
Heat of hydration modelling of a concrete base slab

For LUSAS version:	23.0
For software product(s):	Any Plus version
With product option(s):	Nonlinear, Dynamic, Heat of Hydration.

Description

A concrete base slab has a length of 40m, a width of 20m and a height of 3m. For the purposes of this example it is assumed to be cast in one pour.

The temperature effects from modelling casting the slab with a constant ambient temperature and a varying ambient temperature are investigated on a quarter model of the slab, as shown coloured in grey in the

adjacent image. Side formwork is modelled as being present from 0 to 3 days and then removed for the duration of the investigation.

Units used are N, m, kg, s, C throughout.

Objectives

The required output from the analysis consists of:

A graph showing temperature against response time for a selected location within the slab for the ambient temperature conditions investigated.

Keywords

3D, Slab, Concrete, Heat of Hydration, Loadcase, Load curve, Temperature, Graphing.

Associated Files

- □ **slab_HHC_modelling.lvb** carries out the modelling for Analysis 1 constant ambient temperature.
- □ **slab_HHC_loadcurves.lvb** carries out the modelling for Analysis 1 and Analysis 2 varying ambient temperature.

Analysis 1 - Constant ambient temperature

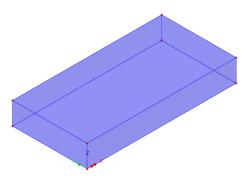
Running LUSAS Modeller

For details of how to run LUSAS Modeller see the heading *Running LUSAS Modeller* in the *Introduction to LUSAS Worked Examples* document.

Note. This example is written assuming a new LUSAS Modeller session has been started. If continuing from an existing Modeller session select the menu command **File>New** to start a new model file. Modeller will prompt for any unsaved data and display the New Model dialog.

Creating a new model

File New...


- Enter a file name of Slab HHC
- Use the default **User-defined** working folder.
- Set analysis type to be Thermal.
- Set the analysis category to be **3D**.
- Set modelling units to be N,m,kg,s,C.
- Set timescale units of Days.
- Enter a title of **Heat of hydration modelling of a concrete slab**
- Click the OK button.

Defining the slab geometry

Geometry

Shape Wizard...

- Select a Cuboid shape of type Volume and click Next.
- Enter a length in X of 20, in Y of 10 and in Z of 3 and click Finish.
- Press the isometric button to view the volume model generated.

Defining and assigning the mesh

| Attributes | Mesh > | Volume...

- Ensure Element type is set to Field, Shape is Hexahedral and Interpolation order is set to Ouadratic.
- Deselect the Automatic divisions checkbox and enter divisions in x, y and z of 16,
 10 and 8 respectively, and click OK.

With the whole model selected:

- From the treeview drag and drop the mesh attribute Vmsh1 onto the model.
- Click in an empty region of the view window to deselect the selection and view the mesh.

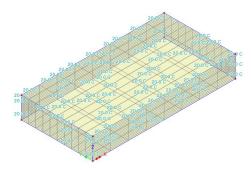
Defining and assigning the material properties

Attributes
| Material > |

- On the Thermal tab enter a Thermal conductivity of 2, a Specific heat capacity of 1.0448E3 and a Density of 2400 noting that the units in use for each can be seen when hovering over the cells.
- In the Exothermic behaviour section of the dialog select Concrete Heat of Hydration.
- Select the 'Cement Type' to be **Type I**, define the 'Mass of cement per unit volume' to be **307** and enter a 'Water/Cementitious mass ratio' of **0.47** and click **OK**.

With the whole model selected:

• From the treeview drag and drop the material attribute Iso1 onto the model, assigning it to Volumes for All analysis loadcases. Click OK.


Defining the temperature loading

Attributes Loading...

- Select Prescribed and click Next.
- Ensure that **Total**, **Fixed**, temperature loading of **20** degrees is specified to represent the stress-free ambient temperature. Enter a name of **Initial Temp** and click **Finish**.

With the whole model still selected:

- From the treeview drag and drop the loading attribute Initial Temp onto the model, assigning it to Volumes for Loadcase 1. Click OK.
- In the Treeview, rename Loadcase 1 to be Initialisation

Defining and assigning the supports

Attributes
Support...

Select Free, enter a name of Free and click OK.

With the whole model still selected:

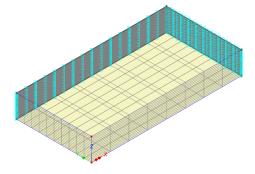
• From the treeview drag and drop the support attribute Free onto the model assigning it to Volumes. Select the From loadcase radio button and type Formwork for 3 days into the loadcase field to create a new loadcase. Click OK.

Note. This frees up the temperatures from the prescribed temperature loading which "locked" the temperatures in the Initialisation loadcase.

Defining environmental conditions

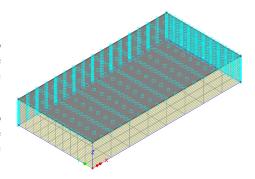
These will define the ambient temperatures and rate of heat transfer on the faces of the volume. Any face not assigned environmental conditions will be treated as an internal concrete face, i.e. a mirror plane.

Attributes Loading...

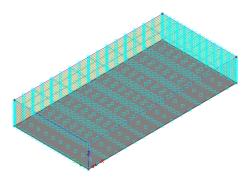

- Select Environmental conditions and click Next.
- Untick the **Temperature dependent** checkbox.

- Enter an Environmental temperature of **20** and a Convection heat transfer coefficient of **2.777**. Enter a name of **Face Ground Temperature** and click **Apply**.
- Leaving the environmental temperature set to 20, change the convection coefficient to be 8.333. Change the name to be Face Air Temperature and click Apply.
- Lastly, leaving the environmental temperature set to 20, change the convection coefficient to be 7. Change the name to be Face Formwork Temperature and click Finish.
- Click in an empty region of the view window to deselect the volumes selected.

Assigning environmental conditions


Side faces

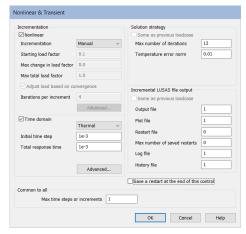
- Select the two outer vertical faces of the base slab.
- From the treeview, drag and drop the Face Formwork Temperature onto the selection assigning it to the loadcase Formwork for 3 days.
- From the treeview, drag and drop the Face Air Temperature onto the selection and assigning it to a new loadcase by over-typing the name with Exposed until 30 days.


Top face

- Select the top face of the slab.
- From the treeview, drag and drop the Face Air Temperature onto the selection assigning it to the loadcase Formwork for 3 days.
- From the treeview, drag and drop the Face Air Temperature onto the selection and assigning it to the loadcase Exposed until 30 days...

Bottom of slab

- Select the bottom face of the slab.
- From the treeview, drag and drop the Face Ground Temperature onto the selection assigning it to the loadcase Formwork for 3 days.
- From the treeview, drag and drop the Face Ground Temperature onto the selection assigning it to the loadcase Exposed until 30 days.



Define nonlinear and transient controls

'Initialisation' loadcase

- In the Treeview, right-click on the Initialisation loadcase and select Controls then Nonlinear and transient.
- In the Incrementation section tick

 Nonlinear to turn it on.
- Select **Time Domain**, enter an initial timestep of **1e-3**, a total response time of **1e-3**, a maximum number of time steps of **1**, and click **OK**.

'Formwork for 3 days' loadcase

- In the Treeview, right-click on the Formwork for 3 days loadcase and select Controls then Nonlinear and transient.
- In the Incrementation section tick **Nonlinear** to turn it on.
- Select **Time Domain**, enter an initial timestep of **0.05**, a total response time of **3**

• Click the Advanced button and change the Time step increment factor to 1.25 and click **OK**. Then **OK** again to exit the main dialog.

'Exposed for 30 days' loadcase

- In the Treeview, right-click on the Exposed until 30 days loadcase and select Controls then Nonlinear and transient.
- In the Incrementation section tick **Nonlinear** to turn it on.
- Select **Time Domain**, enter an initial timestep of **0.5**, a total response time of **30**
- Click the Advanced button and change the Time step increment factor to 1.25 and click **OK**. Then **OK** again to exit the main dialog.

The model is now complete.

Turn off the display of the loading

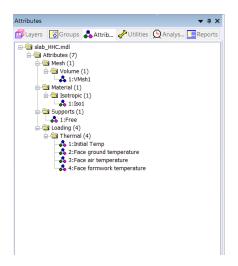
Press the loading on-off button to turn off the loading.

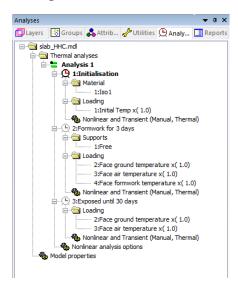
Save the model

Save the model file.

Checking the Attributes and Analyses Treeviews

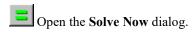
The Attributes A Treeview and the Analyses Treeview now contain all the information for an analysis to be carried out.


For a successful analysis your model should contain treeviews similar to those that follow. Right-clicking on attribute and loadcase data allows any defined values to be checked. If your model has potential errors in your Attribute data, or in your Loadcase assignments that you cannot fix, a file is provided to enable you to re-create the model from scratch and run the analysis successfully.


Note. The thermal loadcases are always tabulated and solved in \bigcirc Treeview order from top to bottom.

Save

Attributes treeview



Analyses treeview

Running the Analysis

With the model loaded:

• Ensure that the **Analysis 1** is selected and press **OK** to run the analysis.

A LUSAS datafile will be created from the model information. The LUSAS Solver uses this datafile to perform the analysis.

If the analysis is successful...

Analysis loadcase results are added to the 🕒 Treeview.

Associated files will be created in the LUSASFiles\\model_name> folder.

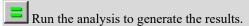
If the analysis fails...

If the analysis fails, information relating to the nature of the error encountered is written to an output file in addition to the text output window. Any errors listed in the text output window should be corrected in LUSAS Modeller before saving the model and re-running the analysis.

Rebuilding a Model

If it proves impossible for you to correct the errors reported the following file is provided to enable you to re-create the model from scratch and run an analysis successfully:

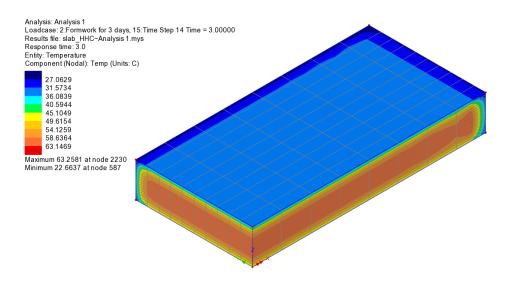
□ **slab_HHC_modelling.lvb** carries out the modelling this first part of the example ready for an initial solve to be undertaken.



Start a new model file. If an existing model is open, Modeller will prompt for unsaved data to be saved before opening the new file.

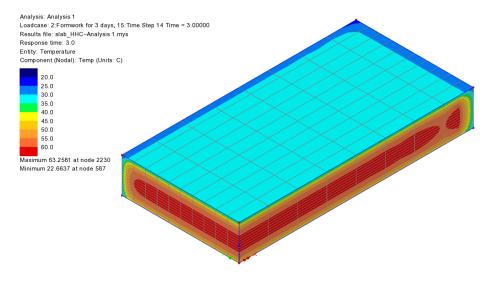
- Enter the file name as **slab_HHC**
- Select units of N,m,kg,s,C
- Ensure the **Thermal** user interface is selected and click the **OK** button

To recreate the model, open the file slab_HHC_modelling.lvb that was
downloaded and placed in a folder of your choosing.


Viewing the Results

Analysis results for each time step are present in the Treeview. The time step result for the last thermal loadcase to be solved (Time = 30.0000) is set active by default.

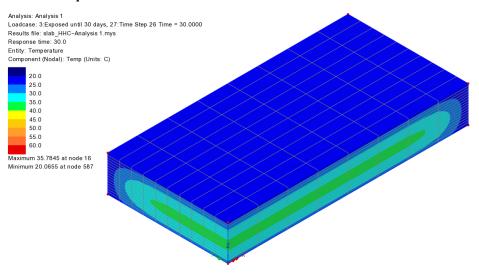
Plotting contours of temperature after 3 days


- In the Treeview, in the Formwork for 3 days analysis, set active the loadcase Time Step 14 Time = 3.000
- With no features selected click the right-hand mouse button in a blank part of the Graphics window and select **Contours...**
- Ensure that Entity Temperature and Component Temp and Nodal results are selected.

A plot showing the temperature distribution at 'Time = 3 days' will be displayed.

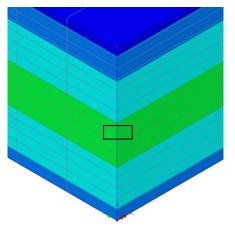
Change the contour range

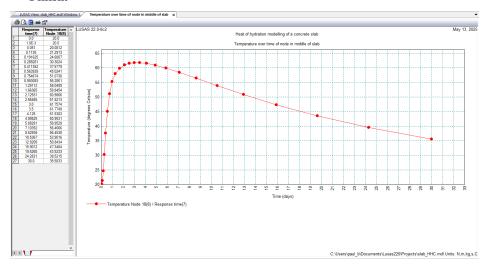
• In the Treeview, double click the Contours entry. On the properties dialog, click the Appearance tab and choose the Set button adjacent to the Classic contour option to set the maximum and minimum contour values to 60 and 20 respectively. Click OK to return to parent dialog and OK again to finish.



Note. Setting a fixed contour range is useful when wanting to view a consistent set of colours for a range of temperatures, and when animating load increments (not done in this example).

Plotting contours of temperature after 30 days


• In the Treeview, in the Exposed until 30 days analysis, set active the loadcase Time Step 26 Time = 30.000


Graphing of temperature at a selected node

- With reference to the adjacent image, select the node in the middle of the slab as highlighted the one at half height, at the corner between the two internal faces, at coordinates (0,0,1.5). Note that by selecting a point and then hovering the cursor over it its coordinates may be seen.
- For the X axis, select **Time history** and press **Next**.
- Select Named results for the Whole Analysis for Analysis 1 and click Next.
- Select Response time and click Next.
- For the Y-axis, select Nodal and click Next.

- Select entity Temperature and Component Temp, for the specified single node and click Next.
- Title the graph **Temperature over time of node in middle of slab**. Name the X axis to be **Time (days)** and the Y axis to be **Temperature (degrees Celsius)**. Click **Finish**.

From the table data it can be seen that a peak temperature of 61.8 degrees is achieved after 3.5 days. After this time, the temperature is continually cooling but has not returned to ambient within 30 days.

Analysis 2 - Varying ambient temperature

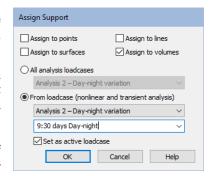
Varying the ambient temperature using loadcurves

The use of a constant ambient temperature, as done in the previous analysis, is not very realistic. In reality the air temperature will vary between day and night, which will affect the slab temperature. A new analysis (Analysis 2) will be created to show a more realistic modelling approach. Analysis 1 will be retained for reference.

Create a new analysis

Analyses
Thermal Analysis

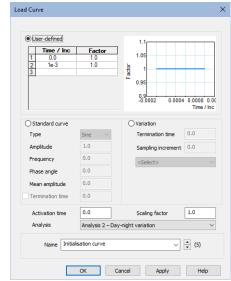
- Enter the name to be **Analysis 2 Day-night variation** and press **OK**.
- Rename the first loadcase in it to be Initialisation Day-night


Defining and assigning the supports

With the whole model selected:

- From the treeview drag and drop the support attribute Free onto the model ensuring Assign to volumes is selected.
- With the 'From loadcase' radio button selected for Analysis 2 Day-night variation ensure that a New loadcase called 30 days Day-night is created and click OK.

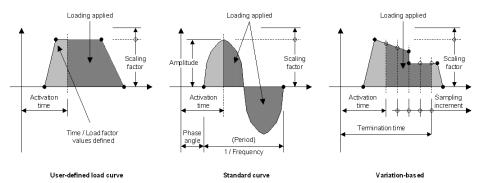
Note. This frees up the temperatures from the prescribed temperature loading which has "locked" the temperatures in the original Initialisation loadcase.


Defining load curves

Load curves can be used to describe the variation of loading with time.

Analyses Load Curve

- Create a **User-defined** loadcurve by entering a time of **0** and a factor of **1**, then press the **Tab** key to get a new line in the table. Enter a time of **1e-3** and a factor of **1**. (This will give a constant load factor of 1 for time = 0 to time = 0.001 days). Ensure it is in **Analysis 2**, give it a name **Initialisation curve** and click **Apply**.
- Next, change the time in the second row to be 30, change the name to Constant curve and click Apply.
- Now select the **Standard curve** option of type **Cosine**, with Amplitude **10**, Frequency **1** and Mean amplitude **20**.


(This will give a curve with a mean factor of 20, a maximum factor of 20+10 = 30, a minimum factor of 20-10 = 10; varying

with a cosine function starting at max amplitude, getting to minimum amplitude at 1/2 = 0.5 days, back up to max amplitude at 1 day and repeating every 1 day.)

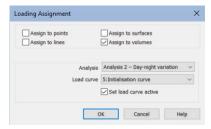
- Specify a Termination time of 3 days, give it the name **Day-night curve 3 days** and click **Apply**.
- Lastly, untick the Termination time, change the Activation time to 3 days, enter a name of **Day-night curve 3 to 30 days** and click **OK**.

Loadcurve types explained

See the LUSAS Modeller help topic for more information.

Defining environmental conditions

- Select Environmental conditions and click Next.
- Uncheck Temperature dependent.
- Enter an Environmental temperature of 1 and a Convection heat transfer coefficient of 8.333. Enter a name of Unit Face Air Temperature and Apply.
- Leave the Environmental temperature as 1 and change the Convection heat transfer coefficient to be 7. Enter a name of Unit Face Formwork Temperature and click Finish.

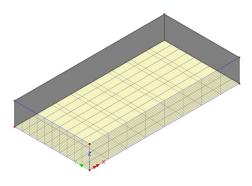


Note. When using loadcurves, loads are assigned to the loadcurves rather than to the loadcases. The time controls within the loadcases then determine what loads are actually present, based on the load curves.

Assigning environmental conditions

With the whole model selected:

- From the treeview, drag and drop the Initial Temp loading onto the volumes selected, for Analysis 2 Day-night variation, assigning it to the load curve named Initialisation curve.
- Click in an empty region of the view window to deselect the selection.

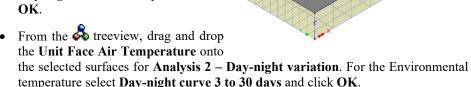


Attributes Loading...

Side faces

- Select the two outer vertical faces of the base slab.
- From the treeview, drag and drop the Unit Face Formwork

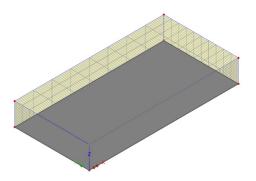
 Temperature onto the selected surfaces for Analysis 2 Day-night variation. For the Environmental temperature select Day-night curve 3 days and click OK. This will take the defined temperature (1 degree Celsius) and multiply it by the



varying load factor (10 to 30) to give a temperature of 10 to 30 degrees Celsius.

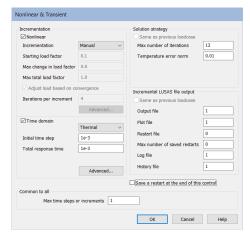
• From the treeview, drag and drop the Unit Face Air Temperature onto the selected surfaces for Analysis 2 – Day-night variation. For the Environmental temperature select Day-night curve 3 to 30 days and click OK.

Top face


- Select only the top face of the slab
- From the treeview, drag and drop the Unit Face Air Temperature onto the selection for Analysis 2 Daynight variation. For the Environmental temperature select Day-night curve 3 days and click OK

Bottom of slab

- Select only the bottom face of the slab.
- From the treeview, drag and drop the Face Ground Temperature onto the selection. For the Environmental temperature select Constant curve and click OK.


The ground temperature does not vary significantly between day and night, so the coefficients can be left as Constant (no load curve).

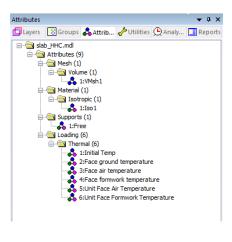
Define nonlinear and transient controls

'Initialisation day-night' loadcase

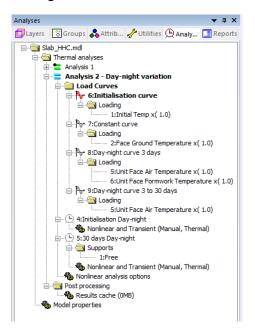
- In the Treeview, right-click on the Initialisation Day-night loadcase and select Controls then Nonlinear and transient.
- In the Incrementation section tick **Nonlinear** to turn it on.
- Select **Time Domain**, enter an initial timestep of **1e-3**, a total response time of **1e-3**, a maximum number of time steps of **1**, and click **OK**.

'30 Days day-night' loadcase

- In the Treeview, right-click on the 30 days Day-night loadcase and select Controls then Nonlinear and transient.
- In the Incrementation section tick **Nonlinear** to turn it on.
- Select **Time Domain**, enter an initial timestep of **0.05**, a total response time of **30**


• Click the **Advanced** button and change the Time step increment factor to **1.25** and click **OK**. Then **OK** again to exit the main dialog.

Checking the Attributes and Analyses Treeviews


The Attributes A Treeview and the Analyses Treeview now contain all the information for an analysis to be carried out.

For a successful analysis your model should contain treeviews similar to those that follow. Right-clicking on attribute and loadcase data allows any defined values to be checked. If your model has potential errors in your Attribute data, or in your Loadcase assignments, a file is provided to enable you to re-create the model from scratch and run the analysis successfully.

Attributes treeview

Analyses treeview

Running the Analysis

With the model loaded:

• Ensure that Analysis 2 is selected and press OK to run the analysis.

If the analysis is successful...

Analysis loadcase results are added to the Treeview.

Associated files will be created in the LUSASFiles\<model name> folder.

If the analysis fails...

If the analysis fails, information relating to the nature of the error encountered is written to an output file in addition to the text output window. Any errors listed in the text output window should be corrected in LUSAS Modeller before saving the model and re-running the analysis.

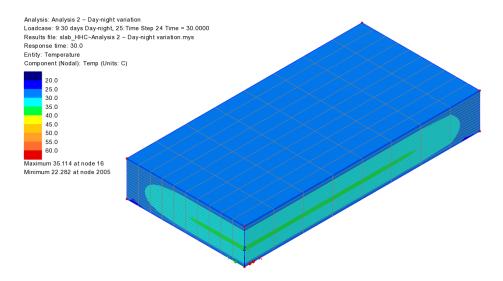
Rebuilding a Model

If it proves impossible for you to correct the errors reported the following file is provided to enable you to re-create the model from scratch and run an analysis successfully:

□ **slab_HHC_loadcurves.lvb** carries out the modelling the whole example ready for a solve to be undertaken.

Start a new model file. If an existing model is open, Modeller will prompt for unsaved data to be saved before opening the new file.

- Enter the file name as **slab HHC**
- Select units of N,m,kg,s,C
- Ensure the Thermal user interface is selected and click the OK button


• To recreate the model, open the file **slab_HHC_loadcurves.lvb** that was downloaded and placed in a folder of your choosing.

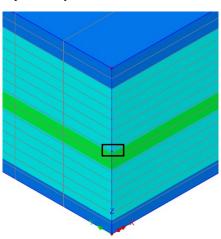
Run the analysis to generate the results.

Viewing the Results

Analysis results for each time step are present in the 🖰 Treeview.

• In the Treeview, in the Analysis 2 – Day-night variation analysis, for the 30 days Day-night loadcase, set active the loadcase Time Step 24 Time = 30.000

A reduced maximum temperature can be seen. Results can be compared against the previous graphed results in a similar manner to that done previously.


Graphing of temperature at a selected node

A graph is required for the same node as selected previously.

- If not still selected, select the node in the middle of the slab (i.e. at half height, at the corner between the two internal faces, at coordinates (0,0,1.5).
- For the X axis, select **Time history** and press **Next**.
- Select Named results for the Whole Analysis for Analysis 2 – day-night variation and click Next.
- Select Response time and click Next.
- For the Y-axis, select Nodal and click Next.
- Select entity Temperature and Component Temp, for the specified single node and click Next.
- Title the graph Temperature over time of node in middle of slab, with day-night variation. Name the X axis Time (days) and the Y axis Temperature (degrees

Graph wizard

Celsius). Tick to include the previous graph (Graph 1) for comparison. Click Finish.

On the graph the red line now shows results for Analysis 2, the green line shows the previously obtained results for Analysis 1.

By selecting the red data tab (which is to the left of the green tab on the graph above), the more realistic modelling of the ambient temperature can be seen to provide slightly lower concrete temperatures from 1 day onwards, including a slightly lower peak temperature of 61.4 degrees after 2.7 days.

This completes the example.