Linear Buckling Analysis of a Flat Plate

For LUSAS version:	21.0
For software product(s):	Any Plus version.
With product option(s):	None.

Description

This example determines the critical buckling load for $\quad \mathrm{a} \quad 2 \mathrm{~m} \quad \mathrm{x} \quad 0.5 \mathrm{~m}$ rectangular panel of 1 mm thickness subject to in-plane compressive loading.

Material properties for the panel are: Young's modulus 70E9 $\mathrm{N} / \mathrm{m}^{2}$, Poisson's ratio 0.3.

The panel is meshed using 64 thin shell elements and is simply supported on all sides. An in-plane compressive load of a total of 24 N is applied to one of the short edges, parallel to the long sides.

Units used are N, m, kg, s, C throughout.

Keywords

3D, Shell, Plate, Linear Buckling, Eigenvalue Buckling, Deformed Mesh, Print Results Wizard.

Associated Files

Associated files can be downloaded from the user area of the LUSAS website.
\square plate_modelling.lvb This carries out the modelling of the example.

Modelling

Running LUSAS Modeller

For details of how to run LUSAS Modeller, see the heading Running LUSAS Modeller in the Introduction to LUSAS Worked Examples document.

Note. This example is written assuming a new LUSAS Modeller session has been started. If continuing from an existing Modeller session select the menu command File $>$ New to start a new model file. Modeller will prompt for any unsaved data and display the New Model dialog.

Creating a new model

- Enter the file name as plate
- Use the default User-defined working folder.
- Ensure an analysis type of Structural is set.
- Select an Analysis Category of 3D
- Set the model units to $\mathbf{N}, \mathbf{m}, \mathbf{k g}, \mathbf{s}, \mathbf{C}$
- Ensure that timescale units are Seconds
- Select the model template 3D Beam/Shell
- Enter the title as Buckling of a flat plate
- Click the OK button.

Note. Save the model regularly as the example progresses. Use the Undo button to correct any mistakes made since the last save was done.

Feature Geometry

Geometry
Surface
By Coords...
\qquad
Surface.

Enter coordinates of $(\mathbf{0}, \mathbf{0})$, $(\mathbf{2}, \mathbf{0}),(\mathbf{2}, \mathbf{0 . 5})$ and $(\mathbf{0}, \mathbf{0 . 5})$ to define a Surface.

- Click the OK button.

Meshing

- Select Thin shell, Quadrilateral, elements with Quadratic interpolation.
- Enter the attribute name as Thin Shell (QSL8).
- Click the OK button.

LUSAS will add the mesh dataset to the Treeview.

- Select the Surface of the plate.
- Drag and drop the Surface mesh attribute Thin Shell from the Treeview onto
 the selected feature.

Note. If the number of divisions is not specified on the mesh dialog the default number of 4 divisions per Line will be used. In this example 4 divisions per Line is sufficient for the ends of the plate but 16 divisions are required on each of the sides.
$\frac{\text { Attributes }}{\text { Mesh }}+$

- Define the number of element divisions to be $\mathbf{1 6}$
- Enter an attribute name of Null, div $=\mathbf{1 6}$ and click the OK button.
- Select the two long sides of the plate and drag and drop the Line mesh attribute Null, div $=\mathbf{1 6}$ from the Treeview onto the selected features.

Geometric Properties

- Specify a thickness of $\mathbf{0 . 0 0 1}$.
- Enter the attribute name as Plate Thickness
(The eccentricity can be left blank, as it is not used in this analysis).
- Click the OK button to add the attribute to the Treeview.
- With the Surface selected, drag and drop the geometry attribute Plate Thickness from the $\&$ Treeview onto the selected feature.

Assigned geometric attributes are visualised by default.

重Select the fleshing on/off button to turn-off geometric property visualisation.

Material Properties

Attributes
Material >
Isotropic.

- Specify the Young's modulus as 70E9
- Enter Poisson's ratio as $\mathbf{0 . 3}$
(Mass density can be left unspecified for Eigenvalue buckling analyses).
- Enter the attribute name as Plate Material
- Click the OK button to add the attribute to the $\boldsymbol{\otimes}$ Treeview.
- With the Surface selected, drag and drop the material attribute Plate Material from the Treeview onto the selected surface.

Supports

With the standard template, LUSAS provides the more common types of support by default. These can be seen in the Treeview. Four support datasets are to be assigned to selected features of the model.

- For the 'Fixed in Z' support, select the top line, hold the Shift key, and select the left and bottom Lines as shown.

- Drag and drop the Fixed in \mathbf{Z} support attribute from the Treeview onto the selected Lines.
- Ensure that the supports are assigned to Lines for Analysis 1 for All loadcases and click the OK button.
- Similarly, for each of the line and point features shown in the previous image drag and drop the relevant support attributes from the Treeview to assign the required supports.
- * Use the Isometric button to rotate the model to this view.
- Check the position and type of supports on the model match those shown.

Loading

A global distributed load is to be applied to the left-hand end of the plate.

Attributes
Loading...

- Select the Distributed loads option, then Global Distributed and click Next
- Enter a Total load of $\mathbf{2 4}$ in the \mathbf{X} direction.
- Enter the attribute name as Distributed Load.
- Click the Finish button.

- Select the left-hand edge of the plate and drag and drop the loading dataset Distributed Load from the Treeview onto the selected Line.
- Click OK to assign the load to Analysis 1 and Loadcase 1

Eigenvalue Analysis Control

Eigenvalue analysis control is defined as a loadcase property.

- In the Treeview expand Analysis 1 then right-click on Loadcase 1 and select Eigenvalue from the Controls menu.
- Select a Buckling Load solution for the Minimum number of eigenvalues.
- Enter the Number of eigenvalues required as 3
- Enter the Shift to be applied as 0
- Click the OK button to select the Default eigensolver.

Saving the model

Save the model file.

Running the Analysis

三
Open the Solve Now dialog and press OK to run the analysis.
A LUSAS Datafile will be created from the model information. The LUSAS Solver uses this datafile to perform the analysis.

If the analysis is successful...

Eigenvalue results loadcases will be seen in the Treeview.
In addition, 2 files will be created in the Associated Model Data directory where the model file resides:
\square plate.out this output file contains details of model data, assigned attributes and selected statistics of the analysis.
plate.mys this is the LUSAS results file which is loaded automatically into the Treeview to allow results processing to take place.

If the analysis fails...

If the analysis fails, information relating to the nature of the error encountered can be written to an output file in addition to the text output window. Select No to not view the output file. Any errors listed in the text output window should be corrected in LUSAS Modeller before saving the model and re-running the analysis.

Rebuilding a Model

If it proves impossible for you to correct the errors reported a command file is provided to enable you to re-create the model from scratch and run an analysis successfully.
\square plate_modelling.Ivb carries out the modelling of the example.

ㅁ)
Start a new model file. If an existing model is open Modeller will prompt for unsaved data to be saved before opening the new file.

- Enter the file name as plate
- Use the default User-defined working folder.
- Ensure an Analysis category of 2D Inplane is set.
- Click the OK button.

Note. There is no need to enter any other new model details when a script is run to build a model, since the contents of the script will overwrite any other settings made.

- To recreate the model, select the file plate_modelling.lvb that was downloaded and placed in a folder of your choosing.
三
Solve the model to generate the results.

Viewing the Results

A deformed mesh plot will be seen in the View window. Loadcase results for each eigenvalue can be seen in the Treeview. For eigenvalue analyses the first loadcase is set to be active by default.

- In the Treeview, turn off the display of the Mesh, Geometry and Attributes layers.

Deformed Mesh Plot

- At the bottom of the Treeview press the Deformations... button and see that specify magnitude is selected with a value of $\mathbf{6}$.

If modelling in Imperial (US) units, 0.25 may be seen instead.

Changing the Results Loadcase

To view the second eigenmode:

- In the $\xlongequal{(\text { L }}$ Treeview, in the eigenvalue results, right-click on Mode 2 Load Factor = <value> and select the Set Active option.

The second mode shape will be displayed.

The third eigenmode could be viewed in a similar manner.

Note. Mode shapes may be the opposite of those shown.

Printing the Buckling Load Factors

In an eigenvalue buckling analysis, the load factors are equivalent to the eigenvalues. Load factors are the values by which the applied load is factored to cause buckling in the respective modes. Eigenvalue results for the whole model can be displayed in the text window.

- Press the Eigenvalues radio button.
- From the Results loadcases drop-down menu select All, ensure that that Eigenvalues (Load factor) checkbox is selected and click the OK button.

The Eigenvalue and load factor results will be printed to the print results window.

LUSAS View: plate.md Window 1 Eigenvalues \times				
	Mode	Eigenvalue	Load Factor	Error norm
1	1	17.3052	17.3052	18.7817E-12
2	2	18.9169	18.9169	13.4229E-12
3	3	19.8275	19.8275	$36.8144 \mathrm{E}-9$

Note that error norms may vary from those shown.

Calculating the Critical Buckling Load

The applied load (24N) must be multiplied by the first load factor (19.8891) to give the value of loading which causes buckling in the first mode shape. The initial buckling load is therefore $24 \times 19.8891=477.34 \mathrm{~N}$.

Note. An applied load of unity could be used in an eigenvalue analysis - in which case the eigenvalues produced would also represent the critical loads at which the structure would buckle. However, to prevent potential convergence problems with the analysis it is more usual to apply actual in-service loading and multiply the applied load by the eigenvalue to give the critical buckling load for each eigenvalue.

This completes the example.

