LUSAS

LUSAS Programmable Interface (LPI)
Customisation and Automation Guide

LUSAS Version 21.0 : Issue 1

LUSAS
Forge House, 66 High Street, Kingston upon Thames,
Surrey, KT1 1HN, United Kingdom

Tel: +44 (0)20 8541 1999
Fax +44 (0)20 8549 9399
Email: info@lusas.com
http://www.lusas.com

Distributors Worldwide

Copyright ©1982-2023 LUSAS
All Rights Reserved.

Table of Contents

Table of Contents

Introduction 1
g (el [0 1 o] o HA SRR 1
Examples of Capabilities............ooeviiiiiiiiiiiieiiee e 2
Yol 1] o) =T PR UUURUPPPPUPRPIRPIN 2
Topics covered in thisS QUIAEcooiiiiiiiiii e 3
LPI DeVeloper GUIAE.........ccoiiiiiieeeeeeee e e e e e e as 3

Getting started with the LUSAS Programmable Interface (LPI) 5
LPI ComMMaANd Bar.........cooiiiiiieeeeeeee et 5
Identifying LPI fUNCHONSooiiiiiiie e e 6

Writing LPI functions to afile...........oooi i 6
Writing LPI functions to the Text Output Windowcccciiiiiiiiiiiiiiiiiee 7
Details Of LPI fUNCHONS.ciiiiiieiiiiieeee e e e e e e e e 8
LUSAS Programmable Interface (LPI) online help...........cccccoviiiiiiieiiinninnnnn. 8
Searching LPINEID ...oooveeeieeiee e e e e e e e e eeeees 9
Some fUNCLION DASICS.......uuiiiiiiiiiee e 10

Customising the user interface 13

CapabIlitIESccoeiieeee e e 13
Modifying standard toolbarsevveiiiiiiiii 13
Customized toolbar BUONSueuiiiiiiiieeieeee e 14
User toolbar bUttoNS ... 15
Startup templatescceeei 16

Getting started with VBS 19
Programming SYNEAXoooiiiiiiiiiii e

Some simple rules
Visual Basic Script online tutorials.................oooviiiiiiiiiiiiiiee e, 21

Example VB scripts 23

Simple user sCript €XamMPIeciiiiiiei i 23
Deleting a range of 10adCasES...........uuuiiiiiieeiiiiieiciieee e 23
RUNNING @ SCIIPL. ... 26

Supplied SCHPt EXAMPIES.......uuieiiiieii e e e e e e e e e e e ee e 26
Example script: Attributes.vbsooouiiiiii 27
Example script: RESUIS.VDSoovviiiiiiiiiicice e 30
Example script: Arbitrary_section.vbs............ccooiiiiie 33
Running a script from @ MenuUeeviiiiiiiiii e 35
Yo [o [T gTe BE= WU 1= ol o =Y o L 36

More advanCed SCHPLScovviiie e e 36

Table Of Contents

Introduction

Introduction

Introduction

LUSAS software is highly customisable. The built-in LUSAS Programmable Interface
(LPI) allows the customisation and automation of modelling and results processing
tasks and creation of user-defined menu items, dialogs and toolbars as a means to
access those user-defined resources. It can also be used for transferring data between
LUSAS and other software applications, and to control other programs from within
LUSAS Modeller, or control LUSAS Modeller from other programs.

LUSAS User Interface

'

LUSAS Session file

LUSAS LPI N

VBScript LUSAS Modeller

Any other COM
compatible
language

LUSAS Extension Modules 3rd Party Software
(Plug-ins) Applications

With LPI, any user can automate the creation of complete structures, either in LUSAS
or from third-party software, carrying out design checks, optimising members and
outputting graphs, spreadsheets of results and custom reports. Because everything
carried out by a user is recorded in a LUSAS Modeller session file, anything that
LUSAS can do, can also be controlled by another application via the LUSAS
Programmable Interface. This means that you can view and edit a recorded session,

1

Introduction

parameterise those commands, turn them into sub-routines, add loops and other
functions to the scripts and create a totally different application or program - using the
proven core technology of LUSAS.

In addition to the accessing and customising LUSAS Modeller via the LUSAS
Programmable Interface, user-defined material models (written in Fortran) can be
compiled and built into a customised LUSAS Solver executable by using the LUSAS
Material Model Interface (LUSAS MMI).

Examples of capabilities

Scripts

By using any ActiveX compliant scripting language, such as VB.Net, C#, VBScript,
C++, Python, Perl, JScript etc. to access LUSAS facilities and functionality, you can:

U Create user-defined menu items, dialogs and toolbars
Interrogate all aspects of a LUSAS model

Customise modelling operations

Create parameterised models

Automate repetitive tasks

Import CAD geometry and properties

UO000D D

Make direct links to Microsoft Word / Excel, or other programs for import or
export of data

(]

Perform simple / codified design checks and, when used with automated
iterative analysis, optimise structural member sizes and configurations, slab
reinforcement quantities, etc.

In their simplest form script files can be used to store a sequence of LUSAS commands
for later playback. Some examples of use include the creation of start-up templates to
pre-load the Attributes Treeview of the LUSAS Modeller user interface with selected
attributes for a particular analysis; the setting of default mesh or material types, or
preferred colour schemes; or defining specific model orientations for use when saving
model views for use in reports.

When LUSAS is run, a session file is created recording each step of the model
generation in Visual Basic Script (.vbs) - or with an .Ivb file extension from version 20
onwards) - one of the most commonly used and easily understood languages. Editing of
a session file can be used to define a similar model with new parameters. When the
script is re-run in LUSAS, a new user-defined model can be easily and rapidly
generated from the parameters defined. A Macro Recorder facility in LUSAS also
provides the means to record a sub-set of commands for a task, for saving and re-use.

Topics covered in this guide

User-generated scripts can be controlled by creating dialogs that may include
parametric variables, check boxes, drop-downs etc.

Varied uses of scripts include reading of geometric data, such as column dimensions,
section properties and span lengths / storey heights etc., from a spreadsheet to
automatically build multi-span bridge or building models; rapid generation of
parametrically-idealised wind farm base structures, or for automating the creation of
numerous load combinations and envelopes.

A set of example scripts are provided in LUSAS to assist in the understanding of
standard concepts including file handling, how to access LUSAS geometry / attribute
data, and how to import / export data from / to Microsoft Word or Excel, or other
programs.

Topics covered in this guide

The aim of this guide is to help you locate and use the supplied tools which will enable
you to write scripts and work more efficiently. No programming experience or
knowledge is needed to complete the examples shown. The guide covers:

O Getting started with the LUSAS Programmable Interface (LPI)
O Identifying LPI Functions

U Customising the interface

O Getting started with VBS

U A simple example script

U Creating your own menus

LPI Developer Guide
A separate LPI Developer Guide is also available covering more advanced topics:
U Creating dialogs using VB.NET
O LUSAS via COM
U LUSAS Material Model Interface

Introduction

LPI Command Bar

Getting started with
the LUSAS
Programmable
Interface (LPI)

LPI Command Bar

The LPI Command Bar can be added to the user interface by selecting the menu item
View> LPI Command Bar

- @lo-s-0-8-|0
Page Layout Mode

[
Group » o Utities Reports g—

| Drawing Layers 4
[¥] Browse Selection...
[w] Browse Cyclable ltems...
Tree Frame 4
FE1 Property Box
v | LPICommand Bar
[¥] Text Qutput
7] Status Bar
Toolbars...
Show Datatips

=

|| T

T

LPI command

Everything that can be selected within LUSAS Modeller can be initiated by typing
commands into the LPI Bar. For instance, when the Save button is selected in LUSAS
Modeller, it is actually calling the function database.save()

Getting started with the LUSAS Programmable Interface (LPI)

B4 LUSAS Bridge Plus - [LUSAS View: LPLmdl W
B4 File Edit View Geometry Attributes

DM & = &

e

Therefore, to save a model, you can type in the LPI command bar:

call database.save ()

and then press Enter:

LPI command call database.save()

Commands can also be concatenated using a colon (:) character.

For example:

Txt = "Hello World" : call msgbox (txt)

Identifying LPI functions

There are two ways of identifying which LPI function corresponds to an operation
carried out within LUSAS:

U By writing LPI functions to a file
U By writing LPI functions to the Text Output window.

Writing LPI functions to a file

1. Select the menu item File > Script > Start Recording...
2. Pick menu item(s), for example select Tools > Vertical Axis and click OK.

3. Select the menu item File > Script > Stop Recording

Identifying LPI functions

A .vbs file (.lvb file from version 20 onwards) will be saved to a chosen location. This
file can then be edited with a text editor to see the LPI commands. An example follows:

SENGINE=VBScript

' LUSAS Modeller session file

' Created by LUSAS 21.0-0cl - Modeller Version 21.0.1601.44691
' Created at 14:17 on Thursday, September 28 2023

' (C) Finite Element Analysis Ltd 2023

call setCreationVersion("21.0-0cl, 21.0.1601.44691")

'*** Settings/Options/Properties change

call database.setVerticalDir("Y")

Re-running commands with Modeller
O Commands can be re-run within Modeller by selecting File > Script > Run

Script... and choosing the previously saved .vbs file.

O The Run Script button can also be selected to run scripts.

Writing LPI functions to the Text Output window

1. Select the menu item File > Model Properties > Options > Advanced... >
New option...

2. Type echocommands and then click on “Boolean”. Tick the option “Value”.
3. Click OK on all dialog buttons presented.

Now, for every operation carried out within LUSAS Modeller, the corresponding
command will be written to the Text Output window.

For example: If you click on the Save button, you will see the following:

Text Output
(®) Allmessages () Errors and warnings () Only errors () LPI Commands | Clear all

@ 1412 Display adapter in use: NVIDIA Quadro KEDD
® 14:35 call database.save()
14:3%5 Model successfully saved as C:wUzershpaul_bDocuments~Lusas2l0~Projectshrail_bridge ga_model_safe.mdl

<

Getting started with the LUSAS Programmable Interface (LPI)

Details of LPI functions

Details of all LPI functions along with an explanation of what they do, the arguments
they take (if any), the returned values, etc, can be found by selecting the LUSAS menu
item Help > LPI Reference Manual

LUSAS Programmable Interface (LPI) online help

The left-hand pane of the LUSAS Programmable Interface help system contains a
filtered list of all classes and functions that can be accessed within Modeller.

(@ Lpionine - 15.0

e s comorctectecpaning 1.0/ il e |[Q seach | i@ + A OB =

3 Lusas Programmable Interface (LPI)

inate object

Commonly Used Objects

This section details the objects that are used most frequently. It is not intended to be exhaustive (see belaw).

Modeller - This object represents the currently running instance of modeller. All other objects are logically children of this object. From here it is
possible to open and access a database, modify the menus. modify the toolbars and similar high level activities. In practice, within a VBScript. it is not
necessary to refer to the Modeller object. as all of its functions appear as global functions.

Database - The database represents the currently open model file. Generally. objects within a database are some kind of DatabaseMember . Loadset
. Attribute or Control .

Databaselember - points. lines, surfaces, volumes. elements and nodes are all specialised examples of Databaselember . These represent the
physical modlel

Loadset - a loadset is a generic term which inclucles loadcases, load curves. envelopes. combinations and similar. These are used to distinguish
between the steps within the analysis

Attribute - loading materials. sliclelines, transformations. and all other abjects that appear in the attributes or utilities treevievs in Madeller are all
specialised examples of attribute

Control - controls are attached to Loadease objects and control the analysis. They dictate whether the analysis is linear, non-linear, dynamic ete and
e At contain the parameters to fine tune such analyses

nstraintEquations e - Aview {there can be several] represents a modeller drawing windev. At any one time only ane of them is ‘current - which represents the
strantEquType front-maest one that has the user's attention

ObjectSet - An abject set can contain any number of Databasefdember . The selection within a window. the set of visible objects within a wincow
and user-defined groups are all specialised examples of ObjectSet

Clicking one of these classes or functions gives a description of the function with its
input arguments and return values in the right-hand pane. Any argument shown in
square brackets is optional.

Details of LPI functions

Assignment.addLoadsetspecified
nment gethssignmentLoadset
Assignment setloadset
nment.setloadsetAll
nment setloadsetFromStart
AssignmentsetLoadsetOff
ignmentsetloadsatRange
nment.setloadsetSpecified
Assignment setloadsetToEnd
Database.countLoadsets
Database createLoadsetTargetValues
Database.deleteLoadset
Database.deleteLoadsets
Database existsLoadset
Database.getLargestL oadsetlD
Database.getLoadset
Database getLoadsets
Database.getsmallestl oadsetlD
Loadset
Loadset Target
LoadsetTar
LoadsetTarget!
LoadsetTarget!
LoadsetTarget!
on
LoadsetTargetyalues addTarget
LoadsetTargetValues.addTargets
LoadsetTargety alues createCombination
LoadsetTargetValuas.creatal nadcase
LoadsetTargetValues factorL oadcs
LoadsetTargetV alues.getConstantFactors
LoadsetTargetY alues.getEigenvaluelDs
LoadsetTargetValues getFactorTypes
LoadsetTargetV aluas getHarmonicDs
LoadsetTargetvalues.getLoadeaselDs

LoadsetTargetV alues.getOptimisationCriteria

alues

alues addEntry
alues.addOptimisationCriteria
alues.addOptimisationCriteri

Loadset.createValue

createValue(name, [energy], [force], length], [mass], [tme], [temperature], [perUnitengthl)

Create a ne

alue within this loadset for subsequent use. The initial value vill be 0.0 until modified by a call to setValue. LUSAS will nat use this value
for any purpose, but will store it in madel files, and allow subseguent modification with setValue and/or subsequent aceess with qet/alue. The value
may have any simple data type - integer. boolean real or string, but may not be an array, object or other comples: type. For numbers, it will often be
desireable but is not compulsary. to attach unit information to the value. such that its value can be fetched or modied in a knovn system of units
This is done using the six aptional integers. The integers represent the indices. or ‘power of each scalar quantity - e.q. 2=squared 3=cubed and so an
Each integer may be pasitive or negative, E.g. specifying '0.0.1,0.0,0' would mean that the new quantity is a length '0.0,20.0.0' would mean length
squared ie. area '0.0,1.0- 10’ would mean length divided by time, i.e. velacity: and '0.1-2.0,0.0' would mean force per unit area.

name string name of the new value

energy optional integer energy component of the new value (default 0.0)

foree aptional integer foree component af the new value (defailt 0.0)

length aptional integer length companent of the new value (default 0.0)

mass optional integer mass component of the naw valua (default 0.0)

time optional integer time component of the new value (default 0.0)

temperature optional integer temperature component of the new value (default 0.0}

perUnitLength aptional integer Only to be used for quantities that are ‘per unit length’ or ‘per unit area’ such as

“mm /m” {default 0.0)
Return value IFDispatch
See also setValue getValue setValueDescription

Back to Loadset

Back ta Overvie

The creation of a new model will require a call to the Modeller.newDatabase function
and from this other functions may be called to add to, manipulate or interrogate the
state of the objects in the Modeller database.

obal Functions
Modeller Dig

MadellerDlg gethaintndHandle
ModellerDig.onClose
Modeller.abaqusExport

Modeller AfisgBo
Modeller.getAnimationtdanager
Modeller.ansysExpar
Modeller.getSessionFile Assi
Modeller.getSessionFiles
Modeller bringToFrant
Modeller brovseDir
Modeller.calculateAnch
Modeller.clackEnd
Modeller.clackStart
Wodeller.clasePrintFile
mFileExportData
CmdFilelmportData

] Modeller.newDatabase

newDatabase([analysisType], [filename])
Creates anew. blank, model database without saving changes in the previous model. if any. {Use db.save first}

analysisType “Thermal

filename

optional string
optional string

Analysis type to create:, "Structural or "Coupled

Filename to be created, e.q. "Ci\temp\mylodel mdl” If not given, the database will not be
associated with any file until saveAs is called

Return value IFDatabase

The new database

Back to Modeller

Back to Overvie

Searching LPI help

Searching of LPI help is possible. For example, a search for “save” will return results
that include the database.save() function:

Getting started with the LUSAS Programmable Interface (LPI)

L] Database.save

AnalysisBaseClass.deleteSavedArray
AnalysisBaseClass.existsSavedArray
AnalysisBaseClass.saveStrarray

Ay e mEsE save

AnimationView.saveAs 0

Database cIe_Ie‘.eSavedArray)
Database.existsSavedArray Save the model to disk.
Database.sa

Database.saveAs Arguments none
Database.saveDblArray

Database.savelntArray Return value none
Database.saveStrArray

Database.setSaveSafety Back to Database
Graph.savePicture .
GridWindow.saveAllAs Back to Overview

GridWindow.saveAs

[N | PRSI o

Some function basics

Note that the above database.save() function it does not take any parameters and does
not return anything. It simply saves the model.

The database.saveAs(filename) function is an example of a function that does take a
parameter (in this case, just one) comprising a string with the path and file name of the
new model:

Database.saveAs

AnalysisBaseClass.deleteSavedArray
AnalysisBaseClass. existsSavedArray
AnalysisBaseClass.saveStrArray
AnimationView saveds
Database.deleteSavedArray

saveds(filename)

Database.axistsSavadArray As save but allows specification of a new name for the model

Database.save

Datahase.saveds filename string The path and name of the model file
Database.saveDblArray

Database.savelntirray Return value none

Database.saveStrarray

abase.setSaveSafety Back to Database

Back to Overview

To specify that you are passing a string to the function and not any other type of data,
strings need to be placed between double quotes: (“)

LPI command call database.savess("C: LUSAS 151 Projects\MyNewModel .md|™)

10

Details of LPI functions

An example of a function that takes one parameter and returns a named attribute:

database.createlLoadingConcentrated ("MyConcentratedLoad")

LPFI command call database, createloadingConcentrated "My ConcentratedLoad ™)

This function creates a concentrated load attribute. The parameter it takes is the name

of the load attribute (for example: MyConcentratedLoad), and it returns an object of the
class ‘Loading Concentrated’:

Database.createLoadingConcentrated

createLoadingConcentrated(attrName)

Creates a concentrated structural loading attribute

attrName string

name of attribute
Return value IFLoadingConcentrated

newly created attribute

The corresponding entry in the Attributes Treeview is shown as follows:

Layers | [3] Groups | &% Attributes | (E) an:
=423 MyModel, mdl
=23 Attributes (1)
-9 Loading (1)
=23 Structural (1)
- 1:MyConcentratedLoad

At the moment this load has a value of 0 for all its components. If you want it to be a

load of, say, 10 units in the X direction, you also need to use one of the functions of the
Loading Concentrated class:

11

Getting started with the LUSAS Programmable Interface (LPI)

Loading Concentrated

Base Class: Loading

Derived Classes: None

Description

Concentrated structural loading attribute

Available Functions:
setConcentrated(px, py. [pz]. [mx]. [my], [mz], [loofl], [loof2], [pore])

LPI command call database.createloadingConcentrated("MyConcentratedLoad").setConcentrated(10.0,0.0)

As stated previously, the parameters in square brackets [] are optional, so do not need
to be defined, hence just px and py are specified.

12

Capabilities

Customising the
user interface

Capabilities

With LPI you can create user-defined menu items, dialogs and toolbars. Dialogs are
covered in the LUSAS Programmable Interface (LPI) Developer Guide. This section
covers customisation of:

U Modifying standard toolbars
U Customised and User toolbar buttons

O Start-up templates
Modifying standard toolbars

Toolbars consist of buttons which can be used to drive the software.
DEEH @ = B2 < -0 5

Within Modeller these can be customised from the View> Toolbars menu item.

13

Customising the user interface

Eé LUSAS Bridge Plus - [LUSAS View: MyModel.mdl Window 1]

Eé File Edit Geometry Attributes Analyses Utilites Bridge Composite Window

O & | ||~ Working Mode

Page Layout Mode
Layers | Group
Ea MYM; Drawing Layers

Efm
- 7| Browse Selection...

Tree Frame

Q Property Box

ﬂ '7| LPI Cormmand Bar
'7| Text Qutput

7| Status Bar

[l

7| Browse Cyclable Items...

e

Toolbars
= Toolbars:
v -
Define i
Wiew Tools x
I Advanced Define | =
|| Anirmation Builder T)
b || &rmotation Toolz

I WizibilityS election
IkATI P 1

-

b ain

| Toolbars...

| Show Tooltips

@ Show Datatips

[Large Buttons

I o

Cloze
Mew...
Customize...

Reset

Help

Cool Look

Customized toolbar buttons

Pre-programmed buttons can be added to the toolbars from the View> Toolbars >
Customize > Customize tab, by simply dragging and dropping buttons as required.

Customize

=

Customize | |Jger

Categories:

Main

Define
Advanced Define
View Liils

Rotate and Zoom
Animation Builder

Annotation Tools
Visibility/Selectior
Results

IMDPlus

User

to ary toolbar
Description

Select a category, then click a button to see its description. Drag the button

Buttons
LRIk y R iR
RnNEEEEE
MBPAXDE S
BREe

[ok |[camce |[Hep

14

Capabilities

User toolbar buttons

User toolbar buttons can be added and programmed to carry out user defined actions by
navigating to selecting View > Toolbars > Customize > Customize tab and then
selecting User from the Categories list

Customize @

Toobars | Customize | User

Categories: Buttons
1:2 3 456 7 89

Select 5 category, then click a button to see its description. Drag the button
to any toolbar

Description

oK | Coneel | [Hel

The bitmaps on the toolbar buttons may be changed by modifying the file C:\<LUSAS
Installation Folder>Programs\Config\userToolbar.bmp
Calling functions from user buttons:

The actions carried out when a button on a user tool bar is chosen are defined on the
View > Toolbars > Customize > User dialog.

For example, if you often need to define a concentrated load of, say, 10in X, 20in Y,
and 30 in Z, you can type the LPI function in the user button 1 text box, so that every
time that button was selected, that load attribute would be created in the Attribute
Treeview:

Call database.createloadingConcentrated (“TypicalLoad") .set

Concentrated(10,20,30,0,0,0,0,0.0)

Or, if you often want to run a script called MyScript.vbs, then you would type: fileopen
“C:\LUSAS Scripts\MyScript.vbs” user button 2 text box as shown below:

15

Customising the user interface

Customize @
Toolbars ICusmrnize User

1 cal database.createLoadingConcentrated(Typicalload").s |

2 fileopen "CALUSAS Scripts\MyScript.vbs"

[
@

@ o
o o

e
=y “71 = F A 4 $
@a a8 a a | aq

e
m

@
7'
&

[ok |[cance |[Heb

Adding User buttons to toolbar menus

User buttons can be added to the toolbar menu by dragging and dropping into place.

Help Modules
TFE :(F5mls

Customize

Toolbars | Customize | User

Categories: =]

Main

Define] 3 45 6 7 8 9
Advanced Define

View Ltils

Rotate and Zoom

Startup templates

Startup templates can be used to pre-load the Attributes Treeview with selected
attributes for a particular analysis, set default mesh or material types, or define
preferred colour schemes - to name just a few uses.

User-defined startup templates are created by recording the setting of a variety of
selections and then associating the recording with a template name.

You can use any VBS file as a template, and you can also add templates from the “New
Model” form:

16

Capabilities

New Model Customise Startup Templates (3]
File details
Name Location
File name
MyTemplate C€:\LUSAS Scripts\MySaript.vbs
Working folder @ Default () Current () User-defined yiEme i pis\HyScrip
savein C:\LUSAS 151 \Projects []
Model details
Title
Name MyTemplate
))) Saript C\LUSAS Scripts\MySaipt. vbs
Analysis type Vertcalaxis (X er @z
Starp tepiate T
o) e) Loc) [omet) []

Now every time that you create a new blank model, you will be able to choose this
template, which will run the script just after creating the model.

Advanced operations

For more advanced operations a macro facility is available to enable commonly used
commands to be grouped together or abbreviated.

Macro functions should be written in Visual Basic and saved in a file. For example:

sub dp(x,y,z)

call database.createPoint (x,vy,2z)

end sub

The macro file is registered from the Advanced button on the LPI command bar.

LPI command | =l I Advanced..."

The functions in the macro file may then be activated from the LPI command bar by
typing the function name and arguments e.g. dp 1,2,3 or call dp(1,2,3)

17

Customising the user interface

18

Capabilities

Getting started with
VBS

LUSAS Modeller records every operation that it carries out in a session file. This file
contains standard calls to LUSAS LPI function in a Visual Basic Script syntax. The file
can be replayed to carry out exactly the same actions again. Alternatively the file can
be modified to carry out different actions.

The procedure is as follows:
1. To start by recording a script select File > Script > Start Recording...
2. Carry out a series of operations.
3. Stop recording by selecting File > Script > Stop Recording

4. Edit the .vbs file (.lvb file from version 20 onwards) to cover the cases
required.

With a little programming syntax knowledge loops can be used to make the script more
“tidy” and variables can be added to make the script more “flexible”

Editing can be carried out with the standard Windows Notepad (accessible from Start>
All Programs> Accessories> Notepad) or 3 party products such as Notepad-++

| MyScript.vbs - Notepad
File Edit Format View Help

SENGINE=VBSCript

' LUSAS Modeller session file

' Created by LUSAS 15.1-2cl - Modeller version 15.1.1617.22304
' Created at 14:52 on Tuesday, February 02 2016

: (C) Fimite Element Analysis Ltd 2016

call setCreationversion("15.1-2cl, 15.1.1617.22304")

‘e | PI Command Bar
call database.createLoadingConcentrated("TypicalLoad").setConcentrated(10.0,2
maxvalue = 20 'maxvalue is a variable that is being assigned the value of 20

For i =1 to maxvalue
MsgBox "Reached " & i & " out of " & maxvalue

1 NexT

19

Getting started with VBS

Programming syntax
Some simple rules
e First line of the visual basic script file must be SENGINE=VBSCRIPT
e Lines to be treated as comments only must start with an apostrophe ()

Basic Operators allowed include:
e Arithmetic: +, -, /, *
e Comparison: =, >, <, >=, <=, <>
e Concatenation: &
e Logical: Not, And, Or
Conditionals

e If.. Then ... Else

If a > b Then

MsgBox "a was greater than b"
Else

MsgBox "a was not greater than b"
End If

e Loops: For ... Next

maxvalue = 20 " max value is a variable that is assigned the value of 20
For 1 = 1 to maxvalue

MsgBox "Reached " & 1 & "out of " & maxvalue
Next

Variables

e Can be strings, numbers etc

e Names must begin with a letter

e Names must not contain an embedded full-stop (period) “.”
e Names must not exceed 255 characters

e Names must be unique

e There is no need to “declare” variables

20

Programming syntax

Arrays

e Can contain strings or numbers etc
e Can be “called” individually

e Always use (0) as the first index of the array.

Example:
Dim MyArray(2)
MyArray(0) = 10
MyArray(l) = 20
MyArray(2) = 30

This is a one dimensional array with 3 items. The first element has been assigned a
value of 10, the second 20, and the third 30.

Note that the UBound function returns the largest available subscript of an array:

call msgbox (“Upper bound of array=" & UBound (MyArray))

So the UBound function returns 2 for the array in the example above.

Visual Basic Script online tutorials

More detailed online tutorials showing how to write visual basic script can be found on
the internet. Here are just a few examples (with links applicable at the time of writing):

e English: http://www.tizag.com/vbscriptTutorial/

e English: http://www.tutorialspoint.com/vbscript/index.htm

e Chinese: http://www.w3school.com.cn/vbscript/

21

http://www.tizag.com/vbscriptTutorial/
http://www.tutorialspoint.com/vbscript/index.htm
http://www.w3school.com.cn/vbscript/

Getting started with VBS

22

Simple user script example

Example VB scripts

Simple user script example

Deleting a range of loadcases

A simple user script is to be written to illustrate how a range of loadcases can be
deleted from the Analyses Treeview.

In Version 15.2 of LUSAS the only way to delete loadcases via the user interface was
to click on each of them in turn in the Analyses Treeview and press the delete key. In
later versions of LUSAS this is no longer the case, and loadcases can be deleted from
the Analyses Treeview singly or by multiple selection, so the script example does not
provide any more functionality for these versions. However, it does provide a good

introdu

ction to generating user scripts.

% LUSAS Bridge Plus - [LUSAS View: Delete Loadcases.mdl Window 1]
[File Edit View Geometry Attributes Analyses Utilities Bridge Composite Window Help Modules

&= glosr-o-g- @ g7l che | N-E-ewwe B 12

iDSH™

Layers [[] Groups | b Atmibutes | (2 Analyses [/= Utiites [] Reports

0,0 10 B 20 B 30 B 0 50

=5

[=-423 Delete Loadcases.mdl -
“23 Structural analyses

= Analysis 1
(L Geometric
({0 Material
(D) Liloadcase 1 B
-5 2:Loadcase 2
(X 3l oadcase 3
(%1 4L oadease 4 A
(1) SiLoadcase 5
(5 6:Loadcase 6
(X 7:Loadcase 7 =
(% 8:Loadcase 8
(V1 9:Loadease 9
(5 10:Loadcase 10
(1) 11:loadease 11
(L) 12:10adcase 12
(%1 13:L0adcase 13
(5 14:Loadcase 14
(1) 15:Loadcase 15
(1) 16:l0adcase 16

I
0

00

First make a recording

1.

A

Choose File > Start Recording...

Specify a file name
Delete loadcase 1 manually.
Choose File > Stop Recording

Open the script file created:

23

Example VB scripts

k= L b =

-1

co

1 |E:
11
12

SENGINE=VBScript

' LUSAS Modeller session file

' Created by LUSAS 15.1-2c¢l - Modeller Version 15.1.1617.22304
' Created at 09:21 on Wednesday, February 03 2016

' (C) Finite Element Analysis Ltd 2016

T

call setCreationvVersion("15.1-2cl, 15.1.1€17.22304™)
T

'*** Delete loadcase/control

call database.deletelLoadset("Loadczase 17)

In this file note that:

Line 1: This line is common in all scripts. Do not remove or modify this line.

Line 7: Specifies the version of LUSAS used to generate the script. This line
is common in all scripts. Do not remove or modify this line.

Line 12: This is the line that deletes Loadcase 1

Lines other than those above: These lines are comments: they are ignored.
Comments always start with an apostrophe ()

If the Loadcase names are of the form Loadcase 1, Loadcase 2 etc and you wanted to
delete Loadcase 2 to Loadcase 50 you need to edit the previous script and insert a For
.. Next loop as seen at the bottom of this next image:

S (s AT 5 Y = U T o B

co

10
11
12

=

14

SENGINE=VBScript

' LUSAS Modeller session file

' Created by LUSAS 15.1-2cl - Modeller Version 15.1.1617.22304
' Created at 09:21 on Wednesday, February 03 2016

' (C) Finite Element Analysis Ltd 2016

1

call setCreationversion("15.1-2cl, 15.1.1617.22304™)

1

'*** Delete loadcase/control

For i = 2 To 50
call database.deleteLoadset("Loadcase " & 1)
Next

Now you are actually calling the deleteLoadset function 49 times, taking the argument
Loadcase 2, Loadcase 3, Loadcase 4, etc.

24

Simple user script example

Note. The function deleteLoadset is used instead of deleteLoadcase because the
deleteLoadset function also deletes combinations and envelopes.

If you look for information about this function in the LPI online help, you will see that
the loadset can be specified by Loadset name (which is how it has been done in this
example) but it can also be specified by Loadset ID.

Database.deleteLoadset

deleteLoadset{loadset)
deleteLoadset(name, [resFile], [eigen], [harm])
deleteLoadset(ID, [resFile], [eigen], [harm])

Delete the specified loadset. Note that it is not possible to delete results loadcases (close the file instead) or the last remaining pre-processing
Ioadcase.lThe loadset can be specified in several ways, by name, by 1D Iar by type and name/ID. In each case, additionally specifying the results
file name/ID, eigenvalue ID and harmonic ID will clarify to LUSAS which loadset is required. Alternatively, an object may be passed in, which
requires no further clarification. This same principle applies to all functions that input single loadsets. and the examples below reflect this. Each
input form is legal in each circumstance

By ID it would be easier to write the script as follows:

12 For i = 2 To 50

13 call database.deleteLoadset (i)
14 Next

And if in the original model you wanted to delete all the even loadcases you would add
“‘Step 2’ to line 12:

12 For i = 2 to 100 Step 2
13 call database.deletelLoadset (1)
14 Next

Alternatively if you wanted to delete all the even-numbered loadcases you could
append ‘2T5012”) to the main LPI command:

call database.deleteLoadsets(2T5012)

This would delete from Loadcase 2 to Loadcase 50 in increments of 2.

Save the file as delete_loadcases.vbs

25

Example VB scripts

Running a script

A script can be run within LUSAS Modeller as follows:

1. Choose File > Script > Run Script

2. Browse for and select <script_name.vbs>

Supplied script examples

LUSAS supplies many script examples (that are installed as part of a software

installation) which demonstrate how to carry out various functions and tasks. These

may be found at this location:

C:\<LUSAS Installation Folder>\Programs (x86)\Scripts\LPIExamples

£ Search LPIExamples

.

Marne Date modified
Attributes.vbs 16/09,/2023 00:57
Dialegs.vbs

2| Display.vbs

i

ExportExcelvbs
ExportWord.vbs
FileHandling.vbs
Geometry.vbs
Graphs.vbs

o [[R

Groups.vbs
ImportExcel.vbs 16/09/.
Ff_;i LoadsetsResults.vbs ¥
LPIExampleMenu.vbs
Menus.vbs

Mesh.vbs

Results.wbs 16/09,20

i

=

Selection.vbs 16,09/

TextMessages.vbs

ol el el s

UserResults.vbs

containing VB script should not be word-wrapped.

Type

VBS5cript Script File
VBScript Script File
VBScript Script File
VBS5cript Script File
VBScript Script File
VBScript Script File
VBS5cript Script File
VBScript Script File
VBScript Script File
VBS5cript Script File
VBScript Script File
VBScript Script File
VBS5cript Script File
VBScript Script File
VBScript Script File
VBS5cript Script File
VBScript Script File
VBScript Script File

Size

4KB
2 KB
3 KB
3IKE
3 KB
TKB
2KE
2 KB
TKB
2KE
3 KB
2 KB
2KE
2 KB
3 KB
2KE
TKB
2 KB

Note. In the printed versions of the two scripts that follow word wrapping has taken
place. Only lines that are preceded by an apostrophe () are comment lines. Other lines

26

Supplied script examples

Example script: Attributes.vbs

This supplied script creates a single planar surface and then creates and assigns to that
surface: a regular mesh, material and geometry. A support is created and assigned to a
line; a concentrated load is created and assigned to a point as loadcase 1; and a face
load is created and assigned to a line as loadcase 2.

SENGINE=VBScript

' Create and assign attributes

' Create new database

call newdatabase ()

' Create Surface

call geometryData.setAllDefaults()

call geometryData.setCreateMethod ("planar")
call geometryData.addCoords (0.0, 0.0, 0.0)
call geometryData.addCoords (40.0, 0.0, 0.0)
call geometryData.addCoords (40.0, 20.0, 0.0)
call geometryData.addCoords (0.0, 20.0, 0.0)

call database.createSurface (geometryData)

' Create Attribute : Surface Mesh 1

call database.createMeshSurface ("Plane
Stress") .setRegular ("QPM8", 0, 0, false)

' Modify selection

call selection.add("Surface", "1")

' Attribute : Plane Stress : Assign to Primary selection
call assignment.setAllDefaults () .setlLoadset ("Loadcase 1")

call database.getAttribute ("Mesh", "Plane
Stress") .assignTo (selection, assignment)

call database.updateMesh ()

' Create Attribute : Isotropic Material 1

27

Example VB scripts

set attr = database.createlsotropicMaterial ("Mild Steel",
200.0E3, 0.3, 7.8E3)

set attr = nothing

' Attribute : Mild Steel : Assign to Primary selection
call assignment.setAllDefaults ()
call database.getAttribute ("Material™, "Mild

Steel") .assignTo (selection, assignment)
' Create Attribute : Surface Geometric 1
call

database.createGeometricSurface ("Thickness=1") .setSurface (1.0,
0.0)

' Attribute : Thickness=1 : Assign to Primary selection
call assignment.setAllDefaults ()

call database.getAttribute ("Geometric",
"Thickness=1") .assignTo (selection, assignment)

' Create Attribute : Fixed in XY

call database.createSupportStructural ("Fixed in
XY") .setStructural ("R", "R")

' Modify selection

call selection.add("Line", "4")

' Attribute : Fixed in XY : Assign to Primary selection

call
assignment.setAllDefaults () .setSelectionNone () .addToSelection (
llLinell)

call database.getAttribute ("Supports", "Fixed in
XY") .assignTo (selection, assignment)

' Create Attribute : Concentrated Load 1

call database.createlLoadingConcentrated ("Concentrated Load
1") .setConcentrated (0.0, -100.0)

28

Supplied script examples

' Modify selection

call selection.add ("Point", "3")

' Attribute : Concentrated Load 1 : Assign to Primary
selection

call
assignment.setAllDefaults () .setSelectionNone () .addToSelection (
"Point") .setLoadset ("Loadcase 1")

' assign load to selected point in loadcase 1

call database.getAttribute ("Loading", "Concentrated Load
1") .assignTo(selection, assignment)

' Define face load

call database.createlLoadingFace ("Distributed 1") .setFace (0.0,
10.0, 0.0)

' Select top face
call selection.remove ("A1ll")

call selection.add("Line"™, "3")

' Create new loadcase and set active

call database.createlLoadcase ("Loadcase 2", "Structural")
set loadset = database.getlLoadset ("Loadcase 2", "model")
call view.setActiveLoadset (loadset)

set loadset = nothing

' set assignment object with selected face hof and loadcase 2
set hof(0 = database.getObject ("Surface", "1")

call assignment.setAllDefaults () .setLoadset ("Loadcase
2") .addHof (hof0)

' assign face load to top face in loadcase 2

call database.getAttribute ("Loading", "Distributed
1") .assignTo(selection, assignment)

29

Example VB scripts

Example script: Results.vbs

This supplied script writes a set of results to the text window for a prior selection of
features made in the Modeller view window.

SENGINE=VBScript
' Extracting Results
set textWindow = getTextWindow ()
' set results type
entity="Displacement"
' get array of results component names
component=view.getResultsComponentNames (entity)
' extract array of selected nodes
nodes=selection.getObjects ("Node", "A11l")
' check nodes in selection
if ubound (nodes) >= 0 then
' loop selected nodes
for i = 0 to ubound(nodes)
' get node object
set node = nodes (i)
' get element Number
num=node.getID()
' write line to text window
text = "Node=" & num
for j=0 to ubound (component)
' get averaged nodal result
res=node.getResults (entity, component (j))

text=text & " " & component(j) & " =" & res

30

Supplied script examples

next
textWindow.writelLine (text)
next
set results type
entity ="Force/Moment - Thick Shell"
get array of results component names
component=view.getResultsComponentNames (entity)
extract array of selected elements
elements= selection.getObjects ("Element","All")
loop selected elements
for i = 0 to ubound(elements)
set element object
set elt = elements (i)
get element Number
num=elt.getID()
extract array of element nodes
nodes = elt.getNodes ()
loop element nodes
for k = 0 to ubound(nodes)
get node object
set node = nodes (k)
extract node data
nnum = node.getID()
node.getXYZ x,vy,z
get vector of element nodal results
vecRes=elt.getNodeVectorResults (k,entity)

nc=ubound (vecRes)

31

Example VB scripts

build output text string

text = "Elt=" & num & " Node=" & nnum & " x=" & x & " y="
&y & " z=" & z

for j = 0 to nc
text=text & " " & component(j) & " = " & vecRes(3J)
next
textWindow.writelLine (text)
next
' extract number of Gauss points
ngp = elt.countGaussPoints ()
' loop gauss points
for k = 0 to ngp-1
vecRes = elt.getGaussVectorResults (k,entity)
nc=ubound (vecRes)

build output text string

text = "Elt=" & num & " GP=" & k
for j = 0 to nc

text=text & " " & component(j) & " =" & vecRes(j)
next

textWindow.writelLine (text)
next
next

else

AfxMsgBox "Run an analysis and select some nodes as input to
this script”

end if

32

Supplied script examples

Example script: Arbitrary_section.vbs

This supplied script allows creation of an Arbitary Section

SENGINE=VBScript

'*** We need a separate variable to represent the main model.

'***% This is because "db" (whilst appearing to be a variable) is
truly a

'**%* function that returns the "current" database, and the
"current"

'*** database is about to be the temporary ASPC database

set maindb = db

'*** Create a special temporary database to contain all the
geometry and attributes of the new section

set aspc = newASPCDatabase ()

'xxx "db" and "aspc" now both refer to the temporary ASPC
database

'***% Tt is good practice to avoid using "db" as it may confuse
other programmers

'*** Create a surface

call geometryData.setAllDefaults ()

call geometryData.setCreateMethod ("planar")

call geometryData.addCoords (6.0, 19.0, 0.0)

call geometryData.addCoords (22.0, 19.0, 0.0)
call geometryData.addCoords (22.0, 28.0, 0.0)
call geometryData.addCoords (6.0, 28.0, 0.0)

call geometryData.setLowerOrderGeometryType ("coordinates")

33

Example VB scripts

call aspc.createSurface (geometryData)

'***% Optionally at this point we could assign materials, mesh,
line thickness, etc

'*** following the usual conventions of the LPI

'**% Provide the default mesh

call aspc.updateMesh ()

'*** Convert the whole of the ASPC database into an ASPC utility
in the main model

call
maindb.createArbitrarySection ("arbitrary section").fromDatabase (a

spc)

'*** Save the aspc database in case we need to modify it in
future

call aspc.saveas ("C:\temp\aspc.mdl")

'*** We no longer want the aspc database

call aspc.close()

'xx% "dbh" and "maindb" now both refer to the main database

It is important to note that sections that have been created this
way cannot directly be modified in the LUSAS UI.

However they can be modified from the LPI, in exactly the same
way, Jjust starting with the saved section:

'**% Retrieve the ASPC model we saved earlier

34

Supplied script examples

set aspc = openASPCDatabase ("C:\temp\aspc.mdl")

'*** make some changes here

'*** Convert the whole of the ASPC database into an ASPC utility
in the main model

call
maindb.createArbitrarySection ("arbitrary section") .fromDatabase (a

spc)

'*** Save the aspc database in case we need to modify it in
future

call aspc.saveas ("C:\temp\aspc.mdl")

'*** We no longer want the aspc database

call aspc.close()

Running a script from a menu

When a number of related scripts have been created it is often more convenient to add a
Modeller menu item to access those scripts, rather than by opening the scripts using the
File > Script > Run Script menu item.

To allow this, one supplied script contains the code to create a menu containing all of
the other supplied scripts. To add the menu item to Modeller’s main menu:

1. Choose File > Script > Run Script

2. Browse to the C:\<LUSAS Installation Folder>\Programs
(x86)\scripts\LPIExamples folder

3. Select LPIExamplesMenu.vbs

35

Example VB scripts

Eﬁ LUSAS Bridge Plus - [LUSAS View: MyModel.mdl Window 1]
% File Edit View Geometry Attributes Analyses Utilities Bridge Composite Window Help

iDEE @ = oy S i orr- S @y Background v [qE|s[EE[ElE | & e v
Selection Yellow Selection

Layers | Groups | & Attributes | {8 Analyses | & Utlities I =l Reportsl Axes On Thick Black Selection

= a MyModel.md| 1 Axes OFf Windows Colours
=-{] MyModel.mdl Window 1
@ Mesh

@ Geometry
5 Attributes
-5 utilities

{2 Deformed mesh
-~y View properties

40

0.0

5.0

|

This menu script example adds a Test menu name to the main menu, and has a number
of menu items with sub-menus that each trigger a script.

Keeping the LPI menu visible

To keep the LPI menu visible:

1. Open the file C:\<LUSAS Installation Folder>\Programs
(x86)\Config\afterNewModel.vbs

2. Add these lines to the bottom of the file:
Scripts= getSystemString ("scripts")

call fileopen (scripts&"\LPIExamples\LPIExampleMenu.vbs")

Adding a user menu

A user menu can be added by editing this file in your user folder:
"%USERPROFILE%\Documents\LUSAS210\UserScripts\" -> C:\User\<Your

username>\Documents\LUSAS210\UserScripts\Usermenu.vbs

More advanced scripts

Many more advanced scripts can be downloaded from the protected User Area of the
LUSAS website at:

http://www.lusas.com/protected/download/scripts.html

36

http://www.lusas.com/protected/download/scripts.html

'
',
. .
|

2L
=y
® |
= CR|
| ©AE ~ |
A =
E 4 ‘!:
: - +
i 2 —
i = |
-~ = 2=
- T
e - 4=
K =) '1.E
- BT s B :
=
Ll 3 (= %ﬁ el
= e :
e wTH.
= o
G -

€S, SUrT
@lusas.comai

	Introduction
	Introduction
	Examples of capabilities
	Scripts
	Topics covered in this guide
	LPI Developer Guide

	Getting started with the LUSAS Programmable Interface (LPI)
	LPI Command Bar
	Identifying LPI functions
	Writing LPI functions to a file
	Re-running commands with Modeller

	Writing LPI functions to the Text Output window

	Details of LPI functions
	LUSAS Programmable Interface (LPI) online help
	Searching LPI help
	Some function basics

	Customising the user interface
	Capabilities
	Modifying standard toolbars
	Customized toolbar buttons
	User toolbar buttons
	Calling functions from user buttons:
	Adding User buttons to toolbar menus

	Startup templates
	Advanced operations

	Getting started with VBS
	Programming syntax
	Some simple rules
	Basic Operators allowed include:
	Conditionals
	Variables
	Arrays

	Visual Basic Script online tutorials

	Example VB scripts
	Simple user script example
	Deleting a range of loadcases
	First make a recording

	Running a script

	Supplied script examples
	Example script: Attributes.vbs
	Example script: Results.vbs
	Example script: Arbitrary_section.vbs
	Running a script from a menu
	Keeping the LPI menu visible

	Adding a user menu

	More advanced scripts

