3. RESET DEFORMATION is valid for all elements which use the initial stress loads SSIE, SSIG.
4. If the list of elements and or nodes is not supplied the deformation reset will apply to all elements and nodes.
5. If only selected elements are to have their deformations reset, nodes which are common to selected and other active elements will not be reset.
6. A RESET DEFORMATION can be used at any point during an analysis and can be done as many times as required.

\section*{Steady State}

The STEADY STATE command is used to advance a dynamic or transient analysis to the steady state. Time is frozen. If the analysis involves creep no further creeping takes place until time integration is restarted.

\section*{STEADY STATE}

\section*{Analysis Control}

The following types of analysis control data chapters are available for the control of specific LUSAS analysis types:
- NONLINEAR CONTROL
\(\square\) GEOSTATIC CONTROL
\(\square\) DYNAMIC CONTROL
- TRANSIENT CONTROL
\(\square\) VISCOUS CONTROL
- EIGENVALUE CONTROL
- GUYAN CONTROL
for nonlinear analysis
for geotechnical analysis
for step-by-step dynamic analysis
for transient field analysis
for creep analysis
for eigenvalue extraction analysis
for Guyan reduced eigenvalue analysis
\(\square\) MODAL_DAMPING CONTROL for computation of distributed damping
- SPECTRAL CONTROL for spectral response analysis
- HARMONIC_RESPONSE CONTROL for forced vibration analysis
\(\square\) FOURIER CONTROL for Fourier analysis

\section*{Nonlinear Control}

The NONLINEAR CONTROL data chapter is used to control the solution procedure for nonlinear analyses. For further information regarding the solution of nonlinear problems refer to Nonlinear Analysis, and the LUSAS Theory Manual.

NONLINEAR CONTROL

\section*{Incrementation}

The INCREMENTATION data section specifies how an automatic solution is to proceed. Input only if using an automatic procedure.
\(\square\) Manual load incrementation Manual incrementation may be specified by repetition of the LOAD CASE data chapter after the NONLINEAR CONTROL chapter, hence explicitly defining the required loading parameters. The general form of manual incrementation is therefore:
LOAD CASE
NONLINEAR CONTROL
LOAD CASE
LOAD CASE
LOAD CASE etc.
Where loads are being specified, the total values at each step must be input. In contrast, displacement increments are additive, and hence the incremental change should be specified. It should be noted that, when using manual incrementation, since the incrementation and final levels are defined explicitly, the INCREMENTATION and TERMINATION sections of the NONLINEAR CONTROL data chapter are redundant.
\(\square\) Automatic load incrementation Automatic incrementation for nonlinear problems is controlled via the INCREMENTATION section of the NONLINEAR CONTROL data chapter. In this case, only the initial LOAD CASE is specified and the incrementation is controlled by the INCREMENTATION and TERMINATION sections of the NONLINEAR CONTROL data chapter. The general form of automatic incrementation is therefore:
LOAD CASE
NONLINEAR CONTROL
INCREMENTATION

\section*{TERMINATION}
- When using automatic incrementation, the initial loading components specified in the LOAD CASE data chapter are multiplied by the current load factor. The starting load factor is specified as the parameter slamda in the INCREMENTATION data section.
- Automatic load incrementation with load curves Automatic incrementation for nonlinear problems using load curves is controlled via the INCREMENTATION section of the NONLINEAR CONTROL data chapter. In this case, the loading is defined using load curves which have the loading parameter tlambda specified as the abscissa. Load incrementation is controlled by the INCREMENTATION and TERMINATION sections of the NONLINEAR CONTROL data chapter. Arc-length solutions are not valid. The general form of automatic incrementation is therefore:

LOAD CASE
LOAD CASE
CURVE DEFINITION
CURVE DEFINITION
CURVE ASSIGNMENT
NONLINEAR CONTROL
INCREMENTATION
TERMINATION

INCREMENTATION slamda [dlamdx isurfc itd cstifs dellst delsmx iarclp]
slamda \(\quad\) Starting load factor (default \(=1.0\) for a new LOAD CASE)
This is the load level for the first iteration, of the next load increment. This load level will remain constant for the increment so long as arclength load control is not used (isurfc=1 or 2). It must be nonzero if a new LOAD CASE has been input.

If the INCREMENTATION command is being used to modify parameters for a solution which has just finished slamda may be input as zero or \(D\). In this case slamda is calculated from tlamda + dlamdx, where tlamda is the load level at the end of the last increment in the just finished loading sequence and dlamdx is the maximum change in load level for an increment. slamda may be either positive or negative.
dlamdx The maximum change in the load factor on iteration zero of any load increment.
dlamdx is added to current loading level tlamda at the start of the next increment to set the new load level. It may be either positive or negative for normal loading but it must be positive if using arclength load control.

If the automatic calculation of the load increments size is in use (itd>0), then dlamdx specifies the maximum change in load which can be applied in an increment. If zero is input, no limit will be applied. If a \(D\) is input, the default value of dlamdx = \(\mathrm{ABS}\left(2.0^{*}(\right.\) slamda - tlamda) \()\) is set.

Note. If a nonzero value of dellst is specified in an analysis controlled by the arclength method (isurfc=1 or 2) then:
\(\square\) the maximum incremental arc-length parameter delsmx will be used to limit the step size of subsequent increments, and
\(\square\) slamda will have no effect (i.e. dellst will be used to control the new increment).
isurfc The constant load level or arc-length control parameter (default=0)
If specified as zero, the loading will remain constant during the iteration process (that is, the 'constant load level procedure'). If input as one or two, the loading will vary during the iterations (that is, an 'arc-length' procedure, see Notes on TERMINATION). Two algorithms based on the arc-length method are available in LUSAS:
\(\square\) Crisfield's modified approach
\(\square\) Rheinboldt's arc-length method
itd The number of desired iterations per load increment (default = 4)
When using automatic incrementation, the loading variable (load or arc-length) is varied according to the number of iterations taken to converge on the preceding step. If the number of iterations taken for convergence exceeded the desired number, specified by itd, then the loading variable is decreased; conversely, if the number of iterations taken to converge was less than the desired number, the step length is increased. Hence the rate of change of loading variable is adjusted depending on the degree of nonlinearity present. If zero is input, the load variable will remain constant.
cstifs The current stiffness parameter value at which the solution will switch from a constant load level to an arc-length procedure (default \(=0.4\)). The current stiffness parameter varies between 1.0 (initially) and 0.0 at a horizontal limit point. It is therefore a useful measure of structural collapse. One may wish to start with load control (isurfc=0) and have the program automatically switch to arc-length control as structural collapse is neared. Measuring structural stiffness with the current stiffness parameter, once the current stiffness parameter falls below the threshold value of cstifs the program automatically switches to arc-length control. If zero is input, the parameter is ignored.

Note. itd must be given a positive value to use this facility, and isurfc must equal zero.
dellst The incremental-length value required to restart an analysis under arc-length control. When applying a restart with the structure near to collapse, it is
advisable to use arc-length control (isurfc=1). If the load-deflection response is very flat, it is impractical to restart (as normal) by specifying a load factor, slamda. Instead, it is better to specify an 'arc-length increment', dellst. An appropriate value for dellst can be obtained by looking at output values of the arc length in the iterative \(\log\) or output files, of prior arc-length increments, deltl. If dellst is nonzero this value will be used for the new load increment instead of slamda no matter what value of slamda is specified.
delsmx The maximum value of dellst for subsequent increments (default is calculated as del \(\boldsymbol{s m x}=2 *\) dellst).

If delsmx is nonzero this value will be used to limit the size of subsequent increments instead of dlamdx no matter what value of dlamdx is specified.
\begin{tabular}{ll}
iarclp & \begin{tabular}{l}
arc-length path director \\
set according to number of negative pivots \\
always use positive load \\
always use negative load \\
use previous load
\end{tabular} \\
& \(=0 \quad\) (default) \\
& \(=2\) \\
& \(=3\)
\end{tabular}

With arc-length, the increment of load at the start of a new increment can be either positive or negative. The choice influences the direction of progress along the solution curve. Setting the wrong value can result in returning along the loading path. The default option counts the number of negative pivots found in the factorisation of the the stiffness matrix with an odd number indicating instability leading to a choice of a negative increment of load. The use of the previous load is useful for passing limit points.

\section*{Step Reduction}

The STEP_REDUCTION data section defines how a load increment will be reduced if convergence difficulties occur. This section is only applicable when values have been specified under INCREMENTATION.

\section*{STEP_REDUCTION [mxstrd stpred stpfnl]}
mxstrd The maximum number of times a step reduction can occur on a single increment (default \(=5\)). If input as zero step reduction will be suppressed.
stpred The factor used to reduce the load increment on a step reduction (default = 0.5).
stpfnl The factor used to increase the original load increment if mxstrd step reductions have failed to achieve a solution (default \(=2.0\)).
If mxstrd step reductions have failed to lead to convergence then a final attempt is made to achieve a solution by increasing the original increment using stpfnl. This procedure has the potential to 'step over' a difficult point in an analysis (e.g. a bifurcation point) so that the solution can continue.

\section*{Iterations}

ITERATIONS specifies how the iteration strategy is to proceed.

\section*{ITERATIONS nit [nalps toline ampmx etmxa etmna isilcp lsrsid]}

\section*{itype}
nit \(\quad\) The maximum number of iterations for each load increment (default = 12).
nalps The maximum number of line searches to be carried out on each iteration (default = 2)
toline \(\quad\) The line search tolerance factor (default \(=0.75\)).
ampmx \(\quad\) The maximum amplification factor in a line search \((\) default \(=5.0)\).
etmxa The maximum step length in a line search (default \(=25.0\)).
etmna The minimum step length in a line search (default \(=0.0\)).
isilcp Separate iterative loop for contact procedure
No separate iterative loop for contact \(\quad=0\) (default)
Separate iterative loop for contact \(\quad=1\)
lsrsid Line searches using residuals
Do not use residuals \(=0\) (default)
Minimise energy \(\quad=1\)
Minimise maximum residual - bisection method \(=2\)
Minimise sum of absolute residuals - bisection meth. \(=3\)
Minimise residual root mean square norm -b.meth. \(=4\)
Minimise energy with residuals - bisection method \(=100\)
Minimise maximum residual - interpolation method \(=52\)
Minimise sum of absolute residuals - interpol. meth. \(=53\)
Minimise residual root mean square norm -i.meth. \(=54\)
Minimise energy with residuals - interpolat. method \(=150\)
epsln is a normalised value, that may be calculated from energy or one of the residual measures, and which takes a value of 1.0 at the current position and is recalculated at the updated position following the iterative update. If the value falls the solution is converging, conversely if it increases the solution is diverging. Line searches are carried out if the absolute value of epsln on the nonlinear iterative log exceeds the value toline. The aim is to make epsln reasonably small on each iteration to speed convergence and prevent divergence.

Line searches with residuals include the nodal out-of-balance forces (residuals) in the minimisation. The bisection method looks for the residual minimum by taking the midpoint between two bracketing points. The interpolation method evaluates a point at which the gradient of the residual function is zero. The following values are recommended with the residuals nalps \(>=3\), toline \(=0.8\), ampmx \(=0\) (not used), etmxa \(=2.0\), etmna \(=0.1\).

Line searches using residuals do not include the variation of the load parameter lambda and so may not be as effective as the specialist line search algorithm which includes it. To use this algorithm set lsrsid=0.
itype The type of iteration to be carried out for each iteration (default \(=N R\))
Each iteration is specified on a separate line. There must be nit +1 iteration types specified to include iteration zero. The type may be NR for Newton-Raphson or MNR for modified Newton-Raphson iterations. (If not included, the default is NR for all iterations). Note that FIRST, INC, INC can be used to generate this input.

For example, to apply 'standard modified NR' with the calculation of the stiffness matrix at the beginning of each increment the first iteration must be specified as NR.

\section*{Notes}
\(\square\) If arc-length is to be used, it is advisable to ensure that the stiffness is calculated at least at the beginning of the increment.
- To specify the separate contact iterative loop procedure the variable isilcp on the ITERATIONS data chapter should be set to one. This will invoke the procedure for relevant material models. Since the procedure is designed to deal with contact and nonlinear material interaction it only applies to those elements that can be used with slidelines. Other elements not attached to the slideline are dealt with in the normal manner.

\section*{Bracketing}

BRACKETING can be used to locate a limit or bifurcation point during a geometrically nonlinear analysis (omit this command if bracketing is not required). When using the BRACKETING command, NONLINEAR CONTROL should be followed by EIGENVALUE CONTROL STIFFNESS. After the critical point in the nonlinear analysis has been found, the eigenvalue analysis is invoked. The scalar product of the lowest eigenmode extracted from the current tangent stiffness matrix and the applied load vector will indicate whether a limit or bifurcation point has been found. It is only possible to bracket the first critical point encountered in an analysis.

\section*{BRACKETING [ibrac irevsb brtol]}
ibrac Method used to locate limit/bifurcation point:
1 bi-section (default)
2 interpolation
3 Riks semi-direct approach
irevsb Reversible (elastic) or irreversible (plastic or path dependent) analysis: 0 reversible (default) 1 irreversible
brtol Bracketing tolerance (default \(=0.01\)).
Depending on the type of arc-length solution selected, the bracketing tolerance can depend upon:
\(\square\) the ratio of the current and initial minimum pivots and the ratio of the total and incremental load factors, or
\(\square\) the ratio of the arc-length prior to bracketing and the subsequent increment in arc-length
The value specified for brtol should be small enough to accurately locate the critical point; too tight a tolerance will eventually lead to ill conditioning of the tangent stiffness. Trial solutions using various values for brtol will inevitably be required to obtain a solution of sufficient accuracy.

\section*{Branching}

BRANCHING can be used to 'branch switch' onto a secondary path after a bifurcation point has been located using the BRACKETING command (omit this command if branching is not required). This procedure forces the analysis to leave the stable equilibrium path and follow an unstable secondary path. Two options exist for guiding the solution on to the secondary path:
- Eigenvalue injection
- Artificial force with Rheinboldt's arc-length

This facility should only be used by restarting a successfully completed bracketing analysis using the RESTART data chapter.

BRANCHING [ibrnch dellst]
ibrnch Method used to branch on to secondary path: 1 eigenmode injection; used with isurfc=1 (default) 2 artificial force and Rheinboldt's arc-length; used with (isurfc=2)
dellst Starting arc-length scaling factor (default=0.01)
If the BRANCHING command is specified the appropriate value of isurfc, the type of solution algorithm to be adopted, will be set automatically to suit the branching method selected.

Note. Values assigned for isurfc and dellst under the BRANCHING command will override those specified using INCREMENTATION. Any previous value specified for dellst will also be overwritten with the default value if the dellst data location in BRANCHING is left blank.

\section*{Convergence}

The CONVERGENCE data section specifies at which stage the iterative corrections can be assumed to have restored the structure to equilibrium. It is compulsory on the first occurrence of NONLINEAR CONTROL. The solution has converged if the values of all the following criteria computed after an iteration are less than those specified. If a parameter is input as zero, the corresponding criteria is ignored.

All analyses, except hygro-thermal:

\section*{CONVERGENCE rmaxal [rnoral dlnorm rlnorm wlnorm dtnrml plnorm ptnrml]}
rmaxal The limit for the maximum absolute value of any residual (mar) (default = a large number).
rnoral The limit for the square root of the mean value of the squares of all residuals (rms) (default = a large number).
dlnorm The limit for the sum of the squares of the iterative displacements as a percentage of the sum of the squares of the total displacements (dpnrm). Only translational degrees of freedom are considered by default but all degrees of freedom can be included by specifying Option 187. (default \(=\) 1.0)
rlnorm The limit for the sum of the squares of all residual forces as a percentage of the sum of the squares of all external forces, including reactions (rdnrm). Only translational degrees of freedom are considered but all degrees of freedom can be included by specifying Option 187. \((\) default \(=\) 0.1)
wlnorm The limit for the work done by the residuals acting through the iterative displacements as a percentage of the work done by the loads on iteration zero of the increment (wdnrm) (default = a large number).
dtnrml The limit for the sum of the squares of the iterative displacements as a percentage of the sum of the squares of the incremental displacements (dtnrm). Only translational degrees of freedom are considered by default but all degrees of freedom can be included by specifying Option 187. (default = 1.0)
plnorm The limit for the sum of the squares of the iterative pressures as a percentage of the sum of the squares of the total pressures (pnrm). It applies only when pore pressure degrees of freedom (type 18) exist in the model \((\) default \(=1.0)\).
ptnrml The limit for the sum of the squares of the iterative pressures as a percentage of the sum of the squares of the incremental pressures (ptnrm). It applies only when pore pressure degrees of freedom (type 18) exist in the model \((\) default \(=1.0)\).

Hygro-thermal analyses:

\section*{CONVERGENCE tnorm [pnorm]}
tnorm Percentage ratio of the Euclidean norm of the temperature increment to the Euclidean norm of the current temperature.
pnorm Percentage ratio of the Euclidean norm of the capillary pressure increment to the Euclidean norm of the current capillary pressure. If omitted, it is assumed to be equal to tnorm.

\section*{Output}

The OUTPUT data section specifies how often output is required. Insert zero to ignore a particular output option. On the last increment a PLOT FILE will automatically be written, overriding any specification in the OUTPUT command. This is also the case for output to the LUSAS output file and the LUSAS \(\log\) file.

OUTPUT nitout [incout incplt incrst nrstsv inclog inchis]
nitout The iteration interval for output of results (default \(=0\)).
incout The increment interval for output of results (default \(=1\)).
incplt The increment interval for writing of plotting data to the plot file (default \(=\) 1). PLOT FILE does not need to be specified.
incrst The increment interval for writing of problem data to the restart file \((\) default \(=0)\). RESTART WRITE does not need to be specified.
nrstsv The maximum number of restart dumps to be saved (default \(=0\)). (to save the latest 2 dumps throughout the problem, set nrstsv \(=2\)).
inclog The increment interval for writing the iterative \(\log\) (default=1).
inchis The increment interval for writing the selective results history file. (default=1 and will only be invoked if selective results output is specified). In problems where the restart facility is used, a separate history file is created for each analysis.

\section*{Incremental Couple Read}

The INCREMENTAL COUPLE READ data section controls the frequency of reading from the coupled datafile for thermo-mechanically coupled analyses (omit command if not performing a coupled analysis). See Thermo-Mechanically Coupled Analyses for more details.

\section*{INCREMENTAL COUPLE READ [nffrd dtfrd niterr]}
nfrrd \(\quad\) The number of steps between data reads (default \(=1\))
dtfrd The increment of time between data reads (default \(=0\))
niterr The number of iterations between data reads \((\) default \(=0)\)

\section*{Incremental Couple Write}

The INCREMENTAL COUPLE WRITE data section controls the frequency of writing to the coupled datafile for thermo-mechanically coupled analyses (omit command if not performing a coupled analysis). See Thermo-Mechanically Coupled Analyses for more details.

INCREMENTAL COUPLE WRITE [nfrwt dtfwrt ndsave niterw]
nfrwt The number of steps between writes (default =1)
dtfwrt The time increment between writes (default \(=0\))
ndsave The number of datasets retained on disk. It is recommended that at least two datasets are saved. (default \(=\) all \()\)
niterw The number of iterations between writes \((\) default \(=0)\)

\section*{Termination}

The TERMINATION data section specifies when an automatic incrementation stage is to terminate. It is compulsory if INCREMENTATION has been specified. If more than one termination criterion has been specified, termination will occur following the first criterion to be satisfied. Insert zero to ignore a particular option.

TERMINATION tlamdx [maxinc maxnod mxvar rmxdsp dlterm icktrm]
tlamdx The maximum total load factor to be applied (default \(=0\))
maxinc The maximum number of further increments to be applied from the time of specification of this NONLINEAR CONTROL (default \(=1\)).
mxnod The node number of displacement to be limited (default \(=0\)).
mxvar The variable number of displacement to be limited at node mxnod (default \(=0\)).
rmxdsp The maximum displacement of node mxnod variable mxvar (default = \(0)\).
dlterm The minimum value of dlamda on iteration 0 in an arc-length solution below which the solution terminates (default \(=1 \mathrm{E}-15\)). See Notes.
icktrm Check that maximum load factor tlamdx is reached at the end of the stage; stop if not and another stage is to follow.
0 - do not stop (default)
1 - stop
When automatic incrementation has been specified the stage will terminate exactly at the specified value of tlamdx for analyses that are controlled by non arc-length automatic incrementation (i.e. isurfc \(=0\)).

\section*{Notes}
1. The INCREMENTATION and TERMINATION data sections are only used in conjunction with automatic load incrementation.
2. The INCREMENTAL COUPLE READ and INCREMENTAL COUPLE WRITE data sections are only used in thermo-mechanically coupled analyses.
3. Automatic load step reduction will not take place in coupled analyses.
4. Throughout NONLINEAR CONTROL, where stated, you may input a \(D\) for a particular input variable to obtain the default value.
5. When performing a nonlinear transient, dynamic or creep analysis, the NONLINEAR CONTROL chapter must be used to specify ITERATION and CONVERGENCE only. Parameters controlling the number of problem steps, incrementation of loading etc. must be set using the commands in the TRANSIENT, DYNAMIC or VISCOUS CONTROL chapters.
6. When carrying out a nonlinear analysis the plot and restart dumps should be requested by specifying the appropriate parameters in the OUTPUT data section. However, a PLOT or a RESTART command may appear after this data chapter.
7. The nonlinear solution may be continued after the solution has failed to converge at a particular increment by setting Option 16.
8. TERMINATION must be used in conjunction with load curves to set the desired number of load increments.
9. When using an arc-length procedure, Option 164 forces the arc-length solution to be guided by the current stiffness parameter, cstifs, instead of using the minimum pivot, pivmn. If a bifurcation point is encountered, the arc-length procedure could cause the solution to oscillate about this point with no further progress being made. Option 164 allows the solution to continue on the fundamental path and overcomes any such oscillations if a bifurcation point is encountered. Note that Option 164 is not valid when using the BRACKETING command.
10. BRANCHING and BRACKETING must not be specified if they are not required in an analysis.
11. STEP_REDUCTION is only applicable if values have been specified under the INCREMENTATION data section.
12. Specifying Option 62 forces the solution to continue if more than two pivots are encountered during an analysis.
13. Option 131 is switched off by default for a nonlinear analysis, but this may be set to on in the data file if required. If Option 131 is set to on a warning message is issued and the analysis will continue with the option switched on.
14. A value of dlterm \(\times 10^{9}\) is also used to terminate a standard auto-incrementation solution when arc length is not being used.
15. When running an arc-length solution, DLMDA (and hence TLMDA) is a variable, DLMDA is in fact one of the roots of the quadratic arc-length constraint equation. If the termination of an arc-length solution is controlled with tlamdx, then TLMDA will be artificially constrained and the arc-length algorithm will no longer function as intended. The consequences of this are that more increments and iterations may be required, and line searches are suppressed as these also vary TLMDA in an arclength solution; it is therefore possible that convergence difficulties may be experienced. The use of tlamdx to terminate an arc-length solution is not recommended. Note also that the use of cstifs can automatically trigger a subsequent arc-length solution.
16. The following nonlinear parameters are output:
\(\begin{array}{ll}\text { MAR } & \text { The maximum absolute residual } \\ \text { RMS } & \text { The root mean square of the residuals } \\ \text { DPNRM } & \text { The displacement norm as a percentage of the total displacements }\end{array}\)
\begin{tabular}{ll}
RDNRM & The residual force norm as a percentage of the total reactions \\
WDNRM & \begin{tabular}{l}
The work done by the residual forces as a percentage of the work done by \\
the loads on iteration zero
\end{tabular} \\
DTNRM & \begin{tabular}{l}
The displacement norm as a percentage of the total displacements for the \\
increment
\end{tabular} \\
EPSLN & The line search tolerance parameter
\end{tabular}

\section*{Slideline}

The augmented Lagrangian method with slidelines employs both penalty parameters (contact stiffnesses) and Lagrangian multipliers to reduce contact penetrations. At convergence, the method checks the penetrations against a tolerance. If any are outside the tolerance the Lagrangian multipliers, and if the penalty update procedure is specified, the contact stiffnesses are updated at the relevant nodes and the solution is rerun.

The progress of the solution is controlled by the SLIDELINE data section, which places a limit on the number of Lagrangian multiplier and penalty parameter updates.

\section*{SLIDELINE NAGLMX NPUPMX}

Naglmx Maximum number of augmented Lagrangian updates per increment (default \(=2\)).

\section*{Npupmx Maximum number of penalty parameter (contact stiffness) updates per increment \((\) default \(=1)\).}

\section*{Application of Loads with Nonlinear Control}

The stress state is always 'remembered' on iteration zero after a change of control. In a nonlinear analysis the stresses will be updated based on the external loads until convergence is achieved. If the load is reduced to zero in a subsequent loadcase, then the resulting stresses may also reduce to zero while any plastic strains will remain.

The type of loading is important when determining whether a load level from one increment is "remembered" or " forgotten" in subsequent increments when using manual or automatic load incrementation (see also General Loading Rules). Some loading types are total in nature whilst other are incremental. All of the loading types in LUSAS are total with the exception of the Incremental Prescribed Displacement loading type (PDSP)
\(\square\) Total
These apply only the specified loading magnitude to the structure. This means that any previously specified loading at a node or element is overwritten by the current specification of load.
Consider an automatic, fixed load increment in which a concentrated load magnitude of 5.0 is to be incremented from a reference load factor of 0.2 over 3 increments. The initial load applied will be calculated according to \(0.2 * 5.0\). The subsequent two load increments will be calculated as \(0.4 * 5.0\) and \(0.6 * 5.0\)

\section*{- Incremental}

The specified loading magnitude is applied in addition to the load already applied to the structure.
Consider the example above but with incremental prescribed displacement loading. The initial load applied will be calculated according to \(0.2 * 5.0\). The subsequent two load increments will be calculated incrementally as (previous load + next increment of load), i.e.

2nd Increment: \(0.2 * 5.0+(0.4-0.2) * 5.0\)
3rd Increment: \(0.4 * 5.0+(0.6-0.4) * 5.0\)
The following examples illustrate different orders in the command formats for NONLINEAR CONTROL. These examples are not affected by the presence of:
- Material nonlinearity
\(\square\) Geometric nonlinearity
\(\square\) Arc-length procedures
\(\square\) Line search procedures
- Dynamic analyses
\(\square\) Static analyses

\section*{Chapter 3 LUSAS Data Input}

Note. Automatic nonlinear control is not applicable for use with a transient dynamic analysis.

\section*{Application Of Force Loading}

Force loading is any loading EXCEPT incremental or total prescribed displacement loading.

\section*{Example. Automatic Incrementation Followed by Automatic}
\begin{tabular}{lll}
CL & & \\
1 & 0 & 0 \\
NONLINEAR CONTROL & & \\
INCREMENTATION & 0.5 & \\
TERMINATION & 0 & 3
\end{tabular}

Giving a load at the end of this control of 15 .
CL
100
20.0
NONLINEAR CONTROL
INCREMENTATION 1.0

TERMINATION 0
Giving a load at the end of this control of 60 .
The load is applied in steps \(5,10,15,20,40,60\). In this sense it could be said that the previous load is 'forgotten'.

\section*{Example. Manual Incrementation Followed by Manual}
```

CL
10}
10.0
NONLINEAR CONTROL
ITERATION 12
CONVERGENCE 0 0 D D
Giving a load at the end of this control of 10.
CL
1 0 0 20.0

```
```

NONLINEAR CONTROL
ITERATION 12
CONVERGENCE 0 0 D D

```

Giving a load at the end of this control of 20.

\section*{Example. Automatic Incrementation Followed by Manual}
```

CL
1 0
10.0
NONLINEAR CONTROL
INCREMENTATION 0.5
TERMINATION 0 3

```

Giving a load at the end of this control of 15
CL
100
10.0

NONLINEAR CONTROL

ITERATION CONVERGENCE 0 D D D

Giving a load at the end of this control of 10 .

\section*{Example. Manual Incrementation Followed by Automatic}

This is the only case where a load is remembered. The application of a manual increment will remain throughout the analysis until any further manual increment. Additional load is applied from the current automatic incrementation.

CL
\(\begin{array}{llll}10 & 0 & 10.0\end{array}\)
NONLINEAR CONTROL
ITERATION 12
CONVERGENCE 0 D D D
Giving a load at the end of this control of 10 .
CL
100
2.0

NONLINEAR CONTROL

\section*{Chapter 3 LUSAS Data Input}
\begin{tabular}{lll}
INCREMENTATION & 1.0 & \\
TERMINATION & 0 & 3
\end{tabular}

Giving a load at the end of this control of \(16(10+6)\).

\section*{Dead Load and Live Load}

A typical nonlinear analysis would require the application of a dead load, typically self-weight, as a constant load for the analysis, together with the live load which is gradually applied over a number of increments. The following examples show this can be achieved.

\section*{Example 1. Dead Load and Incremented Live Load}

Using the characteristics of an automatic nonlinear loading following a manual load application:
```

CL
100
10.0
NONLINEAR CONTROL
ITERATION 12
CONVERGENCE 0 D D D

```

Which, at the end of this control, applies a dead load of 10 .
```

CL
100
2.0
NONLINEAR CONTROL
INCREMENTATION 1.0
TERMINATION 0

```

Which, at the end of the second control, applies a dead load of 10 and a live load of 6 giving a total load of 16 .

Manual Load Application
CL
100
10.0
NONLINEAR CONTROL

ITERATION 12
CONVERGENCE \(0 \quad 0 \quad\) D D
```

Which, at the end of this control, applies a dead load
of 10 .
CL
100
10.0
100
2.0
CL
100
10.0
100
4.0
CL
100
10.0
100
6.0

```

Which, at the end of the second control, applies a dead load of 10 and a live load of 6 giving a total of 16 .

\section*{Using Load Curves}

The load curve facility allows two load variations to be applied. One constant and one variable as required.
```

CL
1 0 0 10.0
CL
1 0}00\quad2.
CURVE DEFINITION 1 COSINE
1.0 0.0
CURVE DEFINITION 2 USER
1 0.0
4.0
CURVE ASSIGNMENT
1.0}
2 1.0 2
NONLINEAR CONTROL
TERMINATION O 4

```

Which applies a constant load level of 10 and a varying live load of 6 giving a total load of 16 .

\section*{Follower Forces}

In general, follower forces are available in LUSAS when the loading type is either UDL (Uniformly Distributed Load) or FLD (Face Load) and Eulerian geometric nonlinearity option (Option 167) is selected. For certain elements additional follower loading is also available using Option 36 (see the LUSAS Element Reference Manual).

The UDL load on 3D space mebrane elements with co-rotational formulation is a follower load.

Explicit dynamics elements will also give follower forces when using the FLD load facility.

\section*{General Loading Rules}
1. In switching from manual to automatic control, any loading input under the manual control is remembered and held constant while the automatic procedure is operating
2. In switching from automatic back to manual control, any loading accumulated under automatic control is forgotten and only the manual load is applied. To include the final load level from the automatic load increments, the load datasets from which it comprises must be assigned to this manual load case
3. In switching from manual to manual control, any loading accumulated under previous manual controls is forgotten and only the current manual load is applied.
4. In switching from automatic to automatic control, any loading accumulated under the previous automatic control is forgotten and only the current automatic load is applied. To include the final load level from the previous automatic load increment, an additional loadcase must be inserted prior to the next automatic increment and the load datasets from the previous automatic increment assigned to this manual load case.
5. If several NONLINEAR CONTROL chapters are defined in a sequence without re-specifying a LOAD CASE chapter, then the load specified under the last LOAD CASE will be used to compute the applied loading in each subsequent stage of the analysis.
6. If incremental prescribed displacements are being used then, in any switching from one type of control to another, the effect of prescribed displacements will be remembered and will not need to be input again. This is not the case for total prescribed displacements which are total loads
7. The stress and strain state will always be remembered whatever loading is applied on iteration zero after the change of control. In a nonlinear analysis the stresses/strains will be updated based on the external loads until convergence is achieved. If the load is reduced to zero in a subsequent loadcase, then the resulting stresses may also reduce to zero while any plastic strains will remain. Additionally, if the same load magnitude is maintained across a change of control, convergence will be achieved in one iteration because the stress state and the equilibrium internal forces do not change.

\section*{Displacement Reset}

The evaluation of an initial stress state can introduce unwanted displacements. These can be removed by using the RESET DISPLACEMENT command which resets the displacements to zero so recovering the original geometry. Elastic strains are zeroed whilst the stresses are preserved by converting them to initial stresses which are in equilibrium with themselves and any loads. Additionally, any inelastic strains and material state variables are also kept so that the inelastic loading history is maintained.

RESET DISPLACEMENT [idrset]
idrset displacement reset flag (see notes below)

\section*{Notes}
1. The command is designed for use on linear geometry assuming infinitesimal displacements.
2. Nonlinear geometry can be switched on after a displacement reset using the NONLINEAR GEOMETRY command.
3. If the use of nonlinear geometry is unavoidable the parameter idrset determines which iterative procedure to use to return to the initial geometry. A value of 0 results in a displacement reset on each iteration until the zero state is reached. A value of 1 means that the displacement reset is applied on the first iteration and not on any subsequent iterations which are used to restore equilibrium. If this second option is selected further RESET DISPLACEMENT commands may be used to get closer to the zero state.
4. It can be used at any point in the analysis and will result in the recovery of the initial geometry and the locking-in of the equilibrating stresses.
5. It may be used more than once.
6. It is valid for all elements which use the initial stress loading type.
7. This command replaces the GEOSTATIC STEP command.

\section*{Dynamic Control}

The DYNAMIC CONTROL data chapter is used to control the solution procedure for transient dynamic analyses. For further information regarding the solution of transient dynamics problems refer to Dynamic Analysis, and the LUSAS Theory Manual.

DYNAMIC CONTROL

\section*{Incrementation}

The INCREMENTATION data section controls the applied time step interval.

\section*{INCREMENTATION dt [tsfac dtincf inctyp dtmin dtmax]}
\begin{tabular}{ll}
dt & \begin{tabular}{l}
The initial time step. \\
tsfac \\
The scale factor for computing the time step for explicit dynamic analyses \\
(default = 0.9 for 3D and 2/3 for 2D)
\end{tabular} \\
dtincf & \begin{tabular}{l}
The time step increment restriction factor for dynamic analyses (default = \\
1.0 for explicit and implicit analysis). Note that stability conditions must \\
be taken into account when setting dtincf. The default value may lead \\
to instability in some cases.
\end{tabular} \\
inctyp & \begin{tabular}{l}
Set to 1 for a driven coupled analysis. This means that the time step for \\
this analysis is calculated by the thermal analysis. Note that a driven \\
coupled analysis is not permitted when coupling iteratively. (default = 0).
\end{tabular} \\
dtmin \(\quad\)\begin{tabular}{l}
Minimum time step for explicit dynamic analyses (default = 0.0). Note that \\
stability conditions must be taken into account when setting dtmin since
\end{tabular} \\
dtmax \(\quad\)\begin{tabular}{l}
solution instability may occur. \\
Maximum time step for explicit dynamic analyses (default = no limit)
\end{tabular}
\end{tabular}

\section*{Constants}

The CONSTANTS data section specifies the time integration factors to be used. If not specified, the default or previous user defined data are assumed. If explicit dynamic elements have been specified then the default constants will be those for an explicit dynamic analysis and this command may be omitted.

\section*{Implicit dynamics (Hilber-Hughes integration scheme)}

CONSTANTS alpha [beta gamma]
alpha Integration factor \((\) default \(=0)\).
beta Integration factor (default \(=1 / 4)\).
gamma Integration factor (default \(=1 / 2\)).
Note. For an unconditionally stable, second order accurate scheme, alpha must lie between the limits:
\[
\text { - }-\frac{1}{3} \leq \mathrm{a} \leq 0
\]
and beta and gamma are defined as:
\[
\beta=\frac{(1-\alpha)^{2}}{4}, \quad \gamma=\frac{1-2 \alpha}{2}
\]

If beta and gamma are not specified they will be computed automatically using the above equations. Setting alpha to zero reduces the algorithm to the Newmark method (this is the default).

\section*{Explicit dynamics}
```

alpha $\quad$ Integration factor $=0$
beta Integration factor $=0$
gamma $\quad$ Integration factor $=1 / 2$

```

Note. For an explicit dynamic analysis the above integration factors are mandatory and the CONSTANTS data section may be omitted in this case. Only explicit dynamics elements may be used with the explicit dynamics constants.

\section*{Incremental Couple Read}

The INCREMENTAL COUPLE READ data section controls the frequency of reading from a coupled datafile for a coupled analysis (omit if not performing a coupled analysis). See Coupled Analysis for more information.

\section*{INCREMENTAL COUPLE READ [nffrd dtfrd niterr]}
nfrrd \(\quad\) The number of steps between data reads (default \(=1\))
dtfrd The increment of time between data reads (default \(=0\))
niterr \(\quad\) The number of iterations between data reads \((\) default \(=0)\)

\section*{Incremental Couple Write}

The INCREMENTAL COUPLE WRITE data section controls the frequency of writing a coupled datafile for a coupled analysis (omit if not performing a coupled analysis). See Coupled Analysis for more information.

INCREMENTAL COUPLE WRITE [nfrwt dtfwrt ndsave niterw]
nfrwt \(\quad\) The number of steps between writes (default \(=1\))
dtfwrt The time increment between writes (default \(=0\))
ndsave The number of datasets retained on disk (default = all)
niterw The number of iterations between writes (default \(=0\))

\section*{Output}

The OUTPUT data section specifies how often output is required. If not specified, the default or previously defined user data are assumed. On the last increment a PLOT FILE will automatically be written, overriding any specification in the OUTPUT command. This is also the case for output to the LUSAS output file and the LUSAS log file.

OUTPUT incout [incplt incrst nrstsv inclog inchis]
incout Increment interval for output of results (default = 1)
incplt Increment interval for writing of plotting data to the plot file \((\) default \(=1)\). PLOT FILE does not need to be specified.
incrst The increment interval for writing of problem data to the restart file (default \(=0\)). RESTART WRITE does not need to be specified.
nrstsv The maximum number of restart dumps to be saved (default \(=0\)). (to save the latest 2 dumps throughout the problem, set nrstsv \(=2\))
inclog The increment interval for writing the time step \(\log\) (default=1).
inchis The increment interval for writing the selective results history file. (default \(=1\) and will only be invoked if selective results output is specified). In problems where the restart facility is used, a separate history file is created for each analysis.

\section*{Termination}

The TERMINATION data section specifies when the stage terminates. If not specified, the default or previously defined user data are assumed.

TERMINATION maxinc [ttime dtterm maxnod mxvar rmxdsp tstage icktrm]
maxinc The maximum number of time steps to be applied (default \(=1\)).
ttime \(\quad\) The total response time at which the analysis should terminate (default \(=\mathrm{a}\) large number).
dtterm The minimum time step below which the analysis should terminate (default \(=0.0\))
mxnod The node number of displacement to be limited (default \(=0\)).
mxvar The variable number of displacement to be limited at node mxnod (default \(=0\)).
rmxdsp The maximum displacement of node mxnod variable mxvar (default = \(0)\).
tstage The time duration of the stage (default=0).
icktrm Check that termination time ttime or tstage is reached at the end of the stage; stop if not and another stage is to follow.
0 - do not stop (default)
1 - stop

\section*{Notes}
1. To start a dynamic analysis, a knowledge of the initial conditions is required. For example, initial displacements may be computed from a static pre-analysis and initial velocities calculated. These velocities can then be specified by the user in the dynamic analysis using the VELOCITY data chapter.
2. For an analysis using explicit dynamic elements only \(d t\) is taken as the smaller of the user input and the calculated values (dt may be entered, in this instance, as zero). Further steps are automatically adjusted according to mesh deformation.
3. dtterm will terminate an analysis if the step size is reduced below this value.
4. If inctyp is set to 1 for a driven coupled analysis, \(d t\) is re-interpreted as the maximum step size permitted, and the new step size is calculated to be as close to, but not exceeding \(d t\), as possible. The variable step size is always selected to ensure that the next data transfer takes place at the next dataset.
5. If both maxinc and ttime or tstage are specified, termination occurs with the minimum response time. However, when icktrm is set to stop the solution when the termination time for the stage is not reached, then a non-zero maxinc sets a limit on the number of steps to take before abandoning the solution.
6. If the problem is nonlinear, the convergence and the iteration details must be set by the NONLINEAR CONTROL commands.
7. Automatic time stepping is mandatory for explicit dynamic analyses.
8. The INCREMENTAL COUPLE READ and INCREMENTAL COUPLE WRITE data sections should be omitted if a thermo-mechanically coupled analysis is not being performed.
9. Automatic load step reduction will not take place in a coupled analysis.
10. When carrying out a DYNAMIC analysis the plot and restart dumps should be requested by specifying the appropriate parameters in the OUTPUT data section. However, a PLOT or a RESTART command may appear after this data chapter.
11. For large explicit dynamic analyses the output files may be enormous if default values are chosen for output.
12. Throughout DYNAMIC CONTROL, where stated, you can input a D for a particular input variable to obtain the default value.
13. If no output or plot dump is requested, the stress computation is automatically bypassed during a linear dynamic analysis.

\section*{Example. Static Starting Conditions for Dynamic Analyses}

In the following examples, non-essential data has been omitted.
Linear for the simple case of a constant dead load (simulated using constant body force loading), followed by a constant live load (using the concentrated loading type):
```

SUPPORT NODE
LOAD CASE
CL
ELEMENT OUTPUT
100
LOAD CASE
CL
DYNAMIC CONTROL
END

```

For the more complex case of a constant dead load followed by a varying live load:

\section*{Chapter 3 LUSAS Data Input}
```

SUPPORT NODES
LOAD CASE
CBF
ELEMENT OUTPUT
1000
LOAD CASE
CBF
LOAD CASE
CL
CURVE DEFINITION 1 USER
CURVE DEFINITION 2 USER
CURVE ASSIGNMENT
1 1 1
2 1 2
DYNAMIC CONTROL HILBER
END

```

Nonlinear Similarly, a constant dead load (simulated using constant body force loading), followed by a constant live load (using the concentrated loading type):
```

SUPPORT NODE

```
LOAD CASE
 CL
ELEMENT OUTPUT
 1000
NONLINEAR CONTROL
LOAD CASE
 CL
DYNAMIC CONTROL
END

For a varying live load using load curves
```

SUPPORT NODES

```
```

LOAD CASE
CBF
LOAD CASE
PDSP 2
CURVE DEFINITION 1 COSINE
CURVE DEFINITION 2 COSINE
CURVE ASSIGNMENT
1 1 1
ELEMENT OUTPUT
1 0 0 0
NONLINEAR CONTROL
CURVE ASSIGNMENT
1 1 1
2 1 2
DYNAMIC CONTROL HILBER
END

```

\section*{Dynamic Integration Schemes}
\begin{tabular}{lllll}
Integration Scheme & alpha & & beta & gamma \\
\hline Central Difference & - & 0 & \(1 / 2\) \\
Hilber-Hughes-Taylor & 0 & \(1 / 4\) & \(1 / 2\)
\end{tabular}

The table shows the integration schemes available and the default integration parameters for each. The parameter values listed are set by default where the Central Difference scheme applies for explicit dynamic elements. The parameters are defined under the CONSTANTS data section of DYNAMIC CONTROL.

The constant alpha is used to control the amount of numerical damping within the Hilber-Hughes-Taylor solution scheme; it is not used in the explicit Central Difference scheme.

\section*{Selecting the Time Step}

The time step for dynamic analysis is specified using the INCREMENTATION section of the DYNAMIC CONTROL data chapter. The selection of the time step is governed by stability and accuracy. When using explicit algorithms, stability requires that the time step is less than or equal to a critical value where:
\[
\square \quad \mathrm{t}_{\mathrm{cr}}=\frac{1}{\pi} \mathrm{~T}_{\max }=\frac{2}{\omega_{\max }}
\]
where wmax and \(T_{\max }\) are the circular frequency and period of the highest mode of vibration in the uncoupled system.

\section*{Transient Control}

The TRANSIENT CONTROL data chapter is used to control the solution procedure for transient field analyses. LUSAS is speciialised to handle thermal and groundwater flows. For further information regarding the solution of transient field problems refer to Transient and Dynamic Analyses, and the LUSAS Theory Manual.

\section*{TRANSIENT CONTROL}

\section*{Incrementation}

The INCREMENTATION data section controls the time step value for a transient field analysis.
```

INCREMENTATION dt [inctyp dtincf dtmin dtmax dprsmx dprsmp dsat ]

```
dt Initial time step value.
inctyp Set to 1 for a driven coupled analysis. This means that the time step for this analysis is calculated by the structural analysis. Note that a driven coupled analysis is not permitted when coupling iteratively (default \(=0\)).
dtincf The time step increment factor (default=1 for constant time step)
dtmin The minimum permissible time step size (default=dt)
dtmax The maximum permissible time step size (default=dt)
dprsmx Target change in pore water pressure during a step (default=0).
dprsmp Target change in excess pore water pressure calculated as a percentage of the maximum excess pore water pressure (default \(=0\)).
dsat Target change in saturation during a step (default=0).
dprsmx, dprsmp and dsat target the maximum absolute change in porewater pressure or saturation in an increment. Using knowledge of the change in pressure/saturation in the current time step, the next time step is increased or decreased to hit the target value. dprsmp uses a value set from excess porewater pressure where the excess porewater pressure is measured from the last steady state flow solution prior to a consolidation type of loading or unloading. If the fluid flow boundary conditions are changed then the steady state is in flux and the excess porewater pressures will not be relevant to the actual conditions.

\section*{Constants}

The CONSTANTS data section is used to specify the time integration factor. If not specified, the default or previously defined user data are assumed. See ThermoMechanically Coupled Analyses for more details.

CONSTANTS beta
beta The time integration factor
\(=1 / 2\) for the Crank-Nicholson scheme
\(=1\) for the backward difference scheme.
(default \(=2 / 3\) for linear analysis).
(default \(=1\) for nonlinear analysis, this value may not be overwritten).

\section*{Incremental Couple Read}

The INCREMENTAL COUPLE READ data section is used to control reading from the coupled datafile for thermo-mechanically coupled analyses (omit command if not performing a coupled analysis). See Thermo-Mechanically Coupled Analyses for more details.

INCREMENTAL COUPLE READ [nffrd dtfrd niterr]
nffrd The number of steps between data reads (default \(=1\))
dtfrd The increment of time between data reads (default \(=0\))
niterr \(\quad\) The number of iterations between data reads \((\) default \(=0)\)

\section*{Incremental Couple Write}

The INCREMENTAL COUPLE WRITE data section is used to control writing to the coupled datafile for thermo-mechanically coupled analyses (omit command if not performing a coupled analysis). See Thermo-Mechanically Coupled Analyses for more details.

INCREMENTAL COUPLE WRITE [nfrwt dtfwrt ndsave niterw]
nfrwt \(\quad\) The number of steps between writes (default = 1)
dtfwrt The time increment between writes (default \(=0\))
ndsave The number of datasets retained on disk (default = all)
niterw The number of iterations between writes (default \(=0\))

\section*{Groundwater flow commands}

CONSOLIDATE POREWATER_PRESSURE | GROUNDWATER FLOW \{ COUPLE
| DECOUPLE \}
Consolidation is the default behaviour for a groundwater flow problem when excess pore water pressures caused by an undrained loading are dissipated. A decoupled groundwater flow problem is where the water flow change over time without it being affected by changes in the soil structure, as for instance the flow of water through rock.

On the other hand, coupled groundwater flow takes account of the deformation of the soil as the flows change. This is important, for example, when a dam is drawn down.

\section*{Output}

The output frequency control. If not specified, the default or previously defined user data are assumed. On the last increment a PLOT FILE will automatically be written, overriding any specification in the OUTPUT command. This is also the case for output to the output file and the log file.

OUTPUT incout [incplt incrst nrstsv inclog inchis]
incout The increment interval for output of results (default \(=1\))
incplt The increment interval for writing of plotting data to the plot file \((\) default \(=\) 1). PLOT FILE does not need to be specified.
incrst The increment interval for writing of problem data to the restart file (default \(=0\)). RESTART WRITE does not need to be specified.
nrstsv The maximum number of restart dumps to be saved (default \(=0\)). (to save the latest 2 dumps throughout the problem, set nrstsv=2)
inclog The increment interval for writing the time step \(\log\) (default=1).
inchis The increment interval for writing the selective results history file. (default=1 and will only be invoked if selective results output is specified). In problems where the restart facility is used, a separate history file is created for each analysis.

\section*{Termination}

The TERMINATION data section is used to specify when the stage terminates. If not specified, the default or previously defined user data are assumed.

\section*{TERMINATION maxinc [ttime maxnod mxvar rmxdsp tstage mxprs mxprsp rpwpmn rsatmn icktrm]}
maxinc The maximum number of time steps to be applied (default \(=1\)).
ttime The total response time at which the stage should terminate (default \(=\mathrm{a}\) large number).
mxnod The node number of the nodal variable to be limited (default \(=0\)).
mxvar The variable number of the nodal variable to be limited at node mxnod (default \(=0\)).
rmxdsp The limiting value of node mxnod variable mxvar (default \(=0\)).
tstage The time duration of stage (default \(=0\)).
mxprs The consolidation stage terminates when the maximum absolute excess pore water pressure falls below this value (default=0).
mxprsp The consolidation stage terminates when the maximum absolute excess pore water pressure, calculated as a percentage of maximum excess pore water pressure at the start of the consolidation stage, falls below this value (default=0).
rpwpmn The fluid flow analysis stage terminates when rate of absolute change of porewater pressure falls below this value (default=0).
rsatmn The fluid flow analysis stage terminates when the rate of absolute change of saturation falls below this value (default=0).
icktrm Check that termination time ttime or tstage is reached at the end of the stage and stop if not and another stage is to follow.
0 - do not stop (default)
1 - stop

\section*{Notes}
1. Transient analysis is applicable to field problems only.
2. The INCREMENTAL COUPLE READ and INCREMENTAL COUPLE WRITE data sections should be omitted if the problem is not a thermo-mechanical coupled analysis.
3. Automatic load step reduction will not take place in a coupled analysis.
4. The support conditions and loading data specified prior to the first TRANSIENT CONTROL chapter provide the static steady state solution at time equals zero.
5. For a coupled analysis only, if inctyp is set to a nonzero value for a driven coupled analysis, dt is re-interpreted as the maximum step wise permitted, and the new step wise is calculated to be as close to, but not exceeding dt. The variable step wise is always selected to ensure that the next data transfer takes place exactly at the next dataset.
6. If both maxinc and ttime or tstage are specified, termination occurs with the minimum response time. However, when icktrm is set to stop the solution when the termination time for the stage is not reached, then a non-zero maxinc sets a limit on the number of steps to take before abandoning the solution.
7. If the problem is nonlinear, the convergence and the iteration details must be set by the NONLINEAR CONTROL commands.
8. When carrying out a TRANSIENT analysis the plot and restart dumps should be requested by specifying the appropriate parameters in the OUTPUT data section. However, a PLOT or a RESTART command may appear after this data chapter.
9. Throughout TRANSIENT CONTROL, where stated, you can input a \(D\) for a particular input variable to obtain the default value.
10. Oscillatory response may be seen when using the default beta constant with step type loading. Increasing beta will reduce these oscillations (as would a more gradual ramping of the load).
11. Automatic time stepping may be used during a consolidation analysis for which very small timesteps are required at the beginning and large timesteps at end. This is done by limiting the change in excess pore water pressure, either as an absolute value or a percentage of the maximum pore water pressure, over a timestep.
Termination can also be defined in terms of the absolute or percentage value of the maximum excess pore water pressure.

\section*{Viscous Control}

The VISCOUS CONTROL data chapter is used to control the solution procedure for creep analyses. For further information regarding the solution of problems involving rate dependent material nonlinearity refer to the LUSAS Theory Manual.

VISCOUS CONTROL

\section*{Incrementation}

The INCREMENTATION data section controls the applied time step interval.
INCREMENTATION [dt dtincf inctyp dtmin dtmax exptim]
dt \(\quad\) Time step \((\) default \(=0.001)\)
dtincf Time step increment restriction factor (default \(=1.0\)).
inctyp Set to 1 for a driven coupled analysis. This means that the time step for this analysis is calculated by the thermal analysis. Note that a driven coupled analysis is not permitted when coupling iteratively (default \(=0\)).
dtmin \(\quad\) Minimum time step \((\) default \(=0.0)\)
dtmax \(\quad\) Maximum time step \((\) default \(=\) no limit \()\)
exptim Exponent used to increase time step when using the CEB-FIP creep model (see Notes)

\section*{Automatic Viscous Control}

The AUTOMATIC VISCOUS_CONTROL data section specifies the automatic timestepping criterion to be applied and the factors to be used for each criterion.
```

AUTOMATIC VISCOUS_CONTROL [OFF]

```
ictol toler control factor
ictol Control criterion (see below).
Toler Tolerance factor for controlling the automatic time step (see below). The way in which this factor is used is dependent upon the chosen control criterion.
Control May have one of two meanings depending on the criterion used (see factor Notes below):
- Permitted difference between the time step evaluated at the beginning of a step and that calculated once values at \(t+d t\) are established. If the error tolerance is exceeded the time step is halved.
- Switch for explicit time step calculation.

\section*{Notes}

Definition of automatic time stepping criteria:
1. ictol \(=1\)
toler \(\quad=\) dcrpmx \(=\) incremental creep strain
control \(\quad=\) Permitted difference between the time step evaluated at the factor beginning of a step and that calculated once values at \(t+d t\) are established.
Limit of change of creep strain rate dec/dt calculated at time \(t\) and \(t+d t\) :
- \(\mathrm{d}_{\mathrm{t}}=\frac{\text { dcrpmx }}{\dot{\varepsilon}_{\mathrm{t}+\mathrm{dt}}^{\mathrm{c}}-\dot{\varepsilon}_{\mathrm{t}}^{\mathrm{c}}}\)
2. If the gradient is almost constant, then a large dt will be predicted; conversely, if the difference in gradients is large a small time step will be predicted.
ictol \(=2\)
toler = restriction factor
control \(\quad=0\) (de-activate explicit step calculation)
factor \(\quad 1\) (activate explicit step calculation)
The explicit time step is calculated using the creep strain rate dec/dt:
\[
\mathrm{dt}=\frac{4(1+v)}{3 \mathrm{E} \frac{\mathrm{~d} \dot{\varepsilon}^{\mathrm{c}}}{\mathrm{dq}}} \times \text { restriction factor }
\]
where \(\mathbf{E}\) is the Elastic modulus and \(\mathbf{n}\) is Poisson's ratio of the material and \(\mathbf{q}\) is the equivalent stress.
3. ictol \(=3\)
toler = scale factor a
control \(=\) Permitted difference between the time step evaluated at the
factor beginning of a step and that calculated once values at \(\mathrm{t}+\mathrm{dt}\) are established.
dt is calculated as a function of the total strain \(\varepsilon\) and the creep strain rate dec/dt:
\(\square \mathrm{dt}=\left[\frac{\varepsilon . \varepsilon}{\dot{\varepsilon}^{c} \cdot \dot{\varepsilon}^{c}}\right]^{1 / 2}\)
4. ictol \(=4\)
toler = scale factor a
control \(=\) Permitted difference between the time step evaluated at the
factor beginning of a step and that calculated once values at \(\mathrm{t}+\mathrm{dt}\) are established.
5. dt is calculated as a function of the critical total elastic strain components \(\boldsymbol{\varepsilon} \mathbf{i e}\) and the critical creep strain rate deic/dt component:
\[
\square \mathrm{dt}=\alpha \min \left|\frac{\varepsilon_{\mathrm{i}}^{\mathrm{e}}}{\dot{\dot{\varepsilon}_{\mathrm{i}}^{\mathrm{c}}}}\right| \mathrm{i}=1 \text {, number of strain components }
\]

Typical values of a are as following:
\[
\begin{array}{cl}
0.01<\mathrm{a}<0.15 & \text { explicit analysis } \\
\mathrm{a}<10 & \text { implicit analysis }
\end{array}
\]

Default values are:
\begin{tabular}{lll}
ictol & toler & control factor \\
1 & 0.001 & 0.1 \\
2 & 1.000 & \(1.0 \quad\) (initialised for first step of implicit analysis then \\
& & \multicolumn{2}{c}{ de-activated) } \\
3 & 0.000 & 0.0 \\
4 & 0.000 & 0.0
\end{tabular}

\section*{Rate Dependent}

The RATE_DEPENDENT data section specifies whether implicit or explicit integration is to be used. If this section is omitted the default of implicit integration is invoked.

RATE_DEPENDENT \{IMPLICIT | EXPLICIT\}

\section*{State}

The STATE data section can be used with the RESIN CURE MODEL, which is used for predicting the deformations of thermoset composites that occur during a hot cure manufacturing process. The use of the STATE data section simplifies the analysis so that only a structural analysis is required. This approach is restricted to thin parts in which the state of cure is constant, or nearly constant at every point. A globally defined state is then valid which can be evaluated from a basic knowledge of the cure cycle and cure kinetics. The cure is modelled by splitting it into sections in which a single material state is valid. As the material is linear within each state the shrinkage and thermal strains need only be considered at the end of the step.

STATE \(<\) iState \(_{i}>_{i=1 \text {,maxinc }}\)
iState The state of the resin, (liquid \(=1\), rubbery \(=2\), glassy \(=3\)).
maxinc The maximum number of time steps to be applied.

This procedure requires a pseudo time step of 1 , in other words, using
INCR 1
each iState is associated with a pseudo time multiple of 1 which is used to synchronise both the shrinkage and thermal data corresponding to the step, see Notes.

\section*{Incremental Couple Read}

The INCREMENTAL COUPLE READ data section controls the frequency of reading from a coupled datafile for a coupled analysis (omit if not performing a coupled analysis).

INCREMENTAL COUPLE READ [nffrd dtfrd niterr]
nfrrd \(\quad\) The number of steps between data reads (default \(=1\))
dtfrd The increment of time between data reads (default \(=0\))
niterr \(\quad\) The number of iterations between data reads \((\) default \(=0)\)

\section*{Incremental Couple Write}

The INCREMENTAL COUPLE WRITE data section controls the frequency of writing a coupled datafile for a coupled analysis (omit if not performing a coupled analysis).

INCREMENTAL COUPLE WRITE [nfrwt dtfwrt ndsave niterw]
nfrwt \(\quad\) The number of steps between writes (default = 1)
dtfwrt The time increment between writes (default \(=0\))
ndsave The number of datasets retained on disk (default = all)
niterw \(\quad\) The number of iterations between writes (default \(=0\))

\section*{Output}

The OUTPUT data section specifies how often output is required. If not specified, the default or previously defined user data are assumed. On the last increment a PLOT FILE will automatically be written, overriding any specification in the OUTPUT command. This is also the case for output to the LUSAS output file and the LUSAS log file.

\section*{OUTPUT [incout incplt incrst nrstsv inclog inchis]}
incout Increment interval for output of results (default = 1)
incplt Increment interval for writing of plotting data to the plot file \((\) default \(=1)\). PLOT FILE does not need to be specified.
incrst The increment interval for writing of problem data to the restart file (default \(=0\)). RESTART WRITE does not need to be specified.
nrstsv The maximum number of restart dumps to be saved (default = 0). For example, to save the latest 2 dumps throughout the problem, set nrstsv \(=2\).
inclog The increment interval for writing the time step \(\log (\) default \(=1)\).
inchis The increment interval for writing the selective results history file.
(default=1 and will only be invoked if selective results output is specified). In problems where the restart facility is used, a separate history file is created for each analysis.

\section*{Termination}

The TERMINATION data section specifies when the stage terminates. If not specified, the default or previously defined user data are assumed.

TERMINATION [maxinc ttime dtterm steady maxnod mxvar rmxdsp tstage icktrm]
maxinc The maximum number of time steps to be applied (default \(=1\)).
ttime The total response time at which the stage should terminate \(\quad(\) default \(=\mathrm{a}\) large number).
dtterm The minimum time step below which the stage should terminate \((\) default \(=\) 0.0).
steady Value to terminate stage relating the current displacement increment to the displacement increment directly following a new control data section.
\(\square \frac{\text { incremental displacement norm on current step }}{\text { incremental displacement onfirst step }}<\) steady
mxnod The node number of displacement to be limited (default \(=0\)).
mxvar The variable number of displacement to be limited at node mxnod (default \(=0\)).
rmxdsp The maximum displacement of node mxnod variable mxvar (default = \(0)\).
tstage The time duration of the stage (default \(=0\)).
icktrm Check that termination time ttime or tstage is reached at the end of the stage; stop if not and another stage is to follow.
0 - do not stop (default)
1- stop

\section*{Notes}
1. The starting time step for both explicit and implicit analyses is automatically calculated using the explicit step stability criterion. On subsequent steps, for implicit analyses, the step size is determined by the active automatic control criterion. The other active criteria are also evaluated on the first step and if any prove more critical than the explicit time step, then this value will be applied.
2. For many functions the creep rate is infinite at \(t=0\) and therefore \(d t / 2\) is used to evaluate the creep strain rate and various derivatives required in the automatic step evaluation. The choice of dt determines the particular gradients and hence the calculation of the initial time step.
3. dtincf limits the growth of the time step. The default value allows the step to grow an order of magnitude with each time step, thus if the explicit time step is too conservative for the implicit analysis it does not take many time steps to adjust.
4. For an analysis using explicit dynamic elements, explicit integration must be specified.
5. If inctyp is set to a nonzero value for a driven coupled analysis, dt is re-interpreted as the maximum step wise permitted, and the new step wise is calculated to be as close to, but not exceeding dt , as possible. The variable step wise is always selected to ensure that the next data transfer takes place at the next dataset.
6. If both maxinc and ttime or tstage are specified, termination occurs with the minimum response time. However, when icktrm is set to stop the solution when the termination time for the stage is not reached, then a non-zero maxinc sets a limit on the number of steps to take before abandoning the solution.
7. If the problem is nonlinear, the convergence and the iteration details must be set by the NONLINEAR CONTROL commands.
8. The INCREMENTAL COUPLE READ and INCREMENTAL COUPLE WRITE data sections should be omitted if a thermo-mechanically coupled analysis is not being performed.
9. Automatic load step reduction will not take place in a coupled analysis. When carrying out a VISCOUS analysis the plot and restart dumps should be requested by specifying the appropriate parameters in the OUTPUT data section. However, a PLOT or a RESTART command may appear after this data chapter.
10. Throughout VISCOUS CONTROL, where stated, you can input a \(D\) for a particular input variable to obtain the default value.
11. DYNAMIC CONTROL may be utilised with VISCOUS CONTROL if required.
12. NONLINEAR CONTROL must be specified with VISCOUS CONTROL unless linear materials are used with an explicit creep integration scheme (i.e. ratedependent = explicit).
13. An example of using the STATE command to control resin shrinkage and thermal strains is given below.

SHRINKAGE PROPERTIES GENERAL TIME 3
ishr ...
\(0 \quad-0.035\)
\(1 \quad-0.045\)
\(2-0.046\)
:
LOAD CASE 1
TEMP 1
First Last Inc 1.0
:
CURVE DEFINITION 1 USER
\(0 \quad 0\)
10
\(2-160\)

\section*{VISCOUS CONTROL}

STATE 233
The preceding data results in three load steps. On the first the composite is in its rubbery state (\(=2\)) and the shrinkage is \(3.5 \%\). Note that we are commencing the analysis when the resin is in its rubbery state at a temperature of \(180^{\circ} \mathrm{C}\); the load curve defines the cure temperature changes. On the second step the composite will have vitrified (glassy \(=3\)) and a further \(1 \%\) shrinkage will occur. Finally on step 3, the composite is cooled from \(180^{\circ} \mathrm{C}\) to room temperature \(20^{\circ} \mathrm{C}\). A further \(0.1 \%\) shrinkage occurs during cool down.

The STATE command can be entered more than once. On definition maxinc is set to the number of entered states. If maxinc is subsequently input under TERMINATION it will overwrite the value set by the STATE command. If, whilst running, all the STATE variables are processed, LUSAS will stop, independently of the value of maxinc.
14. To use the parameter exptim the total response time, ttime, and the maximum number of time steps, maxinc, must be specified under TERMINATION. The initial time step is taken as 1 day and increases according to the value of the exponential, the number of time steps (maxinc) and the total response time. The parameter exptim is only applicable to analyses using the CEB-FIP creep and shrinkage model.

Figure 2.2 Time step number vs time step growth for an exponent of 3.0

Figure 2.3 Response time vs time step growth for an exponent of 3.0

\section*{Eigenvalue Control}

The EIGENVALUE CONTROL data chapter is used to control the solution procedure for eigenvalue extraction and eigenvalue buckling analyses, using either the subspace iteration method, the inverse iteration method with shifts, or the Lanczos method (standard or fast). For eigenvalue extraction using Guyan-reduced eigenvalues, see Guyan Control. The subspace iteration method is used to compute either the lowest or highest eigenmodes, while the inverse iteration method with shifts is used to compute the eigenmodes that exist within a specified eigenvalue or frequency range of interest. The Lanczos method can compute the lowest or highest eigenvalues or a specified range. For further information regarding the solution of eigenvalue problems refer to Eigenvalue Analysis, and the LUSAS Theory Manual.

\section*{EIGENVALUE CONTROL}
either:
\{CONSTANTS | SUBSPACE | LANCZOS | FAST\}
or:
[INVERSE \(\begin{gathered}\text { L LANCZOS | FAST] \{EIGENVALUE | FREQUENCY\} } \\ \text { RANGE }\end{gathered}\)
[CONVERGENCE]

\section*{Eigenvalue Control}

\section*{EIGENVALUE CONTROL \{BUCKLING | STIFFNESS | DAMPING\}}

BUCKLING The BUCKLING command word is used to specify that an eigenvalue buckling problem is to be solved. This facility can only be used in conjunction with element types that support geometrically nonlinear solutions (see the LUSAS Element Reference Manual).
STIFFNESS The STIFFNESS command word is used to specify that an eigenvalue analysis of the stiffness matrix should be performed.
DAMPING The DAMPING command word is used to specify that the damping matrix is to be included in the analysis leading to a complex eigensolution.
With no other command words on this line (e.g. buckling/stiffness) an eigenvalue analysis using both stiffness and mass matrices will be carried out (a natural frequency analysis).

\section*{Maximal/Minimal Eigenvalues}

This data section is used to specify the options for the chosen eigenvalue solution method that will solve for the lowest or highest eigenmodes in the structure. If this data section is used, the EIGENVALUE/FREQUENCY RANGE data section must be omitted. With the exception of nroot, default values will be assumed for all parameters that are not specified. If the CONSTANTS keyword is specified, LUSAS will select the default eigenvalue solver, which is the fast Lanczos solver unless the analysis contains superelements, or is a branching and bracketing analysis, in which case the subspace iteration solver will be used.
\{CONSTANTS | SUBSPACE\} nroot [nivc shift norm sturm eigsol maxmin buckl]
or:
LANCZOS nroot [shift norm sturm maxmin buckl]
or:
FAST nroot [shift norm maxmin buckl]
or for DAMPING:
FAST nroot [shiftr shifti norm]
nroot The number of eigenvalues required (must be less than or equal to the number of free nodal variables for the structure).
nive The number of starting iteration vectors to be used (default is taken as min \(\{(2 *\) nroot \(),(\) nroot +8\(),(\) number of structure free variables \()\}\). Only used for subspace iteration.
shift \(\quad\) The shift to be applied to the stiffness matrix (default \(=0.0\)).
shiftr The real shift to be used in a complex (DAMPING) eigensolution (=0.0not available at present).
shifti The imaginary shift to be used in a complex (DAMPING) eigensolution (= 0.0 - not available at present).
norm The normalisation procedure required for the eigenvectors (default=0).
\(=0\) normalisation with respect to unity
\(=1\) normalisation with respect to the global mass
\(=2\) normalisation with respect to the global stiffness
sturm Determines if a Sturm sequence check is to be applied (default=1). Automatically performed for the fast solver.
\(=0\) no Sturm sequence check
\(=1\) Sturm sequence to be carried out
eigsol Type of eigensolver required (default=0). Only used for subspace iteration.
\(=0\) Generalised Jacobi method
\(=1\) Householder-QL method
maxmin Determines whether minimum or maximum eigenvalues are required (default=0).
\(=0\) minimum eigenvalues required
\(=1\) maximum eigenvalues required
buckl Type of buckling required (default=0).
\(=0\) normal buckling
\(=1\) alternative buckling (all eigenvalues will be positive. See Notes on Eigenvalue Output)

\section*{Eigenvalue/Frequency Range}

The EIGENVALUE RANGE or FREQUENCY RANGE data sections (for specifying eigenvalues or natural frequencies, respectively) are used to specify the options for the chosen eigenvalue solution method that will solve for a range of eigenmodes or frequencies. If this data section is used the CONSTANTS data section must be omitted. With the exception of Rmin and Rmax, default values will be assumed for all other parameters that are not specified. If neither the INVERSE, LANCZOS nor FAST keywords appear on the command line, LUSAS will select the default eigenvalue solver, which is the fast Lanczos solver unless the analysis contains superelements, or is a branching and bracketing analysis, in which case the inverse iteration solver will be used.
\begin{tabular}{ccccc|c}
[INVERSE & L LANCZOS | FAST] & \{EIGENVALUE | FREQUENCY\} \\
RANGE Rmin Rmax
\end{tabular}
Rmin The minimum eigenvalue or frequency for the defined range.
Rmax The maximum eigenvalue or frequency for the defined range (must be larger than Rmin).
nreq \(\quad\) The number of eigenvalues required (default \(=\) total number of eigenvalues within the specified range).
norm The normalisation procedure required for the eigenvectors (default=0).
\(=0\) normalisation with respect to unity
\(=1\) normalisation with respect to the global mass
\(=2\) normalisation with respect to the global stiffness

\section*{Convergence}

The CONVERGENCE data section is used to specify the internal convergence tolerance used for the subspace and inverse iteration solvers, and controls the maximum number of iterations to be used for the standard Lanczos solver. It is not used for the fast Lanczos solver. If this data section is not specified, the default values are assumed.

\section*{CONVERGENCE rtol [nitem]}
or:

\section*{CONVERGENCE nitem}
rtol The iterative tolerance to be satisfied (not used for either Lanczos solver) (default for subspace iteration \(=1.0 \mathrm{E}-7\)) (default for inverse iteration with shifts \(=1.0 \mathrm{E}-4\)).
For subspace iteration, this measure is defined as the absolute value of (current eigenvalue - previous eigenvalue)/current eigenvalue. This must be satisfied for all eigenvalues before convergence is assumed. For inverse iteration with shifts, this measure is defined as the tolerance for mass orthogonality.

The inverse iteration procedure should always converge quickly, since the shift point is automatically updated to improve convergence if convergence difficulties are detected. The maximum number of iterations is, therefore, set to 30 , since this should never be required by the algorithm. It is provided merely as a safety measure, and the default value may be changed by specifying the parameter nitem in the CONVERGENCE data section.

\section*{Eigenvalue Output}

Eigenvalue analyses output the following results:
E Eigenvalues, frequencies and error norms for each mode requested, for example:

MODE EIGENVALUE FREQUENCY ERROR NORM
\(181.7872 \quad 1.43934 \quad 0.2189 \mathrm{E}-11\)
\(\square\) The total mass of the structure in the three global, translational directions, e.g.,
TOTAL MASS ACTING IN X DIRECTION \(=3510.00 \mathrm{KG}\)

\section*{TOTAL MASS ACTING IN Y DIRECTION = 3510.00 KG}
\(\square\) Modal displacement shapes for each mode in turn. Note that these eigenvectors have no physical meaning except to indicate the mode shape.
\(\square\) Total reactions for each mode in turn (again, these have no physical meaning, since they are derived from the displacements).
\(\square\) Mass participation factors are output to indicate the proportion of mass acting in each mode. Note that this is calculated automatically and there is no requirement for this factor to sum to unity. Mass participation will always be positive.

\section*{Notes}
1. Combinations of the lowest, highest and a range of eigenvalues can be extracted in a single LUSAS run if required, by specifying additional EIGENVALUE CONTROL data chapters with the relevant data sections. If using the fast Lanczos solver, this must be specifed for each eigenvalue extraction, since it requires the assembly of global matrices. The standard Lanczos solver can be used during the same run as the subspace and inverse iteration solvers, if desired. If the highest eigenvalues are required, this must be specified in the last EIGENVALUE CONTROL data chapter, unless the fast Lanczos solver is in use. For example, to find the lowest two eigenvalues, the highest six eigenvalues and all frequencies in the range [0,20] using the fast Lanczos solver, the following commands should be specified:
```

EIGENVALUE CONTROL
FAST }
EIGENVALUE CONTROL
FAST 6 D D 1
EIGENVALUE CONTROL
FAST FREQUENCY RANGE 0 20

```
2. Combinations of eigenvalues can also be specified for stiffness and buckling analyses by specifying additional EIGENVALUE CONTROL STIFFNESS and EIGENVALUE CONTROL BUCKLING data chapters, respectively. The same strictures apply as for the EIGENVALUE CONTROL data chapter.
3. In case the requested eigenmodes turn out not to be the ones actually needed, choosing OPTION 279 will cause the reduced stiffness and mass matrices to be saved to a restart file. They can then be accessed during a separate analysis, and more eigenmodes retrieved without needing to reduce the matrices again. Note that this facility is not available for the fast Lanczos solver.
4. The stresses from the eigenvectors may be output using ELEMENT and NODE OUTPUT CONTROL.
5. If nmastr master freedoms are specified within the RETAINED FREEDOMS data section, a Guyan reduction analysis will be carried out in order to obtain a first approximation to the starting iteration vectors for the subspace iteration method. Note namast automatically generated master freedoms will be used if nive is greater than nmast (i.e. namast = nivc-nmastr).
6. If an EIGENVALUE CONTROL (including STIFFNESS and BUCKLING) data chapter using subspace iteration follows immediately after a GUYAN CONTROL data chapter, the solution from the Guyan reduction analysis will automatically be used as the first approximation to the starting iteration vectors required for the subspace iteration. This enables the Guyan solution to be improved by using the subspace iteration algorithm.
7. If an EIGENVALUE CONTROL data chapter and the GUYAN CONTROL data chapter are separated by any other data chapters, then each will be treated as a separate analysis. The same applies if a GUYAN CONTROL data chapter is immediately preceded by an EIGENVALUE CONTROL data chapter.
8. Throughout EIGENVALUE CONTROL, where a default value is shown, a D may be entered for a particular input variable to obtain the default value.
9. Within the subspace iteration method the eigenvalue solution may be continued after the Jacobi iteration method has failed to converge by setting Option 16, but the results should be used with caution.
10. If nreq is defined in the RANGE section the eigenvalues found will not always be the first eigenvalues of the system, unless the Fast Lanczos solver is used.
11. Option 230 will suppress the computation during an eigenvalue analysis. For reasonable size jobs this has the effect of reducing the plot file size to \(1 / 3\) of its original size which speeds up the analysis.
12. The Eigenvalue/Frequency Range facility cannot be used if constraint equations have been defined, unless the Fast Lanczos solver is used.
13. The Sturm sequence check may prove unreliable if constraint equations are defined in the analysis, unless the Fast Lanczos solver is used.
14. For buckling analyses involving constraint equations, the Fast Lanczos solver will only find eigenvalues either side of zero, i.e. in the range \((-\infty, 0)\) or \((0, \infty)\). If a range of eigenvalues is required in an interval which contains zero, two separate data chapters must be specified, where the interval is divided into two sub-intervals either side of zero.
15. The inverse iteration procedure should always converge quickly since the shift point is automatically updated to improve convergence if this is not the case. The maximum number of iterations is therefore set, by default, at 30 since this should never be required by the algorithm. It is provided merely as a safety measure and the default value may be changed by specifying the parameter nitem in the CONVERGENCE data section.
16. When carrying out a linear buckling analysis, two load cases can be defined. The first contains any loading that is not to be factored in the buckling analysis (e.g. could be the dead load), while the second contains the load that is to be factored during the buckling analysis (e.g. could be the live load).
17. A linear buckling analysis can be carried out at the end of an incremental nonlinear static analysis. The nonlinear analysis can involve any number of stages or increments, but at the end of this analysis the load (which will not be factored in the buckling analysis) must be "frozen in" via a manual load step, see General Loading Rules in the chapter on NONLINEAR CONTROL. Following this, the load case to be factored is defined followed by the eigenvalue buckling control
chapter. It should be noted that if geometric nonlinearity has been used, it is usual for the product of the specified load and load factor (i.e. the buckling load) not to remain constant for varying load levels as it does in a standard linear buckling analysis. If geometric nonlinear effects are significant a consistent (constant) buckling load can only be approximated if the load to be factored is kept quite small so that nonlinear effects are minimised. Care should be taken when carrying out a buckling analysis on a stressed structure and the results should be checked very carefully.

\section*{Guyan Control}

The GUYAN CONTROL data chapter is used to control the solution procedure for Guyan reduced eigenvalue extraction analyses (for eigenvalue analyses using subspace iteration see Eigenvalue Control). For further information regarding the solution of eigenvalue problems by Guyan reduction refer to Guyan Reduction, and the LUSAS Theory Manual.

\section*{GUYAN CONTROL [BUCKLING | STIFFNESS]}

BUCKLING The BUCKLING command word is used to specify that the eigenvalue buckling problem is to be solved using Guyan reduction. This facility must only be used in conjunction with element types that support nonlinear solutions (see the LUSAS Element Reference Manual).
STIFFNESS The STIFFNESS command word is used to specify that an eigenvalue analysis of the stiffness matrix is to be carried out using Guyan reduction.

\section*{Constants}

The CONSTANTS data section is used to specify the constants for the Guyan reduction as well as to define the options available to the user. This section is compulsory, and with the exception of nroot default values will be assumed for all parameters that are not specified.

CONSTANTS nroot [namast shift norm sturm eigsol maxmin buckl]
nroot The number of eigenvalues required (must be less than or equal to the number of free nodal variables of the reduced structure).
namast The number of automatically generated master freedoms (default=0) (see Retained Freedoms).
shift \(\quad\) The shift to be applied to the eigenvalue procedure (default \(=0.0\)).
norm The normalisation procedure required for the eigenvectors (default=0).
\(=0\) normalisation with respect to unity
\(=1\) normalisation with respect to the global mass
\(=2\) normalisation with respect to the global stiffness
sturm Determines if a Sturm sequence check is to be applied (default=1).
\(=0\) no Sturm sequence check
\(=1\) Sturm sequence to be carried out
eigsol Type of eigensolver required (default=0).
\(=0\) Generalised Jacobi method
\(=1\) Householder-QL method
maxmin Determines whether minimum or maximum eigenvalues are required (default=0).
\(=0\) minimum eigenvalues required
\(=1\) maximum eigenvalues required
buckl Type of buckling required (default=0).
\(=0\) normal buckling
\(=1\) alternative buckling (all eigenvalues will be positive) (see Notes).

\section*{Notes}
1. Specified master freedoms may also be input via the RETAINED FREEDOM data chapter.
2. Master freedom selection may be either totally specified, or totally automatic, or a combination of the two. LUSAS will confirm the type of master freedoms used in the operation, and in the case of wholly specified or wholly automatic, will warn to that effect.
3. If LUSAS is unable to create the full requested number of masters a warning to that effect will be invoked, and the solution will proceed with the reduced number of automatic master freedoms. Note that this is equivalent to carrying out an eigenanalysis of the full problem.
4. The solution obtained by a Guyan reduction can be improved upon by employing the subspace iteration algorithm. This will be done if an EIGENVALUE CONTROL data chapter follows immediately after a GUYAN CONTROL data chapter; the Guyan reduction solution will automatically be used as the first approximation to the starting iteration vectors required for the subspace iteration.
5. If an EIGENVALUE CONTROL data chapter and the GUYAN CONTROL data chapter are separated by any other data chapter then each will be treated as a separate analysis. The same applies if a GUYAN CONTROL data chapter is immediately preceded by an EIGENVALUE CONTROL data chapter.
6. Throughout GUYAN CONTROL, where stated, a D may be entered for a particular input variable to obtain the default value.
7. The nonlinear solution may be continued after the Jacobi iteration method has failed to converge by setting Option 16.
8. Freedoms featuring in constraint equations will not be considered for use as automatic masters.
9. The Sturm sequence check may prove unreliable if constraint equations are defined in the analysis.

\section*{Modal Damping Control}

The MODAL_DAMPING CONTROL data chapter is used to control the computation of viscous or structural distributed damping factors where element contributions towards damping vary within the structure. This data chapter should always follow an eigenvalue analysis since this analysis depends upon the eigensolutions that should have already been obtained. This section is valid for viscous (modal) and structural (hysteretic) damping. After this section LUSAS computes the distributed viscous and/or structural damping factors and echoes the damping factors to the LUSAS output file. These damping factors may subsequently be used in a harmonic or spectral response analysis or a LUSAS Modeller modal analysis session.

MODAL_DAMPING CONTROL [VISCOUS | STRUCTURAL]

\section*{Constants}

The CONSTANTS data section is used to specify the default damping factor for a mode if the distributed damping factor is not to be computed (i.e. mode omitted from MODES section). If this section is not specified the system default values will apply.

CONSTANTS damp
damp The overriding default damping factor if the distributed damping factor is not to be computed (default= 0.05 for VISCOUS damping, default \(=0.00\) for STRUCTURAL damping)

\section*{Material Properties}

This line is optional and is only required if the damping parameters from the MATERIAL PROPERTY data chapter and not the DAMPING PROPERTIES data chapter are to be used for the computation of the distributed damping factors. By default Rayleigh parameters from the DAMPING PROPERTIES section are used. If no DAMPING PROPERTIES are input then Rayleigh parameters from the MATERIAL PROPERTIES section are used.

\section*{MATERIAL PROPERTIES}

\section*{Modes}

This section is optional and is used when the distributed damping is to be computed for only some modes. By default distributed damping factors will be computed for all modes.

\section*{MODES}
modei
modei Number of the (i)th mode for which distributed damping must be computed. This line must be repeated for each mode but may be generated by using the LUSAS data generation structure FIRST, INC, INC etc.

Distributed damping factors will not be computed for modes omitted here but these modes will take the default damping factor as specified in the CONSTANTS data section.

\section*{Notes}
1. The parameter norm in EIGENVALUE or GUYAN control must be set to 1 in the eigenvalue analysis to normalise the eigenvectors with respect to global mass before computation of distributed modal damping factors.
2. After computing the distributed viscous and/or structural damping factors LUSAS will write the values to the output file.

\section*{Example. Damping Properties}

C Table of viscous damping properties
DAMPING PROPERTIES VISCOUS

\(0.30 .20 .3 \ldots\)
\(\begin{array}{lllllll}0.1 & 0.05 & 0.5 & 0.1 & 0.05 & 0.6 & 0.3\end{array}\)
\(0.20 .7 \ldots\)
\begin{tabular}{lllllll}
0.3 & 0.2 & 0.9 & 0.1 & 0.05 & 1.0 & 0.1
\end{tabular}
\(0.05 \quad 1.5\)
C Table of structural damping properties DAMPING PROPERTIES STRUCTURAL

\(0.20 .7 \ldots\)
\(0.7 \quad 0.2\)
0.9
0.1
0.05
1.0
0.1
\(0.05 \quad 1.5\)
\(\begin{array}{llll}20 & 0 & 0.1 & 0.05 \\ 0.3 & 0.4 & 0.4\end{array}\)
\(\begin{array}{lrrrrrr} \\ 0.2 & 0.1 & 0.05 & 0.5 & 0.1 & 0.05 & 0.6 \\ 0.7 & & & & & 0.5\end{array}\)

\section*{\(0.05 \quad 1.5\)}

LOAD CASE
CL
4164 5./32.**. 5
C Eigenvalue analysis (3 modes)
EIGENVALUE CONTROL
```

CONST 3 3 D 1

```

C Compute distributed viscous damping factors for all three modes. Rayleigh
C parameters from the DAMPING PROPERTIES VISCOUS table will be used in the

C computation.
MODAL_DAMPING CONTROL VISCOUS
C Compute distributed structural damping factors for modes 1 and 3 . Use the

C overriding default damping constant of 0.33 for mode
2. Rayleigh parameters from

C the DAMPING PROPERTIES STRUCTURAL table will be used in the computation.

MODAL_DAMPING CONTROL STRUCTURAL
CONSTANTS 0.33
MODES

\section*{132}

C Harmonic response analysis using distributed viscous damping factors and system

C factors (no distributed structural damping factors will be used).
C Default values for structural damping are used.
```

HARMONIC_RESPONSE CONTROL
CONSTANTS 3 0.1
VISCOUS DAMPING DISTRIBUTED
FREQUENCIES
0.01
0.175
0.477
HARMONIC LOADING REAL 1
HARMONIC LOADING IMAGIN 1
END

```

\section*{Spectral Control}

The SPECTRAL CONTROL data chapter is used to control the solution procedure for spectral response analyses. This data chapter must always follow an eigenvalue analysis since the analysis depends upon the eigen-solutions that should have already been obtained. For further information regarding the solution of spectral response problems refer to Spectral Response Analysis, and the LUSAS Theory Manual.

\section*{SPECTRAL CONTROL}

\section*{Constants}

The CONSTANTS data section is used to specify certain constants for the spectral response procedure. This data section is mandatory.

\section*{CONSTANTS nmod icmb [dampm]}
nmod The number of modes to be processed. Must be less than or equal to the number of eigenvalues previously extracted (default \(=\) number of eigenvalues previously solved for, i.e. nroot).
icmb The spectral combination type.
\(=0\) for no combination required (default)
\(=1\) for SRSS (square root of the sum of the squares)
\(=2\) for CQC (complete quadratic combination)
\(=3\) for Absolute Sum
dampm The overriding default value for the modal damping coefficients not specified in the MODAL DAMPING data section. \((\) default \(=0.05\), that is 5\%).

\section*{Modal damping}

The MODAL DAMPING data section is used to specify the damping of each system mode of vibration as a portion of the critical damping for that mode. Modal damping
may be input for each mode directly (LUSAS will then assign the modal damping value to the modal frequency when it has been determined by the eigenvalue analysis) using MODES, or may be input at known frequencies (LUSAS will then interpolate to the modal frequencies computed in the eigenvalue analysis) using FREQUENCIES. Alternatively the physical distribution of damping in a structure may be modelled using MODAL DAMPING DISTRIBUTED, where the computed modal damping factors from MODAL_DAMPING CONTROL VISCOUS (see Modal Damping Control) is used.

The following apply only for MODES and FREQUENCIES keywords:

\section*{MODAL DAMPING \{DISTRIBUTED | MODES RAYLEIGH | FREQUENCIES RAYLEIGH\}}
\{Mi | Wi\} ai [bi]
Mi The (i)th mode number.
wi The (i)th specified frequency.
ai The modal damping value for the (i)th mode or (i)th specified frequency, or the mass Rayleigh damping constant when the RAYLEIGH option is invoked.
bi The stiffness Rayleigh damping constant when the RAYLEIGH option is invoked.

\section*{Excitation}

The EXCITATION data section specifies the excitation direction and is compulsory.
EXCITATION Xdir Ydir Zdir
Xdir \(\quad\) The excitation factor in the global X-direction
Ydir \(\quad\) The excitation factor in the global Y-direction
Zdir The excitation factor in the global Z-direction
Note. The above factors are the components of the vector defining the direction of excitation.

\section*{Spectral Curve}

The SPECTRAL CURVE data section is used to specify the frequency-displacement, frequency-velocity or frequency-acceleration curve.

\section*{SPECTRAL CURVE nspts icurve}
\(<\) freq \(_{i}\) value \(_{i}>_{i=1, n}\)
nspts The number of points defining the spectral curve.
Icurve The spectral curve type:
\(=1\) for frequency-displacement curve
\(=2\) for frequency-velocity curve
\(=3\) for frequency-acceleration curve
\(=4\) for period displacement curve
\(=5\) for period velocity curve
\(=6\) for period acceleration curve
\[
\begin{array}{ll}
\text { freq }_{i} & \text { The frequency for the (i)th point on the spectral curve. } \\
\text { value }_{i} & \text { The value of the displacement/velocity/acceleration for the (i)th point on } \\
\text { the spectral curve in ascending order. }
\end{array}
\]

\section*{Notes}
1. The parameter norm in EIGENVALUE or GUYAN CONTROL must be set to 1 in the eigenvalue analysis to normalise the eigenvectors to global mass before a spectral analysis can be carried out.
2. To use distributed damping factors MODAL DAMPING DISTRIBUTED must be specified, otherwise the current direct input damping factors will be used.
3. When MODAL DAMPING is specified it must follow CONSTANTS.
4. If PLOT FILE is placed after the SPECTRAL CONTROL chapter the spectral results are transferred to the LUSAS Modeller plot file for subsequent plotting.
5. Damping is only taken into account for spectral combination type CQC.
18. Spectral response may also be carried out in LUSAS Modeller.

\section*{Harmonic Response Control}

The HARMONIC_RESPONSE CONTROL data chapter is used to control the solution procedure for forced vibration or harmonic response analysis. This data chapter should always follow an eigenvalue analysis since this analysis depends upon the eigensolutions that should have already been obtained. For further information regarding the solution of forced vibration problems refer to Harmonic Response Analysis, and the LUSAS Theory Manual.

HARMONIC_RESPONSE CONTROL

\section*{Constants}

The CONSTANTS data section is used to specify the harmonic response control parameters and the user defined default damping values. This section may only be specified once in an analysis; once these constants have been defined they are unchangeable.

\section*{CONSTANTS nmod dampm damps}
nmod The number of system eigenmodes which are to be utilised in the harmonic response analysis. (default = number of eigenvalues previously solved for, i.e. nroot)
dampm The overriding default value for the viscous damping coefficients not specified in the VISCOUS DAMPING data section. (default \(=0.05\), that is 5\%)
damps The overriding default value for structural damping coefficients not specified in the STRUCTURAL DAMPING data section. (default \(=0.0\), that is \(0 \%\))

\section*{Frequencies}

The FREQUENCY data section is used to specify the loading (or sampling) frequencies for which the harmonic analysis will be carried out.

\section*{FREQUENCIES}
freqi
freqi Value of the (i)th sampling frequency. This line must be repeated for each frequency but may be generated by using the LUSAS data generation structure FIRST, INC, INC.

\section*{Viscous Damping}

The VISCOUS DAMPING data section is used to specify the damping of each system mode of vibration as a portion of the critical damping for that mode. Viscous damping may be input for each mode directly using the MODES keyword (LUSAS will then assign the viscous damping value to the modal frequency when it has been determined by the eigenvalue analysis) or may be input at known frequencies (LUSAS will then interpolate to the modal frequencies computed in the eigenvalue analysis) using the FREQUENCIES keyword. Alternatively the physical distribution of damping in a structure may be modelled using VISCOUS DAMPING DISTRIBUTED, where the computed viscous damping factors from MODAL_DAMPING CONTROL VISCOUS are used (see section on Modal Damping Control).

The following apply only for MODES and FREQUENCIES keywords:
VISCOUS DAMPING \{DISTRIBUTED | MODES RAYLEIGH |
FREQUENCIES RAYLEIGH \}
\(\left\{M_{i} \mid W_{i}\right\} \quad a_{i} \quad\left[b_{i}\right]\)
Mi The (i)th mode number.
wi The (i)th specified frequency.
ai The modal damping value for the (i)th mode or (i)th specified frequency, or the mass Rayleigh damping constant when the RAYLEIGH option is invoked.
bi The stiffness Rayleigh damping constant when the RAYLEIGH option is invoked.

\section*{Structural Damping}

The STRUCTURAL DAMPING data section specifies the damping of each system mode of vibration via the hysteretic damping value; this value may be different for each
system mode but is constant for the structure for each mode. Structural damping may be input for each mode directly (LUSAS will then assign the structural damping value to the modal frequency when it has been determined by the eigenvalue analysis) using the MODES keyword or may be input at known frequencies using the FREQUENCIES keyword (LUSAS will then interpolate to the modal frequencies computed in the eigenvalue analysis). Alternatively the physical distribution of damping in a structure may be modelled using STRUCTURAL DAMPING DISTRIBUTED, where the computed modal damping factors from MODAL_DAMPING CONTROL STRUCTURAL are used (see section on Modal Damping Control).

The following apply only for MODES and FREQUENCIES keywords:

\section*{STRUCTURAL DAMPING \{DISTRIBUTED | MODES | FREQUENCIES\}}
\{Mi | wi\} mi
Mi The (i)th mode number.
wi The (i)th specified frequency.
\(\mathbf{m i} \quad\) The structural damping value for the (i)th mode or (i)th specified frequency.

\section*{Harmonic Loading}

The HARMONIC LOADING data section specifies the harmonic loads in terms of their real and imaginary components. By specifying both components the phase difference of the loads can be specified.

HARMONIC LOADING \{REAL | IMAGINARY\} lnum
lnum The LOAD CASE number which describes the harmonic loading component.
The HARMONIC LOADING defaults are defined as follows:
- If no HARMONIC LOADING is defined or if the HARMONIC LOADING command is specified without any parameters then the default loading is assumed: LOAD CASE number 1 is used as the real component and the imaginary component is assumed to be zero;
- If only the real component of load is specified then the imaginary component is assumed to be zero;
- If only the imaginary component of load is specified then the real component is assumed to be zero.

\section*{Notes}
1. The parameter norm in EIGENVALUE or GUYAN CONTROL must be set to 1 in the eigenvalue analysis to normalise the eigenvectors to global mass before a harmonic response analysis can be carried out.
2. Modal and structural damping values for unspecified system modes for direct input of damping using VISCOUS DAMPING MODES or FREQUENCIES will be interpreted as the default values in the CONSTANTS data section.
3. Modal and structural damping values specified at known FREQUENCIES will be interpolated at the nmod selected system frequencies: interpolation to system frequencies within the range specified in the relevant DAMPING data section will be linear, while interpolation to system frequencies beyond the range specified will be constant and will invoke a warning message.
4. Original and interpolated damping will be echoed.
5. When Rayleigh damping constants are specified the corresponding modal damping is computed from:
\[
\text { Modal damping }=\frac{\left(\frac{a_{r}}{\omega}+\frac{\omega}{b_{r}}\right)}{2}
\]
where \(\omega\) is either the natural frequency corresponding to the particular mode or the frequency that is input on the data line. This conversion is done before the interpretation of the damping is carried out.
6. When the RAYLEIGH option is used notes 3. and 4. will still apply.
7. To use distributed damping factors VISCOUS and/or STRUCTURAL DAMPING DISTRIBUTED must be specified otherwise the current direct input damping factors will be used.
8. LOAD CASE numbering is assumed to be consecutive. After a RESTART command has been used the new LOAD CASES start renumbering from 1 again.
9. The harmonic loading must be respecified with every new HARMONIC_RESPONSE data command.
10. Throughout HARMONIC_RESPONSE CONTROL, where a default is given, you can input a \(\mathbf{D}\) for a particular input variable to invoke the default value.
11. Option 181 provides output in the polar coordinate system.
12. PDSP loading is not permitted with this facility.

\section*{Fourier Control}

The FOURIER CONTROL data chapter controls the input of the Fourier components for use with Fourier elements. This data chapter must be used if Fourier elements are utilised. For further information regarding the solution of Fourier problems refer to the section titled Fourier Analysis, and the LUSAS Theory Manual.

FOURIER CONTROL
HARMONIC [symmetry]

\section*{H Hlast Hdiff}
symmetry The harmonic components to be analysed (default \(=0\)): \(=0\) both symmetric and asymmetric components
\(=1\) only the asymmetric components
\(=2\) only the symmetric components
H Hlast Hdiff The first harmonic, last harmonic and difference in harmonics of the Fourier expansion.

\section*{Example. Fourier Control}

In order to apply a line load with an intensity of 8 per unit length of the structure over an arc from \(10^{\circ}\) to \(20^{\circ}\) and to solve for the first 4 harmonics (symmetric), the datafile will have the following form:
```

LOAD CASE
CL
1 0 0 16. 0. 0.
CURVE DEFINITION 4 USER :define User curve 4
10 1 assign a value of 1 at 10*
20 : assign a value of 1 at 20*
CURVE ASSIGNMENT

```
 10.54 :assign load curve 4 with a factor
of 0.5 to loadcase 1
FOURIER CONTROL
 HARMONICS 2 :solve symmetric components only
 031 : evaluate harmonics \(0,1,2\) and 3.

Concentrated loads, constant body forces and body force potentials are applied in the global XYZ directions, as opposed to surface tractions, initial stresses, initial strains and thermal loading which are all applied in the local xyz directions. Note that concentrated loads/nodal reactions are input and output as forces per unit length. Concentrated loads may also be applied in the cylindrical coordinate system by setting Option 202.

\section*{Notes}
1. Both the symmetric and the asymmetric components will be calculated unless overridden by the symmetry input parameter.
2. The HARMONIC data line applies to all H, Hlast, Hdiff series following the specification of this command. HARMONIC may be respecified in this data chapter if required.
3. All loads for a static analysis will be decomposed into the defined harmonic components.
4. If a dynamic, eigenvalue or harmonic response analysis is required the harmonic series should only contain 1 term.
5. Concentrated loads may be applied in the local cylindrical coordinate system by using Option 202.

\section*{Creating a Plot File}

The PLOT FILE data section writes the analysis mesh data and results to secondary storage for subsequent plotting using LUSAS Modeller. For nonlinear, dynamic, transient and viscous analyses the frequency of plot file generation is controlled via the OUTPUT data sections (in these cases the PLOT FILE data section is not required).

PLOT FILE

\section*{Notes}
1. For linear analyses PLOT FILE must be placed after all the LOAD CASE and ELEMENT/NODAL OUTPUT commands.
2. PLOT FILE should be specified prior to ENVELOPE and LOAD COMBINATION.
3. To save eigenvalue results, place the PLOT FILE command prior to the harmonic or spectral commands.
4. The structural definition can be saved (and subsequently viewed) when using a pre-analysis data check (Option 51).
5. When carrying out a nonlinear, dynamic, transient or a viscous analysis the plot file should be requested by setting the incplt parameter within the OUTPUT data section in the appropriate data chapter. However, the PLOT FILE command may still be specified at the end of the analysis.
19. If a nonlinear, dynamic, transient or a viscous analysis terminates and plot files have been requested a plot file will always be created for the last increment.

\section*{Restart Facilities}

Data can be written to disk to enable a nonlinear, dynamic, transient or viscous problem to be restarted from additional steps or a load combination to be carried out. Note that for nonlinear, dynamic, transient or viscous analyses the frequency of restart file generation is controlled via the OUTPUT data sections of the appropriate CONTROL data chapter.

\section*{Writing to a Restart File}

The data section RESTART WRITE is used to control writing of the LUSAS database to disk for subsequent processing.

RESTART WRITE [BRIEF] [ndump]
ndump The number of the restart dump to be written.

\section*{Notes}
1. Restart files are written to a file of the same name as the data file but with an extension of .rst.
2. May be placed after any LOAD CASE data chapter for nonlinear problems.
3. The RESTART WRITE BRIEF command will dump sufficient information to enable a problem to be restarted for LOAD COMBINATIONS. This option cannot be used for restarting any other problem.
4. If no dump number is specified the dump number will be incremented by one from the previous highest value.
5. If a dump number is specified that already exists, a warning message will be printed and the dump will be overwritten.
6. In a nonlinear problem a dump will only be written if the solution converged.
7. When carrying out a nonlinear, dynamic, transient or a viscous analysis the restart write file should be requested by setting the incrst parameter within the OUTPUT data section in the appropriate data chapter.
8. If a nonlinear, dynamic, transient or a viscous analysis terminates and restart dumps have been requested a restart dump will always be created for the last increment.
9. Selecting Option 251 will generate a restart file from a data check phase. To complete the analysis after a successful data check, initiate the restart file and LUSAS will recommence the analysis at the equation solution phase. This particular restart facility is only valid for a linear static problem and is not available for other types of analyses.

\section*{Reading from a Restart File}

The data section RESTART READ is used to control reading of the written LUSAS database from disk for subsequent processing.

\section*{RESTART READ [ndump] [fname]}
ndump The number of the RESTART WRITE dump to be recovered (default = last saved dump).
fname The file name of the restart file (without extension). (default \(=\) name of data file).

\section*{Notes}
1. The filename extension .rst is used for all restart files.
2. The RESTART READ data command must be the first line of any restart processing (unless a SYSTEM command is present in which case the RESTART READ will follow this).
3. Further data may be stored in the restart file after a RESTART READ.
4. A new LUSAS Modeller plot file will be created in a nonlinear, dynamic, transient or viscous analysis if required after a RESTART READ. The existing plot file can
be used by setting Option 204 either in the previous analysis or in the restart data file.
5. Any system parameters specified in the previous analysis must be respecified on restart.
6. A RESTART analysis can be utilised to create a LUSAS Modeller plot file only.

\section*{Example. Restart Read}

To create a plot file only:
```

RESTART READ

```
PLOT FILE
END

To continue a nonlinear analysis:
RESTART READ
LOADCASE

NONLINEAR CONTROL

END
To perform a pre-solution restart analysis created using Option 251:
```

RESTART READ filename

```
PLOT FILE
END

\section*{Re-Solution}

The reduced stiffness matrices for linear elastic analyses can be saved to disk by specifying option 279 when using the restart facility. This allows subsequent analyses to process additional load cases using the matrix stored on disk to reduce solution times. The stiffness file takes a default .stf extension, and the location of the stored stiffness file can be changed using the STIFFNESS environment variable. The stiffness file changes during the re-solution phase. The highest load case from the previous resolution is stored in the file. Loadcases will be numbered in ascending order if not otherwise specified on the LOAD CASE line, as is the default when the data file is tabulated by Modeller. The stiffness file must have the same name as the restart file, but with a .stf extension.

The stiffness matrix is accessed for re-solution using the RESTART READ command, and it must be available when the restart file is read if option 279 was used when the restart file was created. If LUSAS cannot locate a stiffness file while reading the restart file, an error will be issued. If the stiffness file has accidentally been erased or corrupted, it should be recreated by re-running the original analysis.

The data syntax for creating a stiffness file using the restart write command is as follows:
```

problem title re-solution
options 279
...
load case
restart write
end processed by specifying the following syntax:

```
```

restart read filename

```
restart read filename
load case
...
load case
load case
end
```

The stiffness file is read using the restart read command and subsequent load cases are

## Notes

1. It is advisable to always work on a backup copy of the stiffness file as it can become corrupted if LUSAS terminates with an error while accessing the file.
2. The stiffness file cannot be split using the method outlined for splitting the frontal file.

## End_stage

END_STAGE is used to mark the end of the stage of loading. Commands read up to this point will be executed, once completed, the reading of the datafile will recommence at the line following the END_STAGE command.

## END STAGE

## End

The data section END is used to terminate the current problem data file and is mandatory.

END

## Notes

1. The END statement must be the last data section in the analysis datafile.

# Appendix A LUSAS User Options 

For usability LUSAS User Options are listed by option number and also by Category

## LUSAS User Options

No.	Effect of option (plus related notes where applicable)	Category
2	Suppress node coordinate checks for similar coordinates and missing nodes	INPUT
4	No overwriting present in data exit on first occurrence	INPUT
14	Compute element stresses and strains (plates/flat shells)	PROCESSING
16	Continue nonlinear/eigenvalue solution when failed to converge	NONLINEAR / EIGENVALUES
17	Keep global matrix assembly in-core for fast/iterative solvers	NONLINEAR
18	Invokes finer numerical integration rules for elements	INTEGRATION
19	Invokes coarse numerical integration rule for semiloof	INTEGRATION
20	Invokes non-orthogonal concrete crack model (concrete model 24)	INTEGRATION
22	Invokes fracture energy strain-softening model (concrete model 24)	INTEGRATION
23	Invokes strain-variable shear retention model (concrete model 24)	INTEGRATION
26	Reduce number of lines output in coordinates	OUTPUT
27	Output load variable/optimisation data	OUTPUT
30	Output final node coordinates in ascending order	OPTIMISATION
32	Suppresses stress output but not stress resultant output	OUTPUT
33	Output direction cosines of local cartesian systems for interface	OUTPUT
34	Output element stress resultants	OUTPUT
36	Follower loads (available for selected elements)	NONLINEAR
39	Stress smoothing for rubber material models	OUTPUT
40	Output nodal displacement increments for nonlinear analyses	OUTPUT

No. Effect of option (plus related notes where applicable) Category
42 Output nodal residual forces (nonlinear) OUTPUT
44 Suppress expanded input data printout except load cases
45 Suppress expanded input data printout for load cases
46 Suppress page skip between output stages
47 Axisymmetry about the global X-axis
OUTPUT
INPUT
OUTPUT
48 Switch CBF input from Force/unit volume to acceleration
INPUT
49
Automatic correction of midside nodes
INPUT

51 Data processing only
53 Positive definite/singularity check on modulus matrix at each Gauss point

Output strains as well as stresses
Output local direction cosines for shells
All 2D slideline surfaces defined with outward normals
Continue solution if more than one negative pivot occurs
Non-symmetric frontal solution
Calculate element internal forces
Echo nodal data read from data transfer file
Suppress machine code inner loops
Output principal stresses and directions for solids
Total Lagrangian geometric nonlinearity
Formulate element mass with fine integration
Suppress intermediate eigenvalue output for Subspace or bracketing methods
100 Output optimum frontal solution order
102 Switch off load correction stiffness matrix due to centripetal acceleration
105 Lumped mass matrix
110 Use assumed shear strain field for QTS8 thick shell elements
111 Don't include superelement generation load
115 Output displacements and reactions in transformed axes
116 Suppress the output of internal constraint forces
117 Invokes geometric assignments input
118 Invokes material assignments input
119 Invokes temperature input for joints (by default no temperature in joints)
123 Clockwise node numbering
124 Save shape function array for restarts
131 Parallel frontal solver algorithm
134 Gauss to Newton-Cotes integration for elements
136 Stress resultants by $\mathrm{f}=\mathrm{Kd}$ and cubic interpolation
137 Stress resultants by $\mathrm{f}=\mathrm{Kd}$ and equilibrium
138 Output yield flags only

INPUT
INPUT
PROCESSING
NONLINEAR
OUTPUT
OUTPUT
INPUT
NONLINEAR
SOLVER
PROCESSING
COUPLED
OPTIMISATION
OUTPUT
NONLINEAR
INTEGRATION
EIGENVALUES
OPTIMISATION
LOADING
DYNAMICS
PROCESSING
PROCESSING
OUTPUT
OUTPUT
INPUT
INPUT
INPUT

RESTART
SOLVER
INTEGRATION PROCESSING PROCESSING NONLINEAR

No. Effect of option (plus related notes where applicable) Category
139 Output yielded, cracked or crushed integration points only for MNL
143 Output shear forces in plate bending elements.
144 Output element results for each load case separately
146 Include stiffness (second) Rayleigh damping parameter
147 Omit output phase
$155 \quad 14$ point integration rule for HX20
$156 \quad 13$ point integration rule for HX20
157 Material Model 29 required (mandatory with non-crosssection elements)
164 Guide arc-length solution with current stiffness parameter
167 Eulerian geometric nonlinearity
169 Suppress extrapolation of stress to nodes for semiloof shell
170 Suppress storage of shapes
171 Use standard shear strain field for QTS4 thick shell elements
172 Formulate modulus matrix by integrating across the crosssection
179 Verify arguments to user-supplied constitutive model routines
181 Harmonic response/complex mode output required in polar system
183 Double convergence check on coupled analyses running concurrently
184 Suppress stringent slave search for slideline problems
185 Suppress initial slideline_surface stiffness check
186 Suppress initial penetration check for slidelines
187 Include all variables in convergence norm computations
197 Fast element stiffness formulation without sparsity checks
202 Apply CLs in local cylindrical coordinates with Fourier elements
204 Use existing Plot file after restarting an analysis
207 Use angle in degrees to define direction of anisotropy for user-defined materials
208 Write plot file in pre version 11.0 format (not valid for explicit dynamics)
225 Use alternative number of parameters for enhanced strain interpolation function
227 Error if a value is outside the bounds of a table of values
229 Co-rotational nonlinear geometric formulation
230 Suppress stress calculation for eigenvalue analysis
231 Error for material direction cosines not in plane of semiloof elements
235 Heat fraction specified for thermal softening

OUTPUT
OUTPUT
NONLINEAR

DYNAMICS
OUTPUT
INTEGRATION
INTEGRATION
NONLINEAR
NONLINEAR NONLINEAR
OUTPUT
OPTIMISATION
INTEGRATION
INTEGRATION
NONLINEAR
OUTPUT
COUPLED
SLIDELINES
SLIDELINES
SLIDELINES
NONLINEAR
OPTIMISATION
LOADING
RESTART
INPUT
OUTPUT
INTEGRATION
PROCESSING
NONLINEAR
OPTIMISATION
PROCESSING

INPUT

No.	Effect of option (plus related notes where applicable)	Category
242	Temperatures input and output in degrees Celsius	INPUT
247	Extra output for iterative solvers	SOLVER
250	Datafile has been created by Modeller	INPUT
251	Data processing and create a restart file (linear static analyses only)	INPUT
252	Suppress pivot warning messages from frontal solution algorithm	SOLVER
253	Emissivity specified in thermal environment properties	INPUT
254	Output all eigensolutions computed using inverse iteration	EIGENVALUE
255	Output all radiation surface view factors to FACET file.	OUTPUT
256	Suppress recalculation of radiation view factors in coupled analyses	COUPLED
259	Save nodal stresses in plot file to avoid stress extrapolation in Modeller	OUTPUT
261	Switch for selecting root with lowest residual norm (arclength method)	NONLINEAR
266	Layer by layer computation of mass matrix for solid composites	INTEGRATION
269	Exclude PDSPs from displacement norm evaluation	PROCESSING
271	Save load records	PROCESSING
272	Activate or deactivate elements	PROCESSING
275	Automatic time step calculation for implicit dynamics	DYNAMICS
278	Assign six degrees of freedom to all thick shell element nodes	PROCESSING
279	Save the reduced stiffness for further use in a linear analysis	SOLVER
281	Autoloader file	PROCESSING
289	Plastic work is to be transferred in a coupled analysis	COUPLED
290	Write element stiffness and mass matrices to plot file	OUTPUT
303	Exclude incompatible modes for solid composite elements	PROCESSING
304	Plot/restart databases open until end of analysis. Speeds subsequent dumps.	OUTPUT
308	Arc-length solution using local relative displacements (interface elements)	NONLINEAR
310	Output results to user-defined output file	OUTPUT
311	Compute number of eigenvalues in specified range and terminate analysis	EIGENVALUE
318	Adaptive Analysis: Overwrite disp's with interpolated disp's from old mesh	PROCESSING
320	Global matrix (and righthand side) assembly and output only	OUTPUT
323	Extra preconditioning for iterative solver with a hierarchical basis	SOLVER


No.	Effect of option (plus related notes where applicable)	Category
324	Specify damping properties for joint properties general   explicitly	INPUT
340	Allow application of angular velocities with nonlinear auto   incrementation	NONLINEAR
342	Always output progress information during solution	OUTPUT
344	Suppress condition number estimate in fast solvers	SOLVER
345	Separate plot file for each analysis step	OUTPUT
346	Single segment contact from beginning of problem	PROCESSING
347	Single segment contact from beginning of second   increment	PROCESSING
348	Slideline summary output	
352	Turn off consistently linearised formulation for slidelines	OUTPUT
353	SLIDELINES of a fixed penalty parameter with slidelines	
355	Slideline Cohesion with Coulomb friction in 2D   363	Suppress echo of computed laminate properties in output   file (woven fabric material)
364	Srite element stiffness, mass and damping matrices to plot	OUTPUT


No.	Effect of option (plus related notes where applicable)	Category
398	Use all 27/18 integration points for stress extrapolation for 20/16 node solids with fine integration	INTEGRATION
399	Retain inactive elements in birth and death solution (old analysis type)	PROCESSING
402	Capillary pressure .F. (default) or Water saturation .T. is 2nd DOF in the hygro-thermal analysis (to be set by Modeller)	SOLVER
403	Introduce residual bending flexibility correction for 2-node thick beam BMI21	SOLVER
404	Compute equivalent nodal loading from equilibrium considerations for 2-node thick beam BMI21	SOLVER
405	Specify geometric properties along beam centroidal axes	INPUT
406	Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes	LOADING
407	Suppress mandatory use of fine integration with the concrete material model (model 94)	INTEGRATION
412	Carry out an undrained solution using two-phase elements (not applicable for consolidation analysis)	SOLVER
414	Introduce residual bending flexibility correction for 2-node thick beam BTS3	SOLVER
416	Data file created in v15.0 or later	PROCESSING
417	Introduce residual bending flexibility correction for 3-node thick shell TTS3	PROCESSING
418	Output stress resultants relative to beam centroidal axes for eccentric elements	OUTPUT
420	Activate spring supports in undeformed location	PROCESSING
421	P-Delta analysis	NONLINEAR
422	Use assumed transverse shear strain field for TTS3 thick shell element	PROCESSING
427	Compute true torsional rigidity for BMX21	PROCESSING
428	Eigenvalue buckling of a stressed structure	EIGENVALUE
432	Use P-Delta geometric stiffness matrix of thick beams for linear buckling analysis	EIGENVALUE
433	Use Hermitian shape functions to formulate the mass matrix for 2-node thick beams	DYNAMICS

## LUSAS User Options by Category

No.	Effect of option (plus related notes where applicable)	Category
70	Echo nodal data read from data transfer file	COUPLED
183	Double convergence check on coupled analyses running   concurrently	COUPLED
256	Suppress recalculation of radiation view factors in coupled      289	COnalyses


No.	Effect of option (plus related notes where applicable)	Category
324	Specify damping properties for joint properties general explicitly	INPUT
405	Specify geometric properties along beam centroidal axes	INPUT
18	Invokes finer numerical integration rules for elements	INTEGRATION
19	Invokes coarse numerical integration rule for semiloof	INTEGRATION
20	Invokes non-orthogonal concrete crack model (concrete model 24)	INTEGRATION
22	Invokes fracture energy strain-softening model (concrete model 24)	INTEGRATION
23	Invokes strain-variable shear retention model (concrete model 24)	INTEGRATION
91	Formulate element mass with fine integration	INTEGRATION
134	Gauss to Newton-Cotes integration for elements	INTEGRATION
155	14 point integration rule for HX20	INTEGRATION
156	13 point integration rule for HX20	INTEGRATION
171	Use standard shear strain field for QTS4 thick shell elements	INTEGRATION
172	Formulate modulus matrix by integrating across the crosssection	INTEGRATION
225	Use alternative number of parameters for enhanced strain interpolation function	INTEGRATION
266	Layer by layer computation of mass matrix for solid composites	INTEGRATION
395	Use 14-point fine integration rule for mass matrix of TH10 family (used together with 91)	INTEGRATION
396	Improved top/middle/bottom transverse shear stress calculation for thick shell elements	INTEGRATION
398	Use all 27/18 integration points for stress extrapolation for 20/16 node solids with fine integration	INTEGRATION
407	Suppress mandatory use of fine integration with the concrete material model (model 94)	INTEGRATION
102	Switch off load correction stiffness matrix due to centripetal acceleration	LOADING
202	Apply CLs in local cylindrical coordinates with Fourier elements	LOADING
381	Apply CBF, ELDS,UDL loads along beam axes with BMS3 elements	LOADING
385	Preserve loading assigned to deactivated elements for subsequent application on activation	LOADING
406	Specify CBF, UDL, SSI, SSR and TEMP loads along beam centroidal axes	LOADING
17	Keep global matrix assembly in-core for fast/iterative solvers	NONLINEAR
36	Follower loads (available for selected elements)	NONLINEAR

No. Effect of option (plus related notes where applicable) Category
54 Updated Lagrangian geometric nonlinearity NONLINEAR
62 Continue solution if more than one negative pivot occurs
NONLINEAR
87 Total Lagrangian geometric nonlinearityNONLINEAR
138 Output yield flags only
139 Output yielded, cracked or crushed integration points onlyNONLINEARfor MNL
157 Material Model 29 required (mandatory with non-cross- section elements)
164 Guide arc-length solution with current stiffness parameter
167 Eulerian geometric nonlinearity
179 Verify arguments to user-supplied constitutive model routines
187 Include all variables in convergence norm computations
NONLINEAR
NONLINEAR
NONLINEAR
NONLINEAR
NONLINEARNONLINEAR
229 Co-rotational nonlinear geometric formulation
261 Switch for selecting root with lowest residual norm (arc- length method)
308 Arc-length solution using local relative displacements (interface elements)
340 Allow application of angular velocities with nonlinear auto incrementation
370 Strain hardening approach to modified von Mises and Hoffman material models (77/78)
421 P-Delta analysis
16 Continue nonlinear/eigenvalue solution when failed to converge
30 Output final node coordinates in ascending order
72 Suppress machine code inner loops
100 Output optimum frontal solution order
170 Suppress storage of shapes
197 Fast element stiffness formulation without sparsity checks
NONLINEAR
230 Suppress stress calculation for eigenvalue analysis
26 Reduce number of lines output in coordinates
OPTIMISATION27 Output load variable/optimisation dataOPTIMISATION
OUTPUT
OUTPUT
32 Suppresses stress output but not stress resultant outputOUTPUT
33 Output direction cosines of local cartesian systems for interface
34 Output element stress resultants OUTPUT
39 Stress smoothing for rubber material models ..... OUTPUT
40 Output nodal displacement increments for nonlinear OUTPUTanalyses
OUTPUT
44 Suppress expanded input data printout except load cases ..... OUTPUT
46 Suppress page skip between output stages OUTPUT
55 Output strains as well as stresses ..... OUTPUT

No.	Effect of option (plus related notes where applicable)	Category
59	Output local direction cosines for shells	OUTPUT
77	Output principal stresses and directions for solids	OUTPUT
115	Output displacements and reactions in transformed axes	OUTPUT
116	Suppress the output of internal constraint forces	OUTPUT
143	Output shear forces in plate bending elements.	OUTPUT
144	Output element results for each load case separately	OUTPUT
147	Omit output phase	OUTPUT
169	Suppress extrapolation of stress to nodes for semiloof shell	OUTPUT
181	Harmonic response/complex mode output required in polar system	OUTPUT
208	Write plot file in pre version 11.0 format (not valid for explicit dynamics)	OUTPUT
255	Output all radiation surface view factors to FACET file.	OUTPUT
259	Save nodal stresses in plot file to avoid stress extrapolation in Modeller	OUTPUT
290	Write element stiffness and mass matrices to plot file	OUTPUT
304	Plot/restart databases open until end of analysis. Speeds subsequent dumps.	OUTPUT
310	Output results to user-defined output file	OUTPUT
320	Global matrix (and righthand side) assembly and output only	OUTPUT
342	Always output progress information during solution	OUTPUT
345	Separate plot file for each analysis step	OUTPUT
348	Slideline summary output	OUTPUT
363	Suppress echo of computed laminate properties in output file (woven fabric material)	OUTPUT
364	Write element stiffness, mass and damping matrices to plot file	OUTPUT
373	Extended input data diagostics for CEB-FIP creep and shrinkage model	OUTPUT
380	Output stress resultants relative to beam axes for eccentric BTS3 elements	OUTPUT
389	Echo thermal link elements to output file	OUTPUT
390	Include selected results in plot file for data-onlyprocessing	OUTPUT
418	Output stress resultants relative to beam centroidal axes for eccentric elements	OUTPUT
14	Compute element stresses and strains (plates/flat shells)	PROCESSING
53	Positive definite/singularity check on modulus matrix at each Gauss point	PROCESSING
66	Calculate element internal forces	PROCESSING
110	Use assumed shear strain field for QTS8 thick shell elements	PROCESSING
11	Don't include superelement generation load	PROCESSING


No.	Effect of option (plus related notes where applicable)	Category
136	Stress resultants by f=Kd and cubic interpolation	PROCESSING
137	Stress resultants by f=Kd and equilibrium	PROCESSING
227	Error if a value is outside the bounds of a table of values	PROCESSING
231	Error for material direction cosines not in plane of	PROCESSING
	semiloof elements	
269	Exclude PDSPs from displacement norm evaluation	PROCESSING
271	Save load records	PROCESSING
272	Activate or deactivate elements	PROCESSING
278	Assign six degrees of freedom to all thick shell element	PROCESSING
	nodes	
281	Autoloader file	PROCESSING
303	Exclude incompatible modes for solid composite elements	PROCESSING
318	Adaptive Analysis: Overwrite disp's with interpolated	PROCESSING
	disp's from old mesh	
346	Single segment contact from beginning of problem	PROCESSING
347	Single segment contact from beginning of second	PROCESSING
	increment	
385	Preserve loading assigned to deactivated elements for	PROCESSING
	subsequent application on activation	
387	Redefine NSET to angle in element xy-plane for use in	PROCESSING
	orthotropic material properties	
388	Use duplicate nodes facility for collapsed elements	PROCESSING
394	Lamina directions supported	PROCESSING
397	With data-only-processing, compute memory requirements	PROCESSING
	for solution of equations	
399	Retain inactive elements in birth and death solution (old	PROCESSING
	analysis type)	
416	Data file created in v15.0 or later	PROCESSING
417	Introduce residual bending flexibility correction for 3-node	PROCESSING
	thick shell TTS3	
420	Activate spring supports in undeformed location	PROCESSING
422	Use assumed transverse shear strain field for TTS3 thick	PROCESSING
427	shell element	Compute true torsional rigidity for BMX21
124	Save shape function array for restarts	PROCESSING
204	Use existing Plot file after restarting an analysis	RESTART
184	Suppress stringent slave search for slideline problems	RESTART
185	Suppress initial slideline_surface stiffness check	SLIDELINES
186	Suppress initial penetration check for slidelines	SLIDELINES
352	Turn off consistently linearised formulation for slidelines	SLIDELINES
353	Use of a fixed penalty parameter with slidelines	
355	Slideline Cohesion with Coulomb friction in 2D	SLIDELINES
386	Use of weighted force/stiffness distribution with slidelines	SLIDELINES
	SLINES	

No. Effect of option (plus related notes where applicable) Category
131 Parallel frontal solver algorithm ..... SOLVER
247 Extra output for iterative solvers ..... SOLVER
252 Suppress pivot warning messages from frontal solution SOLVER algorithm
279 Save the reduced stiffness for further use in a linear SOLVER analysis
323 Extra preconditioning for iterative solver with a SOLVER hierarchical basis
344 Suppress condition number estimate in fast solvers SOLVER
376 Suppress use of METIS ordering for fast solvers
SOLVER
377 Use minimum amount of memory for BCS solvers ..... SOLVER
403 Introduce residual bending flexibility correction for 2-node ..... SOLVER thick beam BMI21
404 Compute equivalent nodal loading from equilibrium SOLVERconsiderations for 2-node thick beam BMI21
412 Carry out an undrained solution using two-phase elements SOLVER (not applicable for consolidation analysis)
414 Introduce residual bending flexibility correction for 2-node SOLVER thick beam BTS3

## Appendix B Nonlinear Hardening Material Convention

## Nonlinear Hardening Material Convention

$$
\sigma \text { (engineering stress) }
$$



Using the slope of the uniaxial yield stress against equivalent plastic strain:

$$
\square \quad C=\frac{E_{p}}{\left(1-\frac{E_{p}}{E}\right)}
$$

we have:

$$
\square E_{\mathrm{p} 1}=\frac{\sigma_{1}-\sigma_{\mathrm{y}}}{\varepsilon_{1}-\varepsilon_{\mathrm{y}}} \quad \text { and } \quad \mathrm{E}_{\mathrm{p} 2}=\frac{\sigma_{2}-\sigma_{1}}{\varepsilon_{2}-\varepsilon_{1}}
$$

where:

$$
\varepsilon_{\mathrm{y}}=\frac{\sigma_{\mathrm{y}}}{\mathrm{E}} \quad \varepsilon_{1}=\varepsilon_{1}^{\mathrm{e}}+\varepsilon_{1}^{\mathrm{p}} \quad \varepsilon_{2}=\varepsilon_{2}^{\mathrm{e}}+\varepsilon_{2}^{\mathrm{p}}
$$

which may be substituted into the top equation to give the corresponding C values for each section:

$$
\square \quad C=\frac{E_{p}}{\left(1-\frac{E_{p}}{E}\right)} \quad(\mathrm{Ep}<\mathrm{E})
$$

Now the strain values required by LUSAS are the $\varepsilon_{1}^{p}, \varepsilon_{2}^{p}$, etc. The limit on the equivalent plastic strain up to which the hardening curve is valid are, thus:

$$
\begin{aligned}
& \square \quad L_{1}=\varepsilon_{1}-\varepsilon_{1}^{\mathrm{e}}=\varepsilon_{1}-\frac{\sigma_{1}}{\mathrm{E}} \\
& \text { and } \\
& \square \quad L_{2}=\varepsilon_{2}-\varepsilon_{2}^{\mathrm{e}}=\varepsilon_{2}-\frac{\sigma_{2}}{\mathrm{E}}
\end{aligned}
$$

The converted curve for LUSAS use would, therefore, be as follows:


Equivalent plastic strain

# Appendix C Material Model Interface 

## Solver User Interface Routines

A number of interface facilities are available within the LUSAS Solver. Since the specification of these facilities requires both external development of FORTRAN source code and access to the Solver object libraries, these facilities are aimed at the advanced user.

The object libraries and user-interface routines needed for external code development are provided in the LUSAS MMI kit. The kit also includes workspace and project files that allow the development of external code in a visual environment on a PC, and which enable the compilation and linking of that code into Lusas Solver. Please contact your local distributor for further details.

## User Defined Constitutive Models

For continuum based models the user is required to define three subroutines in FORTRAN to carry out the following tasks:

- USRKDM defines the modulus matrix.
- USRSTR defines the current stress and material state and state variables.
- USRSVB outputs evaluated non-linear state variables.

For resultant based models the user is required to define the following subroutines:

- USRRDM defines the modulus matrix.
- USRRST defines the current stress and material state and state variables.
- USRSVB outputs evaluated non-linear state variables.

See Material Properties Nonlinear User and Material Properties Nonlinear Resultant User for data syntax details.

## User Defined Creep Models

This facility allows the specification of a creep law for a particular material if the creep models available in LUSAS Solver are inappropriate. The user-supplied subroutine

USRCRP allows specification of creep laws that are a function of stress, strain and temperature history.

See Creep Properties User for data syntax details.

## User Defined Damage Models

The user-supplied damage subroutine USRDAM permits external computation of the damage variable and its derivative with respect to the current elastic complementary energy norm.

See Damage Properties User for data syntax details.

## User Defined Viscoelastic Models

This facility permits an externally developed viscoelastic material model to be used within Lusas. The user-supplied viscoelastic subroutine USRDMV is used to compute the viscoelastic contribution to the modulus matrix.

See Visco Elastic Properties User for data syntax details.

## User Defined Friction Models

The user-supplied subroutine USRSLF permits a non-linear friction law to be utilised in a slideline analysis. The friction law may be a function of the surface temperatures, the relative velocities and/or accelerations of adjacent surfaces and a set of user-defined friction parameters.

See Slideline Properties User for data syntax details.

## User Defined Rate of Internal Heat Generation

The user-supplied subroutine USRRHG permits the way in which internal heat is generated in a thermal analysis to be defined. This can be defined to be a function of temperature, time and chemical reaction. The parameters used to control the chemical reaction are specified under the RIHG USER data chapter. In a thermo-mechanical coupled analysis, variables defining the degree and rate of chemical reaction (or cure) may be transferred to the structural analysis where they can be accessed in the user interface routines USRKDM and USRSTR. The modulus matrix and stress computations may then become a function of degree or rate of cure.

See RIHG User for data syntax details.

## Software Required

A compatible FORTRAN compiler is required to include user-defined subroutines. Call your LUSAS distributor for details.

## Programming Rules

## Modification of External Arguments

It is important that only those arguments indicated in the user-programmable routines are modified. All other arguments may be manipulated as required, but must remain unchanged.

Although LUSAS contains a large number of system error traps, specifically designed to detect internally corrupted variables and artificially terminate the analysis procedure in a controlled manner, this process cannot generally be guaranteed. Hence, illegal modification of arguments may lead to unpredictable analysis termination or corrupt solutions. LUSAS can accept no responsibility in such circumstances.

For the same reason it is important that the DIMENSION, CHARACTER and LOGICAL declarations within the user-programmable subroutines are not modified or deleted. Only code between the lines indicated may be modified externally. These subroutines are described in detail in the following chapters.

## Verification

The incoming and outgoing arguments to the user-programmable subroutines may be verified via lower level subroutines that are also provided. Access to the verification subroutines is activated by specification of Option 179 in the analysis data file. The arguments to these routines should not be altered.

The logical variable FEA is for LUSAS/FEA use only. These verification routines are described in detail in the following chapters.

## External Error Diagnosis

The logical error flag (ERROR) is initialised to .FALSE., and may be used to detect a fatal error within the externally supplied FORTRAN code. On exit from the userprogrammable subroutines detection of ERROR=.TRUE. will activate a controlled termination of the analysis procedure.

## Argument Definition Codes

In the descriptions of all subroutines in the sections that follow, abbreviations are used to differentiate between variables and arrays for integer, real logical and character variables. These definitions are shown in the table right.

## Declaration

Code	Variable type	Code	Array type
IV	integer variable	IA	integer   array
RV	real variable	RA	real array
LV	logical variable	LA	logical array
CV	character   variable	CA	character   array

FEA Ltd (LUSAS) can accept no responsibility whatsoever for any analysis or programming results obtained through use of the user-programmable CONSTITUTIVE MODELS, CREEP, DAMAGE, NONLINEAR FRICTION or MODELLER RESULTS. Whilst FEA Ltd can validate that the arguments are passed correctly through the interfaces to the user-programmable subroutines, FEA Ltd cannot be held responsible for any programming or alterations carried out by the user within these routines.

FEA Ltd cannot guarantee that the interfaces to the above-named user routines will continue to remain in the form described in this manual.

## User Defined Constitutive Models

## Continuum models

All constitutive models defined under MATERIAL PROPERTIES NONLINEAR USER utilise continuum stresses and strains and the user defined routines interface with code at the material integration point level. For continuum based elements (for example, bars, 2D and 3D continuum) this is within a Gauss point loop. For resultant based elements (for example semi-loof beams and shells) this is at a fibre or layer sampling position within the Gauss point loop.

The constitutive relationship is assumed to be of the form:

$$
\square[\Delta \boldsymbol{\sigma}]=[D][\Delta \varepsilon]
$$

where $[\Delta \boldsymbol{\sigma}]$ are the increments of continuum stress, $[\Delta \boldsymbol{\varepsilon}]$ are the increments of continuum strain and $[\boldsymbol{D}]$ is the constitutive or modulus matrix. The modulus matrix is explicitly defined by the user via the externally developed FORTRAN subroutine, USRKDM, and is of the form:

$$
\square[\mathrm{D}]=\left[\begin{array}{ccccc}
\mathrm{D}_{11} & \mathrm{D}_{12} & \mathrm{D}_{13} & \cdots & \mathrm{D}_{1, \text { ndse }} \\
\mathrm{D}_{21} & \mathrm{D}_{22} & \mathrm{D}_{23} & & \mathrm{D}_{2, \text { ndse }} \\
& \vdots & & \ddots & \vdots \\
\mathrm{D}_{\text {,ndse,1 }} & \mathrm{D}_{\text {,ndse,2 }} & \mathrm{D}_{\text {,ndse,3 }} & \cdots & \mathrm{D}_{\text {,ndse,ndse }}
\end{array}\right]
$$

where ndse is the number of continuum stresses or strains at a material sampling point. The number of continuum stresses or strains at a point is related to the LUSAS model number mdl, and is a constant for each element type.

The continuum stress and strain components, and their associated model number (mdl) are tabulated for each applicable LUSAS element group below:

mdl	Model type	Components	ndse
1	Uniaxial	xx	1
2	Plane stress	$\mathrm{xx}, \mathrm{yy}, \mathrm{xy}$	3
2	Semi-loof shell	$\mathrm{xx}, \mathrm{yy}, \mathrm{xy}$	3
3	Plane strain   (approximate)	$\mathrm{xx}, \mathrm{yy}, \mathrm{xy}$	3
4	Axisymmetric	$\mathrm{xx}, \mathrm{yy}, \mathrm{xy}, \mathrm{zz}$	4
5	3D beams	$\mathrm{xx}, \mathrm{xy}, \mathrm{xz}$	3
6	Solids	$\mathrm{xx}, \mathrm{yy}, \mathrm{zz}, \mathrm{xy}$,	6
7	3D semi-loof beams	$\mathrm{yz}, \mathrm{zx}$	$\mathrm{xx}, \mathrm{xy}, \mathrm{xz}, \mathrm{yz}$
8	Axisymmetric sheet and	$\mathrm{xx}, \mathrm{yy}$	4
	shell	2	
9	Axisymmetric thick	$\mathrm{xx}, \mathrm{xy}, \mathrm{zz}$	3
	shell		
10	Thick plane beam	$\mathrm{xx}, \mathrm{xy}$	2
11	Plane strain	$\mathrm{xx}, \mathrm{yy}, \mathrm{xy}, \mathrm{zz}$	4
12	Thick shells	$\mathrm{xx}, \mathrm{yy}, \mathrm{xy}, \mathrm{yz}$,	5
		zx	

## User Material Properties Input

The user material properties are input in a similar manner as the other LUSAS material types.

The user material input consists of a total of nprz material parameters, the first 15 of which are specifically for LUSAS use. These 15 properties are required should the user wish to utilise some of the other LUSAS analysis types (e.g. thermal or dynamic analyses) for which material parameters are required. The temperature is specified should the user wish to use temperature dependent properties. Material properties 16 to nprz must be supplied by the user in the order required by the user-supplied routines. It should be noted however, that all nprz properties can be used within the user routines. These properties, relating to the current temperature, are stored in the array ELPR. Values for the complete table of reference temperatures are stored in array ELPRT.

The 15 specific properties are:

$$
\begin{array}{cl}
\mathbf{1} & \text { Young's modulus }(\mathrm{E}) \\
\mathbf{2} & \text { Poisson's ratio }(v) \\
\mathbf{3} & \text { Mass density }(\rho) \\
\mathbf{4 - 9} & \text { Coefficients of thermal expansion }\left(\alpha_{x}, \alpha_{y}, \alpha_{z}, \alpha_{x y}, \alpha_{y z}, \alpha_{x z}\right) \\
\mathbf{1 0} & \text { Mass Rayleigh damping parameter }\left(\mathrm{a}_{\mathrm{r}}\right) \\
\mathbf{1 1} & \text { Stiffness Rayleigh damping parameter }\left(\mathrm{b}_{\mathrm{r}}\right) \\
\mathbf{1 2} & \begin{array}{l}
\text { Heat fraction }\left(\mathrm{h}_{\mathrm{f}}\right) \\
\mathbf{1 3}
\end{array} \\
\text { Reference temperature }(\mathrm{T}) \\
\mathbf{1 4} & \begin{array}{l}
\text { Angle of anisotropy }(\theta) \text { measured in degrees relative to the reference } \\
\text { axes (with Option 207 set), or the Cartesian set number (nset) defining } \\
\text { the local reference axes. }
\end{array}
\end{array}
$$

15 Not used at present.
Together with the user material properties the user also needs to specify the following integer numbers for the specific material defined:

- Iptusr a number which identifies the particular user material model.
- nprz the total number of material properties used.
- nstat the number of nonlinear state variables that are used in the material model (these variables will be output together with the Gauss point stresses/strains). The value of nstat must not be less than 1 .

The numbers are specified on the data input line for the user material model as follows:
MATERIAL PROPERTIES NONLINEAR USER lptuser nprz nstat
See the User-Supplied Nonlinear Material Properties section for more details.

## Evaluation of the Modulus Matrix

The modulus matrix [D] is explicitly defined via the externally supplied FORTRAN subroutine USRKDM. The routine is called at the material integration point level, from both the LUSAS Solver pre-solution and post-solution analysis modules. On entry to USRKDM, the modulus matrix [D] is fully initialised (each array component set to floating point real zeros). Hence, only the non-zero components of the modulus matrix need be evaluated. The returned modulus matrix must be symmetrical about the leading diagonal.

## Nonlinear Stress Recovery

The stress recovery algorithm is defined explicitly via the externally supplied FORTRAN subroutine USRSTR, and is concerned with the evaluation of:

- Stress State the current stress state,
- Material State the current material state (as indicated by the nonlinear state variables),
- Nonlinear Variables additional associated nonlinear variables.

The routine is called at the material integration point level, from the LUSAS Solver post-solution analysis module. Stresses, strains and nonlinear state variables are available as current values, values at the end of the previous iteration, and values at the start of the current increment.

The procedure for updating incremental and iterative variables from the evaluated current values is automatically performed by LUSAS Solver. Consequently, modifications should be restricted to current values only.

## Stress/Strain Formulation

For the Eulerian formulation and Green-Naghdi rate formulation, the stress components have been rotated to the initial configuration using the rotation matrix evaluated using polar decomposition. The stress rotation matrix is therefore that of the current configuration.

For the Jaumann rate formulation, the stress components at time $t$ have been rotated to the current configuration. The stress rotation matrix is then the incremental spin matrix. In addition, no total strain is evaluated for the Jaumann rate.

## Nonlinear State Variable Output

The output of the evaluated nonlinear state variables is controlled via the externally supplied FORTRAN subroutine, USRSVB. The routine is called at the material integration point level, from the LUSAS Solver output analysis module.

Default nonlinear state variable output for user supplied constitutive models is of the form shown below ( 6 variables to a line, to a total of nstat values. Nonlinear state variables for user-supplied models are output by default and are not subject to LUSAS Solver Options 138 and 139.

$$
\begin{aligned}
& \text { NL STATE VARIABLES } \\
& 0.0000 \mathrm{E}+000.0000 \mathrm{E}+000.0000 \mathrm{E}+00 \\
& \text { (contd.) } \\
& 0.0000 \mathrm{E}+000.0000 \mathrm{E}+000.0000 \mathrm{E}+00
\end{aligned}
$$

The output of stresses, and optionally strains, follows the normal pattern for the particular element type, i.e. it is subject to the usual LUSAS frequency and location controls. All output must be written to the recognised LUSAS output channel defined by integer NT6.

## Verification

Three routines USRVF1, USRVF2 and USRVF3 are supplied to enable the user to verify the incoming and outgoing arguments to the user-programmed subroutines USRKDM, USRSTR and USRSVB respectively. These subroutines may be utilised by the user but no alterations are permitted.

## SUBROUTINE USRKDM

## Purpose

Explicit definition of the modulus matrix D for user-defined material. This routine may be programmed by the user but the argument list must not be altered in any way.

Note. For static nonlinear analysis failure to code this routine will result in slower convergence. For transient dynamic analysis however it is important that this routine defines the nonlinear modulus matrix as failure to do so may result in incorrect results.

## SUBROUTINE USRKDM

A 1	LPTUSR	,MDL	, NAXES	, NDSE	, NEL
B	NG	,NPRZ	,NSTAT	,NT6	, NTAB
C	NACTVE	,DINT	,DT	,TEMPC	,RSPTM
D	DOCT	,DOCC	, RDOC	,TEMPR	, SKEWA
E	VFIB	,VERIF	,NWINC	,REPAS	, ERROR
F	INIACT	, FEA	,		
G	ELPR	,EPST	,EPSC	,STVBT	, STVBC
H	STRST	,STRSC	, XYZ	, D	, ELPRT
I	DRCMGP	)			
DIMENSION					
A	ELPR (NPRZ)		, EPST (NDSE)	, EPSC (NDSE)	
B	STVBT (NSTAT)		, STVBC (NSTAT)	) ,STRST (NDSE)	
C	STRSC (NDSE)		, XYZ (NAXES)	, D (NDSE, NDSE)	
D	ELPRT (NPRZ, NTAB) , DRCMGP (NAXES, NAXES)				


Name	Argument Description	Type	Modify
LPTUSR	User supplied constitutive model reference number	IV	-


Name	Argument Description	Type	Modify
MDL	LUSAS reference code for stress model type	IV	-
NAXES	Number of system axes (dimensions)	IV	-
NDSE	Number of continuum stress components at a Gauss point for the stress model type MDL	IV	-
NEL	Current element number	IV	-
NG	Current Gauss point number	IV	-
NPRZ	Number of material parameters for the constitutive model	IV	-
NSTAT	Number of state dependent variables	IV	-
NT6	LUSAS results output channel	IV	-
NTAB	Number of temperature dependent property tables	IV	-
NACTVE	Element activation status   0 -Standard element 1-activating 2-deactivated	IV	
DINT	Characteristic length or area of the current Gauss point	RV	-
DT	Current time step increment (dynamic analysis)	RV	-
TEMPC	Current temperature	RV	-
RSPTM	Current total response time (dynamic analysis)	RV	-
DOCT	Degree of cure at the start of the current increment (thermo-mechanical coupled analysis via user defined interface USRRHG)	RV	
DOCC	Current degree of cure (thermo-mechanical coupled analysis via user defined interface USRRHG)	RV	
RDOC	Current rate of cure (thermo-mechanical coupled analysis via user defined interface USRRHG)	RV	
TEMPR	Reference or initial temperature	RV	
SKEWA	Fabric skew angle (one per ply, composites only)	RV	
VFIB	Fibre volume fraction (one per ply, composites only)	RV	
VERIF	Logical incoming/outgoing argument verification flag	LV	-
NWINC	Logical flag, TRUE denoting the start of a new increment	LV	-
REPAS	Logical flag, TRUE denoting a re-pass	LV	-
ERROR	Logical flag for fatal error and program termination	LV	yes
INIACT	Logical flag for initial activation of element	LV	
FEA	Logical flag for FEA use only	LV	-
ELPR	Material properties for current element (evaluated at the current temperature)	RA	-


Name	Argument Description	Type	Modify
EPST	Total strain components at the start of the current   increment	RA	-
EPSC	Current total strain components	RA	-
STVBT	State variables at the start of the current increment	RA	-
STVBC	Current state variables	RA	-
STRST	Stress components at the start of the current   increment	RA	-
STRSC	Current stress components	RA	-
XYZ	Coordinates for the current Gauss point	RA	-
D	Modulus matrix (D-matrix $)$	RA	yes
ELPRT	Table of temperature dependent material properties	RA	-
DRCMGP	Direction cosine matrix for the material	RA	-

## SUBROUTINE USRSTR

## Purpose

Stress recovery algorithm for user-defined material. This subroutine may be programmed by the user but the argument list may not be altered in any way.

Note. For a static nonlinear analysis, failure to code routine USRKDM will result in slower convergence. For a transient dynamic analysis, however, it is important that the routine USRKDM defines the nonlinear modulus matrix as failure to do so may result in incorrect results.

SUBROUTINE USRSTR

A ${ }^{\text {( }}$	IMAT	,LPTUSR	, MDL	, NAXES	, NDSE
B	NEL	,NG	,NPRZ	,NSTAT	, NT6
C	NTAB	,DINT	,DISEN	,DT	,STREN
D	TEMPC	, RSPTM	,VIHG	, DOCT	, DOCC
E	RDOC	, SKEWA	,VFIB	, VERIF	,STHLV
F	REPAS	, ERROR	,BOUNDS	,NWINC	, INIACT
G	FEA	,			
H	ELPR	, EPST	, EPSI	, EPSC	, STVBT
I	STVBI	, STVBC	,STRST	,STRSI	,STRSC
J	XYZ	, D	, ELPRT	, ROTAC	, ROTAT
K	DRCMGP	)			

## DIMENSION

A	ELPR (NPRZ)	, EPST (NDSE)	, EPSI (NDSE)
B	EPSC (NDSE)	, STVBT (NSTAT)	, STVBI (NSTAT)
C	STVBC (NSTAT)	, STRST (NDSE)	, STRSI (NDSE)
D	STRSC (NDSE)	, XYZ (NAXES)	, D (NDSE, NDSE)
E	ELPRT (NPRZ , NTAB)		, ROTAC (NAXES , NAXES)
F	ROTAT (NAXES ,	XES) ,DRCMG	NAXES , NAXES)


Name	Argument Description	Type	Modify
IMAT	Material assignment reference number	IV	-
LPTUSR	User supplied constitutive model reference number	IV	-
MDL	LUSAS reference code for stress model type	IV	-
NAXES	Number of system axes (dimensions)	IV	-
NDSE	Number of continuum stress components at a Gauss point for the stress model type MDL	IV	-
NEL	Current element number	IV	-
NG	Current Gauss point number	IV	-
NPRZ	Number of material parameters for the constitutive model	IV	-
NSTAT	Number of state dependent variables	IV	-
NT6	LUSAS results output channel	IV	-
NTAB	Number of temperature dependent property tables	IV	-
DINT	Characteristic length or area of the current Gauss point	RV	-
DISEN	Energy dissipated by inelastic processes	RV	yes
DT	Current time step increment (dynamic analysis)	RV	-
STREN	Increment of elastic strain energy	RV	yes
TEMPC	Current temperature	RV	-
RSPTM	Current total response time (dynamic analysis)	RV	-
VIHG	Volumetric internal heat generation due to mechanical work	RV	yes
DOCT	Degree of cure at the start of the current increment (thermo-mechanical coupled analysis via user defined interface USRRHG)	RV	


Name	Argument Description	Type	Modify
DOCC	Current degree of cure (thermo-mechanical   coupled analysis via user defined interface   USRRHG)	RV	
RDOC	Current rate of cure (thermo-mechanical coupled   analysis via user defined interface USRRHG)	RV	
SKEWA	Fabric skew angle (one per ply, composites only)   Fibre volume fraction (one per ply, composites   only)	RV	RV
VFIB	Logical incoming/outgoing argument verification   flag	LV	R


Name	Argument Description	Type	Modify
ELPRT	Table of temperature dependent material   properties	RA	-
ROTAC	Stress rotation matrix (current)	RA	-
ROTAT	Stress rotation matrix (at time t)	RA	-
DRCMGP	Direction cosine matrix for the material	RA	-

## SUBROUTINE USRSVB

## Purpose

Output of nonlinear state variables for user-defined material. This subroutine may be programmed by the user but the argument list must not be altered in any way.

## SUBROUTINE USRSVB

A LPTUSR ,NSTAT ,NDSE ,NT6 ,VERIF ,
B ERROR ,FEA ,
C STVBC )
DIMENSION
A $\quad$ STVBC (NSTAT)

Name	Argument Description	Type	Modif   $\mathbf{y}$
LPTUSR	User supplied constitutive model reference number	IV	-
NSTAT	Number of state dependent variables	IV	-
NDSE	Number of continuum stress components at a Gauss   point for the stress model type MDL	IV	-
NT6	LUSAS results output channel	IV	-
VERIF	Logical incoming/outgoing argument verification	LV	-
ERROR	flag	Logical flag for fatal error and program termination	LV
FEA	Logical flag for FEA use only	LV	-
STVBC	Current state variables for constitutive model	RA	-

## SUBROUTINE USRVF1

## Purpose

Verify the incoming and outgoing arguments to the user-programmed subroutine USRKDM. This subroutine may be utilised by the user but no alterations are permitted.

## SUBROUTINE USRVF1

A (	LPTUSR	,MDL	,NAXES	,NDSE	,NEL	,
B	NG	,NPRZ	,NSTAT	,NT6	,NTAB	,
C	NACTVE	,DINT	,DT	,TEMPC	,RSPTM	,
D	DOCT	,DOCC	,RDOC	,TEMPR	,SKEWA	,
E	VFIB	,VERIF	,NWINC	,REPAS	,ERROR	,
F	INIACT	,FEA	,ARGIN	,		
G	ELPR	,EPST	,EPSC	,STVBT	,STVBC	,
H	STRST	,STRSC	,XYZ	,D	,ELPRT	,
I	DRCMGP	)				

## DIMENSION

A	ELPR (NPRZ)	, EPST (NDSE)	, EPSC (NDSE)
B	STVBT (NSTAT)	,STVBC (NSTAT)	,STRST (NDSE)
C	STRSC (NDSE)	, XYZ (NAXES)	, D (NDSE,NDSE)
D	ELPRT (NPRZ, NTAB) , DRCMGP (NAXES , NAXES)		

The argument list is the same as that for subroutine USRKDM, except for one argument. The additional argument is the logical variable ARGIN (see continuation line F in the above subroutine statement) that is used in this subroutine. If

ARGIN=.TRUE. verification of incoming arguments will be carried out and if ARGIN =.FALSE. verification of outgoing arguments will take place.

## SUBROUTINE USRVF2

## Purpose

Verify the incoming and outgoing arguments to the user-programmed subroutine USRSTR. This subroutine may be utilised by the user but no alterations are permitted.

## SUBROUTINE USRVF2

A 1	IMAT	,LPTUSR	, MDL	,NAXES	, NDSE
B	NEL	,NG	, NPRZ	,NSTAT	, NT6
C	NTAB	,DINT	,DISEN	, DT	,STREN
D	TEMPC	, RSPTM	,VIHG	,DOCT	,DOCC
E	RDOC	, SKEWA	,VFIB	, VERIF	, STHLV
F	REPAS	, ERROR	, BOUNDS	,NWINC	, INIACT
G	FEA	, ARGIN	,		
H	ELPR	, EPST	, EPSI	, EPSC	, STVBT
I	STVBI	,STVBC	,STRST	,STRSI	,STRSC
J	XYZ	, D	, ELPRT	, ROTAC	, ROTAT
K	DRCMGP	)			
DIMENSION					


A	ELPR (NPRZ)	,EPST (NDSE)	,EPSI (NDSE)	,
B	EPSC (NDSE)	,STVBT (NSTAT)	,STVBI (NSTAT)	,
C	STVBC (NSTAT)	,STRST (NDSE)	,STRSI (NDSE)	,
D	STRSC (NDSE)	, XYZ (NAXES)	,D (NDSE ,NDSE)	,
E	ELPRT (NPRZ ,NTAB)	,ROTAC (NAXES ,NAXES)	,	
F	ROTAT (NAXES ,NAXES)	,DRCMGP (NAXES ,NAXES)		

The argument list is the same as that for subroutine USRSTR, except for one argument. The additional argument is the logical variable ARGIN (see continuation line F in the above subroutine statement) that is used in this subroutine. If ARGIN=.TRUE. verification of incoming arguments will be carried out and if ARGIN=.FALSE. verification of outgoing arguments will take place.

## SUBROUTINE USRVF3

## Purpose

Verify the incoming and outgoing arguments to the user-programmed subroutine USRSVB. This subroutine may be utilised by the user but no alterations are permitted.

```
SUBROUTINE USRVF3
```

A ( LPTUSR	,NSTAT	,NDSE	,NT6		
B	ERROR	,FEA	,ARGIN	,	
C STVBC	)				

## A $\quad$ STVBC (NSTAT)

The argument list is the same as that for subroutine USRSVB, except for one argument. The additional argument is the logical variable ARGIN (see continuation line B in the above subroutine statement) that is used in this subroutine. If ARGIN=.TRUE. verification of incoming arguments will be carried out and if ARGIN=.FALSE. verification of outgoing arguments will take place.

## User Defined Resultant Models

## Resultant Models

All constitutive models defined under MATERIAL PROPERTIES NONLINEAR RESULTANT USER utilise stress resultants and strains/curvatures. The user defined routines interface with code at the element gauss point level. This facility may be used with 2D and 3D beam elements which have a nonlinear capability, namely BM3, BMX3,BTS3, BSL3/4, BXL4, BS3/4 and BSX4

The constitutive relationship is assumed to be of the form:

$$
[\Delta \sigma]=[D][\Delta \varepsilon]
$$

where $[\Delta \boldsymbol{\sigma}]$ are the increments of stress resultants, $[\Delta \boldsymbol{\varepsilon}]$ are the increments of strains and curvatures and $[\mathrm{D}]$ is the constitutive or modulus matrix. The modulus matrix is explicitly defined by the user via the externally developed FORTRAN subroutine, USRRDM, and is of the form:

$$
[\mathrm{D}]=\left[\begin{array}{ccccc}
\mathrm{D}_{11} & \mathrm{D}_{12} & \mathrm{D}_{13} & & \mathrm{D}_{1, \text { ndse }} \\
\mathrm{D}_{21} & \mathrm{D}_{22} & \mathrm{D}_{23} & \cdots & \mathrm{D}_{2, \text { ndse }} \\
& \vdots & & \ddots & \vdots \\
\mathrm{D}_{\text {,ndse,1 }} & \mathrm{D}_{\text {,ndse, } 2} & \mathrm{D}_{\text {,ndse,3 }} & \cdots & \mathrm{D}_{\text {,ndse,ndse }}
\end{array}\right]
$$

where ndse is the number of stress resultants or strains and curvatures at an element gauss point. The number of stress resultants at a point can be ascertained from the LUSAS element type number nelt.

The stress resultant and strain components, and their associated element type number (nelt) are tabulated for each applicable LUSAS beam element below:

nelt	Element name	Stress resultants	ndse
54,43	BM3,BMX3	Fx,Mz	2
205	BTS3	Fx,Fy,Fz,Mx,My,Mz	6
$97,170,171$	BS3,BS4,BSX4	Fx,My,Mz,Txz,Txy,Fy	6
$98,176,177$	BSL3,BSL4,BXL4	Fx,My,Mz,Txz,Txy,Fy	6

## Resultant User Material Properties Input

The user material properties are input in a similar manner to the other LUSAS material types.

The resultant user material input consists of a total of nprz material parameters, the first 10 of which are specifically for LUSAS use. These 10 properties are required should the user wish to utilise some of the other LUSAS analysis types (e.g. thermal or dynamic analyses) for which material parameters are required. The temperature is specified should the user wish to use temperature dependent properties. Material properties 11 to nprz must be supplied by the user in the order required by the usersupplied routines. It should be noted however, that all nprz properties can be used within the user routines. These properties, relating to the current temperature, are stored in the array ELPR. Values for the complete table of reference temperatures are stored in array ELPRT.

The 10 specific properties are:
1 Young's modulus (E)
2 Poisson's ratio (v)
3 Mass density ( $\rho$ )
4 Coefficients of thermal expansion ( $\alpha$ )
5 Mass Rayleigh damping parameter (ar)
6 Stiffness Rayleigh damping parameter (br)
7 Not used at present
8 Reference temperature (T)
9 Not used at present
10 Not used at present.
Together with the user material properties the user also needs to specify the following integer numbers for the specific material defined:

- Iptusr a number which identifies the particular user material model.
- nprz the total number of material properties used.
- ndcrve the number of material data curves defined. This allows the user to input a table of values that vary with reference to something other than temperature. For example, a table of moment-curvature profiles may be defined where each profile relates to a particular axial force in the element.
- nstat the number of nonlinear state variables that are used in the material model (these variables will be output together with the Gauss point stresses/strains). The value of nstat must not be less than 1 .

The numbers are specified on the data input line for the user material model as follows:

## MATERIAL PROPERTIES NONLINEAR RESULTANT USER lptuser nprz ndcrve nstat

See the User-Supplied Nonlinear Material Properties section for more details.

## Evaluation of the Modulus Matrix

The modulus matrix [D] is explicitly defined via the externally supplied FORTRAN subroutine USRRDM. The routine is called at the element gauss point level, from both the LUSAS Solver pre-solution and post-solution analysis modules. On entry to USRRDM, the modulus matrix [D] is fully initialised (each array component is set to a floating point real zero). Hence, only the non-zero components of the modulus matrix
need be evaluated. The returned modulus matrix must be symmetrical about the leading diagonal.

## Nonlinear Stress Recovery

The stress recovery algorithm is defined explicitly via the externally supplied FORTRAN subroutine USRRST, and is concerned with the evaluation of:

- Stress State the current stress state,
- Material State the current material state (as indicated by the nonlinear state variables),
- Nonlinear Variables additional associated nonlinear variables.

The routine is called at the element gauss point level, from the LUSAS Solver postsolution analysis module. Stress resultants, strains and curvatures, and nonlinear state variables are available as current values, values at the end of the previous iteration, and values at the start of the current increment.

The procedure for updating incremental, and iterative variables from the evaluated current values, is automatically performed by LUSAS Solver. Consequently, modifications should be restricted to current values only.

## Nonlinear State Variable Output

The output of the evaluated nonlinear state variables is controlled via the externally supplied FORTRAN subroutine, USRSVB. The routine is called at the element gauss point level from the LUSAS output analysis module.

Default nonlinear state variable output for user supplied constitutive models is of the form shown below ( 6 variables to a line, to a total of nstat values). Nonlinear state variables for user-supplied models are output by default and are not subject to LUSAS Solver Options 138 and 139.

$$
\begin{aligned}
& \text { NL STATE VARIABLES } 0.0000 \mathrm{E}+000.0000 \mathrm{E}+000.0000 \mathrm{E}+00 \\
& \text { (contd.) } \\
& 0.0000 \mathrm{E}+000.0000 \mathrm{E}+000.0000 \mathrm{E}+00
\end{aligned}
$$

The output of stress resultants, and optionally strains and curvatures, follows the normal pattern for the particular element type, i.e. it is subject to the usual LUSAS frequency and location controls. All output must be written to the recognised LUSAS output channel defined by integer NT6.

## Verification

Two routines USRVF4 and USRVF3 are supplied to enable the user to verify the incoming and outgoing arguments to the user-programmed subroutines USRRDM and USRRST, and USRSVB respectively. This subroutine may be utilised by the user but no alterations are permitted.

## SUBROUTINE USRRDM

## Purpose

Explicit definition of the modulus matrix D for user-defined material. This routine may be programmed by the user but the argument list must not be altered in any way.

```
SUBROUTINE USRRDM
```

A ${ }^{\text {( }}$	NEL	, NELT	, NDSE	, NGP	,NG
B	LPTUSR	, NDCRVE	,NPRZ	, NTAB	,NLGPR
C	NSTAT	, NT6	, IMAT	, INC	, ELEN
D	DLENTH	, DT	, TEMPC	,RSPTM	, ELTAGE
E	ACTIM	, VERIF	, NWINC	,REPAS	, ERROR
F	FEA	,BOUNDS	,		
G	ELGPR	, ELPR	, EPST	, EPSC	,STRST
H	STRSC	,STVBT	,STVBC	, PLSPRP	,STRSI
I	STRSR	, EPSTH	,EPSI	,DUMMY	,ELPRT
J	SHRNKT	, SHRNKC	, D	)	


A	ELGPR (NLGPR)	, ELPR (NPRZ)	, EPST (NDSE)
B	EPSC (NDSE)	,STRST (NDSE)	, STRSC (NDSE)
C	STVBT (NSTAT)	, STVBC (NSTAT)	, PLSPRP (NDSE)
D	STRSI (NDSE)	,STRSR (NDSE)	, EPSTH (NDSE)
E	EPSI (NDSE)	, DUMMY (NDSE)	,ELPRT (NPRZ , NTAB) ,
F	SHRNKT (NDSE)	, SHRNKC (NDSE)	, D (NDSE,NDSE)


Name	Argument Description	Type	Modify
NEL	Current element number	IV	-
NELT	Element type number	IV	-
NDSE	Number of stress components at a Gauss point	IV	-
NGP	Number of gauss points	IV	-
NG	Current Gauss point number	IV	-
LPTUSR	User supplied constitutive model reference number	IV	-
NDCRVE	Number of material data curves defined	IV	-
NPRZ	Number of material parameters for each material	IV	-
NTAB	Number of lines in a table of material properties	IV	-
NLGPR	Number of element geometric properties	IV	-


Name	Argument Description	Type	Modify
NSTAT	Number of state dependent model variables	IV	-
NT6	LUSAS results output channel	IV	-
IMAT	Material assignment number	IV	-
INC	Load increment number	IV	-
ELEN	Element length	RV	-
DLENGTH	Characteristic length of the current Gauss point	RV	-
DT	Current time step increment (dynamic analysis)	RV	-
TEMPC	Current temperature	RV	-
RSPTM	Current total response time (dynamic analysis)	RV	-
ELTAGE	Age of an element at activation	RV	
ACTIM	Time of element activation	RV	
VERIF	Logical incoming/outgoing argument verification   flag	LV	-
NWINC	Logical flag, TRUE denoting the start of a new   increment	LV	-
REPAS	Logical flag, TRUE denoting a re-pass	LV	-
ERROR	Logical flag for fatal error and program termination   Logical flag denoting FEA or external code use	LV	LV
FEA	(FOR FEA INTERNAL USE ONLY)	-	
BOUNDS	Flag to error if a value is outside the bounds of   a table of values (OPTION 227)	LV	-
ELGPR	Element geometric properties   Material properties for current element   (evaluated at the current temperature)	RA	RA
ELPR	Total strain components at the start of the current   increment	RA	-
EPST	Residual stresses (these have already been   STRS	RA	-
STRSC	Current total strain components resultant components at the start of the   current increment	RA	RA


Name	Argument Description	Type	Modify
EPSTH	Total thermal strains	RA	-
EPSI	Initial strains	RA	-
DUMMY	Unused vector	RA	-
ELPRT	Table of temperature dependent material properties	RA	-
SHRNKT	Shrinkage strain vector at start of current increment	RA	
SHRNKC	Current shrinkage strain vector	RA	
D	Modulus matrix (D-matrix)	RA	yes

## SUBROUTINE USRRST

## Purpose

Stress recovery algorithm for user-defined material. This subroutine may be programmed by the user but the argument list may not be altered in any way.

## SUBROUTINE USRRST

A ${ }^{\text {( }}$	NEL	, NELT	, NDSE	, NGP	,NG
B	LPTUSR	, NDCRVE	,NPRZ	, NTAB	,NLGPR
C	NSTAT	, NT6	, IMAT	, INC	, ELEN
D	DLENTH	, DT	, TEMPC	, RSPTM	, ELTAGE
E	ACTIM	, VERIF	,NWINC	, REPAS	, ERROR
F	FEA	, BOUNDS	,		
G	ELGPR	, ELPR	, EPST	, EPSC	,STRST
H	STRSC	, STVBT	, STVBC	, PLSPRP	,STRSI
I	STRSR	, EPSTH	, EPSI	, DEPS	, ELPRT
J	SHRNKT	, SHRNKC	, D	)	
DIMENSION					


A	ELGPR (NLGPR)	, ELPR (NPRZ)	, EPST (NDSE)
B	EPSC (NDSE)	, STRST (NDSE)	,STRSC (NDSE)
C	STVBT (NSTAT)	, STVBC (NSTAT)	, PLSPRP (NDSE)
D	STRSI (NDSE)	,STRSR (NDSE)	, EPSTH (NDSE)
E	EPSI (NDSE)	,DEPS (NDSE)	,ELPRT (NPRZ, NTAB) ,
F	SHRNKT (NDSE)	,SHRNKC (NDSE)	, D (NDSE, NDSE)


Name	Argument Description	Type	Modify
NEL	Current element number	IV	-
NELT	Element type number	IV	-
NDSE	Number of stress components at a Gauss point	IV	-
NGP	Number of gauss points	IV	-
NG	Current Gauss point number	IV	-
LPTUSR	User supplied constitutive model reference number	IV	-
NDCRVE	Number of material data curves defined	IV	-
NPRZ	Number of material parameters for each material	IV	-
NTAB	Number of lines in a table of material properties	IV	-
NLGPR	Number of element geometric properties	IV	-
NSTAT	Number of state dependent model variables	IV	-
NT6	LUSAS results output channel	IV	-
IMAT	Material assignment number	IV	-
INC	Load increment number	IV	-
ELEN	Element length	RV	-
DLENGTH	Characteristic length of the current Gauss point	RV	-
DT	Current time step increment (dynamic analysis)	RV	-
TEMPC	Current temperature	RV	-
RSPTM	Current total response time (dynamic analysis)	RV	-
ELTAGE	Age of an element at activation	RV	
ACTIM	Time of element activation	RV	
VERIF	Logical incoming/outgoing argument verification flag	LV	-
NWINC	Logical flag, TRUE denoting the start of a new increment	LV	-
REPAS	Logical flag, TRUE denoting a re-pass	LV	-
ERROR	Logical flag for fatal error and program termination	LV	yes
FEA	Logical flag denoting FEA or external code use (FOR FEA INTERNAL USE ONLY)	LV	-
BOUNDS	Flag to error if a value is outside the bounds of a table of values (OPTION 227)	LV	-
ELGPR	Element geometric properties	RA	-
ELPR	Material properties for current element (evaluated at the current temperature)	RA	-
EPST	Total strain components at the start of the current increment	RA	-
EPSC	Current total strain components	RA	-


Name	Argument Description	Type	Modify
STRST	Stress resultant components at the start of the current increment	RA	-
STRSC	On entry: Stress resultant components at start of current increment. On exit: Current stress resultant components	RA	yes
STVBT	State variables at the start of current increment	RA	-
STVBC	On entry: State variables at start of the current increment, on exit: Current state variables	RA	yes
PLSPRP	Vector of plastic geometric properties (defined using OPTION 157)	RA	-
STRSI	Initial stresses (these have already been added to the incoming STRSC/STRST values)	RA	-
STRSR	Residual stresses (these have already been added to the incoming STRSC/STRST values)	RA	-
EPSTH	Total thermal strains	RA	-
EPSI	Initial strains	RA	-
DEPS	Incremental strains after deduction of initial and thermal strains	RA	-
ELPRT	Table of temperature dependent material properties	RA	-
SHRNKT	Shrinkage strain vector at start of current increment	RA	
SHRNKC	Current shrinkage strain vector	RA	
D	Modulus matrix (D-matrix)	RA	yes

## SUBROUTINE USRVF4

## Purpose

Verify the incoming and outgoing arguments to the user-programmed subroutines USRRDM and USRRST. This subroutine may be utilised by the user but no alterations are permitted.

## SUBROUTINE USRVF4

A (	NEL	,NELT	,NDSE	,NGP	,NG	,
B	LPTUSR	,NDCRVE	,NPRZ	,NTAB	,NLGPR	,
C	NSTAT	,NT6	,IMAT	,INC	,ELEN	,
D	DLENTH	,DT	,TEMPC	,RSPTM	,ELTAGE	,
E	ACTIM	,VERIF	,NWINC	,REPAS	,ERROR	,
F	FEA	,BOUNDS	,ARGIN	,RNAME	, ,	
G	ELGPR	,ELPR	,EPST	,EPSC	,STRST	,


H	STRSC	, STVBT	,STVBC	, PLSPRP	,STRSI	
I	STRSR	, EPSTH	,EPSI	, DEPS	,ELPRT	
J	SHRNKT	,SHRNKC	, D			
DIMENSION						
A	ELGPR (N	GPR)	ELPR (NPRZ)	, EPST	(NDSE)	
B	EPSC (ND		STRST (NDSE)	,STRS	( NDSE )	
C	STVBT (N	TAT)	STVBC (NSTAT)	, PLSP	RP (NDSE)	
D	STRSI (N	SE)	STRSR (NDSE)	,EPST	( NDSE )	
E	EPSI (ND		DEPS (NDSE)	,ELPRT	NPRZ, NTAB	
F	SHRNKT (	DSE)	SHRNKC (NDSE)	, D (ND	SE, NDSE)	

The argument list is the same as that for subroutine USRRST, except for the additional arguments ARGIN and RNAME. The logical variable ARGIN (see continuation line F in the above subroutine statement) is used in this subroutine. If ARGIN=.TRUE. verification of incoming arguments will be carried out and if ARGIN=.FALSE. verification of outgoing arguments will take place. The character variable RNAME indicates the routine for which verification is taking place, i.e. USRRDM or USRRST.

## User Defined Joint Models

All joint models defined under JOINT PROPERTIES NONLINEAR USER utilise forces and strains/curvatures. The user defined routines interface with code at the element level. This facility may be used with any 2D or 3D joint element.

The constitutive relationship is assumed to be of the form:

$$
\square\{\Delta F\}=[D]\{\Delta \varepsilon\}
$$

where $\{\Delta F\}$ are the increments in joint forces, $\{\Delta \varepsilon\}$ are the increments of strains and curvatures and $[\mathrm{D}]$ is the diagonal modulus matrix. The modulus matrix is explicitly defined by the user via the externally developed FORTRAN subroutine, USRKJN, and is of the form:

$$
[D]=\left[\begin{array}{ccccc}
D_{11} & 0 & 0 & \cdots & 0 \\
0 & D_{22} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & D_{\text {ndse, } \text { ndse }}
\end{array}\right]
$$

where ndse is the number of joint forces or strains and curvatures.

## User Joint Properties Input

The user joint properties are input in a similar manner to the other LUSAS joint property types.

The user joint properties input consists of nprz parameters where nprz = nprzs* $\mathbf{N}+\mathbf{n p r z j}+1$. The value nprzs is the number of parameters per spring, $\mathbf{N}$ is the number of springs and nprzj is the number of parameters common to all springs. The properties $\mathbf{M}_{\mathbf{i}}, \mathbf{C}_{\mathrm{i}}, \boldsymbol{\alpha}_{\mathrm{i}}, \mathrm{a}_{\mathbf{r i}}, \mathrm{b}_{\mathbf{r i}}$ along with mcode are reserved for LUSAS internal use: they are only utilisd if other features of the program are required (e.g. dynamic and thermal analyses). It should be noted however, that all nprz properties can be used within the user routines.

Together with the user joint parameters the user also needs to specify the following integer numbers for the specific joint model defined:

- Iptusr a number which identifies the particular user joint model.
- nprzs the number of input parameters per spring
- $\mathbf{N}$ the number of springs in the joint
- nprzj the number of input parameters common to each spring
- nstat the number of nonlinear state variables that are used in the joint model. The value of nstat must not be less than 1 .

The numbers are specified on the data input line for the user material model as follows:
JOINT PROPERTIES NONLINEAR USER lptusr N nprzs nprzj nstat

## Evaluation of the Modulus Matrix

The modulus matrix [D] is explicitly defined via the externally supplied FORTRAN subroutine USRKJN. The routine is called at the element level, from both the LUSAS Solver pre-solution and post-solution analysis modules. On entry to USRKJN, the modulus matrix [D] is fully initialised (each array component is set to a floating point real zero). Hence, only the non-zero components of the modulus matrix need be evaluated.

## Nonlinear Stress Recovery

The stress recovery algorithm is defined explicitly via the externally supplied FORTRAN subroutine USRSJN, and is concerned with the evaluation of:

- Stress State the current stress state,
- Material State the current material state (as indicated by the nonlinear state variables),
- Nonlinear Variables additional associated nonlinear variables.

The routine is called at the element level, from the LUSAS Solver post-solution analysis module. Forces, strains and curvatures, and nonlinear state variables are available as current values, values at the end of the previous iteration, and values at the start of the current increment.

The procedure for updating incremental, and iterative variables from the evaluated current values, is automatically performed by LUSAS Solver. Consequently, modifications should be restricted to current values only.

## Verification

Two routines USRJN1 and USRJN2 are supplied to enable the user to verify the incoming and outgoing arguments to the user-programmed subroutines USRKJN and USRSJN respectively.

## SUBROUTINE USRKJN

## Purpose

Explicit definition of the modulus matrix D for user-defined joint properties. This routine may be programmed by the user but the argument list must not be altered in any way.

## SUBROUTINE USRKJN

A (	LNODZ	,LPTUSR	,NACTVE	,NAXES	,NDF	,
B	NDSE	,NEL	,NELT	,NPRZ	,NPRZC	,
C	NSTAT	,NT6	,ACTIM	,ELTAGE	,DT	,
D	RSPTM	, BIG	,ERROR	,FEA	,INIACT	,
E	NWINC	, REPAS	,VERIF	,		
F	B	,D	,DC	,DISPT	,DISPC	,
G	ELPR	,EPST	,EPSC	,STVBT	,STVBC	,
H	STRST	,STRSC	,XYZ	,VELCTY	,TEMPR	,
I	TEMPC	,				


A	B (NDSE, NDF)	, D (NDSE, NDSE)	, DC (NAXES , NAXES)
B	DISPT (NDF)	, DISPC (NDF)	, ELPR (NPRZ)
C	EPST (NDSE)	, EPSC (NDSE)	,STVBT (NSTAT)
D	STVBC (NSTAT)	,STRST (NDSE)	,STRSC (NDSE)
E	XYZ (NAXES,	$\mathrm{Z})$, VELCTY (	TEMP (NDSE)

## F TEMPC (NDSE)

Name	Argument Description	Type	Modify
LNODZ	Number of nodes	IV	-
LPTUSR	User supplied constitutive model reference number	IV	-
NACTVE	Element activation status 0 -Standard element 1 activating 2-deactivated	IV	-
NAXES	Number of system axes (dimensions)	IV	-
NDF	Number of degrees of freedom	IV	-
NDSE	Number of continuum stress components at a Gauss point for the stress model type MDL.	IV	-
NEL	Current element number	IV	-
NELT	Element type	IV	
NPRZ	Number of material parameters for the constitutive model	IV	-
NPRZC	Number of properties for each spring	IV	
NSTAT	Number of state dependent model variables	IV	-
NT6	LUSAS results output channel	IV	-
ACTIM	Element activation time	RV	-
ELTAGE	Element age	RV	-
DT	Current time step increment (dynamic analysis)	RV	-
RSPTM	Current total response time (dynamic analysis)	RV	-
BIG	Big machine dependent number	RV	-
ERROR	Logical flag for fatal error and program termination	LV	yes
FEA	Logical flag denoting FEA or external code use	LV	-
INIACT	Logical flag for initial activation of element	LV	-
NWINC	Logical flag, TRUE indicating the start of a new increment	LV	-
REPAS	Logical flag, TRUE for re-pass	LV	-
VERIF	Logical incoming argument verification flag	LV	-
B	Strain displacement matrix	RA	-
D	Modulus matrix (D-matrix)	RA	yes
DC	Direction cosine matrix for the local axes system	RA	-
DISPT	Array of displacements at the start of the current increment	RA	-
DISPC	Array of current displacements	RA	-


Name	Argument Description	Type	Modify
ELPR	Material properties for current element	RA	-
EPST	Total strain components at the start of the current   increment	RA	-
	Current total strain components	RA	-
EPSC	State variables at the start of current increment	RA	-
STVBT	Current state variables	RA	-
STVBC	Stress components at the start of the current increment	RA	-
STRST	RA	-	
STRSC	Stress components	RA	-
XYZ	Coordinates for the nodes	RA	-
VELCTY	Current velocity vector	RA	
TEMPR	Gauss point (interpolated) reference temperature for   each spring	RA	
TEMPC	Gauss point (interpolated) current temperature for each		

## SUBROUTINE USRSJN

## Purpose

Stress recovery algorithm for user-defined joint properties. This subroutine may be programmed by the user but the argument list may not be altered in any way.

## SUBROUTINE USRSJN

A ${ }^{\text {( }}$	LNODZ	,LPTUSR	, NACTVE	, NAXES	, NDF
B	NDSE	,NEL	, NELT	,NPRZ	,NPRZC
C	NSTAT	, NT6	, ACTIM	, ELTAGE	, DT
D	RSPTM	, BIG	, DYNAM	, ERROR	, FEA
E	INIACT	, NWINC	, REPAS	, STEPRD	, VERIF
F	B	, D	, DC	, DISPT	, DISPC
G	ELPR	, EPST	, EPSC	, STVBT	, STVBC
H	STRST	,STRSC	, XYZ	,VELCTY	, TEMPR
I	TEMPC	)			
DIMENSION					


A	B (NDSE,NDF)	,D (NDSE,NDSE)	,DC (NAXES ,NAXES),
B	DISPT (NDF)	,DISPC (NDF)	,ELPR (NPRZ),


| D | STVBC (NSTAT), STRST (NDSE) , STRSC (NDSE) |
| :--- | :--- | :--- |
| E | $\mathrm{XYZ} \mathrm{(NAXES,LNODZ),VELCTY} \mathrm{(NDF)} ,\mathrm{TEMPR} \mathrm{(NDSE)} \mathrm{}$, |
| F | TEMPC (NDSE) |


Name	Argument Description	Type	Modify
LNODZ	Number of nodes	IV	-
LPTUSR	User supplied constitutive model reference number	IV	-
NACTVE	Element activation status 0-Standard element 1activating 2-deactivated	IV	-
NAXES	Number of system axes (dimensions)	IV	-
NDF	Number of degrees of freedom	IV	-
NDSE	Number of continuum stress components at a Gauss point for the stress model type MDL.	IV	-
NEL	Current element number	IV	-
NELT	Element type	IV	
NPRZ	Number of material parameters for the constitutive model	IV	-
NPRZC	Number of properties for each spring	IV	
NSTAT	Number of state dependent model variables	IV	-
NT6	LUSAS results output channel	IV	-
ACTIM	Element activation time	RV	-
ELTAGE	Element age	RV	-
DT	Current time step increment (dynamic analysis)	RV	-
RSPTM	Current total response time (dynamic analysis)	RV	-
BIG	Big machine dependent number	RV	-
DYNAM	HHT step by step dynamics	LV	-
ERROR	Logical flag for fatal error and program termination	LV	yes
FEA	Logical flag denoting FEA or external code use	LV	-
INIACT	Logical flag for initial activation of element	LV	-
NWINC	Logical flag, TRUE indicating the start of a new increment	LV	-
REPAS	Logical flag, TRUE for re-pass	LV	-
STEPRD	Step reduction flag	LV	yes
VERIF	Logical incoming argument verification flag	LV	-
B	Strain displacement matrix	RA	-
D	Modulus matrix (D-matrix)	RA	yes


Name	Argument Description	Type	Modify
DC	Direction cosine matrix for the local axes system	RA	-
DISPT	Array of displacements at the start of the current   increment	RA	-
DISPC	Array of current displacements	RA	-
ELPR	Material properties for current element	RA	-
EPST	Total strain components at the start of the current   increment	RA	-
	Current total strain components	RA	-
EPSC	State variables at the start of current increment	RA	-
STVBT	Current state variables	RA	yes
STVBC	Stress components at the start of the current increment	RA	-
STRST	RA	yes	
STRSC	Stress components	RA	-
XYZ	Coordinates for the nodes	RA	-
VELCTY	Current velocity vector	RA	
TEMPR	Gauss point (interpolated) reference temperature for   each spring	RA	
TEMPC	Gauss point (interpolated) current temperature for each	Ras	

## SUBROUTINE USRJN1

## Purpose

Verify the incoming and outgoing arguments to the user-programmed subroutine USRKJN. This subroutine may be utilised by the user but no alterations are permitted.

## SUBROUTINE USRJN1

A (	LNODZ	,LPTUSR	,NACTVE	,NAXES	,NDF	,
B	NDSE	,NEL	,NELT	,NPRZ	,NPRZC	,
C	NSTAT	,NT6	,ACTIM	,ELTAGE	,DT	,
D	RSPTM	,BIG	,ERROR	,FEA	,INIACT	,
E	NWINC	, REPAS	,VERIF	,ARGIN	,	
F	B	,D	,DC	,DISPT	,DISPC	,
G	ELPR	,EPST	,EPSC	,STVBT	,STVBC	,
H	STRST	,STRSC	,XYZ	,VELCTY	,TEMPR	,
I	TEMPC	)				

## DIMENSION

```
A B(NDSE,NDF) ,D(NDSE,NDSE) ,DC(NAXES,NAXES),
B DISPT (NDF) ,DISPC(NDF) ,ELPR(NPRZ) ,
C EPST (NDSE) ,EPSC (NDSE) ,STVBT (NSTAT) ,
D STVBC (NSTAT) ,STRST (NDSE) ,STRSC (NDSE) ,
E XYZ (NAXES,LNODZ) ,VELCTY (NDF) ,TEMPR(NDSE ,
F TEMPC (NDSE)
```

The argument list is the same as that for subroutine USRKJN, except for one argument. The additional argument is the logical variable ARGIN (see continuation line E in the above subroutine statement) that is used in this subroutine. If ARGIN=.TRUE. verification of incoming arguments will be carried out and if ARGIN=.FALSE. verification of outgoing arguments will take place.

## SUBROUTINE USRJN2

## Purpose

Verify the incoming and outgoing arguments to the user-programmed subroutine USRSJN. This subroutine may be utilised by the user but no alterations are permitted.

## SUBROUTINE USRJN2

A (	LNODZ	,LPTUSR	,NACTVE	,NAXES	,NDF	,
B	NDSE	,NEL	,NELT	,NPRZ	,NPRZC	,
C	NSTAT	,NT6	,ACTIM	,ELTAGE	,DT	,
D	RSPTM	, BIG	,DYNAM	,ERROR	,FEA	,
E	INIACT	,NWINC	, ,REPAS	,STEPRD	,VERIF	,
F	ARGIN	,				
G	B	,D	,DC	,DISPT	,DISPC	,
H	ELPR	,EPST	,EPSC	,STVBT	,STVBC	,
I	STRST	,STRSC	,XYZ	,VELCTY	,TEMPR	,
J	TEMPC	,				

## DIMENSION



## F TEMPC (NDSE)

The argument list is the same as that for subroutine USRSJN, except for one argument. The additional argument is the logical variable ARGIN (see continuation line F in the above subroutine statement) that is used in this subroutine. If ARGIN=.TRUE. verification of incoming arguments will be carried out and if ARGIN=.FALSE. verification of outgoing arguments will take place.

## User Defined Creep Models

## Introduction

Several creep models are available in LUSAS, but if the provided models are inappropriate this facility will enable the definition of a creep material using a userdefined creep law.

The user-supplied creep routine USRCRP allows creep laws to be specified that are a function of stress, strain and temperature history.

## Creep Laws

The user-supplied subroutine permits creep laws defined as:

$$
\square \dot{\varepsilon}_{\mathrm{C}}=\mathrm{f}(\mathrm{q}, \mathrm{t}, \mathrm{~T})
$$

where:
$\dot{\varepsilon}_{\mathrm{c}} \quad$ Rate of uniaxial equivalent creep strain $\quad \mathbf{t} \quad$ Time
q Equivalent deviatoric stress T Temperature

## Creep Properties Input

The user creep properties are input in a manner similar to that used for the other creep laws available in LUSAS.

The input for user-defined creep properties consists of a total of nprzc creep parameters, the first 3 of which are reserved specifically for use by LUSAS. The temperature is specified should the user wish to utilise temperature dependent properties. Creep properties 4 to nprzc must be given in the order expected by the usersupplied routines.

The 3 reserved locations are:

1. Reference temperature (T)
2. Not used at present.
3. Not used at present.

Together with the user creep properties you also need to specify the following integer numbers for the specific creep law defined:

- ictp a number which identifies the particular user creep model.
- nprzc the total number of creep properties used.
- nstat the number of nonlinear creep state variables that are used in the creep model (these variables will be output together with the Gauss point stresses/strains). The value of nstat must not be less than 1 .


## Evaluation of Creep Strains

The following points should be considered when coding the user-supplied routine USRCRP for evaluating the creep strains:

The user-supplied routine must return the increment in creep strain. Further, if implicit integration is to be used, the variation of the creep strain increment with respect to the equivalent stress and with respect to the creep strain increment must also be defined.

If the function involves time dependent state variables, they must be integrated in the user-supplied routine.

If both plasticity and creep are defined for a material, the creep strains will be processed during the plastic strain update. Stresses in the user routine may therefore exceed the yield stress.

## Verification

Routine USRVFC is supplied to enable the user to verify the incoming and outgoing arguments to the user-programmed subroutine USRCRP. This subroutine may be utilised by the user but no alterations are permitted.

## SUBROUTINE USRCRP

## Purpose

Computes the creep strain increment.
The variations of creep strain DCRPDC, DCRPDQ, DCRPDP, DCRPDS are only required for implicit integration. This subroutine may be programmed by the user but the argument list may not be altered in any way.

SUBROUTINE USRCRP

A (	LCTUSR	,NEL	,NG	,NCRPP	,NT6	
B	NSTAT	,NDSE	,DISEN	,DT	, RSPTIM	,
C	TEMP	, PRESS	,STREQV	,CRPSTN	,SWLSTN	,
D	DCRP	,DCRPDC	,DCRPDQ	,DCRPDS	,DCRPDP	,



Name	Argument Description	Type	Modify
LCTUSR	User supplied creep model reference number	IV	-
NEL	Element number	IV	-
NG	Gauss point number	IV	-
NCRPP	Number of parameters defining user creep model	IV	
NT6	LUSAS results output channel	IV	-
NSTAT	Number of creep state dependent model variables	IV	-
NDSE	Number of stress components	IV	-
DISEN	Energy dissipated by inelastic process (not currently used)	RV	-
DT	Time step	RV	-
RSPTIM	Response time t - note time at beginning of step $=\mathrm{t}$, time at end of step $=\mathrm{t}+\mathrm{dt}$	RV	-
TEMP	Gauss point temperature	RV	-
PRESS	Current pressure (not currently used)	RV	-
STREQV	Equivalent uniaxial stress (Hill or von Mises)	RV	-
CRPSTN	Creep strain at time t	RV	-
SWLSTN	Swelling strain at time t (not currently used)	RV	-
DCRP	Rate of change of creep strain with time	RV	yes
DCRPDC	Rate of change of creep strain rate with creep increment	RV	yes
DCRPDQ	Rate of change of creep strain rate with equivalent stress	RV	yes
DCRPDS	Rate of change of creep strain rate with swelling strain (not currently used)	RV	-
DCRPDP	Rate of change of creep strain rate with pressure (not currently used)	RV	-
VERIFY	Logical incoming/outgoing argument verification flag	LV	-
ERROR	Logical flag for fatal error and program termination	LV	yes
FEA	Logical flag for FEA use only	LV	-


Name	Argument Description	Type	Modify
EXPCRP	Explicit creep. If .TRUE. use time=RSPTIM for   evaluations and if .FALSE. use time=RSPTIM+DT.   For an implicit analysis EXPCRP will be .TRUE. in   the pre-solution and .FALSE. in the post-solution	LV	-
STEPRD	Step reduction flag	LV	yes
TIMEDP	Time dependent creep flag	LV	yes
STATVC	On entry: State variables at end of last step   On exit: Current state variables	RA	yes
STATVP	State variables at end of last step	RA	-
CRPMDL	Creep model parameters	RA	-
STRESS	Current stress tensor	RA	-

## SUBROUTINE USRVFC

## Purpose

Verifies the incoming and outgoing arguments to the user-programmed subroutine USRCRP. This subroutine may be utilised by the user but no alterations are permitted.

SUBROUTINE USRVFC

A 1	LCTUSR	, NEL	, NG	, NCRPP	, NT6
B	NSTAT	, NDSE	,DISEN	, DT	,RSPTIM
C	TEMP	, PRESS	,STREQV	, CRPSTN	, SWLSTN
D	DCRP	,DCRPDC	,DCRPDQ	,DCRPDS	,DCRPDP
E	VERIFY	, ERROR	, FEA	, EXPCRP	,STEPRD
F	TIMEDP	,MODE	,		
G	STATVC	,STATVP	, CRPMDL	,STRESS	)
DIMENSION					
A	STATVC (NSTAT) ,		,STATVP (NSTAT)	) , CRPMDL (NCRPP)	
B	STRESS	DSE)			

The argument list is the same as that for subroutine USRCRP, except for the additional integer variable MODE (see continuation line $F$ in the above subroutine statement). This variable is used in this subroutine: $\mathrm{MODE}=1$ is for verification of incoming arguments, MODE=(any other value) is for verification of outgoing arguments.

## User Defined Damage Models

## Introduction

The user-supplied damage routine USRDAM permits external computation of the damage variable and its derivative with respect to the current elastic complementary energy norm.

The temperature, the damage threshold at the previous converged position, the damage model parameters and the damage state variables at the current and previous converged positions are available for this computation.

This facility allows the user to specify a damage law for a particular material if the damage models available in LUSAS are inappropriate.

## Damage Variable

The damage variable is used to define the degradation of the elastic modulus matrix. This means that the effective stress vector may be expressed as:

$$
\square\left\{\sigma_{e}^{t}\right\}=\frac{1}{1-d(t)}\left\{\sigma_{c}^{t}\right\}
$$

$\left\{\sigma_{e}^{t}\right\} \quad$ Effective stress vector at time t
$\left\{\sigma_{c}^{t}\right\} \quad$ Cauchy stress vector at time t
$d(t) \quad$ Damage variable at time $t$. Note that for no damage, $d(t)=0$.
Further information on the use of damage models can be found in the LUSAS Theory Manual.

## Damage Properties Input

The user damage properties are input in a manner similar to that used for the other damage laws available in LUSAS.

The user damage properties input consists of a total of nprzd damage parameters, the first of which is reserved specifically for LUSAS use. This is the temperature that is specified, should the user wish to utilise temperature dependent properties. Damage properties 2 to nprzd must be supplied by the user in the order required by the usersupplied routines.

The reserved location is:
Reference temperature. (T)

Together with the user damage properties, the following integer numbers for the specific damage law defined also need to be specified.

- idtp Number which identifies the particular user damage model.
- nprzd Total number of damage properties used.
- nstat Number of nonlinear state variables that are used in the damage model (these variables will be output together with the Gauss point stresses/strains). The value of nstat must not be less than 1 .


## Verification

Routine USRVFD is supplied to enable the user to verify the incoming and outgoing arguments to the user-programmed subroutines USRDAM. This subroutine may be utilised by the user but no alterations are permitted.

## SUBROUTINE USRDAM

## Purpose

Computes the damage variable and its derivative with respect to the current elastic complementary energy norm. This subroutine may be programmed by the user but the argument list may not be altered in any way.

```
SUBROUTINE USRDAM
```

A (	LDTUSR	, NEL	,NG	, NDAMP	, NT6
B	NSTAT	, TEMP	, TAUC	, HDAMA	, DDAMA
C	TDAMA	, ERROR	,VERIFY	, FEA	,
D	DAMCUR	,DAMPRV	,DAMMDL	)	
DIMENSION					
A	DAMCUR	STAT)	MPRV (NST	T) , DAM	L (NDAMP)


Name	Argument Description	Type	Modify
LCTUSR	User supplied damage model reference number	IV	-
NEL	Element number	IV	-
NG	Gauss point number	IV	-
NDAMP	Number of parameters defining user damage   model	IV	-
NT6	LUSAS results output channel	IV	-
NSTAT	Number of damage state dependent model   variables		
TEMP	Gauss point temperature	RV	-


Name	Argument Description	Type	Modify
TAUC	Norm of current elastic complementary energy	RV	-
HDAMA	Derivative of damage variable with respect to   TAUC	RV	yes
DDAMA	Damage variable	RV	yes
TDAMA	Damage threshold at previous converged position	RV	-
ERROR	Logical flag for fatal error and program   termination	LV	yes
VERIFY	Logical incoming/outgoing argument verification	LV	-
Flag	Logical flag for FEA use only	LV	-
DAMCUR	Current damage state variables	RA	yes
DAMPRV	Damage state variables at end of last step	RA	-
DAMMDL	Damage model parameters	RA	-

## SUBROUTINE USRVFD

## Purpose

Verify the incoming and outgoing arguments to the user-programmed subroutine USRDAM. This subroutine may be utilised by the user but no alterations are permitted.

## SUBROUTINE USRVFD

A (	LDTUSR	,NEL	,NG	,NDAMP	,NT6	,
B	NSTAT	,TEMP	,TAUC	,HDAMA	,DDAMA	,
C	TDAMA	, ERROR	,VERIFY	,FEA	,MODE	,
D	DAMCUR	,DAMPRV	,DAMMDL	,		

## DIMENSION

A DAMCUR (NSTAT) , DAMPRV (NSTAT) , DAMMDL (NDAMP)
The argument list is the same as that for subroutine USRDAM, except for the additional integer variable MODE (see continuation line $C$ in the above subroutine statement). This variable is used in this subroutine: MODE $=1$ is for verification of incoming arguments, MODE=(any other value) is for verification of outgoing arguments.

## User Defined Friction Models

## Introduction

The user-supplied routine USRSLF permits a nonlinear friction law to be utilised in a slideline analysis. The friction law may be a function of the surface temperature, the
relative velocities and/or accelerations of the adjacent surfaces and a set of user defined friction parameters. The friction law can be used with the normal interface force to return an allowable tangential frictional force.

Temperature dependent parameters are entered using the standard tabular input. All the values in the slideline properties table are interpolated at the temperature of the point of contact on the contacted surface prior to passing into the user routine.

## Nonlinear Friction Law

The nonlinear friction law can take the form:

$$
\square \quad F_{\text {allow }}=f\left(N, \mu_{1}, \mu_{2}, . . \mu_{i}, v, \alpha, T\right)
$$

where:

Fallow	Allowable tangential   frictional force	$v$	Relative velocities of the contacting   surfaces
N	Normal interface force	$\alpha$	Relative accelerations of the contacting   surfaces
$\mu_{\mathrm{i}}$	User defined friction   parameters	T	Temperatures of contacting surfaces

The components of velocity and acceleration supplied to the user routine are in the direction of the tangential frictional force on the slideline surface being processed.

Note that in the routine USRSLF, the adjacent surface is the current surface being processed. To provide further useful information, the current response time, the contacting node number and the node numbers defining the current segment of the adjacent surface are also passed into USRSLF.

## Nonlinear Friction Parameter Input

The nonlinear friction parameters are input using the SLIDELINE PROPERTIES USER data section.

Input for the SLIDELINE PROPERTIES USER data section follows the same form as the standard SLIDELINE PROPERTIES data section, except the number of friction parameters (nfric) must be defined. The friction parameters must be supplied in the order required by the user-supplied routines.

## Verification

Routine USRVSF is supplied to enable the user to verify the incoming and outgoing arguments to the user-programmed subroutines USRSLF. This subroutine may be utilised but no alterations are permitted.

## SUBROUTINE USRSLF

## Purpose

Computes the allowable tangential force using a nonlinear friction law. This subroutine may be programmed by the user but the argument list may not be altered in any way.

SUBROUTINE USRSLF						
A ( I	ISPROP	, NODC	,NFRIC	, NT6	, ISURF	,
$B \quad J$	JSURF	,NDSEG	,NPROPS	, TMPND	, TMPSF	,
C V	VNOD	,VSUR	,ANOD	,ASUR	, FORCEN	,
D F	FTALLW	,RSPTIM	,VERIFY	, ERROR	, FEA	,
E N	NODSEG	,SLPROP	)			
DIMENSION						
A $\quad$ N	NODSEG (NSEGN)		,SLPROP (NPROPS)			
Name	Argument Description				Type	Modify
ISPROP	P Slideline property assignment number				IV	-
NODC	Contact node number				IV	-
NFRIC	Number of friction parameters				IV	-
NT6	LUSAS output channel				IV	-
ISURF	Surface number containing contact node				IV	-
JSURF	Cntacted surface number				IV	-
NDSEG	G Number of nodes on the current segment of the contacted surface				IV	-
TMPND	D Current temperature at contacting node				RV	-
TMPSF	Current temperature at contact point on adjacent surface				RV	-
VNOD	Velocity component of contacting node in direction of total tangential force on adjacent surface				RV	-
VSUR	Velocity component of adjacent surface in direction of total tangential force				RV	-
ANOD	Acceleration component of contacting node in direction of total tangential force on adjacent surface				RV	-
ASUR	Acceleration component of adjacent surface in direction of total tangential force				RV	-
FORCEN	N Magnitude of the normal force				RV	-


Name	Argument Description	Type	Modify
FTALLW	Allowable tangential force	RV	yes
RSPTIM	Current response time	RV	-
VERIFY	Logical flag for verification of arguments	LV	-
ERROR	Logical flag for fatal error and program   termination	LV	yes
FEA	For LUSAS/FEA internal use only	LV	-
NODSEG	Node numbers for segment of adjacent surface	IA	-
SLPROP	Slideline properties evaluated at contacted surface   temperature TMPSF	RA	-

## SUBROUTINE USRVSF

## Purpose

Verify the incoming and outgoing arguments to the user-programmed subroutine USRSLF. This subroutine may be utilised by the user but no alterations are permitted.

SUBROUTINE USRVSF

A (	ISPROP	, NODC	, NFRIC	, NT 6	, ISURF
B	JSURF	,NDSEG	,NPROPS	, TMPND	, TMPSF
C	VNOD	,VSUR	,ANOD	, ASUR	, FORCEN
D	FTALLW	,RSPTIM	,VERIFY	, ERROR	, FEA
E	MODE	,			
F	NODSEG	, SLPROP	)		
DIMENSION					
A	NODSEG	SEGN)	, SLP	OP (NPRO	

The argument list is the same as that for subroutine USRSLF, except for the additional integer variable MODE (see continuation line E in the above subroutine statement). This variable is used in this subroutine: $\mathrm{MODE}=1$ is for verification of incoming arguments, MODE=(any other value) is for verification of outgoing arguments.

## User-Defined Rate of Internal Heat Generation

## Introduction

The user-supplied subroutine USRRHG permits the user to define the way in which internal heat is generated in a thermal analysis. This can be defined to be a function of temperature, time and chemical reaction. The parameters used to control the chemical reaction are specified under the RIHG USER data chapter. In a thermo-mechanical coupled analysis, variables defining the current degree and rate of chemical reaction (or
cure) may be transferred to the structural analysis where they can be accessed in the user interface routines USRKDM and USRSTR. The modulus matrix and stress computations may then become a function of degree or rate of cure.

## User RIHG Parameter Input

The parameters controlling the rate of internal heat generation are specified under the user RIHG chapter in a similar manner to the way standard RIHG parameters are defined in LUSAS. The RIHG User data section takes the following form:

TEMPERATURE LOAD CASE
RIHG USER $n$
TABLE ilod
$<\mathrm{P}_{\mathrm{i}}>_{\mathrm{i}=1, \mathrm{n}}$
TEMPERATURE LOAD ASSIGNMENTS
RIHG USER

## L N ilod

Where $\mathbf{n}$ is the number of parameters to be defined, ilod the table identifier, $\mathbf{P}_{\mathbf{i}}$ the RIHG control parameters, one of which could be a reference temperature, $\mathbf{L}$ the element number and $\mathbf{N}$ the node number of that element for which the parameters are to be applied. Note that the table could consist of many lines of parameters each one relating to a particular reference temperature. The complete table is accessible in the user routine USRRHG so that temperature dependent control parameters can be specified if necessary.

## Evaluation of RIHG

The following points should be considered when coding the user-supplied routine USRRHG for evaluating the rate of internal heat generation:

1. The user supplied routine USRRHG is called from within the element gauss point loop.
2. The routine must return the rate of internal heat generation at the nodes stored in the vector RIHG. In addition, the degree and rate of cure at the nodes can also be computed, stored in array DOCCND and returned. As this routine is called from within a gauss point loop and the information required to compute the nodal values is always available for an element, the nodal values need only be computed and returned on the first pass for each element, e.g. when the gauss point loop counter, $\mathrm{NG}=1$.
3. The current degree and rate of cure (or some other chemical reaction) can also be computed at the gauss points on each pass through the routine and stored in vector DOCCGP. The values at the start of the time step are also available.
4. In a thermo-mechanical coupled analysis, the gauss point cure values (or any other chemical reaction which influences mechanical behaviour) may be transferred to
the structural analysis and are accessible in the user defined material routines USRKDM and USRSTR.

## Verification

Routine USRVFR is supplied to enable the user to verify the incoming and outgoing arguments to the user-programmed subroutines USRRHG. This subroutine may be utilised by the user but no alterations are permitted.

## SUBROUTINE USRRHG

## Purpose

Computes the rate of internal heat generation at nodes, RIHG, the degree of cure at nodes, DOCCND and at gauss points, DOCCGP. This subroutine may be programmed by the user but the argument list may not be altered in any way.

## SUBROUTINE USRRHG

A ${ }^{\text {( }}$	NEL	,LNODZ	, NTAB	,NRHGD	,NG
B	INC	, NT	, NAXES	,NGP	, NT6
C	NDOC	, DT	,RSPTM	,DINT	, TEMPIN
D	ACTIM	, ELTAGE	,USRGPC	,USRGPP	, ERROR
E	BOUNDS	, PRESOL	,VERIF	, NWINC	, FEA
F	TMPFLG	, REPAS	, CELCUS	, LCURE	
G	TINIT	, TEMPC	, TEMPP	, TEMPI	,NTABLD
H	SHAPES	, XYZ	,DOCCGP	,DOCPGP	,DOCIGP
I	RIHG	,RHGDAT	,XYZN	,DOCCND	,DOCPND
J	DOCIND	,USRNDC	,USRNDP	)	
DIMENSION					


A	TINIT (LNODZ)	, TEMPC (LNODZ)
B	TEMPP (LNODZ)	,TEMPI (LNODZ)
C	NTABLD (LNODZ)	, SHAPES (LNODZ)
D	XYZ (NAXES)	, DOCCGP (NDOC)
E	DOCPGP (NDOC)	,DOCIGP (NDOC)
F	RIHG (LNODZ)	, RHGDAT (NRHGD , NTAB, LNODZ)
G	XYZN (NAXES, LNODZ)	,DOCCND (NDOC, LNODZ)
H	DOCPND (NDOC, LNODZ)	,DOCIND (NDOC,LNODZ)
I	USRNDC (LNODZ)	,USRNDP (LNODZ)


Name	Argument Description	Type	Modify
NEL	Current element number	IV	-
LNODZ	Number of element nodes	IV	-
NTAB	Maximum number of lines in any RIHG USER table	IV	-
NRHGD	Maximum number of parameters in any line of RIHG USER data	IV	-
NG	Current Gauss point number	IV	-
INC	Current increment number	IV	-
NT	Current time step number	IV	-
NAXES	Number of system axes (dimensions)	IV	-
NGP	Number of gauss points	IV	-
NT6	LUSAS results output channel	IV	-
NDOC	First dimension of degree of cure arrays ( $=2$ )	IV	-
DT	Current time step increment	RV	-
RSPTM	Current total response time	RV	-
DINT	Characteristic length or area of the current Gauss point	RV	-
TEMPIN	Temperature at the current gauss point - interpolated from nodal values (can be used if TMPFLG.is true currently only applicable for composite brick elements)	RV	-
ACTIM	Time of element activation	RV	
ELTAGE	Element age on loading	RV	
USRGPC	User defined gauss point value (current)	RV	yes
USRGPP	User defined gauss point value (start of time step)	RV	
ERROR	Logical flag for fatal error and program termination	LV	yes
BOUNDS	Logical to error if the current temperature is outside the bounds of a table of values   (OPTION 227)	LV	-
PRESOL	Logical flag, TRUE for presolution (forming thermal stiffness) and FALSE in postsolution (computation of thermal gradients and flows)	LV	-
VERIF	Logical incoming/outgoing argument verification flag	LV	-
NWINC	Logical flag, TRUE denoting the start of a new increment	LV	-
FEA	Logical flag denoting FEA or external code use (FOR FEA INTERNAL USE ONLY)	LV	-


Name	Argument Description	Type	Modify
TMPFLG	Logical flag, if true indicates that the current gauss point temperature has been interpolated from nodal values and is available in the arguments list	LV	-
REPAS	Logical flag, TRUE denoting a re-pass	LV	-
CELCUS	Logical flag indicating temperature unit is degrees Celsius	LV	-
LCURE	Logical flag indicating cure reaction for composite layer - can be set via material properties orthotropic field solid	LV	-
TINIT	Initial nodal temperatures - only applicable on very first pass when specified as TMPE or TEMP loading case	RA	-
TEMPC	Current nodal temperatures	RA	-
TEMPP	Nodal temperatures at previous increment or time step	RA	-
TEMPI	Nodal temperatures at previous iteration	RA	-
NTABLD	Number of lines in the load table for each node	IA	-
SHAPES	Shape function values for current gauss point	RA	-
XYZ	Current gauss point coordinates	RA	-
DOCCGP	Current degree of cure at current gauss point	RA	yes
DOCPGP	Degree of cure at previous increment or time step at current gauss point	RA	-
DOCIGP	Degree of cure at previous iteration at current gauss point	RA	-
RIHG	Rate of internal heat generation at nodes	RA	yes
RHGDAT	Input parameters defined in RIHG USER data chapter	RA	-
XYZN	Nodal coordinates	RA	-
DOCCND	Current degree of cure at nodes	RA	yes
DOCPND	Nodal degree of cure at previous increment or time step	RA	-
DOCIND	Nodal degree of cure at previous iteration	RA	-
USRNDC	User defined nodal values (current)	RA	yes
USRNDP	User defined nodal values (start of time step)	RA	

## SUBROUTINE USRVFR

## Purpose

Verifies the incoming and outgoing arguments to the user-programmed subroutine USRRHG. This subroutine may be utilised by the user but no alterations are permitted.

## SUBROUTINE USRVFR

A ${ }^{\text {( }}$	NEL	,LNODZ	, NTAB	,NRHGD	,NG
B	INC	, NT	, NAXES	,NGP	, NT6
C	NDOC	, DT	,RSPTM	,DINT	,TEMPIN
D	ACTIM	, ELTAGE	,USRGPC	,USRGPP	,ERROR
E	BOUNDS	, PRESOL	, VERIF	, NWINC	, FEA
F	TMPFLG	, REPAS	, CELCUS	, LCURE	,ARGIN
G	TINIT	,TEMPC	, TEMPP	, TEMPI	,NTABLD
H	SHAPES	, XYZ	,DOCCGP	, DOCPGP	,DOCIGP
I	RIHG	, RHGDAT	,XYZN	,DOCCND	,DOCPND
J	DOCIND	,USRNDC	,USRNDP	$)$	
DIMENSION					


A	TINIT (LNODZ)	,TEMPC (LNODZ)
B	TEMPP (LNODZ)	,TEMPI (LNODZ)
C	NTABLD (LNODZ)	, SHAPES (LNODZ)
D	XYZ (NAXES)	, DOCCGP (NDOC)
E	DOCPGP (NDOC)	, DOCIGP (NDOC)
F	RIHG (LNODZ)	, RHGDAT (NRHGD, NTAB, LNODZ)
G	XYZN (NAXES, LNODZ)	, DOCCND (NDOC, LNODZ)
H	DOCPND (NDOC, LNODZ)	,DOCIND (NDOC, LNODZ)
I	USRNDC (LNODZ)	,USRNDP (LNODZ)

The argument list is almost the same as that of subroutine USRRHG, except for the additional logical ARGIN (see continuation line F in the above subroutine statement). This variable is used in this subroutine. If ARGIN=.TRUE. verification of incoming arguments will be carried out and if ARGIN=.FALSE. verification of outgoing arguments will take place.

## Utility Routines

## Introduction

In addition to the user-programmable subroutines, access is available to the following LUSAS utility subroutines and functions. A full description of the operation and arguments of each of these routines can be found on the pages that follow.

Name	Routine Function and Description
DVSTSN	Form deviatoric stress matrix from total stress matrix and evaluate   the first stress invariant
INTPRP	Interpolate the current material properties from the table
KMVEQS	Transform stress/strain vector to equivalent matrix or vice versa
PRNSTR	Compute the principal values of stress/strain vector in 2-D
PRSTR3	Compute the principal values of stress/strain vector in 3-D
TEGV2	Compute eigenvalues and eigenvectors of a 2*2 matrix
MTEGV3	Compute eigenvalues and eigenvectors of a 3*3 matrix
MTINV2	Invert a 2*2 matrix explicitly
MTINV3	Invert a 3*3 matrix using Cramer's rule
MTINVT	Invert a matrix of any order using Gaussian elimination
KTRNLG	Transform stress/strains between local and global systems at a point

In order to avoid the duplication of existing LUSAS subroutine names, any externally developed subroutines (at a lower level to the user-programmable subroutines) must adhere to the naming convention:

## SUBROUTINE USR

$\qquad$
It is also recommended that site dependent constraints regarding subroutine name length, variable names, and machine precision be considered when developing external FORTRAN code.

## SUBROUTINE DVSTSN

## Purpose

Calculates the deviatoric stress matrix and then evaluates the first stress invariant. This subroutine may be utilised by the user but no alterations are permissible.

## SUBROUTINE DVSTSN

A ( NMSMX ,SMEAN ,
B SMX ,DEVSMX )
DIMENSION

A SMX (NMSMX , NMSMX) ,DEVSMX (NMSMX , NMSMX)

Name	Argument Description	Type	Modified
NMSMX	Dimensions of matrices (always=3)	IV	-
SMEAN	Mean stress/strain	RV	yes
SMX	Stress/strain matrix	RA	-
DEVSMX	Deviatoric stress tensor	RA	yes

## SUBROUTINE INTPRP

## Purpose

Interpolates temperature dependent properties from a table. The temperature property values within which the temperature load lies are found and the column numbers of these properties in the element material property table array are extracted. These properties are then interpolated as a linear variation of temperature and stored in the element material property array. This subroutine may be utilised by the user but no alterations are permissible.

## SUBROUTINE INTPRP

A ${ }^{\text {( }}$	NEL	, IMAT	,LPTP	,NPRZ	, NTAB
B	NG	, ILOC	,TEMP	,BOUNDS	, ERROR
C	ELPR	,ELPRT	)		
DIMENSION					
A	ELPR			RT (NPRZ	TAB)


Name	Argument Description	Type	Modified
NEL	Element number	IV	-
IMAT	Material assignment reference number	IV	-
LPTP	Material model reference number	IV	-
NPRZ	Maximum number of properties for defined   property type	IV	-
NTAB	Number of lines of property data in table	IV	-
NG	Gauss point number	IV	-
ILOC	Location of temperature property in ELPR or	IV	yes
TEMP	ELPRT for material defined	Temperature at this point	RV
BOUNDS	Flag for error if temperature out of bounds	LV	-


Name	Argument Description	Type	Modified
ERROR	Logical flag for fatal error and program   termination	LV	yes
ELPR	Interpolated element material properties	RA	yes
ELPRT	Table of temperature dependent material   properties	RA	-
	RA		

## SUBROUTINE KMVEQS

## Purpose

This subroutine sets up the stress/strain tensor as a 3*3 matrix or NDSE*1 vector for any stress model. This subroutine may be utilised by the user but no alterations are permissible.

## SUBROUTINE KMVEQS

A 1	MDL	, NDSE	, NMS	,STRFLG	,MTXFLG
B	SM	, SV	)		

A SM (NMS,NMS) ,SV(NDSE)

Name	Argument Description	Type	Modified
MDL	Reference code for stress model type	IV	-
NDSE	Number of continuum stresses/strains at a point	IV	-
NMS	Dimension of stress/strain matrix	IV	-
STRFLG	Flag indicating stress or strain to be used,	LV	-
	.TRUE.=Stress, .FALSE.=Strain		
MTXFLG	Flag indicating matrix or vector form is required,	LV	-
	.TRUE.=Matrix, .FALSE.=Vector		
SM	Stress/strain matrix	RA	yes
SV	Stress/strain vector	RA	yes

## SUBROUTINE PRNSTR

## Purpose

Computes the principal stresses or strains for 2-dimensional problems using Mohr's circle. This subroutine may be utilised by the user but no alterations are permissible.

SUBROUTINE PRNSTR
A( S , SMAX ,SMIN , ANGD ,MODE )
DIMENSION
A S (3)

Name	Argument Description	Type	Modified
S	Vector in the form Sx, Sy, Sxy	RA	-
SMAX	Maximum principal value	RV	yes
SMIN	Minimum principal value	RV	yes
ANGD	Angle of maximum principal value in degrees   clockwise from the $X$ axes	RV	yes
MODE	Flag indicating stress or strain, $1=$ Stress, $2=$ Strain	IV	-

## SUBROUTINE PRSTR3

## Purpose

This subroutine finds the principal stresses/strains in 3D by computing the eigenvectors of a symmetric tri-diagonal matrix using inverse iteration. This subroutine may be utilised by the user but no alterations are permissible.

## SUBROUTINE PRSTR3

```
A(NDSE ,NPRIN ,MDL ,STRFLG
B STRESS ,STRSP ,SVEC)
```


## DIMENSION

A STRESS (NDSE) ,STRSP (NPRIN)
B SVEC (NPRIN,NPRIN)

Name	Argument Description	Type	Modified
NDSE	Number of continuum stress/strain components	IV	-
NPRIN	Dimension of tri-diagonal matrix (must equal 3)	IV	-
STRESS	Stress array: Sx, Sy, Sz, Sxy, Syz, Sxz	RA	-
STRSP	Principal stress array	RA	yes
SVEC	Final eigenvectors	RA	yes

## SUBROUTINE MTEGV2

## Purpose

Computes the explicit solution in terms of eigenvalues and eigenvectors of the 2dimensional eigen problem. This subroutine may be utilised by the user but no alterations are permissible.

## SUBROUTINE MTEGV2

A IS ,CM ,EVALUS ,EVECTS ,ERROR )

## DIMENSION

A CM (IS,IS) ,EVALUS(IS) ,EVECTS (IS,IS)

Name	Argument Description	Type	Modified
IS	Dimension of eigenproblem (must =2)	IV	-
CM	Coefficient matrix (must be positive definite)	RA	-
EVALUS	Array of eigenvalues	RA	yes
EVECTS	Matrix of eigenvectors	RA	yes
ERROR	Flag returned .TRUE. on error	LV	yes

## SUBROUTINE MTEGV3

## Purpose

Compute the solution in terms of eigenvalues and eigenvectors of a symmetric 3dimensional eigen problem using Jacobi rotation. This subroutine may be utilised by the user but no alterations are permissible.

SUBROUTINE MTEGV3
A IS ,CM ,EVALUS ,EVECTS )
DIMENSION
A CM(IS,IS) ,EVALUS (IS) ,EVECTS (IS,IS)

Name	Argument Description	Type	Modified
IS	Dimension of eigenproblem (must $=3$ )	IV	-
CM	Coefficient matrix (must be positive definite)	RA	-
EVALUS	Array of eigenvalues	RA	yes
EVECTS	Matrix of eigenvectors	RA	yes

## SUBROUTINE MTINV2

## Purpose

Invert a $2 * 2$ matrix explicitly. A mode switch is available so that only the determinant can be computed. This subroutine may be utilised by the user but no alterations are permissible.

## SUBROUTINE MTINV2

A ( A , B
B IERR
DIMENSION

A A(IS,IS) ,B(IS,IS)

Name	Argument Description	Type	Modified
A	Matrix to be inverted	RA	-
B	Inverse matrix	RA	yes
DET	Determinant of A	RV	yes
IS	Dimension of matrix (must equal 2)	IV	-
MODE	Mode switch, 1 = evaluate determinant only	IV	-
IERR	Error flag, returned non-zero on error	IV	yes

## SUBROUTINE MTINV3

## Purpose

Invert a 3*3 matrix explicitly. A mode switch is available so that only the determinant can be computed. This subroutine may be utilised by the user but no alterations are permissible.

## SUBROUTINE MTINV3

A ( A , BET , IS MODE
B IERR
DIMENSION

A A(IS,IS) ,B(IS,IS)

Name	Argument Description	Type	Modified
A	Matrix to be inverted	RA	-
B	Inverse matrix	RA	yes
DET	Determinant of A	RV	yes
IS	Dimension of matrix (must = 3)	IV	-
MODE	Mode switch, 1=evaluate determinant only	IV	-
IERR	Error flag, returned nonzero on error	IV	yes

## SUBROUTINE MTINVT

## Purpose

Invert a $\mathrm{N}^{*} \mathrm{~N}$ matrix (or a sub-matrix) by using the Gauss-Jordan method. This subroutine may be utilised by the user but no alterations are permissible.

## SUBROUTINE MTINVT

A A ,IS ,NA )
DIMENSION
A A(IS,IS)

Name	Argument Description	Type	Modified
A	On input : matrix to be inverted	RA	yes. On   exit: the   inverse of   the original   matrix
IS	Dimension of matrix	IV	-
NA	The dimension of the sub-matrix that must be   inverted	IV	-

## SUBROUTINE KTRNLG

## Purpose

Transform local stresses or strains at a point to global values. This subroutine may be utilised by the user but no alterations are permissible.

SUBROUTINE KTRNLG



