
LUSAS Programmable
Interface (LPI)

Developer Guide

Version 15

LUSAS Programmable
Interface (LPI)

Developer Guide
LUSAS Version 23.0 : Issue 1

LUSAS
Forge House, 66 High Street, Kingston upon Thames,

Surrey, KT1 1HN, United Kingdom

Tel: +44 (0)20 8541 1999
Fax +44 (0)20 8549 9399
Email: info@lusas.com
http://www.lusas.com

Distributors Worldwide

Copyright ©1982-2025 LUSAS

All Rights Reserved.

Table of Contents

i

Table of Contents
Introduction 1

Introduction .. 1
Topics covered in this guide .. 2
LUSAS Programmable Interface (LPI) Customisation and Automation Guide 2

Creating dialogs using VB.NET 3
Choosing a development environment .. 3
Creating a LUSAS dialog ... 4

Module Manager .. 5
Creating a new module .. 6

Running Visual Studio ... 6
Build the project ... 10
If issues are encountered… ... 11
Run the project... 13
Adding dialog controls .. 16
Defining a ListBox .. 19
Defining a Delete Button .. 20
Defining a Cancel Button ... 20
Handling errors .. 22

General considerations .. 23
Basic dialog design .. 23
Basic dialog controls .. 23
Code design considerations ... 24

Multiple Dialogs in a single module ... 24
Translation considerations ... 29
VB.NET online tutorials ... 30
VB.NET dialog exercise ... 31
VB.NET dialog solution .. 32

LUSAS via COM 35
Component Technology ... 35
VB.NET Application Example .. 35
Interfacing to LUSAS using C++ .. 41
LUSAS Material Model Interface ... 42

Table Of Contents

ii

Introduction

1

Introduction
Introduction

LUSAS software is highly customisable. The built-in LUSAS Programmable Interface
(LPI) allows the customisation and automation of modelling and results processing
tasks and creation of user-defined menu items, dialogs and toolbars as a means to
access those user-defined resources. It can also be used for transferring data between
LUSAS and other software applications, and to control other programs from within
LUSAS Modeller, or control LUSAS Modeller from other programs.

With LPI, any user can automate the creation of complete structures, either in LUSAS
or from third-party software, carrying out design checks, optimising members and
outputting graphs, spreadsheets of results and custom reports. Because everything
carried out by a user is recorded in a LUSAS Modeller session file, anything that
LUSAS can do, can also be controlled by another application via the LUSAS

Introduction

2

Programmable Interface. This means that you can view and edit a recorded session,
parameterise those commands, turn them into sub-routines, add loops and other
functions to the scripts and create a totally different application or program - using the
proven core technology of LUSAS.

In addition to the accessing and customising LUSAS Modeller via the LUSAS
Programmable Interface, user-defined material models (written in Fortran) can be
compiled and built into a customised LUSAS Solver executable by using the LUSAS
Material Model Interface (LUSAS MMI).

Topics covered in this guide
The aim of this guide is to help you use the more advanced facilities available to
customise LUSAS and interface with other applications. The guide covers:

 Creating dialogs using VB.NET

 LUSAS via COM

 LUSAS Material Model Interface

LUSAS Programmable Interface (LPI) Customisation and
Automation Guide

A separate LUSAS Programmable Interface (LPI) Customisation and Automation
Guide is also available covering more basic topics:

 Getting started with the LUSAS Programmable Interface (LPI)

 Identifying LPI Functions

 Customising the interface

 Getting started with VBS

 A simple example script

 Creating your own menus

Choosing a development environment

3

Creating dialogs
using VB.NET
A dialog is a window that appears on the display screen to neatly present information
or request input from the user. Creating dialogs, and some other advanced features,
such as object oriented programming, is a more advanced topic, and some
programming skills are required.

VBScript belongs to the group of interpreted languages, meaning that there is no need
for compilers to be used. This is because the implementations execute directly, line by
line. Examples of other interpreted languages are JavaScript, Python and Perl.

To create a dialog you will need to use a compiled programming language. Examples
of compiled languages are Visual Basic .NET (VB.NET), C#, Java, C++. For this
example VB.NET will be used, because although it is a different language to VBScript,
it uses the same syntax, and you should be already familiar with it. Also, and more
importantly, you do not need to be familiar with COM programming, as you would if
C++ was used instead.

Advantages of VB.NET over VBScript include

• Better user-interface creation

• Debugging with break points

• More extensible. Allows Object Oriented Programming (OOP)

• Multiple functions saved into one .dll file. Easier to share across the company
than multiple .vbs script files

• Easier to do testing

Choosing a development environment
To use VB.NET a compiler needs to be installed. The simplest way to achieve this is to
install Visual Studio Community edition. Alternatively, the dotnet SDK (Software
Development Kit) can be installed and used with other editors such as VSCode. This
guide is written around the use of Visual Studio Community edition.

Creating dialogs using VB.NET

4

Visual Studio Community is free for individual developers, open-source projects,
academic research, education, and small professional teams. Users should be aware of
the licensing terms under which it is supplied.

Visual Studio Community be downloaded from:

https://www.visualstudio.com/downloads

Creating a LUSAS dialog
To create a LUSAS dialog, you will need to add a new Module to LUSAS. Modules
are like plugins. All the installed modules can be seen by selecting the menu item Help
> About LUSAS Modeller… and checking “Show all installed components”

https://www.visualstudio.com/downloads

Creating a LUSAS dialog

5

Module Manager
LUSAS Modeller’s Modules are controller by the Module Manager and the Module
Manager dialog can be displayed by following the steps below.

1. Open the file C:\Program Files\LUSAS220\Programs\Modules\LUSAS.lml
into a text file editor.

2. Search for the text ModuleManager

3. Enable it by changing false to true as shown below

4. Save the file.

From now on, when you run LUSAS Modeller you will see the Modules menu:

Creating dialogs using VB.NET

6

Creating a new module
• Copy the LusasModule<version_number>.zip file from the LUSAS

installation directory C:\Programs Files (x86)\LUSAS220\Programs (x86)
to the Visual Studio project template folder. Typically: Documents\Visual
Studio 2019\Templates\ProjectTemplates\Visual Basic

Note. If the project template does not show in Visual Studio when creating a project a
repair of the Visual Studio installation may be required.

Running Visual Studio
• Open Visual Studio and select Create a new Project

• In Visual Studio search “LUSAS” in the project templates and select LUSAS
Module<version number> template for your version of LUSAS from the
available list. Then click Next.

• The dialog example that will be covered in this guide creates a new module to
delete loadcases, therefore enter the name DeleteLoadcases (without any
space) and click OK.



Running Visual Studio

7

Note. It is important to use a sensible name as this propagates throughout the
automatically generated code.

Note. If more than one version of LUSAS is installed on your machine you should
check the version number of LUSAS that is being referenced by Visual Studio and
ensure that this number is what is required. This can be done by checking the path to
the LusasInterop dll.

• On the Solution Explorer double-click on My Project and visually check the
path for LusasInterop.dll





Creating dialogs using VB.NET

8

• If the wrong version of LUSAS is being referenced, remove the existing
reference, then click Add and locate the Lusas.Interop.dll file in the right
version path

• Right click on the reference to Lusas.Interop, select properties and in the
properties window ensure copy local=False and embed interop types = False.

Carrying on:

• In the Solution Explorer right-click on the project icon “DeleteLoadcases” and
choose Properties

Running Visual Studio

9

• On the Application page verify the Target framework is set to .NET
Framework 4.7.2

• On the Compile tab, browse and change the build output path to
Documents\LUSAS220\Modules. This is the recommended folder for user
modules, but any folder with write access can be used.

Creating dialogs using VB.NET

10

Note. If both 64Bit and 32Bit applications are to be supported, then it is better to build
the modules into the “per machine folders” typically -
C:\ProgramData\Lusas220\x64\Modules or
C:\ProgramData\Lusas220\x86\Modules

• On the Debug page, browse and change the external program path to
C:\<LUSAS Installation Folder>\Programs\lusas_m.exe

Build the project
• In the Solution Explorer right-click on the project icon “DeleteLoadcases”

entry and select Build.



Running Visual Studio

11

Note. Details of the build will appear in the output window.

If issues are encountered…
With Visual Studio 2019 Professional an issue maybe encountered. If this is the case,
proceed as follows:

1. Make sure the following namespaces are checked in the References tab
(specifically the LUSAS ones):

This can be found by right-clicking on the project name and selecting properties (as
explained in the figure at the bottom of page 9.)

Specifically, for the LUSAS.Interop set “Copy Local” and “Embed Interop Types” to
false as shown below (if not already done so above):



Creating dialogs using VB.NET

12

2. Depending on the version of Visual Studio in use you may get the following
build errors:

Type ‘Global.My.MySettings’ is not defined

or

My is not a member of ‘Global’

These can be solved by double clicking on the error message (which will take you to
the line of code where the error occurs) and deleting the word "Global."

Specifically, for LUSAS version 19.1, in order to add a reference to LUSAS Modeller
ActiveX Script Language 19.1

3. Open a cmd prompt as Admin.

To do this type "cmd" into the start menu search box when the cmd icon appears right
click on it and select “run as admin”.

Running Visual Studio

13

4. Change directory (cd) to C:\Program Files (x86)\LUSAS191\Programs
(x86)

5. Type lusas_m.exe /RegServer

If this does not overcome this issue please contact LUSAS technical support.

Run the project
• Press the F5 Key in Visual Studio to run (or click on start button)

LUSAS Modeller should start.

• Open a LUSAS model or create a new one.

• Open the Module Manager

• Click Add new module

Creating dialogs using VB.NET

14

• Browse on the Add Module dialog for
Documents\LUSAS220\Modules\DeleteLoadcases.dll and click OK

The LUSAS Module Configuration Editor dialog will appear. Change the assembly
path to match the build output path in the user directory by typing in
%ModulesUserDir%. Alternatively, the full folder path can be entered.

Running Visual Studio

15

• Press the Save button and then Close

From now on, you will see the Delete Loadcases item in the modules menu.

• Choose the DeleteLoadcases menu item. A blank window is displayed,
because you have not yet added any controls or written any code.

Creating dialogs using VB.NET

16

• Click on Stop Debugging in Visual Studio to close LUSAS Modeller and
amend the project.

Adding dialog controls
• In Visual Studio double-click on DeleteLoadcasesDialog.vb to open a blank

dialog.

Running Visual Studio

17

• Click on Toolbox, all Windows Forms and add a ListBox and two Buttons by
double clicking them

• Select each of the controls to modify its properties (Name, location, size...)

Creating dialogs using VB.NET

18

• Click on Button1in the dialog and define its Name to be btnDelete with Text:
Delete

• For Button 2 define its Name to be btnCancel with Text: Cancel

• For the ListBox define the Selection Mode to be MultiExtended (This will
allow selection of multiple items in the listbox).

Running Visual Studio

19

Defining a ListBox
All the loadsets (Loadcases, Combinations and Envelopes) are to be listed in the
ListBox

• Double-click on the form (i.e the dialog itself) to create an event handler for
the form load event

Modify the code as shown below:

Tip. Open the PDF file for this guide and copy and paste the code. Take care to ensure
that any unwanted line breaks are removed.

Private Sub Delete_LoadcasesDialog_Load(sender As Object, e As
EventArgs) Handles MyBase.Load

Call PopulateListBox()

End Sub

Private Sub PopulateListBox()

 'Delete previous items from listbox

 ListBox1.Items.Clear()

 'Add loadsets to the listbox



Creating dialogs using VB.NET

20

 Dim LoadsetsArray =
moduleObject.Modeller.db.getLoadsets("All", "All")

 For i = 0 To UBound(LoadsetsArray)

 ListBox1.Items.Add(LoadsetsArray(i).getName())

 Next

 End Sub

Defining a Delete Button
The selected loadsets of the list box need to be deleted when pressing this button, so:

• Double-click on the button Delete to create an event handler for this button’s
click event.

• Modify it by typing the following:
Tip. Rather than type the lines of VB required, open the PDF file for this guide and for
the remainder of this section of the Guide copy and paste the code where needed. Take
care to ensure that any unwanted line breaks are removed.

Private Sub btnDelete_Click(sender As Object, e As EventArgs) Handles
btnDelete.Click

 'Delete loadsets that are selected in the listbox

 For Each Item In ListBox1.SelectedItems

 Call moduleObject.Modeller.database.deleteLoadset(Item)

 Next

 Call PopulateListBox()

 End Sub

Defining a Cancel Button
To cause the dialog to close:

• Double-click on the button Cancel to create an event handler for this buttons
click even and modify it to:



Running Visual Studio

21

 Private Sub btnCancel_Click(sender As Object, e As EventArgs) Handles
btnCancel.Click

 Close()

End Sub

• Now build and run the project by pressing the F5 key in Visual Studio.

• In LUSAS Modeller select the menu item Modules> DeleteLoadcases, then
select which loadcase to delete and press the Delete button.

You should notice that if you try to delete all loadcases you get the following error
message:

Creating dialogs using VB.NET

22

This is because Modeller has raised an exception as there must always be at least one
loadcase. You can handle or catch the exception so you get a meaningful message
saying “Cannot delete the only remaining loadcase”

Handling errors
The code will be modified to handle this situation. Add the following code at the
beginning of the btnDelete_Click function.

 Private Sub btnDelete_Click(sender As Object, e As EventArgs)
Handles btnDelete.Click

 Dim loadcaseArray =
moduleObject.Modeller.database.getLoadsets("Loadcase", "All")

 Try

 'Delete loadsets that are selected in the listbox

 For Each Item In ListBox1.SelectedItems

 Call moduleObject.Modeller.database.deleteLoadset(Item)

 Next

 Catch ex As Exception

 Call moduleObject.Modeller.AfxMsgBox(ex.Message())

 End Try

 Call PopulateListBox()

 End Sub

Now, if you try to delete all loadcases you get the following ‘cleaner’ message:

General considerations

23

General considerations
Basic dialog design

• Use the ToolBox to create controls

• Double-click on the control in the toolbox to create the control at standard size

• Drag and drop to desired position using grid lines to line up with other
controls

• Name the controls in Properties using standard naming convention (See basic
dialog controls prefixes below e.g. txt, btn, opt, chk)

• Set FormBorderStyle = FixedDialog

• Set Localizable = True

Basic dialog controls
• TextBox (txt) – string of input or output

• Button (btn) – activate an event

• ComboBox (cbo) – choice of preset input

• CheckBox (chk) – true or false

• RadioButton (opt) – choice of a number of options

• NumericUpDown (spn) – Integer or decimal within specified range

• PictureBox (img) – display images on dialog

• GroupBox (grp) – groups radio buttons

• Label (lbl) – add text to dialog

• Panel (pnl)– invisible group, enable/disable multiple controls

Creating dialogs using VB.NET

24

Code design considerations
• Only code relating to the dialog should be contained in the dialog class

<projectname>Dialog.vb – e.g. Events, data check functions, change label text
etc. (Access to the module code is achieved by using
moduleObject.<function>)

• Place all worker code in module class <projectnameModule.vb> (access to
Modeller LPI functions is achieved using Modeller.<LPIfunction>”)

• All variables must be allocated a Type. Modeller has a number of predefined
data types e.g. IFPoint, IFLine. All Modeller data types start with IF and a full
list is automatically displayed in Visual Studio when the type is being
declared.

• Use access modifiers to restrict the scope of functions as much as possible.
Only make the function public if it is required outside the module.

• Private only available to routines in this module

• Protected only available within class and derived classes

• Friend only available within the assembly (Dialog to module)

• Public visible globally and outside of the assembly

• It is a good idea to comment all functions, classes, modules etc using the
standard XML comment blocks. Note: Typing three quotes (''') on the line
immediately above the function name will automatically present the standard
html template with the parameters included.

Multiple Dialogs in a single module
By default the LUSAS module template is set up to handle a single dialog. It is possible
for a module to provide multiple dialogs and provide multiple menu entries. It is good
practice to keep all related functionality in a single module.

When a module creates a new menu item, Modeller will return a unique id for that
menu item, these id’s should be stored in “member” variables within the module.
Modules can create new menu items in the onRefreshMainMenu function as shown
below:

Private m_dialog1_ID As Integer

Private m_dialog2_ID As Integer

Multiple Dialogs in a single module

25

Private m_dialog3_ID As Integer

''' <summary>

''' Called when Modeller is redrawing the Main Menu.

''' </summary>

''' <remarks>

''' Allows custom modules to append and maintain their own menus.

''' </remarks>

Protected Overrides Sub onRefreshMainMenu()

 Dim myModuleMenu As IFMenu = rootMenu.appendMenu("My Test Module")

 m_dialog1_ID = myModuleMenu.appendItem("Launch dialog 1...",
"textwin.writeLine(""Test Dialog 1"")")

 m_dialog2_ID = myModuleMenu.appendItem("Launch dialog 2...",
"textwin.writeLine(""Test Dialog 2"")")

 m_dialog3_ID = myModuleMenu.appendItem("Launch dialog 3...",
"textwin.writeLine(""Test Dialog 3"")")

End Sub

When the user clicks these menu items all modules will be called with the id of the
menu item. It is the responsibility of the module to listen for any menu ids it creates
and respond accordingly.

Notes:

• The modules are called via the onMenuClick function

• The module should respond when it is called with the correct menu ID.

Creating dialogs using VB.NET

26

• For each menu id the moduleDialog should be set to a new instance of the
correct dialog before the runModule function is called. This way the correct
dialog will be shown, as below.

''' <summary>

''' Called when the user clicks on a menu entry.

''' </summary>

''' <param name="menuID">ID of the menu that has been clicked.</param>

''' <param name="edittingObj">Object that is being edited (nothing when
creating a new object).</param>

''' <param name="clientData">Data that was provided to Modeller when
defining edittingObj.</param>

''' <returns>true if the click event was handled by this
Module.</returns>

''' <remarks>

''' LUSAS expects the a Module handling the event to execute itself
(typically using runModule()).

''' </remarks>

Function onMenuClick(ByVal menuID As Integer, ByVal edittingObj As
Object, Optional ByVal clientData As Object = Nothing) As Boolean

 If (m_dialog1_ID = menuID) Then

 moduleDialog = New myDialog1(Me)

 runModule()

 Return True

 End If

 If (m_dialog2_ID = menuID) Then

 moduleDialog = New myDialog2(Me)

 runModule()

Multiple Dialogs in a single module

27

 Return True

 End If

 If (m_dialog3_ID = menuID) Then

 moduleDialog = New myDialog3(Me)

 runModule()

 Return True

 End If

 Return False

End Function

• Menu items maybe enabled or disabled in the onMenuUpdate event

''' <summary>

''' Called when a menu entry needs to be drawn.

''' Allows the Module to specify whether the menu item should be
disabled or checked.

''' </summary>

''' <param name="menuID">ID of the menu that has been clicked.</param>

''' <param name="edittingObj">Object that is being edited (nothing when
creating a new object).</param>

''' <param name="enable">Set to true to enable the menu item.</param>

''' <param name="checked">

''' Set to 0 to show an 'off' tickbox next to the menu.

''' Set to 1 to show an 'on' tick mark by the side of the menu.

''' Set to 2 to show an indeterminate check.

''' Set to 3 to show no tick at all.

''' </param>

''' <param name="clientData">Data that was provided to Modeller when
defining edittingObj.</param>

Creating dialogs using VB.NET

28

''' <returns>true if the update event was handled by this
Module.</returns>

''' <remarks>

''' Only when a Module handles an menu update event are the changed
values of enable/checked respected.

''' </remarks>

Function onMenuUpdate(ByVal menuID As Integer, ByVal edittingObj As
Object, ByRef enable As Boolean, ByRef checked As Integer, Optional
ByVal clientData As Object = Nothing) As Boolean

 If (m_dialog1_ID = menuID) Then

 enable = (Modeller.db.countSurfaces() > 0)

 Return True

 End If

 If (m_dialog2_ID = menuID) Then

 enable = True

 Return True

 End If

 Return False

End Function

Note. All dialogs must inherit from LusasModuleDialog. When adding a new dialog
you should change the code in the dialog designer to inherit from LusasModuleDialog
rather than System.Windows.Forms.Form



Translation considerations

29

Translation considerations
• The default language should always be English. All strings should be defined

in the Resources.resx file. To access the Resources.resx file pick the Show All
Files button in the Solution Explorer.

Double clicking on the Resources.resx will display a window to name and define the
strings.

Creating dialogs using VB.NET

30

Note. If languages other than English are to be supported the dialog property
Localizable property should be set to be True and the Language should be changed to
the translation language, as for example for Chinese (Simplified) This will
automatically create a new resource file for the dialog where the translated string
should be defined and allow the labels to be translated and the size and position of the
controls to be customised. Changing the Language back to Default will display the
English labels with the controls set to in their original size and position.

By using this approach any strings which do not have a translation will be displayed in
English and a Language for which translation is not supported will show English labels
and strings.

VB.NET online tutorials
VB.NET online tutorials are widely available. Here are some examples:

English:
https://www.youtube.com/watch?v=hkcO_M9gcNw&index=1&list=PL42055376AE25
291E

English:
 https://www.youtube.com/watch?v=AJpTbPasJqI&list=PLS1QulWo1RIYLpgVN_Cp
XbkOQoYJTItzg

Chinese: https://channel9.msdn.com/Series/Visual-Basic-Fundamentals-for-Absolute-
Beginners/01



https://www.youtube.com/watch?v=hkcO_M9gcNw&index=1&list=PL42055376AE25291E
https://www.youtube.com/watch?v=hkcO_M9gcNw&index=1&list=PL42055376AE25291E
https://www.youtube.com/watch?v=AJpTbPasJqI&list=PLS1QulWo1RIYLpgVN_CpXbkOQoYJTItzg
https://www.youtube.com/watch?v=AJpTbPasJqI&list=PLS1QulWo1RIYLpgVN_CpXbkOQoYJTItzg
https://channel9.msdn.com/Series/Visual-Basic-Fundamentals-for-Absolute-Beginners/01
https://channel9.msdn.com/Series/Visual-Basic-Fundamentals-for-Absolute-Beginners/01

VB.NET dialog exercise

31

VB.NET dialog exercise

The preceding dialog is required to allow a user to change the colour of all Lines in a
model. The dialog should be activated from the menu item My Menu> Colour Line

Write the code to enable this to take place.

The solution is shown on the next page.

Creating dialogs using VB.NET

32

VB.NET dialog solution
1. In Dialog Class:

 Private Sub btnOK_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnOK.Click

 Call btnApply_Click(sender, e)

 Call btnCancel_Click(sender, e)

 End Sub

 Private Sub btnApply_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnApply.Click

 moduleObject.ColourLines(spnColourIndex.Value)

 End Sub

 Private Sub btnCancel_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnCancel.Click

 Me.Close()

 End Sub

2. In Module Class, in existing function onRefreshMainMenu change:

If rootMenu.exists("Modules") Then

 modMenu = rootMenu.getSubMenu("Modules")

Else

 modMenu = rootMenu.appendMenu("Modules")

End If

to:

VB.NET dialog solution

33

Dim menuName As String = "My Menu"

If rootMenu.exists(menuName) Then

 modMenu = rootMenu.getSubMenu(menuName)

Else

 modMenu = rootMenu.appendMenu(menuName)

End If

3. Add function

 ''' <summary>

 ''' Routine to colour lines

 ''' </summary>

 ''' <param name="colour">colour index</param>

 ''' <remarks></remarks>

 Public Sub ColourLines(ByVal colour)

 Dim lines As Object = Modeller.database.getObjects("Lines",
"All")

 For Each line As IFLine In lines

 line.setPen(colour)

 Next

End Sub

Creating dialogs using VB.NET

34

Component Technology

35

LUSAS via COM
Component Technology

The LUSAS Programmable Interface allows interfacing with other compatible
Windows programs through a Component Object Model (COM) interface. This
technology defines a set of rules by which two programs can communicate and allows
controlling those programs as if they were part of LUSAS Modeller. LUSAS can also
be used as a component of another system (running transparently if required) providing
modelling capabilities, analysis solutions and results viewing and processing options
for that application.

In order to drive LUSAS from a standalone application via COM (Component Object
Model), LUSAS must be installed and licenced. When creating a COM instance of
LUSAS a licence will be used. The licence will be in use for the lifetime of the instance
and must be properly disposed of to release the licence.

VB.NET Application Example
To illustrate the process involved, a stand-alone application called SimpleBeam will be
created. The application will accept two parameters, length and load. The application
will use LUSAS to analyse the beam and return the results for the maximum bending
moment.

Create a new project

• In Visual Studio create a new Windows Form App (.NET Framework) in
Visual Basic called SimpleBeam.

LUSAS via COM

36

Note that LUSAS interop is based on the .NET framework version 4.7.2 shown above.
This may not appear in the recent versions of Visual Studio which defaults to dotnet 8
or even dotnet 9. The naming of the dotnet framework can be confusing, later versions
drop the term “framework”.
To target the required dotnet framework 4.7.2 click on the project icon “Simple Beam”
in the Solution Explorer which should open an xml project file.

VB.NET Application Example

37

Here you can change the name of the target framework in the xml tags
“TargetFramework” to be net472

With that done we need to carryout the following steps.

• Add a reference to LUSAS Modeller.

• In Solution Explorer, click Show All Files

• Right-click on “Dependencies” and select “Add COM Reference”

• In the COM tab select LUSAS Modeller ActiveX Script Language 22.0

• Create the following dialog using the Toolbox to add textbox controls and
labels as shown in the previous example:

For simplicity all code is placed in the dialog as follows, by double clicking the form
window.

Imports LusasM22_0

Public Class Form1

 Private m_lusas As LusasM22_0.LusasWinApp ' Reference to Lusas
Modeller

 Private Sub btnCalculate_Click(sender As System.Object, e As
System.EventArgs) Handles btnCalculate.Click
 analyseBeam()

LUSAS via COM

38

 End Sub

 Private Sub analyseBeam()
 ' Get the params
 Dim length As Double = Double.Parse(txtLength.Text)
 Dim loading As Double = Double.Parse(txtLoading.Text)

 ' Create an instance of modeller
 m_lusas = New LusasM22_0.LusasWinApp

 ' Create a new model
 m_lusas.newDatabase()
 ' Set the vertical axis
 m_lusas.db.setLogicalUpAxis("Z")
 ' Set the unit system
 m_lusas.db.setModelUnits("kN,m,t,s,C")

 ' *** Create a line ***
 ' Get the geometry data object
 Dim geomData As IFGeometryData = m_lusas.geometryData()
 ' Set the defaults
 geomData.setAllDefaults()
 ' Set the coordinates of the first point
 geomData.addCoords(0, 0, 0)
 ' Set the coordinates of the second point
 geomData.addCoords(length, 0, 0)
 ' Create the line object
 Dim linesDBop As IFObjectSet = m_lusas.db.createLine(geomData)
 ' Get the lines
 Dim lines() As Object = linesDBop.getObjects("Lines", "All")
 ' Get a reference to the created line
 Dim beamLine As IFLine = lines(0)

 ' *** Create a mesh attribute ***
 Dim meshAttr As IFMeshLine = m_lusas.db.createMeshLine("Beam
Mesh")
 ' Set the element type and number of elements (1m elements here)
 meshAttr.setNumber("BMS3", length)

 ' *** Create a geometric attribute ***
 Dim geomAttr As IFGeometricLine =
m_lusas.db.createGeometricLine("Beam Geometry")
 ' Set the element type
 geomAttr.setValue("elementType", "3D Thick Beam")
 ' Set the beam properties
 geomAttr.setBeam(0.0125, 0.0004573, 0.00002347, 0.0, 0.00000121,
0.00532608, 0.00755776, 0.0, 0.0, 0)

 ' *** Create a material attribute ***
 Dim materialAttr As IFMaterialIsotropic =
m_lusas.db.createIsotropicMaterial("Steel", 209000000.0, 0.3, 7.8)

 ' *** Create a support attribute (fixed) ***

VB.NET Application Example

39

 Dim fixedSupport As IFSupportStructural =
m_lusas.db.createSupportStructural("Fixed")
 ' set the freedoms
 fixedSupport.setStructural("R", "R", "R", "F", "F", "F", "F",
"F", "F")

 ' *** Create a support attribute (pinned) ***
 Dim pinnedSupport As IFSupportStructural =
m_lusas.db.createSupportStructural("Pinned")
 ' set the freedoms
 pinnedSupport.setStructural("F", "R", "R", "F", "F", "F", "F",
"F", "F")
 ' *** Create a load attribute ***
 Dim loadAttr As IFLoadingGlobalDistributed =
m_lusas.db.createLoadingGlobalDistributed("UDL")
 ' Set the parameters
 loadAttr.setGlobalDistributed("Length", 0.0, 0.0, -loading, 0.0,
0.0, 0.0, 0.0, 0.0)
 ' *** Assign the attributes to the geometry ***
 ' get the assignment object
 Dim assignment As IFAssignment = m_lusas.assignment()
 ' set the defaults
 assignment.setAllDefaults()
 ' Assign the mesh
 meshAttr.assignTo(beamLine, assignment)
 ' Assign the geometry
 geomAttr.assignTo(beamLine, assignment)
 ' Assign the material
 materialAttr.assignTo(beamLine, assignment)
 ' Assign the loading
 loadAttr.assignTo(beamLine, assignment)

 ' Assign the supports to the points of the line
 ' get the points - Lower Order Features
 Dim pointsArray() As Object = beamLine.getLOFs()

 ' Assign the fixed support to the first point
 fixedSupport.assignTo(pointsArray(0), assignment)
 ' Assign the pinned support to the last point
 pinnedSupport.assignTo(pointsArray(1), assignment)

 ' Set the mesh
 m_lusas.db.updateMesh()

 ' The model is ready to be solved - get the temporary file path
 Dim tempFilePath As String = System.IO.Path.GetTempPath()
 ' Save the model before solving
 m_lusas.db.saveAs(tempFilePath & "beam.mdl")
 ' Solve
 Dim retCode = m_lusas.db.getAnalysis("Analysis 1").solve(True)

 If retCode <> 0 Then
 m_lusas.AfxMsgBox("Failed to solve")
 Return
 End If
 ' Otherwise open the results and find the max bending moments
 m_lusas.db.openAllResults(True, True)

LUSAS via COM

40

 ' *** Successful analysis - Process the results to determine the
max bending ***
 Dim maxMom As Double
 Dim nodeNum As Integer
 ' Get the results at each node to determine the max
 For Each element As IFElement In beamLine.getElements()
 For Each node As IFNode In element.getNodes()
 ' Extract the nodal result for the required Entity and
Component
 Dim my As Double = node.getResults("Force/Moment - Thick
3D Beam", "My")
 ' Save the minimum (sagging) moment
 If my < maxMom Then
 maxMom = my
 nodeNum = node.getID()
 End If
 Next
 Next

 ' Get the units of the current model for display
 Dim forceUnit As String =
m_lusas.db.getModelUnits().getForceShortName()
 Dim lengthUnit As String =
m_lusas.db.getModelUnits().getLengthShortName()

 ' Set the dialog label
 lblMaxMom.Text = m_lusas.convertToString(maxMom) & forceUnit &
lengthUnit

 ' Quit the application and free the licence
 m_lusas.quit()
 End Sub

 Private Sub btnClose_Click(sender As System.Object, e As
System.EventArgs) Handles btnQuit.Click
 For Each p As Process In
System.Diagnostics.Process.GetProcessesByName("Lusas_m")
 Try
 p.Kill()
 p.WaitForExit()
 Catch ex As Exception

 End Try
 Next
 Me.Close()
 End Sub
End Class

Interfacing to LUSAS using C++

41

Interfacing to LUSAS using C++
Generally, LUSAS recommends that you use VB or any other language that natively
supports COM interfaces. C++ does not natively support COM interfaces, thus COM
programming in C++ is much more complex, and results in code which is more likely
to contain bugs and is harder to read. However, it is possible for experienced C++
programmers to interface to Modeller. A simple example follows:.

#import “C:\LUSAS152\programs\Lusas_m.exe“

// create a modeller

 pModeller = IFModellerPtr("LUSAS.Modeller.18.0");

// create and return a database

 IFDatabasePtr db = pModeller->newDatabase();

// create and return a line

 IFLinePtr l = db->createLineByCoordinates(0, 0, 0, 5, 5, 5);

// calculate line length

 double len = l->getLineLength();

Note. The LPI functions often return a base class pointer which often needs to be
downcast to the desired type (e.g. attribute -> material). VB will do this for you, but
C++ will not. Therefore you must explicitly cast, and catch any exceptions that may
result

Note. LPI functions often have VARIANT inputs and outputs. VB will handle
conversion between simple data types (integers, strings, objects) and VARIANTs, but
C++ will not. Therefore you must be familiar with the use of the VARIANT type. If in
doubt, consult Microsoft documentation.





LUSAS via COM

42

LUSAS Material Model Interface
In addition to the accessing and customising LUSAS Modeller via the LUSAS
Programmable Interface, user-defined material models (written in Fortran) can be
compiled and built into a customised LUSAS Solver executable by using the LUSAS
Material Model Interface (LUSAS MMI).

The use of LUSAS MMI is beyond the scope of this manual. Please contact LUSAS
Technical Support for more information.

LUSAS, Forge House, 66 High Street, Kingston upon Thames, Surrey, KT1 1HN, UK
Tel: +44 (0)20 8541 1999 | Fax: +44 (0)20 8549 9399 | info@lusas.com | www.lusas.com

	front cover
	LPI Developer Guide
	Introduction
	Introduction
	Topics covered in this guide
	LUSAS Programmable Interface (LPI) Customisation and Automation Guide

	Creating dialogs using VB.NET
	Choosing a development environment
	Creating a LUSAS dialog
	Module Manager
	Creating a new module

	Running Visual Studio
	Build the project
	If issues are encountered…
	Run the project
	Adding dialog controls
	Defining a ListBox
	Defining a Delete Button
	Defining a Cancel Button
	Handling errors

	General considerations
	Basic dialog design
	Basic dialog controls
	Code design considerations

	Multiple Dialogs in a single module
	Notes:

	Translation considerations
	VB.NET online tutorials
	VB.NET dialog exercise
	VB.NET dialog solution

	LUSAS via COM
	Component Technology
	VB.NET Application Example
	Create a new project

	Interfacing to LUSAS using C++
	LUSAS Material Model Interface

	back_cover

