
LUSAS Programmable
Interface (LPI)

Customisation and Automation Guide

Version 15

LUSAS Programmable Interface (LPI)
Customisation and Automation Guide

LUSAS Version 23.0 : Issue 1

LUSAS
Forge House, 66 High Street, Kingston upon Thames,

Surrey, KT1 1HN, United Kingdom

Tel: +44 (0)20 8541 1999
Fax +44 (0)20 8549 9399
Email: info@lusas.com
http://www.lusas.com

Distributors Worldwide

Copyright ©1982-2025 LUSAS

All Rights Reserved.

Table of Contents

i

Table of Contents
Introduction 1

Introduction .. 1
Examples of capabilities .. 2
Scripts ... 2
Topics covered in this guide .. 3
LPI Developer Guide ... 3

Getting started with the LUSAS Programmable Interface (LPI) 5
LPI Command Bar ... 5
Identifying LPI functions .. 6

Writing LPI functions to a file .. 6
LPI functions in the Text Output window .. 7

Details of LPI functions .. 7
LUSAS Programmable Interface (LPI) online help ... 7
Searching LPI help ... 9
Some function basics ... 9

Customising the user interface 13
Capabilities .. 13

Modifying standard toolbars ... 13
Customized toolbar buttons ... 14
User toolbar buttons ... 15
Startup templates ... 16

Getting started with VBS 19
Programming syntax.. 20

Some simple rules ... 20
Visual Basic Script online tutorials ... 21

Example VB scripts 23
Simple user script example ... 23

Deleting a range of loadcases.. 23
Running a script ... 26

Supplied script examples ... 26
Example script: Attributes.vbs .. 27
Example script: Results.vbs ... 30
Running a script from a menu .. 32
Adding a user menu ... 33

More advanced scripts .. 33
Using Python 34

Install Python ... 34
Install package pywin32 .. 35
Install VSCode ... 35
Performance .. 38

Disable the UI .. 38
Batch commands ... 38

Table Of Contents

ii

Introduction

1

Introduction
Introduction

LUSAS software is highly customisable. The built-in LUSAS Programmable Interface
(LPI) allows the customisation and automation of modelling and results processing
tasks and creation of user-defined menu items, dialogs and toolbars as a means to
access those user-defined resources. It can also be used for transferring data between
LUSAS and other software applications, and to control other programs from within
LUSAS Modeller, or control LUSAS Modeller from other programs.

With LPI, any user can automate the creation of complete structures, either in LUSAS
or from third-party software, carrying out design checks, optimising members and
outputting graphs, spreadsheets of results and custom reports. Because everything
carried out by a user is recorded in a LUSAS Modeller session file, anything that
LUSAS can do, can also be controlled by another application via the LUSAS

Introduction

2

Programmable Interface. This means that you can view and edit a recorded session,
parameterise those commands, turn them into sub-routines, add loops and other
functions to the scripts and create a totally different application or program - using the
proven core technology of LUSAS.

In addition to the accessing and customising LUSAS Modeller via the LUSAS
Programmable Interface, user-defined material models (written in Fortran) can be
compiled and built into a customised LUSAS Solver executable by using the LUSAS
Material Model Interface (LUSAS MMI).

Examples of capabilities
By using any ActiveX compliant scripting language, such as VB.Net, C#, VBScript,
C++, Python, Perl, JScript etc. to access LUSAS facilities and functionality, you can:

 Create user-defined menu items, dialogs and toolbars

 Interrogate all aspects of a LUSAS model

 Customise modelling operations

 Create parameterised models

 Automate repetitive tasks

 Import CAD geometry and properties

 Make direct links to Microsoft Word / Excel, or other programs for import or
export of data

 Perform simple / codified design checks and, when used with automated
iterative analysis, optimise structural member sizes and configurations, slab
reinforcement quantities, etc.

Scripts
In their simplest form script files can be used to store a sequence of LUSAS commands
for later playback. Some examples of use include the creation of start-up templates to
pre-load the Attributes Treeview of the LUSAS Modeller user interface with selected
attributes for a particular analysis; the setting of default mesh or material types, or
preferred colour schemes; or defining specific model orientations for use when saving
model views for use in reports.

When LUSAS is run, a session file is created recording each step of the model
generation in Visual Basic Script (.vbs or .lvb file extension from version 20 onwards)
- one of the most commonly used and easily understood languages. Editing of a session
file can be used to define a similar model with new parameters. When the script is re-
run in LUSAS, a new user-defined model can be easily and rapidly generated from the
parameters defined. A Macro Recorder facility in LUSAS also provides the means to
record a sub-set of commands for a task, for saving and re-use. User-generated scripts

Topics covered in this guide

3

can be controlled by creating dialogs that may include parametric variables, check
boxes, drop-downs etc.

Varied uses of scripts include reading of geometric data, such as column dimensions,
section properties and span lengths / storey heights etc., from a spreadsheet to
automatically build multi-span bridge or building models; rapid generation of
parametrically-idealised wind farm base structures, or for automating the creation of
numerous load combinations and envelopes.

A set of example scripts are provided in LUSAS to assist in the understanding of
standard concepts including file handling, how to access LUSAS geometry / attribute
data, and how to import / export data from / to Microsoft Word or Excel, or other
programs.

Topics covered in this guide
The aim of this guide is to help you locate and use the supplied tools which will enable
you to write scripts and work more efficiently. No programming experience or
knowledge is needed to complete the examples shown. The guide covers:

 Getting started with the LUSAS Programmable Interface (LPI)

 Identifying LPI Functions

 Customising the interface

 Getting started with VBS

 A simple example script

 Creating your own menus

LPI Developer Guide
A separate LPI Developer Guide is also available covering more advanced topics:

 Creating dialogs using VB.NET

 LUSAS via COM

 LUSAS Material Model Interface

Introduction

4

LPI Command Bar

5

Getting started with
the LUSAS
Programmable
Interface (LPI)

LPI Command Bar
The LPI Command Bar can be added to the user interface by selecting the menu item
View> LPI Command Bar

All actions performed by menu items within LUSAS Modeller can be performed by
typing commands into the LPI Bar. For instance, when the Save button is selected in
LUSAS Modeller, it is actually calling the function database.save()

Getting started with the LUSAS Programmable Interface (LPI)

6

Therefore, to save a model, you can type in the LPI command bar:

call database.save()

and then press Enter:

Commands can also be concatenated using a colon (:) character.

For example:

Txt = "Hello World" : call msgbox(txt)

Identifying LPI functions
There are two ways of identifying which LPI function corresponds to an operation
carried out within LUSAS:

 By writing LPI functions to a file

 By writing LPI functions to the Text Output window.

Writing LPI functions to a file
1. Select the menu item File > Script > Start Recording...

2. Pick menu item(s), for example select Tools > Vertical Axis and click OK.

3. Select the menu item File > Script > Stop Recording

Details of LPI functions

7

A .vbs file (.lvb file from version 20 onwards) will be saved to a chosen location. This
file can then be edited with a text editor to see the LPI commands. An example follows:

$ENGINE=VBScript
' LUSAS Modeller session file
' Created by LUSAS 21.0-0c1 - Modeller Version 21.0.1601.44691
' Created at 14:17 on Thursday, September 28 2023
' (C) Finite Element Analysis Ltd 2023
'
call setCreationVersion("21.0-0c1, 21.0.1601.44691")
'
'*** Settings/Options/Properties change
call database.setVerticalDir("Y")

Re-running commands with Modeller
 Commands can be re-run within Modeller by selecting File > Script > Run

Script... and choosing the previously saved .vbs file.

 The Run Script button can also be selected to run scripts.

LPI functions in the Text Output window
For every operation carried out within LUSAS Modeller, the corresponding command
will be written to the Text Output window – LPI Commands view.

For example: If you click on the Save button, you will see the following:

Details of LPI functions
Details of all LPI functions along with an explanation of what they do, the arguments
they take (if any), the returned values, etc, can be found by selecting the LUSAS menu
item Help > LPI Reference Manual

LUSAS Programmable Interface (LPI) online help
The left-hand pane of the LUSAS Programmable Interface help system contains a
filtered list of all classes and functions that can be accessed within Modeller.

Getting started with the LUSAS Programmable Interface (LPI)

8

Clicking one of these classes or functions gives a description of the function with its
input arguments and return values in the right-hand pane. Any argument shown in
square brackets is optional.

The creation of a new model will require a call to the Modeller.newProject function
and from this other functions may be called to add to, manipulate or interrogate the
state of the objects in the Modeller database.

Details of LPI functions

9

Searching LPI help
Searching of LPI help is possible. For example, a search for “save” will return results
that include the database.save() function:

Some function basics
Note that the above database.save() function it does not take any parameters and does
not return anything. It simply saves the model.

The database.saveAs(filename) function is an example of a function that does take a
parameter (in this case, just one) comprising a string with the path and file name of the
new model:

Getting started with the LUSAS Programmable Interface (LPI)

10

To specify that you are passing a string to the function and not any other type of data,
strings need to be placed between double quotes: (“ ”)

An example of a function that takes one parameter and returns a named attribute:

database.createLoadingConcentrated("MyConcentratedLoad")

This function creates a concentrated load attribute. The parameter it takes is the name
of the load attribute (for example: MyConcentratedLoad), and it returns an object of the
class ‘Loading Concentrated’:

The corresponding entry in the Attributes Treeview is shown as follows:

Details of LPI functions

11

At the moment this load has a value of 0 for all its components. If you want it to be a
load of, say, 10 units in the X direction, you also need to use one of the functions of the
Loading Concentrated class:

As stated previously, the parameters in square brackets [] are optional, so do not need
to be defined, hence just px and py are specified.

Getting started with the LUSAS Programmable Interface (LPI)

12

Capabilities

13

Customising the
user interface

Capabilities
With LPI you can create user-defined menu items, dialogs and toolbars. Dialogs are
covered in the LUSAS Programmable Interface (LPI) Developer Guide. This section
covers customisation of:

 Modifying standard toolbars

 Customised and User toolbar buttons

 Start-up templates

Modifying standard toolbars
Toolbars consist of buttons which can be used to drive the software.

Within Modeller these can be customised from the View> Toolbars menu item.

Customising the user interface

14

Customized toolbar buttons
Pre-programmed buttons can be added to the toolbars from the View> Toolbars >
Customize > Customize tab, by simply dragging and dropping buttons as required.

Capabilities

15

User toolbar buttons
User toolbar buttons can be added and programmed to carry out user defined actions by
navigating to selecting View > Toolbars > Customize > Customize tab and then
selecting User from the Categories list

The bitmaps on the toolbar buttons may be changed by modifying the file C:\<LUSAS
Installation Folder>Programs\Config\userToolbar.bmp

Calling functions from user buttons:
The actions carried out when a button on a user tool bar is chosen are defined on the
View > Toolbars > Customize > User dialog.

For example, if you often need to define a concentrated load of, say, 10 in X, 20 in Y,
and 30 in Z, you can type the LPI function in the user button 1 text box, so that every
time that button was selected, that load attribute would be created in the Attribute
Treeview:

Call database.createLoadingConcentrated(“TypicalLoad").set

Concentrated(10,20,30,0,0,0,0,0.0)

Or, if you often want to run a script called MyScript.vbs, then you would type: fileopen
“C:\LUSAS Scripts\MyScript.vbs” user button 2 text box as shown below:

Customising the user interface

16

Adding User buttons to toolbar menus
User buttons can be added to the toolbar menu by dragging and dropping into place.

Startup templates
Startup templates can be used to pre-load the Attributes Treeview with selected
attributes for a particular analysis, set default mesh or material types, or define
preferred colour schemes - to name just a few uses.

User-defined startup templates are created by recording the setting of a variety of
selections and then associating the recording with a template name.

You can use any VBS file as a template, and you can also add templates from the “New
Model” form:

Capabilities

17

Now every time that you create a new blank model, you will be able to choose this
template, which will run the script just after creating the model.

Advanced operations
For more advanced operations a macro facility is available to enable commonly used
commands to be grouped together or abbreviated.

Macro functions should be written in Visual Basic and saved in a file. For example:

sub create_line(x1,y1,z1,x2,y2,z2)

 set geometry_data = geometryData().setAllDefaults()
 call geometry_data.setLowerOrderGeometryType("coordinates")
 call geometry_data.setCreateMethod("straight")
 call geometry_data.addCoords(x1, y1, z1)
 call geometry_data.addCoords(x2, y2, z2)
 call database.createLine(geometry_data)

end sub

The macro file is registered from the Advanced button on the LPI command bar.

The functions in the macro file may then be activated from the LPI command bar by
typing the function name and arguments e.g. create_line 1,2,3,4,5,6 or call
create_line(1,2,3,4,5,6)

Customising the user interface

18

Capabilities

19

Getting started with
VBS
LUSAS Modeller records every operation that it carries out in a session file. This file
contains standard calls to LUSAS LPI function in a Visual Basic Script syntax. The file
can be replayed to carry out exactly the same actions again. Alternatively the file can
be modified to carry out different actions.

The procedure is as follows:

1. To start by recording a script select File > Script > Start Recording...

2. Carry out a series of operations.

3. Stop recording by selecting File > Script > Stop Recording

4. Edit the .vbs file (.lvb file from version 20 onwards) to cover the cases
required.

With a little programming syntax knowledge loops can be used to make the script more
“tidy” and variables can be added to make the script more “flexible”

Editing can be carried out with the standard Windows Notepad (accessible from Start>
All Programs> Accessories> Notepad) or 3rd party products such as Notepad++ or
VSCode.

Getting started with VBS

20

Programming syntax
Some simple rules

• First line of the visual basic script file must be $ENGINE=VBSCRIPT

• Lines to be treated as comments only must start with an apostrophe (‘)

Basic Operators allowed include:

• Arithmetic: +, -, /, *

• Comparison: =, >, <, >=, <=, <>

• Concatenation: &

• Logical: Not, And, Or

Conditionals

• If ... Then ... Else

• Loops: For ... Next

Variables

• Can be strings, numbers etc

• Names must begin with a letter

• Names must not contain an embedded full-stop (period) “.”

• Names must not exceed 255 characters

• Names must be unique

• There is no need to “declare” variables

Programming syntax

21

Arrays

• Can contain strings or numbers etc

• Can be “called” individually

• Always use (0) as the first index of the array.

Example:

This is a one dimensional array with 3 items. The first element has been assigned a
value of 10, the second 20, and the third 30.

Note that the UBound function returns the largest available subscript of an array:

call msgbox(“Upper bound of array=” & UBound(MyArray))

So the UBound function returns 2 for the array in the example above.

Visual Basic Script online tutorials
More detailed online tutorials showing how to write visual basic script can be found on
the internet. Here are just a few examples (with links applicable at the time of writing):

• English: http://www.tizag.com/vbscriptTutorial/

• English: http://www.tutorialspoint.com/vbscript/index.htm

http://www.tizag.com/vbscriptTutorial/
http://www.tutorialspoint.com/vbscript/index.htm

Getting started with VBS

22

Simple user script example

23

Example VB scripts
Simple user script example

Deleting a range of loadcases
A simple user script is to be written to illustrate how a range of loadcases can be
deleted from the Analyses Treeview.

In Version 15.2 of LUSAS the only way to delete loadcases via the user interface was
to click on each of them in turn in the Analyses Treeview and press the delete key. In
later versions of LUSAS this is no longer the case, and loadcases can be deleted from
the Analyses Treeview singly or by multiple selection, so the script example does not
provide any more functionality for these versions. However, it does provide a good
introduction to generating user scripts.

First make a recording
1. Choose File > Start Recording...

2. Specify a file name

3. Delete loadcase 1 manually.

4. Choose File > Stop Recording

5. Open the script file created:

Example VB scripts

24

In this file note that:

• Line 1: This line is common in all scripts. Do not remove or modify this line.

• Line 7: Specifies the version of LUSAS used to generate the script. This line
is common in all scripts. Do not remove or modify this line.

• Line 12: This is the line that deletes Loadcase 1

• Lines other than those above: These lines are comments: they are ignored.
Comments always start with an apostrophe (‘)

If the Loadcase names are of the form Loadcase 1, Loadcase 2 etc and you wanted to
delete Loadcase 2 to Loadcase 50 you need to edit the previous script and insert a For
... Next loop as seen at the bottom of this next image:

Now you are actually calling the deleteLoadset function 49 times, taking the argument
Loadcase 2, Loadcase 3, Loadcase 4, etc.

Simple user script example

25

Note. The function deleteLoadset is used instead of deleteLoadcase because the
deleteLoadset function also deletes combinations and envelopes.

If you look for information about this function in the LPI online help, you will see that
the loadset can be specified by Loadset name (which is how it has been done in this
example) but it can also be specified by Loadset ID.

By ID it would be easier to write the script as follows:

And if in the original model you wanted to delete all the even loadcases you would add
‘Step 2’ to line 12:

Alternatively if you wanted to delete all the even-numbered loadcases you could
append ‘2T50I2’) to the main LPI command:

call database.deleteLoadsets(2T50I2)

This would delete from Loadcase 2 to Loadcase 50 in increments of 2.

Save the file as delete_loadcases.vbs



Example VB scripts

26

Running a script
A script can be run within LUSAS Modeller as follows:

1. Choose File > Script > Run Script

2. Browse for and select <script_name.vbs>

Supplied script examples
LUSAS supplies many script examples (that are installed as part of a software
installation) which demonstrate how to carry out various functions and tasks. These
may be found at this location:

C:\<LUSAS Installation Folder>\Programs (x86)\Scripts\LPIExamples

Supplied script examples

27

Note. In the printed versions of the two scripts that follow word wrapping has taken
place. Only lines that are preceded by an apostrophe (‘) are comment lines. Other lines
containing VB script should not be word-wrapped.

Example script: Attributes.vbs
This supplied script creates a single planar surface and then creates and assigns to that
surface: a regular mesh, material and geometry. A support is created and assigned to a
line; a concentrated load is created and assigned to a point as loadcase 1; and a face
load is created and assigned to a line as loadcase 2.

$ENGINE=VBScript

' Create and assign attributes

'--

' Create new database

call newdatabase()

' Create Surface

call geometryData.setAllDefaults()

call geometryData.setCreateMethod("planar")

call geometryData.addCoords(0.0, 0.0, 0.0)

call geometryData.addCoords(40.0, 0.0, 0.0)

call geometryData.addCoords(40.0, 20.0, 0.0)

call geometryData.addCoords(0.0, 20.0, 0.0)

call database.createSurface(geometryData)

' Create Attribute : Surface Mesh 1

call database.createMeshSurface("Plane Stress").setRegular("QPM8",

0, 0, false)

' Modify selection

call selection.add("Surface", "1")

' Attribute : Plane Stress : Assign to Primary selection :

call assignment.setAllDefaults().setLoadset("Loadcase 1")

call database.getAttribute("Mesh", "Plane

Stress").assignTo(selection, assignment)

call database.updateMesh()



Example VB scripts

28

' Create Attribute : Isotropic Material 1

set attr = database.createIsotropicMaterial("Mild Steel", 200.0E3,

0.3, 7.8E3)

set attr = nothing

' Attribute : Mild Steel : Assign to Primary selection :

call assignment.setAllDefaults()

call database.getAttribute("Material", "Mild

Steel").assignTo(selection, assignment)

' Create Attribute : Surface Geometric 1

call database.createGeometricSurface("Thickness=1").setSurface(1.0,

0.0)

' Attribute : Thickness=1 : Assign to Primary selection :

call assignment.setAllDefaults()

call database.getAttribute("Geometric",

"Thickness=1").assignTo(selection, assignment)

' Create Attribute : Fixed in XY

call database.createSupportStructural("Fixed in

XY").setStructural("R", "R")

' Modify selection

call selection.add("Line", "4")

' Attribute : Fixed in XY : Assign to Primary selection :

call

assignment.setAllDefaults().setSelectionNone().addToSelection("Line"

)

call database.getAttribute("Supports", "Fixed in

XY").assignTo(selection, assignment)

' Create Attribute : Concentrated Load 1

call database.createLoadingConcentrated("Concentrated Load

1").setConcentrated(0.0, -100.0)

Supplied script examples

29

' Modify selection

call selection.add("Point", "3")

' Attribute : Concentrated Load 1 : Assign to Primary selection :

call

assignment.setAllDefaults().setSelectionNone().addToSelection("Point

").setLoadset("Loadcase 1")

' assign load to selected point in loadcase 1

call database.getAttribute("Loading", "Concentrated Load

1").assignTo(selection, assignment)

' Define face load

call database.createLoadingFace("Distributed 1").setFace(0.0, 10.0,

0.0)

' Select top face

call selection.remove("All")

call selection.add("Line", "3")

' Create new loadcase and set active

call database.createLoadcase("Loadcase 2", "Structural")

set loadset = database.getLoadset("Loadcase 2", "model")

call view.setActiveLoadset(loadset)

set loadset = nothing

' set assignment object with selected face hof and loadcase 2

set hof0 = database.getObject("Surface", "1")

call assignment.setAllDefaults().setLoadset("Loadcase

2").addHof(hof0)

' assign face load to top face in loadcase 2

call database.getAttribute("Loading", "Distributed

1").assignTo(selection, assignment)

Example VB scripts

30

Example script: Results.vbs
This supplied script writes a set of results to the text window for a prior selection of
features made in the Modeller view window.

$ENGINE=VBScript

' Extracting Results

'--

 set textWindow = getTextWindow()

' set results type

 entity="Displacement"

' get array of results component names

 component=view.getResultsComponentNames(entity)

' extract array of selected nodes

 nodes=selection.getObjects("Node","All")

' check nodes in selection

 if ubound(nodes) >= 0 then

' loop selected nodes

 for i = 0 to ubound(nodes)

' get node object

 set node = nodes(i)

' get element Number

 num=node.getID()

' write line to text window

 text = "Node=" & num

 for j=0 to ubound(component)

' get averaged nodal result

 res=node.getResults(entity,component(j))

 text=text & " " & component(j) & " = " & res

 next

 textWindow.writeLine(text)

 next

' set results type

 entity ="Force/Moment - Thick Shell"

' get array of results component names

 component=view.getResultsComponentNames(entity)

' extract array of selected elements

Supplied script examples

31

 elements= selection.getObjects("Element","All")

' loop selected elements

 for i = 0 to ubound(elements)

' set element object

 set elt = elements(i)

' get element Number

 num=elt.getID()

' extract array of element nodes

 nodes = elt.getNodes()

' loop element nodes

 for k = 0 to ubound(nodes)

' get node object

 set node = nodes(k)

' extract node data

 nnum = node.getID()

 node.getXYZ x,y,z

' get vector of element nodal results

 vecRes=elt.getNodeVectorResults(k,entity)

 nc=ubound(vecRes)

' build output text string

 text = "Elt=" & num & " Node=" & nnum & " x=" & x & " y=" & y & "

z=" & z

 for j = 0 to nc

 text=text & " " & component(j) & " = " & vecRes(j)

 next

 textWindow.writeLine(text)

 next

' extract number of Gauss points

 ngp = elt.countGaussPoints()

' loop gauss points

 for k = 0 to ngp-1

 vecRes = elt.getGaussVectorResults(k,entity)

 nc=ubound(vecRes)

' build output text string

 text = "Elt=" & num & " GP=" & k

Example VB scripts

32

 for j = 0 to nc

 text=text & " " & component(j) & " = " & vecRes(j)

 next

 textWindow.writeLine(text)

 next

 next

 else

 AfxMsgBox "Run an analysis and select some nodes as input to this

script"

 end if

Running a script from a menu
When a number of related scripts have been created it is often more convenient to add a
Modeller menu item to access those scripts, rather than by opening the scripts using the
File > Script > Run Script menu item.

To allow this, one supplied script contains the code to create a menu containing all of
the other supplied scripts. To add the menu item to Modeller’s main menu:

1. Choose File > Script > Run Script

2. Browse to the C:\<LUSAS Installation Folder>\Programs
(x86)\scripts\LPIExamples folder

3. Select LPIExamplesMenu.vbs

This menu script example adds a Test menu name to the main menu, and has a number
of menu items with sub-menus that each trigger a script.

More advanced scripts

33

Keeping the LPI menu visible
To keep the LPI menu visible:

1. Open the file C:\<LUSAS Installation Folder>\Programs
(x86)\Config\afterNewModel.vbs

2. Add these lines to the bottom of the file:

Scripts= getSystemString("scripts")

call fileopen(scripts&"\LPIExamples\LPIExampleMenu.vbs")

Adding a user menu
A user menu can be added by editing this file in your user folder:

"%USERPROFILE%\Documents\LUSAS210\UserScripts\" -> C:\User\<Your
username>\Documents\LUSAS210\UserScripts\Usermenu.vbs

More advanced scripts
Many more advanced scripts can be downloaded from Lusas GitHub repository:

https://github.com/LUSAS-Software/LUSAS-API-Examples

https://github.com/LUSAS-Software/LUSAS-API-Examples

Using Python

34

Using Python
Python has become the scripting language of choice for the scientific and engineering
communities due to its simplicity, extensive libraries and useful development tools
such as debuggers. Setting up Python for automating workflows in LUSAS is a little
more advanced than using VBScript and this is due to the active development of
Python and its libraries resulting in many different versions. Unlike running VBScripts
“Inside” LUSAS Modeller, Python can be run “Outside” of LUSAS Modeller sending
commands to LUSAS Modeller LPI via the COM.

To use Python to drive LUSAS Modeller externally, the following steps are required:

• Install Python

• Install Python package pywin32 version 308

• Install VSCode (Technically this step is not required but it is recommended to
make developing and running scripts much simpler)

Install Python
There are many versions of Python and there are many versions of extension modules
that provide a Python “Environment”. Here we will show the most straightforward
route to getting started but more experienced users may choose to handle installations
through management systems such as ‘conda’ or ‘miniforge’.

Download and install the version of Python you wish to use from
https://www.python.org/downloads/windows/

It is recommended to install both 64-Bit and 32-Bit versions of Python and in both
cases include the options to use admin privileges for py.exe and add python.exe to the
PATH. Note the default version will be the last one installed, so it is recommended to
install 32-Bit first.

https://www.python.org/downloads/windows/

Install package pywin32

35

Note. It is possible to download and use a Python environment from your file system
without installing. https://winpython.sourceforge.net/ provides packages containing
additional tools such as Spyder IDE and lots of default packages that are useful. This is
left for the advanced user.

Install package pywin32
To install the pywin32 packages for both 32 and 64-Bit versions open a command
prompt window and paste in the following instructions, taking care to change the
version numbers to the version of Python you installed.

set version=3.13

Rem install pywin for 64Bit application
py -V:%version% -m pip install --upgrade pywin32==308

Rem install pywin for 32Bit application
py -V:%version%-32 -m pip install --upgrade pywin32==308

Note. The pywin32 package is under active development and it has been found that
some versions will not work with LUSAS. Here the specific version 308 is installed
which is known to work.

Install VSCode
The installation of VSCode is not technically required to run Python scripts with
LUSAS. Advanced users can simply write scripts and execute them with the Python
executable. However, it is recommended to use VSCode which is free and open source
and offers lots of useful features. Download and install VSCode from here:
https://code.visualstudio.com/download

Once installed, run VSCode and select “Open a folder” from the start page, navigate to
Documents/Lusas230/UserScripts (or any other folder you choose to contain your
scripts)

In the explorer view, add a new file and give it a name with a .py file extension





https://winpython.sourceforge.net/
https://code.visualstudio.com/download

Using Python

36

Double click the file to edit it.

Note. You may notice VSCode offering to install extensions for Python
development. It is recommended that you install these tools which will help writing
scripts offering syntax highlighting and code completion.

Write the following code in your file. Note that if you are using other versions of
LUSAS Modeller the correct version number should be included

import win32com.client as win32

modeller = win32.dynamic.Dispatch("Lusas.Modeller.23.0")

modeller.AfxMsgBox("Test")

Note. If this code is run without LUSAS Modeller running, the code will start a
version in the background if it can and this will consume one of your licences. You can
check in the task manager if any versions of LUSAS Modeller are running that you
didn’t intend to run and close them there. Before running this code, it is recommended
that you start the correct version of LUSAS Modeller you which to use and that way
you will be able to see the effects of the script being executed.

In the bottom right corner of VSCode the Python interpreter which will be used to run
your code should be listed. If you do not see a version number here, select it to display
a list of available interpreters to use.





Install VSCode

37

Then choose the interpreter to use from the displayed list. The 64-Bit version is
required to run with LUSAS Modeller 64-Bit.

Now, with LUSAS Modeller running and the correct Python interpreter selected, go to
the top right-hand corner of VSCode, select the “play” button and choose “Run Python
File”

You should see a message box displaying your text. If not carefully review the steps
again, check that the LUSAS Modeller version number matches the intended use,
check in the task manager that there are no hidden LUSAS Modeller’s created by
mistake and try again.

Once you see the message box you are ready to automate your workflows with the
power of Python and LUSAS combined.

Many examples of the use of the LPI with Python are provided in the LUSAS
repository on GitHub. https://github.com/LUSAS-Software/LUSAS-API-Examples

Note. It is recommended to use win32.dynamic.Dispatch method to connect to
LUSAS Modeller however is also possible to use win32.gencache.EnsureDispatch
which will create a cached Python wrapper of all the LPI functions to improve
performance. Unfortunately, this cache can sometimes fail to locate the correct
functions and so the dynamic method is preferred. If the gencache method is used and
errors occur, they can often be resolved by deleting the cache at
%localAppData%\Temp\gen_py and allowing it to be rebuilt automatically on the
next run.



https://github.com/LUSAS-Software/LUSAS-API-Examples

Using Python

38

Performance
Executing a Python script externally typically runs more slowly than a VBScript run
internally. This is because LUSAS Modeller can perform optimisations when it knows
a whole script is running. There are several things that can be done to improve
performance of external scripts however as follows:

Disable the UI
To improve the speed of the Python scripts running externally you can disable the user
interface as follows:

Note that prior to version 22 the UI must be set to be invisible, but in version 22
onwards it can simply be disabled. Care should be taken here however when a script
fails before completion the user interface will remain invisible or disabled, and another
script will need to be executed containing just the bottom lines to restore the UI.

Batch commands
Wrapping your code between calls to begin and close the command batch will tell
LUSAS Modeller that you intend to issue lots of commands and so it will not perform
any updates until you have finished. This also allows the actions of your script to be
undone.

Python session files

39

Python session files
Version 23.0 and later of LUSAS comes with a custom version of Python which can be
used to generate session files and run Python scripts “inside” Lusas Modeller.

To generate session files and display LPI commands in Python, go to the LUSAS
Configuration Utility and select Python from Language option.

The Python version supplied with LUSAS is separate from any installed versions as
described previously. It is recommended that an installed version of Python is used
such that additional Python packages can be added and removed as required.

Python IntelliSense
When using an IDE such as VSCode, the editor will provide auto complete and inline
help for function names and arguments as you type. To enable inline help for LPI
functions the LPI.py module can be imported and used.

Copy the file C:\Program Files\LUSAS230\Programs\scripts\Python\LPI.py to the
folder containing your Python script.

Using Python

40

You can now use the following to connect to LUSAS Modeller (Note that this will
connect to the version of LUSAS that it was installed for, i.e. here v23.0)

from LPI import*
modeller = get_lusas_modeller()

As you type VSCode will display lists of available LPI functions and help on their use

There are many examples of using this LPI with this approach on our GitHub account.

https://github.com/LUSAS-Software/LUSAS-API-Examples

https://github.com/LUSAS-Software/LUSAS-API-Examples

LUSAS, Forge House, 66 High Street, Kingston upon Thames, Surrey, KT1 1HN, UK
Tel: +44 (0)20 8541 1999 | Fax: +44 (0)20 8549 9399 | info@lusas.com | www.lusas.com

	front cover
	LPI Customisation and Automation Guide Word.pdf
	Introduction
	Introduction
	Examples of capabilities
	Scripts
	Topics covered in this guide
	LPI Developer Guide

	Getting started with the LUSAS Programmable Interface (LPI)
	LPI Command Bar
	Identifying LPI functions
	Writing LPI functions to a file
	Re-running commands with Modeller

	LPI functions in the Text Output window

	Details of LPI functions
	LUSAS Programmable Interface (LPI) online help
	Searching LPI help
	Some function basics

	Customising the user interface
	Capabilities
	Modifying standard toolbars
	Customized toolbar buttons
	User toolbar buttons
	Calling functions from user buttons:
	Adding User buttons to toolbar menus

	Startup templates
	Advanced operations

	Getting started with VBS
	Programming syntax
	Some simple rules
	Basic Operators allowed include:
	Conditionals
	Variables
	Arrays

	Visual Basic Script online tutorials

	Example VB scripts
	Simple user script example
	Deleting a range of loadcases
	First make a recording

	Running a script

	Supplied script examples
	Example script: Attributes.vbs
	Example script: Results.vbs
	Running a script from a menu
	Keeping the LPI menu visible

	Adding a user menu

	More advanced scripts

	Using Python
	Install Python
	Install package pywin32
	Install VSCode
	Performance
	Disable the UI
	Batch commands

	Python session files
	Python IntelliSense

	back_cover

